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Helmholtz Imaging, German Cancer Research Center, Heidelberg, Germany

S. Ziegler, Prof. K. Maier-Hein, Dr. F. Isensee
Division of Medical Image Computing, German Cancer Research Center, Heidelberg, Germany

F. Laufer, T.T. Prof. U. W. Paetzold
Light Technology Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany
ulrich.paetzold@kit.edu

T.T. Prof. U. W. Paetzold
Institute of Microstructure Technology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen,
Germany

Dr. C. Debus, Dr. M. Götz
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Large-area processing of perovskite semiconductor thin-films is complex and evokes unexplained variance in quality, posing a major
hurdle for the commercialization of perovskite photovoltaics. Advances in scalable fabrication processes are currently limited to grad-
ual and arbitrary trial-and-error procedures. While the in-situ acquisition of photoluminescence videos has the potential to reveal
important variations in the thin-film formation process, the high dimensionality of the data quickly surpasses the limits of human
analysis. In response, this study leverages deep learning and explainable artificial intelligence (XAI) to discover relationships between
sensor information acquired during the perovskite thin-film formation process and the resulting solar cell performance indicators,
while rendering these relationships humanly understandable. We further show how gained insights can be distilled into actionable
recommendations for perovskite thin-film processing, advancing towards industrial-scale solar cell manufacturing. Our study demon-
strates that XAI methods will play a critical role in accelerating energy materials science.

1 Introduction

Perovskite solar cells (PSCs) have been established as one of the most promising candidates for next-
generation photovoltaics. Since the emergence of hybrid organic-inorganic metal halide perovskite semi-
conductors, power conversion e�ciencies (PCEs) of PSCs have improved vastly, exceeding 30% PCE in
perovskite/silicon tandem photovoltaics [1]. Despite numerous advantages, [2, 3, 4], the technology has
not reached the market yet due to insu�cient device stability and the lack of cost-e↵ective and reliable
large-scale production [5, 6]. Large-area perovskite thin-films can be deposited using thermal sublima-
tion in vacuum [7, 8, 9] or scalable solution-based deposition techniques like blade coating [10, 11], slot-
die coating [12, 13], and ink-jet printing [14, 15]. State-of-the-art solution-processed multi-cation per-
ovskite thin-films require fast solvent extraction to rapidly reach the level of supersaturation and initi-
ate prompt crystallization [16, 17]. The crystallization process heavily a↵ects the perovskite thin-film
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Figure 1: Overview of the Experiment Setup Process diagram of the experimental setup. Leads from dataset acquisition to the inter-
pretation of the findings by scientists. Dataset abstractly visualizes the acquisition of the videos and labels. Neural network training showcases
the di↵erent representations and neural network architectures used to predict the labels. Explainable AI lists XAI methods and XAI evaluation
approaches. Finally, quantitative findings are interpreted by scientists to connect them to actionable recommendations, with the possibility of
leveraging them for constructing a new enhanced dataset and closing the circle. Abbreviations: NN: neural network, PL: photoluminescence.

formation process and is the key step in producing high-quality perovskite thin-films. In practice, this
crystallization process is very di�cult to control, as it is heavily dependent not only on the layer stack,
deposition, and materials but also on external process parameters such as temperature, as well as lab-
specific equipment. Optimal parameters cannot be easily transferred between setups and have to be re-
determined for each manufacturing site following a trial-and-error procedure [18, 19, 20]. However, even
when nominally identical process parameters are applied, the PSC quality varies due to deviating real-
world process parameters resulting from small human or technical inconsistencies infeasible to measure.
Consequently, the entire thin-film formation process is hard to optimize for specific setups, leading to
poor reproducibility. Hence, a standardized and quantitative way of determining optimal process param-
eters is lacking to reduce the significant volatility in PSC quality.

Machine learning (ML) has recently been applied to specific optimization problems in various fields, in-
cluding materials sciences, as it outperforms humans in finding correlations and clues in highly com-
plex data [21, 22, 23]. Specifically, in perovskite research, ML has been used to optimize specific param-
eters on tabular data, e.g. material choice [24], bandgaps [25], compositional ionic radii [26] or optimiz-
ing specific characteristics like the morphology or crystal structure utilizing scanning electron microscope
(SEM) [27] and grazing incidence x-ray di↵raction (GIXD) images [28]. However, the current application
of ML in perovskite research is only working with low-dimensional ex-situ data, looking exclusively at
the final thin-film, but not the perovskite formation process itself. We argue, that only by understanding
the full process in a data-driven manner we can discover new insights about the underlying mechanisms
that lead to volatility in PSC quality.

We address this challenge by introducing a data-driven concept for knowledge discovery. This concept
combines deep learning (DL) with multiple explainable artificial intelligence (XAI) methods. While DL
is able to find patterns in complex data that would be infeasible to find through traditional analyses, we
use XAI to render the found patterns to human-understandable concepts, which can be translated by
material scientists into actionable conclusions. To our knowledge, it is the first time that XAI is used to
such an extent on high-dimensional data for knowledge discovery as well as PSC fabrication. Based on
this setup, we are not only able to find evidence in favor or against existing hypotheses but also uncover
unprecedented insights leading to the establishment of new hypotheses regarding reliable large-scale PSC
manufacturing. These insights are generated on the basis of a unique high-dimensional dataset, contain-
ing in-situ photoluminescence (PL) intensity videos of the perovskite thin-film formation (see our pre-
vious study by [29]). While process parameters in this dataset are nominally identical, the video data
captures the real-world process parameters by showing the thin-film formation process they produce. By
doing so, we do not limit ourselves to prior assumptions regarding high-impact parameters but enable an
unbiased inclusion of all possible real-world process parameters. This methodology o↵ers two main ad-
vantages: First, we do not limit our prior set of information and allow the identification of unanticipated
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findings. Second, we can also discover multiple distinct process parameters that cause the same finding,
as changes in the thin-film formation process can be achieved by several di↵erent actions, which vary in
suitability depending on the specific setup.

In the following sections, we first describe the experimental setup leveraging ML and XAI to gain a deeper
understanding of thin-film formation processes leading to high-quality PSCs. Based on this setup, we
present four key findings derived from the XAI analysis. These findings ultimately allow us to formulate
action recommendations on the fabrication process. Concluding, we discuss the limitations and future
potential of our approach.

2 A data-driven approach for knowledge discovery facilitates the experi-
mentation process

Dataset This study builds on our publicly available dataset published by [29] that contains in-situ
PL video data of 1,129 PSCs (Figure 1). The videos were acquired using PL imaging, which is a non-
invasive, easily accessible, versatile measurement technique capable of monitoring the perovskite crys-
tallization in situ on large areas with spatial resolution as well as sub-second temporal resolution. The
PL videos were recorded during the vacuum-based quenching of blade-coated perovskite thin-films dis-
tributed over 38 substrates using nominally the exact same process conditions. Consequently, the video
data depicts the drying and crystallization of the blade-coated perovskite thin-films. Four filters were
used to capture the characteristic PL of the underlying processes: a neutral density filter (RND), mea-
suring the reflectance, two longpass filters, capturing the PL with wavelengths longer than 725nm
(PLLP725) and 780nm (PLLP780), respectively, and a 775nm shortpass capturing short-wave PL
(PLSP775) combined with a longpass to remove the excitation light [30]. All solar cells were fabricated
incorporating a double cation perovskite absorber layer with the composition Cs0.17 FA0.83Pb(I0.91Br0.09)

3.
Subsequent to the processing of the perovskite thin-film, the full device stack of the PSC was completed.
The PCE of the PSCs as well as the mean thickness (mTh) of the perovskite thin-film serve as labels
for our neural network (NN) training, allowing them to learn a relationship between the videos and the
quality of a PSC. This ultimately allows the prediction of PSC quality, i.e. PCE, before completing the
perovskite thin-film into a functional solar cell device. A detailed description of the data acquisition pro-
cess can be found in Supplementary subsection A.2.

Figure 2 depicts a characteristic PL signal in a point timeseries (Point TS) data representation, where
each line represents the average PL per filter over the whole dataset. Characteristic features of the PL
signal can be attributed to di↵erent phases during the perovskite thin-film formation, which we extend
from [6]: In Phase I, the evacuation of the vacuum chamber leads to an accelerated drying of the wet-
film due to increased solvent evaporation rates. No PL signal is detected yet as the precursor materials
are still dissolved in the ink and no perovskite semiconductor material is formed. With the nucleation
onset of perovskite crystallites in Phase II, perovskite nuclei and small grains start to emit a strong PL
signal. During crystallization (Phase III ) larger grains are formed by coalescing and ripening of smaller
ones. Non-radiative recombination at grain boundaries and a reduced outcoupling of luminescence pho-
tons emitted from the solid perovskite thin-film - due to total internal reflection - reduce the overall emit-
ted PL signal. Phase IV starts with the venting of the vacuum chamber creating the final film surface
morphology. The evolution of the PL signal during that phase remains not fully understood but is hy-
pothesized to correlate with the thin-film’s final morphology, i.e., surface roughness [31].

Neural Network Training and Explainable AI Methods The DL models employed in this work
are trained on di↵erent representations of the high-dimensional data as shown in Figure 1: the original
video, image, point timeseries (Point TS), and vector timeseries (Vector TS). Detailed descriptions of
each representation and their respective data preprocessing are available in section 8. The DL models,
specialized for each representation, are trained to predict the labels, i.e. PCE or mTh. Model architec-
tures for each representation are described in section 8 (Neural Network Architectures) and chosen hy-
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Figure 2: Description of utilized data a. The figure shows the four di↵erent thin-film formation phases based on the average Point TS
PL and reflectance intensity for each of the four filters. Below, the simultaneous change of the air pressure in mbar is depicted. b. Distribution
of both labels, separated into train and testset. Abbreviations: Point TS: point timeseries, PL: photoluminescence.

perparameters and augmentation techniques can be found in Supplementary E. Building on these mod-
els, multiple XAI methods are used to render the ML mapping between PL input data and predicted
PCE or mTh humanly interpretable. To understand which input features and phases are most important
to our models, we apply attribution methods [32, 33] to compute either local explanations, i.e. explain-
ing a model’s behavior on a single observation (i.e. single sample), or global explanations, i.e. explaining
patterns that are present in general. However, the computed attribution maps only indicate the impor-
tance of individual features without revealing the underlying reasons and causal e↵ects leading to the
importance. To answer this question we deploy counterfactual explanations (CEs) [34, 35, 36] and the
Testing of Concept Activation Vectors (TCAV) [37]. CEs alter the input observation to receive a spe-
cific counterfactual outcome and simulate “what if” -scenarios. For TCAV, on the other hand, building
on the CE analysis we define concepts that occur in the data, e.g. a high PL peak, and test the impor-
tance of each concept to specific layers of the DL model (detailed description is provided in methods sec-
tion 8).

In the following sections, we present our key findings derived from the multi-dimensional in-situ PL dataset
by XAI. Since all the di↵erent data representations, labels, and XAI methods yield various combina-
tions, we show only the most relevant results. A comprehensive overview of the DL and XAI results ob-
tained during this study can be found in Supplementary B.

3 Temporal progression of in-situ photoluminescence contains more infor-
mation compared to the spatial dimension

While two-dimensional data (e.g. images) and correlations therein can be captured and processed rea-
sonably well by human experts, correlations in three-dimensional data (e.g. videos) are hardly accessible.
In fact, our XAI analysis shows that the temporal progression of the PL data contained in in-situ videos
recorded during the perovskite thin-film formation, i.e. the vacuum-based quenching step, contains much
more information about the device performance and perovskite thin-film thickness compared to single
ex-situ PL images.

DL models trained on representations containing time information outperform DL models trained on
spatial information alone (Figure 3 (a.)). When limiting the data to only one frame (image representa-
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Figure 3: NN model performance and XAI explanations about the temporal progression a. NN performance is measured in
standardized mean absolute error (sMAE) to compare between labels. The mean baseline is computed by calculating the label’s mean on the
training set and using it as prediction for every case in the testset. b. Attribution-map showing which timesteps (over all four filters) of the
Point TS attribute either positive (blue) or negative (red) to the prediction of each label. The scale of the attribution di↵ers between both la-
bels, as it depends on the scale of the labels. c. Attribution-map for the video data of label PCE and filter PLLP725 (left), and label mTh and
filter PLLP780 (right). Both graphics show four frames and their attribution-maps, selected based on the aggregated absolute attribution per
timestep to their right. Abbreviations: NN: neural network, TS: timeseries, PL: photoluminescence, PCE: power conversion e�ciency, mTh:
mean thickness, MAE: mean absolute error.

tion), thereby neglecting the temporal dimension, choosing the timestep influences the prediction per-
formance di↵erently for each label. While for PCE using the frame at maximum PL intensity (in-situ)
yields better performance than the final frame (ex-situ) of the thin-film formation, it is vice versa for
mTh. This suggests that mTh is more dependent on process phases after the maximum PL intensity
frame, while this timestep contains substantial information for PCE prediction. The significant variation
in PCE and mTh prediction performance results from the fact that the PCE label, other than the mTh
label, encompasses e↵ects and correlations of the subsequent layer processing on top of the perovskite
thin-film, given that the PCE is determined for the full PSC. Parity plots, showing the correlation be-
tween predicted and ground truth labels, can be found in Supplementary Figure S14. Attribution-maps
showing how important each timestep for the DL model is (Figure 3 (b.)) reveal that the models nei-
ther identify single dominant timesteps nor consider each timestep as equally relevant, but rather high-
lights distinct time periods of high relevance for the models trained on either the PCE label or the mTh
label. Importantly, these periods are also reflected in the video representation when aggregating attribu-
tion per frame, while the spatial attribution within frames does not show recognizable patterns (Figure 3
(c.)).

Our analysis highlights that the model focuses on time periods that coincide with the defined phases.
The model leverages the information in these phases to successfully di↵erentiate between sequences re-
sulting in high- or low-performing PSCs. The predictive performance of the models extensively increases
when including temporal information, and for in-situ data is always substantially better than the mean
baseline. This emphasizes the successful learning of non-trivial relationships, which represents a require-
ment for the subsequent XAI analysis. The findings suggest that the temporal dimension provides cru-
cial characteristics for understanding the perovskite thin-film formation, such as the timing of the dif-
ferent phases during thin-film formation which is not present in individual images. Thus, not only the
acquisition of in-situ data compared to ex-situ but also the inclusion of a temporal dimension is vitally
important for PSC process monitoring and optimization.
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Figure 4: Diverse XAI results highlight the importance of Phase II (nucleation onset) a. Absolute attribution-map for PCE
averaged over 100 observations. b. Generated CEs of the LP filters yielding either high or low PCE prediction. See Supplementary Figure S8 for
the other two filters and Supplementary Figure S9 and S10 for the CEs of the same observation’s other representations. The original predicted
PCE for this observation is shown in the header and the PCE predicted based on the artificially computed CEs are presented behind the label.
c. For TCAV, we test the last eight layers of the NN, as they capture more semantic information than earlier layers. For each of the eight layers,
we observe whether the layer is more sensitive to the concepts “High Peak” or “Low Peak” of the concept class “Early Peak Height”, or whether
there is no significant di↵erence (ns, based on proportion z-test with a significance level (↵) of 0.05). This is done based on selecting contrasting
data subsets, to see the di↵erence in importance of the concepts to e.g. high and low PCE observations (see Supplementary B for high mTh ob-
servations). Abbreviations: NN: neural network, TS: timeseries, PL: photoluminescence, PCE: power conversion e�ciency, mTh: mean thickness,
TCAV: Testing of Concept Activation Vectors.

4 High photoluminescence peak intensity at nucleation onset induces higher
quality perovskite films

We show and quantify that the quality of blade-coated perovskite thin-films strongly correlates with the
PL intensity close to the onset of the nucleation and crystallization phase. This onset is apparent at the
start of Phase II. When visualizing the global importance over 100 observations, i.e. PL data recorded
from 100 PSCs, we observe that models predicting PCE (Figure 4 (a.)) and mTh (Figure 6 (a.)) both
show the highest absolute attribution to Phase II. Figure 5 indicates the importance of each of the four
filters by their mean absolute attribution |AF |, as they contribute in di↵erent extends to the final predic-
tion.

To substantiate our analysis, we artificially generate CEs (detailed description is provided in methods
section 8) of the PL intensity curves (Figure 4 (b.), see Supplementary B for the other two filters), such
that the model predicts substantially higher or lower PCE compared to the original observation. These
CEs reveal that when moderately increasing the nucleation onset peak the model predicts higher PCE
values and vice versa (Figure 4 (b.)), thereby confirming our initial observation. These results are fur-
ther rea�rmed for mTh, as a decreased PL intensity of the nucleation onset results in higher mTh pre-
diction (Figure 6 (b.)). To predict a lower mTh, however, no substantial change in the PL intensity is
required, suggesting that lower measured mTh values in our dataset still fall into an optimal range, and
only for higher values the PL intensity course is substantially di↵erent.
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Figure 5: The importance of each filter di↵ers between labels a. Both figures show the mean absolute attribution of each filter

(|AF |) over n = 100 observations with standard deviation, in order to assess the importance of each filter. Higher is always more important. F-
Test to determine the di↵erence between all filters and only between the PL filters. The di↵erence between all three PL filters is not significant
(↵ � 0.1) b. Two sample T-Test to determine the di↵erence between ND and SP775 filter and LP725 and SP775 filter. Both are significantly
di↵erent from each other.

To further reinforce the findings of the CE analysis, we deploy TCAV to determine the extent to which
the concepts of high and low nucleation onset peaks a↵ect the model prediction. We split the whole dataset
via quantiles (Qx) into two subsets for both labels, to not only observe the general importance of the
concepts to the model, but specifically when predicting observation subsets with properties we are in-
terested in: high PCE (> Q0.9) and low PCE (< Q0.1) observations, and optimal (Q0.45 < x < Q0.55)
and high (> Q0.9) mTh observations (8Qx : n = 113). We do not use low mTh observations, as the
data shows the highest, thus optimal, PCE around 800nm (Supplementary A), and the CE analysis re-
vealed that lower mTh values do not necessarily result from substantially di↵erent PL intensity curves.
Figure 4 (c.) shows that when predicting high PCE observations the concept of “High Peak” is more
important to the model whereas when predicting low PCE observations the concept of “Low Peak” is
more important. Equivalently, in the case of mTh, the concept of “High Peaks” is more important than
“Low Peaks” for the optimal and high mTh subset (only optimal is shown in Figure 4 (c.), see Supple-
mentary B for high mTh observations). Both TCAV findings reconfirm the CE-based conclusions.

In summary, our data-driven approach shows that a higher peak in Phase II leads to improved PSC qual-
ity. Consequently, practical guidelines for future experimental work are derived from XAI analysis: Pro-
cess parameters and ink formulations shall be optimized toward maximizing the PL peak height during
Phase II. This data-driven finding complements experimental trial-and-error analysis in literature, where
it was shown that changes in the rate of evacuating the vacuum chamber impact not only the PL onset
time and the PL peak height but also the perovskite thin-film quality [38]. The actionable recommenda-
tion for future processes is to increase the evacuation rate to achieve higher PL peaks, which is indica-
tive of higher solar cell performance.

5 High photoluminescence peak intensity at the start of the chamber vent-
ing induces thick and rough perovskite thin-films

To fabricate high-quality perovskite thin-films, a homogenous layer morphology is critical. Our study
shows that increased thin-film thickness and roughness (the latter is highly correlated with the thick-
ness measurement, see Supplementary A) can be inferred from the XAI analysis of in-situ PL data. The
vacuum quenching of the perovskite material and the subsequent venting (starting at around t = 505)
strongly a↵ect the crystallization and the morphology of the perovskite layer [38]. Indeed, our DL mod-
els predicting mTh show besides the high absolute attribution to Phase II also attribution to Phase IV
(Figure 6 (a.)). Specifically, there is first a small attribution peak at around t = 510, before the dip
in PL intensity, and then a large attribution concentration after the dip. For PCE observations, only a
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Figure 6: Diverse XAI results highlight the importance of Phase IV (surface morphology) a. Absolute attribution-map for mTh
averaged over 100 observations. b. Generated CEs of the LP filters yielding either high or low mTh prediction. See Supplementary Figure S8 for
the other two filters and Supplementary Figure S9 and S10 for the CEs of the same observation’s other representations. The original predicted
mTh for this observation is shown in the header and the mTh predicted based on the artificially computed CEs is presented behind the label. c.
For TCAV, we test the last eight layers of the NN, as they capture more semantic information than earlier layers. For each of the eight layers,
we observe whether the layer is more sensitive to the concepts “Phase IV Peak” or “Phase II Peak” of the concept class “Peak Position”, or
whether there is no significant di↵erence (ns, based on proportion z-test with a significance level (↵) of 0.05). This is done based on selecting
contrasting data subsets, to see the di↵erence in importance of the concepts to e.g. high and low PCE observations (see Supplementary B for
optimal mTh observations). Abbreviations: NN: neural network, TS: timeseries, PL: photoluminescence, PCE: power conversion e�ciency, mTh:
mean thickness, TCAV: Testing of Concept Activation Vectors.

smaller attribution spike at t = 510 can be observed (Figure 4 (a.)). The CEs for mTh observations in
Figure 6 (b.) (see Supplementary B for the other two filters) reveal that along with a low PL peak in
Phase II, a high PL intensity during Phase IV leads to higher mTh. Alterations leading to lower mTh
are only very minor.

After determining the importance of Phase IV, we compare the two concepts “Phase II Peak” and “Phase
IV Peak” to further distinguish between the two most important time periods to the NN. While both
concepts are equally important for high PCE observations, “Early Peak” is more important for low PCE
observations (Figure 6 (c.)). The results refine the conclusion that especially for low PCE values, Phase
II is more important than Phase IV. Also for mTh observations, both concepts are generally important
(Supplementary B), with “Late Peak” being moderately more important than “Early Peak”, confirming
the importance of Phase IV previously observed in the CE experiments.

In summary, our analysis reveals that the perovskite thin-film roughness correlates to the timing of the
venting step. We conclude further that residual solvent contained in the thin-film leads to increased sur-
face roughness, resulting in increased PL outcoupling, i.e. high PL signal during venting. In contrast,
perfectly dry perovskite thin-films exhibit no change in morphology, i.e. no significant change in PL,
during venting. The actionable recommendation derived from our XAI analysis is to optimize the pro-
cessing such that the PL does not increase after the venting, i.e. to prevent the formation of rough and
therefore thick layers, which are more likely to result in bad-performing solar cells. This can be achieved
by extending the evacuation times which dries the thin-film and eliminates the PL increase during vent-
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6 Superior crystal growth is reflected in a steeper photoluminescence in-
tensity decay during the crystallization phase
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Figure 7: TCAV concept importance to analyze the decay during Phase III (crystallization) For each of the eight layers, we ob-
serve whether the layer is more sensitive to the concepts “Linear Decay” or “Quadratic Decay” of the concept class “Crystallization Decay”, or
whether there is no significant di↵erence (ns, based on proportion z-test with a significance level (↵) of 0.05). We select contrasting data subsets
to see the di↵erence in importance of the concepts to e.g. optimal and high mTh observations. Abbreviations: NN: neural network, PCE: power
conversion e�ciency, mTh: mean thickness, TCAV: Testing of Concept Activation Vectors.

Next to nucleation, the phase of crystallization and crystal growth (Phase III ) is of critical importance
for the morphology of the perovskite thin-films. By means of our XAI analysis, we find that high-performing
PSCs correlated with a steeper decrease in PL intensity during Phase III when compared to low-performing
PSCs. When revisiting the CE analysis in Figure 4 (b.) and Figure 6 (b.) we observe that the PL inten-
sity slope apparent in Phase III is steeper when predicting a higher PCE or a lower mTh. This is also
rea�rmed by the cluster analysis of [29] showing that clusters having a higher mean PCE also exhibit
a steeper slope in Phase III. To understand the underlying e↵ect behind this di↵erence in decay slope,
we use TCAV to test the importance of the two concepts “Linear Decay” and “Quadratic Decay” to the
model (Figure 7). We find that the concept “Quadratic Decay” is more important for observations with
high PCE, while the concept “Linear Decay” is more important for observations with low PCE. It is
possible that this correlation may be spurious, as a high nucleation onset peak in Phase II in PCE could
result in a more quadratic crystallization decay in Phase III, while a lower peak results in linear decay.
Therefore, future work needs to verify the causal e↵ect behind the change in decay. In the case of mTh,
the model is sensitive to both concepts and no unique characteristic for optimal or high observations can
be defined.

In summary, the data-driven analysis reveals that a fast superlinear decay of the PL signal correlates
with higher performance. In addition, the correlation suggests that the crystallites grow and coalesce
into larger crystals which reduces the number of grain boundaries and promotes the extraction of charge
carriers. Grain boundaries exhibit a high defect density which reduces radiative recombination and there-
fore lead to a decrease in emitted PL. Thus, a high importance of the concept “Quadratic Decay” for ob-
servations with high PCE could possibly be caused by the higher charge extraction of high-performing
PSCs leading to a stronger reduction of radiative recombination during the crystal growth phase illus-
trated in the steeper decrease in PL. For low-performing solar cells, charge carrier extraction is lower, re-
sulting in a high rate of radiative recombination and therefore in a flatter decrease of emitted PL signal
over time.
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Parity Plots for PCE Testset Predictions (n = 349)a.

Local Polynomial Regression (d = 0.9) Perfect Prediction Reference Line

Mean Baseline Point TS Image (max PL) Vector TS Video

Parity Plots for mTh Testset Predictions (n = 349)b.

Local Polynomial Regression (d = 0.9) Perfect Prediction Reference Line

Mean Baseline Point TS Image (max PL) Vector TS Video

Finding revealed by XAI Scientific Interpretation Actionable Recommendation
F1

Temporal information increases predictive 
performance of the models extensively

Temporal dimension provides crucial 
characteristics for understanding the 
perovskite thin-film formation

Acquisition of temporal in-situ data  is vitally 
important for process monitoring and 
optimization

F2
A higher peak in Phase II leads to improved 
PSC quality

Changes in evacuation rate improve 
perovskite thin-film quality and   impact PL 
onset time and PL peak height

Increase the evacuation rate to achieve 
higher PL peaks, which is indicative of 
higher PCEs

F3 Perovskite thin-film roughness correlates to 
the timing of the venting step

Increased PL signal during venting caused 
by increased surface roughness due to 
residual solvent contained in the thin-film

Extending the vacuum quenching time  
eliminates the PL increase during venting, 
by preventing the formation of rough and 
therefore thick layers

F4
Fast superlinear decay of the PL signal 
correlates with higher performance

Higher charge extraction of high-performing 
PSCs leads to a stronger reduction of 
radiative recombination during crystal 
growth phase 

Improve charge extraction resulting in a 
faster decrease of emitted PL signal

+

Table 1: Overview of all findings and the recommendations derived from them.

7 Conclusions

Our analysis shows that fluctuation in the quality of PSCs processed with nominally identical conditions
can be understood by investigating the thin-film formation process with DL and XAI, bringing us one
step closer to the industrial usage of PSCs. We are able to infer actionable recommendations just by an-
alyzing the video dataset and without having to carry out extensive and costly trial-and-error experi-
ments. This is possible due to our unique approach of leveraging diverse XAI methods, going beyond
mere feature importance, combined with deep learning-based modeling of video data, to generate new
insights that would not have been identified by human experts.

While this data-driven approach can vastly accelerate and facilitate experimentation in materials sci-
ence, some possible limitations need to be taken into account. In DL, overfitting is a common problem,
where no meaningful relationships are learned. Therefore, general conclusions can only be drawn if suf-
ficient prediction performance on unseen test data is achieved. Our quantitative testset evaluation (Fig-
ure 3) and parity plots (Figure S14) show that our models are well capable of predicting unseen data to
find general patterns. Di↵erences between the two labels are due to the fact that PCE can only be mea-
sured after the completion of the solar cell while mTh only depends on the perovskite layer. Since the
subsequent production steps can introduce irregularities that adversely a↵ect PCE but are impossible to
predict from only the videos it is expected that mTh is predicted overall more accurately. This is also
reflected in the parity plots (Figure S14) showing PCE predictions for low-PCE solar cells being consis-
tently overestimated, due to the error leading to a low PCE only occurring in not imaged subsequent
steps. Apart from these cases however, a high-quality prediction performance for subsequent XAI steps
is achieved. Further, human interaction with XAI is prone to confirmation biases and overinterpretation.
To mitigate these potential pitfalls, we not only apply diverse XAI methods that confirm observations
from di↵erent perspectives but also perform a large-scale quantitative evaluation (Supplementary C).
Furthermore, a data-driven approach is naturally limited by the dataset used for analysis. A higher spa-
tial resolution which makes prominent defects and crystal structures better visible (e.g. SEM) would
widen the range of potential insights but is infeasible to obtain for in-situ videos. Naturally, there is a
possibility of unobserved parameters, not captured in our dataset, but still a↵ecting the labels. However,
we deem the possibility of important unobserved parameters and confounders as rather low, since the
information-rich video data captures almost all important processes of the thin-film formation, with the
exception of the succeeding production steps to finalize the PSC when measuring PCE. Further, the in-
ference from XAI results to underlying causal variables is performed by human experts, so as to control
against potential confounders. Lastly, we want to stress that the techniques applied in this manuscript
should also be regarded as a general concept for experimental material researchers to assess and enhance
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their experimental setups. The XAI methods are not limited to the dataset we have used as an example.
Consequently, a similar analysis can be conducted to interpret and improve other fabrication processes
in materials science.

Our encouraging action recommendations exemplify the usage of XAI methods in materials science and
PSC research and showcase data-driven approaches as key tools for the development of upcoming pho-
tovoltaic technologies. Moreover, this work highlights the importance of investigating PSCs in a scalable
experimental setup to tackle current reliability issues in large-scale PSC production. To this end, it is
important to understand the perovskite thin-film formation process which is investigated in this work.

8 Methods

Data Preprocessing We create several data representations in– or excluding time and/or spatial
dimensions. The original dataset consists of width (w), height (h), and time (t). The video represen-
tation contains all available information {w, h, t}. They contain 719 timesteps (i.e. frames) acquired at
a rate of 3 frames per second. Each frame is an image sized 65 ⇥ 56 pixels with a spatial resolution of
18.6 pixels/mm and covers the active area of a PSC. The point timeseries (Point TS) contains only the

temporal information by aggregating each frame via its mean {(w, h)|t}. The image representation on
the other hand only covers spatial information. It consists of a single frame at a given time point t, for
example, the one with the maximum PL signal {(w, h)|tmaxPL} or the last frame of each video {(w, h)|t|T |},
simulating an ex-situ approach. The vector timeseries (Vector TS) is similar to the Point TS, aggre-

gating only the w dimension {(w|h), t} resulting in a 2D representation that includes temporal as well
as some spatial information. Additionally, we tried spectral analysis by converting the Point TS to a
spectrogram. However, there were not many prominent frequencies in the data, resulting in lower pre-
diction performance. Each of the representations contains the four filters. They are concatenated along
the channel dimension. Further, the data was standardized using the z-transformation with the mean
and standard deviation of the training set. Additionally, each model is trained with di↵erent data aug-
mentations such as flips and blurs. A detailed list of all augmentations for each model can be found in
Supplementary E. For the testset, the data was only standardized using mean and standard deviation
again from the training set and no augmentations were applied.

Neural Network Training and Testing We use the same train and test split as [29], excluding
30% of the 1,129 PSCs as a held-out test set stratified on a substrate level. For model development, we
apply 5-fold cross-validation to the training set. The average score of the 5 di↵erent models is then used
to determine the best configurations. This ensures a reliable model evaluation mitigating potential over-
fitting on only one validation set. The final model evaluation as seen in Figure 3 (a.) is done on the test
set. sMAE is used as a metric: It standardizes the common MAE by dividing it by the standard devi-
ation of the respective ground truth label to render scores comparable across di↵erent labels and value
ranges. The complete results table for the test set including also unnormalized scores is available in the
Supplementary D.

Neural Network Architectures Since we use di↵erent data representations with varying dimen-
sionality we need to adapt the neural network architecture to the representation. Di↵erent architectures
such as VGGs [39], ResNets [40], PreActResNets [41], E�cientNets [42], and Wide ResNets [43] were
compared against each other during development and the final architecture for each data representation
and label and final models were selected based on the highest cross-validated performance as measured
by sMAE. Overall, the ResNet architecture [40] had the highest performance for the 1D and 2D rep-
resentations. For the Point TS which only has one dimension (time), we apply a ResNet-152 using 1D
convolutions. For the image and Vector TS representations, we use a ResNet-18 with 2D convolutions.
The four filters from our dataset are presented to the networks as input channels, analogous to how red,
green, and blue are used when processing natural images.
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Learning from entire video sequences is substantially more challenging. Using a standard ResNet anal-
ogous to the 1D and 2D representations would result in an architecture that needs to accumulate infor-
mation across 4 ⇥ 65 ⇥ 56 ⇥ 719 input tensors. Computation time aside, the curse of dimensionality
coupled with a limited number of training cases would impede optimization, particularly generalization
performance. Thus, a purpose-built solution is required. SlowFast [44] is highly optimized for video data
and yields state-of-the-art performance on common video data benchmarks. It consists of two convolu-
tional branches that require di↵erent inputs. Its central concept is that a video contains static (slow) in-
formation, e.g. objects that are present in the video at all times or only change very slowly, and dynamic
(fast) information, e.g. movements or other actions. Accordingly, the two branches of SlowFast focus on
the two distinct types of information. The slow pathway processes fewer frames by using a large tempo-
ral stride, allowing the network to detect static information e�ciently. On the other hand, the fast path-
way inputs more video frames but uses a more lightweight sub-architecture by using fewer convolutional
kernels. In the end, both branches are concatenated and followed by a classification or regression head.

Neural Network Hyperparameters We use the mean absolute error (MAE) as a loss function to
train our regression neural networks. All models are trained for 1,000 epochs, either using the AdamW
[45] or the Madgrad [46] optimizer and a cosine annealing learning rate scheduler [47]. A table with de-
tailed information on all hyperparameters for each model is available in Supplementary E.

Depending on the representation we make extensive use of data augmentation. This allows to slightly
change the input data every time the model sees it during training, ensuring more variability and thus,
better generalization. While we only z-standardize the data for the Point TS representation, we addi-
tionally use flips, blurs, and spatial transformations for the other representations. A detailed list of aug-
mentations used for each model is available in Supplementary E.

Attribution Methods Due to the risk of confirmation bias and unfaithful explanations [33], we com-
pute each attribution-map for all representations and labels with four di↵erent attribution methods. These
include Guided Backpropagation (GBP) [48], Guided Gradient-weighted Class Activation Mapping (GGC)
[49], Integrated Gradients (IG) [32], and Expected Gradients (EG) [50]. All results shown in the main
paper are based on EG due to the explanation evaluation results (see Supplementary C), as it shows a
good balance between robustness and faithfulness without the prior selection of a baseline value (possi-
bly biasing the explanations). The explanations generated by all other methods are in Supplementary C.
Local explanations are computed on test set observations. As there are no significant di↵erences between
train and test set explanations, global explanations are computed on the full dataset to leverage the sub-
stantially larger size compared to the test set.

The most apparent solution to measure the sensitivity of a model’s output to its input is the respec-
tive gradient. However, vanilla gradients are prone to gradient shattering [51] and ignoring global e↵ects
in the input space. Thus, they can e.g. be combined with deconvolutional networks [52] which aim to
invert the data flow of a NN, to reconstruct the discriminative input space of an activation or output
node. While both approaches are almost equivalent [53], they di↵er in their backwards pass because, for
non-linear functions such as the Rectified Linear Unit (ReLU), deconvolutions compute “switches” dur-
ing the forward pass to invert the function. In the case of ReLU for example, this results in a sign indi-
cator function computed on the higher-layer’s reconstruction instead of the layer input, which would be
the case in backpropagation (for more detailed information see Section 3.4 in [48]). GBP combines both
backwards pass approaches by masking out the values for which at least one of the approaches is nega-
tive, guiding the gradient by an additional signal from the higher layers on top of the usual backpropa-
gation.

We combine GBP with GradCAM, a method leveraging the idea that convolutional neural networks trans-
form spatial to semantic information by attributing to the semantic information, which is then back-
projected into the input space. The resulting GGC takes the element-wise product between GBP and
the non-negative GradCAM attributions, leveraging both the semantic information from GradCAM and
the more fine-grained spatial information in the input space from GBP. We back-project from the last
block in the ResNet and the multipathway fusion block in the SlowFast architecture.
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IG on the other hand computes a path integral between a baseline value x0 and the true value xj of each
of the j input features (i.e. pixels or timesteps).

IGj(x, x0) = (xj � x0j)

Z 1

↵=0

@f(x0 + ↵(x � x0))

@xj

d↵ (1)

However, the prior selection of a baseline value in IG is not always clear, and performing multiple path
integrals over several baseline values can be ine�cient. Thus, EG avoids the selection of a baseline value,
by leveraging a probabilistic baseline D computed over a sample of observations.

EGj(x) = E
x0⇠D, ↵⇠U(0,1)


@f(x0 + ↵(x � x0))

@xj

d↵

�
(2)

In application, this expectation is approximated via a mini-batch sampling approach for x0 and ↵.

Counterfactual Examples To generate CEs, we use the Genetic Counterfactuals (GeCo) algorithm
[54] together with the respective models in Figure 3 (a.). GeCo computes plausible (assuring that they
could be real) and feasible (assuring they can actually be computed) CEs in a short time. It relies on a
genetic algorithm, which is customized to favor searching CEs with the smallest number of changes. To
achieve the short computation time, it utilizes novel optimizations such as the �-representation of can-
didate counterfactuals and only partial evaluation of the classifier. This speed in computation is espe-
cially important for our task, as it would not be feasible to compute CEs for high-dimensional data such
as videos or the Vector TS representation with other methods such as Diverse Counterfactuals (DiCE)
[55] or Di↵usion Visual Counterfactual Explanations (DVCEs) [56], even with very high computing re-
sources.

As our labels are continuous, we leverage the CEs to visualize how an observation has to be changed to
receive either a substantially higher or lower PCE (> 13.93% and < 9.22%) or mTh (> 1300nm and
< 700nm) prediction compared to the ground truth value.

TCAV We leverage TCAV [37] to identify concepts that are most important to the model’s predic-
tions. The technique uses a Concept Activation Vector (CAV), v, to quantify the importance of a par-
ticular concept to the model’s predictions. A CAV is a high-dimensional vector that is learned by train-
ing a linear model on the activations of a hidden layer l and two datasets of examples, C = [c1, c2], that
are representative of the concepts. The CAV is then the unit length normal vector to the linear decision
boundary of the model, pointing in the direction of c1, while c2 lies in the opposite direction. We then
calculate the sensitivity SC,l of the output into the direction of the CAV by taking the directional deriva-
tive:

SC,l(c1) = rhl(fl(c1)) · vl
C (3)

With f() being the part of the model up to the hidden layer l and h() the part of the model from the
hidden layer to the output. We use a sign-test to test if the output for a specific observation is more sen-
sitive to concepts one or two. If the directional derivative in the direction of the CAV is positive it is
more sensitive to c1 and if negative more sensitive to c2. We compute the concept importance score by
averaging the sign-test result for the respective high/low PCE or mTh subsets Xq.

CoImC,l,q =
|x 2 Xq : SC,l(x) > 0|

|Xk|
(4)
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We sample the datasets C for all of our six concepts (Phase IV and Phase II Peak, High and Low Peak,
Linear and Quadratic Decay) separately for each filter based on extracted summary statistics of each
Point TS and specific random permutations to not create out-of-distribution (OOD) examples (Supple-
mentary F for a more detailed description). Each concept is sampled 100 times. To ensure robust and
trustworthy CAVs, we also evaluate the linear classifier which is trained to separate both concepts in the
layer-activation output space. For PCE observations (high and low PCE, as the CAV is independent of
the observations, and only dependents on the DL model and concepts), we train a Lasso-regression [57]
which reaches a test set (33% split, ntest = 66) accuracy of 99% for the Phase IV and Phase II Peak
concept separation, 95% for the High and Low Peak and 61% for the Linear and Quadratic Decay. In
the case of mTh, the test set accuracies are 100%, 89%, and 62% respectively. See Supplementary F for
the hyperparameters of the linear classifier.

Faithfulness Metrics We apply Sensitivity-N [58], Insertion and Deletion [59] to evaluate the faith-
fulness of the explanations to the models. The distribution of each evaluation score is approximated from
500 observations for the Point TS, 250 for the image and Vector TS, and 50 for the video representation.
For all metrics, the score for a total unfaithful (random) attribution-map is zero.

Sensitivity-N is a metric that is satisfied when the sum of the attributions A for any subset of n features
is equal to the variation of the output f() caused by removing the features in the subset. xs is the set of
all subsets of features from cardinality 1 to n.

nX

j=1

Aj(x) = f(x) � f(x[xs=0]) 8xs = [x1, · · · , xn] ✓ x (5)

We measure how much the sum of the attributions (left-hand side) and the variation in the output (right
side) correlate when calculating each side for all subsets in xs. We compute the Pearson correlation be-
tween both sides for n is equal to the values of 1, 3, 12, 41, 144, and 501. However, it is not e�cient for
the larger values of n to compute the correlation for all possible xs. To approximate this, we draw each
subset 100 times via Monte Carlo sampling. Each point in Supplementary Figure S12 is then the mean
of the sampled score distribution for each value of n. If an XAI method assigns positive and negative at-
tribution exactly the opposite way, negative correlation values are also possible.

Deletion deletes input features one at a time by replacing them with a baseline value based on their at-
tribution score. For the Vector TS, image, and video representations we use zero as the baseline value,
for the Point TS we use the implementation presented by [60], as in this case, a zero value does not cor-
respond with an informationless state. Insertion gradually inserts features into a baseline input. The
baseline input is an extremely blurred or smoothed version of the input observation (� = 5), to simu-
late an informationless state without a distribution shift in the testing data, creating an OOD example,
a problem discussed by [61].

We are inserting or deleting the features with the highest to the lowest attribution for both evaluation
metrics and compute the neural network output at each step for every observation. In the original imple-
mentation of the metrics the area under the curve (AUC) value of the output for all steps is computed.
However, this only works in the case of a classification task. Thus we implemented the area between the
curve (ABC) computation, an adaptation of Insertion/Deletion to the regression task, suggested by [62].

Robustness Metrics To evaluate the robustness of our explanation we implemented the Sensitivity-
Max and Infidelity metrics [63]. Both are based on the idea that a small perturbation of the input x
should optimally also result only in a small change in the explanation. Infidelity calculates the expected
mean-squared error (MSE) between the attribution-map A multiplied by a random variable input per-
turbation I and the di↵erences between the neural network output f() at its input and perturbed input.

Infd(A, f, x) = E
I⇠D

[(IT A(f, x) � (f(x) � f(x � I)))2] I = x � ✏ ✏ ⇠ N(0, �2) (6)
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We implemented the di↵erence to a noisy baseline as the input perturbation which subtracts a Gaussian
random vector with a standard deviation � = 0.01 from the input observation to receive the input per-
turbation I, following the distribution D.

Sensitivity-Max, however, measures the maximum change in the explanation with a small perturbation
of the input x. Specifically, it measures the maximum sensitivity of an attribution-map A by sampling
multiple observations s (in our case ns = 10) from a subspace of an L-infinity ball with a defined input
neighborhood radius (r = 0.02) and approximating the equation via Monte Carlo sampling.

SensMax(A, f, x, r) = max
||s�x||r

||A(f, s) � A(f, x)|| (7)

Sensitivity-Max is upper-bounded for attribution-maps which are locally Lipshitz continuous.
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