
 

 

 

This is the author manuscript accepted for publication and has undergone full peer review but 

has not been through the copyediting, typesetting, pagination and proofreading process, which 

may lead to differences between this version and the Version of Record. Please cite this article 

as doi: 10.1002/adma.202307553. 

 

This article is protected by copyright. All rights reserved. 

 

Dispersion engineering by hybridizing the back-folded soft mode 

of monomode elastic metamaterials with stiff acoustic modes 

 

Michael F. Groß, Jonathan L.G. Schneider, Yi Chen*, Muamer Kadic, and Martin Wegener* 

 

M.F. Groß, Y. Chen, M. Wegener 

Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Karlsruhe 76128, Germany. 

 

M.F. Groß, J.L.G. Schneider, Y. Chen, and M. Wegener 

Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), Karlsruhe 76128, Germany. 

 

M. Kadic 

Université de Franche-Comté, Institut FEMTO-ST, UMR 6174, CNRS, Besançon 25000, France. 

 

E-mail: yi.chen@partner.kit.edu (Y.C.); martin.wegener@kit.edu (M.W.) 

 

Keywords: dispersion engineering, roton-like bands, monomode elastic metamaterials, mode 

hybridization, back-folded modes, soft modes 

 

 

https://doi.org/10.1002/adma.202307553
https://doi.org/10.1002/adma.202307553
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fadma.202307553&domain=pdf&date_stamp=2023-09-28


 

  

 

This article is protected by copyright. All rights reserved. 

2 

Abstract: 

In many cases, the hybridization of two or more excitation modes in solids has led to new and 

useful dispersion relations of waves. Well-studied examples are phonon polaritons, plasmon 

polaritons, particle-plasmon polaritons, cavity polaritons, and magnetic resonances at optical 

frequencies. In all of these cases, the lowest propagating mode couples to a finite-frequency localized 

resonance. Herein, the unusual metamaterial phonon dispersion relations arising from the 

hybridization of an ordinary acoustical phonon mode with a back-folded soft or easy phonon mode of 

a monomode elastic metamaterial are discussed. Conceptually, the single easy mode can have strictly 

zero wave velocity. In reality, its wave velocity is very much smaller than that of all other modes. 

Considering polymeric 3D printed elastic monomode metamaterials at ultrasound frequencies, it is 

shown theoretically and experimentally that the resulting pronounced avoided crossing, with a 

frequency splitting comparable to the mid-frequency, leads to backward-wave behavior for the lowest 

band over a broad frequency range, conceptually at zero loss. 

 

1. Introduction 

Coupling of two identical harmonic oscillators with eigenfrequency 𝜔1 = 𝜔2  via coupling 

strength 𝐾 (with unit s−1) leads to two different eigenmodes and eigenfrequencies 𝜔1 ± 𝐾 of the 

coupled system.[1] This situation is often referred to as an avoided crossing or, in terms of quantum 

chemistry, as a hybridization. Coupling between a harmonic-oscillator-type resonance with frequency 

𝜔2 = const.  and a propagating mode with dispersion relation starting as 𝜔1(𝑘) = 𝑣1 𝑘 , with 

wavenumber 𝑘 and wave speed 𝑣1, also leads to a famous avoided crossing known as the polariton 

dispersion relation.[2, 3] A scheme is shown in Figure 1(a). The dashed black curves are the uncoupled 

modes, and the solid red curves illustrate the coupled or hybridized modes. For example, in metals, 

coupling of the plasmon at frequency 𝜔2(𝑘) = 𝜔pl and the dispersion relation of light 𝜔1(𝑘) = 𝑐𝑘 

leads to a surface-wave dispersion relation with a flat region with small group velocity that allows for 

very large 𝑘, equivalent to nanometer wavelengths 𝜆 = 2𝜋/𝑘 , at optical frequencies – which has 

attracted considerable scientific interest in plasmonics.[4-6] 

Numerous further types of avoided crossing have been discussed in the literature.[7, 8] Recently, 

hybridization of different photon modes[9] or phonon[11-18] modes has been exploited to realize 

dispersion relations resembling the roton dispersion relation of sound in liquid Helium-4.[19] This 

dispersion relation contains a broad region of backward waves, for which group velocity and phase 

velocity have opposite sign, indicating a negative refractive index.[20, 21] However, achieving these 

hybridizations required sophisticated three-dimensional (3D) metamaterial architectures providing 

strong and complex nonlocal beyond-nearest-neighbor interactions[11] or extreme chiral couplings.[22, 

23] 
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Here, we consider a much simpler approach based on the coupling of an ordinary propagating 

acoustical phonon mode starting as 𝜔1(𝑘) = 𝑣1𝑘 for small wavenumbers 𝑘 and a back-folded soft 

mode 𝜔2(𝑘) of a monomode metamaterial. 𝜔1(𝑘) and 𝜔2(𝑘) are shown by the two dotted black 

curves in Figure 1(b). In extremal Cauchy-elastic metamaterials,[24-33] an integer 𝑁 of the six (three) 

eigenmodes in three dimensions (two dimensions) are soft or “easy”. For monomode metamaterials, 

we have 𝑁 = 1. Introducing a strong coupling between the two dotted black curves leads to the 

hybridized bands shown as solid red curves in Figure 1(b). The lower of them exhibits a roton-like 

behavior.[10] We note that extremal pentamode ( 𝑁 = 5 )[34-38] and tetramode ( 𝑁 = 4 )[39-41] 3D 

metamaterials have recently attracted considerable attention. In contrast, monomode ( 𝑁 = 1 ) 

metamaterials have been studied less so far. Notable exceptions are, for example, Miura-ori 

metamaterials.[42,43] We also note that back-foldings have been extensively exploited to achieve 

double Dirac cones in topological insulators, leading to pseudo spin-Hall effects in optical, acoustical, 

and mechanical systems.[44-46] 

Here, we strongly couple the two mentioned branches (black dotted curves in Figure 1(b)) by 

introducing a superlattice with a period 𝑁𝑥  𝑎 (with integer 𝑁𝑥 ≥ 2) along the 𝑥-direction larger than 

the monomode metamaterial period 𝑎 or by a finite lateral extent 𝑁𝑥  𝑎 of a monomode metamaterial 

beam. This coupling leads to the red curves shown in Figure 1(b). We also consider dissecting a bulk 

monomode metamaterial into a superlattice of separated metamaterial beams of width 𝑁𝑥  𝑎 (or into 

just a single such beam). Our corresponding finite-element calculations of the resulting hybridized 

band structure 𝜔𝑖(𝑘) (𝑖 = 1,2, … )  are in good agreement with optical-microscopy and Doppler-

vibrometry based ultrasound measurements of this elastic band structure for polymeric monomode-

metamaterial beam samples manufactured by three-dimensional (3D) laser microprinting.  

 

2. Metamaterial design 

Our design approach starts from a bulk monomode elastic metamaterial composed of a 2D 

periodic lattice of extruded rhombuses, as illustrated in Figure 2(a). The shown unit cell, highlighted 

by the black square, leads to a metamaterial in-plane period or lattice constant 𝑎. Note that the 

corresponding unit cell is not the primitive Wigner-Seitz cell. The Wigner-Seitz cell, enclosed by the 

dashed lines, is smaller in real space, hence the corresponding Brillouin zone is larger than ours. The 

choice of the unit cell does not change the physics. We choose the unit cell shown in Figure 2(a) for 

clarity. The extrusion length 𝑎𝑧 along the 𝑧-direction (cf. Figure 2(a)) is irrelevant as long one considers 

a 3D periodic structure. Below, we will also consider slab geometries, in which case 𝑎𝑧 becomes the 

thickness of the slab or perforated plate. The extruded rhombuses in the unit cell are connected at 

their corners by thin elements with characteristic thickness 𝑑, which represents the critical parameter 

of the structure. In the limit of 𝑑/𝑎 → 0, these connections approximate ideal joints. Such joints have 
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previously been used in extremal metamaterials based on rotating squares or double-cone structures. 

[47-53] They enable easy or soft modes, in the present case a single soft mode.  

This soft mode becomes apparent when plotting the calculated eigenfrequencies for the shear-

wave branch shown in Figure 3(a) (the used finite-element approach is described in Methods). Here, 

we consider a bulk monomode metamaterial, i.e., we consider an infinite periodic lattice along all 

three spatial directions, using the unit cell as defined in Figure 2(a). The geometrical parameters (cf. 

Figure 2) as well as the Young’s modulus 𝐸, Poisson’s ratio 𝜈, and mass density 𝜌 of the constituent 

polymer material to be used in our below experiments are given in the caption of Figure 2. In Figure 

3(a), the soft mode shows up as a minimum or groove of the dispersion relation along the diagonal 

within the 𝑘𝑥𝑘𝑦-plane. The soft mode can be physically interpreted as a shear deformation along the 

diagonals of the monomode metamaterial, since the small connecting parts between the rhombuses 

can hardly resist bending. In the limit of an ideal monomode metamaterial, this groove would lie at 

strictly zero frequency, 𝜔 = 0. Furthermore, the monomode feature of the metamaterial can directly 

be identified from the six eigenvalues, i.e., 3.295 GPa, 0.875 GPa, 0.385 GPa, 0.296 GPa, 0.296 GPa, 

and  0.006 GPa , of the effective elastic matrix obtained from the phase velocities in the long-

wavelength limit.[41] One of the six eigenvalues (the last one) is about three orders of magnitude 

smaller than the other five eigenvalues, as expected for a monomode metamaterial.[24] If one now 

considers an in-plane supercell with period 𝑁𝑥  𝑎, for example with integer 𝑁𝑥 = 3, the frequency 

surface is back-folded. More specifically, the green part and the red part (cf. Figure 3(a)) on the 

frequency surface are shifted by 2π/(𝑁𝑥𝑎) along the negative 𝑘𝑥-direction, and the black dashed 

curve in between the green and red parts is back-folded to 𝑘𝑥 = 0. The dashed black curves in Figure 

1(b) correspond to the same conditions as in Figure 3(a) with 𝑁𝑥 = 3 . The eigenstates and 

eigenfrequencies are still the same as those of the original not-backfolded system, they are merely 

represented differently.  

However, once we introduce a coupling between the two uncoupled branches, the situation changes. 

There are several possibilities to achieve such coupling. First, we can change the structure shown in 

Figure 2(a) such that its periodicity actually becomes that of the supercell. This situation is illustrated 

in Figure 2(b). Here, we have added material hence mass (see dark blue regions) with periodicity 𝑁𝑥  𝑎, 

again for the example 𝑁𝑥 = 3. The resulting, albeit initially weak, hybridization of the bands (cf. the 

small gap between the two red curves) can be seen in Figure 3(b). The uncoupled bands are also 

plotted here as dashed lines for comparison. The lowest red band exhibits an obvious roton-like 

minimum at a wavenumber 𝑘𝑦 = 2𝜋/(𝑁𝑥𝑎), related to the back-folded soft shear mode. In previous 

theoretical work on laminate materials, similar roton-like behaviors have been observed, yet they 

required compressional prestress or much more complicated geometries.[54, 55] Additionally, as 

illustrated in Figure 2(c), we can disconnect parts of the structure such that the bulk monomode 

metamaterial turns into an array of disconnected beams. In this case, the physics of one metamaterial 

beam and its dispersion relation is the same as that of an array of beams (apart from the multiple 

degeneracy for multiple beams). As this truncation in Figure 2(c) is a yet stronger perturbation to the 
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system than the situation in Figure 2(b), we expect a yet stronger coupling between the previously 

uncoupled branches, which can be inferred from the much larger bandgap between the lowest red 

branch and higher bands shown in Figure 3(c). Notably, not only does the back-folding and 

hybridization of the bands survive the transition from a bulk to a beam geometry, the effect of this 

perturbation also extends to other bands. For 𝑁𝑥  =  3, the second lowest band, corresponding to 

longitudinal modes in the bulk case, shows a pronounced roton-like behavior with even two regions 

of negative slope. The number of these regions is determined by the number of unit cells along the 

width of the beam, in the sense that a larger 𝑁𝑥  gives rise to additional regions with d𝜔/d𝑘 < 0. To 

illustrate this dependence, we exhibit further calculations for bulk metamaterials and metamaterial 

beam with 𝑁𝑥  =  2 and 𝑁𝑥  =  3 in the Supporting Information (Figure S2 and Figure S4). We explain 

the roton-like dispersion of the longitudinal band by strong admixture with the transverse modes, for 

which the back-folding and hybridization has already been discussed above. This admixture becomes 

more evident when comparing the displacement-vector field of a longitudinal mode within a bulk 

metamaterial (𝑁𝑥 = 𝑁𝑦 =  ∞) to that of a metamaterial beam (𝑁𝑥 = 3, 𝑁𝑦 =  ∞). In the bulk case, 

the longitudinal mode exhibits a displacement-vector field which is mostly parallel to the phonon wave 

vector. In the beam case, however, large displacement components orthogonal to the wave vector 

arise, which are generally rather attributed to transverse modes. Therefore, it is fair to treat the 

formerly longitudinal modes as now mixed, or one might say longitudinal-like modes, which are 

influenced by the same back-folding and hybridization mechanism we have discussed above for the 

transverse modes. To summarize the design, we have seen that the two critical parameters that 

determine the dispersion relation are the connection width 𝑑 and the back-folding parameter 𝑁𝑥. 

Moving on to the experiments, in which we study the influence of both of these parameters, the 

degeneracy of the dispersion relation for multiple beams means that it is sufficient to investigate a 

single beam of finite width 𝑁𝑥  𝑎 . All above phonon bands are calculated by using 2D planar 

metamaterial structures that are infinitely large along the 𝑧-direction. The same band hybridizations 

also occur in a three-dimensional metamaterial beam with a finite out-of-plane extrusion length 𝑎𝑧 =

600 μm (Figure S4, Supporting Information). However, as for any beam, an out-of-plane shear mode 

and a twist mode occur additionally. These bands somewhat complicate the band structure.  

We note in passing that the metamaterial-beam dispersion relations 𝜔1(𝑘) of the lowest band could 

be expanded into a Taylor series according to 𝜔1
2(𝑘) = 𝑎2𝑘2 + 𝑎4𝑘4 + 𝑎6𝑘6 …  . Translated from 

reciprocal space into real space, this expansion leads to a phenomenological effective-medium 

description containing higher-order spatial gradients – in perfect analogy to the discussion in Ref.[11]. 

However, to capture the metamaterial-beam dispersion relation quantitatively, rather high orders are 

required, which may limit the practicability of such effective-medium description. 

 

3. Experimental results and discussion 
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Example optical micrographs of such finite metamaterial beam samples, which we have 

fabricated using a commercial laser printer (Photonics Professional GT, Nanoscribe) and a commercial 

photoresist (IP-S, Nanoscribe), are depicted in Figure 4(a). We have realized beam samples with either 

a supercell size of 𝑁𝑥 = 2 or 𝑁𝑥 = 3. A different number of local minima and maxima in the dispersion 

relation of the lowest acoustic band of the phonon band structure are clearly visible. Band structure 

calculations as in Figure 3(c), but for 𝑁𝑥 = 2 are shown in Figure S2 and Figure S4 of the Supporting 

Information. The targeted geometrical parameter values are: 𝑎 = 300 µm, 𝑎𝑧 = 600 µm, 𝑑 =

16.4 µm and 𝐷 = 148.5 µm (cf. Figure 2(a)), leading to the critical parameter ratio 𝑑/𝑎 =  0.055. 

Each metamaterial beam contains 𝑁𝑦 = 40 unit cells along the beam axis (= 𝑦-axis).  

In order to obtain the phonon band structure for the lowest acoustic bands experimentally, 

we have excited the metamaterial beam samples by a piezoelectric transducer assembly as shown in 

Figure 4(b). The main axis of the transducer is aligned with the metamaterial beam axis. Therefore, 

the transducer mainly induces elastic waves with a displacement vector oriented along the 𝑦-axis. We 

improve the coupling of the mechanical excitation to the eigenmodes of the sample by filling out some 

of the voids in the transition region between the periodic metamaterial beam and the bottom plate 

underneath it. This results in a wedge-shaped polymer structure (cf. Figure 4(a)) which effectively 

serves as a termination of the sample and matches the excitation displacement to the displacement-

vector field of the modes of the lowest bands. Without such transition region, it can happen that 

certain modes are hardly excited at all and, hence, do not appear in the band-structure 

measurements. 

In these experiments, the sample is imaged from the side using a home-built laser-scanning 

confocal back-scattering microscope, while the transducer is driven with a time-harmonic voltage of 

variable frequency 𝑓 = 𝜔/(2𝜋). For each frequency, we extract the in-plane displacement-vector 

components 𝑢𝑥(𝐫, 𝑡) and 𝑢𝑦(𝐫, 𝑡) from these image data using digital image cross-correlation (DIC) 

analysis. Simultaneously, we record the third, namely the out-of-plane, component of the 

displacement vector, 𝑢𝑧(𝐫, 𝑡) , by laser-Doppler vibrometry. Both techniques allow for the time-

resolved mapping of the displacement-vector field with nanometer-scale localization errors.[23, 41] In 

this work, typical displacement amplitudes are roughly in the range of 2 − 40 nm (depending on 

frequency and component of the displacement vector). The band structure is derived from these data 

by Fourier transformation with respect to time 𝑡 and with respect to coordinate vector 𝐫. It is sufficient 
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to restrict the displacement-vector measurements to the real space-coordinates that follow the lattice 

periodicity, hence to the 𝐫𝑗 = (0, 𝑗𝑎, 0)T with 𝑗 ∈ [0, 𝑁𝑦]. To improve image contrast and hence the 

signal-to-noise ratio in the DIC analysis, we have introduced small cross-shaped or cylindrical markers 

on the sample surface (cf. Figure 4(a)). We provide more details in the Methods section and the 

Supporting Information. The two-dimensional Fourier transformation of 𝐮(𝐫, 𝑡) yields the complex-

valued response function 𝐴̃(𝑘𝑦, 𝜔), the modulus of which we plot to visualize our experimental 

results. In Figure 5, we depict |𝐴̃(𝑘𝑦, 𝜔)| as a false-color plot, where the dispersion relation of the 

phonon bands can be recognized by following the maxima. For comparison, the dispersion relation is 

overlaid by solid lines, which represent the calculated band structure of an infinitely long beam (i.e., 

𝑁𝑦 = ∞).  

Figure 5(a) presents the measured dispersion relation for a sample with 𝑁𝑥  =  2 unit cells 

along the 𝑥-axis, i.e., the supercell size is 2𝑎. The three panels show the dispersion relations calculated 

from the individual displacement-vector components (from left to right) 𝑢𝑥(𝐫, 𝑡) , 𝑢𝑦(𝐫, 𝑡)  and 

𝑢𝑧(𝐫, 𝑡). 

The roton-like bands in Figure 5(a) appear when detecting the components 𝑢𝑥(𝐫, 𝑡)  and 

𝑢𝑦(𝐫, 𝑡). This finding can be explained by the fact that the corresponding modes do not have a “pure” 

displacement-vector field polarization along either the 𝑥 - or the 𝑦 -direction. Rather do the 

corresponding modes each feature nonzero displacement-vector field components along both, the 𝑥- 

and the 𝑦 -axis. Therefore, the Fourier transforms of both, 𝑢𝑥(𝐫, 𝑡)  and 𝑢𝑦(𝐫, 𝑡) , reveal the 

corresponding bands. This behavior is distinct from the flexural band of the beam, whose 

displacement-vector field is mainly oriented along the 𝑧-axis, hence out-of-plane. The rightmost panel 

in Figure 5(a) completes the dataset by showing the corresponding dispersion relation derived by 

Fourier transformations of 𝑢𝑧(𝐫, 𝑡). Only a single prominent band, the ordinary flexural band of a 

beam or plate is detected. The bands with roton-like dispersion are absent here, since the 

corresponding modes feature no significantly large displacement-vector components along the 𝑧-axis.  

 

4. Conclusion 
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Since the birth of the idea of metamaterials early on this Century, different approaches to tailor 

the dispersion relation of waves in metamaterials have been established. This includes mainly 

exploiting Bragg reflections and coupling to local resonances, but also using chirality (broken space-

inversion symmetry), broken time-inversion symmetry, and nonlocal (beyond nearest-neighbor) 

interactions. Here, we have suggested theoretically and realized experimentally a yet different 

approach, namely the hybridization of ordinary acoustical phonons and backfolded soft phonon 

modes in monomode-metamaterial beams. By tailoring a critical small geometrical parameter and the 

number of unit cells in the width of the metamaterial beam (which determines the level of back-

folding), we have achieved one or more maxima as well as minima in the dispersion relations of the 

lowest acoustical-phonon bands within the first Brillouin zone. Working with the lowest band provides 

broadband and robust behavior. Such behavior is achieved here by geometrically much simpler 

metamaterial architectures than previously along other lines of design. Specifically, we here present 

an effectively two-dimensional structure, which is extruded into the third dimension. In essence, this 

geometry corresponds to a perforated plate. Such architecture is much simpler than a truly three-

dimensional structure with lots of overhanging parts during a 3D print process (cf. [11] and [23]). As a 

result, the present structure is amenable for manufacturing by many different means, including simply 

machining of a plate. We have used 3D printing here to allow for a direct comparison with previous 

work. Measured and calculated band structures are in excellent overall agreement. This work based 

on monomode metamaterials may stimulate further work on other less well explored extremal Cauchy 

elastic metamaterials, such as dimode and trimode metamaterials. 

 

5. Methods 

Band Structure Computation: The phonon dispersion relations of the designed metamaterial are 

obtained by using the commercial software COMSOL Multiphysics and its Solid Mechanics Module. 

We solve the following eigenfrequency problem for linear elastic wave propagation 

𝐸

2(1 + 𝑣)(1 − 2𝑣)
𝛻 (𝛻 ⋅ 𝐮𝐤,𝑛(𝒓)) +

𝐸

2(1 + 𝑣)
𝛻2𝐮𝒌,𝑛 (𝐫) = −𝜌𝜔𝐤,𝑛

2  𝐮𝐤,𝑛 (𝐫).            (1) 

Here, 𝜔𝐤,𝑛  represents the eigenfrequency with the band index 𝑛, 𝐤 is the Bloch wave vector, and 

𝐮𝐤,𝑛 (𝐫) is the displacement-vector field of the corresponding eigenmode. For wave propagation in 
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bulk metamaterials (c.f. Figure 3(b), Figure S1, Supporting Information), Bloch-periodic boundary 

conditions are applied along both the 𝑥- and the 𝑦-directions. For wave propagation in metamaterial 

beams (c.f. Figure 3(c), Figure S2 and Figure S4, Supporting Information), Bloch-periodic boundary 

conditions are only applied along the 𝑦-direction. Other boundaries are set to be the default traction 

free boundaries in the Solid Mechanics Module. For the constituent polymer resulting from the 3D 

laser microprinting, we choose the parameters of 𝐸 = 4.19 GPa for the Young’s modulus, 𝜈 = 0.4 for 

the Poisson’s ratio, and 𝜌 = 1140 kg m−3 for the mass density.[41] 

Monomode Beam Sample Fabrication: A commercially available 3D laser microprinter (Photonics 

Professional GT, Nanoscribe) was used for the fabrication of the metamaterial beam samples. The 

printing was performed with a 25 objective lens of numerical aperture NA = 0.8 (Carl Zeiss) in dip-

in mode using a liquid photo resist (IP-S, Nanoscribe). The samples with a critical parameter of 𝑑 =

16.4 µm and 𝑑 = 45.2 µm were printed with a laser power of 50 mW, while the samples with 𝑑 =

9.3 µm were printed with a significantly reduced laser power of 20 mW. All powers were measured 

at the entrance pupil of the objective lens. For each value of 𝑑, samples with 𝑁𝑥 = 2 and 𝑁𝑥 = 3 were 

fabricated. All samples featured 𝑁𝑦 = 40 unit cells along the 𝑦-axis, resulting in a total height of 

12 mm. A hatching distance of 500 nm and slicing distance of 1.5 µm together with a scanning focus 

velocity of 0.14 ms−1  were chosen for the printing of all samples shown in this paper. The 

metamaterial beams were printed in one piece together with a bottom plate (cf. Figure 4(a)) featuring 

a small handle to ease sample manipulation when gluing the samples onto a piezoelectric transducer. 

To remove residual unpolymerized photoresist after printing, the samples were submerged for 45 

minutes in a bath of propylene glycol monomethyl ether acetate (PGMEA), followed by a 5 minutes 

rinsing in acetone. Finally, the samples were dried under ambient laboratory conditions. The 

numerical model for the material geometry and the bottom plate were designed in the commercial 

software COMSOL Multiphysics. Additional details on the sample geometry are included as STL-files 

and on the fabrication as machine code (GWL-files) for the laser printer within the data repository 

published together with this work (to be added). 

Experiment Setup and Ultrasound Single-Frequency Excitation: The 3D-tracking of elastic waves 

within the metamaterial beam samples was conducted by using a home-built confocal optical back-

scattering microscope with an integrated Mach-Zehnder type heterodyne laser-Doppler vibrometry 

branch, following the methods of previous publications on mechanical microscale metamaterials.[23, 
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41] The metamaterial-beam sample under investigation was glued onto a piezoelectric transducer 

(PL055.31 PICMA, Physik Instrumente) and positioned in the focal plane of the microscope objective 

lens (Plan L 50/0.60, Leitz Wetzlar).  

By driving the transducer with an amplified sinusoidal voltage, elastic waves were excited within 

the beam sample. The displacement-vector field 𝐮(𝐫, 𝑡) = (𝑢𝑥(𝐫, 𝑡), 𝑢𝑦(𝐫, 𝑡), 𝑢𝑧(𝐫, 𝑡))T  induced by 

these waves was sampled sequentially along 41 regions of interest (ROI) along the beam 𝑦-axis. The 

spacing of the ROIs follows the lattice periodicity 𝑎 with 𝐫𝑗 = (0, 𝑗𝑎, 0)T with integer 𝑗 ∈ [0, 𝑁𝑦]. We 

centered each ROI on either a cross-shaped marker on a rhomboid or on a circular-shaped marker (cf. 

Figure 4(a)) for tracking by the DIC analysis. All samples investigated contained a total of 16 cross-

shaped markers per unit cell, all samples except for one additionally contained one circular-shaped 

marker per unit cell. The presented results have been obtained by choosing only one marker per unit 

cell. This has led to sufficient signal-to-noise ratio already. As band structures derived from 

measurements on different markers are conceptually equivalent, taking data on different markers 

would allow for further improving the signal-to-noise ratio. The data shown in Figure 5(a) have been 

obtained using one of the cross-shaped markers. The data of all other Figures have been obtained 

using the circular marker. In Figure 4, the used ROI are indicated by the red squares. To position each 

ROI in the focal plane of the objective lens, three piezo-inertia translation stages (Q-545, Physik 

Instrumente) were used. Recovery of the temporal phase information of the displacement data was 

guaranteed by synchronizing the data acquisition of the confocal microscopy and the Doppler 

vibrometry to the transducer drive signal. Every sample was investigated at each ROI over a frequency 

interval from 10 kHz to 600 kHz in steps of 5 kHz, to cover the frequency range of the back-folded 

and hybridized bands. Subsequently, the in-plane displacement components 𝑢𝑥(𝐫, 𝑡)  and 𝑢𝑦(𝐫, 𝑡) 

were extracted from the raw data by performing digital image cross-correlation analysis on the images 

acquired with the confocal microscope. The out-of-plane component 𝑢𝑧(𝐫, 𝑡) was supplemented by 

the laser-Doppler vibrometry signal data to which a standard in-phase and quadrature demodulation 

technique was applied.[56] 

 

Supporting Information 

The Supporting Information is available from the Wiley Online Library or from the author. 
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Figure 1. Illustration of dispersion engineering by band coupling. (a) Two coupled bands 
(red solid lines) result from hybridization between a monotonically increasing dispersive 
band and a flat local resonance (dashed lines). (b) The same as in (a), but for the coupling 
between a similar monotonically increasing band and a back-folded band of a monomode 
metamaterial. The coupled lowest band (red) exhibits a roton-like minimum at a finite 
wavenumber 𝒌 = 𝟎. 𝟔𝟓 𝝅/𝒂, related to the soft shear mode of the monomode 
metamaterial. 
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Figure 2. Design based on a monomode elastic metamaterial and a back-folding strategy.  
(a) A finite block of monomode metamaterial composed of rhombuses and circles (light 
blue). A three-dimensional metamaterial is obtained by extruding the planar structure 
into the out-of-plane direction. The solid black square indicates a unit cell with lattice 
constant 𝒂. The primitive cell corresponds to the region highlighted by the dashed square. 
The inset defines and emphasizes the critical parameter 𝒅. For sufficiently small values of 
𝒅/𝒂, the metamaterial approaches an ideal monomode elastic material. The 
corresponding “easy” or soft mode is a shear mode. Its wavevector is oriented along the 
diagonal of the monomode metamaterial.  
(b) A supercell metamaterial is obtained by adding fillings (dark blue) into the void at a 
period of 𝟑𝒂 along the 𝒙-direction. The larger period of 𝟑𝒂 along the 𝒙-direction leads to a 
smaller first Brillouin zone compared to the metamaterial in (a), and thereby induces 
back-folded bands. Colors are for illustration only. All parts correspond to the same laser 
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printed polymer, for which we assume the Young’s modulus 𝑬 = 𝟒. 𝟏𝟗 𝐆𝐏𝐚, the Poisson’s 

ratio 𝒗 = 𝟎. 𝟒, and the mass density 𝝆 = 𝟏𝟏𝟗𝟎 𝐤𝐠 𝐦−𝟑 in the numerical calculations. (c) 
By cutting apart the metamaterial in (b) at a period of 𝟑𝒂 along the 𝒙-direction, we obtain 
metamaterial beams with a finite lateral size but with a conserved period of 𝒂 along the 
𝒚-direction. A simple perspective sketch of the metamaterial beam is depicted in Figure 
S3. Compared to phonon bands of the bulk metamaterial in (a), the phonon bands of the 
metamaterial beam are dramatically altered by this lateral boundary condition. 

 

Figure 3. Dispersion surface and dispersion bands of designed metamaterials. (a) Plot of 
the lowest eigenfrequency 𝝎/(𝟐𝛑) versus the wavenumber 𝒌𝒙 and 𝒌𝒚 for the designed 

monomode metamaterial in Figure 2(a). The lowest eigenfrequency corresponds to a 
shear mode in the metamaterial. Frequencies along the diagonal direction (c.f. the black 
line) are much smaller, reflecting the soft shear mode in the metamaterial. For illustration, 
the frequency surface is divided into three colored parts. Considering a virtual supercell 
with a period of 𝟑𝒂 along the 𝒙-direction, the dispersion surface will be back-folded into a 
smaller Brillouin zone with the wavenumber range of −𝛑/(𝟑𝒂) < 𝒌𝒙 < 𝛑/(𝟑𝒂). The 
green and the red parts will be translated by a distance of 𝟐𝛑/(𝟑𝒂) along the negative 𝒌𝒙-
direction, and the black dashed curve in between the green and red parts will be shifted 
to 𝒌𝒙 = 𝟎. The two dashed curves at the plane of 𝒌𝒙 = 𝟎 are similar to the two uncoupled 
bands as in Figure 1. (b) Two coupled bands (red lines) are obtained by adding filling to 
the supercell geometry as demonstrated in Figure 2. The two uncoupled bands are re-
plotted as dashed gray curves for comparison. (c) The same as in (b), but for a 
metamaterial beam with finite size along the 𝒙-direction. Due to a strong influence of the 
boundaries to the phonon bands, the coupled red bands belong to multiple bands. The 
geometry parameters 𝑫/𝒂 = 𝟎. 𝟓, 𝒓/𝒂 = 𝟎. 𝟎𝟓, 𝒅/𝒂 = 𝟎. 𝟎𝟒, and the lattice constant 𝒂 =
𝟑𝟎𝟎 𝛍𝐦 are chosen here. The Supplementary Movie S1 shows the eigenmode for (a) and 
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wavevector 𝒌 = 𝝅/𝒂(
𝟐

𝟑
,

𝟐

𝟑
). Supplementary Movie S2 shows the eigenmode for (c) and 

wavenumber 𝒌𝒚 = 𝟎. 𝟓 𝝅/𝒂. 

 

 

Figure 4. Gallery of monomode metamaterial beam samples. (a) Wide-field optical 
micrographs of several sample features. On the left, an overview of a metamaterial beam 
with 𝑵𝒚 =  𝟒𝟎 layers along the beam 𝒚-axis and 𝑵𝒙 =  𝟐 unit cells is shown, yielding a 

total height of 𝟏𝟐 𝐦𝐦. The sample was printed together with a bottom plate which can 
be seen close to the tripod. The pictures in the right column of (a) show close-ups of two 
beam samples with 𝑵𝒙 =  𝟐 (top) and 𝑵𝒙 =  𝟑 (middle) where they are connected to the 
bottom plate below, respectively. The latter exceeds the field-of-view and extends out of 
the picture horizontally. On the left and right edges of the samples, the added mass can be 
seen, which would introduce the periodicity of a supercell in the bulk case. The polymer 
structure forming a wedge where the metamaterial beam is connected to the bottom 
plate acts as a termination to efficiently excite the desired eigenmodes of the 
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metamaterial in the experiment. Furthermore, a close-up of a single unit cell is shown on 
the bottom right of (a). The crosses on the rhombuses and the circular intrusions in the 
cylindrical hinges act as markers for tracking using digital image cross-correlation analysis 
to sample the displacement field 𝐮(𝐫, 𝒕) along the beam 𝒚-axis. The red squares indicate 
the used regions of interest (ROI). (b) Photographs of two samples glued onto 
piezoelectric-transducer assemblies for the excitation of elastic waves. The assemblies are 
mounted in the experimental microscopy setup of which the microscope objective lens 
can be seen at the top, respectively. The main piezoelectric-transducer axis is highlighted 
in pink in the corresponding tripods.  

 

 

Figure 5. Measured band structures of the metamaterial beam samples with critical 

parameter 𝒅 = 𝟏𝟔. 𝟒 µ𝐦. The modulus of the complex response function |𝑨(𝒌𝒚, 𝝎)| is 

plotted on a false-color scale versus the 𝒚-component of the wave vector and angular 
frequency 𝝎, for a sample with 𝑵𝒚 = 𝟒𝟎 unit cells along the beam axis. The solid lines 
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represent the numerical computation results for an infinite (𝑵𝒚 =  ∞) metamaterial 

beam, where the white lines correspond to the three lowest bands and the gray lines 
include higher bands for the sake of integrity. (a) Results for a sample with 𝑵𝒙 = 𝟐 unit 
cells along the 𝒙-axis (cf. Figure 3(a)). The three plots show the respective amplitude 

|𝑨(𝒌𝒚, 𝝎)| as derived via a 2D Fourier transformation from the (left to right) 𝒙-, 𝒚- and 𝒛-

component of the displacement vector field 𝐮(𝐫, 𝒕) = (𝒖𝒙(𝐫, 𝒕), 𝒖𝒚(𝐫, 𝒕), 𝒖𝒛(𝐫, 𝒕))𝐓, 

sampled along the beam axis. The 𝒙- and 𝒚-components were extracted using optical-
image digital cross-correlation analysis while the 𝒛-component was measured by the 
means of laser-Doppler vibrometry. In both plots derived from 𝒖𝒙 and 𝒖𝒚, the roton-like 

band can be clearly seen. They are in good agreement with theory (white lines). The third 
plot shows only one band corresponding to modes polarized along the 𝒛-axis, which does 
not exhibit a roton-like behavior but rather the usual dispersion relation of a beam. The 
residual small mismatch between the slope of the calculated band and the experimental 
data is attributed to an underestimated Young’s modulus of the constituent polymer in 
our simulations. (b) Similar to (a) but for a beam with 𝑵𝒙 = 𝟑, hence showing additional 
local maxima and minima. The excited optical modes at frequencies above 𝟒𝟐𝟎 𝐤𝐇𝐳 are 
also in good agreement with the calculated bands (grey lines). 
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The strong coupling between ordinary phonon modes and a back-folded soft phonon mode of a 

monomode metamaterial is suggested as a means to engineer the metamaterial dispersion relation 

of the lowest bands. The back-folding is accomplished by a superlattice or a set of separated beams. 

Unusual roton-like phonon bands serve as an example. Calculations and experiments are in excellent 

agreement.  
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