European Processor Initiative Demonstration of
Integrated Semi-Autonomous Driving System

D. Hofman, M. Brcic, M. Kovac
University of Zagreb
Faculty of Electrical Engineering and Computing
Zagreb, Croatia

S. M. Grigorescu
Transilvania University of Brasov
Brasov, Romania

Abstract—The European Processor Initiative (EPI) is devel-
oping a processor for various sectors, including the automotive
industry. To benchmark the new processor, EPI uses a test vehicle
to demonstrate different use cases, like semi-autonomous driving.
In this paper, we focus on object detection and describe the use
cases in the perception stage of autonomous driving. Therefore,
we introduce four applications that include face recognition, blind
spot detection, near-range object detection and far-range spatial
perception to cover a wide range of different domains. Each
use case runs on a different architecture representing future
domains of the EPI processor, allowing for optimal utilization
and performance. Our evaluation shows that all use cases can
be mapped on the future EPI platform. The performance of the
image processing tasks such as blind spot detection meets real-
time requirements and runs at over 30 FPS. The face recognition
task can process an image with low-power consumption, allowing
for battery-powered inference. Finally, we validate our results
and findings using a BMW XS5 car as a real-world demonstrator.

Index Terms—Autonomous Vehicles, Object Detection, Auto-
motive Safety and Security, European Processor Initiative

I. INTRODUCTION

It is expected that 58 million autonomous vehicles with
at least autonomy level 3 will be sold in 2030, which is
about 15 times more than in 2022. The European Union has
identified the automotive industry as one of the main customers
for the chips being developed within the European Processor
Initiative (EPI). EPI develops new hardware IPs along with
applications to be demonstrated with the new chips. The
automotive section of the project is developing a test vehicle
to demonstrate different use cases of European technology in
a semi-autonomous vehicle. This paper presents four use cases
covering facial recognition and short/mid/far-range detection
of obstacles and surrounding areas.

Advanced Driver Assistance Systems (ADAS) can be di-
vided into three conceptual processing stages, depending on
their ability to autonomously drive the vehicle. The three
stages are perception, planning, and control. Vehicle percep-
tion deals with numerous sensors used for detection of the
surrounding area, mainly using cameras and LiDAR sensors.
In the planning stage, a trajectory is planned to suggest the

T. Hotfilter, J. Becker
Karlsruhe Institute of Technology (KIT)
Karlsruhe, Germany

D. Reinhardt
Bavarian Motor Works
Department of New Technologies
Munich, Germany

R. Stevens, T. T. Vo
Kalray
Montbonnot, France

best route for driving the vehicle. This trajectory is used in the
control stage to set the actual movement of the car without the
need for human interaction. In this paper, we focus on the first
two stages, perception and planning, to demonstrate a future
drive in the test car without a human controlling the car.

II. RELATED WORK

Test cars have been used in numerous projects to demon-
strate newly developed systems. Obstacle avoidance, path
planning and control for autonomous vehicles were presented
in [1] on an ARTEMIPS test car, showing its adaptability for
effective obstacle avoidance.

Our first use case, face recognition, has been widely stud-
ied already. Currently, traditional algorithms like holistic or
local methods are falling behind in favor of deep neural
networks [2]. In the recent decade, neural network approaches
improved continuously, achieving now better performance than
traditional algorithms [3]. To tackle the computational com-
plexity of neural networks, their inference is now moving fur-
ther into specialized accelerators running, e.g., in FPGAs [4].
For example, Zhuge et al. evaluated different configurations of
HLS generated face detection accelerators on FPGAs, showing
a 3.75x latency improvement in comparison to GPUs [5].
More recently, Liu et al. demonstrated a latency of 1.3 ms
per face recognition on their heterogeneous computing system,
consisting of CPUs, GPUs and FPGAs [6]. However, their
approach consumes over 25 W. Since the feasibility of FPGAs
in acceleration of face recognition has been proven, we will
focus on a low-energy implementation, which can be hosted
on the EPI embedded FPGA.

Short-range blind spot detection systems are used in au-
tonomous driving for obstacle avoidance. Multimodal sensor
fusion blind spot detection combines several modes from
possible sensor choices: camera, LiDAR, RADAR, etc. [7].
Prior to circa mid-2010s, classical methods based on manu-
ally crafted features dominated the field [8]. By now, more
modern approaches like the YOLO object detector family [9]
emerged and are showing tremendous performance. The cur-
rent challenge in the area is to find a powerful but energy-



efficient platform and neural architectures with a good accu-
racy/computational cost trade-off to enable real-time perfor-
mance in embedded systems.

From a sensor perspective, fisheye cameras (field of view
> 100°) are today used for a better coverage and lower costs.
However, the severe distortion of fisheye cameras still poses
a major challenge. Currently, there are two approaches, either
rectification [10] or working directly with distorted input [11].
The first usually requires extra transformation to emphasize
the corners [12], while for the latter dedicated networks like
spherical CNNs [13] have to be used. With LiDAR or RADAR
information, distances can be estimated, enabling a full blind
spot detection [14].

Extending this perception system with standard video cam-
eras, enables also far-range perception. Here, CNNs play a
central role. Architectures, like YOLO [9] or SqueezeNet [15],
are now standards in 2D-object detection. For semantic seg-
mentation that aims to identify certain structures in the driving
scene, such as the lanes or the drivable area, standard deep
learning architectures like SegNet [16] or encoder-decoder
systems became standards/ Object detection and semantic
segmentation tasks have been successfully combined into sin-
gle deep learning architectures which simultaneously predict
both the 2D bounding boxes of objects, and semantic regions
of the driving scene. These types of algorithms are called
panoptic segmentation networks. Notable systems are Uber’s
UPSNet [17] and Detectron2 [18] from Meta research. More
recent approaches for self-driving cars even integrate LIDAR
information [19], which outputs 3D poses of objects of interest
in real-world Cartesian coordinates.

III. SYSTEM DESIGN

Our ADAS system has been demonstrated on a BMW test
car BMW X5, which was equipped with additional hardware
for this purpose. We wanted to derive an automotive version
of a chip from a high-performance architecture. Our intention
and focus were to test the future chip architecture without
actually steering the vehicle. Therefore, we will not control
the car autonomously. Our output is the proposed trajectory
for the car shown on the central information display of our
test car.

For our demonstration, we use an X5 test car of BMW. We
use series components and enrich the system with an additional
sensor setup. For our setup, we use:

¢ 4x Sony 8MPx cameras, collecting raw image data from
the front and rearview of the car

o 4x Nvidia Jetson AGX platforms to convert raw image
data to JPEGs and do a first object detection

o 1x LiDAR Hesai Technology Pandar40 sensor, which is
used to measure the range of detected obstacles to the
front

e 4x iCAMs (series component), which is typically used
for a bird’s-eye perspective

o 4x radar sensors (series component), which are used to
detect other cars on the road

o 1x high-precision c103 GPS sensor system from uBlox

Fig. 1. Location of sensor components within the BMW test car.

o 1x MPPA Reference Board K200 from Kalray for mid-
range objects detection

« interconnection network and MCU used for transmission
of data between the components and sensor-fusion

The location of the cameras and radars is shown in Fig. 1.

The following subsections explain the design of the sub-
systems for face recognition, blind-spot detection, mid-range
detection and far-range detection.

A. Near-range object detection

The near-range use case for our automotive object detection
pipeline is face recognition. If a known person is detected,
our system can adjust the user settings in the vehicle. Later,
it might be used for access control. The main objectives for
the near-range detection system are low-energy consumption
along with high precision to allow operation when the engine
is not running and energy is only provided by the battery.

Our face recognition system builds on neural networks. To
meet the low-power requirement, we choose SqueezeNet [15],
which is a highly optimized neural network topology, as the
starting point. For our face recognition, we train the network
from scratch using the Casia web faces dataset and pruned
around 70% of the weights, achieving an accuracy of 91.1%.

From the hardware perspective, our face recognition system
runs on the embedded FPGA (eFPGA) tile of the EPI chip.
The aforementioned neural network is executed on a custom-
designed accelerator for the eFPGA [20]. Since the accelerator
is a custom build, we can also adjust the precision of the
operands to enable quantization. Having the accelerator on the
eFPGA allows us to reconfigure the accelerator on the fly, e.g.,
the face recognition can be replaced by an application that is
required in a driving situation once the ride starts. The eFPGA
is coupled with an Infineon AURIX safety microcontroller,
that handles safety critical tasks like evaluating the recognized
person and interfacing with the vehicle.

B. Blind spot detection

The near-range blind spot detection use case has two central
components (Fig. 2): The Jaguar 12-bit JPEG decoding library
and a neural network object detector. It uses information from
two different external sensors - cameras and radars. Based on
the camera data, we detect moving vehicles in blind spots.
In parallel, we collect information about detected objects



Jaguar Imaging and Al Framework Edge model (quantized,

pruned/clusterad)

Al
Decoding

Fig. 2. Jaguar Imaging and Al Framework base blocks

using radars. All detected objects are processed and fused in
the sensor-fusion component at a high level. Camera data is
decoded by our Jaguar image processing framework and then
processed by the Jaguar Al framework, which provides bound-
ing box information of detected vehicles. Both frameworks
were tested on x86 Intel architectures and on NVIDIA GPUs,
as well as on ARM architectures.

Fig. 2 shows the components of the Jaguar Imaging and Al
Framework. Image data from two fisheye cameras located left
and right of the car is sent to the Jaguar library via the car’s
Ethernet. The library supports 8 and 12-bit JPEG image de-
coding and preparation for transmission to the edge Al object
detection model. Decoding is supported for Huffman tables
used in the JPEG standard and optimized Huffman tables
generated by the encoder. The library has been successfully
validated using a real image data from the BMW X5 test car.

Decoded images are now passed to the Jaguar Al framework
for object detection. The AI network is trained on several
labeled open-source datasets, some with rectilinear and some
with fisheye images, like Waymo, Audi, Kitti, Kitti-360 and
Woodscape. As network topology candidates, we chose sev-
eral state-of-the-art models: MobileNet-V2, EfficientDet-DO,
YOLOvV4-tiny, PP-YOLOv2 and NanoDet. We have created
this vast toolkit to drive experimentation to find the best
solution. In addition, we use image data collected while
driving our test car. All the networks were pretrained on a
rectilinear COCO dataset and had to pass through extensive
fine-tuning for fisheye images. Out of the tested models,
YOLOvV4-tiny had the best accuracy on GPUs. However, in
our constrained environment with ARM cores, a quantized
and pruned MobileNetv2 — the weakest and oldest of all
models - shows the best computing performance using TFLite
as framework. Hence, we select the computationally most
efficient MobileNet-V2 for camera mode and rely on LiDAR
object recognition as a supplement. The outputs from this
phase are bounding boxes around detected objects and their
classification — this is identical for all the models in our
portfolio.

C. Mid-range object detection

Mid-range object detection implies being in real-time traffic
to detect, identify and classify obstacles and surrounding area
to trigger car reactions or safety controls within a certain
range. The characteristic of this environment is that the car
is constantly moving, potential obstacles are also in motion,
and targets can be numerous in heavy traffic. This requires

Object detection in image space

. Sensor Fusion in Occupancy Grid Space
Front cameraimage

3D Depth Estimation from 2D
3D depth map

Fig. 3. Environment perception and sensor fusion in occupancy grid space

an efficient identification and classification algorithm with
low latency. Our mid-range detection use case, hence, uses
4K cameras in real traffic situations. Their data is fed into
the MPPA (Massively Parallel Processor Array) processor of
Kalray installed in the BMW demonstrator car, which is also
part of the later EPI chip. Using the KaNN (Kalray Neural
Network) we can compile a trained neural network model
from, e.g., Tensorflow into a version that can be accelerated
on the MPPA.

D. Far-range objects detection

Far-range environment perception in 3D space is achieved
by constructing an occupancy grid representation of the space
surrounding the car, through the usage of two stereo cameras
and a LiDAR sensor. One for detecting objects in the image
space and another for calculating the depth between the camera
and the imaged scene. For object detection, we choose a
YOLOVS single-shot detector, trained on the Berkeley Deep
Drive dataset for autonomous driving. It provides an objects
list, encoding 2D object locations in the image space. The
camera and LiDAR Fusion can then take place directly on
our computation platform MCPv2. A grid map is generated
as a representation of the environment. Our setup for obstacle
detection consists of a LIDAR placed on top of the car, and two
Sony cameras placed underneath the LiDAR, capturing data
from the environment ahead of the car. One of the cameras has
a field of view (FOV) of 120 degrees, designed for obtaining a
wider shot including close-range objects, while the other has a
FOV of 30 degrees, capturing detailed information at a longer
distance from the car, but with a narrow shot.

To plan the motion of the car, the 3D reconstructed model
should embed the traffic participants’ locations in real-world
metrics. Hence, the second deep neural network is a CNN
trained to estimate the sensor-surface distance from monocular
cameras. It provides a one-to-one mapping from RGB input
images to a grey-level image, in which each pixel encodes
the sensor-surface distance. As shown in the lower part of
Fig. 3, the brighter the pixel value, the further away the imaged
surface is.

A reconstruction of the whole 360° environment around
the car is achieved by processing the images acquired from
different sensors. The pipeline in Fig. 4 showcases the full
process, from reading live images from the Sony cameras,
running object detection on the Jetson AGX modules, sending
the data packets via Ethernet to the MCPv2 platform where
the sensor fusion is processed and then passing the results to
custom clients, in this case, being a visualizer. Each video



x4
mmObStac‘es mObStades_’
mipo“ ntcloud

Fig. 4. Camera and LiDAR-based processing pipeline for far-range object
detection

Fig. 5. Modular box to demonstrate the near-range detection system for face
recognition, featuring the eFPGA and an Infineon AURIX

stream is processed using a dedicated NVIDIA AGX Xavier
embedded computer board, using the aforementioned two deep
neural networks. The networks’ output, i.e., the 2D objects
list and depth maps, are synchronized on the target MCPv2
platform, which acts as a delivery server for the five camera
streams. The environment is finally reconstructed as a binary
occupancy grid, having a resolution of 0.2m. If an obstacle is
located at a specific real-world location, then its location in
the occupancy grid will be marked with an occupancy flag.

IV. EXPERIMENTAL SETUP

Our testing environment is a BMW XS5 test car with
cameras, radars, network and processing elements (see Fig. 1).

The near-range detection system is built in a modular box
that can be easily attached to the car, but can also work
independently to increase flexibility. Fig. 5 shows the box,
with the two used tiles: the eFPGA and the AURIX. Input data
for the near-range recognition system is provided by multiple
cameras placed inside the vehicle pointing to each seat. Our
modular box can communicate with the car and the cameras
using standard Ethernet.

The blind spot detection use case is based on the detection
of objects in the area outside the car where the driver cannot
see them directly or in the mirrors. Detection is performed
with two independent systems and the detected objects are
fused to get more certainty in the detection. The first detection
system uses cameras that are located on the left and right
sides of a car. Both cameras have a resolution of 1280x960
px and record 30 frames per second. Decoding and detection
using the Jaguar framework is performed on an Nvidia AGX
device. Detected objects are then forwarded through a network
to the R-Car-H3 platform, where it is fused with the radar
data. The second detection system is based on radars, which
are located on the rear side of the car. Detected objects and

Fig. 6. Real-world setup of the rack including two MCPv2s, the four zonal
controllers and the Neoverse platform (bottom right, below the monitor panel)

free-space information are transferred over the car’s network
to the R-Car-H3. The entire mid-range detection system is
then tested for performance. Tests of the Jaguar Imaging and
Al Framework are executed in a laboratory environment on
similar configurations. Performance was tested using separable
parts of the framework to get the approximate throughput of
the whole blind spot detection system.

The mid-range detection system uses the data from the
stereo 4K camera, which is sent directly via Ethernet to the
Kalray MPPA board, to be able to analyze the video in real-
time and detect obstacles.

The test environment for the far-range perception system
makes use of the four Sony cameras connected to four
NVIDIA Jetson AGX boards, as well as the Hesai Pandar64
LiDAR and the MCP processor (Fig. 1). NVIDIA GPUs
are used for DNN inference of the camera images for 2D
object detection. Detected objects are sent to the MCPv2
for reconstructing the driving environment using fusion with
LiDAR data, as explained in section III-D.

All components are validated in an isolated laboratory setup
and after the complete integration, additional verification is
performed with the test car and on actual streets.

V. RESULTS

Within the EPI project, we implement and test all previously
described components and integrate them into our BMW X5
test car. Since we are building a prototype system, components
are larger than those of a final product and are fitted in a rack
in the trunk of the X5 (Fig. 6). Our ADAS system consists of
three conceptual processing stages - perception, planning and
control. First, various sensors detect the environment of the
car, which is then computed. In the next state, a trajectory
for driving is computed and finally the car’s actuators are
controlled accordingly.

A. Perception

Within this stage, obstacles around the car are detected
and the sensors’ data are fused to a common environmental
model. It is important to detect all obstacles, independent of
how close or far located to the car, or if they move or stand
still. The focus is on synchronous and real-time efficient data



processing. Hence, the output of this step is an environmental
real-time model with all obstacles and their exact position
around the car.

1) Face detection: To map the face recognition neural
network efficiently onto the eFPGA, we apply various op-
timizations and perform a design space exploration. In our
application, the base network is tuned to just recognize faces,
therefore many redundant parameters occur. Pruning them
yields a 75% parameter reduction. In addition, we explored
the impact of quantization. With ten-bit parameters and four-
bit activations, we were able to reduce the memory movements
by 70%, while maintaining an accuracy of 84% [21]. To bring
the neural network to the eFPGA in a resource-optimized way,
we explored various design options. First, we fixed the bit
widths according to the found quantization scheme. With the
52 available DSPs, we were then able to fit 16 accelerator cores
on the eFPGA. In-depth details of our design space exploration
and the architecture can be found in a previous work [20].
With the hardware and optimizations in place, we can process
one input image within 150ms. Thereby, the eFPGA consumes
about 4.7 mW per inference, which results in a performance
of 0.48 GOP/s or 99.37 GOPs/W. The overall latency as well
as the energy-to-performance ratio meets the requirements and
demonstrates that a near-range face recognition is feasible on
the EPI platform.

2) Blind spot detection: Our evaluation in the laboratory
environment proves the ability to detect other vehicles in blind
spots. The quality of the AI processing framework is highly
influenced by the available computational power. Hence, our
Al model has to be scaled to a suitable size. The performance
of the Jaguar Imaging framework for decoding is tested on an
Ubuntu x64 machine with four cores. Parallelization shows
great scaling with an increasing number of cores because
decoding of individual images is independent. On four threads,
we can process 24.8 images per second. For comparison, a
single thread only achieves 8.48 images per second.

Our Al framework uses MobileNet-v2 as architecture with
an SSD head and frame sizes of 320x320 pixels. Our network
is trained (i.e. fine-tuned from COCO pretrained network)
directly on fisheye camera frames from the Woodscape dataset.
The network performance was measured on an NVIDIA K80.
We have measured mAP@[.5, .95]=0.114 and mAR@]|.5,
.95]=0.246 at maximal detections of 100. K80 is a GPU that
was released in 2014 and its performance is a lower bound on
AGX. Using TensorFlow 2.7 we got a throughput of 29 FPS
with a batch size of 1. After that, camera results are fused
with radar data. The computational complexity of our fusion
is much lower than what is required for decoding. Hence, it
can run in real-time even with other workloads on the same
R-Car-H3 device. The overall performance of our blind spot
detection using Jaguar Imaging and Al Framework indicates
that it can run sufficiently at 30 FPS.

3) Mid-range objects detection: Our mid-range detection
set-up is tested in various driving configurations, for pedestrian
detection, identifying incoming and outgoing vehicles, on
medium roads with traffic lights and finally on high-speed

Fig. 7. Mid-range detection in real traffic

motorways (Fig. 7). As network, we use a YOLOv3, with
inputs of 416x416. The inference has been performed using
FP16.32 arithmetic, with KaNN targeting 5 clusters of the
MPPA processor. When operating at 1.2 GHz, the performance
is about 20 FPS, about 3 TFLOPS peak.

4) Far-range objects detection: Our far-range detection
generates the exact position of our test car, with bounding
boxes and classifications of obstacles around it. The horizontal
position of the boxes is obtained by mapping the bounding
boxes generated through object detection; while the vertical
position is given by scaling the depth obtained from LiDAR
to the grid map (Fig. 3). The far-range perception system is
tested offline with the Berkeley autonomous driving dataset,
as well as online, using real-time data from the car’s cameras
and LiDARs. Since the goal of EPI is to go beyond the state-
of-the-art in embedded processor development, we focus on
the computation time achieved by our deep learning pipeline.
For 2D object detection and depth perception, we achieve
abut 18 FPS and 0.9 FPS, respectively, on each of the four
NVIDIA boards. However, sensor fusion on the MCP had
a higher sampling rate of 50 FPS. Thus, the overall system
was running at a speed equal to the depth perception rate.
For real-time performance, we choose to deactivate the depth
perception neural network and rely only on the LiDAR for
estimating 3D distances.

B. Planning & Control

In the planning step, the environmental model, with all
obstacles around the car, is used to plan the trajectory around
blocking obstacles. Furthermore, the car needs to be located
precisely on the road to plan overtaking maneuvers or simply
stay within its lane. In the planning phase, the Arm Neoverse
platform represents the processor of the EPI chip. As for path
planning, a lot of CPU computation power is necessary, this is
the ideal platform. The output of this step is finally a trajectory
for our test car.

For the control phase, this trajectory is shown on the Central
Information Display (CID) within our BMW X5 test car, since
actual driving is very challenging and not the focus of the EPI
project. It represents a suggestion from the EPI Neoverse chip
to the driver. All data is processed using Apollo’s Dreamview.

VI. DISCUSSION

Our results on face detection underline the performance of
the EPI processor and its components in energy-constrained
environments. With only 4.7 mW of energy, we can power



the face recognition from the car battery while the engine is
not running. The processing time of 150 ms is still reasonable,
since it does not require real-time performance. Performance
measurements of our blind spot detection show an overall
performance of around 30 FPS. This fulfills the requirements
of the automotive use case. Results observed in mid-range
detection correspond to what is expected for accuracy and
latency. Additional enhancements are expected with optimiza-
tions of the MPPA toolchain, together with the possibility
to process various sensors on several compute clusters in
parallel. Our far-range perception can reconstruct the driving
environment around the car with a sufficient sampling rate.
However, this is only achieved after deactivating the depth
estimation neural network. This points us to follow further
improvements in embedded DNNs, which would enable larger
neural networks, with multiple task outputs, to perform at a
sampling rate acceptable for self-driving cars.

VII. CONCLUSION

Within this paper, we showed our work and final demonstra-
tor setup for semi-autonomous driving of the EPI test car. The
work was integrated into a demonstrator car and to develop the
architecture of the central MCP. This platform should house all
computing units of several EPI processors. Computer vision
and object detection happen through additional 4K cameras
from Sony and a LiDAR scanner from Hesai. All other sensors
are already released to BMW’s customers and reused for EPI
from the existing BMW X35 test car. The car was equipped with
an additional high-precise GPS, which was used on additional
HD maps. Sensors for Short-Range-Radars, additional cameras
for lane-keeping and all sensors to measure the behavior of the
car must not be replaced. Thus, BMW supplied the partners
with an all-in-one test car solution and helped to integrate
those solutions. For software integration, all systems are based
on Yocto Linux. They have all relevant drivers integrated and
can be used for further refinements.

The near-range face recognition runs on the eFPGA and
AURIX tile, which allows for both low-energy consumption
and safe execution. Face recognition can be performed in 150
ms while consuming only 4.7 mW, which makes its operation
feasible even when the car engine is not running. Short-range
objection detection was realized with a combined and sensor-
fused operation of cameras and radars, which produce the high
safety requirements for ADAS. The result is a very close
environmental model around the car, where the long-range
sensor cannot capture any obstacles. Our mid-range detection,
based on stereo 4K cameras, was realized on a Kalray MPPA.
The solution acts as a fallback solution in case of system and
sensor failure. Far-range perception was enabled through the
combination of cameras and LiDARs in four zones. All sensor
information is fused to a common 3D environmental model
around the car. Finally, we realized a planning stage on the
ARM Neoverse system.

The performance achieved by our test shows, the potential
performance of the future EPI chip, as all tested components
can be integrated into the EPI chip.

ACKNOWLEDGEMENT

This project has received funding from the European Union’s Hori-
zon 2020 research and innovation program under grant agreement
No. 826647 and from the European High Performance Computing
Joint Undertaking (JU) under Framework Partnership Agreement No
800928 and Specific Grant Agreement No101036168 EPI SGA2.

REFERENCES

[1] H. Laghmara et al., “Obstacle avoidance, path planning and control for
autonomous vehicles,” IEEE Intelligent Vehicles Symposium, Proceed-
ings, vol. 2019-June, no. Iv, pp. 529-534, 2019.

[2] H. Zhou et al., “Recent advances on singlemodal and multimodal face
recognition: A survey,” IEEE Transactions on Human-Machine Systems,
vol. 44, no. 6, pp. 701-716, 2014.

[3] M. Wang and W. Deng, “Deep face recognition: A survey,” Neurocom-
puting, vol. 429, pp. 215-244, 2021.

[4] A. Shawahna, S. M. Sait, and A. El-Maleh, “FPGA-Based accelerators
of deep learning networks for learning and classification: A review,”
IEEE Access, vol. 7, pp. 7823-7859, 2019.

[5] C. Zhuge et al., “Face recognition with hybrid efficient convolution
algorithms on FPGAs,” Proceedings of the ACM Great Lakes Symposium
on VLSI, GLSVLSI, no. March, pp. 123-128, 2018.

[6] X. Liu et al., “Collaborative Edge Computing With FPGA-Based CNN
Accelerators for Energy-Efficient and Time-Aware Face Tracking Sys-
tem,” IEEE Transactions on Computational Social Systems, vol. 9, no. 1,
pp. 252-266, 2022.

[71 V. K. Kukkala, J. Tunnell, S. Pasricha, and T. Bradley, “Advanced
Driver-Assistance Systems: A Path Toward Autonomous Vehicles,”
IEEE Consumer Electronics Magazine, vol. 7, no. 5, pp. 18-25, Sep.
2018, conference Name: IEEE Consumer Electronics Magazine.

[8] B.-F. Wu, C.-C. Kao, Y.-F. Li, and M.-Y. Tsai, “A Real-Time
Embedded Blind Spot Safety Assistance System,” International
Journal of Vehicular Technology, vol. 2012, 2012. [Online]. Available:
https://trid.trb.org/view/1138934

[9] P. Jiang, D. Ergu, F. Liu, Y. Cai, and B. Ma, “A Review of Yolo
Algorithm Developments,” Procedia Computer Science, vol. 199, pp.
1066-1073, Jan. 2022.

[10] K. Zhao, K. Liao, C. Lin, M. Liu, and Y. Zhao, “Joint distortion
rectification and super-resolution for self-driving scene perception,”
Neurocomputing, vol. 435, pp. 176-185, May 2021.

[11] H. Rashed et al., FisheyeYOLO: Object Detection on Fisheye Cameras
for Autonomous Driving, Dec. 2020.

[12] E. Plaut, E. B. Yaacov, and B. E. Shlomo, “3D Object Detection from a
Single Fisheye Image Without a Single Fisheye Training Image,” May
2021, arXiv:2003.03759 [cs].

[13] T. S. Cohen, M. Geiger, J. Koehler, and M. Welling, “Spherical CNNs,”
Feb. 2018, arXiv:1801.10130 [cs, stat].

[14] L. Peng, F. Liu, Z. Yu, S. Yan, D. Deng, Z. Yang, H. Liu, and D. Cai,
“Lidar Point Cloud Guided Monocular 3D Object Detection,” Jul. 2022,
arXiv:2104.09035 [cs].

[15] F. N. Iandola et al., “Squeezenet: Alexnet-level accuracy with 50x fewer
parameters and <0.5mb model size,” 2016.

[16] V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet: A deep con-
volutional encoder-decoder architecture for image segmentation,” IEEE
transactions on pattern analysis and machine intelligence, vol. 39,
no. 12, pp. 2481-2495, 2017.

[17] Y. Xiong et al., “Upsnet: A unified panoptic segmentation network,” in
Proceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, vol. 2019-June, 2019, pp. 8810-8818.

[18] Y. Wu, A. Kirillov, F. Massa, W.-Y. Lo, and R. Girshick, “Detectron2,”
https://github.com/facebookresearch/detectron2, 2019.

[19] M. Liang, B. Yang, Y. Chen, R. Hu, and R. Urtasun, “Multi-task
multi-sensor fusion for 3D object detection,” in Proceedings of the
IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, vol. 2019-June, 2019, pp. 7337-7345.

[20] T. Hotfilter et al., “Towards reconfigurable accelerators in hpc: Design-
ing a multipurpose efpga tile for heterogeneous socs,” in 2022 Design,
Automation and Test in Europe Conference and Exhibition (DATE), Mar
2022, p. 628-631.

[21] 1. Walter et al., “Embedded Face Recognition for Personalized Services
in the Assistive Robotics,” in Machine Learning and Principles and
Practice of Knowledge Discovery in Databases, 2021, pp. 339-350.





