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Abstract: Models resulting from the application of the finite element method (FEM) are
usually high dimensional, thus in general preventing the application of optimal control concepts
under real-time conditions. In this work a system consisting of the heat equation defined on
a 3-dimensional domain with local in-domain thermal actuators is considered, whose modeling
results in a coupled PDE-ODE description. Based on simulation data, a data driven reduced
order model is determined using the Dynamic Mode Decomposition with control (DMDc).
Based on the DMDc model a model predictive control (MPC) approach with state estimator is
developed to realize a desired temperture profile on the given domain. The concept is evaluated
involving the high-dimensional finite element model as plant model.
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1. INTRODUCTION

MPC is a well established model based control algorithm,
see, e.g., Rawlings (2000), which is applied in a variety of
different research fields and applications based on linear
and nonlinear ordinary differential equations (ODEs), see
e.g. Grüne and Pannek (2011) and partial differential
equations (PDEs), see e.g. Christofides et al. (2011).
Examples in PDE-constrained MPC address diffusion-
convection-reaction processes, see, e.g., Meurer and Andrej
(2018), nonlinear PDEs using the Koopman theory, see,
e.g., Arbabi et al. (2018), applications in power generation
in wind farms (Ghanavati and Chakravarthy, 2019), drug
manufacturing (Grimard et al., 2021) or flow reactors
(Dufour et al., 2003).

In this work, a MPC for a coupled PDE-ODE system moti-
vated by a 3-dimensional thermal problem is designed. Due
to the fact that the approximation of the coupled system
using, e.g., the FE method results in a high-dimensional
model, solving the optimal control (OPC) problem on a
receding horizon involving a full state observer is not real-
time capable. To address this, the model order has to
be reduced as suggested in, e.g., Hovland et al. (2006).
In contrast to classical MOR techniques such as modal
truncation, Proper Orthogonal Decomposition (POD) or
Balanced Proper Orthogonal Decomposition (BPOD), see,
e.g., Saak et al. (2019), subsequently the numerical solu-
tion of coupled PDE-ODE system is used to generate a
data basis for the model free DMDc approach, see, e.g.,
Brunton and Kutz (2019); Proctor et al. (2016). The Dy-
namic Mode Decomposition (DMD) was first introduced
by Schmid (2010) in a fluid dynamics context. Recently,
SINDy-MPC as a combination of the DMD with MPC
has been introduced (Kaiser et al., 2017; Fasel et al.,

2021). Kaiser et al. (2017) highlight that the limitation of
SINDy is the dimension of the data basis. Due to the fact,
that that a desired profile on the whole domain should be
achieved, the limitations of SINDy are exceeded, so that
DMDc will be used.

This work is structured as follows. In Section 2 the coupled
PDE-ODE system and the considered control problem
are introduced. Based on the model equations and their
approximation the DMDc model is computed in Section
3. The resulting low order model is the foundation for
developing the state observer and the MPC in Sections 4
and 5, respectively. The observer-based MPC is evaluated
numerically in Section 6.

2. SETUP AND MATHEMATICAL MODEL

The considered process is motivated by a 3-dimensional
heat conduction problem. Figure 1 illustrates the 0.15m×
0.15m× 0.1m aluminum block including 36 possible heat
cartridge locations indicated by the bore holes. The µ = 8
occupied actuator positions are highlighted in blue. The
resulting mathematical model has been introduced in Wol-
fram and Meurer (2021), where in addition the parameter
identification problem has been addressed. Subsequently
a short overview is provided together with a summary of
the differences.

The spatial-temporal evolution of the temperature T (t, z)
in the body Ω and on its surface Γ is captured by the
linear heat equation

ρcp
∂T

∂t
−∇ · (λ∇T ) = 0, z ∈ Ω, t > 0 (1a)

with the initial value

T = T0, z ∈ Ω, t = 0. (1b)
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e.g. Grüne and Pannek (2011) and partial differential
equations (PDEs), see e.g. Christofides et al. (2011).
Examples in PDE-constrained MPC address diffusion-
convection-reaction processes, see, e.g., Meurer and Andrej
(2018), nonlinear PDEs using the Koopman theory, see,
e.g., Arbabi et al. (2018), applications in power generation
in wind farms (Ghanavati and Chakravarthy, 2019), drug
manufacturing (Grimard et al., 2021) or flow reactors
(Dufour et al., 2003).

In this work, a MPC for a coupled PDE-ODE system moti-
vated by a 3-dimensional thermal problem is designed. Due
to the fact that the approximation of the coupled system
using, e.g., the FE method results in a high-dimensional
model, solving the optimal control (OPC) problem on a
receding horizon involving a full state observer is not real-
time capable. To address this, the model order has to
be reduced as suggested in, e.g., Hovland et al. (2006).
In contrast to classical MOR techniques such as modal
truncation, Proper Orthogonal Decomposition (POD) or
Balanced Proper Orthogonal Decomposition (BPOD), see,
e.g., Saak et al. (2019), subsequently the numerical solu-
tion of coupled PDE-ODE system is used to generate a
data basis for the model free DMDc approach, see, e.g.,
Brunton and Kutz (2019); Proctor et al. (2016). The Dy-
namic Mode Decomposition (DMD) was first introduced
by Schmid (2010) in a fluid dynamics context. Recently,
SINDy-MPC as a combination of the DMD with MPC
has been introduced (Kaiser et al., 2017; Fasel et al.,

2021). Kaiser et al. (2017) highlight that the limitation of
SINDy is the dimension of the data basis. Due to the fact,
that that a desired profile on the whole domain should be
achieved, the limitations of SINDy are exceeded, so that
DMDc will be used.

This work is structured as follows. In Section 2 the coupled
PDE-ODE system and the considered control problem
are introduced. Based on the model equations and their
approximation the DMDc model is computed in Section
3. The resulting low order model is the foundation for
developing the state observer and the MPC in Sections 4
and 5, respectively. The observer-based MPC is evaluated
numerically in Section 6.

2. SETUP AND MATHEMATICAL MODEL

The considered process is motivated by a 3-dimensional
heat conduction problem. Figure 1 illustrates the 0.15m×
0.15m× 0.1m aluminum block including 36 possible heat
cartridge locations indicated by the bore holes. The µ = 8
occupied actuator positions are highlighted in blue. The
resulting mathematical model has been introduced in Wol-
fram and Meurer (2021), where in addition the parameter
identification problem has been addressed. Subsequently
a short overview is provided together with a summary of
the differences.

The spatial-temporal evolution of the temperature T (t, z)
in the body Ω and on its surface Γ is captured by the
linear heat equation

ρcp
∂T

∂t
−∇ · (λ∇T ) = 0, z ∈ Ω, t > 0 (1a)

with the initial value

T = T0, z ∈ Ω, t = 0. (1b)

DMD-Based Model Predictive Control for
a Coupled PDE-ODE System

Dirk Wolfram ∗ Thomas Meurer ∗∗

∗ Chair of Automation and Control, Faculty of Engineering, Kiel
University, 24143 Kiel, Germany, e-mail: dw@tf.uni-kiel.de.

∗∗ Digital Process Engineering Group, Institute for Mechanical Process
Engineering and Mechanics, Karlsruhe Institute of Technology (KIT),

76187 Karlsruhe, Germany, e-mail: thomas.meurer@kit.edu.

Abstract: Models resulting from the application of the finite element method (FEM) are
usually high dimensional, thus in general preventing the application of optimal control concepts
under real-time conditions. In this work a system consisting of the heat equation defined on
a 3-dimensional domain with local in-domain thermal actuators is considered, whose modeling
results in a coupled PDE-ODE description. Based on simulation data, a data driven reduced
order model is determined using the Dynamic Mode Decomposition with control (DMDc).
Based on the DMDc model a model predictive control (MPC) approach with state estimator is
developed to realize a desired temperture profile on the given domain. The concept is evaluated
involving the high-dimensional finite element model as plant model.

Keywords: Distributed parameter systems, Reduced order model, Data-driven control, Model
predictive control, Heat conduction

1. INTRODUCTION

MPC is a well established model based control algorithm,
see, e.g., Rawlings (2000), which is applied in a variety of
different research fields and applications based on linear
and nonlinear ordinary differential equations (ODEs), see
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(a) Side view. (b) Side view. (c) Section.

Fig. 1. Schematics of the geometry: sides views and sec-
tional plane through one actuation layer (Wolfram
and Meurer, 2021). Possible actuator locations are
marked gray, used actuator locations are marked blue.

Here, ρ, cp, and λ denote density, specific heat capacity,
and heat conductivity of the solid body, respectively.
Differing from Wolfram and Meurer (2021) here

T = Tabs − TR

holds, so that T is the temperature difference between the
absolute temperature Tabs of the body and the tempera-
ture of the surrounding air TR, which is assumed constant.
The heat inflow generated by each of the µ actuators is
assumed to show PT1 behavior given by the ODE

0 = Soϕ̇o + ϕo −DoQA, ouo, t > 0, ϕo(0) = 0, (1c)

with So the time constant, QA, o the maximal heat flow
divided by 100 and Do the power correction parameter of
the heat cartridges. The input uo can be described as the
degree of activation with

0 ≤ uo ≤ 100, ∀o ∈ {1, . . . , µ}. (1d)

Due to the fact that ϕo is a heat flow the interaction
between the actuators and the solid body can be described
by the inhomogeneous Neumann boundary condition (BC)

n · λ∇T = ϕo, z ∈ ΓA, o, t > 0 (1e)

for o ∈ {1, . . . , µ}. This BC implies a uniform, but time-
varying heat inflow over the actuator surface ΓA, o ⊂ Γ.
Assuming the bottom surface ΓI to be insulated, the
homogeneous Neumann BC

n · λ∇T = 0, z ∈ ΓI, t > 0 (1f)

holds true. The remaining surfaces ΓR ⊂ Γ have a direct
contact with the surrounding constant air temperature TR,
so that a convective heat transfer

n · λ∇T = −hRT, z ∈ ΓR, t > 0, (1g)

with the heat transfer coefficient hR, exists.

Eight theromocouples are included to measure the tem-
perature a the positions zPM,l, l ∈ {1, . . . , ξ}, with ξ = 8.
Their locations are summarized Tab. 1 using a body fixed
coordinate system placed in the center of the solid body.
Their spatial characteristics is described by cΓ,l ∈ L2(Γ),
so that the output value can be determined using

yΓ,l =

∫

Γ

cΓ,lT dΓ, l = 1, . . . , ξ. (2)

The system parameters of the coupled PDE-ODE system
(1) are listed in Tab. 2.

Table 1. Sensor positions.

Sensor 1 2 3 4 5 6 7 8

z1 in m −0.05 0.00 0.05 0.05 0.05 0.00 −0.05 −0.05
z2 in m 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
z3 in m 0.05 0.05 0.05 0.00 −0.05 −0.05 −0.05 0.00

In order to approximate the solution to the PDE open
source finite element (FE) code firedrake is used, see,
e.g., Rathgeber et al. (2016); Firedrake (2021). The FEM

requires the weak formulation of (1a), which can be ob-
tained by multiplying the equation with the test function
v ∈ H1(Ω) and integrating over the domain Ω

0 =

∫

Ω

vρcp
∂T

∂t
dΩ −

∫

Ω

v∇ · (λ∇T ) dΩ.

Applying Green’s first identity and inserting the boundary
conditions (1e)-(1g) the weak form reads

0 =

∫

Ω

vρcp
∂T

∂t
dΩ +

∫

Ω

λ(∇T · ∇v) dΩ

−
∫

ΓR

vhR(TR − T ) dΓR −
µ∑

o=1

∫

ΓA, o

vϕo dΓ
A, o.

The FEM requires the local discretization of the geometry,
which is achieved by using the meshing tool trelis Pro
(Version 16.5) with tetrahedral elements. The resulting
mesh, consisting of 558732 tetrahedrals and σ = 98989
nodes, is shown in Fig. 2. The resulting system is given by

0 =

[
M 0
0 S

] [
Ṫ (t)

ϕ̇(t)

]
+

[
K H
0 I

] [
T (t)
ϕ(t)

]
+

[
0
X
]
u(t), (3a)

for t > 0, [T (0) ϕ(0)]T = [T 0 ϕ0]
T , with X =

diag(−D1QA, 1, . . . ,−DµQA, µ) and S = diag(S1, . . . ,Sµ).
The first set of ODEs refers to the discretized PDE with
the node temperatures T (t) as state variable, whereas the
second set of equations represents the actuator dynamics.
The discretized output equation reads

y(t) = [G 0]

[
T (t)
ϕ(t)

]
(3b)

Based on the solution of this coupled ODE system the data
basis for the DMDc algorithm is determined.

3. DYNAMIC MODE DECOMPOSITION

The DMD is a model free approach for determining a state
space model using only data matrices Schmid (2010). To
address the inhomogeneous case with external input the
DMDc following Proctor et al. (2016) is considered.

It is assumed, that the temperature can be described by
the discrete time system

T k+1 ≈ ÂT k + B̂uk, k ∈ N ∪ {0},
where T 0 is the initial state, T k is a snapshot of the
temperature T (t) at the time t = k∆t, uk is a snapshot

of the input u(t) and Â ∈ Rσ×σ as well as B̂ ∈ Rσ×µ are
unknown matrices. The DMDc uses the snapshot matrix

X = [T 0 T 1 . . . TM−1] , (4a)

containing M snapshots of the temperature, its time
shifted version

X ′ = [T 1 T 1 . . . TM] (4b)

and the related input values

γ = [u0 u1 . . . uM−1] (4c)

Fig. 2. Meshed body.



	 Dirk Wolfram  et al. / IFAC PapersOnLine 56-2 (2023) 4258–4263	 4259

Copyright © 2023 The Authors. This is an open access article under the CC BY-NC-ND license  
(https://creativecommons.org/licenses/by-nc-nd/4.0/)

(a) Side view. (b) Side view. (c) Section.

Fig. 1. Schematics of the geometry: sides views and sec-
tional plane through one actuation layer (Wolfram
and Meurer, 2021). Possible actuator locations are
marked gray, used actuator locations are marked blue.

Here, ρ, cp, and λ denote density, specific heat capacity,
and heat conductivity of the solid body, respectively.
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Due to the fact that ϕo is a heat flow the interaction
between the actuators and the solid body can be described
by the inhomogeneous Neumann boundary condition (BC)
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holds true. The remaining surfaces ΓR ⊂ Γ have a direct
contact with the surrounding constant air temperature TR,
so that a convective heat transfer

n · λ∇T = −hRT, z ∈ ΓR, t > 0, (1g)

with the heat transfer coefficient hR, exists.

Eight theromocouples are included to measure the tem-
perature a the positions zPM,l, l ∈ {1, . . . , ξ}, with ξ = 8.
Their locations are summarized Tab. 1 using a body fixed
coordinate system placed in the center of the solid body.
Their spatial characteristics is described by cΓ,l ∈ L2(Γ),
so that the output value can be determined using

yΓ,l =

∫

Γ

cΓ,lT dΓ, l = 1, . . . , ξ. (2)

The system parameters of the coupled PDE-ODE system
(1) are listed in Tab. 2.

Table 1. Sensor positions.

Sensor 1 2 3 4 5 6 7 8

z1 in m −0.05 0.00 0.05 0.05 0.05 0.00 −0.05 −0.05
z2 in m 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
z3 in m 0.05 0.05 0.05 0.00 −0.05 −0.05 −0.05 0.00

In order to approximate the solution to the PDE open
source finite element (FE) code firedrake is used, see,
e.g., Rathgeber et al. (2016); Firedrake (2021). The FEM

requires the weak formulation of (1a), which can be ob-
tained by multiplying the equation with the test function
v ∈ H1(Ω) and integrating over the domain Ω

0 =

∫

Ω

vρcp
∂T

∂t
dΩ −

∫

Ω

v∇ · (λ∇T ) dΩ.

Applying Green’s first identity and inserting the boundary
conditions (1e)-(1g) the weak form reads

0 =

∫

Ω

vρcp
∂T

∂t
dΩ +

∫

Ω

λ(∇T · ∇v) dΩ

−
∫

ΓR

vhR(TR − T ) dΓR −
µ∑

o=1

∫

ΓA, o

vϕo dΓ
A, o.

The FEM requires the local discretization of the geometry,
which is achieved by using the meshing tool trelis Pro
(Version 16.5) with tetrahedral elements. The resulting
mesh, consisting of 558732 tetrahedrals and σ = 98989
nodes, is shown in Fig. 2. The resulting system is given by

0 =

[
M 0
0 S

] [
Ṫ (t)

ϕ̇(t)

]
+

[
K H
0 I

] [
T (t)
ϕ(t)

]
+

[
0
X
]
u(t), (3a)

for t > 0, [T (0) ϕ(0)]T = [T 0 ϕ0]
T , with X =

diag(−D1QA, 1, . . . ,−DµQA, µ) and S = diag(S1, . . . ,Sµ).
The first set of ODEs refers to the discretized PDE with
the node temperatures T (t) as state variable, whereas the
second set of equations represents the actuator dynamics.
The discretized output equation reads

y(t) = [G 0]

[
T (t)
ϕ(t)

]
(3b)

Based on the solution of this coupled ODE system the data
basis for the DMDc algorithm is determined.

3. DYNAMIC MODE DECOMPOSITION

The DMD is a model free approach for determining a state
space model using only data matrices Schmid (2010). To
address the inhomogeneous case with external input the
DMDc following Proctor et al. (2016) is considered.

It is assumed, that the temperature can be described by
the discrete time system

T k+1 ≈ ÂT k + B̂uk, k ∈ N ∪ {0},
where T 0 is the initial state, T k is a snapshot of the
temperature T (t) at the time t = k∆t, uk is a snapshot

of the input u(t) and Â ∈ Rσ×σ as well as B̂ ∈ Rσ×µ are
unknown matrices. The DMDc uses the snapshot matrix

X = [T 0 T 1 . . . TM−1] , (4a)

containing M snapshots of the temperature, its time
shifted version

X ′ = [T 1 T 1 . . . TM] (4b)

and the related input values

γ = [u0 u1 . . . uM−1] (4c)

Fig. 2. Meshed body.
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Table 2. Physical parameters.

Para. ρ cp λ hR D1 D2 D3 D4,5 D6 D7 D8 S1,2,6,7,8 S3,4,5

Value 2700.0 921.0 209.919 7.588 0.62 0.8 0.92 1.01 0.8 0.65 1.44 1.001 1.002
Unit kgm−3 kgm2 s−2 K−1 Wm−1 K−1 Wm−2 K−1 − − − − − − − s s

for solving the singular value decompositions (SVDs) and
truncating the singular values after α singular values of
the input space [

X
γ

]
≈ Ũ Σ̃Ṽ ∗

and of the output space

X ′ ≈ Û Σ̂V̂ ∗

using the truncation order ν < α ≪ σ. The reduced order
system

sk+1 = Ask +Buk, (5)

with initial state s0 ∈ Rν , A ∈ Rν×ν , and B ∈ Rν×µ is
then obtained with

A = Û∗X ′Ṽ Σ̃−1Ũ∗
1 Û , B = Û∗X ′Ṽ Σ̃−1Ũ∗

2 .

Here, the matrices Ũ1 ∈ Rσ×α and Ũ2 ∈ Rµ×α are the data
and input related parts of the truncated input space SVD,
i.e., Ũ∗ = [Ũ∗

1 Ũ∗
2 ]. The relation between the snapshots

and the DMDc generated states is described by

T k = Ûsk, (6)

with Û ∈ Rσ×ν . Applying this transformation the output
(3b) can be expressed in the new states

yk = GÛsk = Csk, (7)

note that ϕ(t) has no influence to the output and can be
neglected.

To generate the snapshot matrix system (3a) is solved
using an implicit Euler integration scheme with sampling
time ∆t = 0.2 s. To generate a data basis capturing a
wide range of different inputs the applied external signals
are composed of a combination of piecewise constant and
trigonometric functions, see Fig. 3.

Remark 1. Note that the input uk is used for the snap-
shots, so that a model between the degree of activation
and the temperature results from the DMDc.

The truncation order of the SVDs in the DMDc algorithm
is chosen as 0.00001% of the maximal singular value in
each SVD, resulting in ν = 28 states. For evaluating the
quality of the resulting model the root mean square error
(RMSE) is used

|∆ek| =
√

||ek||L2

V(Ω)
, (8)

with ||ek||L2
referring to the L2-Norm of the error ek =

T k− Ûsk and V(Ω) referring to the volume of the domain,
see, e.g., Zienkiewicz et al. (2005). It can be interpreted
as a mesh adjusted mean error over the whole domain.
Figure 4 (blue curve) shows the resulting RMSE for the
excitation using the same input signal for the generation
of the reduced order model and the evaluation. The RMSE
remains below 0.02K. After the dynamic input change
(t = 500 s) the input is constant at 80% of the maximum
input until t = 750 s. During this period the RMSE rises
to its maximum value at approximately 0.0187K, whereas
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Fig. 3. Input for generating the DMDc data basis.

the actuator power drops to 0. Taking the whole signal
into account, the maximum error values occur at rapid
input changes. For evaluating the DMDc a different input,
shown in Fig. 5, is applied to the PDE and the reduced
order DMDc model. In this case a longer constant input is
applied to the actuators, although all actuators are excited
with a different gain. The resulting RMSE is also shown in
Fig. 4 (red curve). During the dynamic input change, the
error is slightly larger compared to the generation signal.
The error rises to 0.04K when the input is constant with
a different value in each actuator and decreases when the
input is constant at 80% of the maximum input power.
Figure 6 shows the RMSE in relation to the root mean
square (RMS) temperature of the structure. The RMS
temperature can be interpreted as the mean temperature
of the structure, obtained by replacing the error in (8)
with the solution of the full order model T k. After 10 s the
error for the generation and validation input falls below
1%. During the remaining heating process 0.5% relative
error is not exceeded.

Based on these evaluations it is concluded that the gener-
ated DMDc model is a valid representation of the full order
model and is hence used for designing a state observer.

4. DMD-BASED KALMAN FILTER DESIGN

For designing a MPC knowledge of the full state of (5)
is required. In order to estimate the states using the
measurements a discrete time Kalman filter is set up.
Following, e.g., Lewis et al. (2008) the Kalman filter
assumes a discrete system of the form

sk+1 = Ask +Buk + κk

yk = Csk + χk,

with the initial state s0, the process noise κk ∈ Rν and the
measurement noise χk ∈ Rξ. Process and measurement
noise are assumed to be white noise processes with zero
mean value and covariance matrices Q ∈ Rν×ν and
R ∈ Rξ×ξ, respectively. Taking into account that the
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Fig. 4. RMSE between the PDE simulation data basis and
its reduced order representation.
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Fig. 5. Input for validating the reduced order model.

underlying system equations are linear and time invariant
a constant observer gain L = APCT

�
CPCT + R


can

be determined by solving the discrete algebraic matrix
Riccati equation P = APAT +Q−APCT (CPC+R)−1+
CPAT .Using the determined filter gain the resulting state
estimator reads

ŝk+1 = Aŝk +Buk + L(yk − ŷk) (9a)

ŷk = Cŝk, (9b)

with the initial state ŝ0.

Remark 2. Note that by transforming the states of the
state estimator ŝk back, using T̂ k = Û ŝk, an estimation
of the temperature distribution is obtained.

5. DISCRETE TIME MPC

To robustly achieve a desired temperature profile an MPC
is designed based on the determined process model (5),
(7). The MPC can be interpreted as a feedforward control
computer for the next C time steps (the control horizon)
based on the prediction over P time steps (the prediction
horizon) before repeating the solution process sequentially.
Herein the observer (9) is used to update the state infor-
mation for each receding horizon.

The design of the discrete time MPC follows the lines
of, e.g., Wang (2009); Rosenzweig et al. (2018); Kater
(2019) and relies on rewriting (5), (7) as an augmented
model. The constrained optimization problem is solved
using a primal-dual-method using Hildreth’s quadratic
programming procedure, see Wang (2009). Let

wk = Zsk (10)

denote the control variable, which is supposed to follow
a desired output. Depending on Z ∈ Rκ×σ this enables
us also to impose a certain temperature profile, at least
approximately. Note that wk may be independent from
the measured outputs yk.

By building the difference between the current and previ-
ous state ∆sk = sk − sk−1 as well as the input difference
∆uk = uk − uk−1 the change of the discrete model (5) in
each time step can expressed as

∆sk+1 = A∆sk +B∆uk. (11)

To connect (10) to ∆sk the difference wk+1 −wk is used
and rearranged to
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Fig. 6. Relative RMSE with respect to RMS temperature.

wk+1 = wk + Z∆sk+1.

By introducing the augmented state sA
k = [∆sT

k , wT
k ]

T

the augmented model is derived

sA
k+1 = AsA

k + B∆uk (12a)

wk = ZsA
k , (12b)

where

A =


A 0
ZA I


, B =


B
ZB


Z = [0 I] .

The input to the augmented model can be described as the
change of the actuator degree of activation and enables us
to restrict the rate of input changes. The new structure
introduces an integral like behavior regarding the output
in the closed-loop system, see Kater (2019). Note that ∆s0

depends on the undefined state s−1, so that sA
k = [0, w0]

is assumed.

For determining the control input the MPC requires the
prediction of the next P time steps

W = [wT
k+1, k,w

T
k+2, k, . . . ,w

T
k+P, k]

T

depending on a given set of inputs

∆Ψ = [∆uT
k ,∆uT

k+1, . . . ,∆uT
k+P−1]

T .

Herewk+i, k describes the prediction of the ith output with

respect to the current state sA
k . Using

sA
k+i = AisA

k +

i−1
j=0

Ai−1−jB∆uk+j

the matrix W can be determined by

W = FsA
k +Φ∆Ψ (13)

with

F =




ZA
ZA2

...
ZAP


 , Φ =




ZB 0 · · · 0
ZAB ZB · · · 0

...
...

...
ZAP−1B ZAP−2B · · · ZB


 .

Due to the fact that the state sA
k is not known during the

MPC calculation the observed state ŝA
k has to be used.

In order to find the optimal input trajectory Ψ for mini-
mizing the error between the predicted output W and the
reference trajectory

W ∗ = [(w∗
k+1)

T , (w∗
k+2)

T , . . . , (w∗
k+P)

T ]T

the discrete optimization problem

min
∆Ψ

J = (W ∗ −W )TQ(W ∗ −W ) + ∆ΨTR∆Ψ (14a)

with the symmetric and positive definite weighting matrix
Q ∈ RκP×κP as well as the symmetric and positive semi-
definite matrix R ∈ RµP×µP subject to constraints on the
input as well as the rate of change of the input

Ψ ≤ Ψ ≤ Ψ (14b)

∆Ψ ≤ ∆Ψ ≤ ∆Ψ. (14c)

Here Ψ = uk−1 + ∆Ψ contains the next P input vectors
starting with uk, Ψ and Ψ are lower and upper bounds
for the input, and ∆Ψ, ∆Ψ are bounds on the rate.
Inserting (13) into the cost function (14a) can be rewritten
as a quadratic problem for the input ∆Ψ, i.e., J =
1
2∆ΨTH∆Ψ+∆ΨTf+βTQβ, where β = W ∗−F ŝA

k , H =

2(ΦTQΦ + R) is a symmetric matrix and f = −2ΦTQβ.
Note that βTQβ is constant (with respect to ∆Ψ) and has
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underlying system equations are linear and time invariant
a constant observer gain L = APCT

�
CPCT + R


can

be determined by solving the discrete algebraic matrix
Riccati equation P = APAT +Q−APCT (CPC+R)−1+
CPAT .Using the determined filter gain the resulting state
estimator reads

ŝk+1 = Aŝk +Buk + L(yk − ŷk) (9a)

ŷk = Cŝk, (9b)

with the initial state ŝ0.

Remark 2. Note that by transforming the states of the
state estimator ŝk back, using T̂ k = Û ŝk, an estimation
of the temperature distribution is obtained.

5. DISCRETE TIME MPC

To robustly achieve a desired temperature profile an MPC
is designed based on the determined process model (5),
(7). The MPC can be interpreted as a feedforward control
computer for the next C time steps (the control horizon)
based on the prediction over P time steps (the prediction
horizon) before repeating the solution process sequentially.
Herein the observer (9) is used to update the state infor-
mation for each receding horizon.

The design of the discrete time MPC follows the lines
of, e.g., Wang (2009); Rosenzweig et al. (2018); Kater
(2019) and relies on rewriting (5), (7) as an augmented
model. The constrained optimization problem is solved
using a primal-dual-method using Hildreth’s quadratic
programming procedure, see Wang (2009). Let

wk = Zsk (10)

denote the control variable, which is supposed to follow
a desired output. Depending on Z ∈ Rκ×σ this enables
us also to impose a certain temperature profile, at least
approximately. Note that wk may be independent from
the measured outputs yk.

By building the difference between the current and previ-
ous state ∆sk = sk − sk−1 as well as the input difference
∆uk = uk − uk−1 the change of the discrete model (5) in
each time step can expressed as

∆sk+1 = A∆sk +B∆uk. (11)

To connect (10) to ∆sk the difference wk+1 −wk is used
and rearranged to
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wk+1 = wk + Z∆sk+1.

By introducing the augmented state sA
k = [∆sT

k , wT
k ]

T

the augmented model is derived

sA
k+1 = AsA

k + B∆uk (12a)

wk = ZsA
k , (12b)

where

A =


A 0
ZA I


, B =


B
ZB


Z = [0 I] .

The input to the augmented model can be described as the
change of the actuator degree of activation and enables us
to restrict the rate of input changes. The new structure
introduces an integral like behavior regarding the output
in the closed-loop system, see Kater (2019). Note that ∆s0

depends on the undefined state s−1, so that sA
k = [0, w0]

is assumed.

For determining the control input the MPC requires the
prediction of the next P time steps

W = [wT
k+1, k,w

T
k+2, k, . . . ,w

T
k+P, k]

T

depending on a given set of inputs

∆Ψ = [∆uT
k ,∆uT

k+1, . . . ,∆uT
k+P−1]

T .

Herewk+i, k describes the prediction of the ith output with

respect to the current state sA
k . Using

sA
k+i = AisA

k +

i−1
j=0

Ai−1−jB∆uk+j

the matrix W can be determined by

W = FsA
k +Φ∆Ψ (13)

with

F =




ZA
ZA2

...
ZAP


 , Φ =




ZB 0 · · · 0
ZAB ZB · · · 0

...
...

...
ZAP−1B ZAP−2B · · · ZB


 .

Due to the fact that the state sA
k is not known during the

MPC calculation the observed state ŝA
k has to be used.

In order to find the optimal input trajectory Ψ for mini-
mizing the error between the predicted output W and the
reference trajectory

W ∗ = [(w∗
k+1)

T , (w∗
k+2)

T , . . . , (w∗
k+P)

T ]T

the discrete optimization problem

min
∆Ψ

J = (W ∗ −W )TQ(W ∗ −W ) + ∆ΨTR∆Ψ (14a)

with the symmetric and positive definite weighting matrix
Q ∈ RκP×κP as well as the symmetric and positive semi-
definite matrix R ∈ RµP×µP subject to constraints on the
input as well as the rate of change of the input

Ψ ≤ Ψ ≤ Ψ (14b)

∆Ψ ≤ ∆Ψ ≤ ∆Ψ. (14c)

Here Ψ = uk−1 + ∆Ψ contains the next P input vectors
starting with uk, Ψ and Ψ are lower and upper bounds
for the input, and ∆Ψ, ∆Ψ are bounds on the rate.
Inserting (13) into the cost function (14a) can be rewritten
as a quadratic problem for the input ∆Ψ, i.e., J =
1
2∆ΨTH∆Ψ+∆ΨTf+βTQβ, where β = W ∗−F ŝA

k , H =

2(ΦTQΦ + R) is a symmetric matrix and f = −2ΦTQβ.
Note that βTQβ is constant (with respect to ∆Ψ) and has
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no influence on the solution, so that the term is neglected.
The minimization of this unconstrained cost function is
obtained by ∆Ψnc = −H−1f .

In order to determine the constrained solution the input
constraints (14b) have to be reformulated in terms of the
input change. Since ∆uk contains the change of the input
from uk−1, each input between the time steps k and k +
P − 1 can be described as the sum of input changes

Ψ = G1uk−1 + G2∆Ψ, (15)

where G1 = [I, I, . . . , I]T ∈ RµP×µ contains P µ-
dimensional identity matrices I and

G2 =



I 0 . . . 0
...
...
. . . 0

I I . . . I


 ∈ RµP×µP .

With this the input constraint (14b) can be reformulated
in terms of two inequality constraints G2∆Ψ ≤ Ψ−G1uk−1

and −G2∆Ψ ≤ −Ψ + G1uk−1.Thus taking into account
(14c) the set of constraints read

Ξ∆Ψ ≤ ξ, (16)

with ∆Ψ = [GT
2 , −GT

2 , I, −I]T and

ξ =

(Ψ− G1uk−1)

T , (−Ψ+ G1uk−1)
T , ∆Ψ

T
, −∆ΨT

T
.

Considering the extended cost function

J =
1

2
∆ΨTH∆Ψ+∆ΨTf + λT (Ξ∆Ψ− ξ),

involving the Lagrange multipliers λ the Karush-Kuhn-
Tucker (KKT) conditions can be determined

H∆Ψ+ f + ΞTλ = 0

λT (Ξ∆Ψ− ξ) = 0, λ ≥ 0.
(17)

Here, the first equation describes the gradient of the cost
function with respect to the input change and the second
refers to the complementary slackness condition.

For the numerical solution a primal-dual-method is used,
so that the Lagrange multipliers are determined by formu-
lating a dual problem, whose solution is used to compute
∆Ψ. The primal problem reads

max
λ≥0

min
∆Ψ

1

2
∆ΨTH∆Ψ+∆ΨTf + λT (Ξ∆Ψ− ξ). (18)

The inner minimization problem implies

∆Ψ = −H−1(f + ΞTλ). (19)

Inserting this solution into the primal problem results in
the dual problem

min
λ≥0

1

2
λTKλ + λTv +

1

2
fTH−1f , (20)

where K = ΞH−1ΞT and v = ΞH−1f + ξ. Referring to
Wang (2009) the dual problem can be solved by using,
e.g., Hildreth’s quadratic programming procedure, which
determines the Lagrange multipliers iteratively for j ≤
jmax. The ith element of λ in the jth iteration can be
determined by

λj
i = max(0, aji) (21a)

with

aji = − 1

Kii


vi +

i−1
m=1

Kimλ
j
m +

κ
m=i+1

Kimλ
j−1
m


, (21b)

where κ = 4Pµ is the number of constraints. Since λj
i can

either be zero or positive the set of active constraints is

Fig. 7. Desired profile to be reached by MPC.

determined automatically. The technique converges to a
desired accuracy by fulfilling (λj −λj−1)T (λj −λj−1) < ν
or reaches the maximal number of iterations jmax, which
results in a near optimal solution. Due to the fact that
this is a matrix inversion free algorithm, the computation
can be continued and does not interrupt when a constraint
conflict arises during the process. Based on this features
the algorithm is capable of recovering from il-conditioned
constraint problems and hence is a suitable for real-time
applications, see Wang (2009). Although the solution for
the Lagrange multipliers can be sub-optimal, its values
are only zero or positive, so that the required input
change is determined by inserting the resulting Lagrange
multipliers into (19). To improve convergence a warm
start is considered, where the Lagrange multipliers of the
last MPC iteration are used as the initial values for the
new calculation (Lam et al., 2020). The optimal input for
the prediction horizon P is determined by inserting the
input change ∆Ψ into (15). After C time steps the MPC
algorithm is updated using the current observer state as
initial state.

6. SIMULATION RESULTS

For the evaluation the DMD-based MPC is applied to
the full order FE approximation (3) of the coupled ODE
system (1). Time integration is realized using an implicit
Euler scheme. In order to achieve a desired profile on the
whole structure all reduced order states are used for the
MPC, so that the matrix Z is equal to the identity matrix
of order ν. The desired profile should be a steady state
solution for the coupled system (3), therefore the steady
state solution for the node temperatures T∞ = K−1HXu
is determined and transformed in the DMDc statesw∗

k+i =

Û∗T∞, for all i ∈ {1, . . . ,P}. In this work the input
u = [20 0 20 0 30 0 0 0]T will be used, which results
in the steady state profile shown in Fig. 7, with the root
mean square temperature |∆T k| = 83.44K.

For the simulation the initial state and so the initial
measurement of the plant model is equal to the temper-
ature of the surrounding air. The observer is assumed
to have an initial state representing 2K above the air
temperature. For the Kalman filter the covariance ma-
trices are assigned as Q = 10I and R = I. The cost
function (14a) is parametrized using Q = I and R = 300I.
The upper and lower limits for inputs read Ψo = 0 and
Ψo = 100 corresponding to minimal and maximal degree
of activation. The input rates are limited to 3% of the
actuator power in each sampling step resulting in ∆Ψo = 3
and ∆Ψo = −3. The parameters for Hildreth’s quadratic
programming procedure are assigned as jmax = 2000 and
ν = 10−4.

For validating the algorithm the temperature of the sur-
rounding air is assumed to drop about 30K at t = 850 s.
The influence of this disturbance is not implemented in the
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Fig. 8. Input values applied to the full order system.

DMDc model and is not provided to the MPC algorithm.
The input generated by the MPC is shown in Fig. 8.
The root mean squared error between the desired state
and the block temperatures for the entire structure is
shown in Fig. 9 and decreases below 0.01K after 800 s.
During the heating process the maximal power is applied
to all actuators, whereas the MPC algorithm reduces the
input power between 600 s and 700 s for each actuator.
Analogously to the generation of the desired profile the
actuators 1, 3 and 5 stay active. The remaining actuators
remain zero, after they regain a bit of heating power at
720 s. When the disturbance appears at 850 s the algorithm
increases the input powers directly. Despite the error of
30K in the air temperature, the algorithm is able to keep
the RMSE below 0.12K.

7. CONCLUSIONS

In this paper a data-driven reduced order model is derived
using DMDc based on simulation data from the given full
order coupled PDE-ODE system describing the temper-
ature evolution in a 3-dimensional heating process. The
resulting DMDc model with 28 states is validated with
respect to the original high-dimensional FE approximation
with 98997 states. Based on the reduced order model a dis-
crete time MPC combined with a Kalman filter are derived
and successfully evaluated by applying the algorithms to
the full order model.

Current work addresses the application of the concept to
an experimental setup as described in Wolfram and Meurer
(2021) and the extension to trajectory tracking taking into
account the dynamics of coupled PDE-ODE system.
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DMDc model and is not provided to the MPC algorithm.
The input generated by the MPC is shown in Fig. 8.
The root mean squared error between the desired state
and the block temperatures for the entire structure is
shown in Fig. 9 and decreases below 0.01K after 800 s.
During the heating process the maximal power is applied
to all actuators, whereas the MPC algorithm reduces the
input power between 600 s and 700 s for each actuator.
Analogously to the generation of the desired profile the
actuators 1, 3 and 5 stay active. The remaining actuators
remain zero, after they regain a bit of heating power at
720 s. When the disturbance appears at 850 s the algorithm
increases the input powers directly. Despite the error of
30K in the air temperature, the algorithm is able to keep
the RMSE below 0.12K.

7. CONCLUSIONS

In this paper a data-driven reduced order model is derived
using DMDc based on simulation data from the given full
order coupled PDE-ODE system describing the temper-
ature evolution in a 3-dimensional heating process. The
resulting DMDc model with 28 states is validated with
respect to the original high-dimensional FE approximation
with 98997 states. Based on the reduced order model a dis-
crete time MPC combined with a Kalman filter are derived
and successfully evaluated by applying the algorithms to
the full order model.

Current work addresses the application of the concept to
an experimental setup as described in Wolfram and Meurer
(2021) and the extension to trajectory tracking taking into
account the dynamics of coupled PDE-ODE system.
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