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Abstract: Concrete is one of the most important building materials and is used as a collective
term for different dispersions of cement and aggregates. High performance concrete (HPC) is a
rather new type of concrete mixture. A topic of current research is the behavior of fresh concrete
during heat treatment. It is known that the heat treatment of fresh concrete accelerates the
reaction of the cement and thus the chemically complex process of hydration. The mathematical
representation of the curing concrete is a further step towards the systematic investigation. The
objective of this work is the development of a state estimator to determine the temperature
behavior of the fresh HPC mixture under heat treatment. Using a continuum representation
describing the spatial-temporal evolution of temperature, moisture, and maturity of fresh HPC
during heat treatment a finite-dimensional approximation is derived using a high order finite
difference scheme. Experimental data is included for model parameterization by optimization.
Based on this, three different nonlinear extensions of the Kalman filter (KF) techniques are

realized and compared combining simulated and experimental data.
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1. INTRODUCTION

High performance concrete (HPC) and ultra-high perfor-
mance concrete (UHPC) are unique in terms of its special
properties such as high strength and durability, see, e.g.,
Fehling et al. (2005). Due to its specific characteristics,
the application of HPC and UHCP targets areas with
extended requirements. Examples include its use in fili-
gree bridge construction (Olipitz, 2015), anchoring system
for prestressed bridge-slabs (Sanio et al., 2021) or for
parabolic trough collectors (Forman et al., 2020)

Another potential of HPC can be exploited if it is sub-
jected to heat treatment during the curing process. This
results in faster achieved early strength and reduced
shrinkage (Stindt et al., 2021). In addition to accelerated
hardening by means of uniform heating of the total cross-
section the imprinting of a temperature gradient across
the cross-section is currently under investigation and ini-
tial experimental as well as theoretical investigations for
adjusting the state of stress in bridges have been carried
out by Loschmann and Mark (2022). Ideally, the accurate
induction and control of temperature gradients requires
knowledge of the temperature distribution of the entire
cross-section. Here, the usage of fiber-optic measurement
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sensors offers one possibility for temporal temperature
measurement at a high spatial resolution (Claufl et al.,
2022). Although this sensor allows accurate temperature
measurement even inside a curing concrete structure high
cost and the sensitivity limit its practical application.

Alternatively, a temperature estimate of the curing con-
crete body can be realized by a suitable mathematical
model embedded in a software sensor. Examples of mod-
els of the concrete solidification process are provided in,
e.g., Benedix (2011); Fowkes et al. (2004). Such mod-
els approximate the heating process of HPC based on
thermal properties, chemical heat release, and suitable
boundary conditions describing the interaction with the
environment. Temperature and property estimation based
purely on the open-loop simulation of numerical models is
subject to error and deviation from the true value due to
unknown initial conditions, parameter uncertainties, and
modeling errors. As a consequence, a complementary on-
line measurement — typically at easily accessible locations
such as the surface edge points — coupled with a suitable
state estimation technique can improve accuracy and en-
ables us to reconstruct the spatial-temporal evolution of
the state variables in real-time. Here, in particular the
Kalman filter and its extensions to nonlinear systems seem
appropriate providing a trade-off between implementation
effort, robustness, estimation accuracy, and computation
time (Gelb et al., 1974).
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Fig. 1. Schematics of the experimental setup.

This work aims to provide a model-based estimation
framework for the concrete curing and solidification pro-
cess under external heating. For this a mathematical
model in terms of coupled partial differential equations
is introduced and approximated using the finite difference
method. Relevant system parameters are identified using
experimentally determined temperature data. Based on
the parameterized discrete system, three Kalman filter
approaches for the state estimation of nonlinear systems
are designed, implemented, and evaluated, again based on
experimental data.

The paper is organized as follows. Section 2 introduces
the experimental setup. The mathematical model of cur-
ing HPC is presented in Section 3 together with a short
summary of the used discretization scheme and the con-
sidered parameter identification. The theoretical details
of the estimator designs are summarized in Section 4
and Section 5 provides an evaluation of the determined
estimation scheme or software sensor, respectively. Final
remarks conclude the paper.

2. EXPERIMENTAL SETUP

The hardening process of HPC with heating and its
transient thermal properties are investigated. Thereby the
concrete undergoes a change of state from liquid to solid.
The concrete specimen consists of an HPC based on the
binder Nanodur® Compound 5941 (Sagmeister, 2017).
The cross-section of the experimental setup is shown in
Fig. 1. The liquid HPC is filled into the formwork. The side
walls are thermally insulated so that the heat dissipation
can be considered negligible and the heat flow is almost
one-dimensional. The base is formed by a steel plate so
that the induced heat can dissipate almost undisturbed
at the bottom. The top surface is closed with a silicone
heating mat (max. 70 W output and on/off control) used
as a heat source to accelerate process. The temperature
in the concrete must not exceed 373.15 K to protect the
concrete from damage (boiling of the unbound water).
The concrete is tempered for 22.2 h at max 353.15 K.
The concrete temperature inside the hardening material
is measured by a fiber optic system, which is mounted
in longitudinal direction inside capillaries almost over the
entire length L ~ 0.194 m of the body. The results,
reduced by the initial temperature of 25 K, are given in
Fig. 2 as the development of the temperature 7" in the
concrete (x = longitudinal coordinate in the specimen,
measurement point distance of Az = 0.65 mm) and over
time (sampling rate 1 Hz). The temperature increases
due to the external tempering. In addition, during the
hardening process, so-called hydration heat is released,
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which is superimposed on the externally induced heat.
The maximum temperature is reached in the concrete after
about 10 hours. Afterwards, the hydration heat dissipates,
and a steady-state temperature distribution is established.
The setup was developed, and experiments were carried
out at the Institute of Concrete Structures at the Ruhr
University Bochum, Germany. It should be mentioned that
the considered setup is used as a benchmark in view of the
transfer of the approach to a real-world structure.

Fig. 2. Spatial-temporal temperature profile measured for
22.2h over the length of the concrete body.

3. MATHEMATICAL MODEL

Concrete curing is a rather complicated thermo-chemical
process involving different dynamical effects. In the follow-
ing the model introduced by Myers and Charpin (2008) is
considered, which consists of three coupled partial differ-
ential equations (PDEs)

pcpOT = 0, ()\(m)amT) + 0, Q, (1a)
oym = p(1 — m)fe F/ET (1c)

defined on the domain Q = {(z,t) : z € [0, L],t € [0,1]}.
Note that due to symmetry only the evolution along
the z-direction is considered. Herein T'(z,t), 6(z,t), and
m(x,t) represent temperature, (relative) moisture, and
(degree of) maturity, respectively. The maturity m(z,t)
reflects the degree of hydration and is the solution of (1c).
The thermal material properties are defined by means of
heat capacity c,, conductivity A(m), and material density
p. The nonlinear behavior of moisture diffusion in the
concrete is determined by the relation

D(6) = D, [0.05 + 0.95(1 + tanh(20(0 — 0.8)))]  (2)

with coefficient D,, as the amplitude, see Myers and
Charpin (2008). The hydration heat release is given by
the source term

0,Q = Qumdym, Qum = Ame™*™", (3)

where a = 1/2m2 and A = Q,/m, with m, the value
m for @.,, reaching its maximum @,. The hydration
reaction ratio 1 represents the sink term of the moisture
equation. The parameters E/, R, and p represent activation
energy, gas-constant and reaction-rate. The PDEs (1) are
equipped with initial conditions

T(x,0) = To(z), 6(x,0) = Op(x), m(x,0) =mo(z) (4)

and boundary conditions
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( )8 T|x =0 = O'1(T(.T,t) T1 oo) (5&)
Am)0, o= = 0 (T(z t) =Tz, o), (5b)
—D(0)0:0] =0 = €(0a (L,t)), (5¢)
D(a)axa‘x:L =0, (5d)

which result from the experimental setup and the assump-
tions that m(x,t) € [0,1], O(z,¢) € [0,1]. Here, o1 and
o2 denote the heat transfer coefficients, 11, , T3, o refer
to the ambient temperature at « € {0, L}, the 6, is the
ambient moisture and € is the rate of evaporation.

3.1 Discretization Scheme

The system composed of (1)-(5) can be approximated
using a finite difference method on a uniform spaced grid
with nz, n; € N the number of grid points in space
and time, respectively. The spatial and temporal step
lengths are defined by Ax = L/n, and At = t/n,.
Temperature, moisture, and maturity at the grid points
r; =iAx,i=0,1,...,n, and t;, = kAt, k =0,1,...,n; are
denoted Tj i, 0; r, and m; i, respectively. For numerical
stability purposes a combination of an implicit and explicit
discretization for (1) is used involving a Crank-Nicholson
scheme for the time derivatives and a central difference
method for the spatial derivatives, see, e.g., Schwarz and
Kockler (2009). The parameters A(m), D(#) are discretized
with an explicit method. This results in

EyTiy = ATy + ur g, (6a)
Uk0k+1 =Y.0, + Ug ks (Gb)
M = my + Atu(l - my)8e "5, (6c)

where Ej, € R"%*" A, € R"X% [, € Rt=*" Y, €
R™= XM= are tri-diagonal matrices resulting from spatial
and implicit-explicit time discretization, which are recal-
culated at each time step k with the initial conditions Ty,
0y and mg. The input vectors ury € R", ug) € R
are obtained from the explicit discretization of the source
and sink terms and the incorporation of the boundary con-
ditions. Let Ty, = [To,k,...,Tnm,k]T, 0, = [907167...,0”%“71
and my = [mo, ...,mnm’k]T be the respective state vec-
tors. Then (6) admits a representation in the general form

Zk+1 = f(zk7uk)7 (7)

with state vector z = [T},0%,ml]T € R and input

vector w = [uf ., ug ] € R™ for n = 3(n, +1).
3.2 Parameter Identification

Parameter identification is performed to estimate the val-
ues of ¢p, b, Dy, 17, Mg, Qz, 01, 02 and T o as well as the
functional relation of the conductivity A(m). As the heat
mat doesn’t have direct contact with concrete, adjusting
75,0 becomes both a parameter to search and heat input.
All other parameters were taken from Myers and Charpin
(2008). Table 3.2 summarizes both the used literature and
the identified parameters. The identification was carried
out using fmincon in MATLAB by minimizing the mag-
nitude of the Euclidean distance between the measured
and numerically calculated temperatures. Note that at
the experiment it is currently not possible to measure
any value of 8 and m. In addition, the determination of
the thermal conductivity is necessary. For this different
ansatz functions have been investigated to represent the
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Fig. 3. Numerical solution of (7) for the parameters
of Table 3.2 and the error between measured and
numerically calculated temperature.

dependency of A on the maturity m eventually leading to
the formulation

A(m) = XAo(1 + exp(—m)), (8)
with A\g adjusted to minimize the distance to the experi-
mental results. The solution of (7) with parameters from

Table 1. System parameters.

Symbol  Value Units Symbol  Value Units

p 2440 kg/m3 cp 1320 J/(kgK)
Ao 2.3 W/(Km) Dm 109 m? /s
n 2 ND I 50 1/s

R 8.314 J/K E 35 kJ

Qu 108 J/m3 My 0.1 ND

o1 16 W/(Km?) o2 20.5  W/(Km?)
e 0.02 m/s Ts, 00 334.5 K

T1,00 276 K - - -

Table 3.2 is shown in Fig. 3. The influence of hydration
in the temperature pathway can be recognized as a bulge.
Fig. 3(d) illustrated the results of the parameter estima-
tion by building the difference between the experimentally
recorded and by (6) calculated temperature with the pa-
rameters from Table 3.2.

4. NONLINEAR ESTIMATOR DESIGN

Monitoring the temperature inside a concrete block during
the drying process is crucial to derive its internal proper-
ties such as stress. However, direct temperature measure-
ment is often challenging and expensive. To address this
issue, an observer is being developed to estimate the tem-
perature using a mathematical model and measurements.
The Kalman Filter is a potential method for designing such
an observer, aiming to minimize the difference between the
estimate and the true temperature value.

The classical KF is a discrete, linear estimation algorithm
that is optimal when the process and measurement noise
are modeled by Gaussian distribution. To deal with non-
linear problems various extensions of the KF have been
proposed. In the following, three setups are addressed:
extended Kalman filter (EKF), unscented Kalman filter



3244

(UKF) and ensemble Kalman Filter (EnKF). The ba-

sic framework for the estimation algorithms involves a
discrete-time nonlinear dynamic system

Zpt1 = f(zp, ur) + wy (9a)

Yy, = h(zk) + vg, (9b)

where z; represent the unobserved states of the system

and y,, € R? the observed (measured) quantities. Moreover

the additive process and observation noises wy ~ N (0, Q)

and vy, ~ N(0, R) are assumed to be zero mean Gaussian

distributed with covariance matrices @ € R™*™ and R €
RPXP,

The Kalman filters are build upon the recursive forecast-
analysis rule

Zpp1 = 24 + Ky, — h(2,)) (10)
where 211 € R™ is the current estimation as a result
of the time prediction 2, ,, = f(2x,ux) by using the
previous state estimate Zj, which is corrected by the
innovation consisting of actual y; and predicted measure-
ment h(2; ;) weighted with the Kalman gain matrix K.
The Kalman gain is chosen to minimize the trace of the
covariance of the estimation error, which yields

Ky :sz(Pyy)_1 (11)

with P,y = E[(2x — 21, )(ys, — 9 )T] the cross covariance
matrix and Pyy = E[(y, — 9% ) (yx — 95 )7 ] the covariance
matrix.

4.1 Extended Kalman Filter

The matrices P,, and P, are determined based on the
local linearization of the nonlinear equations around the
current estimate using the Jacobians

Fy = 0.f(2k,ur), Hyp=0:h(zy).
This results in the covariance matrices
P,y =P;HE, Py, = H.P, H! + Ry (12)

with Hp € RP*"™ and P, = FkPkaT + Qp as prior
error covariance matrix, which consist the posterior error
covariance P, € R™"*™ and the Jacobian Fj, € R®"*". For

a detailed representation the reader is referred to, e.g.,
Welch and Bishop (2006).

4.2 Unscented Kalman Filter

The UKF takes a different approach to handle the nonlin-
ear processes. The idea is that instead of approximating
a random nonlinear function, it is simpler to approximate
the statistics of a random variable transformed by nonlin-
ear function, see, e.g., Julier and Uhlmann (2004).

The approximation is obtained using the so-called un-
scented transformation. The approach is to deterministi-
cally select a set of 2N +1 sigma points Z; 5, j =0, ...,2N
with the mean 2, ; and covariance P, e.g., by means of
the method described in Wan and Van Der Merwe (2000).
Then propagate the sigma points through the nonlinear
function V; r = h(Z, ) to determinate the statistics of
the transformed points and to obtain the corresponding
mean

2N
U = Wik (13)
=0
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and the covariance matrices

2N
Pyy = Wik =9 Vir — 9;)" (14a)
j=0

2N
Pey = Z Wj(Zj, k41— Zp) Yok — 957 (14b)
§=0

with an appropriate weight W) (Julier and Uhlmann,
2004). Using (14) the Kalman gain K}, can be computed to
update the estimate by means of the current measurement.

4.3 Ensemble Kalman Filter

Using ensemble integration the EnKF is a sequential
data assimilation method to calculate the mean and error
covariances by integrating an ensemble of model states
forward in time. The EnKF scheme used in this work is
taken from the Gillijns et al. (2006).

Similar to the UKF, a set of points, the so-called en-
sembles, is used to determine the process statistics. In
contrast to the Unscented transformation the method for
the determination of the ensembles is not firmly defined so
that typically some randomized sequence is considered, for
more details on the determination of the ensembles, see,
e.g., Evensen (2003). Starting with the ensembles

Zk+1 = [21_,k+17"'72q_,k+1] e R"*4 (15)
of forecasted state estimates z;, ., where [ denotes the
[-th ensemble, the ensemble mean is determined

14
Zey1 =~ Q2 Rl k41 (16)

(17a)

q
1=0
The latter is used to approximate the cross correlation and
innovation covariance matrices
1 T
Py = ﬁEk(Eyk)
1 T
Py, = 1 1Eyk-(Eyk) (17b)
by using the ensemble error E, € R™*? and the output
error matrix £, € RP*? with respect to the ensemble
mean, i.e.,

Ez == [21_,k+1 _2;—‘,-17"'7'%(]_,]64*1 _2;_,’_1] (18&)
Ey =91k Yp> Uy x— YUp)- (18b)
Herein g, , refers to the propagation of the ensembles by

the nonlinear function h(2; ;) and g, is the correspond-
ing mean computed similar to (16). Subsequently the state
estimation can be performed with the recursive rule (10)
by using the covariance matrices (17) to form the Kalman
gain (11).

5. RESULTS

The performance of the nonlinear estimators is evaluated
in two scenarios making use of recorded temperature data
sets from experiments. For the discretized model (6) or
(7), respectively, n, = 61 and n; = 1001 is chosen given
L ~ 0.194 m and end time ¢ = 22.2 h. The data set I
corresponds to the set used for parameter identification.
Data set 11 is used here as validation data set. Although the
two sets were recorded under similar conditions, certain
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Fig. 4. Scenario A: Evolution of estimation error for —
EnKF, UKF, — EKF for data set I.

differences exist. In particular concrete mixes from differ-
ent batches are considered and the ambient conditions vary
slightly.

5.1 Scenario A

For the first scenario, it is assumed that two point sensors
for recording the temperature are placed at the upper
i = 0 and lower ¢ = n, boundary points so that only the
temperatures To and Tnm are measured. To evaluate the
estimators an incorrect initial estimate for temperature
Ty = [285,...,285]7 K, moisture 8y = [0.99,...,0.99]7,
and maturity mo = [0.005,...,0.005]7 is provided. To
ensure comparability of the EKF and UKF identical
(constant) covariance matrices Qr = Q = 4 x 10741,
R, = R = diag(0.36,0.216), and Py, = 1073I, are
used, where I, is the identity matrix of size R"*™. To
achieve a numerically stable estimate with the EnKF, Q =
diag(0.051,,,,0.451,, ,107%1,,) and R = diag(0.05,0.05)
are assigned considering ¢ = 200 ensembles.

Estimation results are shown in Fig. 4 for data set I and
in Fig. 5 for data set II. Here the evolution of temperature
estimation error, i.e., the difference between the measured
and the estimated temperature, is illustrated for the three
Kalman filters at four different locations. Obviously the
performance of all estimators is almost identically good.
The EnKF shows a slightly faster convergence. As xy and
zgo refer to the measurement locations the estimation
error, after some initial transients, is smallest. However,
the temperature inside the body during the curing and
solidification process is still accurately reconstructed. For
the validation data set II, which is not used in the pa-
rameter identification, Fig. 5 confirms that all nonlinear
estimators are capable to accurately reconstruct the tem-
perature evolution at the boundaries and inside the body.
In addition, both moisture and maturity can be estimated
online. For these, currently no measurements are available.
The resulting curves obtained from the EnKF for data
set I is presented in Fig. 6. Both, moisture and maturity,
show an opposite behavior and reflect the progress of the
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hydration. The curves for the different positions show that
the heating of the concrete leads to an acceleration of the
hydration and hence also the solidification. The concrete
near the heating mat hydrates faster.

5.2 Scenario B

Differing from Scenario A only a single pointwise tem-
perature measurement at the upper boundary z = L or
ZTn,—1 = Xep is considered. The initial conditions for the
estimators and covariance matrices  and Py are those
of Scenario A. However, R = 0.216 and R = 0.05 for
the EKF/UKF and the EnKF are considered. It becomes
apparent from Fig. 7 for data set I and Fig. 8 for data
set IT showing the estimation errors at different locations
that the nonlinear estimation schemes are still able to ac-
curately approximate the measure temperature evolution.
As expected, the reduced information implies a slightly
larger error and in parts reduces influences the estimator
convergence, in particular for locations with increasing dis-
tance to the sensor position. Nevertheless, the estimation
error remains in an acceptable range for all algorithms.
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6. CONCLUSIONS

The model-based state estimation problem for concrete
curing and solidification under external heating has been
addressed and validated in numerical simulations using
experimental data. It is shown that EKF, UKF and EnKF
are capable to provide accurate estimation results based
on local point-wise temperature measurement. The esti-
mation in addition captures the spatial-temporal evolution
of moisture and maturity, which are relevant to evaluate
the properties of the solidified product.

Future work will consider the validation of the property
estimates using experimental data. Furthermore the ex-
tension to the full 3-dimensional case will be investigated
towards the implementation of a closed-loop control con-
cept for the imprinting of certain temperature profiles for
curing and solidification.
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