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Abstract: A two degrees of freedom (2DOF) control for a lab-scale vertically-mounted rotary
flexible joint is addressed to realize a benchmark example for nonlinear control education and
experimentation. To this end, the mathematical model is derived based on the Euler-Lagrange
equations. Further insight into the model is given by addressing the relationship between the two
translational springs and their approximation as a single torsion spring. The model is known
to be differentially flat, which facilitates a feedforward control design by means of the flat
parameterization. Furthermore, a state-feedback controller is introduced to stabilize the desired
trajectory. State information is reconstructed using a Luenberger-type observer. Both the state-
feedback controller and the Luenberger-type observer are designed based on a linear time-varying
(LTV) approximation obtained using a linearization around the flat state parameterization of
the system. The 2DOF design is illustrated using experimental results.
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1. INTRODUCTION

The rotary flexible joint is used as a benchmark model
for robot links in several applications such as indus-
trial robotics, satellite robot arms (Book, 1983), teach-
ing (Quanser, 2012), and medical surgery robots (Riviere
et al., 2003). Current research on the control of the ro-
tary flexible joint is focused on PID controllers (Akyuz
et al., 2011; Bilal et al., 2017), and Reinforcement Learn-
ing (Sendrescu et al., 2020). Nonlinear approaches often
use feedback linearization (Markus et al., 2012; Didam
et al., 2012; Markus, 2016), sliding mode control (Rse-
tam et al., 2020), or optimization-based techniques see,
e.g. (Dharavath and Ohri, 2021). The device is widely-used
for academic research and, as current research indicates,
can be used as an illustrative testbed to teach a variety of
different concepts from modeling, and system identifica-
tion to concepts of linear and nonlinear control and state
estimation.

Thus, we take the rotary flexible joint as a means to
study the modeling process and nonlinear control design
of the aforementioned setup. Most of the aforementioned
methods rely on the availability of the full system state.
However, none of the above-mentioned references relying
on this information implement a state observer. Therefore,
in this contribution a state observer is designed that re-
constructs full state information. Furthermore, the poten-
tial energy of the rotary flexible joint is usually modeled
by means of a torsion spring when, in fact, there are
actually two translational springs. In this contribution,
we address these issues by giving further insight into the
relationship between the translational and torsion spring
model. Moreover, we derive the mathematical model and
the flat state and input parameterization of the rotary

flexible joint and, based on this construct a 2DOF control
scheme that consists of a trajectory generator, a flatness-
based feedforward controller, a stabilizing state feedback
controller, and a Luenberger-type observer. The latter two
make use of the flat parameterization of the system states
in order to linearize the nonlinear dynamics to obtain a
linear time-varying (LTV) model. Based on this simplified
model, the state feedback controller and Luenberger-type
observer can be designed using the Ackerman formula,
see (Ackermann, 1972; Wiberg, 1971).

This article is structured as follows. In Sec. 2, the math-
ematical model of the rotary flexible joint is introduced
using the potential energy of the two translational springs.
Furthermore, the model simplification is derived based on
the relationship between the translational spring forces
and the torsion spring moment. Additionally, the flat pa-
rameterization of states and input is derived based on the
system’s output. In Sec. 3, the 2DOF control scheme is
discussed including the trajectory generation, feedforward
control, state (difference) observer, and state feedback
control. Sec. 4 illustrates the proposed control scheme by
means of an experimental setup for a swing-up of the
rotary flexible joint which can be used as a testbed for
students to learn about a variety of different methods in
control theory. In Sec. 5 concluding remarks are given.

2. MATHEMATICAL MODEL

The rotary flexible joint setup, its geometric relations and
coordinate conventions are shown in Fig. 2. A spring-
loaded beam B is mounted on top of a platform P , where
the springs connect both elements. The beam consists of
a main arm and a load arm, where mB,i, lB,i, i = 1, 2
are their respective mass and length. Furthermore, lM,2
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Fig. 1. Photograph of the experimental setup in the
horizontally-mounted position.

denotes the distance to the middle of the load arm (i = 2)
measured from the entire beam’s joint to the platform,
and lG is the distance to the center of gravity (COG) of
the beam. The platform and beam deflection are given by
the angles ϕP and ϕB , respectively. The platform P is
actuated by a DC motor, which is controlled by an input
voltage. The deflection angle of the beam w.r.t. the inertial
coordinate system, i.e., y = ϕP + ϕB can be measured. In
the following, the equations of motion are derived using
the Euler-Lagrange formalism, i.e.,

d

dt

∂

∂q̇j
L− ∂

∂qj
L+

∂

∂q̇j
R = Qnc

j , j = 1, . . . , n (1)

with the Lagrange function L = Ekin −Epot including the
kinetic and potential energies Ekin and Epot, respectively.
Furthermore, q = [ϕP , ϕB ]

� are the generalized coordi-
nates, q̇ = [ϕ̇P ϕ̇B ]

� are the generalized velocities, R is
the Rayleigh dissipation function, and Qnc = [Qnc

1 , Qnc
2 ]�

are the generalized, non-conservative forces.

2.1 Equations of Motion

Consider the vectors from the inertial coordinate frame to
the springs’ fix-points given by
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with vectors pa
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a
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�, and
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B = [lc, 0, 0]�. The coordinate system attached to the

base of the platform is given by (0, xP , yP , zP ) and the
one attached to the beam by (0, xB , yB , zB). The rotation
matrices read RP
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B
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B
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The system’s potential energy is given by
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where kt is the translational spring constant, and
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0 ||2 − s0 (4a)
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describe the elongation of the first and the second spring,
respectively. Therein, s0 denotes the length of a relaxed
spring. The kinetic energy consists of the rotational energy
of the platform and beam, i.e.,

Ekin =
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2
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2
P +

1
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2
(5)

with the moments of inertia JP,zz and JB,zz of the plat-
form and the beam, respectively. Energy dissipation is
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(a) Rotary flexible joint coordinates, lengths and spring forces.
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(b) Beam parameters with (longer) main arm and load arm.

Fig. 2. Schematic overview of geometric relations and con-
ventions for the rotary flexible joint with an example
configuration of forces acting due to the first (red) and
second (blue) spring with total force (orange) acting
on the beam.

given by R = 1
2dP ϕ̇

2
P , where dP is a positive damping

constant. Note that damping for the beam is assumed
to be negligible 1 . The DC motor’s momentum reads
τ = [0, 0, Kgτm]� where Kg is the gear ratio and τm =
kb ηm ηg i with the motor constant kb, the motor efficiency
coefficient ηm, the gear efficiency coefficient ηg. The motor
current i is given by i = (u− km ϕ̇P )(Rm)−1, considering
that the movements of the mechanical system are slow
compared to the rate of change of the current (Kokotovic
et al., 1986). Finally, the generalized, non-conservative
forces induced by the DC motor read

Qnc = (J (q))
�

τ =

[
ν (u−km ϕ̇P )

Rm

0

]
(6)

with the geometric manipulator Jacobian J (q) and ν =
Kg kb ηm ηg.

2.2 Model Simplification

The mathematical model obtained with formulating the
potential energy by means of the translational spring
deflections leads to a very cumbersome model. Therefore,

1 This assumption ensures that the system is/remains differentially
flat.
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Fig. 1. Photograph of the experimental setup in the
horizontally-mounted position.

denotes the distance to the middle of the load arm (i = 2)
measured from the entire beam’s joint to the platform,
and lG is the distance to the center of gravity (COG) of
the beam. The platform and beam deflection are given by
the angles ϕP and ϕB , respectively. The platform P is
actuated by a DC motor, which is controlled by an input
voltage. The deflection angle of the beam w.r.t. the inertial
coordinate system, i.e., y = ϕP + ϕB can be measured. In
the following, the equations of motion are derived using
the Euler-Lagrange formalism, i.e.,

d

dt

∂

∂q̇j
L− ∂

∂qj
L+

∂

∂q̇j
R = Qnc

j , j = 1, . . . , n (1)

with the Lagrange function L = Ekin −Epot including the
kinetic and potential energies Ekin and Epot, respectively.
Furthermore, q = [ϕP , ϕB ]

� are the generalized coordi-
nates, q̇ = [ϕ̇P ϕ̇B ]

� are the generalized velocities, R is
the Rayleigh dissipation function, and Qnc = [Qnc

1 , Qnc
2 ]�

are the generalized, non-conservative forces.

2.1 Equations of Motion

Consider the vectors from the inertial coordinate frame to
the springs’ fix-points given by

pa
0 = RP

0 p
a
P , pb

0 = RP
0 p

b
P ,p

c
0 = RB

0 p
c
B , (2)

with vectors pa
P = [lax, −lay , 0]

�, pb
P = [lax, l

a
y , 0]

�, and

pc
B = [lc, 0, 0]�. The coordinate system attached to the

base of the platform is given by (0, xP , yP , zP ) and the
one attached to the beam by (0, xB , yB , zB). The rotation
matrices read RP

0 = Rz(ϕP ), R
B
P = Rz(ϕB), and RB

0 =
RP

0 R
B
P = Rz(ϕP + ϕB), where

Rz(φ) =

[
cos(φ) − sin(φ) 0
sin(φ) cos(φ) 0

0 0 1

]
.

The system’s potential energy is given by

Esim
pot =

1

2
kt

(
∆s21 +∆s22

)
+mglG cos(ϕP + ϕB), (3)

where kt is the translational spring constant, and

∆s1 = ||pc
0 − pa

0 ||2 − s0 (4a)

∆s2 = ||pc
0 − pb

0||2 − s0 (4b)
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spring. The kinetic energy consists of the rotational energy
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Ekin =
1

2
JP,zz ϕ̇

2
P +

1

2
JB,zz (ϕ̇P + ϕ̇B)

2
(5)

with the moments of inertia JP,zz and JB,zz of the plat-
form and the beam, respectively. Energy dissipation is
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Fig. 2. Schematic overview of geometric relations and con-
ventions for the rotary flexible joint with an example
configuration of forces acting due to the first (red) and
second (blue) spring with total force (orange) acting
on the beam.

given by R = 1
2dP ϕ̇

2
P , where dP is a positive damping

constant. Note that damping for the beam is assumed
to be negligible 1 . The DC motor’s momentum reads
τ = [0, 0, Kgτm]� where Kg is the gear ratio and τm =
kb ηm ηg i with the motor constant kb, the motor efficiency
coefficient ηm, the gear efficiency coefficient ηg. The motor
current i is given by i = (u− km ϕ̇P )(Rm)−1, considering
that the movements of the mechanical system are slow
compared to the rate of change of the current (Kokotovic
et al., 1986). Finally, the generalized, non-conservative
forces induced by the DC motor read

Qnc = (J (q))
�

τ =

[
ν (u−km ϕ̇P )

Rm

0

]
(6)

with the geometric manipulator Jacobian J (q) and ν =
Kg kb ηm ηg.

2.2 Model Simplification

The mathematical model obtained with formulating the
potential energy by means of the translational spring
deflections leads to a very cumbersome model. Therefore,

1 This assumption ensures that the system is/remains differentially
flat.

consider the total exerted force of the springs acting on
the beam f total = f1 + f2, see Fig. 2a, where

f1 = − pc
P − pa

P

||pc
P − pa

P ||2
kt∆s1. (7)

and f2 analogously with pa
P replaced with pb

P and ∆s1
replaced with ∆s2. From this force the resulting moment,
or generalized force with generalized coordinate 2 q = ϕB ,
is given by

[0, 0, Q(ϕB)]
� = (RB

P p
c
B)× f total (8)

such that Qc(ϕB) = [−lc sin(ϕB), l
c cos(ϕB), 0]f total. A

first-order Taylor polynomial around ϕB = 0 yields
Q(ϕB) ≈ Q(0) + ∂Q

∂ϕB
(0)ϕB = −krϕB , where Q(0) = 0,

and

kr =− ∂Q

∂ϕB
(0) = −

(
2 kt l

c lax s0√(
lay
)2

+ (lc − lax)
2

− 2 kt (l
c)2 (lay)

2 s0((
lay
)2

+ (lc − lax)
2
)3/2

− 2 kt l
c lax

)
.

(9)

Thus, a relationship between the translational spring stiff-
ness kt and the rotational spring model kr is obtained.
With this, the potential energy can be simplified using the
torsion spring model, i.e.,

Ectrl
pot =

1

2
krϕ

2
B +mglG cos(ϕP + ϕB). (10)

Finally, the (simplified) nonlinear model can be expressed
mathematically in the form

ẋ = f(x) + g(x)u, t > 0, x(0) = x0, (11)

where x = [ϕP , ωP , ϕB , ωB ]
� and

f(x) =




ωP

−Rm dP ωP−Rm kr ϕB+km ν ωP

JPzz Rm

ωB

f4


 , (12a)

g(x) =
[
0 ν

JPzz Rm
0 − ν

JPzz Rm

]�
. (12b)

The expression for f4 can be found in Appendix A.

2.3 Differential Flatness

For a differentially flat system there exists a (fictitious)
output λ(x) such that (Fliess et al., 1995)

x = θx

(
λ, λ̇, . . . , λ(β−1)

)
(13a)

u = θu
(
λ, λ̇, . . . , λ(β)

)
. (13b)

The dynamical system (11) is differentially flat with flat
output λ(x) = y = ϕP +ϕB . This can be verified by means
of the relative degree of the system for which

LgL
k
fλ(x) = 0, for k = 0, . . . , r − 2 (14a)

LgL
r−1
f λ(x) �= 0 (14b)

with r = nx must hold. With this,

z =



z1
...

znx


 = Φ(x) =




λ(x)
Lfλ(x)

...
Lnx−1
f λ(x)


 (15)

2 This is a valid assumption if only the spring forces are investigated
since, for a torsion spring, this force only depends on the beam angle.
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Fig. 3. Schematic structure of the flatness-based two de-
grees of freedom control with dynamic output control.

transforms (11) into the Brunovsky normal form and the
state and input parameterizations are given by

x = θx(·) = Φ−1(z) (16a)

u = θu(·) =
−Lnx

f λ(x) ◦Φ−1(z) + λ(nx)

LgL
nx−1
f λ(x) ◦Φ−1(z)

, (16b)

respectively (see Adamy, 2014, Sec. 5.3.4.), which are
stated explicitly in Appendix B.

3. TWO DEGREES OF FREEDOM CONTROL

In this section, the 2DOF controller as depicted in Fig. 3
is discussed in detail. The control loop consists of the
trajectory generation Σ∗, the feedforward control Σff , the
state feedback controller Σfb, the state difference observer
Σob, and the real system Σ, i.e., the rotary flexible joint.

Remark 1. Note that the 2DOF control design is essen-
tially an exact feedforward linearization according to Ha-
genmeyer and Delaleau (2003). Alternatively, the classical
nonlinear feedback linearization according to Isidori (1995)
is conceptually simpler, however, the 2DOF structure al-
lows the feedforward control to be calculated offline and
also allows to analyze the effort that the state feedback
controller spends on compensating model uncertainties
and disturbances independently from the feedforward con-
trol and, therefore, is also an indicator of the accuracy of
the model.

3.1 Trajectory Generation

The target trajectory for the flat output is designed to
fulfill the boundary conditions

λ∗(t0) = λR(t0), λ̇∗(t0) = · · · = λ∗(β)(t0) = 0, (17a)

λ∗(t1) = λR(t1), λ̇∗(t1) = · · · = λ∗(β)(t1) = 0. (17b)

A suitable β times differentiable trajectory for the flat
output λ∗ ∈ Cβ ([t0, t1]) is defined by

λ∗ =λR(t0)+(λR(t1)−λR(t0))

2β+1∑
i=β+1

pi

(
t− t0
t1 − t0

)i

(18)

for t ∈ [t0, t1], where T = t1 − t0 is the transition time.
For t = t0, β + 1 boundary conditions are already fulfilled
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by (17a). To fulfill the remaining boundary conditions, the
coefficients pi are determined by

pi =
(−1)

i−β−1
(2β + 1)!

iβ! (i− β − 1)! (2β + 1− i)!
(19)

for i = β + 1, . . . , 2β + 1. Finally, the trajectory generator
is given by

Σ∗ :

[
ξ∗
. . . . .
λ∗(β)

]
, (20)

with ξ∗ = [λ∗, . . . , λ∗(β−1)]�.

3.2 Feedforward Control

The feedforward control is obtained by means of the flat
parameterization, i.e.

Σff : u∗ = θu

(
λ∗, λ̇∗, . . . , λ∗(nx)

)
(21)

along with the β = nx times differentiable target trajec-
tory λ∗ introduced in (20).

3.3 State Feedback Controller

The feedforward control can be extended with any sta-
bilizing controller Hagenmeyer and Delaleau (2003). In
this study, a PI state feedback controller compensates for
model uncertainties and disturbances and stabilizes the
system around the target trajectory. To this end, the state
(difference) vector ∆x = x − x∗ is augmented with the
integral of the tracking error, whose time derivative is
given by ∆ẋi = −c�(t)∆x, where c�(t) = ∂h

∂x

∣∣
(x∗,u∗)

.

Furthermore, the flat parameterization (13) is used to
obtain (x∗, u∗), i.e., the nominal target system trajectory
x∗ for the feedforward input u∗ given by (21) to linearize
the nonlinear system (11), which yields the augmented
linear time-varying (LTV) system

d

dt

[
∆x
∆xi

]
=

[
A(t) 0

−c�(t) 0

]

︸ ︷︷ ︸
Ā(t)

[
∆x
∆xi

]

︸ ︷︷ ︸
∆x̄

+

[
b(t)
0

]

︸ ︷︷ ︸
b̄(t)

∆u (22a)

where A(t) = ∂f
∂x

∣∣
(x∗, u∗)

, b(t) = ∂g
∂u

∣∣
(x∗, u∗)

, . Since the

feedforward control is assumed to achieve a state trajec-
tory sufficiently close to x∗ the LTV system consitutes a
good approximation of the error dynamics. Based on this,
the state feedback controller is expressed mathematically
as

Σfb : ∆u = −k�(t)

[
∆x
∆xi

]
, (23)

where k�(t) is obtained using the Ackermann formula (Ack-
ermann, 1972; Wiberg, 1971)

k�(t) =
1

b̃nx
(t)

nx+1∑
k=0

pkM
k
Ã
w�(t), (24)

withMk
Ā
w�(t) = MĀ(M

(k−1)

Ā
w�(t)), M1

Ā
w�(t) = ẇ�(t)+

w�(t)Ā(t), M0
Ā

= w�(t), pi, i = 0, . . . , nx + 1 coeffi-

cients of a Hurwitz polynomial, and b̃nx
(t) is a degree of

freedom. The vector w� = [0, . . . , b̃nx(t)]S
−1(Ā(t), b̄(t)),

where S(Ā(t), b̄(t)) is the Kalman controllability matrix.
Therefore, the controller gain (24) places the eigenvalues of

the closed-loop dynamics ż = Agz = (Ã(t) − b̃(t)k̃
�
(t))z

of the transformed state z to have poles with strictly
negative real parts and, thus, exponentially stabilizes the
error ∆x around the origin.

3.4 State (Difference) Observer

The state information is reconstructed by means of a
nonlinear Luenberger-type observer see, e.g., Rothfuss
(1997), of the form

Σob :





∆ ˙̂x = f(x̂)− f(x∗) + g(x̂)u− g(x∗)u∗

+ l(t)(∆y −∆ŷ),
∆ŷ = h(x̂)− h(x∗).

(25)

Similar to the state feedback gain, the observer gain is
calculated based on the linearization around the target
trajectory (but not using the augmented system) and is
calculated for the resulting LTV observer error dynamics
using

l(t) =
1

c̃nx−1(t)

nx∑
k=0

pkN
k
Av(t). (26)

Therein, Nk
Av(t) = NA(N

(k−1)
A v(t)), N1

Av(t) = −v̇(t) +
A(t)v(t), N0

A = v(t), pi, i = 0, . . . , nx coefficients of a
Hurwitz polynomial, and c̃nx−1(t) is a degree of freedom.
The vector v = O−1(c�(t), A(t))[0, . . . , c̃nx−1]

�, where
O(c�(t), A(t)) is the Kalman observability matrix.

4. EXPERIMENTAL RESULTS

The presented 2DOF flatness-based control scheme is
illustrated by means of an experimental setup using
MATLAB/Simulink and dSPACE. The desired controller and
observer poles of the closed-loop system, target trajectory
coefficients, and system parameters are summarized in
Tab. 1. The estimate of the rotational spring constant
according to (9) yields kr = 0.3959Nm, whereas an ex-
perimental identification based on the natural frequency
results in

kr ≈ ω2
0JB,zz = 0.4739Nm (27)

with ω0 = 11.7929 rad s−1. In the experiment, we compare
the controller performance of the calculated value (9)
with the experimentally-obtained value. To this end a
swing up of the rotary flexible joint starting with x(0) =
[π, 0, 0, 0]� and finishing at x(T ) = [0, 0, 0, 0]� is re-
alized in T = 1.5 s. The feedforward control and the
trajectory generation approximately realize this transition
while the state feedback controller in conjunction with the
observer stabilize the reference trajectory.

In Fig. 4a, the nominal (dashed black), measured (red) and
estimated (blue) states can be seen. Since y = ϕP + ϕB

is measured, the respective estimates for ϕP and ϕB are
accurate while the estimated velocities ωP and ωB deviate
from the filtered velocities. The angular velocities cannot
be measured directly and a discrete FIR filter is used to
obtain the depicted values. This also explains why the
measured (or filtered) velocities lag behind their respective
estimates. In Fig. 4b on the left, the feedforward input
u∗ is shown (dashed black) along with the total input
u = u∗ +∆u (red) with state feedback control ∆u and kr
according to (9). It is evident that the feedforward control



	 Simon Helling  et al. / IFAC PapersOnLine 56-2 (2023) 7567–7572	 7571

by (17a). To fulfill the remaining boundary conditions, the
coefficients pi are determined by
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along with the β = nx times differentiable target trajec-
tory λ∗ introduced in (20).
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The feedforward control can be extended with any sta-
bilizing controller Hagenmeyer and Delaleau (2003). In
this study, a PI state feedback controller compensates for
model uncertainties and disturbances and stabilizes the
system around the target trajectory. To this end, the state
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feedforward control is assumed to achieve a state trajec-
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good approximation of the error dynamics. Based on this,
the state feedback controller is expressed mathematically
as

Σfb : ∆u = −k�(t)
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where k�(t) is obtained using the Ackermann formula (Ack-
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(t))z

of the transformed state z to have poles with strictly
negative real parts and, thus, exponentially stabilizes the
error ∆x around the origin.

3.4 State (Difference) Observer

The state information is reconstructed by means of a
nonlinear Luenberger-type observer see, e.g., Rothfuss
(1997), of the form
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

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∆ ˙̂x = f(x̂)− f(x∗) + g(x̂)u− g(x∗)u∗

+ l(t)(∆y −∆ŷ),
∆ŷ = h(x̂)− h(x∗).

(25)

Similar to the state feedback gain, the observer gain is
calculated based on the linearization around the target
trajectory (but not using the augmented system) and is
calculated for the resulting LTV observer error dynamics
using
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1
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Therein, Nk
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�, where
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The presented 2DOF flatness-based control scheme is
illustrated by means of an experimental setup using
MATLAB/Simulink and dSPACE. The desired controller and
observer poles of the closed-loop system, target trajectory
coefficients, and system parameters are summarized in
Tab. 1. The estimate of the rotational spring constant
according to (9) yields kr = 0.3959Nm, whereas an ex-
perimental identification based on the natural frequency
results in

kr ≈ ω2
0JB,zz = 0.4739Nm (27)

with ω0 = 11.7929 rad s−1. In the experiment, we compare
the controller performance of the calculated value (9)
with the experimentally-obtained value. To this end a
swing up of the rotary flexible joint starting with x(0) =
[π, 0, 0, 0]� and finishing at x(T ) = [0, 0, 0, 0]� is re-
alized in T = 1.5 s. The feedforward control and the
trajectory generation approximately realize this transition
while the state feedback controller in conjunction with the
observer stabilize the reference trajectory.

In Fig. 4a, the nominal (dashed black), measured (red) and
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is measured, the respective estimates for ϕP and ϕB are
accurate while the estimated velocities ωP and ωB deviate
from the filtered velocities. The angular velocities cannot
be measured directly and a discrete FIR filter is used to
obtain the depicted values. This also explains why the
measured (or filtered) velocities lag behind their respective
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u∗ is shown (dashed black) along with the total input
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(a) System state nominal x∗ (dashed black), i.e., calculated by means of the flat parameterization and the feedforward system input u∗,
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(b) Feedforward system input u∗ (dashed black) and total input u = u∗ +∆u (red) on the left, and desired output y∗ (dashed black) and
measured output (red) on the right.

Fig. 4. Experimental results of the rotary flexible joint swing up with measured and estimated system state (top) and
system input (bottom) with kr determined using (9).

is sufficiently accurate since the feedback controller applies
little effort to stabilize the trajectory error and, thus,
justifies the 2DOF control scheme that utilizes the model
knowledge to design the feedforward control in contrast to
a classical feedback linearization that does not distinguish
between feedforward and feedback control. Furthermore,
the desired output (dashed black) is also shown in Fig. 4b
on the right with the measured output (red). As can be
seen the overall 2DOF controller performance achieves
the swing-up in the specified transition time. Note that
the experimental results with kr according to (27) are
qualitatively similar to the results with kr according to
(9) and are therefore omitted for clarity. The same holds
true for a comparison with a controller that implements a
classical feedback linearization according to Isidori (1995).

5. CONCLUSION

In this contribution, a flatness-based 2DOF control scheme
is presented and implemented using a vertically-mounted
rotary flexible joint that performs a swing-up. This experi-
ment allows to study a multitude of different concepts from
modeling and identification to control and observer design
using nonlinear and linear methods. The contributions
focuses on simplification of the mathematical model and
gives an illustrative experimental example of a nonlinear
2DOF control design of the rotary flexible joint. The 2DOF
controller includes a flatness-based feedforward control
and a state feedback controller that stabilizes the error
from the feedforward trajectory. The stabilizing controller
relies on full state information that is reconstructed by
means of a Luenberger-type observer. Therefore, this ex-
periment is also a good example for students to understand
the necessity of observers in state feedback control design.

Both the stabilizing controller and the observer rely on a
linearization of the nonlinear system around the desired
trajectory using the flat system parameterization. The
feedback and observer gains are designed such that the
time variance of the linearized system is compensated and
pole placement achieves the desired transient behavior.
The 2DOF control scheme is illustrated by means of an
experimental setup. All in all, this experiment gives in-
sight to many different nonlinear and linear control theory
concepts and offers students the possibility to experiment
with a variety of modifications and extensions w.r.t. the
stabilizing controller and the observer design. For example,
the pole placement of the state feedback controller can be
modified to achieve a different transient behavior, or can
be replaced by a PID controller to investigate loop shaping.

Appendix A. NONLINEAR SYSTEM DYNAMICS

The last entry in the drift vector field of the system
dynamics reads

f4 =
1

JB,zzJP,zzRm

(
JB,zzRmdPωP − JB,zzRm

· krϕB − JP,zzRmkrϕB + JB,zzkmνωP

+ JP,zzRmglGmB1 sin (ϕB + ϕP )

+ JP,zzRmglGmB2 sin (ϕB + ϕP )
)
.

(A.1)

Appendix B. FLAT PARAMETERIZATION

The flat parameterization of the states and inputs read
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Group Name Symbol Value

Spring(s)

fix-point(s)
lc 0.0768m
lax 0.0251m
lay 0.0316m

translational stiff-
ness

kt 112N/m

rotational stiffness
kr (9) 0.3959Nm
kr (27) 0.4739Nm

relaxed length s0 0.03m

Beam

length from joint to
middle of load arm

lM,2 0.2206m

length from joint to
center of gravity

lG 0.1720m

moment of inertia JB,zz 0.0034 kgm2

mass of main arm mB,1 0.064 kg
mass of load arm mB,2 0.030 kg
length of main arm lB,1 0.298m
length of load arm lB,2 0.156m

Platform
moment of inertia JP,zz 0.0019 kgm2

damping dP 0.015 kgm2/s

Motor

resistance Rm 2.53Ω
current-torque kb 0.0077 kgm2/(A s2)
back-emf km 0.0077V/(rad s)
gear ratio Kg 70
gearbox efficiency ηg 0.895
motor efficiency ηm 0.69

Target
Trajectory

polyonomial
coefficients

[p5, p6, p7] [126, −420, 540]
[p8, p9] [−315, 70]

degree β 4

boundary value(s)
λR(t0) π rad
λR(t1) 0 rad

transition time T 1.5 s

Controller desired poles – −[15, 16, 17, 18, 19]

Observer desired poles – −[30, 35, 40, 45]

Table 1. Parameters of the rotary flexible joint, the DC
motor, trajectory generation, controller, and observer.

x =θx

(
λ, λ̇, . . . , λ(3)

)

=
1

kr




krλ− glGmB1 sin (λ) + glGmB2 sin (λ)− JB,zzλ̈

JB,zzλ
(3) + krλ̇− glGmB1 cos (λ) λ̇− glGmB2 cos (λ) λ̇

−JB,zzλ̈+ glGmB1 sin (λ) + glGmB2 sin (λ)

glGmB1 cos (λ) λ̇− JB,zzλ
(3) + glGmB2 cos (λ) λ̇




u =θu
(
λ, λ̇, . . . , λ(4)

)

=krν
(
JB,zzRmdPλ(3) + JB,zzkmνλ(3) +RmdP krλ̇

+ JB,zzJP,zzRmλ(4) + kmkrνλ̇+ JB,zzRmkrλ̈

+ JP,zzRmkrλ̈−RmgkrlGmB1 sin (λ)−Rmg

· krlGmB2 sin (λ)−RmdP glGmB1 cos (λ) λ̇

−RmdP glGmB2 cos (λ) λ̇− gkmlGmB1ν cos (λ) λ̇

− gkmlGmB2ν cos (λ) λ̇+ JP,zzRmglGmB1

· sin (λ) λ̇2 + JP,zzRmglGmB2 sin (λ) λ̇2

− JP,zzRmglGmB1 cos (λ) λ̈− JP,zzRmglGmB2 cos (λ) λ̈
)

respectively.
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