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Abstract: The observability property of population balance equations with biomass mea-
surements is addressed within the framework of indistinguishable trajectories. The population
balance equation is described by a partial integro-differential equation which is coupled with
an ordinary differential equation for the nutrient dynamics. For the semi-discretized model
equations, the dynamics of indistinguishable trajectories are derived and evaluated for the
special case of equal partitioning at cell division revealing that the observability property is
guaranteed as long as the nutrient concentration is not depleted. Based on these results, an
observer is designed and tested in simulation to estimate the cell population distribution using
biomass measurements in a batch bioreactor for the case of a bi-structured population.
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1. INTRODUCTION

In bioprocess technology, the lack of available online mea-
surement information is a common issue due to physical
constraints of the reactor or limited sensor availability. The
design of suitable observers to estimate relevant process
variables based on available measurement data is there-
fore of great interest and is a key enabler of robust con-
trol strategies. The convergence of the estimated observer
states to the real system states is associated with the
system’s observability property and its outputs (measure-
ments). The analysis of this property usually relies on
calculating time derivatives of the outputs, which is related
to different levels of complexity depending on the consid-
ered system and output properties. For nonlinear systems,
the local observability can be investigated by exploiting
the linearization of the observability map (Zeitz, 1990;
Isidori et al., 1995). For higher dimensional systems, the
analysis can be carried out by a graph analytical approach
investigating the structural observability, i.e. whether the
observability property is satisfied without taking any pa-
rameter values into account (Liu et al., 2013; Jerono et al.,
2021a). Nevertheless, local and structural observability are
weaker properties that can not guarantee convergence of
the observer in every scenario. A more rigorous investiga-
tion of the (global) observability property is given by the
analysis of the indistinguishable trajectories (Ibarra et al.,
2004; Moreno and Dochain, 2005; Schaum and Moreno,
2007; Moreno et al., 2014). In this method, the dynamics
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of indistinguishable trajectories, i.e. those leading to the
same system input-output behavior, are analyzed. The
observability property is then concluded by the analysis
of these trajectories, leading to more model insight. As a
trade–off for investigating the observability property via
indistinguishable trajectories, the analysis is usually more
involved as it considers a dynamical system rather than
an algebraic property.

In this work, the observability analysis of a cell population
balance model is carried out within the framework of indis-
tinguishable trajectories. Cell population balance models
are usually described by a partial integro-differential equa-
tion which is coupled to a set of nonlinear ordinary differ-
ential equations (ODEs) to describe the nutrient dynamics
(Tsuchiya et al., 1966; Mantzaris et al., 1999). Following an
early lumping approach, the resulting system is given by a
set of nonlinear differential equations with the system di-
mension depending on the number of discretization points.
The structural observability property for the considered
system class is investigated in (Jerono et al., 2021a). In
the present work, the indistinguishable trajectories of the
system with respect to biomass measurements are ana-
lyzed. The dynamics of indistinguishable trajectories are
derived for the general model equations and investigated
in more detail for the special case of equal partitioning
of the cells at division. Further, an observer is designed
to estimate a bi–partitioned cell distribution based on
biomass measurements in a batch reactor and tested in
simulation.
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2. PROBLEM FORMULATION

Consider the cell population balance equation

∂tn(m, t) = −∂m[r(m, s)n(m, t)]− Γ(m, s)n(m, t)

+ 2

 m∗

m

Γ(µ, s)p(m,µ)n(µ, t)dµ
(1a)

n(m∗, t) = 0, n(m, 0) = n0(m) (1b)

where t ∈ R≥0 is the time, m ∈ [m∗, m
∗] is the cell

mass, m∗ the minimum and m∗ the maximum mass of
a cell and n(m, t) : [m∗, m

∗] × R≥0 → R≥0 is the cell
mass distribution density function. The cell growth rate
is denoted as r(m, s) : [m∗, m

∗] × R≥0 → R≥0 with the
substrate concentration s ∈ R≥0. The cell division rate is
given by Γ(m, s) : [m∗, m

∗] × R≥0 → R≥0 and p(m,µ) :
[m∗, m

∗] × [m∗, m
∗] → R≥0 is the division probability

density function which determines the possibility that a
mother cell of mass µ divides into daughter cells of mass
m. Note that for the considered model (1) the existence
and positivity of the solutions in L1 × R≥0 is shown in
(Beniich et al., 2018). To take into account the substrate
dynamics, the cell population balance equation is coupled
with

ṡ = −
 m∗

m∗

r(m, s)n(m, t)dm, (1c)

so that the model given by (1) and (1c) consists of a partial
integro-differential equation coupled with a differential
equation accounting for the substrate dynamics. Further,
it is considered that growth is proportional to mass and
division is proportional to growth, i.e.

r(m, s) = ρ(s)m, Γ(m, s) = γ(m)ρ(s)

and ρ(s) is given by the Monod growth rate

ρ(s) = ks
s

Ks + s
. (2)

Recalling mass conservation (Mantzaris and Daoutidis,
2004; Schaum and Jerono, 2019), i.e.

 m∗

m∗

mΓ(m, s)n(m, t)dm =

 m∗

m∗

2m

 m∗

m∗

Γ(µ, s)p(m,µ)n(m, t)dµ


dm

(3)

and calculating the first moment of the cell population
balance equation (1a)

b =

 m∗

m∗

mn(m, t)dm (4)

where b denotes the biomass, one has

ḃ = ρ(s)

 m∗

m∗

mn(m, t)dm = ρ(s)b. (5)

Note that in terms of the total biomass dynamics the
model equations (1) can be written as

ḃ = ρ(s)b (6a)

ṡ = −ρ(s)b, (6b)

so that the solution of the biomass in the mass balance
model (6) is equivalent to the solution of the first moment
of the cell distribution (1).

3. DISCRETIZATION

The model equations (1) are discretized in the mass
domain, leading to a set of nonlinear ordinary differential
equations. A first-order upwind finite difference scheme
is used to approximate the partial derivative and the
trapezoidal rule is used to approximate the integral term
of cell birth and the first moment of the distribution. The
discretized model equations then read

ṅi = − 1

∆m
ρ(s)(mini −mi−1ni−1)− Γ(mi, s)ni

+ 2∆m

z
j=i+1

Γ(mj , s)p(mi,mj)nj

(7a)

ṡ = −ρ(s)b = −ρ(s)∆m

z
i=1

mini =: fs(x) (7b)

nz+1 = 0, ni(0) = ni,0, s(0) = s0 (7c)

where ni is the cell density of mass mi at time t, the
discretization step size is given by ∆m and z is the
number of interior discretization points. Introducing the
state vector x = [nT , s]T = [n1, ... , nz, s]

T equations (7)
can be re–cast into the form

ẋ = f(x) =


A(s)n
fs(x)


, x(0) = x0 ∈ Rz+1

≥0 (8)

where A(s) is constructed from (7a) and has a triangular
matrix structure with additional elements on the first
lower off diagonal

A(s) = ρ(s)A = ρ(s)




∗ ∗ ∗ ∗ · · · ∗ ∗ ∗
∗ ∗ ∗ ∗ · · · ∗ ∗ ∗
0 ∗ ∗ ∗ · · · ∗ ∗ ∗
0 0 ∗ ∗ · · · ∗ ∗ ∗
...

...
...

...
...

...
...

...
0 0 0 0 · · · 0 ∗ ∗



. (9)

Note that the boundaries of the cell distribution n0 and
nz+1 can be excluded from the state vector, because of
the containment conditions ρ(s)m∗ = 0 and nz+1 = 0.
In the following, the solution of (8) will be denoted as
x(t) = ϕ(t;x0) with ϕ : [0,∞) → Rz+1

≥0 .

4. INDISTINGUISHABLE TRAJECTORIES

The analysis of indistinguishable trajectories addresses the
question of whether two trajectories of a system, starting
at different initial conditions, can have the same output
for all times (Nijmeijer and Van der Schaft, 1990; Ibarra
et al., 2004).

Definition 4.1. Two trajectories x1(t) = ϕ(t;x1,0) and
x2(t) = ϕ(t;x2,0) of the system (8), starting at different
initial conditions x1,0 ̸= x2,0, are called indistinguishable
when

h(x1(t)) = h(x2(t)), t ≥ t0 (10)

holds true, where h( · ) denotes the output map. If (10)
implies that x1(t) = x2(t), ∀t ≥ t0, then the system is
called completely observable. Further, the system is called
detectable when for indistinguishable trajectories it holds
that

lim
t→∞

ϵ(t) = 0 where ϵ(t) = x2(t)− x1(t), (11)
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2. PROBLEM FORMULATION

Consider the cell population balance equation

∂tn(m, t) = −∂m[r(m, s)n(m, t)]− Γ(m, s)n(m, t)

+ 2

 m∗

m

Γ(µ, s)p(m,µ)n(µ, t)dµ
(1a)

n(m∗, t) = 0, n(m, 0) = n0(m) (1b)

where t ∈ R≥0 is the time, m ∈ [m∗, m
∗] is the cell

mass, m∗ the minimum and m∗ the maximum mass of
a cell and n(m, t) : [m∗, m

∗] × R≥0 → R≥0 is the cell
mass distribution density function. The cell growth rate
is denoted as r(m, s) : [m∗, m

∗] × R≥0 → R≥0 with the
substrate concentration s ∈ R≥0. The cell division rate is
given by Γ(m, s) : [m∗, m

∗] × R≥0 → R≥0 and p(m,µ) :
[m∗, m

∗] × [m∗, m
∗] → R≥0 is the division probability

density function which determines the possibility that a
mother cell of mass µ divides into daughter cells of mass
m. Note that for the considered model (1) the existence
and positivity of the solutions in L1 × R≥0 is shown in
(Beniich et al., 2018). To take into account the substrate
dynamics, the cell population balance equation is coupled
with

ṡ = −
 m∗

m∗

r(m, s)n(m, t)dm, (1c)

so that the model given by (1) and (1c) consists of a partial
integro-differential equation coupled with a differential
equation accounting for the substrate dynamics. Further,
it is considered that growth is proportional to mass and
division is proportional to growth, i.e.

r(m, s) = ρ(s)m, Γ(m, s) = γ(m)ρ(s)

and ρ(s) is given by the Monod growth rate

ρ(s) = ks
s

Ks + s
. (2)

Recalling mass conservation (Mantzaris and Daoutidis,
2004; Schaum and Jerono, 2019), i.e.

 m∗

m∗

mΓ(m, s)n(m, t)dm =

 m∗

m∗

2m

 m∗

m∗

Γ(µ, s)p(m,µ)n(m, t)dµ


dm

(3)

and calculating the first moment of the cell population
balance equation (1a)

b =

 m∗

m∗

mn(m, t)dm (4)

where b denotes the biomass, one has

ḃ = ρ(s)

 m∗

m∗

mn(m, t)dm = ρ(s)b. (5)

Note that in terms of the total biomass dynamics the
model equations (1) can be written as

ḃ = ρ(s)b (6a)

ṡ = −ρ(s)b, (6b)

so that the solution of the biomass in the mass balance
model (6) is equivalent to the solution of the first moment
of the cell distribution (1).

3. DISCRETIZATION

The model equations (1) are discretized in the mass
domain, leading to a set of nonlinear ordinary differential
equations. A first-order upwind finite difference scheme
is used to approximate the partial derivative and the
trapezoidal rule is used to approximate the integral term
of cell birth and the first moment of the distribution. The
discretized model equations then read

ṅi = − 1

∆m
ρ(s)(mini −mi−1ni−1)− Γ(mi, s)ni

+ 2∆m

z
j=i+1

Γ(mj , s)p(mi,mj)nj

(7a)

ṡ = −ρ(s)b = −ρ(s)∆m

z
i=1

mini =: fs(x) (7b)

nz+1 = 0, ni(0) = ni,0, s(0) = s0 (7c)

where ni is the cell density of mass mi at time t, the
discretization step size is given by ∆m and z is the
number of interior discretization points. Introducing the
state vector x = [nT , s]T = [n1, ... , nz, s]

T equations (7)
can be re–cast into the form

ẋ = f(x) =


A(s)n
fs(x)


, x(0) = x0 ∈ Rz+1

≥0 (8)

where A(s) is constructed from (7a) and has a triangular
matrix structure with additional elements on the first
lower off diagonal

A(s) = ρ(s)A = ρ(s)




∗ ∗ ∗ ∗ · · · ∗ ∗ ∗
∗ ∗ ∗ ∗ · · · ∗ ∗ ∗
0 ∗ ∗ ∗ · · · ∗ ∗ ∗
0 0 ∗ ∗ · · · ∗ ∗ ∗
...

...
...

...
...

...
...

...
0 0 0 0 · · · 0 ∗ ∗



. (9)

Note that the boundaries of the cell distribution n0 and
nz+1 can be excluded from the state vector, because of
the containment conditions ρ(s)m∗ = 0 and nz+1 = 0.
In the following, the solution of (8) will be denoted as
x(t) = ϕ(t;x0) with ϕ : [0,∞) → Rz+1

≥0 .

4. INDISTINGUISHABLE TRAJECTORIES

The analysis of indistinguishable trajectories addresses the
question of whether two trajectories of a system, starting
at different initial conditions, can have the same output
for all times (Nijmeijer and Van der Schaft, 1990; Ibarra
et al., 2004).

Definition 4.1. Two trajectories x1(t) = ϕ(t;x1,0) and
x2(t) = ϕ(t;x2,0) of the system (8), starting at different
initial conditions x1,0 ̸= x2,0, are called indistinguishable
when

h(x1(t)) = h(x2(t)), t ≥ t0 (10)

holds true, where h( · ) denotes the output map. If (10)
implies that x1(t) = x2(t), ∀t ≥ t0, then the system is
called completely observable. Further, the system is called
detectable when for indistinguishable trajectories it holds
that

lim
t→∞

ϵ(t) = 0 where ϵ(t) = x2(t)− x1(t), (11)

meaning that the indistinguishable trajectories converge
to each other asymptotically.

Obviously, detectability is a weaker property than observ-
ability. Nevertheless, analyzing detectability can provide
more model insight and can also be utilized in the observer
design (see, e.g. (Moreno and Dochain, 2008; Jerono et al.,
2021b)). Note that in the context of this observability
analysis the term completely will always refer to R≥0

because the cell distributions are described by density
functions and the biomass and substrate components are
concentrations.

The analysis of the indistinguishable trajectories of the
mass balance model (6) and the cell population balance
model (1) and (1c) is carried out for biomass measurements

h(x) = b = ∆m

z
i

mini = cTn (12)

where cT = [∆mm1, ...,∆mmz]. This is motivated by the
fact that biomass is an available measurement in most
bioreactors thanks to optical density sensors.

4.1 Indistinguishable trajectories of the mass balance
model

Although the indistinguishable trajectories of the mass
balance model (6) have been investigated in the literature
(see, e.g (Schaum et al., 2005)) it is recalled here and serves
as an important preliminary for further analysis.

Proposition 1. The mass balance model (6) with biomass
measurements (h(xb) = b) and xb = [b, s]T is completely
observable in R2

>0.

Proof. The error dynamics of indistinguishable trajec-
tories ϵ̇ = [ϵ̇b, ϵ̇s]

T of the mass balance model (6) with
xb = [b, s]T read

ϵ̇b = ρ(s+ ϵs)(b+ ϵb)− ρ(s)b (13a)

ϵ̇s = −ρ(s+ ϵs)(b+ ϵb) + ρ(s)b (13b)

0 = h(xb + ϵ)− h(xb) = ϵb. (13c)

From the measurement equation (13c) one can directly
conclude that the indistinguishable trajectories have to
fulfill ϵb = 0. Thus (13a) reduces to

ϵ̇b = [ρ(s+ ϵs)− ρ(s)]b.

Note that for ϵb = 0, ∀t ≥ t0 also ϵ̇b = 0 has to hold.
Due to the fact that ρ(s) is given by the strictly increasing
function (2) and considering b ̸= 0 in a bioreactor, only
ϵ = [ϵb, ϵs]

T = 0T can lead to the same system output.
Therefore the mass balance model is completely observable
within the state space xb ∈ R2

>0. □

Having this result, the substrate concentration s of the
model (1a) and (1c) can be estimated by an observer
operating on biomass measurements regardless of the cell
population dynamics.

4.2 Indistinguishable trajectories of the discretized cell
population balance model

The error dynamics of indistinguishable trajectories ϵ̇ =
[ϵ̇n, ϵ̇s]

T of the population model (8) are given by

ϵ̇n = A(s+ ϵs)(n+ ϵn)−A(s)n (14a)

ϵ̇s = −ρ(s+ ϵs)∆m

z
i=1

mi(ni + ϵn,i)

+ ρ(s)∆m

z
i=1

mini

(14b)

0 = h(x+ϵ)−h(x) =∆m

z
i=1

miϵn,i = cT ϵn = ϵb. (14c)

Clearly, at this point, ϵn = 0 cannot be concluded from the
measurement equation (14c). Nevertheless, the analysis of
indistinguishable trajectories of the mass balance model
from the previous subsection implies that from ϵ̇b = 0 it
follows that ϵs = 0 (Proposition 1) so that (14a) reduces
to

ϵ̇n = A(s)ϵn = ρ(s)Aϵn. (15)

Furthermore one has that

ϵb = 0 = cT ϵn

ϵ̇b = 0 = cTA(s)ϵn.
(16)

Note that (16) also requires that di−1

dti−1 ϵb = 0 for i = 1, ..., z.
This leads to the set of algebraic equations

ϵb = 0 = cT ϵn

ϵ̇b = 0 = cTA(s)ϵn
...

dz−1

dtz−1
ϵb = 0 =

dz−2

dtz−2
cTA(s)ϵn.

(17)

Observing that the dynamics (7a) are linear in nmotivates
to analyze (17) first for the case of constant growth rates
d
dtρ(s) ≈ 0, i.e. s ≫ Ks (see (2)). Hence, the set of
algebraic equations given by (17) and (14c) can be written
as

0 =




cT

...
cTA(s)z−1


 ϵn = Oz×z(s)ϵn (18)

where indeed Oz×z(s) has the structure of the classical
Kalman observability matrix for linear systems. Obviously
for ρ(s) = 0 equation (18) is fulfilled for arbitrary ϵn (see
(9)). Considering ρ(s) > 0 the question remains if the
matrixOz×z(s) has full rank ∀t ≥ t0 in order to prove ϵn =
0 when (10) holds. From a structural point of viewOz×z(s)
has full rank, i.e. there exists at least one parameter-
substrate combination such that rank(Oz×z(s)) = z due
to the upper triangular structure of A(s) with additional
elements on the first lower main diagonal originating from
the first-order upwind finite differences. This also coincides
with the structural observability property for the class
of considered systems (see, e.g. (Jerono et al., 2021a)).
Nevertheless, having d

dtρ(s) ̸= 0 (17) reads by utilizing the
higher order product rule

ϵb = 0 = cT ϵn

ϵ̇b = 0 = cTA(s)ϵn
... (19)

dz−1

dtz−1
ϵb = 0 = cT

z−2
k=0


z − 2

k


dk

dtk
A(s)

 
dz−2−k

dtz−2−k
ϵn


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where
�
z−2
k


is the binomial coefficient. Again, structurally

speaking, the set of algebraic equations (19) has the unique
solution ϵn = 0. From an analytical point of view the
problem is addressed in the next section for the special
case of equal partitioning of the cells in the cell population
model.

5. SPECIAL CASE OF EQUAL PARTITIONING

In order to analyze (19) it is assumed that cells can only
divide into cells of equal size. As shown in (Diekmann
et al., 1984) the model equation (1a) for this special case
are given by

∂tn(m, t) = −∂m[r(m, s)n(m, t)]− Γ(m, s)n(m, t)

+ 4Γe(2m, s)n(2m, t)
(20a)

n(m∗, t) = 0, n(m, 0) = n0(m) (20b)

having the structure of a classical convection reaction
system where

Γe(2m, s) =


Γ(2m, s), if 2m ∈ [m∗, m

∗]

0, else.
(21)

The factor 4 in equation (20a) originates from requiring
mass conservation of cell division and birth as also dis-
cussed in (Diekmann et al., 1984). Nevertheless, applying
the same discretization scheme as in Section 3 one will
end up with the same structure as in equation (8), but the
matrix will have more elements equal to zero in the upper
triangular part due to the restriction of equal partitioning.
One problem with equal partitioning for the discretized
model equations is that mother cells being on an odd
discretization point of the grid do not have daughter cells
on the discretization grid. Therefore, it is further assumed
that only mother cells with an even number on the dis-
cretization grid can divide into daughter cells. This leads
to the dynamics

ṅi = − 1

∆m
ρ(s)(mini −mi−1ni−1)+

− Γ̄(mi, s)ni + 2Γ̄(m2i, s)n2i

nz+1 = 0, ni(0) = ni,0, s(0) = s0

(22)

where Γ̄(mi, s) is given by

Γ̄(mi, s) =


Γ(mi, s), if i ∈ 2N
0, if i ∈ 2N+ 1.

(23)

Following this assumption the factor of 4 in (20a) becomes
2 again in the discretized case, because of (23). Equation
(22) can again be rewritten in terms of

ẋ = f(x) =


Az(s)n
fs(x)


, x(0) = x0 ∈ Rz+1 (24)

where Az(s) now has the structure

Az(s) =




−g∗1 2γ∗
2 0 0 0 0 · · · 0

g∗1 −g∗2 − γ∗
2 0 2γ∗

4 0 0 · · · 0
0 g∗2 −g∗3 0 0 2γ∗

6 · · · 0
...

...
...

...
...

...
...

...




with g∗i = 1
∆m

ρ(s)mi and γ∗
i = Γ̄(mi, s) = γiρ(s)mi.

The physiological properties of the cell cycle are still
captured by these model dynamics. In fact the upper
triangular part of Az(s) has more elements equal to
zero compared to A(s) in (9), which represents a worse
case from a structural point of view. In order to address

the dynamics of indistinguishable trajectories, two cases
of interior discretization points z = 2 and z = 4 are
considered. These cases refer to a rough classification of
cells depending on their mass, which is meaningful when
product accumulation properties of cells are related to
specific mass intervals. For z = 2 the evaluation of (18)
is handy. Note that for this case, on an equally spaced
grid, the cell population model (7) is consistent with the
equal partitioning assumption by default. Additionally,
only the first time derivative of the system output has to
be calculated, so that in this particular case (19) coincides
with (17), i.e the problem can be addressed by evaluating
the rank condition of Oz×z(s) in (18). The z = 4 case
leads to a more general consideration of cell division where
the structure of Az(s) in the case of equal partitioning is
already taken into account.

5.1 Case z = 2

The system matrix reads

A2(s) =


−g∗1 2γ∗

2
g∗1 −γ∗

2


. (25)

Note that the bottom right entry ofA2(s) does not contain
the growth term. This is because the cells can only divide
at this point in order to satisfy the boundary condition
nz+1 = 0.

Proposition 2. The cell population model (22) with z =
2 and biomass measurements (b = h(x)) is completely
observable in R2

>0.

Proof. In the considered case O2×2(s) from equation (18)
evaluates to

∆mm1 ∆mm2

ρ(s)(m1m2 −m2
1) ρ(s)∆m(2γ2m1m2 −m2

2γ2)


.

Having an equally spaced grid and by the assumption of
equal partitioning m2 = 2m1 holds true. Thus the matrix
can be written as

O2×2(s) =


∆mm1 ∆m2m1

ρ(s)m2
1 0


. (26)

The determinant reads

det(O2×2(s)) = −2∆mm3
1ρ(s), (27)

so that O2×2(s) is of full rank as long as ρ(s) > 0 holds
true. □

Note that this result also holds for the cell population
model (7a) due to the equivalence for z = 2.

5.2 Case z = 4

The system matrix reads

A4(s) =



−g∗1 2γ∗

2 0 0
g∗1 −g∗2 − γ∗

2 0 2γ∗
4

0 g∗2 −g∗3 0
0 0 g∗3 −γ∗

4


 . (28)

Evaluating (19) for the considered case leads to
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where
�
z−2
k


is the binomial coefficient. Again, structurally

speaking, the set of algebraic equations (19) has the unique
solution ϵn = 0. From an analytical point of view the
problem is addressed in the next section for the special
case of equal partitioning of the cells in the cell population
model.

5. SPECIAL CASE OF EQUAL PARTITIONING

In order to analyze (19) it is assumed that cells can only
divide into cells of equal size. As shown in (Diekmann
et al., 1984) the model equation (1a) for this special case
are given by

∂tn(m, t) = −∂m[r(m, s)n(m, t)]− Γ(m, s)n(m, t)

+ 4Γe(2m, s)n(2m, t)
(20a)

n(m∗, t) = 0, n(m, 0) = n0(m) (20b)

having the structure of a classical convection reaction
system where

Γe(2m, s) =


Γ(2m, s), if 2m ∈ [m∗, m

∗]

0, else.
(21)

The factor 4 in equation (20a) originates from requiring
mass conservation of cell division and birth as also dis-
cussed in (Diekmann et al., 1984). Nevertheless, applying
the same discretization scheme as in Section 3 one will
end up with the same structure as in equation (8), but the
matrix will have more elements equal to zero in the upper
triangular part due to the restriction of equal partitioning.
One problem with equal partitioning for the discretized
model equations is that mother cells being on an odd
discretization point of the grid do not have daughter cells
on the discretization grid. Therefore, it is further assumed
that only mother cells with an even number on the dis-
cretization grid can divide into daughter cells. This leads
to the dynamics

ṅi = − 1

∆m
ρ(s)(mini −mi−1ni−1)+

− Γ̄(mi, s)ni + 2Γ̄(m2i, s)n2i

nz+1 = 0, ni(0) = ni,0, s(0) = s0

(22)

where Γ̄(mi, s) is given by

Γ̄(mi, s) =


Γ(mi, s), if i ∈ 2N
0, if i ∈ 2N+ 1.

(23)

Following this assumption the factor of 4 in (20a) becomes
2 again in the discretized case, because of (23). Equation
(22) can again be rewritten in terms of

ẋ = f(x) =


Az(s)n
fs(x)


, x(0) = x0 ∈ Rz+1 (24)

where Az(s) now has the structure

Az(s) =




−g∗1 2γ∗
2 0 0 0 0 · · · 0

g∗1 −g∗2 − γ∗
2 0 2γ∗

4 0 0 · · · 0
0 g∗2 −g∗3 0 0 2γ∗

6 · · · 0
...

...
...

...
...

...
...

...




with g∗i = 1
∆m

ρ(s)mi and γ∗
i = Γ̄(mi, s) = γiρ(s)mi.

The physiological properties of the cell cycle are still
captured by these model dynamics. In fact the upper
triangular part of Az(s) has more elements equal to
zero compared to A(s) in (9), which represents a worse
case from a structural point of view. In order to address

the dynamics of indistinguishable trajectories, two cases
of interior discretization points z = 2 and z = 4 are
considered. These cases refer to a rough classification of
cells depending on their mass, which is meaningful when
product accumulation properties of cells are related to
specific mass intervals. For z = 2 the evaluation of (18)
is handy. Note that for this case, on an equally spaced
grid, the cell population model (7) is consistent with the
equal partitioning assumption by default. Additionally,
only the first time derivative of the system output has to
be calculated, so that in this particular case (19) coincides
with (17), i.e the problem can be addressed by evaluating
the rank condition of Oz×z(s) in (18). The z = 4 case
leads to a more general consideration of cell division where
the structure of Az(s) in the case of equal partitioning is
already taken into account.

5.1 Case z = 2

The system matrix reads

A2(s) =


−g∗1 2γ∗

2
g∗1 −γ∗

2


. (25)

Note that the bottom right entry ofA2(s) does not contain
the growth term. This is because the cells can only divide
at this point in order to satisfy the boundary condition
nz+1 = 0.

Proposition 2. The cell population model (22) with z =
2 and biomass measurements (b = h(x)) is completely
observable in R2

>0.

Proof. In the considered case O2×2(s) from equation (18)
evaluates to

∆mm1 ∆mm2

ρ(s)(m1m2 −m2
1) ρ(s)∆m(2γ2m1m2 −m2

2γ2)


.

Having an equally spaced grid and by the assumption of
equal partitioning m2 = 2m1 holds true. Thus the matrix
can be written as

O2×2(s) =


∆mm1 ∆m2m1

ρ(s)m2
1 0


. (26)

The determinant reads

det(O2×2(s)) = −2∆mm3
1ρ(s), (27)

so that O2×2(s) is of full rank as long as ρ(s) > 0 holds
true. □

Note that this result also holds for the cell population
model (7a) due to the equivalence for z = 2.

5.2 Case z = 4

The system matrix reads

A4(s) =



−g∗1 2γ∗

2 0 0
g∗1 −g∗2 − γ∗

2 0 2γ∗
4

0 g∗2 −g∗3 0
0 0 g∗3 −γ∗

4


 . (28)

Evaluating (19) for the considered case leads to

ϵb = 0 = cT ϵn

ϵ̇b = 0 = cTA4(s)ϵn

d2

dt2
ϵb = 0 = cT


d

dt
A4(s)


ϵn + cTA4(s)ϵ̇n

d3

dt3
ϵb = 0 = cT


d2

dt2
A4(s)


ϵn

+ 2cT

d

dt
A4(s)


ϵ̇n + cTA4(s)


d2

dt2
ϵn


.

(29)

Note that the time derivatives of the growth rate ρ(s)
appearing inA(s) can be calculated by (6b) and (2), but at
this point, the further evaluation becomes more involved.
Nevertheless, one can see that the set of equations (29)
remains linear in ϵn even for higher order derivatives.
Therefore, a rank condition can be evaluated (for example
with some suitable software) to check if for the indistin-
guishable trajectories ϵn = 0 holds true.

Here, for simplification purposes, the case of constant
growth rates is assumed again.

Proposition 3. The cell population model (22) with z =
4 and biomass measurements (b = h(x)) is completely
observable in R4

>0 for constant growth rates ρ(s) and s ̸= 0.

Proof. Utilizing m1 = 1
imi, i ∈ {2, 3, 4} the matrix

O4×4(s) from (18) evaluates to

O4×4(s) =


∆mm1 ∆m2m1 ∆m3m1 ∆m4m1

m2
1ρ(s) 2m2

1ρ(s) 3m2
1ρ(s) 0

m3
1ρ(s)

2

∆m

2m3
1ρ(s)

2

∆m
−9m3

1ρ(s)
2

∆m

16γ4m
3
1ρ(s)

2

∆m
m4

1ρ(s)
3

∆2
m

−22m4
1ρ(s)

3

∆2
m

O3,4 O4,4




where

O3,4 =
(48γ4∆m + 27)m4

1ρ(s)
3

∆2
m

O4,4 = − (64γ2
4∆m − 16γ4)m

4
1ρ(s)

3

∆m
.

The determinant is given by

det(O4×4(s)) = 1152
m10

1 ρ(s)6

∆2
m

, (30)

revealing that O4×4(s) has also full rank as long ρ(s) > 0
holds true. Therefore ϵb = 0, ∀t ≥ t0 requires ϵn = 0, ∀t ≥
t0 such that there exist no indistinguishable trajectories in
the time interval t ∈ [t0,∞). □

Comparing (27) with (30) it looks convenient to elaborate
a general formula of the determinant depending on z, but
this will not be further addressed here.

For the considered number of interior discretization points
the complete observability within the state space x ∈
Rz

>0 can be proven by contradiction of the existence of
indistinguishable trajectories for s ̸= 0. In the case of
z = 4 the carried out analysis is restricted to constant
growth rates, i.e. s ≫ Ks. It has to be pointed out
that in both cases the observability property is lost for
ρ(s) = 0. From a practical point of view this means
that in a batch experiment the observer has to converge

before the substrate is completely consumed. Additionally,
an observer which is designed based on the observability
map, like the one presented in the next section, might run
into numerical issues due to an ill condition when ρ(s)
approaches zero. Therefore, it is appropriate to design a
stopping criteria for the observer gain calculation.

6. SIMULATION RESULTS

Based on the previous analysis of the indistinguishable
trajectories an observer is designed to estimate the cell
distribution density operating on biomass measurements
for the model equations (22) when z = 2 is considered.
Note that the analysis in section 4 leads to an evaluation
of a rank condition due to the linearity of the system with
respect to n. In fact, the system is nonlinear due to the
coupling to the nonlinear substrate dynamics. Given that
the substrate concentration can be estimated based on
a mass balance observer operating on biomass measure-
ments, a reduced observer structure can be considered to
estimate the cell population, i.e. there will be no correction
term based on the substrate concentration allowing the
interpretation as a (known) system parameter. Neverthe-
less, since the substrate concentration is still a function
of time, the resulting observer design problem for the
cell population model will be linear time–variant. One
possibility of designing an observer for this class of systems
is given by utilizing Ackermann formula for linear time–
variant systems (Silverman and Meadows, 1967; Freund,
2013) which is based on the (time–variant) observability
map of the system given by

Ot =




M0
Ac

T

...
Mz−1

A cT


 (31)

with the operator M0
Ac

T = cT , M1
Ac

T = ċT + cTA,

Mk
Ac

T = MA(M
k−1
A cT ) and the linear, possibly time-

varying, measurement equation cT . The observer dynam-
ics are given by

˙̂x = A2(s)x̂+ l(t)(y − ŷ)

ŷ = cT x̂
(32)

with x̂ = [n̂1, n̂2]
T ∈ R2. The correction gain l(t) reads

l(t) =
1

c̄(t)
[p0N

0
A + ...+ pz−1N

z−1
A +Nz

A] ◦ v(t) (33)

v(t) = O−1
t [0 ... c̄(t)]

T
(34)

with the operator N0
Av = v, N1

Av = −v̇ + Av, Nk
Av =

NA(N
k−1
A v), the coefficients pj , j ∈ {0, ... , z − 1} of

an Hurwitz polynomial and the design parameter c̄(t).
The selected system and observer design parameters are
listed in Table 1. The simulation results are presented
in Figure 1. The initial states are x = [2, 0]T for the
real system and x̂ = [1.5, 0.5]T for the observer. As

Table 1. Parameter list

Parameter Value Unit Parameter Value Unit

ks 0.02 h−1 ∆m 1 g
Ks 1 g/l p0 0.25 -
γ2 20 − p1 1 -
m1 1 g ξ 10−3 g/l
m2 2 g c̄ det(Ot) g4h−1
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Fig. 1. Estimates (dashed–red) and real values (solid–blue)
of the cell distribution density n1, n2, the biomass b
and substrate concentration s in a batch scenario.

stated before, the observability property is lost when the
substrate (and therefore ρ(s)) approaches zero. In order
to avoid numerical issues in O−1

t , the calculation of l(t) is
stopped and its values are set to zero when the substrate
is below a certain threshold ξ. At this point the observer
is only driven by the simulator, meaning that in order to
provide reliable estimates, the observer has to converge
before s < ξ holds true.

7. CONCLUSION

The observability property of the finite-dimensional cell
population balance equation with biomass measurements
within the framework of the indistinguishable trajecto-
ries was addressed. The population balance equation is
described by a partial integro-differential equation which
is coupled with an ordinary differential equation for the
substrate dynamics. For the semi-discretized model equa-
tions the dynamics of indistinguishable trajectories were
derived. The dynamics were analyzed considering the spe-
cial cases of constant growth rates and equal partitioning.
It turned out that the analysis of indistinguishable tra-
jectories can be re–cast into a rank condition of a matrix
due to the linearity of the equations with respect to the
cell distribution density. For the case of constant growth
rates the analysis coincides with the classical Kalman
observability condition for linear time–invariant systems.
The analysis revealed that the observability property is
guaranteed as long as the nutrient concentration is not de-
pleted. Further, the observability property was established
for a small number of discretization points. Based on the
results an observer was designed for a bi–partitioned cell
distribution and tested in simulations.
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