
Leveraging Mixed-Precision CNN Inference for
Increased Robustness and Energy Efficiency

Tim Hotfilter, Julian Hoefer, Philipp Merz, Fabian Kreß, Fabian Kempf, Tanja Harbaum, Jürgen Becker
Karlsruhe Institute of Technology

{hotfilter, julian.hoefer, fabian.kress, kempf, harbaum, becker}@kit.edu

Abstract—Convolutional Neural Networks (CNNs) show
tremendous performance in many Computer Vision (CV) tasks
like image segmentation crucial to autonomous driving. However,
they are computationally demanding and usually not robust to
image corruptions like weather influences. In this paper, we
introduce our mixed-precision inference method to overcome
these two challenges. Therefore, we enable mixed-precision CNN
execution on modern embedded system on chips (SoC) that
feature a DNN accelerator and a reconfigurable fabric. In case of
a weather change, we can quickly adjust the inference precision
to maintain model accuracy, while benefitting from fewer off-
chip memory accesses compared to full precision. Therefore,
we identify optimal quantization schemes for different weather
conditions that maximize model accuracy and minimize data
offloading. To enable mixed-precision inference, we present our
dynamic number conversion architecture for data going back and
forth to the off-chip memory, hosted on the reconfigurable tile of
the SoC. Using a DeepLabV3+ model with a Resnet-101 backbone
for image segmentation, for example, our evaluation yields 60%
less off-chip movements under clear weather conditions. Applying
rain, fog, and brightness to the input of various models, we
can report an up to 26%, 23.8% and 45% reduction in data
transactions, respectively, while maintaining the baseline model
accuracy. We finally demonstrate that our architecture does not
impact the throughput of the CNN inference and consumes very
few resources of the reconfigurable fabric.

Index Terms—Mixed-precision CNN inference, Robust CNNs,
CNN accelerator, high-performance heterogeneous SoCs

I. INTRODUCTION

The last 15 years were marked by numerous breakthroughs
in Deep Neural Networks (DNN). Today, those algorithms
are indispensable for applications, from robotics to consumer
products, and even for safety-critical tasks like autonomous
driving [1]. However, inference of modern algorithms requires
many million energy-intensive computations [2]. As a result,
applications like image segmentation are today computed on
hardware platforms with dedicated DNN accelerators to enable
computation in a real-time and more efficient manner.

Nevertheless, two major challenges in computing DNNs
both efficiently and safely persist. First, numerous large in-
termediate results in Convolutional Neural Networks (CNNs)
have to be kept as local as possible to the hardware accelerator
to ensure fast and efficient inference; secondly, CNNs need
to have a high robustness, e.g., towards unforeseen weather
condition changes. While human vision is very robust to those
influences, CNNs are still struggling with model accuracy.
This becomes especially apparent are tasks like autonomous
driving. To address the first issue, approaches like quantization

Number
conversion

FPGA fabric

DNN
Accelerator

CPUsCPUsCPUs

High-performance SoC

>
off-chip
memory

/
variable

precision

/
fixed

precision
config

on-chip comm. network
config network

Fig. 1: Our proposed dataflow to enable mixed-precision to
increase robustness and energy efficiency through compressed
off-chip memory transactions without the need to alter the
DNN accelerator itself.

and pruning were introduced, however, they tend to worsen the
model accuracy. While this can be tolerated or mitigated in
many applications, the robustness of a CNN may be troubled
by the imprecision those approaches superadd.

In this paper, we present our mixed-precision approach to
bring inference efficiency of CNNs and robustness against
wrong predictions on corrupted inputs closer together, while
maintaining a high model accuracy. Even though mixed-
precision is known to support the energy efficiency [3], it is,
however, rarely supported by DNN accelerators. Therefore,
we show our dataflow that enables mixed-precision CNN
inference in modern high-performance System on Chips (SoC)
that use an off-the-shelf DNN accelerators. Instead of changing
the DNN accelerator itself, we use a reconfigurable fabric,
which is present in most modern SoCs, to convert data moving
between the DNN accelerator and the off-chip memory during
runtime, as shown in Figure 1. This allows us to dynamically
adjust the computational precision, which we project to in-
crease robustness and energy efficiency by compressing off-
chip memory transactions. For example, we can work with a
higher degree of quantization when facing clear weather condi-
tions to benefit from higher compression. In turn, we can apply
less quantization when dealing with uncertain situations, e.g.
fog or heavy rain, to regain model accuracy. Our evaluation of
different CNNs, with various datasets and weather conditions
shows that we save up to 59.8% off-chip accesses in clear
conditions compared to bfloat16 inference, and maintain the
accuracy under different weather conditions, while still saving
up to 26% energy. Hereby, our number converter adds only
little latency, requires little resources and can keep up with
the throughput requirements of CNNs.



In summary, our contributions are as follows:
• We present our low-latency and resource efficient hard-

ware architecture that enables mixed-precision inference.
• We provide an extensive evaluation of multiple CNNs

under various weather conditions and intensities to get
valuable insights on how the model accuracy behaves
concerning compression of off-chip memory transfers.

• Our exploration tool and hardware architecture is avail-
able to the public to foster further research1.

II. MOTIVATION AND RELATED WORK

Robustness towards perturbed or corrupted inputs is one
of the main challenges that still exists before CNNs can be
deployed in safety-critical systems such as computer vision
tasks in autonomous driving vehicles. Besides that, energy
efficiency, especially for large segmentation CNNs, plays an
important role. Since local on-chip memory cannot keep all
intermediate results and weights of large CNN workloads,
offloading is required, which contributes a great portion of the
total inference energy. Mixed-precision inference is a well-
known method to optimize the energy efficiency of CNN
inference by compressing those off-chip memory transfers [3].
CNN models are to some extent already resilient to image
corruptions. However, this ability drops with further quan-
tization, as computational noise has a higher influence on
the result. Here, mixed-precision can help us to reestablish
resiliency by increasing the computational precision in case
of corrupted inputs. For example, we can use more precise
weights and intermediate results for inputs influenced by
weather conditions to regain model accuracy, and in the same
way more quantized weights and intermediate results to benefit
from energy savings in clear weather conditions.

A. Robustness-aware Quantization of CNNs
Lately, various approaches have been proposed to address

robustness issues of CNNs using different strategies at several
system levels. In particular, many recent studies have been
conducted to increase the robustness of CNN models against
adversarial attacks. Wijayanto et al. explored the impact of
compression on CNN robustness through quantization [4].
Thereby, the presented compression algorithm achieves high
compression rates for classification tasks and also reduces the
error rate of the model compared to other methods. Also,
Khalid et al. use quantization to increase the robustness of
CNNs against adversarial attacks [5]. They propose to insert
an additional quantization layer at the input of a given CNN.
Depending on the chosen method, the quantization levels are
constant or learned during training. Apart from straightforward
quantization of CNNs, there are other methods to increase the
robustness, such as the one proposed by Zhao et al. [6]. The
authors perform an outlier-aware quantization during training
on the non-maximum suppression stage of oriented object
detection networks. Based on the results, the authors can show
an improved robustness of the evaluated network compared to
common quantization approaches.

1https://github.com/itiv-kit/dnn-model-exploration

B. Hardware Architectures for Mixed-Precision Inference

Common CNN hardware accelerators typically only support
a fixed bit width and therefore cannot put the energy efficiency
gains achieved by variable quantization into effect. A few
hardware accelerators have been proposed to support arbitrary
precision CNN inference. Envision [7] uses dynamic-voltage-
accuracy-frequency scaling (DVAFS) which allows to disable
submultipliers based on the targeted bit width. However, this
approach suffers from a significant area overhead. BitBlade [8]
addresses this issue by using bitwise summation and a tiling
scheme to improve the utilization of the multipliers. Be-
sides that, accelerators with reconfigurable precision were
presented [9], but they only support a limited number of bit
precision and add onto the area budget. Moreover, bit-serial ac-
celerators [3], [10] were introduced to provide mixed-precision
inference, thus ensuring high utilization of the hardware blocks
used. Although these architectures provide a simple interface
for different bit widths, they introduce additional hardware
overhead and, in particular, suffer from lower energy efficiency
compared to non-bit-serial architectures [11].

III. TOOLING AND HW-SUPPORT FOR ROBUST
MIXED-PRECISION CNNS

Our approach enables mixed-precision CNN inference on
state-of-the-art heterogeneous platforms like AMD’s Versal
platform. Typically, such systems feature highly performant
accelerators for DNN workloads, along with multiple pro-
cessors and a reconfigurable fabric, which allows for further
system extension. However, those DNN accelerators usually
do not support mixed-precision inference, rather they offer
the common bfloat16 number format, which is a good tradeoff
between precise inference and the possibility for online or on-
chip learning. To benefit from memory compression through
quantized inference on such systems, we harness the recon-
figurable fabric to host a number converter that has access to
the on-chip communication network, as shown in Figure 1.
Our number converter dynamically quantizes and dequantizes
data flowing between the on-chip DNN accelerator and the
off-chip memory. In particular, the off-chip memory stores
integer values with arbitrary precision between two and 16
bits and the DNN accelerator operates using bfloat16. With
our setup, we can apply any precision on a layer-granularity,
individually for weights and intermediate results. This allows
us to benefit from off-chip memory transfer compression
and from a high model accuracy, since quantization sensitive
layers are computed more precisely. Compression allows us
to save numerous off-chip memory stores and reads. If a
weather change corrupts the input, we can benefit from this
fine-granular quantization approach as well. In that case, we
can use a set of weights with a higher precision and apply
less quantization to intermediate results going to the off-chip
memory. Since the memory consumption of CNN weights in
comparison to its intermediate results is moderate [12], we can
easily store multiple sets of weights in the off-chip memory.

The goal of our approach is to dynamically and quickly
respond to changing conditions. Compared to traditional ap-

https://github.com/itiv-kit/dnn-model-exploration


Ring-buffer

Extractor

DNN
Accelerator

Controller
Ring-buffer

Compressor

/
n × 16

/
n × 16

AXI-LAXI-L

>
off-chip
memory

>
off-chip
memory

/
256

/
256

conversion to bfloat16 conversion back to int

convert to
bfloat16

∗

S

Dequantization

convert
to int

∗

S

Quantization

Fig. 2: Overview of our number converter architecture. Weights and intermediate results from the off-chip memory are passed
through an extractor and multiple dequantization units to convert integers into bfloat16 values. Results from the DNN accelerator
are converted back to integer, which is realized with multiple quantization units and a compressor to pack the values for
offloading. All components in dashed boxes are placed on the reconfigurable fabric.

proaches like deraining techniques, which add many more
computations to the workload [13], we project that we can
leverage a higher inference precision to increase the network
robustness. It has to be noted, that in the case of very severe
weather conditions, we may have to add a deraining method as
well. However, in this case, we may also be able to save energy
in the computations of less quantization sensitive layers.

A. Quantization Aware Robustness

Mixed-precision inference was proven beneficial in saving
energy by compressing off-chip memory transfers, which are
necessary since the intermediate results of modern CNNs
exceed local memory capacity. Our claim is that we can,
apart from compression, leverage mixed-precision inference to
react to corrupted input images and regain the model accuracy
dynamically by increasing the precision of computations.
An increased precision leads to less quantization noise and
hence can support the model accuracy. For example, when
an autonomous driving vehicle faces rainy or foggy weather
conditions, which obstruct the view, we can gradually ramp
up the precision to maintain the model accuracy, while still
benefitting from compression of off-chip memory transfers.

As stated before, our approach enables to run a given CNN
with different precision levels for weights and intermediate
results for each layer. Therefore, we first need to identify
quantization sensitive layers that have to be computed with
higher precision and those layers that benefit from a higher
compression from further quantization. Similarly, we have to
do this identification process for inputs that are corrupted by
different weather conditions with various intensities, to find
a Pareto-optimal precision for each layer that maximizes off-
chip memory transfer compression and model accuracy. To
accomplish this, we run a design space exploration (DSE)
using a genetic algorithm (GA) that tests different sets of
bit-width combinations for each layer’s intermediate results
and weights. To obtain the model accuracy regarding arbitrary
precision, we use fake quantization and bfloat16 precision,
which reflects the way our approach works in real-world
later. The exploration evaluates the model accuracy as well
the amount of data transferred between the accelerator and
the off-chip memory, to find those Pareto-optimal solutions.
Since not necessary all intermediate results have to be off-

loaded, we use Timeloop [14] to model the underlying hard-
ware architecture during exploration time. Timeloop maps the
workload on the specified hardware accelerator and reports,
among others, the number of off-chip memory transactions and
the thereby consumed energy, considering a given technology.
Based on Timeloop’s results and the degree of quantization,
we can compute the energy and transaction savings a certain
combination of bit-widths yields in contrast to the baseline.
To get comparable results for various weather conditions, our
GA always starts with a fixed starting population and applies
the same crossover and mutation algorithms in all DSEs.

B. Hardware Support for Mixed-Precision Inference

The main component to enable mixed-precision CNN in-
ference is a hardware architecture for number conversion that
alters the dataflow between the off-chip memory and the DNN
accelerator. This architecture has to support a fast conversion
and should be resource efficient. An external controller should
be able to dynamically adjust conversion formats, either in
between layers or when weather conditions change. The con-
troller might trigger a more precise computation when sensors
detect a weather change or the model accuracy worsens. Each
conversion has to be supported from an integer format ranging
from 2 to 16 bit to bfloat16 for data going to the accelerator,
as well as the other way around for data being offloaded. From
an arithmetic viewpoint, each input and weight has to undergo
a conversion according to the following equations, in which
xq is the quantized and xfloat the dequantized value. S and Z
denote a scale and zero-offset factor.

xq =
xfloat

S
+ Z xfloat = (xq − Z) ∗ S

To make the computation simpler, zero-centered quantiza-
tion is applied and the zero-offset factor set to 0. Moreover, we
can transform the division in the quantization operation into
another multiplication. In this case, the conversion in both di-
rections can be realized in hardware using a multiplier, which
can be parallelized and pipelined in a straightforward manner.
Details of our data flow involving our hardware architecture
along with all the necessary components are given in Figure 2.
All dashed boxes are placed onto the reconfigurable fabric. For
an online conversion of data, we have direct access to the on-
chip communication network, allowing us to redirect the data



stream between the DNN accelerator and off-chip memory
through our number converter architecture. Here, connection to
the on-chip network is realized using an AXI-Stream interface
with a width of 256 bit. Inside the extractor, incoming data
is first buffered in a ring buffer, from which we can read
multiple chunks of any bit length to feed to the dequantization
units. Each cycle, multiple dequantization units convert integer
inputs into bfloat16. The conversion follows a straightforward
nine-stage approach, of which one checks the sign bit and
the other eight shift the exponent. Since bfloat16 has eight
exponent bits, we need exactly these nine stages, which can
be realized in a pipelined structure. Then the scale factor is
multiplied onto the converted number. Integer precision and
scale factors, which were determined in advance by our DSE,
can be updated during runtime via an AXI-Lite interface from
an external control unit, e.g., a CPU. Once the conversion has
finished, we can pack multiple bfloat16 values and send them
to the DNN accelerator. The accelerator receives its inputs and
weight without noticing they underwent a conversion.

Intermediate results and weights may be stored in a local
memory that directly holds values in bfloat16 format. All other
intermediate results, which have to be off-loaded, are now
passed through the second part of our architecture: the quanti-
zation part. First, the individual bfloat16 values are unpacked
and the inverse scale factor is applied in multiple quantization
units, running in parallel. Then, a conversion into arbitrary
integer format is performed. Processed quantized values are
then given into the compressor that packs converted values
into 256 bit packets for writing to the off-chip memory. We
realize this using another ring buffer, that can store arbitrary
converted integer values and reads 256 bit at once. This helps
us to keep the data always aligned, implement correct AXI
handshaking, and to use all bits of the memory bus efficiently.

IV. RESULTS AND DISCUSSION

For our evaluation, we look at three large image-
segmentation CNNs that infer three distinct datasets using our
proposed architecture and report the latency and area con-
sumption as well as the off-chip transfer savings. The datasets
are corrupted by different weather conditions for robustness
evaluation. The goal of our evaluation is to find precision
levels for each network’s layer and image corruption type
that maximizes the trade-off between fewer off-chip memory
accesses through quantization and model accuracy. Thereby,
we try to maintain the baseline accuracy of the model. As
evaluation datasets, we use a variant of CityScapes [15] with
rain and fog, as well as a version of BDD-100k with rain, fog,
brightness and snow added through the image corruption tool
by Michaelis et al. [16]. Both datasets are well-established
in image segmentation, which is crucial for, e.g., autonomous
driving. CityScapes is evaluated with DeepLabV3+ [17] for
semantic segmentation, achieving a 95.9% and 95.2% pixel
accuracy with a ResNet-101 and a MobileNetV2 backbone,
respectively. For BDD-100k, we apply YOLOP [18] to seg-
ment drivable area, which achieves a 91.5% baseline accuracy.
In general, our tool and architecture can evaluate any PyTorch

model to identify to what degree mixed-precision can increase
the efficiency and robustness.

Finding an optimal precision level for each layer’s inter-
mediate result and weights is crucial to benefit the most
from mixed-precision inference. As stated before, we find
those levels using a DSE and a GA. Our GA evaluates
20 generations with a population size of 15. The objective
is set to both maximize the model accuracy and the off-
chip memory compression through quantization. An accuracy
constraint is added to dismiss solutions with a very low model
accuracy. This constraint is obtained based on the baseline
model accuracy. From here, we allow for a 3% accuracy
degradation. To have a broad evaluation, we perform multiple
DSEs: each model and dataset combination is tested with all
the above-mentioned weather conditions and intensities. In
total, we evaluate over 4500 precision combinations.

As stated before, we use Timeloop to get an estimation of
the actual memory transactions and how much traffic we can
save using our compression using mixed-precision inference.
As underlying model in Timeloop we use an Eyeriss-v2
architecture. We adjusted the original parameters of Eyeriss-
v2 to match modern state-of-the-art accelerators: the local
memory is increased to 3 MB, the bus connection to the main
memory to 256 bit and the amount of processing elements to
48x48 (2,304 in total).

A. Evaluation of Mixed-Precision to Enhance Robustness

The results of our DSE are depicted in Figure 3. Corre-
sponding Pareto-optimal solutions are marked in color, while
dominated solutions are shown in gray. Because we evalu-
ate various weather conditions with different intensities for
different networks, we can only show a selection, which,
however, presents our most significant findings. Figure 3a
shows how the model accuracy of a DeepLabV3+ model with
a ResNet-101 backbone is impacted under rainy conditions.
The figure shows the model accuracy concerning the amount
of off-chip memory transactions, with three severity levels
of rain and the baseline in blue. This network running with
entirely bfloat16 requires in total 6,279.88 MB of data being
offloaded. From the figure, we can now see that we can
reduce the off-chip transfers to 2,519.23 MB (59.8% less),
while maintaining the baseline accuracy. Influenced by light
rain (severity level 1, dark green diamond marks), we can
leverage a higher computational precision and keep up with the
accuracy. Here we can save 1,632.2 MB (26%) of data moved
to and fetched from the off-chip memory. If the rain gets
heavier (severity level 2, green circle marks), our approach can
reach an accuracy of 94.5% with more precision. However, at
this severity level, the model accuracy starts to decline, as even
the full-precision algorithm is unable to mitigate heavy rainy
conditions. As reference, we test very heavy rain conditions
(severity level 3, cyan cross marks) using 32 bit floating-
point precision, which only yields a 92.6% pixel accuracy that
our approach can also achieve, but with 26.1% less off-chip
memory transfers.



Baseline Severity 1 Severity 2 Severity 3

88 90 92 94 96

2,000

3,000

4,000

5,000

Accuracy [%]

of
f-

ch
ip

tr
an

sf
er

s
[M

B
]

(a) DeepLabV3+ with ResNet101 backbone
(Baseline accuracy 95.9%, off-chip transfers
without compression: 6,279.8 MB), which is
subject to corruption by rain.

90 92 94 96

1,000

1,200

1,400

1,600

Accuracy [%]

of
f-

ch
ip

tr
an

sf
er

s
[M

B
]

(b) DeepLabV3+ with a MobileNetV2 back-
bone (Baseline accuracy 95.2%, off-chip
transfers without compression: 2,068.9 MB).
Data is subject to corruption by fog.

86 88 90
100

120

140

160

180

Accuracy [%]

of
f-

ch
ip

tr
an

sf
er

s
[M

B
]

(c) YOLOP (Baseline accuracy 90.5%,
off-chip transfers without compression:
266.5 MB) with BDD100k. Data is
corrupted with brightness.

Fig. 3: Model accuracy in relation to the off-chip memory movements required for a single inference of three different CNNs
under various weather conditions. A dashed line shows a lower accuracy constraint.

Similarly, Figure 3b gives the accuracy impact regarding the
precision of a DeepLabV3+ with a MobileNetV2 backbone
under foggy conditions. This network loads and retrieves
2,068.9 MB of data per inference, of which we can save 41.2%
(1,215.75 MB) under clear conditions. At severity level 1, we
can reduce the number of off-chip memory transfers by 23.8%
(492.4 MB) and maintain baseline model accuracy through
mixed-precision inference. With very severe fog, the model
itself cannot maintain the baseline accuracy. Considering the
full precision accuracy of 91.9%, we still reduce off-chip data
movement by 32.4% (672.2 MB).

Figure 3c shows YOLOP, a comparably lightweight model,
for drivable area detection corrupted by heightened brightness.
Running at full precision, the model creates 266.47 MB
memory traffic. With mixed-precision inference, we can reduce
the transfers to 142.77 MB (46% less). At severity level 1,
we can achieve a model accuracy of 90.3% with 146.45 MB
of off-chip movements, 45% less compared to entire bfloat16
precision. From level 2 the model accuracy starts to degrade,
here we can reach 89.3% model accuracy with 152.19 MB of
data transfers, 42.9% less.

B. Hardware Considerations for Mixed-Precision Inference

Now that ideal bit-widths are found, we want to benefit
from the mixed-precision inference in hardware. Therefore,
this subsection will look at the performance of our hardware
architecture, which enables mixed-precision CNN inference
on modern heterogeneous SoCs. To evaluate our architecture,
we map it onto an AMD VCK190 evaluation kit, which is
populated with an AMD Versal XCVC1902 device. Table I
shows a breakdown of the required resources to host our archi-
tecture on the reconfigurable fabric. Our evaluation design has
16 quantization and 16 dequantization units, together with one
extractor and compressor. The design runs at 300 MHz clock

TABLE I: Resource utilization of our hardware prototype
setup. The entire design features 16 quantizer and dequantizer
units, with a 256 bit connection to the off-chip memory.

Component LUTs FFs DSPs BRAM

Entire Design 37,366 25,995 32 9
AXI-DMA & Interfaces 8,007 12,754 0 9
Number converter 29,359 13,241 32 0

Extractor 4,835 2,352 0 0
1x Quantizer 686 257 1 0
1x Dequantizer 556 212 1 0
Compressor 2,138 3,120 0 0

speed. From the table, we can see that our number converter
consumes less than 1% of the total available resources. The
entire design, which comprises all necessary interfaces and
peripherals for data movement, utilizes about 1% of the total
resources. This allows us to scale the number of quantization
and dequantization units up for more demanding designs and
applications, while also keeping spare resources for other
designs that need the reconfigurable fabric as well.

From a performance perspective, it is important for our
design to match the throughput of the DNN accelerator and to
be able to compute modern CNNs within a short time window.
As stated before, we designed it in a highly parallelized and
pipelined fashion. Based on a design with the aforementioned
16 units, we report a latency of two and ten cycles for
the extractor and quantization unit, respectively. Similarly, a
dequantization unit and the compressor have a latency of ten
and two cycles. We tested the latency for different integer
precision, showing a constant latency over the supported two
to 16 bits. In total, we report a latency of 12 clock cycles
per conversion direction, which equals an extra of 2 µs at
300 MHz considering a CNN workload with 50 layers. Since



our number converter has an adjustable number of quanti-
zation and dequantization units and our design utilizes only
a few resources, we can match the throughput requirements
of the DNN accelerator. Considering, for example, YOLOP,
which has 101 layers, Timeloop reports 139 million memory
accesses. Adding the latency for adjusting the configuration of
our architecture between layers for weights and intermediate
results, we can reach a through-put of 4.8 billion conversions
per second with 16 converters, yielding a total performance of
34.35 inferences of YOLOP per second. For the much larger
DeepLabV3+ network with a ResNet-101 backbone, which
requires 3.29 billion off-chip memory accesses, we can report
a performance of 1.45 inferences per second. To achieve a
similar inference rate for this complex workload, we can invest
more resources for more conversion units running in parallel.
Regarding energy consumption, Vivado reports 75 mW for
our test setup with 16 converters running at 300 MHz. This
equals 2.18 mJ of energy per YOLOP inference and 51.72 mJ
for DeepLabV3+ with a ResNet-101 backbone, respectively.

C. Discussion

During our evaluation, we showed good results on various
CNN workloads. However, we also find that an in-depth
evaluation of the workload in advance is important for multiple
reasons. First, it is crucial to identify sweet-spots between
higher model accuracy and fewer off-chip memory accesses,
since some few layers contribute a large share of the off-chip
memory transactions. Therefore, a designer has to bear in mind
and carefully consider acceptable accuracy degradation for a
given application. Second, to figure out the throughput and
latency requirements early on to tune the converter architecture
to match performance requirements. Finally, to save inference
energy from compression, it is crucial to understand the CNN
workload, as selection of the right quantization degree plays
an important role.

V. CONCLUSION

In this paper, we presented our architecture to add sup-
port for mixed-precision inference to modern state-of-the-art
heterogeneous SoCs. We have shown that mixed-precision
inference can not only increase the energy efficiency of
CNN inference, but can also support the model’s robustness
towards various weather conditions, while still saving energy
through targeted quantization of less quantization sensitive
layers. Therefore, we proposed a hardware architecture with
low resource requirements and latency, which takes care of
dynamic number conversion of data going from the off-chip
memory to the accelerator and back. We performed a wide
range of experiments and design space evaluation and gained
insightful results on how the model accuracy behaves under
various weather conditions and degrees of quantization. We
demonstrated, for example, up to 45% less off-chip memory
transactions under rainy conditions while maintaining the
same model accuracy as under clear weather conditions. Our
source code and RTL is available as open-source to foster
further research and extension. In the future, we plan to

evaluate models that were already trained towards robustness.
Furthermore, we want to look into other quantization schemes
that leverage a lower quantization noise.

ACKNOWLEDGEMENT

This project has received funding from the European High
Performance Computing Joint Undertaking (JU) under Frame-
work Partnership Agreement No 800928 and Specific Grant
Agreement No 101036168 (EPI SGA2).

REFERENCES

[1] J. Hoefer et al., “SiFI-AI: A Fast and Flexible RTL Fault Simulation
Framework Tailored for AI Models and Accelerators,” in Proceedings
of the Great Lakes Symposium on VLSI 2023, 5 2023, pp. 287–292.

[2] M. Horowitz, “1.1 Computing’s energy problem (and what we can do
about it),” in 2014 IEEE International Solid-State Circuits Conference
Digest of Technical Papers (ISSCC), Feb. 2014, iSSN: 2376-8606.

[3] H. Kim, Q. Chen, T. Yoo, T. T.-H. Kim, and B. Kim, “A 1-16b precision
reconfigurable digital in-memory computing macro featuring column-
mac architecture and bit-serial computation,” in ESSCIRC 2019 - IEEE
45th European Solid State Circuits Conference (ESSCIRC), 2019.

[4] A. W. Wijayanto, J. J. Choong, K. Madhawa, and T. Murata, “Towards
robust compressed convolutional neural networks,” in 2019 IEEE In-
ternational Conference on Big Data and Smart Computing (BigComp),
2019, pp. 1–8.

[5] F. Khalid et al., “QuSecNets: Quantization-based defense mechanism for
securing deep neural network against adversarial attacks,” in 2019 IEEE
25th International Symposium on On-Line Testing and Robust System
Design (IOLTS), 2019, pp. 182–187.

[6] M. Zhao, K. Ning, S. Yu, L. Liu, and N. Wu, “Quantizing oriented object
detection network via outlier-aware quantization and iou approximation,”
IEEE Signal Processing Letters, vol. 27, pp. 1914–1918, 2020.

[7] B. Moons, R. Uytterhoeven, W. Dehaene, and M. Verhelst, “14.5 en-
vision: A 0.26-to-10tops/w subword-parallel dynamic-voltage-accuracy-
frequency-scalable convolutional neural network processor in 28nm
fdsoi,” in 2017 IEEE International Solid-State Circuits Conference
(ISSCC), 2017, pp. 246–247.

[8] S. Ryu et al., “Bitblade: Energy-efficient variable bit-precision hardware
accelerator for quantized neural networks,” IEEE Journal of Solid-State
Circuits, vol. 57, no. 6, pp. 1924–1935, 2022.

[9] J. Lee, C. Kim, S. Kang, D. Shin, S. Kim, and H.-J. Yoo, “UNPU:
An energy-efficient deep neural network accelerator with fully variable
weight bit precision,” IEEE Journal of Solid-State Circuits, vol. 54,
no. 1, pp. 173–185, 2019.

[10] P. Judd, J. Albericio, T. Hetherington, T. M. Aamodt, and A. Moshovos,
“Stripes: Bit-serial deep neural network computing,” in 2016 49th
Annual IEEE/ACM International Symposium on Microarchitecture (MI-
CRO), 2016, pp. 1–12.

[11] A. Parmar, K. Prasad, N. Rao, and J. Mekie, “An Automated Approach
to Compare Bit Serial and Bit Parallel In-Memory Computing for
DNNs,” in 2022 IEEE International Symposium on Circuits and Systems
(ISCAS), May 2022, pp. 2948–2952, iSSN: 2158-1525.

[12] K. Guo, S. Zeng, J. Yu, Y. Wang, and H. Yang, “A Survey of FPGA-
Based Neural Network Accelerator,” arXiv:1712.08934 [cs], Dec. 2018.

[13] D. Hendrycks and T. G. Dietterich, “Benchmarking Neural Network
Robustness to Common Corruptions and Surface Variations,” Apr. 2019,
arXiv:1807.01697 [cs, stat].

[14] A. Parashar et al., “Timeloop: A Systematic Approach to DNN Accelera-
tor Evaluation,” in 2019 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), Mar. 2019, pp. 304–315.

[15] X. Hu, C.-W. Fu, L. Zhu, and P.-A. Heng, “Depth-Attentional Features
for Single-Image Rain Removal,” 2019, pp. 8022–8031.

[16] C. Michaelis et al., “Benchmarking robustness in object detec-
tion: Autonomous driving when winter is coming,” arXiv preprint
arXiv:1907.07484, 2019.

[17] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, “Encoder-
Decoder with Atrous Separable Convolution for Semantic Image Seg-
mentation,” Aug. 2018, arXiv:1802.02611 [cs].

[18] D. Wu et al., “YOLOP: You Only Look Once for Panoptic Driving
Perception,” Machine Intelligence Research, vol. 19, no. 6, pp. 550–
562, Dec. 2022, arXiv:2108.11250 [cs].


	Introduction
	Motivation and Related Work
	Robustness-aware Quantization of CNNs
	Hardware Architectures for Mixed-Precision Inference

	Tooling and HW-Support for Robust Mixed-Precision CNNs
	Quantization Aware Robustness
	Hardware Support for Mixed-Precision Inference

	Results and Discussion
	Evaluation of Mixed-Precision to Enhance Robustness
	Hardware Considerations for Mixed-Precision Inference
	Discussion

	Conclusion
	References

