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Abstract: Stochastic Optimal Control models represent the state-of-the-art in modeling goal-
directed human movements. The linear-quadratic sensorimotor (LQS) model based on signal-
dependent noise processes in state and output equation is the current main representative.
With our newly introduced Inverse Stochastic Optimal Control algorithm building upon two
bi-level optimizations, we can identify its unknown model parameters, namely cost function
matrices and scaling parameters of the noise processes, for the first time. In this paper, we use
this algorithm to identify the parameters of a deterministic linear-quadratic, a linear-quadratic
Gaussian and a LQS model from human measurement data to compare the models’ capability
in describing goal-directed human movements. Human steering behavior in a simplified driving
task shown to posses similar features as point-ot-point human hand reaching movements serves
as our example movement. The results show that the identified LQS model outperforms the
others with statistical significance. Particularly, the average human steering behavior is modeled
significantly better by the LQS model. This validates the positive impact of signal-dependent
noise processes on modeling human average behavior.
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1. INTRODUCTION

Stochastic Optimal Control (SOC) models are the state-
of-the-art approach to describe human movements to a
single goal (Gallivan et al. (2018)). Since they model basic
optimality principles underlying human movements, like
minimum intervention (Todorov and Jordan (2002)), they
are able to model the average behavior and the variability
patterns of human limb movements. SOC models, and
closed-loop optimization approaches in general, challenge
traditional open-loop optimization models consisting of
a separation between movement planning and execution
(see e.g. Uno et al. (1989); Flash and Hogan (1985)).
Moreover, due to their white-box character SOC models
show higher generalizability and transferability between
tasks than black-box models (alias behavioral cloning, see
e.g. Ross and Bagnell (2010)). The current main SOC
model is the linear-quadratic (LQ) sensorimotor (LQS)
model, not least due to its computational tractability.
The LQS model builds upon the well-known LQ Gaussian
(LQG) framework. To this model, a control-dependent
noise process is added to the state equation describing
that faster movements are performed more inaccurately.
Furthermore, a state-dependent noise process is added to
the output equation describing the higher inaccuracy of
the perception of faster movements. In order to validate
SOC models in specific movement tasks, an identification
method is needed to determine the unknown model param-

eters, namely relative weights of cost function candidates
and scaling parameters of the noise processes, from human
measurement data. Closely associated with the valida-
tion, such an identification method enables the analysis
of optimality principles underlying human movements in a
specific task as well (Franklin andWolpert (2011); Todorov
(2004)), i.e. preferred cost function candidates, influence
of different noise processes on average and variability
patterns as well as comparison to adapted models with
omitted or added model parts. However, until very recently
(Karg et al. (2022)), such an identification method that
identifies all unknown parameters of the LQS model from
human measurement data was non-existent. The identified
models and especially the conclusions drawn from the
analysis of underlying human optimality principles are the
crucial starting point for the design of human-machine
systems that closely interact with the human in a cooper-
ative, intuitive and safe manner: prediction, imitation and
classification of human behavior is enabled as well as a
model-based automation design.

Kolekar et al. (2018) motivate that human steering be-
havior is comparable to point-to-point reaching, widely
considered as movement task in the neuroscientific com-
munity when human hand movements are studied. Since,
in addition, a close cooperation between human and au-
tomation in steering a vehicle shows great potential to
increase safety, for example in takeover scenarios (see Karg
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et al. (2021)), human steering behavior in a simplified
driving task acts as our example movement to investi-
gate SOC models for goal-directed human movements.
Describing human driving behavior via an optimal control
framework traces back to (MacAdam (1981)) but only in
recent years these optimal control models were extended
to include neuroscientific findings (Kolekar et al. (2018);
Nash and Cole (2015); Markkula (2014); Sentouh et al.
(2009)). Nash and Cole (2015) propose the first stochastic
human driver model that is based on the LQG frame-
work. However, their model lacks signal-dependent noise
processes which are promising to be considered (Kolekar
et al. (2018); Markkula (2014)). Kolekar et al. (2018) make
a first step to identify and validate the LQS model for
human steering behavior but do not provide a rigor and
generally applicable identification method that determines
all model parameters. Moreover, they focus on describing
the variability patterns of the human driver and hence, a
comparison between the LQS, LQG and a deterministic
LQ model regarding human average steering behavior is
missing.

In this work, we want to deepen this line of research.
First, we clarify that our steering task is comparable to a
point-to-point reaching task by showing that the kinematic
features of the movements in both tasks match. This
strengthens the motivation done by Kolekar et al. (2018)
that steering is similar to reaching. Then, we use our newly
introduced Inverse Stochastic Optimal Control (ISOC)
algorithm (Karg et al. (2022)) to identify all parameters
of the LQS model from human measurement data and
compare its modeling performance to reduced versions of
it, i.e. to a LQG and LQ model. Here, our comparison and
analysis is particularly focused on human average behavior
and the influence of signal-dependent noise processes on
it. This influence has theoretically been proven in our
previous work (Karg et al. (2022)).

2. MATERIALS AND METHODS

In the following section the LQS model and our ISOC
algorithm (Karg et al. (2022)) are introduced. Afterwards,
the experimental setup is explained.

2.1 Stochastic Optimal Control Models for Goal-Directed
Human Movements

The human biomechanics and the system the human in-
teracts with, e.g. a vehicle with steering wheel, is modeled
via the linear time-discrete system dynamics
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where x ∈ Rn denotes the system state, u ∈ Rm the
control variable (typically neural activation of muscles),
y ∈ Rr the human observation and A,B,H matrices of
appropriate dimension that may depend on time. When
the additional time index t is used, e.g. xt, the stochastic
process of the corresponding variable is denoted. Further-
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i HGi of appropriate dimension. The stochastic
processes αt, εt, βt and εt are independent to each other
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desired steering angle under minimal effort, is modeled by
the performance criterion
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where QN , Q and R are symmetric and of appropriate
dimension. QN , Q are positive semi-definite and R is
positive definite. It is assumed that the human solves the
LQS control problem consisting of the minimization of
(3) with respect to (1) and (2) by an admissible control
strategy. An approximate (suboptimal) solution to the
LQS control problem is given by Todorov (2005) with
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recursive equations (see Todorov (2005)).

Suppose the cost function matrices QN , Q, R and the
noise scaling parameters Σξ, σu

i , Σω, σx
i are known,

the average human behavior (mean E {xt}) and the hu-
man variability pattern (covariance Ωx

t = cov (xt,xt) =
cov (xt)) predicted by the LQS model are given by
Lemma 1.
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et al. (2021)), human steering behavior in a simplified
driving task acts as our example movement to investi-
gate SOC models for goal-directed human movements.
Describing human driving behavior via an optimal control
framework traces back to (MacAdam (1981)) but only in
recent years these optimal control models were extended
to include neuroscientific findings (Kolekar et al. (2018);
Nash and Cole (2015); Markkula (2014); Sentouh et al.
(2009)). Nash and Cole (2015) propose the first stochastic
human driver model that is based on the LQG frame-
work. However, their model lacks signal-dependent noise
processes which are promising to be considered (Kolekar
et al. (2018); Markkula (2014)). Kolekar et al. (2018) make
a first step to identify and validate the LQS model for
human steering behavior but do not provide a rigor and
generally applicable identification method that determines
all model parameters. Moreover, they focus on describing
the variability patterns of the human driver and hence, a
comparison between the LQS, LQG and a deterministic
LQ model regarding human average steering behavior is
missing.

In this work, we want to deepen this line of research.
First, we clarify that our steering task is comparable to a
point-to-point reaching task by showing that the kinematic
features of the movements in both tasks match. This
strengthens the motivation done by Kolekar et al. (2018)
that steering is similar to reaching. Then, we use our newly
introduced Inverse Stochastic Optimal Control (ISOC)
algorithm (Karg et al. (2022)) to identify all parameters
of the LQS model from human measurement data and
compare its modeling performance to reduced versions of
it, i.e. to a LQG and LQ model. Here, our comparison and
analysis is particularly focused on human average behavior
and the influence of signal-dependent noise processes on
it. This influence has theoretically been proven in our
previous work (Karg et al. (2022)).

2. MATERIALS AND METHODS

In the following section the LQS model and our ISOC
algorithm (Karg et al. (2022)) are introduced. Afterwards,
the experimental setup is explained.

2.1 Stochastic Optimal Control Models for Goal-Directed
Human Movements

The human biomechanics and the system the human in-
teracts with, e.g. a vehicle with steering wheel, is modeled
via the linear time-discrete system dynamics
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ε
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t Ciut (1)

yt = Hxt +Σωβt +
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ε
(i)
t Dixt, (2)

where x ∈ Rn denotes the system state, u ∈ Rm the
control variable (typically neural activation of muscles),
y ∈ Rr the human observation and A,B,H matrices of
appropriate dimension that may depend on time. When
the additional time index t is used, e.g. xt, the stochastic
process of the corresponding variable is denoted. Further-
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ε
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(c)
t

]�
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with their scaling matrices Σξ and Ci = σu
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[
ε
(1)
t . . . ε

(d)
t

]�
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equation with their corresponding scaling matricesΣω and
Di = σx

i HGi of appropriate dimension. The stochastic
processes αt, εt, βt and εt are independent to each other
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the performance criterion
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dimension. QN , Q are positive semi-definite and R is
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recursive equations (see Todorov (2005)).
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[
Ωx

0 Ωxx̂
0

Ωx̂x
0 Ωx̂

0

]
=

[
Ωx

0 0
0 0

]
. (9)

Proof. See (Karg et al., 2022, Lemma 2).

Corollary 1. The mean E {xt} of the closed-loop LQS
system depends on the noise scaling parameters σu

i in the
fully observable case (x̂t = xt) and on σu

i , σ
x
i , Σ

ξ and Σω

in the partially observable case.

Proof. From (6) and (8) the dependency of E {xt} on
Lt (4) follows. In the fully observable case, Ze

t drops out
in (4) (see Todorov (2005)) but Lt still depends on Ci and
thus σu

i . In the partially observable case, the additional
dependencies follow from the dependency of Lt on Ze

t
which in turn depends on Kt (see Todorov (2005)).

Corollary 1 shows that the human average behavior E {xt}
predicted by the LQS model depends not only on the cost
function matrices but also on the scaling parameters of the
noise processes. Hence, they could act as a crucial part of
the LQS model improving the performance in describing
human average behavior.

2.2 Inverse Stochastic Optimal Control

Regarding the LQS model introduced in the previous
section, the cost function matricesQN ,Q,R and the noise
(scaling) parameters Σξ, σu

i , Σ
ω, σx

i are unknown and
need to be identified when looking at human movements
in practice. To simplify notation, we combine the cost
function parameters in a vector s ∈ RS and the noise
parameters in a vector σ ∈ RΣ (see Karg et al. (2022)).
Now, we assume that our measurement data consists

of a set {Mx
∗,(k)
t } (k ∈ {1, . . . ,K}) of time-discrete

trajectories Mx
∗,(k)
t where x

∗,(k)
t is a realization of the

stochastic process x∗
t . It results in the closed-loop LQS

system with the unknown cost function s∗ and noise
parameters σ∗ of the human. With M ∈ Rn̄×n, we
consider that not all system states are measured, i.e.
M follows from the identity matrix by deleting rows
corresponding to not measured states. The identification
problem is finally formalized in Problem 1 1 .

Problem 1. Let estimates m̂t ≈ E {Mx∗
t } and Ω̂x∗

t ≈
MΩx∗

t M� computed from the measurement data be
given. Find parameters s̃ and σ̃ such that they lead to x̃t

in the closed-loop LQS system with E {Mx̃t} = E {Mx∗
t }

and MΩx̃
t M

� = MΩx∗
t M�.

In order to solve Problem 1, we have introduced an
ISOC algorithm based on two bi-level optimizations in our
previous work (Karg et al. (2022)). We formulate a direct
optimization problem by defining a performance criterion
JISOC describing how well the mean E {xt} and covariance
Ωx

t predicted by the LQS model with parameters s and σ

match the measurement data m̂t and Ω̂x∗
t . The objective

function JISOC is chosen based on the Variance Accounted
For (VAF) metric:

JISOC =
w�

mm
VAF +w�

v vec
(
ΩVAF

)

‖wm‖1 + ‖wv‖1
, (10)

1 The problem extends typical Inverse Optimal Control or Inverse
Reinforcement Learning problems by additionally searching for scal-
ing parameters of noise processes.

max
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))

Kt,Lt = arg min
Kt,Lt

(
J
(
σ̃(l−1), s
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max
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t by Lemma 1
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t by Lemma 1

Fig. 1. Bi-level-based ISOC algorithm.

where for the elements mVAF
i and ΩVAF

ij

mVAF
i =


1−

∑N
t=0 ((E {Mxt})i − m̂i,t)

2

∑N
t=0

(
m̂i,t − 1

N+1

∑
t m̂i,t

)2


 , (11)

ΩVAF
ij =


1−

∑N
t=0

((
MΩx

t M
T
)
ij
− Ω̂x∗

ij,t

)2

∑N
t=0

(
Ω̂x∗

ij,t − 1
N+1

∑
t Ω̂

x∗
ij,t

)2


 (12)

holds. In (10), wm ∈ Rn̄ and wv ∈ Rn̄n̄ denote
weighting vectors. Due to the VAF metric JISOC ∈
(−∞, 1] holds with 1 corresponding to a perfect fit be-
tween predicted and measured data. Therefore, the direct
ISOC optimization problem consists of maximizing JISOC:

max
s,σ

(
JISOC

(
m̂t, Ω̂

x∗
t ,E {xt} ,Ωx

t

))
. The evaluation of

JISOC with specific values for s and σ depends on calcu-
lating the model predictions E {xt} and Ωx

t which in turn
depends on solving the forward optimal control problem,
i.e. computing Kt and Lt. Hence, maximizing JISOC leads
to a bi-level optimization problem where the upper level
optimization consists of maximizing JISOC and the lower
level of calculatingKt, Lt, E {xt} andΩx

t . In order to keep
this optimization computationally tractable, we apply an
alternating optimization approach by computing the best
estimate s̃(l) for a given estimate σ̃(l−1) in the first step
of one iteration l and in the second vice versa. This leads
to the iteration between two bi-level optimizations shown
in Fig. 1. Furthermore, in the lower levels of both bi-level
optimizations our newly introduced Lemma 1 is utilized
to simplify the computation of E {xt} and Ωx

t by applying
recursive calculations only. Finally, for solving the upper
level optimizations the parameters s and σ are divided
into parameter sets where each parameter is supposed to
be in at least one set and where the parameters in one
set are assumed to have a mutually correlated influence
on JISOC. Then, grid searches with fixed grid size are
performed on these parameter sets iteratively until no
further improvement with the current grid size is achieved.
Then, the grid size is shrinked. Further details regarding
the ISOC algorithm can be found in (Karg et al. (2022)).

Fig. 2. Screen visualization of the simplified steering task.
The study participants interacted with an active
steering wheel to change the horizontal position of the
squared marker and were asked to follow the piecewise
constant reference trajectory as best as possible.

2.3 Human Driving Experiment

The human measurement data was gathered by a study
where 14 participants (12 male and 2 female subjects) aged
between 19 and 29 (24.9 in average) performed a simplified
steering task. The participants interacted with an active
steering wheel which was equipped with an incremental
encoder (40000 steps per full rotation) to measure the
steering angle ϕ with a sampling frequency of 100Hz.
Based on the steering angle measurements torque was
applied by the steering wheel such that it mimicked the
dynamics of a spring-damper system. With the steering
wheel the participants were able to move a marker (square)
on a screen on a horizontal line with fixed vertical position
(cf. Figure 2). The horizontal position of the marker was
a linear mapping of the steering angle. On the display,
a reference trajectory for the marker (cf. Figure 2) was
shown and the participants were asked to follow it as best
as possible. The reference trajectory moved downwards
with constant velocity. The reference trajectory shown for
the marker is directly connected to a reference trajectory
ϕr,t for the steering angle. The trial of one participant
started with a familiarization phase of 210 s consisting of
different segments with a steering angle reference with
constant curvature where the curvature varied between
those segments. Afterwards, the reference consisted of 14
repetitions of the same piecewise constant pattern: ϕr = 0,
ϕr = + 2

3π, ϕr = 0 and ϕr = − 2
3π, each for a duration of

100 time steps.

Regarding the data preparation, we first applied a cubic
spline smoothing on the measured steering angle to reduce
measurement noise. Afterwards, we calculate the steering
angle velocity ϕ̇t via numerical differentiation. Since the
measured data consists of 14 repetitions of the + 2

3π-step

as well as 14 repetitions of the − 2
3π-step, we calculate

estimates of human average behavior (m̂t) and human

variability pattern (Ω̂x∗
t ) for each of these movements from

the corresponding 14 repetitions. Hereto, we determine
the starting time for each single movement repetition as
the last point in time where ϕ ≈ 0 and ϕ̇ < 0.1 s−1

holds. In some segments with ϕr = 0 the steering angle
velocity is always above this threshold. Then, we increase
the threshold in 0.01 s−1-steps until a maximum value
of 0.4 s−1. If even this maximally relaxed condition is
not fulfilled, we remove this single movement repetition
from the further analysis since the human clearly starts
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Fig. 3. Steering angle velocity profiles of all 14 subjects
(S1-S14) for the + 2

3π-step.

not from an equilibrium condition in this case. Finally,
the remaining repetitions are used to calculate the mean
(m̂t) and covariance estimate (Ω̂x∗

t ) of ϕt and ϕ̇t. The
movement duration is defined as the averaged movement
duration of those repetitions which fulfill the condition for
a movement ending (ϕ ≈ ± 2

3π and ϕ̇ < 0.1 s−1). This data
preparation is done for every subject.

Fig. 3 shows the steering angle velocity profiles for the
+ 2

3π-step achieved by the averaging procedure described
before. Remarkably, the profiles possess very similar kine-
matic features as point-to-point reaching movements: they
are all single-peaked and predominantly bell-shaped and
nearly symmetric. The majority of the profiles is further-
more slightly left-skewed which indicates that the subjects
tend to perform fast movements (Engelbrecht (2001)).
Moreover, the maximum to mean ratios of E {ϕ̇} range
from 1.78 to 2.26 (when S10 is not considered due to its
outlier behavior). All these features were also observed
for point-to-point human hand movements (Engelbrecht
(2001)). This conclusion shows on one side the validity of
our measured data and on the other that we can make a
first step towards a data-driven validation of SOC models
for general goal-directed human movements by applying
our ISOC algorithm.

Before results of this application are presented in the next
section, the system equations (1) and (2) need to be set
up for the driving experiment. The active steering wheel
is modeled by the spring-damper dynamics

Θϕ̈ = −cϕ− dϕ̇+Mh, (13)

where Mh is the steering torque applied by the human. It
results from a second-order linear filter with time constants
τ1 and τ2 describing the low-pass characteristics of the
muscle dynamics (Winter (1990)):

τ1ġ + g = u, τ2Ṁh +Mh = g, (14)

where u is the neural activation and g the muscle excita-

tion. We define the system state as x = [ϕ ϕ̇ Mh g ϕr]
�
.

The augmentation of it with the target steering angle ϕr

(constant dynamics) is a mathematical reformulation to
consider target steering angles ϕr �= 0 but still constitute
the cost function in the form of (3):

J = E

{
s1(xN,1 − xN,5)

2 + s2x
2
N,2 + s3x

2
N,3 +

N−1∑

t=0

s4u
2
t

}
,

(15)
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Fig. 2. Screen visualization of the simplified steering task.
The study participants interacted with an active
steering wheel to change the horizontal position of the
squared marker and were asked to follow the piecewise
constant reference trajectory as best as possible.

2.3 Human Driving Experiment

The human measurement data was gathered by a study
where 14 participants (12 male and 2 female subjects) aged
between 19 and 29 (24.9 in average) performed a simplified
steering task. The participants interacted with an active
steering wheel which was equipped with an incremental
encoder (40000 steps per full rotation) to measure the
steering angle ϕ with a sampling frequency of 100Hz.
Based on the steering angle measurements torque was
applied by the steering wheel such that it mimicked the
dynamics of a spring-damper system. With the steering
wheel the participants were able to move a marker (square)
on a screen on a horizontal line with fixed vertical position
(cf. Figure 2). The horizontal position of the marker was
a linear mapping of the steering angle. On the display,
a reference trajectory for the marker (cf. Figure 2) was
shown and the participants were asked to follow it as best
as possible. The reference trajectory moved downwards
with constant velocity. The reference trajectory shown for
the marker is directly connected to a reference trajectory
ϕr,t for the steering angle. The trial of one participant
started with a familiarization phase of 210 s consisting of
different segments with a steering angle reference with
constant curvature where the curvature varied between
those segments. Afterwards, the reference consisted of 14
repetitions of the same piecewise constant pattern: ϕr = 0,
ϕr = + 2

3π, ϕr = 0 and ϕr = − 2
3π, each for a duration of

100 time steps.

Regarding the data preparation, we first applied a cubic
spline smoothing on the measured steering angle to reduce
measurement noise. Afterwards, we calculate the steering
angle velocity ϕ̇t via numerical differentiation. Since the
measured data consists of 14 repetitions of the + 2

3π-step

as well as 14 repetitions of the − 2
3π-step, we calculate

estimates of human average behavior (m̂t) and human

variability pattern (Ω̂x∗
t ) for each of these movements from

the corresponding 14 repetitions. Hereto, we determine
the starting time for each single movement repetition as
the last point in time where ϕ ≈ 0 and ϕ̇ < 0.1 s−1

holds. In some segments with ϕr = 0 the steering angle
velocity is always above this threshold. Then, we increase
the threshold in 0.01 s−1-steps until a maximum value
of 0.4 s−1. If even this maximally relaxed condition is
not fulfilled, we remove this single movement repetition
from the further analysis since the human clearly starts
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not from an equilibrium condition in this case. Finally,
the remaining repetitions are used to calculate the mean
(m̂t) and covariance estimate (Ω̂x∗

t ) of ϕt and ϕ̇t. The
movement duration is defined as the averaged movement
duration of those repetitions which fulfill the condition for
a movement ending (ϕ ≈ ± 2

3π and ϕ̇ < 0.1 s−1). This data
preparation is done for every subject.

Fig. 3 shows the steering angle velocity profiles for the
+ 2

3π-step achieved by the averaging procedure described
before. Remarkably, the profiles possess very similar kine-
matic features as point-to-point reaching movements: they
are all single-peaked and predominantly bell-shaped and
nearly symmetric. The majority of the profiles is further-
more slightly left-skewed which indicates that the subjects
tend to perform fast movements (Engelbrecht (2001)).
Moreover, the maximum to mean ratios of E {ϕ̇} range
from 1.78 to 2.26 (when S10 is not considered due to its
outlier behavior). All these features were also observed
for point-to-point human hand movements (Engelbrecht
(2001)). This conclusion shows on one side the validity of
our measured data and on the other that we can make a
first step towards a data-driven validation of SOC models
for general goal-directed human movements by applying
our ISOC algorithm.

Before results of this application are presented in the next
section, the system equations (1) and (2) need to be set
up for the driving experiment. The active steering wheel
is modeled by the spring-damper dynamics

Θϕ̈ = −cϕ− dϕ̇+Mh, (13)

where Mh is the steering torque applied by the human. It
results from a second-order linear filter with time constants
τ1 and τ2 describing the low-pass characteristics of the
muscle dynamics (Winter (1990)):

τ1ġ + g = u, τ2Ṁh +Mh = g, (14)

where u is the neural activation and g the muscle excita-

tion. We define the system state as x = [ϕ ϕ̇ Mh g ϕr]
�
.

The augmentation of it with the target steering angle ϕr

(constant dynamics) is a mathematical reformulation to
consider target steering angles ϕr �= 0 but still constitute
the cost function in the form of (3):
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from which the definition of the cost function vector
s follows. Discretizing (13) and (14) and choosing the
numerical values as Θ = 0.056 kgm2, c = 1.146Nm,
d = 0.859Nms and τ1 = τ2 = 0.04 s yields A and B.
Furthermore, H = [I3×3 03×2] is assumed for the human
perception since ϕr only results from the above mentioned
mathematical reformulation and g cannot be clearly as-
sociated with the human sensory apparatus. Due to lack
of further knowledge about the additive noise processes
and to keep the number of noise parameters tractable,
independent stochastic processes αi,t and βi,t are modeled
for every state and output: Σξ = diag([σ1 σ2 σ3 σ4 0])
and Σω = diag([σ5 σ6 σ7]). Finally, the signal-dependent
noise processes are modeled by C = σ8B (single-
input system), D1 = σ9H diag([1 0 0 0 0]), D2 =
σ10H diag([0 1 0 0 0]) and D3 = σ11H diag([0 0 1 0 0])
which completes the definition of the noise parameter
vector σ. Again, due to lack of further knowledge about the
state-dependent noise processes, the Gi are chosen such
that every perceived state is influenced by an independent
noise process scaled by the corresponding state. In case
of the LQG and LQ model, the signal-dependent and all
noise parameters drop out, respectively.

For applying our ISOC algorithm, we first divide the
measurement data into training and validation data. The
parameters s and σ of the LQS, LQG and LQ model are
identified for each subject individually with m̂t and Ω̂x∗

t
calculated from the repetitions of the +2

3π-step. Here, we
set M = [I2×2 02×3] since ϕ and ϕ̇ are measured. The
repetitions of the − 2

3π-step serve as validation data, i.e.

the corresponding values for m̂t and Ω̂x∗
t are the ground

truth data for the LQS, LQG and LQ model predictions
computed with s̃ and σ̃. The weighting vectors for the
cost function bi-level optimization are chosen as wm =

[0.9 0.9]
�
and wv = [0.1 0]

�
in case of the LQS and LQG

model and as wm = [1 1]
�

and wv = [0 0]
�

for the LQ
model. For the noise parameter bi-level optimization in

case of the LQS and LQG model, wm = [0.1 0.1]
�

and

wv = [0.9 0]
�

holds.

3. RESULTS

As motivated before, the focus of our model validation and
comparison particularly lies on human average behavior.
Hence, we first present detailed results of the LQS, LQG
and LQ model in describing the human average steering
behavior on training and validation data. Fig. 4 and
Fig. 5 show the VAF values of all 14 subjects as well
as the average over all subjects for E {ϕ} and E {ϕ̇} on
training and validation data, respectively. The LQS model
outperforms the LQG and LQ model for every subject and
in average on training and validation data, regarding E {ϕ}
and E {ϕ̇}. On validation data, the LQS model predictions
show VAF values of 0.989 (E {ϕ}) and 0.893 (E {ϕ̇}) in
average compared to 0.926 and 0.514 in case of the LQG
and LQ model. When considering average behavior, the
LQG and LQ model show identical predictions and VAF
values as expected since the additive noise processes do not
influence the predicted steering angle (velocity) mean (see
Corollary 1). We perform an analysis of variance (ANOVA)
to underline that the improvement of the LQS model is
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Fig. 4. VAF values for the steering angle mean (blue)
and steering angle velocity mean (purple) achieved
with the identified LQS, LQG and LQ model on the
training data set. Lines correspond to the average
value over all subjects.
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Fig. 5. VAF values for the steering angle mean (blue)
and steering angle velocity mean (purple) achieved
with the identified LQS, LQG and LQ model on the
validation data set. Lines correspond to the average
value over all subjects.
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Fig. 6. Predictions of all three models compared to human
measurement data on validation data for subject 2.

statistical significant by achieving p-values of 1.6·10−4 and
2.5 · 10−9 for E {ϕ} and E {ϕ̇}, respectively. On training
data, very similar VAF and p-values result.
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Fig. 7. Predictions of the LQG and LQS model compared
to human measurement data on validation data for
subject 1.

In Fig. 6 the predictions of E {ϕ} and E {ϕ̇} of the three
models are depicted together with the human measure-
ment for subject 2 to show the better performance of the
LQS model qualitatively as well. Regarding the steering
angle velocity, the LQS model especially describes the bell-
shape and the maximum of the measurement curve better.

Concerning the steering angle variance, the human mea-
surement data can only be described by the LQG and LQS
model via overfitting. Both models achieve on the training
data set VAF values from 0.451 to 0.996 with 0.880 in
average (LQG) and from 0.616 to 0.985 with 0.904 in
average (LQS), with no statistical difference. On validation
data, the VAF values range from −104.2 to 0.895 with
−7.288 in average (LQG) and from −107.1 to 0.894 with
−7.648 in average (LQS). In Fig. 7, the predictions of the
LQG and LQS model for subject 1 underline this poor
performance in describing the measured steering angle
variance qualitatively.

4. DISCUSSION

One of our main research objectives in this work is to
analyze and prove the positive influence of the signal-
dependent noise processes of the LQS model on describing
human average behavior. Therefore, we begin the discus-
sion of the results presented in Section 3 by formulating
the following hypothesis.

Hypothesis 1. The LQS model describes human average
steering behavior represented by the mean of steering angle
E {ϕ} and steering angle velocity E {ϕ̇} significantly better
than a LQG or deterministic LQ model.

With Fig. 5 and the ANOVA results, Hypothesis 1 can
be accepted since the LQS model outperforms the others
for significance levels well below 1%. Remarkably, the
LQS model is able to describe the velocity profiles (see
Fig. 3) better since the average VAF value for E {ϕ̇} is
nearly 75% higher in case of the LQS model. Furthermore,
the qualitative shape of the profiles matches better (see
Fig. 6). However, E {ϕ̇} is predicted slightly worse than
E {ϕ} which can be concluded from the VAF values in
Fig. 4 and Fig. 5 as well as from example subject 2 (see
Fig. 6). The main reason for this is that the sections with
constant reference ϕr were too short. Consequently, we
set the threshold for determining the movement duration
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Fig. 8. VAF values achieved with the LQS model on
validation data over control-dependent noise scaling
parameter σ8. Box plot for σ8 is shown additionally
where outliers at σ8 ≈ 0 and σ8 ≈ 0.16 are dropped.

(ϕ̇ < 0.1 s−1) relatively high to separate a single movement
from a movement to a new target steering angle. Therefore,
several velocity profiles do not show a convergence to zero
at the movement ending which however the LQS model
tends to predict (see Fig. 6). Furthermore, subject 10
seems to have problems in following these tough reference
changes resulting in its outlier behavior (see Fig. 3) which
none of the models can describe (VAF values < 0.5, see
Fig. 5). Hence, with a reworked study design regarding
the target steering angle we expect similar results for the
predictions of E {ϕ} and E {ϕ̇} in case of the LQS model
as well as no outlier behavior of participants.

The significant better modeling performance of the LQS
model compared to the reduced versions of it without
signal-dependent noise processes is already a strong in-
dication that especially these parts of the model have a
positive influence on describing human average behavior.
In order to provide a further evidence for this claim,
Fig. 8 depicts an analysis of the scaling parameter of
the control-dependent noise process which we assume to
have the biggest positive influence according to findings in
literature (see Harris and Wolpert (1998)). In Fig. 8, the
VAF values for E {ϕ} and E {ϕ̇} achieved on validation
data with the identified LQS model are plotted over σ8.
Now, when the data points at σ8 ≈ 0.16 (subject 10)
and at σ8 ≈ 0 (ISOC algorithm converged into a local
optimum) are considered as outliers, for σ8 the box plot in
Fig. 8 results. The box plot highlights that the high VAF
values (0.996 and 0.945 in average for E {ϕ} and E {ϕ̇}) of
the remaining subjects are achieved with σ8-values greater
than 0.2. Hence, our data-driven analysis confirms findings
in literature and theoretically expected by Corollary 1
that the signal-dependent and particularly the control-
dependent noise process of the LQS model improves the
performance of modeling human average behavior.

Concerning the description of human variability patterns
with different SOC models, we cannot draw conclusions
from our results. The main reason is that 14 repetitions
of the same movement are (most likely) not enough to
approximate the real human variability pattern. Hence, it
cannot be assumed that the assumption on the estimate
Ω̂x∗

t in Problem 1 is fulfilled and the parameters deter-
mined on training data show poor generalization related
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In Fig. 6 the predictions of E {ϕ} and E {ϕ̇} of the three
models are depicted together with the human measure-
ment for subject 2 to show the better performance of the
LQS model qualitatively as well. Regarding the steering
angle velocity, the LQS model especially describes the bell-
shape and the maximum of the measurement curve better.

Concerning the steering angle variance, the human mea-
surement data can only be described by the LQG and LQS
model via overfitting. Both models achieve on the training
data set VAF values from 0.451 to 0.996 with 0.880 in
average (LQG) and from 0.616 to 0.985 with 0.904 in
average (LQS), with no statistical difference. On validation
data, the VAF values range from −104.2 to 0.895 with
−7.288 in average (LQG) and from −107.1 to 0.894 with
−7.648 in average (LQS). In Fig. 7, the predictions of the
LQG and LQS model for subject 1 underline this poor
performance in describing the measured steering angle
variance qualitatively.

4. DISCUSSION

One of our main research objectives in this work is to
analyze and prove the positive influence of the signal-
dependent noise processes of the LQS model on describing
human average behavior. Therefore, we begin the discus-
sion of the results presented in Section 3 by formulating
the following hypothesis.

Hypothesis 1. The LQS model describes human average
steering behavior represented by the mean of steering angle
E {ϕ} and steering angle velocity E {ϕ̇} significantly better
than a LQG or deterministic LQ model.

With Fig. 5 and the ANOVA results, Hypothesis 1 can
be accepted since the LQS model outperforms the others
for significance levels well below 1%. Remarkably, the
LQS model is able to describe the velocity profiles (see
Fig. 3) better since the average VAF value for E {ϕ̇} is
nearly 75% higher in case of the LQS model. Furthermore,
the qualitative shape of the profiles matches better (see
Fig. 6). However, E {ϕ̇} is predicted slightly worse than
E {ϕ} which can be concluded from the VAF values in
Fig. 4 and Fig. 5 as well as from example subject 2 (see
Fig. 6). The main reason for this is that the sections with
constant reference ϕr were too short. Consequently, we
set the threshold for determining the movement duration
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(ϕ̇ < 0.1 s−1) relatively high to separate a single movement
from a movement to a new target steering angle. Therefore,
several velocity profiles do not show a convergence to zero
at the movement ending which however the LQS model
tends to predict (see Fig. 6). Furthermore, subject 10
seems to have problems in following these tough reference
changes resulting in its outlier behavior (see Fig. 3) which
none of the models can describe (VAF values < 0.5, see
Fig. 5). Hence, with a reworked study design regarding
the target steering angle we expect similar results for the
predictions of E {ϕ} and E {ϕ̇} in case of the LQS model
as well as no outlier behavior of participants.

The significant better modeling performance of the LQS
model compared to the reduced versions of it without
signal-dependent noise processes is already a strong in-
dication that especially these parts of the model have a
positive influence on describing human average behavior.
In order to provide a further evidence for this claim,
Fig. 8 depicts an analysis of the scaling parameter of
the control-dependent noise process which we assume to
have the biggest positive influence according to findings in
literature (see Harris and Wolpert (1998)). In Fig. 8, the
VAF values for E {ϕ} and E {ϕ̇} achieved on validation
data with the identified LQS model are plotted over σ8.
Now, when the data points at σ8 ≈ 0.16 (subject 10)
and at σ8 ≈ 0 (ISOC algorithm converged into a local
optimum) are considered as outliers, for σ8 the box plot in
Fig. 8 results. The box plot highlights that the high VAF
values (0.996 and 0.945 in average for E {ϕ} and E {ϕ̇}) of
the remaining subjects are achieved with σ8-values greater
than 0.2. Hence, our data-driven analysis confirms findings
in literature and theoretically expected by Corollary 1
that the signal-dependent and particularly the control-
dependent noise process of the LQS model improves the
performance of modeling human average behavior.

Concerning the description of human variability patterns
with different SOC models, we cannot draw conclusions
from our results. The main reason is that 14 repetitions
of the same movement are (most likely) not enough to
approximate the real human variability pattern. Hence, it
cannot be assumed that the assumption on the estimate
Ω̂x∗

t in Problem 1 is fulfilled and the parameters deter-
mined on training data show poor generalization related
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to covariance predictions. Fig. 7 yields a possible reason
for this behavior. Although the measured variance of the
steering angle in case of the shown − 2

3π-step in the ref-
erence (validation data) shows reasonable characteristics,
i.e. single-peaked curve with a maximum at the maximum
velocity, the maximum value is with 0.0165 around one
order of magnitude smaller than that on the training data
(0.139). Since different but in the order of magnitude
identical variance curves for the +2

3π-step and − 2
3π-step

would be expected, the estimated variance seems to be
not representative for the real human variability. In future
work, we will increase the number of single movements
observed from subjects to overcome this problem. Since
this poor variance description can already be seen at the
steering angle, we dropped the velocity, which is only
numerically computed from it, in the covariance fitting
and analysis.

Although we look at a very specific application field (hu-
man steering behavior) at a first glance, the analysis of the
kinematic features highlights that steering in our simplified
driving task is indeed comparable to point-to-point human
hand reaching (see Section 2.3). Hence, we strengthen on
one side the proposition done by Kolekar et al. (2018)
that steering is comparable to reaching and can make
on the other a step towards a data-driven validation and
analysis of SOC models for general goal-directed human
movements. Thus, we are strongly convinced to be able
to draw similar conclusions when we apply our ISOC
algorithm to data of human hand movements: significant
better performance of the LQS model in describing human
average behavior quantitatively as well as qualitatively
and scaling parameters of the control-dependent noise
process as the main reason for this modeling performance.

5. CONCLUSION

In this paper, we use our previously developed Inverse
Stochastic Optimal Control (ISOC) algorithm solving the
identification problem of the linear-quadratic (LQ) sensori-
motor (LQS) model to compare its capability in describing
human steering behavior in a simplified driving task to
a LQ Gaussian (LQG) and deterministic LQ model. In
this context, an important focus lies on human average
behavior. The final results show that the LQS model is
able to predict the mean of steering angle and steering
angle velocity with Variance Accounted For (VAF) values
of 0.989 and 0.893 on a validation data set and averaged
over 14 subjects. The improvement compared to the results
of the LQG and LQ model is statistical significant with
significance levels well below 1%. Based on a parameter
analysis, this significant better performance can be traced
back to the control-dependent noise process characteristic
for the LQS model. Since the movements in our simplified
driving task show similar kinematic features as point-to-
point human hand movements, this is a strong indication
that the signal-dependent and in particular the control-
dependent noise process of the LQS model is one of the
crucial model parts to describe human average behavior.
For human-machine systems, this better performance of
the LQS model in characterizing human average behavior
can be used for more accurate predictions of human move-
ments in shared workspace applications or to facilitate a

more intuitive support of humans in a trajectory tracking
task.
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