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1. Introduction

1.1. The mesoscopic challenges

The term mesoscale represents an intermediate scale between the microscale and macroscale
and is present in various physical systems, including materials, atmospheric phenomena,
and even cosmology[1, 2]. At the mesoscale, a unique structure, called the mesostructure,
is characterized by dynamic heterogeneity in both space and time, which is essential
to the system’s overall performance and behavior. In materials science, the mesoscale
is particularly important as it governs many material properties and phenomena. In
atmospheric science, the mesoscale describes the range of scales between turbulent eddies
and global weather patterns. Similarly, in cosmology, the mesoscale refers to the range of
scales between the smallest structures, such as stars and galaxies, and the largest structures,
such as galaxy clusters and cosmic filaments. Mesoscopic science (mesoscience), which
encompasses a wide range of scientific subjects, is the study of mesoscopic systems (see
Figure 1.1). It deals with systems that are both too big and too small for macroscopic
laws or quantum physics to adequately describe them. Among many other scientific
disciplines, mesoscopic science involves physics, chemistry, biology, materials science, and
engineering[3]. Its multiscale nature addresses systems that exist at various scales, from the
molecular to the macroscopic[4]. In mesoscopic science, it is essential to comprehend how
systems behave and interact at various scales in order to precisely predict and understand
their behavior[5]. Materials, such as nanomaterials[6], and biological systems[7], such as
proteins[8] and cells[9], are examples of multiscale systems in mesoscopic science. Mesoscopic
research has its roots in the late 20th century, when technological advancements made it
possible to create and study small-size systems[10]. Following that, mesoscopic science has
evolved into a multidisciplinary field with a variety of applications in industries including
electronics, materials science, biophysics, and nanotechnology[11]. The discovery of quantum
transport in semiconductor nanostructures was one of the pivotal moments in the history
of mesoscopic science[10] that resulted in understanding better the behavior of electrons
in nanoscale systems[4]. The development of techniques to study the motion of ions and
molecules through biological membranes was a key development in the field of biophysics[12].
Numerous prestigious awards have been given to researchers in honor of these and other
significant contributions to the field of mesoscopic science. The National Medal of Science,
the Wolf Prize in Physics, the Nobel Prize in Physics, and the Kavli Prize in Nanoscience are
a few of the famous honors[4, 11]. These awards, which acknowledge the major achievements
made by researchers in this field, are considered as some of the highest in the scientific
community. An interdisciplinary approach that incorporates theoretical, experimental,
and computational methods is necessary for mesoscopic research. Theoretical approaches
give a foundation for understanding the governing principles and processes of mesoscopic
systems. The validity of these ideas may then be established and tested by experiments,
which provides crucial empirical data that supports the validity of theoretical models. One
useful tool that computational approaches provide for studying mesoscopic systems in a
virtual environment is mesoscopic simulation. With the help of this tool, researchers may
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simulate and analyze the behavior of complex systems under various conditions[13, 14, 15].
Considering the multiscale nature of mesoscopic science, numerous scientific problems and
challenges are associated with the study in mesoscopic systmes, that some of them are
listed here: 1) Length scale problem: mesoscopic systems frequently span multiple length
scales, from the nanoscale to the macroscale. It is important to consider the interactions
and effects at each length scale in order to fully understand how effectively these systems
function.

Figure 1.1.: All mesoscale phenomena: this represents a common challenge for the
whole spectrum of science and technology. Reprinted from Ref.[16], used under Creative
Commons CC-BY license.

For instance, quantum mechanical effects become more significant at the nanoscale, and
it can be difficult to integrate them with classical mechanics[17]. 2) Complexity: the
behavior of mesoscopic systems usually involves complex interactions between a number
of components and physical processes, making it challenging to predict and understand.
For instance, describing and understanding the connection between electrical transport
and electrostatic interactions in mesoscopic electronics may be difficult.[10]. 3) Modelling
and simulation: it might be hard to develop accurate models and simulations to estimate
the behavior of mesoscopic systems, particularly when several physical phenomena and
length scales are involved. For instance, it is frequently necessary to take both classical
and quantum physics into account when modelling the behavior of nanoscale systems[18].
4) Experimental measurements: developing novel experimental methods and measurement
equipment could be required to evaluate the behavior of mesoscopic systems at various
length scales. For instance, the small signal strength and sample size make it difficult to
detect electronic transport in nanoscale systems[19]. 5) Environmental interactions: it can
be problematic to predict and control the behavior of mesoscopic systems due to the way
strongly their surroundings, such as temperature, pressure, and electromagnetic fields, can
affect them. For instance, it might be difficult to ensure consistent experiment performance
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and reproducibility due to the sensitivity of nanoscale systems to external influences[20].
6) Integration with macroscale systems: incorporating a mesoscale system into macroscale
systems can present challenges due to compatibility and interface issues. Achieving reliable
and efficient performance when integrating nanoscale electronic devices with macroscale
systems may require the development of novel materials and processes[21]. These challenges
of understanding and modeling complex systems refer to multiscale problems. The fact
that interactions and events that take place at various scales can affect a system's behavior
at one scale is one of the primary challenges in solving the multiscale problem. To overcome
these difficulties, scientists are developing novel methods and approaches for investigating
mesoscopic systems. To understand the structure and operation of mesoscopic systems at
the nanoscale, for instance, cutting-edge imaging and spectroscopic techniques are being
applied[22]. Additionally, mathematical and statistical models are employed to simulate and
estimate how mesoscopic systems would behave in specific situations[23, 24, 25]. The study
of mesoscopic systems often involves developing models and simulations to understand
the behavior of these systems and the interactions between their various components[10].
This requires a multidisciplinary strategy that integrates knowledge and methods from
several scientific disciplines. For instance, mesoscopic physics incorporates knowledge
from materials science, chemistry, electrical engineering, and both classical and quantum
physics. Researchers may employ a variety of techniques such as computer simulations,
analytical techniques, and experiments, to explore the behavior of these complex systems.
Mesoscopic research seeks to comprehend these complex systems better and to apply that
knowledge to the development of novel materials, tools, and technology.[4]. Mesoscopic
science has advanced substantially due to computational methods and simulations. The
rapid technological advancement of computers has made it possible to create ever-more
complex simulation tools and techniques, which has driven the use of these methods in
mesoscopic science. These tools enable mesoscopic systems to be studied in a virtual setting,
providing researchers with additional insight into the behavior and characteristics of systems
without the constraints of experiments[13]. Some of the methods and techniques used in
mesoscopic science include: Molecular Dynamics (MD) simulations involve analyzing the
behavior of atomic-scale systems through the simulation of individual atom and molecule
motion using classical mechanics[26]. This method has been used to study the behavior of
biological molecules, including their structure and function[27]. In contrast, Continuum
Mechanics simulations utilize mathematical models to describe the behavior of systems
on a macroscale, such as fluids and solids[28]. This method has been applied to study
the behavior of fluids in microfluidic devices[29]. Monte Carlo simulations are numerical
simulation methods that model the behavior of a system using random sampling. These
simulations have been employed to study the transport of electrons in mesoscopic systems
such as quantum dots[30, 31]. Density functional theory (DFT) is a quantum mechanical
method used to analyze the electronic structure and properties of materials. It has been
used to investigate the electronic properties of nanoscale systems and their interactions
with other materials in mesoscopic science[32, 33]. Non-equilibrium Green’s functions
(NEGF) is a method used to study the electron transport through mesoscopic systems
like quantum dots and nanoscale transistors. NEGF can be employed to study the effect
of interactions between electrons, including the scattering of electrons by impurities, and
the transmission of electrons through the system[12]. Other methods and techniques used
in mesoscopic science include the Finite Difference Method (FDM)[34], Finite Element
Method (FEM)[35], or the Boltzmann transport equation (BTE)[36], and classical and
quantum transport simulations[37]. The choice of computational method or technique
depends on the specific problem and the type of system under study.
Despite all these efforts, there is often a gap between the length scales of atomistic and
macroscopic simulations, creating a so-called "mesoscale gap"[38]. The mesoscale gap refers
to the challenge in capturing the behavior of systems that exhibit multiple interacting
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length and time scales. This understanding is crucial for the development of new materials,
technologies, and advancements in human health. There are currently two simulation
approaches for mesoscale systems: atomistic simulations and continuum models. While
atomistic simulations, such as Molecular Dynamics (MD) simulations, provide detailed
representations of the behavior of individual atoms or molecules based on the principle of
Newton's laws of motion[39], they are limited in their ability to cover the multiscale gap
due to their high computational cost and inability to provide a macroscopic description
of a system[40, 41]. To provide a more complete understanding of mesoscale systems,
continuum models, such as finite element analysis or finite difference methods, are used in
combination with atomistic simulations[41, 42, 43]. These models provide a macroscopic
representation of the behavior of a system and treat it as a continuous entity using
partial differential equations[43]. Continuum simulations are advantageous due to their
computational efficiency and reduced complexity compared to atomistic simulations[44].
However, they have limitations in capturing the behavior of complex mesoscale systems[45],
such as discontinuities, sharp interfaces, and large fluctuations in temperature or pressure[44].
While they provide a macroscopic representation of the behavior of mesoscale systems, they
cannot offer a detailed understanding of individual atoms or molecules[43]. To overcome
this limitation, researchers have developed multiscale simulation methods that integrate
atomistic and macroscopic simulations[46]. These methods provide a more comprehensive
understanding of mesoscale systems across different length and time scales, and have been
used to study the behavior of materials in energy storage devices[47]. Among the developed
methods, Kinetic Monte Carlo (KMC) simulations are a powerful tool in mesoscopic
science for overcoming the multiscale gap. They provide a flexible and accurate solution by
combining elements of both MD and continuum models. KMC simulations use a stochastic
algorithm to simulate the dynamic behavior of the system, based on the transition rates
between different configurations[48]. They can effectively capture the behavior of systems
with multiple length and time scales, making them advantageous over traditional MD
simulations and continuum models. KMC simulations are particularly useful at the
mesoscale, where systems exhibit both macroscopic and molecular-level behavior, which
is challenging to model using conventional methods. They provide a more complete and
accurate picture of the system at this critical length scale[49]. KMC simulations are versatile
and useful in various fields, as demonstrated by their successful application in: 1) Materials
Science, where KMC simulations have been used to understand the behavior of materials at
the mesoscale, including the growth of thin films[50], microstructure evolution in alloys[51],
and formation of nanoscale structures[52]. 2) Chemistry, where KMC simulations have been
used to study complex chemical reactions, such as the behavior of catalysts, nanoparticle
formation[51], and reaction kinetics in heterogeneous systems[53]. 3) Biophysics, where
KMC simulations have been used to understand the behavior of biological systems at the
mesoscale, including ion channels in cell membranes[54], dynamics of biological membranes,
and protein folding[55]. By modeling relevant events, such as diffusion of atoms, formation of
bonds, and reactions of molecules and enzymes, KMC simulations provide a comprehensive
understanding of complex systems at the mesoscale.
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Figure 1.2.: Multiscale theoretical and computational methods used for materials model
development and computer simulations. Reprinted with permission from Ref.[56], used
under Creative Commons CC-BY license.

Figure 1.2 depicts a general overview of the length and time scales of various theoretical and
computational methods is presented. Overall, KMC simulations offer a promising approach
for overcoming the multiscale gap in mesoscopic science by combining the strengths of
atomistic MD and continuum models. The ability of KMC simulations to effectively
bridge the gap between different length and time scales has the potential to significantly
advance our understanding of a wide range of systems and processes. With the increasing
computational power and advances in algorithms, KMC simulations are poised to play an
increasingly important role in the study of mesoscale systems.
Graphene and Solid Electrolyte Interphase (SEI) are two well-known mesoscopic systems
that can be investigated with KMC simulations. KMC simulations have been used to
examine a variety of graphene-related properties and processes, such as grain boundary
creation and growth[57], thermal conductivity[58], and electronic transport[59].Similar to
this, KMC simulations are used to study the creation and evolution of the SEI layer in
lithium-ion batteries. KMC simulations were employed by Röder et al.[60] to investigate the
formation of SEI and they found that the simulations accurately predicted the composition
of SEI and its evolution over time. Similarly, Mathekar et al.[61] used KMC simulations to
analyze the effect of SEI on the performance and stability of lithium-ion batteries, and they
observed that the simulations offered valuable insight into how SEI affects the battery's rate
capability and capacity fading. KMC simulations offer an efficient and cost-effective way to
capture the atomic-level detail that is crucial for understanding the mesoscale behavior of
both graphene and SEI. In this thesis, we employed KMC simulation to model and study
the growth of graphene and SEI as two complex mesoscopic systems.

1.2. Graphene: A two-dimensional (2D) material

The history of graphene, a 2D material composed of carbon atoms arranged in a hexagonal
lattice, can be traced back to 1947 when physicist Philip Russell Wallace predicted its
existence as a single atomic layer of graphite[62]. However, it was not until 2004 that
Andre Geim and Konstantin Novoselov at the University of Manchester isolated and
characterized graphene[63], earning them the Nobel Prize in Physics in 2010 for their
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work on the material’s unique properties. Geim and Novoselov used a simple technique
of mechanical exfoliation to isolate individual graphene sheets[63]. Since its discovery[63],
graphene has become one of the most attractive research topics globally, and 2D materials,
crystalline materials made of one or a few layers of atoms with strong planar interatomic
interactions, have gained attention due to their novel structures and outstanding features[64,
65, 66, 67, 68]. Graphene, with its unique covalently-bonded (sp2 hybridized) carbon
atoms arranged in a honeycomb lattice, possesses exceptional mechanical [69], electric[70],
thermal[71], and optical properties[72, 73], making it a potential candidate for various
applications in science and technology, such as field-effect transistors[74, 75, 76], flexible
electronics[77, 78], photodetectors[79, 80, 81], energy storage[82, 83], sensors[84, 85], DNA
sequencing[86, 87, 88], drug delivery[89, 90, 91], and composite materials[92]. Since the
discovery of graphene, thousands of 2D materials with different physical properties have
been predicted and exfoliated to mono-layer or multi-layers[93]. These materials include
MoS2 monolayer[94], hexagonal boron nitride[95, 96], black phosphorene[97], borophene[98,
99], silicene[100], germanane[101], stanene[102], antimonene[103], bismuthene[104], and
tellurene[105]. These materials can be classified into four types based on their atomic
structures and components: chalcogenides[106], graphene family[107, 108, 109] (Figure 1.3),
Xenes[110], and 2D oxides[111]. The properties of 2D materials are strongly influenced
by their structures, which are determined by their synthesis and growth processes. Two
main methods are used to synthesize 2D materials: the top-down approach, which involves
thinning a bulk material, and the bottom-up approach, which involves forming layers
atom by atom. The top-down approach includes mechanical exfoliation[112], such as using
sticky tape to peel off layered materials to form flakes, which is suitable for van der Waals
materials and practical for lab studies but lacks control over the size and shape of the flakes.
Liquid exfoliation is another top-down approach that uses mechanical force in an organic
solvent to separate layered materials[113], but the resulting flakes may be less suitable for
optoelectronic applications due to their high density. The bottom-up approach includes
solution-based chemical synthesis, which encompasses various wet chemical techniques for
producing 2D materials.
Nowadays, 2D materials are typically produced in flakes with a final size of less than 100
nm using different methods, such as mechanical and liquid exfoliation in the top-down
approach, and solution-based chemical synthesis and chemical vapor deposition in the
bottom-up approach. The bottom-up approaches have the potential to produce high quality
2D films, but in smaller amounts compared to the top-down approaches. Among the
bottom-up approaches, chemical vapor deposition (CVD)[114] is a complex and expensive
method (Figure 1.4 shows an the experimental CVD setup), but highly scalable and
capable of producing large size films with high quality. The quality of the final product is
highly sensitive to different parameters such as gas pressures, composition, temperature,
reaction times, and thermodynamic and kinetic conditions such as heat transfer, mass
transport, chemical reaction kinetics, adsorption, and nucleation[115]. Various theoretical
and computational methods have been developed to fully understand the graphene growth
process and exploit its remarkable properties alongside experimental efforts. DFT is
one of the earliest and commonly used theoretical methods for predicting the electronic
structure and energetics of graphene and other materials[116, 117], while tight-binding
(TB)[118] is a simplified approach based on describing the electrons as moving through
localized orbitals. Computational methods such as molecular dynamics (MD)[119], Monte
Carlo (MC)[120] simulations, and KMC simulations are powerful tools for studying the
dynamics and thermodynamics of materials, and modeling processes occurring over long
timescales[121]. These methods, including DFT, TB, MD, MC, and KMC simulations,
provide an in-depth understanding of the properties and behavior of graphene, contributing
to the underlying physics of this important 2D material.
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Figure 1.3.: The graphene family: (a) graphene (gray atom represents C), (b) CX (X =
H, F, Cl; gray and blue atoms represent C and X, respectively), (c) graphyne (α-graphyne,
β-graphyne, γ-graphyne and 6, 6, 12-graphyne from left to right, top to bottom; gray atom
represents C), (d) h-BN (red and blue atoms represent B and N, respectively), (e) BCN
(Reprinted from [122]; red, gray and blue atoms represent B, C and N, respectively), (f)
Six C1−x (x = 2/10, 5/6, 2/6, 14/18) from left to right, top to bottom; gray and yellow
atoms represent C and Si, respectively) (Reprinted with permission from Ref.[107]), (g)
TiC (Reprinted with permission from Ref.[108]; red and blue atoms represent C and Ti,
respectively). Reprinted with permission from Ref.[109], used under Creative Commons
CC-BY license.
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Figure 1.4.: Schematics of the experimental CVD setup using the floating catalyst
method. The gas flow provides oxygen-free atmosphere for the pre-growth interval, and
the carbon source-catalyst solution is evaporated from a separate bubbler. Temperature
and pressure measurement and control is provided. Reprinted with permission from
Ref.[123]. Copyright 2003 IEEE.

The motivation for using KMC simulations to study graphene growth on Cu(111) surface
via chemical vapor deposition (CVD) is to overcome the limitations of other methods,
such as DFT and molecular dynamics (MD), which are not capable of simulating the
long timescales and large length scales involved in the growth process. KMC simulations
provide a way to model the growth of graphene over longer timescales by using stochastic
simulations that incorporate the kinetics of the chemical reactions and the thermodynamics
of the system. This makes KMC simulations particularly well-suited to studying the growth
of graphene on Cu(111) surface via CVD, as this process involves a complex interplay
between chemical reactions, diffusion, and nucleation that occurs over long timescales. By
using KMC simulations, researchers can gain insight into the growth mechanism of graphene
on Cu(111) surface, as well as optimize the growth conditions to produce high-quality
graphene with desirable properties. Compared to continuum modeling methods, KMC
simulations offer a more detailed description of the processes occurring during graphene
growth, and are computationally more efficient than atomistic simulations.

1.3. Solid Electrolyte Interphase (SEI)

The SEI is a critical element in lithium-ion batteries (Li-ion batteries - LIBs), provid-
ing a protective layer that prevents short circuits and ensures efficient and safe battery
operation[124, 125, 126]. The SEI plays a vital role in the efficiency and safety of lithium-ion
batteries, which are widely used in a variety of applications, including electric vehicles, con-
sumer electronics, and energy storage systems[127]. Despite being an essential component
of LIBs, the SEI is a complex system that has been challenging to study due to its dynamic
nature and composition. The history of SEI research dates back to the 1970s[128], but
it was not until the 1990s that researchers began to recognize its significance[129]. Since
then, researchers have made considerable progress in understanding the SEI, leading to the
development of high-performance lithium-ion batteries and recognition through prestigious
awards. In 2019, John B. Goodenough, M. Stanley Whittingham, and Akira Yoshino were
awarded the Nobel Prize in Chemistry for their work in developing the LIBs. Additionally,
in 2020, Yang Shao-Horn was awarded the Royal Society of Chemistry's Tilden Prize for
her work in understanding the SEI and developing new battery technologies. However,
the lack of techniques capable of in situ or in operando probing of the SEI during battery
cycling remains a challenge. Therefore, researchers have employed various experimental,
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theoretical, and computational methods to overcome these challenges and improve SEI
understanding.

Figure 1.5.: SEI characterization, with a focus on state-of-the-art characterization
techniques developed in recent years, includes methods to investigate electrochemical
performance, surface morphology, chemical composition, and structural and mechanical
characteristics. Reprinted with permission from Ref.[130] Copyright 2019, Shanghai
University and Periodicals Agency of Shanghai University.

The SEI in Li-ion batteries can be studied using various experimental techniques, each with
its own advantages and limitations(see Figure 1.5). Scanning Electron Microscopy (SEM)
provides high-resolution images of the surface of the SEI[131], while X-ray Photoelectron
Spectroscopy (XPS) can identify the chemical composition and electronic structure of the
SEI[132]. Fourier Transform Infrared Spectroscopy (FTIR) can determine the molecular
structure and chemical composition of the SEI[133], while Electrochemical Impedance
Spectroscopy (EIS) measures the SEI's impedance and electrical properties[134]. Nuclear
Magnetic Resonance (NMR) can identify the chemical species and types of chemical bonds
present in the SEI[135]. However, each of these methods has limitations, and none can
provide a complete understanding of the SEI's morphology, composition, and properties.
Theoretical techniques have become an increasingly popular tool for investigating the SEI
in Li-ion batteries. These methods can provide insights into the fundamental processes
that occur within the SEI, which can aid in the design of more efficient and reliable
batteries. One of the most widely used theoretical techniques is DFT, which can predict the
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electronic structure, ion transport, and chemical reactivity of the SEI. DFT calculations
can determine the adsorption energies of electrolyte species on the SEI surface and the
barriers to ion diffusion, among other properties. These calculations can also investigate
the thermodynamics and kinetics of SEI formation and decomposition. However, DFT
calculations can be computationally expensive and require a high level of expertise[136].
Another popular theoretical method is MD simulation, which can provide atomistic-scale
insights into the structural and dynamical properties of the SEI. MD can simulate the SEI
formation and the interfacial behavior between the SEI and the electrode, and investigate
the transport properties of ions and solvent molecules in the SEI layer. However, MD
simulations can also be computationally expensive and require a large number of atoms and
long simulation times to achieve statistically significant results[137]. Continuum models are
another class of theoretical methods that use mathematical models to describe the SEI's
properties at a larger length scale. These models can provide insights into the transport
properties of ions and solvent molecules in the SEI layer, and allow the investigation
of the effects of SEI thickness and morphology on the electrochemical performance of
Li-ion batteries. However, continuum models can oversimplify the complex structure of
the SEI and result in lost aspects regarding its formation and dynamics[138]. Finally,
KMC simulation is a powerful theoretical method that can simulate the SEI formation and
the interfacial behavior between the SEI and the electrode, investigate the ion transport
properties, and predict the SEI's evolution under different conditions. However, developing
an appropriate KMC model can be challenging due to the complex and heterogeneous
nature of the SEI. Each method has its own set of advantages and limitations, and the
choice of method depends on the research question and the information required. By using
theoretical methods in conjunction with experimental methods, researchers can gain a
more complete understanding of the SEI formation and dynamics, leading to the design of
better-performing Li-ion batteries.
KMC simulations have several advantages over other methods in studying the SEI growth
in lithium-ion batteries. One of the primary motivations for using KMC simulations is that
they can provide a detailed understanding of the growth mechanisms of the SEI layer at
the atomic scale. KMC simulations can simulate the SEI growth over long timescales and
under various conditions, providing insights into the evolution of the SEI layer over time.
The other advantage of KMC simulations is that they are computationally efficient and
can model large systems with reasonable accuracy.

1.4. Thesis outline

With the advancement of computational power and the development of more sophisticated
algorithms, KMC simulations have become increasingly popular and accurate, enabling
researchers to study complex systems, such as thin-film growth, surface reactions, and
battery interfaces. In recent years, KMC simulations have been used to model the growth
of two-dimensional materials, the formation of surface alloys, and the dynamics of the
solid-electrolyte interphase in lithium-ion batteries. This thesis discusses two complex
mesoscopic growth processes via KMC simulations.

• Chapter 2. presents a detailed explanation of the fundamentals of KMC simulations.
It includes a historical overview of the method and its transition from MC to KMC
simulations. The technical aspects of the method are explained, with a focus on the
selection of transition rates, which is critical to the accuracy of the method. The
chapter concludes with a review of various KMC algorithms and a discussion on the
disparity problem in KMC timescales.

• Chapter 3. provides a detailed analysis of the CVD graphene growth mechanism
on the Cu(111) surface via KMC simulations. The chapter identifies the specific
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reactions involved in the growth mechanism, investigates the impact of methane and
hydrogen partial pressures as CVD control parameters and estimates the growth rate
during steady-state growth. The chapter commences with an introduction to the
problem and provides information about the reaction network of the mechanism. It
also includes details of the KMC algorithm implemented for this complex mesoscopic
growth process. It concludes by discussing the effects of CVD control parameters on
graphene growth and its quality.

• Chapter 4. is dedicated to investigating the spatiotemporal evolution of organic and
inorganic components of SEI formed during electrochemical processes. The chapter
explores how a series of chemical reactions, diffusion, and aggregation impact SEI
formation with nanometer resolution, while considering kinetic information specific
to the electrolyte-anode chemistries. It commences with an introduction to the
complexity of the SEI formation process, followed by information on the required
reaction network. The chapter then describes the implementation of the KMC model
in detail, which provides valuable insights into the complex mesoscopic SEI formation
process.

• Chapter 5. summarizes the main findings of the study, highlighting the strengths of
the constructed KMC model, identifying areas that require further improvement.





2. The Kinetic Monte Carlo Methods

2.1. Introduction

KMC simulations, as a type of stochastic Monte Carlo method, have proven to be an
effective means of simulating the dynamic behavior of a diverse range of physical and
chemical systems. These systems include catalysis[139], material fabrication[140], defect
evolution in crystals[141], and diffusion[142, 143]. The KMC algorithm was first developed
in 1960 and has been continually refined over the years. The earliest reported application
of this method was in the study of radiation damage annealing in 1966 by Beeler [49].
KMC methods have demonstrated their capability to simulate longer timescales (ranging
from milliseconds to hours) and spatial scales with relatively low computational expenses
when compared to other computational methods [144, 145]. The algorithm describes the
dynamic behavior of a system as it transitions from one state to another, providing a
detailed understanding of the system’s evolution over time. Due to their versatility and
efficiency, KMC simulations have become a powerful tool in the field of computational
modeling and have found a wide range of applications in diverse fields.

2.2. From Monte Carlo to Kinetic Monte Carlo

Monte Carlo (MC) methods are a set of algorithms that solve problems using random
numbers. They emerged in the late 1940s and 1950s with the advent of electronic computers,
and were named after the random nature of gambling at Monte Carlo, Monaco. The
Metropolis algorithm, published by Nicholas Metropolis in 1953 [146], is one of the best-
known MC methods. This algorithm describes the evolution of a system from one state to
another based on the transitions between states described by a probability distribution. To
generate new states, importance sampling is used to replace the old ones. This technique
is applied to regions of importance with a low occurrence probability, generating samples
of the region of interest with a lower probability by assigning a larger weight. The correct
probability density distribution can be achieved through repeated replacements [147]. The
Metropolis algorithm is highly adaptable and clear, making it one of the most credible MC
methods. In 1975, Bortz, Kalos, and Lebowitz proposed an accelerated version of the MC
method, known as the N-fold way algorithm or BKL algorithm [48]. In contrast to the
Metropolis algorithm, where only some selected events are taken into account based on
acceptance criteria, the N-fold approach considers all selected events on KMC steps. As MC
simulations only record the number of steps from the first to the last, the KMC algorithm,
developed from the Metropolis algorithm, required a way to deliver the temporal evolution
of the system. The KMC algorithm describes the dynamic behavior of a system from one
state to another by calculating the time required for the transition between states using
the total transition rate of all possible transitions and a random number generated from a
Poisson distribution [148]. This algorithm's efficiency lies in its ability to simulate longer
timescales and spatial scales with relatively low computational expenses when compared to
other computational methods. In conclusion, MC methods have become a powerful tool
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for solving problems using random numbers. The Metropolis algorithm and the N-fold way
algorithm are two examples of these methods. The Metropolis algorithm remains a highly
credible and adaptable method due to its clarity, while the KMC algorithm, developed from
the Metropolis algorithm, provides a way to deliver the temporal evolution of a system.
Through its ability to simulate longer timescales and spatial scales with relatively low
computational expenses, the KMC algorithm has found applications in a wide range of
fields. More detailed information on the KMC algorithm and its calculation can be found
in section 2.6 of this chapter.

2.3. The timescale problem and infrequent event dynamics

Recent advancements in computational solid state physics and fluid dynamics have opened
up new opportunities to investigate fundamental and longstanding questions through a
diverse range of computational methods. Selecting the most suitable method for a particular
problem is contingent upon the length and time scales needed to monitor the evolution of the
system. Despite these developments, there are certain problems where the system requires
larger time scales due to spending a significant portion of time vibrating within a potential
basin of the potential energy surface (PES) before transitioning to another state[144, 49].
This vibration takes place on a picosecond scale and is several orders of magnitude faster
than the state-to-state jumps. Due to this infrequent nature of the transitional jumps, they
are considered rare or infrequent events. Assuming that the system is in a quasi-equilibrium
state between these infrequent events, it has enough time to forget about its past path[144],
a property known as the Markov property[149]. Molecular dynamics (MD) simulations
have been widely used to study solid state and fluid transport problems, primarily focusing
on the dynamic evolution of the system. This method integrates the classical equations
of motion in time and requires selecting the interatomic potential for the atoms involved
and setting boundary conditions for the system. Additionally, the precise integration of
the equation of motion necessitates very short time steps (10−15 s) to account for atomic
vibrations. As a result, the total simulation time is typically limited to less than one
microsecond, even though the study case may take place over much longer time scales.

Figure 2.1.: Illustration of a barrier that leads to a higher-energy state (a) and one
which leads to a lower state (b).

The fields of statistical mechanics and MC methods are valuable tools for simulating
the evolution of a system, especially when the focus is on state-to-state jumps between
infrequent events rather than on the vibrational motion of particles. The Kinetic Monte
Carlo (KMC) simulation is based on the idea of determining the frequency of state-to-state
transitions[145] and the corresponding transition rate constants, which depend on the
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activation energy barriers between states[144]. These rate constants describe the average
fraction of systems in a quasi-equilibrated ensemble of systems that cross the energy
barriers per unit time. Therefore, the time it takes for a system to transition between states
depends on the activation energy barrier it must overcome to move from one energy basin
to another[49]. Figure 2.1 provides an example of a transition from a low-energy state to a
high-energy state (∆ E < 0) and a positive energy difference transition (∆ E > 0). The
KMC method is unique in that it focuses on the statistics of overcoming energy barriers
instead of tracking the vibrational motion of the particles. This allows access to longer
time and length scales compared to other computational methods. Figure 2.2 illustrates a
graphical representation of the time and length scales of the Density Functional Theory
(DFT), Molecular Dynamics (MD), and KMC methods.

Figure 2.2.: Length and time scale of different modeling methods. DFT: Density
Functional Theory, MD: Molecular Dynamics.

In order to develop a KMC model that accurately simulates the evolution of a system,
several important factors need to be taken into consideration. The first important factor is
ensuring the satisfaction of the Markov property. The Markov property is a fundamental
concept in probability theory, which states that the future state of a system only depends
on its present state, and not on any of its past states. In KMC simulations, the Markov
property is crucial for accurately predicting the probability of state-to-state transitions.
The second factor that must be considered is the satisfaction of microscopic reversibility.
Microscopic reversibility is a principle of statistical mechanics which states that any process
that can occur in one direction must also be able to occur in the opposite direction. In
KMC simulations, microscopic reversibility is important for ensuring that the probability
of a transition from state A to state B is equal to the probability of a transition from state
B to state A. The third factor to consider is finding all relevant transition rates. The rate
at which a system transitions from one state to another depends on the energy barrier that
must be overcome to make the transition. It is important to accurately calculate all of
the relevant transition rates in order to properly simulate the system's evolution. Finally,
advancing the time of the system is an important factor to consider in KMC simulations.
In order to accurately simulate the evolution of a system over a longer period of time,
the simulation must be able to advance the system's time while accurately simulating the
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state-to-state transitions. By carefully considering and addressing each of these factors,
an accurate and reliable KMC model can be developed for simulating the evolution of a
system. We will discuss all these matters in the following chapter.

2.4. The Master equation

As it explains how the probability density function (PDF) changes over time, the Master
equation can provide a thorough explanation of the system. It carries the PDF data for
each system state at any given time. There are clusters of fast (frequent) vibrations and
slow (infrequent or uncommon) transitions in such systems, which is their essential feature.
One can argue that by the time the system escapes from the state n-1 to the state n, the
memory of all the previous n-2 states has been lost because the time interval between
two rare events is several orders of magnitude longer than fast vibrations. The following
equality can be applied to restate it for any set of n consecutive times (i.e t1, t2...tn) of the
random variable X:

P1|n−1(xn, tn|x1, t1; ...xn−1, tn−1) = P1|1(xn, tn|xn−1, tn−1) (2.1)

In Equation 2.1, the Markov property is represented by the conditional probability density
at time tn, given that the value xn−1 at time tn−1 is directly defined and independent
of all the states preceding it. The transition probability, P1|1, is a fundamental concept
in Markov processes, and it represents the probability of transitioning from one state to
another. Therefore, the behavior of a Markov process is completely characterized by two
functions: P1(x1,t1) and P1|1(x2,t2|x1,t1). These two functions can be used to construct
the entire list of probabilities Pn, which describe the probability of being in a certain state
at a given time. The Master equation is another important concept in the study of Markov
processes. It describes the time evolution of the probability of finding the system in a
particular state i at time t[149]. This equation is a central tool in the analysis of Markov
processes and provides a way to calculate the long-term behavior of the system.

dPi(t)
dt

= −
∑
j ̸=i

rKMC
i,j Pi(t) +

∑
j ̸=i

rKMC
j,i Pj(t) (2.2)

The Master equation, represented by Equation 2.2, is a mathematical tool used to describe
the time evolution of a system composed of different states. It calculates the sum of all
possible incoming transitions from states j to states i, minus all possible outgoing transitions
from states i to states j, using the probability of finding the system at states i (Pi(t)) and j
(Pj(t)), multiplied by their transition probability per unit time (rKMC

i,j ) and (rKMC
j,i ), which

indicate the i to j and j to i transitions, respectively. Solving this equation analytically can
be challenging, especially for systems with more than two particles. Some methodologies
have been developed to solve it analytically, such as the solution proposed by Kolokathis
et al. for a system of spatially periodic states[150]. However, in most cases, an analytical
solution of the Master equation is not achievable, and the evolution of the system can be
simulated by using a KMC algorithm[144]. To ensure that the evolution of the system
is accurately described within its thermodynamic limit, it is necessary to confirm that
microscopic reversibility is met. This means that for any linked pair of states, a detailed
balance condition must be fulfilled. The first part of Equation 2.2 must be equal to zero
once the system reaches its equilibrium state (steady state), also known as steady state. In
other words, the incoming and outgoing transitions must balance each other out, and the
system must be in a state of detailed balance:∑

j ̸=i

rKMC
i,j P 0

i =
∑
j ̸=i

rKMC
j,i P 0

j (2.3)
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rKMC
i,j P 0

i = rKMC
j,i P 0

j (2.4)

where, P0
i is the probability of finding the system in equilibrium at state i. Equation 2.4

indicates that there is a reverse event j → i for every elementary event i → j, where the
average number of transitions from i to j is equal to the number of reverse transitions.
Therefore, the microscopic reversibility of the system is being satisfied at equilibrium.
But despite that, the detailed balance between states i and j expressed by Equation
2.4 must remain true while the system is not yet at equilibrium. To validate that the
selected transitional rates obtain the dynamical evolution of the system within equilibrium
accurately, we can take into account the Boltzmann relationship at equilibrium[144]:

P 0
i ∼ exp(−Fi(T )

KBT
) (2.5)

This formula connects the population of state P0
i to the free energy of state i at temperature

at temperature T (Fi(T)). Then the relationship between the kinetic rates rKMC
i,j and

rKMC
j,i can be expressed by taking into account equations 2.4 and 2.5 as:

rKMC
i,j

rKMC
j,i

= exp(−Fj(T ) − Fi(T )
KBT

) (2.6)

The equation establishes a connection between transition rates and the system's state at
equilibrium, and it serves as an expression of the detailed balance condition that holds true
for the system at all times[144].

2.5. Rate constants

To study the system's dynamic evolution using the KMC approach, all the potential
events or transitions should be identified beforehand. This catalog of rates facilitates
the KMC model to generate state-to-state trajectories that are comparable to those
produced by MD simulations[49], which is an atomistic modeling technique. To determine
all feasible pathways, statistical mechanics techniques such as transition state theory
(TST)[144, 49, 151] can be employed.

Figure 2.3.: Illustration of the transition state theory rate constant of escaping from
the initial state to the final state. A thick blue line divides the surface area.
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Although TST provides a good approximation for solid-state diffusive events, its primary
purpose is to estimate the rate constant[49]. According to TST, the rate constant for
transitioning from the initial state i to the final state j is determined by the outgoing flux
through the dividing surface that separates the states at equilibrium, as demonstrated in
Figure 2.3.
The TST rate constant, denoted by KT ST , can be determined by dividing the number
of jumps passing through the dividing surface area by the number of trajectories in the
initial state i at any given time. In order to ensure the Markov property is satisfied, a
quasi-equilibrium state must be reached at each potential energy basin before transitioning
to the next state[49]. TST assumes that each forward jump through the surface area is an
independent event, and as a result, there is a possibility of jumping back before reaching
the final or initial states. As a consequence, the TST rate constant tends to overestimate
the actual rate. One approach to account for backward jumps is to establish the trajectories
at the dividing surface area and integrate them over a short time period. This method can
also account for multiple crossing events[49]. In 1935, Eyring derived the TST transition
rate constant KT ST , which is expressed as follows[144, 152]:

KT ST = k
KBT

h

Q‡

Qreactants
exp(− Ea

KBT
) (2.7)

where,

• h = Planck's constant,

• k = factor used as a transmission coefficient for re-crossings of the barrier,

• Ea = Activation energy barrier,

• KB = Boltzmann constant,

• T = temperature,

• Q‡ = molecular partition function for the transition state,

• Qreactants = molecular partition function for the reactants.

The free energy of the transition state in Equation 2.7 is composed of two factors, one
related to the other degrees of freedom (excluding the reaction coordinate) and another
related to the kinetic energy along with the reaction coordinate. To determine the activation
energy barrier indicated in Equation 2.7, initial and final state information is required, and
density functional theory (DFT) can be employed for this purpose[153, 154]. In order to
account for backward jumps (i.e., re-crossing the transition state), Eyling introduced the
pre-factor k, which decreases the rate (k ≤ 1)[152].
Additionally, the molecular partition function can be determined through the harmonic
approximation of the potential, which is known as harmonic transition state theory (HTST).
This method describes the molecular partition function as a product of electronic, vibrational,
rotational, and transitional contributions[152, 153]:

Q = qelec qvib qrot qtran (2.8)

In the context of the given situation, the symbol ’q’ represents the sum of all contributions
of a particular type, which can be computed through DFT calculations along with the
saddle point energy[144]. Another method to determine the reaction rate constant involves
the use of a pre-exponential factor added to an activation energy term. The expression for
this approach is provided below[155]:

rKMC = ν exp[− Eact

KBT
] (2.9)

where,
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• rKMC = transition rate,

• Eact = activation energy

• ν = pre-factor

It is often not accurate to assume that Ea and Eact are equal in equations 2.7 and 2.9, and
the same goes for the pre-exponential factor in Equation 2.7 and ν in Equation 2.9. The
reason for this is that the partition function in Equation 2.7 usually includes exponential
factors that contribute to Eact but are not explicitly shown. The Arrhenius form given in 2.9
is suitable only for systems with temperature-dependent activation energy and pre-factor,
which can lead to a temperature-dependent transition rate constant[155]. In this form,
there are various ways of computing transition rates. One approach involves using Equation
2.9 to calculate the rate constant for any desired temperature and then applying linear
regression to the plot of ln(r) as a function of the inverse temperature (1/T ). By applying
ln to both sides of Equation 2.9:

ln(rKMC) = − Eact

KBT
+ ln(ν) (2.10)

where ln(ν) and −Eact/KB are the coefficients b and a in the linear regression y = ax+ b
respectively.
Another approach to computing the transition rate constant is to determine the factors in
the partition functions that have the same exponential relation as the activation energy.
This method is less precise than the previous approach but is more straightforward. Once
the factors are determined, the transition rate constant can be calculated for any desired
temperature. In this case, the pre-factor can be obtained by using the transition rate
constant calculated as rKMC

cal .

ν = rKMC
cal exp[ E

act

KBT
] (2.11)

Knowing about the efficiency of a KMC simulation in addressing the long-term evolution
of systems containing infrequent events, it is time to discuss the KMC algorithms in detail.

2.6. KMC algorithms

After understanding the concept behind KMC simulations, which involves solving the
Master equation for systems that include rare events, it is crucial to delve into the KMC
algorithm itself. Essentially, a KMC trajectory is a sequence of jumps between different
states of a system, where the time interval associated with each state transition can be
calculated. Starting from an initial configuration, the KMC algorithm generates stochastic
trajectories consisting of these state transitions, and averaging over these trajectories yields
the time evolution of the corresponding probability according to the Master equation. In
general, a KMC algorithm comprises three primary components at each step: identifying
all possible events, selecting an event, and updating the system configuration. Based on
the methodology for constructing the selection scheme, KMC algorithms can be classified
into two categories: rejection-free KMC (rfKMC) and rejection KMC (rKMC).
A rejection-free KMC algorithm, also known as the KMC algorithm, is well-suited for
simulating the time evolution of a system with known transition rate constants for all
events. The following steps are involved in the KMC algorithm:

1. Set the time t=0 and choose the initial state i,

2. Collect all Ni possible transition rates from state i to state k in the system, rik,
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3. Compute the cumulative rate for the collected list as Rik =
∑k

j=1 rij . The total rate
is Rtot = Ri,Ni ,

4. Generate two random numbers u,u′ within 0 and 1,

5. Search for the event k that satisfies Ri,k−1 < u×Rtot ≤ Ri,k,

6. Execute the event k (update the state i → k),

7. Update the time using t+∆t where ∆t = R−1
tot ln(1/u′),

8. Repeat from the step 2.

Figure 2.4.: Illustration of a) the rfKMC step in which all transition rates from the
initial to final state are known, and b) the cumulative rate calculated from all possible
transition rates.

A rKMC algorithm is another type of KMC algorithm that only requires the transition rates
of possible events, rather than all of them. In this type of algorithm, not all possible events
are considered, and instead, only a subset of the events is selected for simulation. The rKMC
algorithm is based on the rejection principle, where the chosen event is compared with a
random number generated between zero and one. If the selected event has a probability
greater than the random number, then the event is accepted, and the system configuration is
updated. Otherwise, the event is rejected, and the algorithm proceeds to the next iteration.
The rKMC algorithm can be useful for simulating complex systems where the rate constants
are not known in advance, or when it is computationally infeasible to calculate all of the
transition rates. The general steps of an rKMC algorithm with the same transition rates
are as follows:

1. Set the time t=0 and choose the initial state i,

2. Collect all Ni possible transition rates from state i to state k,

3. Select an event from the collected rates using uniform random sampling,

4. Accept the event with the probability of fik = rik/r0 where r0 is the single global
upper bound for rik,

5. Execute the event if it is accepted, (update the state i → k),

6. Generate a random number u within 0 and 1,

7. Update the time using t+∆t where ∆t = (Nir0)−1 ln(1/u),
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8. Repeat from the step 2.

The efficiency of the rKMC algorithm is proportional to the ratio of the attempted events
to the accepted events. Therefore, the algorithm's efficiency depends on the distribution
of rates in each study case, where systems with a broader range of rates may have much
lower efficiency than those with a narrower range of rates[156, 157]. Additionally, rare
events can also impact the algorithm's efficiency by dividing the list of possible events into
two categories: one with high transition rates and the other with small transition rates.
Several KMC algorithms have been developed for various applications, such as the random
selection method, the first reaction method, the direct method, among others[144, 158].

2.6.1. The random selection method

The random selection method (RSM) is a classic KMC algorithm that was developed
to handle systems in which some MC events may not succeed[159]. It is also known as
the null-event method and has been widely used in various applications. The Metropolis
algorithm is one of the best-known examples of a random selection algorithm, which
typically comprises three parts: determining the type of process, identifying the site where
the selected event occurs, and calculating the time required for the event to occur. To
implement this algorithm, the following steps are usually followed[155, 159, 160]:

1. Choose a site at which the event occurs using a random number,

2. Choose the event type for the selected site using a random number,

3. Check if the selected transition is possible at the nominated site. If so, update the
system based on that event. Reject the event and return to the first step,

4. Calculate the time required for the transition,

In the random selection method, events are selected without any particular order in terms
of the type of event or where it will occur. The efficiency of this method is determined by
the ratio of successful events to unsuccessful ones, similar to the rKMC algorithm discussed
earlier. Because selected events can be rejected during simulation, the method is also
referred to as the null-event method[155, 159].

2.6.2. The first reaction method

The first reaction method (FRM), which is one of the algorithms in the rfKMC category,
is based on selecting the event with the shortest time among all possible events. In this
method, the list of potential transitions is traversed, and the required occurrence time for
each of them is calculated. Then, the event with the smallest occurrence time is selected
as the next event in the sequence. The occurrence time for any transition between two
states, represented by i and j respectively, can be calculated as follows:

ti→j = t− 1
rKMC

ij

ln(u) (2.12)

where,

• t= the current simulation time,

• rKMC
ij = the rate constant for the i to j transition,

• u= a random number from a uniform distribution,
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The algorithm referred to as Discrete Event Simulation (DES), is another term for the
FRM. This algorithm's efficiency relies on computing the occurrence time for all possible
transitions and is proportional to the size of the collected events at each step. As a result, it
can be computationally expensive and slow. To improve the method's efficiency regarding
the time calculation process, it is possible to assume that executing the first event will
not affect the occurrence time of the second transition. In other words, the random time
for the second event remains the same until one of the following happens: 1) the second
transition occurs, 2) the number of particles involved in the second transition changes due
to another event, or 3) the transition rate of the second event changes under the influence
of other system parameters, such as local temperature[155].

2.6.3. Direct method

The direct method, also known as Gillespine's algorithm, is another rfKMC algorithm
that can handle the Master equation. Like the general rfKMC algorithm, it proceeds by
collecting all possible events at each step, selecting one of them using a random number
and the cumulative rate, updating the system configuration, and advancing the system
time using another random number. Because the time increment of the system depends
on the total rate of all possible events at each step, it may vary during simulation. Thus,
this variant of the KMC method is called the variable step size method (VSSM) in the
literature [161].

Figure 2.5.: Flowchart of the direct algorithm with a two-step event selection scheme.
This algorithm requires three random numbers: two for the event selection and one for
the time increment. The termination time is denoted by tf in the flowchart.

The efficiency of this method depends on the number of event types and the update
approach. To accelerate simulations for systems with a moderate number of event types,
the two-step selection of the next event can be utilized. At the first step, KMC compares
the random number with at most N partial sums over different event types, and at the
second step, it selects among equally probable events of the selected type without comparing
numbers. This selection scheme is computationally efficient, requiring at most N numerical
comparisons for each step selection scheme, as illustrated in Figure 2.5.
However, this two-step selection scheme is impractical when the direct KMC algorithm
involves a large number of event types. To address this issue, one possible solution is
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to select the event in real space based on the local data representation. This enables a
multi-step selection scheme for grouped events in real space, where the local region is first
chosen using a random number, then the event type that can take place at that region is
selected via another random number, and finally, one of the equally probable events within
the selected type is picked. This selection scheme is independent of the number of event
types, making it a useful development in the algorithm. Lastly, an important aspect of
the direct method is the motivation behind the time increment. For an isolated species
with a uniform transition probability r and a transition probability density f that provides
the transition rates at time t, the theory of stochastic processes defines the process as
a Poisson process when the probability of a transition is independent of the history of
the transitions at all times, meaning the transition probability is a uniform function of
time[162]. The change in f(t) over a short time deltat would be proportional to r, deltat,
and f(t), as shown below:

df(t) = −rf(t)dt ⇒ df

dt
= −rf (2.13)

considering the boundary condition f(0) = r, the solution is:

f(t) = r e−rt (2.14)

One way to conceptualize the system is by considering it to be a vast Poisson process that
shares similar characteristics as a single process. This analogy holds true for numerous
processes that possess varying rates, denoted by ri, and are present within the system. To
express this idea mathematically, Equation 2.14 can be reconfigured to accommodate the
larger scale of the system.

F (t) = R e−Rt (2.15)

Where, F(t) provides information for the transition probability density of the larger system
with:

R =
∑

i

ri (2.16)

To get the time increment equation, it is enough to calculate the inverse of its cumulative
distribution function as the random number u and rearrange the equation:

e−Rt = u ⇒ t = − ln(u)
R

(2.17)

2.7. Disparity problem in KMC timescale

As previously mentioned in this chapter, the KMC method was developed with the primary
objective of studying the dynamic time evolution of systems over longer time and spatial
scales. Compared to MD simulations, KMC simulations are faster since they focus on
infrequent events such as transitions between different states rather than considering the
vibrational degrees of freedom of the system which are more frequent. However, it should
be noted that the infrequent events handled by KMC may also occur at different timescales.
This can pose a problem in sampling the dynamics of the system properly since most
of the simulation time is spent on short-term time events such as fast events. This is
particularly true for KMC models dealing with surface reactions on metals, where the
system contains a complex reaction network of slow surface reactions and fast surface
diffusion. To overcome this issue, various approaches have been developed. One such
approach is the tau-leap method[163], where multiple processes are carried out concurrently
to accelerate the KMC simulation. The fundamental assumption of this method is the leap
condition, which is satisfied when the surface populations are approximately constant in
time. However, this method may not be practical for systems where surface reactions take
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place on microscopic lattices, and the site population can change substantially from zero to
one species in just one KMC step. Therefore, this method is more suitable for coarse-grained
lattices where the species concentration is roughly constant over time in each cell. Another
approach is to separate the events into slow and fast processes and consider only the slow
event dynamics stochastically at the KMC level while treating the fast event dynamics
deterministically. This can be achieved by employing the Langevin equation[164, 165].
However, the main disadvantage of this type of model is that it requires manual setting of a
constant timescale separation in advance. In recent times, most KMC approaches have been
implemented using simple acceleration schemes. These schemes are based on decreasing
the rate constants for the fast events in the system. In cases where it is confirmed that the
output is not affected by scaling[166, 167, 168, 169], this rate scaling idea can be applied
manually on systems with simple reaction networks. However, a different class of KMC
algorithms has emerged that can deal with the scaling of fast processes automatically. This
class of algorithms is based on the idea that fast processes, after a few iterations, become
quasi-equilibrated, making it unnecessary to simulate these events further to describe the
system dynamics accurately[170, 171]. One such algorithm is the accelerated superbasin
(AS-KMC) method[170], which was introduced to investigate infrequent event dynamics
more efficiently than standard KMC. The computational requirements of both approaches
are almost the same. Thus, the AS-KMC method can be used for study cases including
infrequent events without concern about manually scaling the rate constant to achieve
reasonable results. However, the efficiency of this method depends on the complexity of
the system. Increasing the total number of system configurations makes the full sampling
of a single superbasin very slow, which is a disadvantage of this approach. To address this
disadvantage, the Dybeck et al. method[171] took into account a series of user-defined
processes rather than all processes and system configurations. This series of processes
could be some species surface diffusion on the lattice, where rate constant scaling can be
applied uniformly. Scaling for the included processes continues at every specified interval
during sampling until a non-equilibrated process occurs. Then modified rate constants
are reset to their initial values to enable the required sampling for the new superbasin.
N’u nez et al.[172] and Hoffmann and Biligaard[173] later developed very similar KMC
algorithms that are equipped with efficient sensitivity analysis and eliminate the reset
scheme to advance sampling of systems with large timescale disparities. However, using this
type of accelerated KMC algorithm may be problematic for cases with low coverage species
close to each other on the lattice because it cannot keep track of all system configurations
and confirm if required configurations within a superbasin are sampled. To solve this
problem, the configurations of the nearest neighbor sites can be taken into account in the
definition of the reaction series. However, this solution cannot be applied for low coverage
species produced at far lattice points because that depends on diffusion before the reaction.
Another recently developed accelerated KMC algorithm that can be used to study cases
involving fast surface diffusion processes, in addition to elementary reactions such as those
found in heterogeneous catalytic systems, known as the fast species redistribution (FSR)
KMC method, was developed by Cao et al.[174]. To overcome the repetitive sampling
of fast processes, the FSR-KMC method identifies different species and classifies them
into two groups: fast and slow species. These species are labeled as fast or slow based on
their ability to diffuse and participate in non-diffusive reactions. The FSR-KMC algorithm
initializes the simulation prerequisites by labeling the involved reactions as slow and fast
processes, where the long scale evolution of the system depends on the slow one and the fast
one is used for the short-scale redistribution. The algorithm then traverses the lattice to
collect all possible slow and fast reactions into separate lists. It selects one reaction among
possible slow processes based on the standard KMC method (VSSM method), updates the
configuration of the system, and starts the simulation. After the slow process is completed,
the algorithm collects all fast species and their redistribution processes onto the lattice. It
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picks the fast species from the list one by one and considers the achievable lattice space to
perform a redistribution process. This loop continues until all fast species are redistributed
on the lattice. Although the FSR approach can be performed with optional steps, the
kinetic behavior of fast species diffusion can be better described if the interval is set to 1.
The proposed model was able to reproduce the kinetic results of several study cases with
several orders of magnitude of acceleration in system time compared to the standard KMC
and mean field models.
Many KMC algorithms, including the standard KMC, the accelerated KMC, and the
fast species redistribution (FSR) KMC, have been covered in this chapter. We have also
discussed each algorithm’s advantages and disadvantages. Even while KMC simulations
have shown promising results in the study of some problems, it is crucial to choose the
method to use carefully based on the particular needs and constraints of the system being
researched. Overall, the KMC simulation method is a useful supplement to experimental
investigations and gives a powerful tool for investigating complex systems, such as growth
processes, which we will address in the next chapters.





3. Modeling CVD growth of graphene on
Cu (111) surface
using Kinetic Monte Carlo simulation

3.1. Introduction
Graphene, the first two-dimensional (2D) material discovered by Novoselov and Geim
[63], has garnered significant attention due to its exceptional physical, electrical, and
mechanical properties, which make it a promising candidate for various scientific and
industrial applications[175, 176, 177]. Consequently, developing efficient methods for the
growth of graphene has become a challenging task. Currently, several techniques exist
for producing graphene, including exfoliation [178], hydro-thermal reduction of graphene
oxide[179], carbon dioxide reduction [180], chemical vapor deposition (CVD)[181], and
plasma-enhanced chemical vapor deposition (PECVD)[182] [183, 184, 185, 186]. Among
these methods, CVD is the most promising approach for producing high-quality, large-
scale graphene sheets[187]. The CVD process for graphene growth is highly dependent
on various synthetic parameters, such as the partial pressures of precursors, temperature,
substrate surface, and carbon solubility in metal substrates[188, 189, 190]. The resulting
growth quality of single-layer graphene varies significantly based on these factors. While
various metals have been identified as suitable substrates for CVD procedures, copper has
emerged as the most qualified metal for growing single-layer graphene[191]. Among the
different facets of copper, the (111) surface has been found to be ideal for producing less
polycrystalline graphene material[192, 193]. As a result, it is the preferred choice for the
CVD growth of graphene.
The growth mechanism of graphene via chemical vapor deposition (CVD) has been ex-
tensively studied both theoretically and experimentally in both academic and industrial
settingss[194]. However, there is still a need to further investigate the kinetics involved
in the growth mechanism. Optimal process parameters are not yet well known despite
understanding the elementary reactions involved in the growth mechanism. Alnuaimi et
al.[195] studied the effects of growth pressure, temperature, and precursor gas ratio on
CVD graphene synthesis, identifying high growth temperatures (1060 ◦C) as a key factor
in reducing multilayer nucleation density by over 50%. They also found that low CH4
and H2 partial pressures and ratios were critical parameters for controlling flake size and
quality growth. Seah et al.[196] investigated the graphene growth mechanism in CVD
with various transition metals and conditions, suggesting that understanding the growth
mechanism and kinetics is necessary to control growth. However, the controllable synthesis
of large scale graphene flake via CVD remains challenging due to the complex growth
process and its sensitivity to growth conditions[197]. The multiscale character of the
graphene growth mechanism in CVD requires different computational methods, including
ab-initio calculations[198], molecular dynamics (MD)[199], and kinetic Monte Carlo (KMC)
simulations[200, 201, 202, 203, 204], to complement experimental observations appropri-
ately. Recently, Popov et al.[205] proposed an analytical kinetic model combining kinetic
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nucleation theory and density functional theory (DFT) calculations to study graphene
nucleation and growth in CVD on Cu(111) surface. They have investigated the graphene
nucleation mechanism by highlighting the role of carbon and its dimer as feeding species
and reproduced the experimentally observed characteristics of polycrystalline graphene.
Temperature and precursor partial pressures were used as control parameters in the pro-
posed model.
In recent years, the combination of kinetic Monte Carlo (KMC) models and first-principles
calculations has emerged as a promising strategy to gain atomistic-level understanding of
graphene growth mechanisms over large time and length scales compared to other modeling
approaches. Multiscale models that integrate these methods have been developed, such as
the work of Li et al.[200], who employed the Bortz-Kalos-Lebowitz (BKL) algorithm to
identify the dominant kinetic pathways of graphene growth via chemical vapor deposition
(CVD) on Cu(111). The authors constructed a list of chemical reactions involving CH4
and H2 gases, their dissociative adsorption on the surface, decomposition, hydrogena-
tion and dehydrogenation reactions, and carbon-containing species′ surface diffusion and
attachment/detachment to the edges. To accelerate KMC simulations, they applied a
mean-field approximation to the (de)hydrogenation reactions, recording the number of
hydrogen atoms and modifying the reaction rates accordingly. Their results revealed the
stabilizing role of H2 during simulations and identified the dominant feed species (i.e., C
and C2) in graphene growth pathways under different H2 pressures on Cu(111) surfaces.
Chen et al.[202] proposed an all-atom KMC model for studying the growth of graphene by
considering a simplified reaction list containing carbon and its dimer reactions on the surface
and edges. The reactions involved ring closure that resulted in the formation of hexagons
on the edges, which is crucial for graphene growth. Instead of considering CH4 and H2 as
growth precursors, they considered the deposition flux of carbon species and temperature
as control parameters. The developed model predicted different morphologies of growing
graphene. This study confirmed the findings of Wu et al.[206], where C2 was identified as
the dominant feeding species for graphene growth. They calculated the activation energy
barriers of the involved reactions using first-principles calculations, similar to Li et al. In
another study, Zhu et al.[207] developed a large-scale KMC method to study graphene
growth up to several micrometers in size. They used a list of reactions that involved the
attachment and detachment of hexagons as the elementary processes. Starting with an
initial flake, the proposed KMC model grew the graphene flake by adding or removing
hexagons as feeding species. The authors found a complementary relationship between
graphene growth and etching, where the shape evolution of graphene islands during growth
is exactly like a hole during etching, and the shape evolution of graphene islands during
etching is exactly the same as a hole in growth.
Despite the numerous studies on modeling the growth of isolated graphene flakes through
chemical vapor deposition (CVD) on Cu surfaces, many important questions regarding
the interplay of kinetic pathways at the atomic scale of reactions involved in the growth
mechanism still remain unanswered. Although previous studies have provided insight
into the graphene growth mechanism, their restricted time and length scales were due
to incomplete lists of reactions used in their KMC methods[208, 202, 121]. To overcome
this limitation, multiscale models for graphene growth have been developed, consisting
of two parts: 1) the reaction rates on the surface, for which activation energy barriers
are obtained through quantum mechanical methods such as DFT[209] and 2) a KMC
protocol to model the kinetics of graphene growth at the mesoscale, utilizing the activation
energy barriers obtained from first-principle calculations. The accuracy of predictions for
growth mechanism kinetics depends on the accuracy of the activation energy barriers for
the elementary reactions involved.
In this chapter, we present a novel DFT-based KMC model, capable of handling a compre-
hensive list of reactions involved in the graphene CVD growth mechanism. The reactions
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include the dissociative adsorption of CH4 and H2 as precursors, edge attachment and
detachment of all mobile species, ring closure at the edges, and hydrogenation and dehydro-
genation of species attached to the edges. By considering the partial pressure of precursors
as the CVD control parameters and all relevant reactions (55 in total), we investigate the
growth pathways and the role of control parameters during graphene growth on a Cu(111)
surface at a high temperature of 1300 K. Our model aims to offer valuable insights into
the growth mechanism by distinguishing the role of specific reactions, observing the effects
of selected CVD control parameters, and estimating the growth rate during steady-state
growth. Furthermore, our model shows significant improvements in the quality of graphene
by reducing the number of hydrogen-saturated edges and refining attachments.

3.2. Simulated CVD setup

The process and types of the different possible chemical reactions that occur in a CVD
reactor are controlled by a lot of complicated factors, including the system setup, reactor
configuration, gas feedstock, gas ratios, reactor pressure and precursor partial pressures,
reaction temperature, growth time, temperature, etc[210] (see Figure 3.1). The CVD
setup for graphene growth can be classified as hot-wall[211], cold-wall[212], and plasma
enhanced[213] with different configurations depending on the mentioned factors on the
process and final product quality[194].

Figure 3.1.: Chemical vapor deposition (CVD) reactors and processesas: Low pressure
CVD (LPCVD), plasma-enhanced CVD (PECVD), low pressure is the metal–organic CVD
(MOCVD), atmospheric pressure CVD (APCVD), thermal atomic layer deposition (ALD),
and Plasma-Enhanced Atomic Layer Deposition (PEALD). Reprinted from Ref.[214],
used under Creative Commons CC-BY license.

We considered the CVD conditions depicted in Figure 3.2, where there is a chamber to
carry out the process that contains a mixture of precursors, in this study, CH4 and H2
gases, at constant pressures PCH4 and PH2 . In general, gas mixtures contain a carrier
gas, e.g., argon, in experiments; this gas does not participate in the chemical reactions
involved in the growth mechanism based on experimental observations[215, 216], thus it
was not considered in this study. The tube furnace, as previously reported[216, 190], is
made up of a substrate and a catalyst, such as a copper plate that is coupled with the gas
at temperatures ranging from 1000 to 1300 K to produce high-quality graphene via CVD.
We considered the Cu(111) facet as the ideal surface to produce high-quality monolayer
graphene at 1300 K.It is noteworthy that this temperature is quite close to the melting
point of copper, which is approximately 1357 K. This indicates that the copper atoms
present on the surface of the substrate are likely to exhibit high levels of mobility. Despite
the fact that this cooper atom's mobility could influence the coalescence process according
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to the theoretical studies[217], we neglect all these effects on the CVD graphene growth
process by considering the solid and rigid surface.

Figure 3.2.: An example of the chemical vapor deposition procedure used for graphene
synthesis on Cu as the metal catalyst. The mixture of precursors enters the chamber
under defined conditions, such as system temperature and partial pressure. The schematic
shows a series reactions such as precursor adsorption and desorption, dehydrogenation,
and surface diffusion processes.

3.3. Reaction network

In the initial stage of our multiscale model, we compiled a comprehensive list of reactions.
The participating chemical species were CH4(g), H2(g), H, C, CH, CH2, CH3, C2, C2H,
and C2H2 , as shown in Figure 3.3. These species, with the exception of the precursors
and CH3, were capable of surface diffusion, and most of the reactions in the list occurred
in both forward and reverse directions.

Figure 3.3.: Species on the Cu(111) surface. Cu, C, and H atoms are colored in grey,
black and blue, respectively. The ’(gas)’ indicates Gaseous species.

The initial set of reactions starts with the dissociative adsorptions of CH4 and H2, leading
to the appearance of CH3 and hydrogen adatoms on the surface.
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Figure 3.4.: Methane dissociative
adsorption as: CH4 ⇌ CH3 + H.
a) initial state b) final state in the
forward direction. Cu, C, and H
atoms are colored grey, black, and
blue, respectively.

Figure 3.5.: H2 dissociative ad-
sorption as H2 ⇌ H + H. a) initial
state b) final state in the forward
direction. Cu, and H atoms are
colored grey, black, and blue, re-
spectively.

A sequence of dehydrogenation reactions is necessary to yield a single carbon atom on the
surface, which is a prerequisite for graphene growth. The initial reaction in this sequence
involves the surface decomposition of CH3 into CH2 and a hydrogen adatom.

Figure 3.6.: CH3
(de)hydrogenation as CH3 ⇌
CH2 + H. a) initial state b) final
state in the forward direction. Cu,
C, and H atoms are colored grey,
black, and blue, respectively.

The subsequent reaction in the series requires the decomposition of CH2 on the surface,
giving rise to CH and an additional hydrogen atom, which can diffuse on the surface and
contribute to hydrogenation reactions.

Figure 3.7.: CH2
(de)hydrogenation as CH2 ⇌
CH + H. a) initial state b) final
state in the forward direction. Cu,
C, and H atoms are grey, black,
and blue, respectively.

CH molecules, like those of other surface species (except CH3), can diffuse. This could
result in a reaction with other CH molecules, forming C2H2:

Figure 3.8.: C2H2 formation as
CH + CH ⇌ C2H2. a) initial state
b) final state in the forward direc-
tion. Cu, C, and H atoms are col-
ored grey, black, and blue, respec-
tively.
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Meanwhile, the mobile C2H2 species can also undergo dehydrogenation, releasing H atoms
and becoming detached from the surface as C2H2(g). These processes mark the end of the
first set of dehydrogenation reactions, starting from CH4 and resulting in the formation of
a single carbon atom on the surface.

Figure 3.9.: CH
(de)hydrogenation as CH ⇌
C + H. a) initial state b) final
state in the forward direction. Cu,
C, and H atoms are colored grey,
black, and blue, respectively.

The single carbon can participate in two reactions, the first one is forming C2H together
with CH molecule as:

Figure 3.10.: C2H formation as
C + CH ⇌ C2H. a) initial state b)
final state in the forward direction.
Cu, C, and H atoms are colored
grey, black, and blue, respectively.

And the second one would be forming carbon dimer:

Figure 3.11.: C2 formation as C
+ C ⇌ C2. a) initial state b) final
state in the forward direction. Cu,
C, and H atoms are colored grey,
black, and blue, respectively.

Due to its mobility, C2 can engage in additional reactions, such as the reaction with a
hydrogen adatom on the surface to form C2H.

Figure 3.12.: C2H formation as
C2 + H ⇌ C2H. a) initial state b)
final state in the forward direction.
Cu, C, and H atoms are colored
grey, black, and blue, respectively.

Subsequently, the C2H species on the surface can react with another hydrogen adatom
leading to the formation of C2H2.
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Figure 3.13.: C2H2 formation as
C2H + H ⇌ C2H2. a) initial state
b) final state in the forward direc-
tion. Cu, C, and H atoms are grey,
black, and blue, respectively.

The next series of reactions are the attachments and detachments of mobile carbon-
containing species to the graphene flake edges.

Figure 3.14.: C attach-
ment/detachment to the edge as C
+ edge ⇌ edge-C a) initial state b)
final state in the forward direction.
Cu, C, and H atoms are colored
grey, black, and blue, respectively.
Graphene flake is shown in red.

Figure 3.15.: CH attach-
ment/detachment to the edge CH +
edge ⇌ edge-CH a) initial state b)
final state in the forward direction.
Cu, C, and H atoms are grey, black,
and blue, respectively. Graphene
flake is shown in red.

Figure 3.16.: CH2 attach-
ment/detachment to the edge CH2
+ edge⇌ edge-CH2 a) initial state
b) final state in the forward direc-
tion. Cu, C, and H atoms are col-
ored grey, black, and blue, respec-
tively. Graphene flake is shown in
red

Figure 3.17.: C2 attach-
ment/detachment to the edge C2 +
edge ⇌ edge-C2 a) initial state b)
final state in the forward direction.
Cu, C, and H atoms are colored
grey, black, and blue, respectively.
Graphene flake is shown in red

Figure 3.18.: C2H attach-
ment/detachment to the edge C2H
+ edge⇌ edge-C2H a) initial state
b) final state in the forward direc-
tion. Cu, C, and H atoms are col-
ored grey, black, and blue, respec-
tively. Graphene flake is shown in
red
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Figure 3.19.: C2H2 attach-
ment/detachment to the edge
C2H2 + edge ⇌ edge-C2H2 a) ini-
tial state b) final state in the for-
ward direction. Cu, C, and H
atoms are colored grey, black, and
blue, respectively. Graphene flake
is shown in red

Given the presence of hydrogen adatoms on the surface, we formulated a sequence of
reactions to examine how the hydrogenation and dehydrogenation of attached species could
contribute to the growth mechanism. The set of reactions includes forward and backward
directions, corresponding to hydrogenation and dehydrogenation, respectively.

Figure 3.20.: Edge
(de)hydrogenation H + edge
⇌ edge-H a) initial state b) final
state in the forward direction. Cu,
and H atoms are colored grey, and
blue respectively. Graphene flake
is shown in red

Figure 3.21.: C
(de)hydrogenation at edge as
edge-C + H ⇌ edge-CH. a) initial
state b) final state in the forward
direction. Cu, and H atoms are
colored grey, and blue respectively.
Graphene flake is shown in red

Figure 3.22.: CH
(de)hydrogenation at edge as
edge-CH + H ⇌ edge-CH2. a)
initial state b) final state in the
forward direction. Cu, and H
atoms are colored grey, and blue
respectively. Graphene flake is
shown in red

Figure 3.23.: C2
(de)hydrogenation at edge as
edge-C2 + H ⇌ edge-C2H. a)
initial state b) final state in the
forward direction. Cu, and H
atoms are colored grey, and blue
respectively. Graphene flake is
shown in red
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Figure 3.24.: C2H
(de)hydrogenation at edge as
edge-C2H + H ⇌ edge-C2H2. a)
initial state b) final state in the
forward direction. Cu, and H
atoms are colored grey, and blue
respectively. Graphene flake is
shown in red

The final set of reactions are crucial in enabling the formation of hexagonal structures on
the edges, which is a key step in the growth mechanism. The first reaction in this series
starts attaching a carbon to two existing carbons on neighboring edges of the flake. The
same reaction can occur via attachment of C2, resulting in the formation of a hexagon
with a dangling carbon. The last reaction entails the closure of the ring by rotating a C2
molecule that is already attached, with the addition of a single carbon to the neighboring
edge.

Figure 3.25.: Ring formation via
C attachment. a) initial state b)
final state in the forward direction.
Cu, and H atoms are grey, and
blue respectively. Graphene flake
is shown in red

Figure 3.26.: C2H
(de)hydrogenation at edge.
a) initial state b) final state
in the forward direction. Cu,
and H atoms are grey, and blue
respectively. Graphene flake is
shown in red

Figure 3.27.: Ring formation via
dimer rotation. a) initial state b)
final state in the forward direction.
Cu, and H atoms are grey, and
blue respectively. Graphene flake
is shown in red

The series of illustrations do not depict the processes of surface diffusion, which involves
changes in the position of species, as well as the desorption of CH4, H2, and C2H2 from
the surface.
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3.4. KMC model implementation

With a comprehensive set of reactions and the need to develop a multiscale model, this
section provides an in-depth account of lattice construction, rate calculation, and the
implementation of KMC algorithm capable of dealing with the chemical reactions involved
in the CVD growth mechanism of graphene on Cu(111).

3.4.1. Lattice construction and rates used in KMC simulations

3.4.1.1. Lattice construction

The hcp (hexagonal close-packed) and fcc (face-centered cubic) adsorption sites of the
Cu(111) facet are mapped into a honeycomb lattice (see Figure 3.28 for more details). Each
point in the lattice is connected to three neighboring points of the other type. The lattice
vectors have a length of 0.246 nm and the neighboring distance between points is 0.142 nm

Figure 3.28.: Illustration of the honeycomb lattice formed via fcc and hcp adsorption sites
in blue and red. a⃗ and b⃗ are lattice vectors and the nearest neighbor distances are δ⃗i (i=1, 2,

3).

Eeach point on the honeycomb lattice, which is constructed from the Cu(111) facet hcp
and fcc adsorption sites, is transformed into an object class. This object class is capable
of carrying additional information besides coordinates, such as nearest neighbor sites,
occupancy status, bonded species, and edge attachment status, as outlined in Table 3.1.
As a result, the lattice can be represented as a list of site objects, which is critical for
implementing the KMC protocol described later in this chapter.

Table 3.1.: Site class structure. All information assigned to each point on the lattice.
Coordinate Coordinate of lattice point as a (x, y) pairs.
Species Name of the species located at the lattice point (empty for not occupied sites).
Bond Index of bonded species sites according to the lattice indexing format.
Neighbors Indices of neighboring sites according to the lattice indexing format.
Status With two categories of information:

1) Occupancy status:
True for occupied site.
False for empty site.
2) Time and coordinate of adsorption and edge attachment.

Flag 0: no edge attachment (free species on the surface).
1: edge attachment from one side (neighbor).
2: edge attachment from two sides (2 neighbors).
3: edge attachment from three sides (3 neighbors).
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As outlined in Table 3.1, a site object can generally be constructed as follows:

(x, y) =⇒ site(Coordinate (x, y), Species, Bond, Neighbours, Status, F lag)

assuming the honeycomb lattice illustrated in Figure 3.29 consisting of 28 lattice points,
the site object of a single carbon species located at the 15th index site would be as follows:

site([x, y], ”C”, [ ], [9, 14, 16], [True, [t, [X,Y ]], 0)

or site objects for a carbon dimer at lattice points with indices of 7 and 8 are as follows:

site([x, y], ”C”, [8], [6, 8, 13], [True, [t, [X,Y ]], 0)

and
site([x, y], ”C”, [7], [7, 3, 9], [True, [t, [X,Y ]], 0)

where t, X, and Y indicate the time and coordinates of adsorption, respectively.

Figure 3.29.: An illustrated honeycomb lattice with 28 sites labeled with numbers as
lattice indices.

3.4.1.2. Rates used in KMC simulations

The rates of all involved reactions, except dissociative adsorption of CH4 and H2 for a fixed
temperature of 1300 K, are calculated using the transition state theory (TST)[218] and the
following equation:

rT = KBT

h
exp(− Ea

KBT
) (3.1)

where KB, H, and Ea are the Boltzmann constant, Planck constant, and activation energy
barrier (in eV), and KBh/T is the pre-exponential factor(approximately 1013 S−1). The
ideal gas approximation approach introduced in Ref. [200] is used to calculate adsorption
rates for H2 and CH4 (shown in Table 3.3).

rad
H2 = h2

(2πmH2KBT )3/2
PH2q

vib
T S,H2

qvib
gas,H2

qrot
gas,H2

exp(− Ea

KBT
) (3.2)

for H2, where at at T=1300 K:

• qvib
T S,H2

= 54.96, is H2 vibrational partition function in the transition state.
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• qvib
gas,H2

= 1.009, is the gas phase H2 vibrational partition function.

• qrot
gas,H2

= 7.466, is the gas phase H2 rotational partition function.

• PH2 is the partial pressure of H2 (in Torr).

• mH2 is the mass of H2 (in Torr).

After substituting the known values, the dissociative adsorption rate for H2 would be:

rad
H2 = 5.9 × 104 × p (H2) exp(− Ea

KBT
) (3.3)

For CH4, the dissociative adsorption rate can be written as:

rad
CH4 = h2

(2πmCH4KBT )3/2
PCH4q

vib
T S,CH4

qvib
gas,CH4

qrot
gas,CH4

exp(− Ea

KBT
) (3.4)

where, T=1300 K,

• qvib
T S,CH4

= 64532.53, is CH4 vibrational partition function in the transition state .

• qvib
gas,CH4

= 3.575, is the gas phase CH4 vibrational partition function.

• qrot
gas,CH4

= 352.13, is the gas phase CH4 rotational partition function.

• PCH4 is the partial pressure of CH4 (in Torr).

• mCH4 is the mass of CH4 (in Torr).

by substituting the values:

rad
CH4 = 1.8 × 104 × PCH4exp(−

Ea

KBT
) (3.5)

As the rates are determined per adsorption site, the overall adsorption rates of the lattice
can be calculated using the product of the number of available free sites on the surface
and the adsorption rate (rad) as Nfree × rad, where Nfree is the number of free sites on
the surface. This implies that the dissociative adsorption rates will not only vary for
different pairs of CH4 and H2 pressures but also change depending on the number of surface
sites available at a given time. Table 3.2 comprises 55 reactions that cover a range of
processes, including dissociative adsorption of gases, attachment of different species to edges,
(de)hydrogenation of attached species, and ring closures. The barriers and rate constants
employed in KMC simulations are provided. All barriers are computed in Ref.[219], except
for the ring closure reactions, which are sourced from Chen et al.[202].



Chapter 3. Modeling CVD growth of graphene on Cu (111) surface
using Kinetic Monte Carlo simulation 39

Table 3.2.: All involved reactions in the KMC simulation. Activation energy barrier of
reactions are taken from Ref.[219](reactions 1-29) and Ref.[202] (reactions 30-32).

Entry Reaction Type Barrier(eV) Rate(s−1)
1 H2 ⇌ H+H adsorption/desorption 0.37/0.92 –/7.35×109

2 CH4 ⇌ CH3+H adsorption/desorption 1.48/0.90 –/8.78×109

3 CH3 ⇌ CH2+H detachment/attachment 1.39/0.58 1.11×108 /1.53×1011

4 CH2 ⇌ CH+H detachment/attachment 0.99/0.55 3.93× 109 /1.99×1011

5 CH ⇌ C + H detachment/attachment 1.87/0.66 1.52× 106 /7.48×1010

6 C + C ⇌ C2 attachment/detachment 0.55/3.62 1.99×1011 /2.51×10−1

7 C + CH ⇌ C2H attachment/detachment 0.48/2.95 3.73× 1011 /9.92×101

8 CH + CH ⇌ C2H2 attachment/detachment 0.29/2.21 2.03× 1012 /7.33×104

9 C2 + H ⇌ C2H attachment/detachment 0.83/1.45 1.64×1010 /6.48×107

10 C2H + H ⇌ C2H2 attachment/detachment 1.01/1.67 3.29×109 /9.09×106

11 C2H2 desorption 1.59 1.86×107

12 C diffusion 0.15 7.1× 1012

13 CH diffusion 0.15 7.1× 1012

14 CH2 diffusion 0.14 7.76×1012

15 C2 diffusion 0.48 3.73×1011

16 C2H diffusion 0.31 1.07×1012

17 C2H2 diffusion 0.36 1.09×1012

18 H diffusion 0.14 7.76× 1012

19 C+edge ⇌ edge−C edge attachment/detachment 0.44/1.21 5.33×1011 /5.52×108

20 CH+edge edge attachment/detachment 0.33/0.83 1.42×1012 /1.64×1010

21 CH2+edge ⇌ edge−CH2 edge attachment/detachment 0.06/1.79 1.58×1013 /3.11×106

22 C2+edge ⇌ edge−C2 edge attachment/detachment 1.22/2.24 5.05×108 /5.06×104

23 C2H+edge ⇌ edge−C2H edge attachment/detachment 0.9/1.74 8.78×109 /4.87×106

24 C2H2+edge ⇌ edge−C2H2 edge attachment/detachment 0.93/1.72 6.72×109 /5.81×106

25 H + edge ⇌ edge−H edge attachment/detachment 0.77/1.61 2.80×1010 /1.55×107

26 edge−CH ⇌ edge−C+H (de)hydrogenation 1.76/0.71 4.07×106 /4.79×1010

27 edge−CH2 ⇌ edge−CH+H (de)hydrogenation 2.36/0.59 1.92×104 /1.39×1011

28 edge−C2H ⇌ edge−C2+H (de)hydrogenation 1.57/1.08 2.22×107 /1.76×109

29 edge−C2H2 ⇌ edge−C2H+H (de)hydrogenation 1.7/1.07 6.95×106 /1.93×109

30 C Ring (de)formation 2.29/0.54 3.59×104 /2.18×1011

31 C2 Ring (de)formation 2.29/0.54 3.59×104 /2.18×1011

32 C2 Rotation at edge 0.74 3.66×1010

Note: The rates of dissociative adsorption of CH4 and H2 gases depend on their pressures and the number of
available sites on the lattice(See Table 3.3).

Taking into account the Equation 3.3 and Equation 3.5, as well as the activation energy
barriers for these reactions provided in Table 3.2, it is possible to determine the dissociative
adsorption rates of CH4 and H2, which are dependent on both the precursor pressures and
the number of free sites present on the surface. These rates are shown in Table 3.3.

Table 3.3.: Dissociative adsorption rates of CH4 and H2 (in s−1) .
rH2 2170 ×PH2×Nfree

rCH4 0.0329 ×PCH4 ×Nfree

An event class is defined to create reaction objects that are capable of carrying important
information such as reactants, products, reaction type, barrier, and rate constant, as shown
in Table 3.4. This class is utilized to construct a list of events for the reference reaction
list, which includes 55 event objects for the KMC protocol. The last attribute of this class
allows constructing individual reactions of local regions among pairs of surface sites, which
may be beneficial in implementing the KMC algorithm collection scheme, as we will discuss
later in this chapter.
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Table 3.4.: Event object structure.
Status ’n’: free species reactions

’e’: attachment reactions at edges
’h’: hydrogenation reactions at edges
’d’: dehydrogenation reactions at edges
’f’: detachment reactions at edges

Type Possible reaction type:
Adsorption-Desorption-Attachment-Detachment
Diffusion-Hydrogenation-Dehydrogenation

Reactant Reaction's reactants
Product Reaction's products
Barrier Activation energy barrier of the reaction
Rate Rate constant of the reaction
Reaction info All involved species data and the reaction index

According to the Table 3.4, each event object can be constructed as:

reaction =⇒ event(Status, Type, Reactant, Product, Barrier, Rate, Reaction info)

Once the requirements have been met and the lattice has been constructed as a collection
of site objects and a list of event objects has been established to represent the reactions,
the focus of the multiscale model shifts to the KMC protocol, which is discussed in the
next section.

3.4.2. KMC algorithm development

Due to the presence of surface diffusion processes in Table 3.2 with higher rate constants
than other reactions, conducting KMC simulations for this particular system would result
in a computationally expensive process, as a significant amount of CPU time would be
spent on sampling diffusion processes. In order to optimize the efficiency of the KMC
simulation and reduce its computational burden, we have developed and compared two
KMC algorithms equipped with acceleration schemes. The purpose of this comparison is
to identify and select the most efficient algorithm for the entirety of the study. Chapter 2,
section 2.7 discusses both models, namely, the automatic scaling KMC (AS-KMC) and
the fast sampling with random redistribution KMC (FSR-KMC). These models are based
on the standard Kinetic Monte Carlo (KMC) algorithm known as Bortz-Kalos-Lebowitz
(BKL) algorithm[48]. AS-KMC is equipped with an automatic scaling scheme that was
introduced by Chatterjee et al.[170], whereas FSR-KMC employs a random redistribution
scheme that was proposed by Cao et al.[174]. Both models aim to improve the efficiency
of the KMC simulation by reducing the computational burden associated with sampling
diffusion processes. In our study, we utilize a lattice that spans an area of 100×100 nm2

and contains a total of 388206 site objects. A ribbon or slab is positioned on the left-hand
side of the lattice to represent the initial graphene flake. Subsequently, the growth kinetics
of the domain are determined by considering the partial pressure of precursors and the
temperature, which are used to define the elementary reactions (events) listed in Table 3.2
as KMC events. It is important to note that hydrogen atoms present in carbon-containing
species are not taken into account on the lattice. Instead, lattice sites are used to represent
the carbon atoms involved in these species.
In order to incorporate the scaling scheme of the AS-KMC algorithm, two user inputs
are required, namely α and δ. Here, α represents the lowering factor, where α is greater
than 1. The second input, δ, is used to define the uncertainty associated with the system
and must satisfy the condition 0 < δ < 1. The confidence level is determined by (1 − δ),
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where it represents the probability of the system escaping its current state within a certain
number of iterations. For example, if δ is set to 0.1, it implies that the system has a 90%
chance of escaping its current state within a reduced number of iterations. With the help
of these two coefficients, the minimum number of steps required to lower the rates can be
computed, as per the methodology proposed in Ref. [170] via:

Nf = (α− 1
δ

) × ln(1
δ

) (3.6)

The flowchart for the AS-KMC algorithm is presented in Figure 3.30, depicting several
sequential steps including:

• a) the preparation step:

– initialize the lattice: construct a honeycomb lattice (in nm2) as a list of site
class objects (Table 3.1).

– take lowering factor α, and δ from user.

– initialize the scaling step counter (SC = 0).

– calculate the minimum number of sightings (Nf ) required for lowering the rates.

• b) collection scheme: collect all possible processes.

• c) selection scheme: calculate the cumulative rate of all possible reactions and select
an event from available reactions using a random number and the cumulative rate.

• d) scaling check: lowering the diffusion rate constants if the scaling step counter (SC)
is equal or larger than the minimum sighting number (Nf ).

• e) update scheme: execute the selected event based on its type. Update the con-
figuration and advance the simulation time using another random number and the
cumulative rate.

At the beginning of the simulation, the AS-KMC algorithm initializes the lattice and
calculates the minimum sighting number (Nf ) based on the given values of α and δ.
Subsequently, the scaling counter (SC) is set to zero (SC=0), as shown in Figure 3.30-a.
At each step of the simulation, KMC traverses the lattice to obtain a list of potential
reactions based on the latest lattice configuration, as depicted in Figure 3.30-b. Following
this, an event is chosen from the collected list, as shown in Figure 3.30-c. The algorithm
then checks whether the selected event corresponds to a diffusion process. If the chosen
event is a diffusion process, the scaling counter (SC) is incremented, and the necessity
for scaling the diffusion rate constants is evaluated. If the scaling counter exceeds the
minimum sighting number (Nf ), then all diffusion rate constants are reduced by the scaling
factor α, as illustrated in Figure 3.30-d. Depending on the type of the selected event, the
lattice configuration is updated accordingly, and the simulation time is incremented. This
is depicted in Figure 3.30-e. If no termination condition on simulation time or KMC steps
is specified, the aforementioned cycle (from b to e) will continue until there are no further
events available in the KMC list.



42
PhD Thesis: Modelling complex mesoscopic growth processes via Kinetic Monte Carlo

simulations: Applications to graphene growth and Solid Electrolyte Interphase (SEI)

Figure 3.30.: Flowchart of the AS-KMC algorithm. Different parts of the algorithm are
shown in boxes with letters.

To implement the FSR-KMC algorithm, we classify the events into two categories: fast
and slow events. For this purpose, we classify surface diffusion as a fast event and all
non-diffusion reactions as slow events. Then, we divide the species into two lists: "slow"
and "fast" species, where each species can belong to both groups simultaneously. These two
categories of events and species lists are utilized in the FSR-KMC algorithm's flowchart,
which is presented in Figure 3.31. The algorithm can be described by the following steps:

• a) initialize the lattice: construct a honeycomb lattice (in nm2) as a list of site class
objects (Table 3.1).

• b) collection scheme: collect all possible non-diffusive processes.

• c) selection scheme: calculate the cumulative rate of all possible reactions and select
an event from available reactions using a random number and the cumulative rate.

• d) update scheme: execute the selected event based on its type and update con-
figuration and advance the simulation time using another random number and the
cumulative rate.

• e) redistribution scheme: redistribute all mobile species on the lattice randomly.

At the beginning of the simulation, the lattice is initialized, and KMC traverses the lattice
to collect possible non-diffusive reactions based on the current lattice configuration (Figure
3.31-b). Following the KMC protocol routine, one event is selected from the collected list
(Figure 3.31-c). Depending on the type of the selected event, the lattice configuration
is updated, and the simulation time is incremented accordingly (Figure 3.31-d). At the
end of each step, all mobile species are randomly redistributed on the lattice. If there are
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no termination conditions for the simulation time or KMC steps, this cycle (from b to e)
continues until no further event is available on the KMC list.

Figure 3.31.: Flowchart of the KMC algorithm. Different parts of the algorithm are
shown in boxes with letters.

Following the implementation of AS-KMC and FSR-KMC protocols, we carried out initial
stage simulations for both models. The simulations were performed under the same
conditions with a 16×16 nm2 lattice, where growth was not included. The system was
subjected to PCH4 = 100 and PH2 = 0.01 Torr at a temperature of 1300 K. As AS-KMC
requires two additional inputs from the user, we set the scaling factor α to 100 and varied
δ from 0.3 to 0.7. We also calculated Nf as the minimum sighting steps (refer to Table
3.5). These factors were evaluated to determine their possible effects on the results.

Table 3.5.: AS-KMC simulation requirements; δ and Nf , where Nf is
calculated according to Equation 3.6 for α = 100 for δ from 0.3 to 0.7.

δ 0.3 0.4 0.5 0.6 0.7
Nf 397 226 137 84 50

The evolution of the moving average concentration for all simulations is depicted in Figure
3.32. To assess the steady-state of the KMC simulations, we utilize the converged values of
the moving average as a criterion for measuring quantities [173]. It can be observed that
the steady-state is reached around 10−2 s for all simulations. In the AS-KMC protocol,
different values of Nf may affect the results as they lead to scaling the high rate constants
at different intervals. Figure 3.32 a-e illustrate that the species concentrations exhibit
the same trends for all AS-KMC simulations. The steady-state concentration of species
is shown in Figure 3.33, which enables a comparison between AS-KMC and FSR-KMC
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results. It is worth noting that changing δ from 0.3 to 0.7 in the AS-KMC model does not
have any discernible effect on the results. On the other hand, the achieved concentrations
for the FSR-KMC simulation are almost the same as those of the AS-KMC simulations.

Figure 3.32.: Evolution of the moving average concentration of different species as a
function of time for AS-KMC samples: δ = 0.3 (a), δ = 0.4 (b), δ = 0.5 (c), δ = 0.6 (d),
δ = 0.7 (e), and FSR-KMC sample (f). All simulations were performed for a 16×16 nm2

lattice with the same conditions (PCH4 = 100, PH2 = 0.01 Torr, and T = 1300 K).

To ensure the proper sampling of different reactions, we have calculated the steady-state
net occurrence rate (forward minus backward) of all involved reactions for each simulation
time in all cases, as illustrated in Figure 3.34. The steady-state rates for all non-diffusion
processes are almost identical for both AS-KMC and FSR-KMC cases, indicating that
both models provide accurate sampling of non-diffusion processes. However, the diffusion
processes show a slight difference between the two models due to the different values of Nf

employed in the AS-KMC model. The largest Nf (δ = 0.3) used in the AS-KMC model
has less than 10 orders of magnitude difference with the FSR-KMC case. It is expected to
observe different diffusion occurrences in simulations employing speed-up schemes in KMC
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Figure 3.33.: Species steady-state concentration resulted from AS-KMC and FSR-KMC
models for a 16×16 nm2 lattice with conditions: PCH4 = 100, PH2 = 0.01 Torr and T =
1300 K.

Figure 3.34.: Net occurrence per time of initial stage (reactions 1-18 from Table 3.2)
AS-KMC and FSR-KMC simulations. Simulation are performed on a 16×16 nm2 lattice
under PCH4 = 100, PH2 = 0.01 Torr and T = 1300 K conditions. For AS-KMC simulations
α = 100 and δ changes from 0.3 to 0.7.

simulations. However, these differences in diffusion processes do not have any significant
impact on the output measured by the steady-state concentration of species, as shown in
Figure 3.33. Therefore, considering the capability of both models in dealing with fast surface
diffusion processes to study the graphene growth mechanism, we choose the FSR-KMC
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protocol, which requires less CPU hours than the AS-KMC protocol. In fact, for the
same set of simulations performed with the same amount of CPU hours, the FSR-KMC
simulation time is at least ten times shorter than that of the AS-KMC cases (see Figure
3.32).

3.4.2.1. Simulation samples

One of the primary objectives of this study is to investigate the influence of the partial
pressures of CH4 and H2 on the growth of graphene using CVD. To achieve this goal, we
created a list of precursor partial pressure pairs and generated corresponding samples for the
study. We classified the samples into two primary profiles based on the CH4 and H2 partial
pressures. The CH4 partial pressure profile was created by varying the CH4 pressure from
10 to 100 Torr while keeping the H2 pressure constant at 0.01 Torr. Similarly, the H2 partial
pressure profile was created by varying the H2 pressure from 10−3 to 8×10−2 Torr while
keeping the CH4 pressure constant at 10 Torr. These pressure values are tabulated in Table
3.6. We note that the CH4 and H2 partial pressures used in this study may not be directly
comparable to experimental conditions due to the imperfections of the Cu substrate used
in experiments, which provide stronger binding energy resulting in higher adsorption rates
of precursors. To account for this effect, we used a range of partial pressures higher than
the experimental values. This approach also made adsorption more frequent where other
rate constants are much higher than adsorption, allowing us to speed up the kinetic Monte
Carlo (KMC) simulations. To study different graphene growth pathways, we performed
KMC simulations for the prepared pressure profiles, using an initial flake in the form of a
ribbon (slab) located at the left side of a 100×100 nm2 lattice, while the rest of the lattice
was initially empty.

Table 3.6.: Pressure profile. Samples are named
from S1 to S8 (pressures are in Torr).

Sample PCH4 PH2

S1 100 0.01
S2 10 0.001
S3 60 0.01
S4 30 0.01
S5 10 0.005
S6 10 0.01
S7 10 0.05
S8 10 0.08

3.5. Results and discussion

We developed a KMC protocol that considered all possible reactions among the species
involved in the process, including H, C, CH, CH2, CH3, CH4, C2H, and C2H2. Moreover,
we also evaluated the effects of additional reactions, such as the (de)hydrogenation of
species at the edges, on the quality of the growing graphene flake. By taking into account
these reactions and barriers, we aimed to obtain a detailed understanding of the growth
mechanism and the role of each reaction in the process. Our analysis allowed us to identify
the key reactions that contribute to the graphene growth and the factors that influence the
quality of the produced flakes.

3.5.1. Modulation of graphene growth by CH4 partial pressure
We have implemented a KMC protocol to investigate the process of graphene growth on a
Cu(111) surface in CVD using reaction rates obtained from DFT calculations.
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Figure 3.35.: Evolution of the moving average concentration of different species as a
function of time for samples S1 (a), S2 (b), S3 (c), and S4 (d) (see Table 3.6).

Figure 3.36.: Evolution of the moving average concentration of different species as a
function of time for samples S5 (e), S6 (f), S7 (g), and S8 (h) (see Table 3.6).
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By performing eight simulations with varying partial pressures of precursors (as shown
in Table 3.6), we have demonstrated the impact of these control parameters on the CVD
process. Non-equilibrium steady-state has been attained for all simulations at a time point
of approximately 2×10−3 s, with concentrations of reactive species displaying fluctuations
around their respective moving averages, which converged to a stable value [173]. The
temporal evolution of the moving averages for all cases can be observed in Figures 3.35
and 3.36. Based on the data presented in Figures 3.35 and 3.36 a-h, we observed that
the most abundant carbon-containing species in all simulations was carbon dimer, which
exhibited the longest relaxation time of 2×10−3 (as evidenced by the brown curves in
Figures 3.35 and 3.36 a-h). It is noteworthy that, despite the higher partial pressure
of methane in all simulations, the concentration of H was typically higher than that of
other carbon-containing species. This can be attributed to the fact that the dissociative
adsorption rate of H2 is much higher than that of CH4. Upon examining the steady-state
concentration of the relevant species in Figure 3.37, we found that increasing the partial
pressure of CH4 at a fixed H2 partial pressure resulted in an increase in the concentration
of carbon and its dimer (as shown in Figure 3.37 a). Conversely, increasing the H2 partial
pressure at a fixed CH4 partial pressure led to an increase in the concentration of hydrogen
adatom and a decrease in the concentration of carbon and carbon dimer. This result
highlights the impact of the dissociative adsorption rates of CH4 and H2 on the different
simulations, which is influenced by their respective pressures.

Figure 3.37.: a,b: Species concentration profile for all simulation.
Species are shown using different markers and colors.
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We have generated spatio-temporal evolution data of all samples through snapshots of
KMC simulations taken at different times to monitor the growth of graphene on different
samples. In the following, detailed analysis of the spatio-temporal evolution of all sample
(refer to Table 3.6) are provided (Figures 3.38 to 3.45.

Figure 3.38.: KMC simulation of the CVD graphene growth on Cu(111) surface represented by
100×100 nm2 lattice for PCH4 = 100 Torr, PH2 = 0.01 Torr, and T=1300K (sample S1 from Table
3.6). Each snapshot has a timestamp and shows different stages of the growth process (in red). a)
The first stage of growth in which hydrogen and carbon-containing species reach the surface via

dissociative adsorption of CH4 and H2, followed by further decomposition and (de)hydrogenations.
b) As the concentration of species increases over time, around 2 × 10−3 system reaches a steady

state and flakes begin to grow from the left hand side, where the initial flake is located. c) and d)
Growth stage at t=2.33×10−2 S and t =1.57×10−1 S where the flake grows with cracks and

irregular edges caused by vacancy defects and hydrogenation at the edges.

As with other samples, Figure 3.38 shows four different snapshots of the simulation at
different times for the sample S1 (see Table 3.6). During the simulations, different species
formed on the surface due to dissociative adsorption of CH4 and H2 followed by subsequent
decomposition and other possible (de)hydrogenation reactions on the surface, resulting
in the concentration of species increasing over time (Figure 3.38 a). After 2×10−3 s, the
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system reaches a steady state (see Figure 3.35a), and the flake starts to grow by attaching
species to the edge (Figure 3.38 b). Since the initial and growing flake's width is around 100
nm, attachment processes can occur at different areas simultaneously, resulting in vacancy
defects. The observed irregular edges and cracks on the growing flake (marked with black
boxes in Figure 3.38 c-d) are attributed to edge hydrogenation.

Figure 3.39.: KMC simulation of the CVD graphene growth on Cu(111) surface represented by
100×100 nm2 lattice for PCH4 = 10 Torr, PH2 = 0.001 Torr, and T=1300K (sample S2 from Table
3.6). Each snapshot has a timestamp and shows different stages of the growth process (in red). The

first stage of growth in which hydrogen and carbon-containing species reach the surface via
dissociative adsorption of CH4 and H2, followed by further decomposition and (de)hydrogenations.
As the concentration of species increases over time, around 2 × 10−3 system reaches a steady state
and flakes begin to grow from the left hand side, where the initial flake is located. Growth stage at

t=5.92×10−1 S and t=1.02 S where the flake grows with cracks and irregular edges caused by
vacancy defects and hydrogenation at the edges are included.

The spatio-temporal evolution of sample S2 (as shown in Table 3.6) reveals a similar pattern
to that observed in the previous simulation. However, the most notable difference is the
simulation time, which is longer for this case. The simulation proceeds through the same
series of steps, starting with precursor dissociation, followed by edge attachment and ring
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formation. However, the different pair of partial pressures used in this simulation resulted
in a slower growth compared to sample S1. This is because the lower methane pressure
in sample S2 resulted in a lower concentration of carbon-containing species available for
growth over time. Moreover, the lower H2 pressure in sample S2 allows for methane
dissociative adsorption to occur, further reducing the concentration of carbon-containing
species available for growth. Consequently, a longer simulation time was required for the
growth of the graphene flake in sample S2.

Figure 3.40.: KMC simulation of the CVD graphene growth on Cu(111) surface represented by
100×100 nm2 lattice for PCH4 = 60 Torr, PH2 = 0.01 Torr, and T=1300K (sample S3 from Table
3.6). Each snapshot has a timestamp and shows different stages of the growth process (in red). The

first stage of growth in which hydrogen and carbon-containing species reach the surface via
dissociative adsorption of CH4 and H2, followed by further decomposition and (de)hydrogenations.
As the concentration of species increases over time, around 2 × 10−3 system reaches a steady state
and flakes begin to grow from the left hand side, where the initial flake is located. Growth stage at
t=7.30×10−2 S and t=1.87×10−1 S where the flake grows with cracks and irregular edges caused

by vacancy defects and hydrogenation at the edges are included.

In the case of the third sample (sample S3 from Table 3.6), the growth process exhibits a very
similar pattern to that of the first sample, albeit with slight differences in the concentration
of carbon-containing species during growth (see Figure 3.37. These differences are attributed
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to the methane partial pressure in the simulation, which affects the availability of carbon-
containing species during the process.

Figure 3.41.: KMC simulation of the CVD graphene growth on Cu(111) surface represented by
100×100 nm2 lattice for PCH4 = 30 Torr, PH2 = 0.01 Torr, and T=1300K (sample S4 from Table
3.6). Each snapshot has a timestamp and shows different stages of the growth process (in red). The

first stage of growth in which hydrogen and carbon-containing species reach the surface via
dissociative adsorption of CH4 and H2, followed by further decomposition and (de)hydrogenations.
As the concentration of species increases over time, around 2 × 10−3 system reaches a steady state
and flakes begin to grow from the left hand side, where the initial flake is located. Growth stage at
t=1.81×10−1 S and t=3.02×10−1 S where the flake grows with cracks and irregular edges caused

by vacancy defects and hydrogenation at the edges are included.

The spatio-temporal evolution of sample S4 (as indicated in Table 3.6) exhibits a similar
trend to samples S1 and S3, where the availability of carbon-containing species affects
the growth process (see Figure 3.37). In contrast, sample S5 displays a different behavior,
as reducing both partial pressures leads to smaller flake size. As compared to sample S2,
which had the same methane partial pressure, an increase in H2 partial pressure resulted in
a lower level of dissociative adsorption of methane, which, in turn, reduced the amount of
carbon species available on the surface (see Figure 3.37. It can be attributed to the varying
dissociative adsorption rates of the precursors, which are dependent on their respective
partial pressures (as indicated in Table 3.3).
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Figure 3.42.: KMC simulation of the CVD graphene growth on Cu(111) surface represented by
100×100 nm2 lattice for PCH4 = 10 Torr, PH2 = 0.005 Torr, and T=1300K (sample S5 from Table
3.6). Each snapshot has a timestamp and shows different stages of the growth process (in red). The

first stage of growth in which hydrogen and carbon-containing species reach the surface via
dissociative adsorption of CH4 and H2, followed by further decomposition and (de)hydrogenations.
As the concentration of species increases over time, around 2 × 10−3 system reaches a steady state
and flakes begin to grow from the left hand side, where the initial flake is located. Growth stage at
t=7.30×10−2 S and t=1.87×10−1 S where the flake grows with cracks and irregular edges caused

by vacancy defects and hydrogenation at the edges are included.

Using the same reasoning, it can be inferred that the growth of the sixth sample (S6) with
PCH4=10 Torr and PH2=0.01 Torr partial pressures required a longer period of time due to
the dependence of the carbon-containing species concentration on the pair of pressures. The
availability of the carbon species is critical for the growth of graphene, and the concentration
of these species on the surface determines the rate of growth. Therefore, it can be deduced
that the slower growth observed for sample S6 can be attributed to a lower concentration
of carbon-containing species, which is directly linked to the pair of pressures.
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Figure 3.43.: KMC simulation of the CVD graphene growth on Cu(111) surface represented by
100×100 nm2 lattice for PCH4 = 10 Torr, PH2 = 0.01 Torr, and T=1300K (sample S6 from Table
3.6). Each snapshot has a timestamp and shows different stages of the growth process (in red). The

first stage of growth in which hydrogen and carbon-containing species reach the surface via
dissociative adsorption of CH4 and H2, followed by further decomposition and (de)hydrogenations.
As the concentration of species increases over time, around 2 × 10−3 system reaches a steady state
and flakes begin to grow from the left hand side, where the initial flake is located. Growth stage at
t=2.63×10−1 S and t=5.23×10−1 S where the flake grows with cracks and irregular edges caused

by vacancy defects and hydrogenation at the edges are included.

Furthermore, it can be noted that the growth rate of the last two samples (S7 and S8 in
Table 3.6) was severely compromised as a result of a higher H2 partial pressure. This is
because, in these samples, the methane partial pressure was kept constant at PCH4=10 Torr,
while the H2 partial pressure was increased. Consequently, a reduction in the availability of
carbon-containing species on the surface was observed. The lower concentration of carbon
species available for growth in these samples resulted in a slower growth rate compared to
the other samples. These observations are consistent with the idea that the growth rate
of graphene is strongly influenced by the partial pressures of precursor gases. Therefore,
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controlling the partial pressures of CH4 and H2 is critical for obtaining high-quality graphene
samples with an efficient growth rate.

Figure 3.44.: KMC simulation of the CVD graphene growth on Cu(111) surface represented by
100×100 nm2 lattice for PCH4 = 10 Torr, PH2 = 0.05 Torr, and T=1300K (sample S7 from Table
3.6). Each snapshot has a timestamp and shows different stages of the growth process (in red). The

first stage of growth in which hydrogen and carbon-containing species reach the surface via
dissociative adsorption of CH4 and H2, followed by further decomposition and (de)hydrogenations.
As the concentration of species increases over time, around 2 × 10−3 system reaches a steady state
and flakes begin to grow from the left hand side, where the initial flake is located. Growth stage at
t=7.30×10−2 S and t=1.87×10−1 S where the flake grows with cracks and irregular edges caused

by vacancy defects and hydrogenation at the edges are included.

We examined the spatio-temporal evolution of all samples shown in Figures 3.39 to 3.45 and
used the flake radius as a measure of time-dependent flake growth during the simulation.
The flake radius was defined as the average horizontal distance between the outer layer edges
of the flake and the vertical axis on the left side, as depicted schematically in Figure 3.46.
The average radius of all samples, along with their pair partial pressures and simulation
time, is presented in Table 3.7. The obtained data can be used to calculate the growth
rate as the radius per time for each sample.
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Figure 3.45.: KMC simulation of the CVD graphene growth on Cu(111) surface represented by
100×100 nm2 lattice for PCH4 = 10 Torr, PH2 = 0.08 Torr, and T=1300K (sample S8 from Table
3.6). Each snapshot has a timestamp and shows different stages of the growth process (in red). The

first stage of growth in which hydrogen and carbon-containing species reach the surface via
dissociative adsorption of CH4 and H2, followed by further decomposition and (de)hydrogenations.
As the concentration of species increases over time, around 2 × 10−3 system reaches a steady state
and flakes begin to grow from the left hand side, where the initial flake is located. Growth stage at
t=7.30×10−2 S and t=1.87×10−1 S where the flake grows with cracks and irregular edges caused

by vacancy defects and hydrogenation at the edges are included.

This suggests that the growth rate (radius per time) of graphene flake can be positively
correlated with CH4 partial pressures. To confirm this relationship, we conducted additional
analysis on four samples: S1, S3, S4, and S6. These samples were selected because they
were grown using varying CH4 partial pressures of 100, 60, 30, and 10 Torr, respectively,
as specified in Table 3.6.
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Figure 3.46.: Schematic of the surface with a flake (in red) where the radius (Ri),
mean radius Rmean, and evaluation length (L) arr shown.

Table 3.7.: Summary on the average radius (Rmean), and simulation time
for all samples.

Sample PCH4 (Torr) PH2 (Torr) Rmean (nm) time (s)
S1 100 0.01 38.23 0.157
S2 10 0.001 25.95 1.018
S3 60 0.01 30.53 0.2
S4 30 0.01 22.87 0.302
S5 10 0.005 17.29 0.709
S6 10 0.01 12.40 0.523
S7 10 0.05 3.85 0.184
S8 10 0.08 2.86 0.131

During this section of the analysis, we calculated the radius profiles over time for the samples
up to 0.157 S of simulation time. As depicted in Figure 3.47, we observed that Sample S1
had the highest average radius values over time. The data indicated that larger graphene
flake sizes could be achieved by increasing the partial pressure of CH4 while maintaining
the H2 partial pressure constant. This result can be explained by the fact that a higher
concentration of carbon-containing species increases the number of successful attachments.
Our finding is in agreement with previous experimental studies [220, 190, 216, 221]. We
also found a linear relationship between the instantaneous growth rate and the CH4 partial
pressure at t=0.157 S, which can be expressed as R = 2.66 × PCH4 + 20.38. This indicates
that higher CH4 partial pressure speeds up graphene growth, as shown in the inset plot of
Figure 3.47. However, the growth rate over time decreases due to the limited number of
available adsorption sites on the lattice for further dissociative adsorption of precursors.
Figure 3.48 displays the growth rate time-dependence profiles for mentioned samples. As
demonstrated, the growth rate decreases with time for all samples, and the order of the
instantaneous growth rate for all samples is the same.
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Figure 3.47.: Growth of graphene over time at different CH4 partial pressures. The
change of the flake radius for samples S1 (100 Torr), S3 (60 Torr), S4 (30 Torr) and S6
(10 Torr) is shown with the red, orange, green and olive color, respectively. The KMC
simulations up to 0.157 s were performed and the resulting flake radii of approximately
38 nm, 24 nm, 12 nm and 4 nm, respectively, were obtained. Inset plot: Growth rate
(radius per time) as a function of the CH4 partial pressure profile at t=0.157 S. The
fitted curve on the data is shown in blue dashed lines, indicating a linear relationship
between flake radius per time and CH4 partial pressure.

Figure 3.48.: Time series of graphene growth rate for different CH4 partial pressures.
The change of the flake growth rate for samples S1 (100 Torr), S3 (60 Torr), S4 (30 Torr)
and S6 (10 Torr) are shown with the red, orange, green and olive color, respectively.

Figure 3.49 illustrates the experimental data from two distinct investigations that demon-
strate a consistent understanding of the effect of CH4 partial pressure on graphene growth.
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Figure 3.49.: a: At 1035 C graphene growth as a function of time for two methane
flow rates and partial pressures while H2 partial pressure is fixed at 27 mTorr, and SEM
images of graphene on copper grown by CVD. Reprinted with permission from Ref([222]).
Copyright 2011, American Chemical Society. b: The average size of graphene grains as
a function of growth time at 1000 ◦C on Cu foil for fixed partial pressure of CH4 (23
mTorr) and 11 and 19 Torr H2 partial pressure in red and black respectively. SEM images
show hexagon size evolution during growth using 19 Torr of H2 . Scale bars are 3 µm.
Reprinted with permission from Ref( [223]). Copyright 2011, American Chemical Society

In order to assess the quality of the graphene flakes, we employed two roughness parameters,
namely, the average roughness (Ra) and the root-mean-square roughness[224, 225]. The
definition of Ra involves the computation of the deviation of Ri from the mean radius
(Rmean) along the vertical axis over the evaluation length, L:

Ra = 1
L

L∑
n=1

|Ri −Rmean| (3.7)

Rq is also defined as the root-mean-square of the deviation of Ri from the mean radius
(Rmean) over the evaluation length, L as follows:

Rq =

√√√√ 1
L

L∑
n=1

(Ri −Rmean)2 (3.8)

Subsequently, we computed the surface average roughness (Ra) and the root-mean-square
roughness (Rq) using Equations 3.7 and 3.8, respectively, at the same simulation time. Since
the radius of the samples varies with time due to the number of successful attachments, we
observed that increasing the CH4 partial pressure resulted in an elevated surface roughness
(as shown in Table 3.8). We believe this may be attributed to the concentration, which
could potentially impede the proper attachment of carbon-containing species on the surface.
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Table 3.8.: The surface roughness parameters and the average
radius Rmean for CH4 partial pressure profile.

Sample Rmean (nm) Ra (nm) Rq (nm)
S6 3.88 1.24 1.51
S4 13.14 1.3 1.63
S3 25.14 1.31 1.69
S1 38.51 1.73 2.22

According to a previous study [226], the dissociative adsorption of CH4 on Cu(111) is less
favorable than that of H2. This leads to a higher concentration of H adatoms compared to
carbon-containing species, as observed in simulations (Figure 3.37). Consequently, most
simulations indicate a high concentration of H adatoms, particularly in samples with low
CH4 partial pressure, with a concentration of 4×10−4.

3.5.2. The growth mechanism
The subsequent objectives of this investigation comprise discerning the individual contri-
bution of each reaction towards the graphene growth mechanism, as well as elucidating
distinct pathways that lead to the growth of graphene. In order to attain these objectives,
a total of 55 reactions obtained from DFT, as presented in Table 3.3, have been integrated
into the study, including reactions that were previously not explored in the works of Li et
al.[200] and Chen et al.[227].

Figure 3.50.: Occurrence frequency of a the first 28 reactions in
Table 3.2 (i.e. reaction occurrence per the whole number of

reactions) for all samples simulated (listed in Table 3.6).
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As the first step, we initiated the analysis by examining the occurrence of reactions in all
samples. The occurrence frequency of each specific reaction was defined as the ratio of its
occurrence frequency to the total number of occurrences throughout the simulation. The
trend of occurrence frequency was found to be consistent across all cases, as evident from
Figures 3.50 and 3.51. Nevertheless, minor fluctuations in the prevalence of individual
reactions were detected in different partial pressures. These variations are attributable
to the influence of partial pressures on the growth mechanism, which has been previously
discussed.

Figure 3.51.: Occurrence frequency of reaction number 29 to 55
in Table 3.2 (i.e. reaction occurrence per the whole number of

reactions) for all samples (listed in Table 3.6).

In the next step of our analysis, we directed our focus towards discussing the specific growth
pathway by utilizing sample S1 as a representative case, with PCH4 = 100 Torr, PH2 =
0.01 Torr, and T = 1300 K. The reaction occurrence map for this sample, shown in Figure
3.52, illustrates all potential reactions between species through connecting arrows. The
direction of the arrows indicates the net contribution direction, with the numerical values
on the arrows representing the net contribution (per second per site). The KMC simulation
for this sample was conducted for a duration of 0.137 s. H2 dissociative adsorption and
desorption, as well as diffusion of species, are not shown here. The scheme illustrates three
primary regions, each comprising distinct groups of reactions. The first group includes
reactions between free species, excluding reactions that involve hydrogen adatoms. This
group is marked with blue circles in the scheme, while the second and third groups are
labeled with green and brown highlights, respectively. The second group encompasses edge
attachment reactions, and the third group encompasses growth reactions.
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Figure 3.52.: Occurrence map of elementary reactions involved in the graphene growth
process on Cu(111) at PCH4 = 100 Torr, PH2 = 0.01 Torr, and T=1300 K conditions
(sample S1, see Table 3.6). For 0.138 s, map summarizes the net contributions (per second
per site) of the most relevant events over the KMC simulation. Blue and green circles
indicate free species on the lattice. Green highlighted regions represent attachment of
species to the flake edges, while brown highlighted region shows the hexagon formation
via ring closure reactions on the edges. H2 dissociative adsorption and desorption, as
well as diffusion of species, are not shown here. Gas phase species are marked with a ”g”.
The possible conversions are shown as the arrows in the direction of the net contribution
(forward minus backward occurrences). The numbers on arrows are the net contribution
per second per site.

The occurrence map provides a sequence for analyzing the net contribution direction
(forward arrows) in detail. Using CH4 as a precursor, it initially decomposes into CH3 and
CH2 on the Cu surface, resulting in the formation of CH species (2.7291 events/s/site).
Subsequently, CH species can participate in three primary reaction pathways. The first
pathway involves decomposition into single carbon atoms (3.0274 events/s/site). The
second pathway results in the formation of C2H species (0.1309 events/s/site), while the
third pathway leads to the formation of C2H2 species (0.0046 events/s/site). The frequency
of each reaction depends on the activation energy barriers of the particular reaction (as
shown in Table 3.2) and the concentration of species (as shown in Figure 3.37a). The
next most frequent reaction, after the sequence of carbon monomer formation, is the
C2 formation reaction (1.1681 events/s/site) in the free species region. This reaction
directly contributes to graphene growth. The carbon monomer also participates in the
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C2H formation reaction (0.1309 events/s/site) and the growth of graphene by attaching
to the edge (0.5453 events/s/site) or forming a hexagon (0.0147 events/s/site), as shown
in Figure 3.52. In general, the formation of a single carbon atom occurs more frequently
than the subsequent C2 formation (by approximately 721797 times), thereby impacting the
concentration of both species during the growth process, considering different pathways
from each species (as shown in Figure 3.37).

Figure 3.53.: Net occurrence per second for all samples. Numbers are noted in the
dominant direction of reactions (positive). Samples are shown in different colors.

Subsequently, the C2 species undergoes various reactions, including attachment to the
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edge with another carbon dimer (1.4274 events/s/site), ring closure reactions (0.1757
events/s/site), and hydrogenation to form C2H (0.4716 events/s/site). It is worth noting that
the contribution of C2 towards graphene growth is higher than that of the carbon monomer.
This highlights the crucial role played by both species in the formation of graphene.
Simultaneously, the C2H species formed decomposes back into C2 (0.4363 events/s/site),
which enhances the content of C2, and generates C2H2 through hydrogenation (0.1474
events/s/site). Finally, C2H2 can either desorb from the surface (0.1707 events/s/site) or
decompose into CH, while dehydrogenation reactions from the edges also occur (0.0187
events/s). The latter reactions contribute to the final proportion of C2H2 desorption.
The net contributions of reactions in the free species region are influenced by reactions
occurring on the flake edge, which are highlighted in green in Figure 3.52. The reactions
on the edge involve (de)hydrogenation of attached species as well as attachment and
detachment of species to the edge (reactions 19 - 29 in Table 3.2). Based on the net
contributions, we found that the edge attachments of carbon and its dimer were the most
stable, while other attached species were more frequently hydrogenated and detached, as
indicated by arrows in Figure 3.52. Furthermore, we observed that the hydrogenation of
attached species was more favorable than their dehydrogenation, resulting in a positive net
contribution towards hydrogenation at an edge for all attached species (as shown in the
green highlighted region in Figure 3.52 and the difference in the occurrence of events). This
phenomenon has not been previously reported in the literature. As a consequence, there
exists a competition between hydrogenation at the edges and detachment reactions from
the edges. The number of events per site in the desorption direction of H2 is approximately
5.1519 events/s/site. This means that some of the hydrogen adatoms exit the surface,
while the remaining species move as free species and participate in other reactions, such as
hydrogenation. It is essential to include (de)hydrogenation reactions in the reaction set
used in the KMC simulation to investigate the pathways of graphene growth, as the quality
of the graphene flake is affected by them. Figure 3.53 provides a detailed analysis of all
reactions for samples, presenting a comprehensive representation of all net contributions
for the reactions involved. Similarities in reaction pathways towards graphene growth are
observed for all samples, as described for sample S1. The net contributions of forming
C-containing species, attachment to the edges, and ring closure reactions are higher for
samples with higher methane partial pressures (S1, S3, S4 from Table 3.6) than for other
samples, due to the higher CH4 partial pressure.

3.5.3. Hydrogenation reactions

In order to evaluate the effect of (de)hydrogenation on graphene growth, we conducted
KMC simulations of samples S1 and S2 at temperatures of 1300 K with and without
the (de)hydrogenation reaction set. The two samples had different partial pressures of
CH4 and H2 (S1 with PCH4 = 100 Torr, PH2 = 0.01 Torr and S2 with PCH4=10 Torr,
PH2=0.001). We collected data for 0.161 s and 0.936 s of simulation time for samples S1
and S2, respectively, and analyzed three parameters: 1) the ratio of hydrogenated edges to
the total number of edges in the flake, 2) the ratio of defects (i.e., vacancies) in the actual
flake to a defect-free flake with the same average radius, and 3) the surface roughness and
root-mean-square roughness parameters of the graphene flake. Table 3.9 presents the ratio
of hydrogenated edges and vacancies for each sample. The results show that the addition
of hydrogenation reactions in the simulation of sample S1 leads to approximately 0.96%
fewer hydrogenated edges and 2.1% fewer defects (i.e., vacancies) compared to simulations
without the (de)hydrogenation reactions. For sample S2, the addition of hydrogenation
reactions results in 1.25% more hydrogenated edges and 3.4% more defects (vacancies).
This comparison suggests that the quality of graphene is improved in the presence of
hydrogenation reactions.
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Table 3.9.: The ratio of hydrogenated edges and defects (vacancies) in graphene
flake with and without (de)hydrogenation reactions, in percent (samples S1 and S2,
respectively). Subscripts ’w’ and ’w/o’ refer to ’with’ and ’without’ hydrogenation

and dehydrogenation reactions, respectively.
% S1w S1w/o S2w S2w/o

Hydrogenated edge 0.44 1.39 0.15 1.38
Vacancy defect 5.7 7.8 6.8 10.2

To analyze the surface roughness of the samples, we used Equations 3.7 and 3.8 to calculate
the surface average and mean square roughness values. Additionally, we examined the
changes in the radius of the samples over the evaluation length. Figure 3.54 displays the
snapshots of the samples under S1 conditions at the same simulation time and presents the
roughness profile.

Figure 3.54.: Surface roughness analysis of graphene flake grown in sample S1 (see
Table 3.6): a) with and b) without (de)hydrogenation reactions included in the KMC
reaction list. The snapshot of the flake at 0.116 s of the simulation (in red) is shown on
the left, with a marked mean radius (Rmean). On the right, the surface roughness plot as
the deviation of radius from the mean radius over evaluation length is shown. The red
line represents the mean radius (Rmean), and the blue curve represents the radius over
the evaluation length. The average roughness, Ra, the root-mean-square roughness, Rq,
and Rmean are given in the inset for clarity.

We find that the surface roughness is smaller with added (de)hydrogenation reactions 1.63
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nm instead of 1.98 nm). Looking at snapshots in Figure 3.54 a and b, and considering the
definition of radius as the distance of each outer layer point from the left axis (see Figure
3.46 for more detail), we characterize the roughness profile as the deviation of radius from
the mean radius. The figure indicates how flake radius changes around the mean value.
Finally, the visual differences in the grown graphene can be detected by inspecting the
simulated layer. At time 0.936 s, sample S2 yielded similar results (see Figure 3.55).Because
the partial pressures of CH4 and H2 were 10 times lower in this case, it took longer to
reach flakes of comparable size. For sample S2, the addition of (de)hydrogenation reactions
decreases surface roughness from 2.12 nm to 1.85 nm, simultaneously decreasing the root-
mean-square roughness by 0.36 nm. The surface roughness analysis, together with the
findings on hydrogenated edges and defects (vacancies) ratios, clearly shows the impact
of (de)hydrogenation reactions in the graphene growth, suggesting better quality of the
material in the presence of hydrogenation and dehydrogenation on the edges.

Figure 3.55.: Surface roughness analysis of graphene flake grown in sample S2 (see
Table 3.6): a) with and b) without (de)hydrogenation reactions included in the KMC
reaction list. The snapshot of the flake at 0.936 s of the simulation (in red) is shown on
the left, with a marked mean radius (Rmean). On the right, the surface roughness plot
as the deviation of radius from mean radius over evaluation length is shown. The red
line represents the mean radius (Rmean), and the blue curve represents the radius over
the evaluation length. The average roughness, Ra, the root-mean-square roughness, Rq,
and Rmean are given in the inset for clarity.

WE defined the ratio of partial pressures of H2 and CH4 as Rp = PH2/PCH4, and calculated
this parameter for all samples. The growth rate and radius of the flakes for each sample
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were plotted against the Rp values, as shown in Figure 3.56. The results indicate that the
samples with lower Rp values, namely S1, S3, and S4, which have higher partial pressure of
methane, had higher growth rates and larger radii than the other samples. This suggests
that these samples required less simulation time to reach the same size as the other samples.

Figure 3.56.: Growth rate parameter and radius of all samples with respect to
partial pressure ratio. Samples are marked by their names.

3.6. Conclusions

In this study, we have developed a multiscale model that combines first-principles calcula-
tions and the KMC method to investigate graphene chemical vapor deposition (CVD) growth
on the Cu(111) surface. The developed model allows for the growth of larger graphene
flakes, up to 40 nm, under various CH4 and H2 partial pressures and temperatures. This is a
significant improvement over previous studies that were only capable of exploring graphene
growth and etching with simulated flakes of less than 10 nm[121, 208, 228, 202]. . We have
observed that the growth rate (flake radius per time) of all samples depends on the partial
pressure of CH4. In particular, we found that the same ratio of partial pressures of H2:CH4
(samples S1 and S2 with H2:CH4:10−4) required 10 times higher simulation time to reach
the flake size around 26 nm where the CH4 partial pressure of the sample S1 is 10 times
higher. In contrast, the growth rate did not change significantly for the H2 pressure profile
for systems with the same CH4 partial pressure. The analysis of the CH4 partial pressure
effect on the growth mechanism shows that it acts as the primary CVD control parameter.
Increasing the partial pressure of CH4 (while H2 partial pressure is fixed) leads to a higher
concentration of carbon-containing species on the surface, resulting in a larger graphene
flake. We have identified the role of individual reactions during graphene growth and have
studied specific pathways of graphene growth. The results show that both the C and C2
pathways are important for graphene growth, but the C2 pathway is the dominant feeding
species on Cu(111). For the first time, we have demonstrated the impact of hydrogenation
and dehydrogenation reactions of species on the graphene edge on the quality of the grown
graphene in terms of its surface roughness, hydrogenated sites, and vacancy defects. The
developed DFT-based KMC model is based on atomistic reaction parameters and allows
for simulation of the growth of nanometer-sized graphene flakes. It provides insights into
controlling the growth of graphene in CVD on Cu(111) that may be useful for experimental
fabrication of graphene at the relevant temperature and pressure.





4. Developing a Kinetic Monte Carlo
model for the growth
of Solid Electrolyte Interphase (SEI) in
Lithium-Ion Batteries

4.1. Introduction

Lithium-ion batteries (LIBs) have emerged as an effective and reliable technology for
energy storage in modern society, and have garnered significant attention due to their
safety and efficiency[124, 125, 126]. These batteries can be categorized as either primary
(non-rechargeable) or secondary (rechargeable). The typical LIB system consists of two
electrodes, the negative electrode (anode) and the positive electrode (cathode), along with
a separator and an electrolyte. The anode and cathode electrodes in commercial LIBs are
typically composed of active materials combined with a small amount of polymers and
conductive carbon additive[229].

Figure 4.1.: Applications of LIBs in the three main fields as consumer electronics and
devices, transportation, as well as grid energy and industry. Reprinted with permission
from Ref.[230], 2019, Shanghai University and Periodicals Agency of Shanghai University.

69
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Graphite is the most commonly used material for the anode, while cathode materials are
generally metal oxides such as LiCoO2, LiNiO2, LiMn2O4, LiNiMnCoO2, LiFePO4, and
LiNiCoAlO2[231]. Electrolytes constitute the third and most important component of LIBs,
and can be either a solid polymer or a non-aqueous liquid containing a lithium salt, such
as LiPF6, LiBF4, LiAsF6, or LiClO4, dissolved in various solvents such as esters, ethers, or
carbonates. The effective voltage of the cell is the difference between the electrochemical
potentials of the active materials.
In LIBs, the movement of lithium ions serves as the main mode of charge transfer. These
lithium ions can interact with the active materials in the electrodes in three different ways:
insertion and de-insertion[232, 233], alloying and de-alloying, and conversion materials. The
insertion and de-insertion mechanism, which is also known as intercalation/de-intercalation,
is the most commonly used mechanism in commercial applications. This mechanism typically
involves transition metal oxide cathodes and graphite anodes. The working principle of a
LIB can be explained using Figure 4.2. During the charging cycle, lithium ions are extracted
from the cathode (which is the positive electrode) through electrochemical oxidation. These
ions then enter the electrolyte and are solvated by the solvent molecules. The solvated
lithium ions subsequently migrate to the anode (which is the negative electrode), where
they undergo electrochemical reduction. Conversely, during discharging, the lithium ions
are extracted from the anode through electrochemical oxidation. The solvated lithium
ions then move back to the cathode through migration and enter the cathode through
electrochemical reduction. During these processes, electrons flow through an external
circuit to the electrode where reduction occurs.

Figure 4.2.: The principle of a lithium ion battery as charge–discharge processes.
Graphite (anode), cobalt oxide as cobalt and oxygen (cathode), aluminum, copper foils
as current collectors, solid electrolyte interphase (SEI), Li ion, and solvated Li ion are
illustrated. Reprinted with permission from Ref.[234], used under Creative Commons
CC-BY license.

In LIBs, a solid electrolyte interphase (SEI) is formed at the interface between the negative
electrode (anode) and the electrolyte due to the decomposition of the electrolyte. This
occurs because the operating potentials of the anode, which are around 0.2V vs. Li+/Li, fall
outside the electrochemical stability window of the electrolyte. To optimize the operation
of LIBs, it is crucial to have a deep understanding of the formation, growth, and stability
of the SEI layer[235, 236]. Although the reactions at the interfaces are well-understood in
terms of the controlling chemistries of the species involved, the mechanism of mesoscale (50
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nm) SEI formation and growth remains unknown[237, 238]. The formation of the SEI layer
occurs within the first few charging cycles of the battery's operation[127]. The electrolyte
used in LIBs typically consists of a lithium salt (such as LiPF6) dissolved in an organic
solvent (such as ethylene carbonate (EC)) with an additive[239]. The EC-Li+ complex
is reduced and decomposed on the anode surface in multiple steps, which produces both
organic and inorganic SEI components. These products then combine to form the SEI layer.
Several studies have focused on the composition and structure of the SEI layer and have
demonstrated its critical role in the performance, safety, and lifespan of LIBs[238, 240].
In principle, the process of reduction reactions and the consequent production and ag-
gregation of SEI components, resulting in the formation of a heterogeneous film, could
continue indefinitely. However, the growth of SEI up to several layers (with a thickness of
hundreds of nanometers) would practically prevent further reduction. This means that the
SEI permits the transport of lithium ions while obstructing electrons to prevent further
decomposition of the electrolyte and ensure the continuity of electrochemical reactions.
The significance of SEI in the lifespan of LIBs is critical, as they are employed in numer-
ous applications. The early-stage inorganic SEI undergoes a dynamic evolution process
through autocatalytic hydrolysis of electrolytes, which is initiated by the reduction of trace
impurities (e.g., H2O, HF). This hydrolysis process may result in continuous growth in
thickness during cycling, emphasizing the importance of SEI in the long-term performance
of LIBs[127, 241, 242, 243][127, 241, 242, 243]. When considering the operation and lifespan
of LIBs, the SEI is an essential component. However, despite its importance, the struc-
ture, composition, morphology, and growth mechanism of SEI remain unclear and under
debate[235, 238, 244]. Recent in-situ technological advancements, such as secondary-ion
mass spectroscopy and atomic force microscopy, have allowed for more detailed investi-
gations into the SEI composition and early stage formation[244, 245, 238]. Nevertheless,
the application of these techniques to the study of practical battery interfaces, especially
over long-term cycling, is still limited due to the high chemical sensitivity of SEI to oxygen
and hydrogen and the specific locations of SEI that are not easily accessible using current
instruments[246, 247]. The multiscale nature of SEI growth involves different time and
length scales.
A significant amount of research has focused on studying the electrochemistry of solvents
at the molecular scale to investigate the thermodynamic and kinetic properties at the
quantum chemistry level[125, 127]. While these methods have provided insight into various
phenomena, such as the positive effects of adding vinylene carbonate (VC) to EC, resulting
in better SEI formation[248, 249], the impacts of molecular processes on a larger scale are
not well understood. Although molecular dynamics simulations combined with reactive
force field methods can study SEI growth on a few nanometer scale[250, 251], their time
scale limitations restrict the study's scope of SEI's early-stage formation. For larger time
and size scales, many phenomenological models (mostly continuum methods)[252, 253]
have been used to explore SEI growth. However, these methods encounter challenges
in explaining the apparent paradox of SEI formation growth: electrolyte decomposition
requires electrons from the negative electrode (anode). It has been found that the tunneling
depth of the electrons into the organic solvent is limited to about 2-3 nanometers[254].
This tunneling depth limitation causes the electrolyte to decompose near the anode surface,
where the aggregation of products into an SEI layer is expected to eventually block further
SEI formation. This phenomenon, referred to as the "near-shore scenario"[255], can only
result in a few nanometers of SEI thickness. Experiments have shown that while inorganic
SEI has a similar thickness, organic SEI can grow up to 50-100 nanometers[256, 257]. As
continuum models fail to capture the local structure of the SEI, different hypotheses have
been proposed to address the SEI growth paradox. One of the approaches is to consider
SEI as a porous material, and new layers can grow through the pores of formed SEI
layers[258, 130, 259, 260]. However, this method only relocates the SEI formed near the
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anode to the pores, eventually blocking them and ending further SEI growth at a nanoscale.
Other studies have suggested that SEI is electronically conductive, but the microscopic
nature of this conduction is unclear due to the insulating nature of the electrolyte products’
degradation that forms the organic SEI[259, 261, 262]. Therefore, the SEI's growth mecha-
nism on the mesoscale, which is not yet fully understood, has a significant impact on its
properties and mechanical stability, limiting the lifetime, performance, and safety of LIBs.
In this chapter, we have developed a comprehensive model to investigate the growth of
the SEI in LIBs. The model is based on the specific features of the microscopic processes
that lead to SEI formation and employs a bottom-up multiscale approach. We use a
DFT-based kinetic Monte Carlo (KMC) method that consists of a list of reaction rates
and a protocol capable of handling them. The developed model allows exploring the SEI
growth mechanism in a mesoscopic system with molecular resolution using reaction rates
obtained from quantum chemical calculations. In order to avoid a systematic uncertainty
caused by transferring molecular information to the mesoscale in the result of the sim-
ulations at the mesoscopic level, we generate over 50000 sets of parameters (activation
energy barriers) to systematically study the spatiotemporal evolution of SEI organic and
inorganic components controlled by a series of chemical reactions, diffusion, and aggregation
with nanometer resolution while considering kinetic information calculated for specific
electrolyte-anode chemistries. We perform KMC simulations for each set of conditions and
barriers, resulting in three distinct regions identified by different compositions of organic
and inorganic components: inorganic-only, bad, and good SEI regions, where the first
region includes samples with mostly organic SEI layers, the second one contains a very
thin, porous, and often discontinuous organic layer, and the last region contains a thick,
continuous organic layer. Focusing on the last (good SEI) region, we realized that SEI
forms via a solution-mediated pathway, in which the SEI precursors nucleate far from the
anode surface and then grow rapidly. We analyze the results to identify the key reactions
that contribute to the nucleation and growth mechanisms, enabling us to determine the
composition and properties of the SEI.

4.2. Reaction network

As an initial step of our investigation, we compile a comprehensive catalog of reactions
that participate in the SEI growth process (Table 4.2). It is known that the molecular
constituents of the SEI arise from two consecutive electron reduction reactions involving
EC molecules that coordinate with Li+ ions[263, 264]. Considering that EC-Li+ serves as
an active medium for Li diffusion in a solvent-mediated pathway, and the SEI constituents
are electronically insulating, the reduction reactions can only transpire in regions near the
electrode where free electrons are available, i.e., within a narrow band of approximately 4
nm (layers) from the electrode surface.

Electrode (surf) + EC − Li+ → C2H4OCOOLi (reaction 1)

Following the initial electron reduction reaction of EC molecules coordinated with Li+
ions, a subsequent reduction reaction occurs near the electrode surface that converts the
first reaction product, C2H4OCOOLi, into an inorganic component of the SEI, Li2CO3.
This transformation is limited to a narrow region within 4 nm of the anode surface where
electrons are available to drive the reaction.

Electrode (surf) + C2H4OCOOLi+ Li+ → Li2CO3 + C2H4 ↑ (reaction 2)

In the developed model, we neglect the presence of the gas that is generated during the
SEI growth process as it diffuses rapidly and exits the simulation box. Once the Li2CO3
compound is formed at the anode surface through the second electron reduction reaction,
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it immediately starts to aggregate. Since the reaction requires the availability of electrons,
the formation of a layer of inorganic SEI can only occur within a distance of 4 nm from the
anode surface. This implies that any further electron reductions that take place adjacent
to the Li2CO3 compound can only happen within the vicinity of the anode surface, and
not beyond the 4 nm threshold, through the third reaction:

Li2CO3 (surf) + EC − Li+ → C2H4OCOOLi (reaction 3)

In addition to Li2CO3, the other molecules produced during SEI formation are capable
of diffusing in solution, allowing for further reactions to occur between them as outlined
in Table 4.2. Specifically, in reaction 4, two C2H4OCOOLi molecules react and produce
dilithium ethylene dicarbonate (Li2EDC), which serves as the organic component of the
SEI.

C2H4OCOOLi+ C2H4OCOOLi → Li2EDC + C2H4 ↑ (reaction 4)
In order to simulate the formation of SEI through its organic components, we adopt a
two-step approach. Firstly, we consider the dimerization of two Li2EDC molecules, which
leads to the formation of a dimeric species (reaction 5). Secondly, we take into account the
clustering of three or more Li2EDC molecules to form a "SEI cluster", which is a significant
constituent of the organic SEI (reactions 6, 8, and 10). According to our observations, we
have found that the second electron reduction reaction can produce Li2CO3 in proximity
to the anode surface, even within 4 nm, and also on top of the previously formed Li2CO3
when C2H4OCOOLi molecules are present in the vicinity.

Li2EDC + Li2EDC → (Li2EDC)2 (reaction 5)

(Li2EDC)2 + Li2EDC → SEI cluster (reaction 6)

Li2CO3(surf) + C2H4OCOOLi+ Li+ → Li2CO3 + C2H4 ↑ (reaction 7)

Li2EDC + SEI cluster → SEI cluster (reaction 8)

(Li2EDC)2 + SEI cluster → SEI cluster (reaction 9)

(Li2EDC)2 + (Li2EDC)2 → SEI cluster (reaction 10)

SEI cluster + SEI cluster → SEI cluster (reaction 11)

In addition to the eleven irreversible reactions that we have investigated in this study, there
are two other types of reactions that we have defined for the movable components in the
system. The first type is diffusion, which involves the exchange of sites on the lattice. The
second type is the irreversible escape of movable components from the simulation box once
they reach the top layer, which we refer to as the absorbing boundary. These additional
reactions are listed in Table 4.2 as reactions 12 to 19. Material losses that diffuse across
the absorbing boundary account for electrolyte decomposition products that do not form
organic or inorganic SEI and can have an impact on the overall mass balance of the battery.
Moreover, SEI clusters have the potential to attach to each other and form larger clusters,
as demonstrated in reaction 11.

4.3. KMC model implementation
After gathering a list of reactions, the present section outlines the methodology of the model
by elucidating the requisite aspects, namely the construction of the lattice, calculation of
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rates, and implementation of the KMC protocol, in a comprehensive manner.

4.3.1. Lattice configuration and rate used in KMC simulation

4.3.1.1. Lattice construction

As part of the lattice construction process, we create a 2D square lattice with dimensions of
50×50 nm2, where each molecule is represented by a lattice point. The lattice is designed
such that every point is surrounded by at most four neighboring points, as shown in Figure
4.3, with red points representing the species of interest, and blue points representing their
neighboring points. It should be noted that the nearest neighboring assumption used in the
construction of the lattice applies only to individual lattice points, while clusters or pairs
of molecules, as depicted in Figure 4.3, may have different numbers of neighboring points.

Figure 4.3.: Neighboring role in 2D square lattice. At the right hand side, a single
species is in red with four neighbors in blue, and a three-component cluster is in red with
seven neighbors marked in blue. Reprinted with permission from Ref.[265], Copyright
2023, Advanced Energy Materials, under the Creative Commons CC-BY-NC license.

As part of the modeling process, we generate a site class by converting each point on the
lattice into an object. This object contains various information about the point, such as
its coordinate, the molecule that occupies it, and the indices of any neighboring pairs or
clusters. Additionally, it includes the indices of its nearest neighbors and its occupation
status. A detailed breakdown of this information can be found in Table 4.1.

Table 4.1.: Site class structure. The attributes of the class assigned to each point on
the square lattice are listed.

Coordinate Coordinate of lattice point as a (x, y) pairs.
Molecule Name of the molecule located at the lattice

point (empty for not occupied sites).
Bond Index of aggregated molecules sites according to

the lattice indexing format.
Neighbors Indices of neighboring sites according to the lattice

indexing format.
Status True for occupied site.

False for empty site.
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The site object can be constructed as:

(x, y) =⇒ site(Coordinate (x, y), Molecule, Bond, Neighbours, Status)

With this, the square lattice can be converted to a list of site objects, which makes the
KMC protocol implementation straightforward.

4.3.1.2. Rates used in KMC simulations

In order to model the formation and growth characteristics of SEI, we compiled a list of
reactions, along with their activation barriers and rates, as shown in Table 4.2, which was
collected from various literature sources[266, 267, 268]. The activation energy barriers
were taken from reported values and not calculated by us since the aim of this study was
not to simulate idealistic conditions. Calculating these barriers under different conditions
may not provide a perfect reaction barrier that is actually relevant for the system. Due
to assumptions made in DFT calculations that may not be true for the system, we opted
to randomly generate activation energy barriers based on the literature list (Table 4.2)
to explore the parameter space of different conditions (further details on the random
generation process will be discussed in section 4.3.2.3 of this chapter). The reaction rate
for each reaction was calculated based on the transition state theory (TST)[269].

r(Eb, T ) = ke(−Eb/kBT ) (4.1)

where, k is the frequency of atomic vibration, denoted as k, has a value of 6.25 × 1012 s−1,
The energy barrier for the reaction is represented by Eb, kB is the Boltzmann constant,
and T is the temperature. The reaction rates are computed using Equation 4.1 with the
activation energy barriers provided in the reaction network.

Table 4.2.: All reactions are involved in the KMC simulation to understand the formation
and growth of the SEI. The initial rates for the reactions are collected from the literature.
The rates for nucleations are chosen based on the successful execution of the KMC
simulations. Diffusion rates are chosen based on the modified Wilke-Chang equation.
Dimerization and cluster formation are nucleation-driven processes with typical barriers of
0.4 eV and 0.3 eV. Reprinted with permission from Ref.[265], Copyright 2023, Advanced
Energy Materials, under the Creative Commons CC-BY-NC license.

4mm
Entry Reactants Products Reaction barrier Rate(s−1)
1 Electrode (surf) + EC-Li+ C2H4OCOOLi 0.22 eV[266] 1.26 × 109

2 Electrode (surf) + C2H4OCOOLi + Li+ Li2CO3 + C2H4 ↑ 0.5 eV[266] 2.49 × 104

3 Li2CO3 (surf) + EC-Li+ C2H4OCOOLi 0.22 eV[266] 1.26 × 109

4 C2H4OCOOLi + C2H4OCOOLi Li2EDC + C2H4 ↑ 0.2 eV[267] 2.73 × 109

5 Li2EDC + Li2EDC (Li2EDC)2 0.4 eV 1.19 × 106

6 (Li2EDC)2 + Li2EDC SEI cluster 0.3 eV 5.7 × 107

7 Li2CO3 (surf) + C2H4OCOOLi + Li+ Li2CO3 + C2H4 ↑ 0.5 eV[266] 2.49 × 104

8 Li2EDC + SEI cluster SEI cluster 0.3 eV 5.7 × 107

9 (Li2EDC)2 + SEI cluster SEI cluster 0.3 eV 5.7 × 107

10 (Li2EDC)2 + (Li2EDC)2 SEI Cluster 0.3 eV 5.7 × 107

11 SEI cluster + SEI cluster SEI cluster 0.3 eV 5.7- × 107

12 (Li2EDC)2 Diffusion 1/3 diff rate C2H4OCOOLi 3.01 × 1011

13 Li2EDC Diffusion 1/2.3 diff rate C2H4OCOOLi 3.9 × 1011

14 C2H4OCOOLi Diffusion 0.05 eV[268] 9.04 × 1011

15 SEI cluster Diffusion 0.3 eV[268] 5.7 × 107

16 C2H4OCOOLi Out 0.01 eV[268] 4.25 × 1012

17 (Li2EDC)2 Out 0.01 eV[268] 4.25 × 1012

18 SEI cluster Out 0.01 eV[268] 4.25 × 1012

19 Li2EDC Out 0.01 eV[268] 4.25 × 1012

Regarding the architecture of the model utilized in this study, we established an event class
to generate objects from reactions, comprising the pertinent details of the reaction and
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data concerning the location on the lattice where the reaction could occur. The attributes
of the event class, such as reactants, products, activation energy barrier, rate constant,
and local information of the specific reaction, are listed in Table 4.3. We used this class to
develop a reference reaction list consisting of 19 event objects for the KMC model.

Table 4.3.: Event object structure.
Reactant Reaction's reactants
Product Reaction's products
Barrier Activation energy barrier of the reaction
Rate Rate constant of the reaction
Reaction info All involved species data and the reaction index

According to the Table 4.3, each event object in general can be constructed as:

reaction =⇒ event(Reactant, Product, Barrier, Rate, Reaction info)

After creating the lists of reaction and lattice point objects, the subsequent section describes
the development of the KMC algorithm.

4.3.2. KMC algorithm development

We developed a 2D KMC method to model the formation and growth of SEI on a nanoscale
level over timescales of hundreds of microseconds. KMC algorithms have been widely used
to simulate the mesoscopic growth of materials, as explained in Chapter 2. To develop our
KMC model, we used site and event classes that were defined in previous sections. We
discretized space based on the size of the molecular components, such as Li2EDC, Li2CO3,
and C2H4OCOOLi, which are approximately 1 nanometer in size. We ran simulations on
50×50 nm2 square lattices, with the negative electrode (anode) and absorbing boundary
modeled at the down and up edges, respectively. If any mobile component passes through
the absorbing boundary via diffusion and leaves the lattice, it cannot return, indicating
an irreversible reaction. Lattice sites represent either a solvent-Li complex (EC-Li+) or
the result of a reaction between adjacent sites, which could be a pair or an agglomeration
of three or more molecules, as shown in Table 4.2. We applied the simulation using a
rejection-free Kinetic Monte Carlo (rfKMC) model, known as the Bortz-Kalos-Lebowitz
(BKL) algorithm[270], which will be explained in more detail in the following section.

4.3.2.1. KMC algorithm

The developed KMC algorithm includes the following steps:

1. Generate the lattice from the list of site objects considering the electrode layer at the
bottom and the absorbing layer at the top;

2. Set the simulation time to zero (t=0);

3. Traverse the lattice to collect possible reactions;

4. Calculate the cumulative rate of the collected reaction list using their rates as;

ktot =
n∑

p=1
kp



Chapter 4. Developing a Kinetic Monte Carlo model for the growth
of Solid Electrolyte Interphase (SEI) in Lithium-Ion Batteries 77

5. Generate a random number as r1 ∈ [0,1) to select qth process that satisfies the
following condition;

q∑
p=1

kp ≥ r1ktot ≥
q−1∑
p=1

kp

6. Execute the selected reaction and update the lattice configuration based on the type
of the chosen reaction;

7. Generate a random number r2 ∈ [0,1) and advance the system's real time as follows;

t → t− ln(r2)
ktot

8. Iterate the procedure from step 2 to 6 until the system reaches its steady state or
until a desired time or step is achieved.

Here, kp is the rate for the pth process, r1 and r2 are uniformly distributed random numbers
in the unit interval, and ktot is the cumulative rate of reactions. A general schematic of
the KMC algorithm is shown in Figure 4.4.

Figure 4.4.: Schematic depiction of the 2D KMC algorithm for the formation and
growth of the SEI on the graphite electrode surface. a) initializing the square lattice , b)
collecting all possible reactions traversing the lattice, c) generating two random numbers,
selecting a reaction following the KMC selection criteria, and 4) executing the selected
reaction, updating the simulation time and the lattice configuration. Here, r1, r2 are
random numbers, Kp is the rate for the pth reaction, and Ktot is the cumulative rate over
all possible reactions at each step. Reprinted with permission from Ref.[265], Copyright
2023, Advanced Energy Materials, under the Creative Commons CC-BY-NC license.
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In the course of KMC simulations, the problem of disparity arises, which is described
in detail in Chapter2, section 2.7. This occurs because the reaction list contains several
processes with much higher reaction rates than the remaining ones, as seen in Table 4.2. In
order to address this issue, we utilized the manual scaling approach among the suggested
solutions to modify the original list in Table 4.2, and utilized the modified list to produce
samples. Nevertheless, the simulation time is contingent on the reaction rates, and most
simulations required up to 30 CPU minutes on a single core. The computational expense
of the simulation is influenced by the size of the lattice and the rates. For the same rate
list, altering the lattice size from 50×50 nm2 to 100×100 nm2 increases CPU time from 30
minutes to several hours.

4.3.2.2. SEI observables

To be able to investigate the impact of activation energy barriers on the growth of SEI
and its composition, we have identified three observables that can be computed from the
data collected during KMC simulations. The simulation involves different components,
which can be distinguished by their specific coloring styles, as shown in the last column of
Table 4.2. As a result, the SEI properties can be measured as post-processing parameters,
using the final configuration of the system where only organic (purple) and inorganic (red)
SEI components remain on the lattice. Figure 4.5 provides an illustration of the final
configuration of a KMC simulation, where the black lattice points represent the electrode
and the red and purple lattice points represent inorganic and organic SEI components,
respectively. The computational approach enables us to investigate the impact of varying
activation energy barriers on the SEI growth and composition, using these three observables.

Figure 4.5.: A sketch of the last configuration of a KMC simulation. Electrode and
SEI organic and inorganic components are shown in black, purple, and red, respectively.
Reprinted with permission from Ref.[265], Copyright 2023, Advanced Energy Materials,
under the Creative Commons CC-BY-NC license.

The volume fraction is defined as the fraction of SEI components over layers (Z direction):

V olume fraction =
n∑

z=1
SEI(fractionz) (4.2)

Where:

SEI(fractionz) = The number of organic and inorganic SEI at layer Z

X dimension
(4.3)
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For the sample configuration volume fraction is 5.4.
The second SEI observable was thickness, which is defined as the SEI average height over
the X-axis (electrode) as:

Thickness =
∑X dim

n=1 Hn

X dimension
(4.4)

where, H denotes the maximum SEI height at each x on the surface.The thickness of the
sample configuration is 6.1.
The last observable, porosity, is defined as the fraction of empty lattice points under the
area of (volume fraction × xdim) as:

Porosity = Empty lattice points

volume fraction×X dimension
(4.5)

For the sample configuration, porosity is 0.12.

4.3.2.3. Simulation samples

Following the manual scaling of activation energy barriers for a single simulation, we
implemented a sampling technique to generate 50000 samples as lists of activation energy
barriers to explore the parameter space for the study's main objective. The statistical
method employed in this study was the Latin hypercube sampling (LHS), which en-
ables the sampling of probable collections of parameter values from a multidimensional
distribution[271, 272, 273, 274, 275]. The LHS sampling scheme involves dividing the
range of each variable into equally probable intervals and placing M sample points to
satisfy the Latin hypercube requirements, where M is the number of divisions for each
variable. The number of samples required does not increase with the number of dimensions,
making this sampling scheme independent of dimensionality. Moreover, random samples
can be taken one at a time, making this approach efficient. We used the pyDOE Python
package[276] to implement the LHS approach (see Appendix B for more details), and we
generated a random activation barrier list for 50000 samples. Each sample comprises a list
of activation energy barriers that mimic a broad range of conditions and the assumptions
of DFT calculations. We excluded the last four reactions from Table 4.2, which involve
escaping the simulation box via passing the absorbing layer, and kept their activation
energy fixed for all samples due to their fast reaction rates. However, we included the
activation energy barriers of all the other 15 reactions in the sampling approach.

4.4. Results and Discussion

In the developed model, the process space of SEI formation is defined by a set of activation
energy barriers, which constitutes a fifteen-dimensional process space vector (PSV). To
obtain a list of activation energy barriers, we gathered data from existing literature
sources[266, 267, 268]. However, because our model involves certain approximations, there
is inherent uncertainty in the parameter values used in the mesoscopic model. Therefore, the
initial values presented in Table 4.2 serve as an approximation of the PSV that represents
the growth of SEI in any real system. Since the actual PSV for a given system is not known,
we employed a sampling method (described in Section 4.3.2.3) to generate PSVs based on
the initial values, thereby systematically exploring the PSV space in a domain near the
approximate PSV. This approach enables us to investigate the properties and kinetics of
the resulting SEI by analyzing the spatio-temporal models generated by each PSV.

4.4.1. SEI growth in a model system

Prior to discussing the potential SEI growth regimes and gaining a deeper understanding
of SEI growth, it is beneficial to analyze the spatio-temporal progression of a single PSV to
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demonstrate the formation and growth of the SEI. Figure 4.6 displays six diverse snapshots
of the simulation for a representative PSV (sample number 30407) at various points in the
simulation time (rates are outlined in Table4.4). It should be noted that these times are
relative and not absolute.

Figure 4.6.: Different KMC simulation snapshots (50 × 50 nm2) for the representative
PSV at the indicated time. In the simulation box, the graphite electrode layer is imple-
mented at the bottom (black), with the absorbing open interface at the top. Initially,
all other sites are occupied by EC-Li+ (white), the precursor for the SEI formation at
the start of the simulation. The reaction intermediates and products, namely Li2CO3,
C2H4OCOOLi, Li2EDC, (Li2EDC)2, and organic SEI clusters are represented by red,
green, orange, blue, and purple sites, respectively (see Table 4.2). During the simulation,
a) C2H4OCOOLi (green) and Li2EDC (orange) rapidly form a stable inorganic SEI layer
(red), and b) Li2EDC (orange) dimerized to form (Li2EDC)2 (blue). SEI clusters (purple)
start to grow (c-e) away from the electrode presence of (Li2EDC)2 and Li2EDC, and
the organic SEI is deposited (f) on the inorganic SEI to form porous, immovable SEI.
Reprinted with permission from Ref.[265], Copyright 2023, Advanced Energy Materials,
under the Creative Commons CC-BY-NC license.

At the commencement of the simulation (4.6 a), the first electron reduction reaction of
EC-Li+ transpires next to the electrode surface (black), generating C2H4OCOOLi (green),
which is a mobile intermediate component. This intermediate component can either react
in proximity to the electrode or diffuse away, enabling it to participate in another reaction.
The latter reaction is identified as the "second electron reduction", in which C2H4OCOOLi
(green) converts to Li2CO3 (red) in the presence of electrons supplied by the electrode.
The appearance of the inorganic SEI component, Li2CO3 (red), is first detected around 2
µs of simulation time in the presence of excess Li+.
In view of the slow rate of dimerization, the process of Li-EDC (blue) formation occurs at a
slow pace. Based on the spatio-temporal panel, a large number of intermediate components,
C2H4OCOOLi (green), are transformed into Li2EDC (orange) and a few dimers (Li2EDC)2
(blue) around 94 µs (Figure 4.6b). Since electron reduction reactions require electrons to
occur, all intermediate components (C2H4OCOOLi (green)) must be produced close to the



Chapter 4. Developing a Kinetic Monte Carlo model for the growth
of Solid Electrolyte Interphase (SEI) in Lithium-Ion Batteries 81

electrode and then diffuse around to participate in other possible reactions. Hence, owing
to their high diffusion rate, these SEI precursors move far away from the electrode and
distribute almost uniformly in the simulation box; some even escape the box through the
absorbing boundary at the top. For this PSV, the escape ratio of C2H4OCOOLi (green) is
37%, meaning only 63% of the precursors remain inside the simulation box and participate
in the nucleation, aggregation, and deposition. Around 160 µs into the simulation for the
representative PSV, the first SEI cluster (purple) is observed to form via the aggregation of
two dimers ((Li2EDC)2, blue). Interestingly, the first nucleation event occurs far from the
electrode surface, at a distance of approximately 23 nm, indicating that the SEI growth
mechanism is likely solution-mediated. The formation of the initial SEI cluster (purple) can
occur through two possible reaction mechanisms, namely the aggregation of two (Li2EDC)2
(blue) dimers or the interaction between one (Li2EDC)2 (blue) and one Li2EDC (orange),
which can diffuse throughout the simulation box. According to Table 4.4, the difference
in reaction rates between these two mechanisms results in the first pathway dominating.
Finally, the low concentration of (Li2EDC)2 (blue) allows for the nucleation of a 3 or 4
component SEI cluster (purple). This SEI cluster (purple) can also diffuse and grows
rapidly (within 50 µs of simulation time) in all directions, but mostly in the downward
direction (see Figure 4.6c-e).

Table 4.4.: All reactions involved in the KMC simulation to understand the formation
and growth of the SEI for the representative PSV. Reprinted with permission from
Ref.[265], Copyright 2023, Advanced Energy Materials, under the Creative Commons
CC-BY-NC license.

Entry Reactants Products Rate(s−1)
1 Electrode (surf) + EC-Li+ C2H4OCOOLi 1.15 × 108

2 Electrode (surf) + C2H4OCOOLi + Li+ Li2CO3 + C2H4 ↑ 4.43 × 107

3 Li2CO3 (surf) + EC-Li+ C2H4OCOOLi 2.19 × 108

4 C2H4OCOOLi + C2H4OCOOLi Li2EDC + C2H4 ↑ 6.66 × 107

5 Li2EDC + Li2EDC (Li2EDC)2 4.43 × 103

6 (Li2EDC)2 + Li2EDC SEI cluster 8.6 × 104

7 Li2CO3 (surf) + C2H4OCOOLi + Li+ Li2CO3 + C2H4 ↑ 3.33 × 104

8 Li2EDC + SEI cluster SEI cluster 1.32 × 105

9 (Li2EDC)2 + SEI cluster SEI cluster 1.33 × 105

10 (Li2EDC)2 + (Li2EDC)2 SEI Cluster 1.29 × 105

11 SEI cluster + SEI cluster SEI cluster 1.22 × 105

12 (Li2EDC)2 Diffusion 1.42 × 106

13 Li2EDC Diffusion 9.88 × 106

14 C2H4OCOOLi Diffusion 8.62 × 106

15 SEI cluster Diffusion 2.52 × 106

16 C2H4OCOOLi Out 4.25 × 1012

17 (Li2EDC)2 Out 4.25 × 1012

18 SEI cluster Out 4.25 × 1012

19 Li2EDC Out 4.25 × 1012

The gradient profile of Li2EDC (orange) over layers, as shown in Figure 4.7, provides an
explanation for the observed decrease in SEI growth. The red dashed line represents the
height at which the first SEI cluster (purple) nucleates, and the blue points represent the
number of Li2EDC (orange) at each height. The decrease in the number of Li2EDC over
layers is expected to result in a decrease in SEI growth. However, diffusion of both SEI
clusters and organic components could potentially enable growth from the top layer during
the simulation. The SEI cluster gradually contacts the surface of the inorganic SEI either
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through downward growth or diffusion, and ultimately becomes a part of a porous and
immobile layer of SEI. Eventually, around 2.6 ms (Figure 4.6f), the SEI blocks access to
the electrode, and almost all intermediate SEI components have deposited on the electrode
surface. The SEI growth stops because the passage to the electrode surface is blocked and
no more electrons are available at the outer layers. For the presented PSV, the final SEI
structure consists of more organic layers in volume. The slow rate of the second electron
reduction and the lack of electrons on the surface of inorganic SEI are the main reasons for
the formation of a thin inorganic SEI layer. The simulation result (Figure 4.6f) is consistent
with the experimental observations, where a few layers of inorganic SEI form on top of the
anode surface, which is covered by a thick layer of organic SEI [277].

Figure 4.7.: For the representative PSV, the gradient of the Li2EDC over layers. Blue
points present the number of Li2EDC, and the red dashed line indicates the first nucleation
height. Reprinted with permission from Ref.[265], Copyright 2023, Advanced Energy
Materials, under the Creative Commons CC-BY-NC license.

In order to obtain a more comprehensive understanding of the concentration changes in
different components during the growth of SEI, we present a time series of the concentration
profiles of various components, as shown in Figure 4.8. Generally, the concentration
evolution allows us to identify when the system reaches a steady state. For the representative
PSV, the steady state is reached after approximately 200 µs. Starting with the first and
second electron reduction reactions, products such as C2H4OCOOLi (green) and Li2CO3
(red) are formed within a few microseconds. Li2EDC (orange) is immediately produced as
a result of two C2H4OCOOLi (green) reactions, and its concentration reaches a maximum
value at approximately 100 µs. The concentration of C2H4OCOOLi (green) remains nearly
constant during the simulation, as its formation rate is similar to the conversion rate of
C2H4OCOOLi (green) to Li2EDC (orange). After a few microseconds, (Li2EDC)2 (blue) is
formed from Li2EDC (orange) due to its low dimerization rate. The nucleation of the SEI
cluster (purple) requires both Li2EDC (orange) and (Li2EDC)2 (blue). Once (Li2EDC)2
(blue) forms as the essential component, it diffuses and eventually nucleates into the first
SEI cluster (purple). After the first nucleation, the SEI cluster grows rapidly by consuming
Li2EDC (orange) and reaches a steady state after a few microseconds. Through monitoring
the growth mechanism via the concentration profile (Figure 4.8), the simulation reaches
a steady state after 200 µs, at which intermediate components are either involved in the
formation process or trapped inside the final structure. At this point, all reactions stop,
and a stable porous organic SEI has formed on the anode surface.
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Figure 4.8.: Average concentration of intermediate components and SEI products as a
function of time (in seconds) during the spatio-temporal evolution of the reference sample
for a given set of reaction rates in the simulation. At the start of the simulation, electron
reductions near the electrode produced C2H4OCOOLi and Li2CO3 components (green
and red lines). Both lines rapidly equilibrate (the red line is for the stable inorganic
SEI, and the green is for reaching a steady state) with time, and the concentration of
Li2EDC rises rapidly. (Li2EDC)2 (blue line) begins to form as an essential precursor
of the SEI cluster (purple line) after 20 µs. Once the SEI cluster (purple) has been
nucleated, it grows rapidly by consuming Li2EDC (orange) components. As a result, the
Li2EDC concentration falls rapidly, and all concentrations reach a steady state, indicating
completion of the SEI formation. Reprinted with permission from Ref.[265], Copyright
2023, Advanced Energy Materials, under the Creative Commons CC-BY-NC license.

Figure 4.9.: The SEI volume fraction, thickness, and porosity change over time for the
representative PSV. Blue, orange, and green colored lines show the SEI volume fraction,
thickness, and porosity, respectively. Reprinted with permission from Ref.[265], Copyright
2023, Advanced Energy Materials, under the Creative Commons CC-BY-NC license.

Figure 4.9 displays the evolution of SEI properties over time. Considering their definitions
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and growth timeline, when the SEI cluster nucleates and begins to grow by consuming
Li2EDC, both the volume fraction and thickness increase rapidly. The difference between
these two comes from their definitions: the volume fraction is defined as the compact SEI
layers obtained by summing fractions per layer, while the thickness is defined as the average
height. Porosity is determined by the structure of the formed SEI layers over time, which
does not change significantly.
To gain a more detailed understanding of the individual reactions involved in the SEI
formation mechanism of the representative PSV, we have created a multi-panel plot that
provides information on the occurrence and duration of each reaction in the KMC simulation
(Figure 4.10a). In particular, we have examined the average residence time for each reaction,
which is the average time required to complete each step (Figure 4.10b), and the total
time spent by each reaction, which is the product of the average residence time and the
occurrence of each reaction (Figure 4.10c). The occurrence ratio of each reaction can
vary significantly due to differences in reaction rates and product concentrations, with the
important reactions during SEI growth being those with a fractional occurrence higher than
200, as indicated by the red dashed line in Figure 4.10. We have identified the electron
reduction reactions as the crucial ones that provide the SEI precursors, with the formation
of Li2EDC from two C2H4OCOOLi and all the diffusion processes being important reactions.
Figure 4.10a indicates that the diffusion of SEI precursors is essential for SEI formation.
The SEI precursors produced near the electrode-electrolyte interface diffuse away from the
surface, and the (Li2EDC)2 precursors begin to aggregate at a distance of about 22 nm.
Interestingly, reaction number 6, in which Li2EDC interacts with (Li2EDC)2 to form SEI
clusters, did not occur during the simulation. Instead, the first nucleation occurred via an
interaction between two (Li2EDC)2, and the gradient of Li2EDC led to downward growth
of the formed SEI cluster to form the final structure. The simulation of the representative
PSV showed that the SEI formed had a thickness of approximately 23 nm, with a few
SEI precursors trapped inside the organic SEI. The porous nature of the formed SEI is
reflected by vacant lattice points within the organic SEI. Due to the stochastic growth of
the SEI, the resulting SEI surface is rough. These properties, namely thickness, porosity,
and roughness, are crucial for the mechanical and electrochemical characteristics of the
SEI during battery operation. The final structure of the generated SEI consists of a thin
inorganic layer at the electrode surface with almost no defects, while the organic layer is
the largest part with a thickness of several nanometers and 29% porosity. During the SEI
growth mechanism, mass transport plays a significant role in the nucleation and growth
of the SEI. By monitoring the SEI precursors away from the surface during the growth
mechanism, it was observed that the SEI organic precursors are formed near the electrode
surface and then move away (diffuse) from the surface, leading to nucleation far from the
electrode. The organic SEI then grows via the aggregation of SEI precursors in the cluster
(nuclei), which is also mobile. Diffusion of SEI precursors results in a considerable loss
(37%) of material that escapes the simulation box at the absorbing layer.
Prior to delving into the parameter space analysis of activation energy barriers and SEI
observables derived from 50000 simulations in the following section, it is pertinent to
acknowledge that the growth of a thick organic SEI layer necessitates a high concentration
of mobile SEI components and a nucleation reaction, which may not occur in close proximity
to the electrode surface, despite the intricate nature of the reaction network. Once these
prerequisites are met, the organic SEI layer grows rapidly atop the electrode surface already
coated with an inorganic SEI layer.
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Figure 4.10.: The fractional occurrence and residence time for the reaction in the model
for the representative PSV. Here, C2H4OCOOLi, Li2CO3, Li2EDC, (Li2EDC)2 and SEI
clusters are colored green, red, orange, blue, and purple, respectively. Yellow and brick-red
bars represent diffusion within and outside the simulation box, respectively. a) Fractional
occurrence of each reaction in the simulation b) The average residence time spent by a
particular reaction during the simulation. c) Total residence time spent by each reaction
throughout the simulation. Reprinted with permission from Ref.[265], Copyright 2023,
Advanced Energy Materials, under the Creative Commons CC-BY-NC license.
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4.4.2. Classification of the SEI regimes using machine learning

In the previous section, we presented the SEI growth mechanism for a single simulation of
the representative PSV. However, developing a model that can transfer parameters from a
lower scale to a more coarse-grained one is a challenging task due to various assumptions
required for establishing the model. For instance, transferring electrochemical reaction
rates from idealized environments to mesoscale models, such as the established model, can
lead to uncertainties. Additionally, assumptions such as uniform molecular sizes used in the
model can limit the transfer of parameters between scales. Thus, it may not be possible to
specify the parameters for a particular chemistry with certainty. In this study, we adopt an
alternative approach. We generate lists of reaction rates for the developed model, covering
a wide range of conditions and chemistries. Each PSV in the dataset represents a datapoint
in a fifteen-dimensional activation energy barrier parameter space (escape reaction rates
are kept constant for all cases), resulting in different SEI properties. To gain a general
understanding of the possible growth scenarios, we performed simulations for a dataset of
50000 PSV using a design of experiment method that systematically varied the activation
energy barriers to cover the parameter space. We then used the obtained data to calculate
SEI properties such as thickness, porosity, and volume fraction.

Figure 4.11.: Elbow method, sum of squared errors (outer plot), and silhouette coefficient
(separation score) (inset plot) for the dataset scaled with the UMAP method for a sequence
of clusters from 2 to 7. Reprinted with permission from Ref.[265], Copyright 2023,
Advanced Energy Materials, under the Creative Commons CC-BY-NC license.

Following the post-processing of simulations, we obtain the SEI properties for each PSV,
which allows us to construct a dataset comprising a combination of activation energy
barriers and post-processing features. To facilitate data representation for high-dimensional
datasets, we employ the K-Means clustering method[277, 278] with the Uniform Manifold
Approximation and Projection (UMAP) algorithm[279]. The first step in K-Means clustering
is to determine the optimal number of clusters from the dataset. To achieve this, we utilize
two approaches under the elbow method. This involves fitting a model, such as K-Means,
with a range of cluster values starting from 2, and then applying different scoring parameter
metrics such as the sum of squared errors (SSE), sum of squared distances from each
point to its assigned center, and silhouette score, which is the mean silhouette coefficient
(SC) of all samples as the ratio of dispersion between and within clusters. The elbow
method[280, 281] is applied to determine the optimal number of clusters when the line
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connecting the measures by increasing the number of clusters resembles an arm, and the
inflection point on the curve (the elbow) provides an appropriate indication of the optimal
number of clusters. We calculate SSE and SC for the K-Means method, and the results
suggest three clusters (see Figure 4.11) with the separation score of 0.51 for three clusters.
This indicates three regions of the 18-dimensional (15 activation energy barriers and 3
SEI observables) parameter space of the model, where each PSV in the clusters exhibits
fundamentally different compositions of the SEI at the end of the simulation.
After determining the optimal number of clusters using the elbow method, we applied
the K-Means clustering algorithm to the dataset, which revealed that the simulations in
region 1, consisting of 21109 samples, predominantly resulted in inorganic SEI formation.
In contrast, simulations in region 2, comprising 13554 samples, showed a combination
of organic and inorganic SEI with low thickness and high porosity. Finally, simulations
in region 3, consisting of 15337 samples, led to the formation of an organic SEI with a
substantial thickness and high density (see Figure 4.12). Based on the SEI characteristics
exhibited by each region, we labeled them as "inorganic," "bad," and "good" SEI for regions
1, 2, and 3, respectively.

Figure 4.12.: Three different regions of the dataset based on reaction barriers and SEI
observables within the parameter space (PSV) along the two most dominant principal
components after Principal Component Analysis (PCA) of the clustered dataset comprising
(50000 simulations). The PSV labeled in the region colored in red result in trajectories that
have mainly inorganic SEI and no organic SEI, the PSV in the gray region result in thin
layers of porous organic and less inorganic SEI. PSV in the purple region result in thick,
comparatively dense organic SEI and very thin inorganic SEI. Reprinted with permission
from Ref.[265], Copyright 2023, Advanced Energy Materials, under the Creative Commons
CC-BY-NC license.

The subsequent step in the analysis involves a quantitative examination of the obtained
regions by inspecting the SEI observables in these regions. A multi-panel plot of thickness
and porosity for each of the three regions is provided in Figure 4.13. The left-hand column
shows that the thickness of the SEI increases from region 1 to 3. In region 1, thin inorganic
SEI forms in most cases, with a mean thickness of 3.09 nm. The formation of SEI that
blocks the region close to the electrode surface (within 4 nm) via fast electron reduction
reactions is the main reason for the resulting SEI. In region 2, SEI with almost equal
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contributions of organic and inorganic parts are observed. The formation of thick SEI is
optimal in region 3, where the formed SEI is porous and has a mean thickness of 12.14 nm.
In terms of size, these results are not comparable to experimental observations.The PSV in
this region follows a well-defined Gaussian distribution for the SEI thickness.

Figure 4.13.: Histograms of a) thickness, and b) porosity of the SEI for the three regions
of SEI growth (occurrence in thousands) (see Figure 4.12). Here, the red dotted line shows
the mean of the observable in each region. The average thickness of the SEI increases
from 3.09 nm to 12.14 nm from region 1 to region 3. In contrast, the porosity is similar
for all regions. Reprinted with permission from Ref.[265], Copyright 2023, Advanced
Energy Materials, under the Creative Commons CC-BY-NC license.

We propose two types of analyses to gain a deeper understanding of the selected regions:
1) mean fractional occurrences, which represents the mean value of occurrences for each
individual reaction across all samples in the region, and 2) escape fraction of mobile compo-
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nents, which is the ratio of SEI mobile precursors that left the simulation box to those that
were produced across all samples in the different regions. The mean fractional occurrence
plots have error bars indicating the standard deviation of the fractional occurrence of
reactions. Small error bars represent frequent fractional occurrences of reactions, whereas
large error bars signify the opposite.

Figure 4.14.: Bar plot for the average fractional occurrence of each reaction in the KMC
simulation for region 1 (represents the region for inorganic SEI, see Figure 4.12). The
error bar represents the standard deviation of the fractional occurrence of the reactions
and diffusions. The small error bars are for the frequent fractional occurrence of the
reactions, whereas it is the opposite for large error bars. Reprinted with permission from
Ref.[265], Copyright 2023, Advanced Energy Materials, under the Creative Commons
CC-BY-NC license.

In Figure 4.14, it can be seen that the first and second electron reductions occur frequently
(small error bars), indicating that inorganic SEI formation occurs rapidly close to the
electrode in Region 1. In this region, most of the produced Li2EDC diffuses and escapes
the simulation box (small error bar), where around 50% of the produced material escapes,
as shown in Figure 4.15. The combination of fast diffusion and inorganic SEI formation
may be the primary reasons for the mostly thin inorganic SEI within Region 1. In Region
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2, electron reduction reactions also occur frequently (Figure 4.16), but the formation of
the SEI cluster on top of the inorganic SEI layer leads to a few layers of organic SEI,
resulting in a thin SEI layer composed of both organic and inorganic parts. The escape
fractions for this region show that the majority of the produced material was consumed
in the SEI formation processes, with approximately 17% escaping the box (Figure 4.17),
with Li2EDC)2 contributing the most of all components. For the "good" SEI region, where
thick SEI forms, the mean fractional occurrences of reactions and the escape fractions are
shown in Figures 4.20 and 4.18, respectively. Some reactions occur very often with high
error bars, i.e., reactions numbers 5, 6, 7, 9, 10, and 11, indicating a difference in reaction
rate from one simulation to another. The diffusion of SEI precursors was found to be a
frequently occurring reaction during the analysis. Given the crucial role of diffusion rates
in the formation of "good" SEI, it is imperative to produce SEI precursors and form layers
before they escape the simulation box. Therefore, in region 3, balancing the aforementioned
reaction rates leads to the creation of thick SEI layers composed of organic and inorganic
parts. In Figure 4.20, reactions with mean fractional occurrences greater than 200 times
are indicated by the dashed red line, highlighting their significant role in the SEI formation
process. Based on the analyses conducted, the data supports the hypothesis that the
transport of precursors, particularly the organic SEI ingredients (Li2EDC), plays a crucial
role in directing the formation of a thick and dense SEI.

Figure 4.15.: Histograms of organic SEI precursor escape fractions a) C2H4OCOOLi
clusters, b) Li2EDC clusters, c) (Li2EDC)2 clusters, and d) SEI clusters) for region 1.
Here, the red dotted line represents the mean escape fraction of the precursors. A low
mean value of the escape fraction means that more precursors form the organic SEI.
Because competing reactions occur infrequently before nucleation, Li2EDC has the highest
escape fraction of these four precursors. The majority of the Li2EDC escapes the system
before nucleation, resulting in the formation of inorganic SEI in this region. Reprinted
with permission from Ref.[265], Copyright 2023, Advanced Energy Materials, under the
Creative Commons CC-BY-NC license.
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Figure 4.16.: Bar plot for the average fractional occurrence of each reaction in the KMC
simulation for region 2 (represents the region for inorganic SEI, see Figure 4.12). The
error bar represents the standard deviation of the fractional occurrence of the reactions
and diffusions. The small error bars are for the frequent fractional occurrence of the
reactions, whereas it is the opposite for large error bars. Reprinted with permission from
Ref.[265], Copyright 2023, Advanced Energy Materials, under the Creative Commons
CC-BY-NC license.

Upon examining the escape fraction of region 3 in Figure 4.18, it becomes evident that
only around 1% of C2H4OCOOLi escaped out of the system, meaning that 99% of it
was involved in the production of Li2EDC (refer to 4.18a). The fraction of Li2EDC that
escaped was approximately 22%, which suggests an irreversible loss of SEI precursors
before dimerization. On the other hand, for (Li2EDC)2 and mobile SEI clusters, the escape
fraction was around 1% and 0.2%, respectively. This implies that most of the agglomerated
SEI components eventually join the organic SEI cluster to form a thick SEI.
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Figure 4.17.: Histograms of organic SEI precursor escape fractions a) CC2H4OCOOLi,
b) Li2EDC, c) (Li2EDC)2, and d) SEI clusters) for region 2. Here, the red dotted line
represents the mean escape fraction of the precursors. Among mobile species, (Li2EDC)2
has the highest escape fraction. Reprinted with permission from Ref.[265], Copyright
2023, Advanced Energy Materials, under the Creative Commons CC-BY-NC license.

When comparing Figure 4.20 to Figure 4.10a, it becomes evident that the PSV chosen to
elucidate the organic SEI formation process is also the PSV that leads to the formation
of "good" SEI. Thus, even though it is not possible to specify the exact reaction rates for
the particular system, it can be suggested that the formation of "good" SEI in a model
(the general structure developed and discussed here) involves a solution-mediated growth
mechanism instead of a surface-mediated growth mechanism.
In order to evaluate how the distance of the first nucleation event from the electrode surface
impacts the formation of SEI, we generated a correlation plot between this distance and
SEI thickness (Figure 4.19), utilizing data from region 3 of our dataset. The blue line
on the plot denotes the linear regression fit of the scattered data points. Considering the
effects of SEI cluster diffusion and the gradient of SEI precursors on SEI formation, the
linear regression suggests that thick SEI layers are formed when the first nucleation event
occurs farther away from the electrode surface. As we follow the blue solid line on the
plot towards smaller distances, it becomes evident that the SEI layer becomes thinner
as the nucleation event occurs closer to the electrode surface. In addition, nucleation
events that occur near the electrode surface may lead to blockage of further SEI growth by
covering the electrode surface. The slope of the blue line is less than one, indicating that
the shape of the SEI cluster elongates in a direction perpendicular to the surface due to the
concentration gradient of the precursors. Based on these observations, we conclude that
the thickness of SEI can be predicted by the location of the first nucleation event in the
SEI formation mechanism. Rapid nucleation events that occur near the electrode surface
lead to the formation of thin SEI layers (region 2).
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Figure 4.18.: Histograms of the escape fraction of organic SEI precursors a)
C2H4OCOOLi, b) Li2EDC, c) (Li2EDC)2, and d) SEI clusters) i.e. the fraction of
precursors that diffuse out of the KMC simulation box for region 3 (see 4.12). Here, the
red dotted line represents the mean escape fraction of the precursors. A low mean value
of the escape fraction means that more precursors form the organic SEI. Li2EDC has the
highest escape fraction among these four precursors because competing reactions occur
infrequently before nucleation. Reprinted with permission from Ref.[265], Copyright 2023,
Advanced Energy Materials, under the Creative Commons CC-BY-NC license.

Figure 4.19.: Scatter plot of SEI thickness with respect to the distance (Z) of the first
nucleation (formation of a SEI cluster for organic SEI, (purple)) from the electrode for
the samples in region 3. The blue solid line represents the linear regression fit, and it
shows that the thickness of the SEI increases with distance from the first appearance of
the SEI clusters. Thicker SEI developed when the nucleation started far away from the
electrode surface, which resulted from the directional growth through aggregation along a
concentration gradient. If the nucleation starts near the electrode, then the electrode is
rapidly blocked. Reprinted with permission from Ref.[265], Copyright 2023, Advanced
Energy Materials, under the Creative Commons CC-BY-NC license.
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Figure 4.20.: Bar plot for the average fractional occurrence of each reaction in the
KMC simulation for region 3 (represents the region for good SEI, see 4.12).The high
mean values for diffusions reflect the necessity of a good SEI. The error bar represents
the standard deviation of the fractional occurrence of the reactions and diffusions. The
small error bars are for the frequent fractional occurrence of the reactions, whereas it is
the opposite for large error bars. Reprinted with permission from Ref.[265], Copyright
2023, Advanced Energy Materials, under the Creative Commons CC-BY-NC license.

Based on this observation, a practical principle for controlling SEI thickness can be proposed:
controlling the nucleation reaction. The computational limitations of this study necessitated
the use of a 50×50 nm2 lattice, which led to the formation of an SEI with a maximum
thickness of 25 nm.
Furthermore, to gain a better understanding of the contribution of different reactions to
the formation of "good" SEI in the final region, a correlation matrix plot was generated
for activation energy barriers and SEI observables. This plot, depicted in Figure 4.21,
considers various reactions, such as the formation of (Li2EDC)2 and SEI clusters, diffusion
of Li2EDC and SEI clusters, and SEI observables, and displays their correlation.
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Figure 4.21.: Correlation matrix plot of a few barriers (for reactions 5, 6, 9, 13, and 15)
and observables (SEI thickness and porosity), where 0 is for no linear correlation and any
positive and negative values indicate the positive and negative linear correlation between
two variables, the formation of Li2EDC is closely related to the diffusion of Li2EDC
and the thickness of the SEI. A correlation plot for all reactions and SEI observables is
available in Appendix Section F Figure F.13. Reprinted with permission from Ref.[265],
Copyright 2023, Advanced Energy Materials, under the Creative Commons CC-BY-NC
license.

Based on the correlation matrix plot shown in Figure 4.21, it can be observed that there
exists a significant linear correlation between the diffusion of Li2EDC and the formation
of (Li2EDC)2. Furthermore, there is a strong positive correlation between the formation
of (Li2EDC)2 and the thickness of SEI formed. This highlights the crucial role played by
dimerization in producing the precursor required for the initiation of nucleation and the
first organic components in the solution-mediated SEI growth mechanism.

4.5. Effect of exchange between lithiated solvent and the organic SEI

To delve deeper into the various possibilities for the growth of the SEI, which were previously
discussed, the developed model is lacking the necessary components that facilitate transport
for the pathway that requires electron transport through the organic SEI. Furthermore, we
observed no evidence of organic SEI growth through "cracks" or "pores" in the SEI. In order
to quantitatively demonstrate the infeasibility of such a mechanism, we performed two
additional simulations that would have favored such a situation. In the first simulation, we
accelerated the rate of exchange of lithiated solvent with organic components. This created
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a pathway for the lithiated solvent to react with the anode or inorganic SEI surface through
solvent reduction or Li intercalation. Figure 4.22 illustrates the formation of a thin organic
SEI located 9 nm from the anode surface, which rapidly expanded inward over a period
of 260 µs to become a thick organic SEI. However, the organic SEI eventually fractured
and separated into small organic clusters that diffused into the solution, as the lithiated
solvent could pass through it. As a result, the organic SEI disintegrated, leaving only the
inorganic SEI remains. Since we could not detect any SEI growth using this method, we
instead investigated SEI stability. To assess SEI stability, we began with a thick organic
SEI that had already formed and then increased the rate of solvent-SEI exchange. Figure
4.23 shows how we observed the organic SEI degrading continuously to a thin layer of less
than 3 nm over a period of 4 ms. These simulations led us to the conclusion that a solvent
molecule must undergo numerous diffusive events in order to move through a thick SEI
and eventually reach the surface, where it may react and create a single new component
of the organic SEI. However, each diffusive process has the potential to break the SEI,
resulting in significantly faster degradation on average than regeneration.
According to our criterion, we can anticipate two possible outcomes, which are as follows:
a "good" SEI may be formed due to the exchange of the lithiated solvent with organic
components. Conversely, a "bad SEI" may form when the formed organic SEI interacts with
the solvent. To investigate this, we utilize the set of exchange rates from the representative
sample presented in our manuscript, which was previously demonstrated to yield a "good"
SEI. Subsequently, we integrate additional exchange events to the existing event list in
our kinetic Monte Carlo (KMC) model and perform the simulation again to analyze the
formation and growth of the SEI.

Figure 4.22.: The SEI thickness (nm) as a function of time (in seconds) during the
spatio-temporal evolution of the reference sample. At the beginning of the simulation, the
solvent reduction process leads to the formation of inorganic SEI. The organic SEI starts
to form at 180 µs (9 nm away from the surface, highlighted in the inset image) and the
average thickness (red dotted line) rises. However, due to its continuous dissolution, the
average thickness of the organic SEI subsequently declines until it is completely dissolved
(260 µs). Inset images are snapshots at different time-interval during the simulations.
Reprinted with permission from Ref.[265], Copyright 2023, Advanced Energy Materials,
under the Creative Commons CC-BY-NC license.

To enhance the lucidity of our findings, we implemented an alternative approach where we
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introduce the extra event (i.e., the exchange between lithiated solvent and organic SEI)
directly after the complete formation of SEI (i.e., after 2.6 ms of simulation, as depicted in
Figure 4.6f). As anticipated, our observations demonstrate that the deterioration of SEI
surpasses its renewal by a significant margin. This outcome indicates that any battery
operating under these conditions would inevitably degrade.

Figure 4.23.: The SEI thickness (nm) as a function of time (in seconds) during the
spatio-temporal evolution of the reference sample starting at a preformed SEI. Here the
simulation begins at 2.6 ms with the additional events (exchange between lithiated solvent
and organic SEI). In this case, already formed organic SEI starts to dissolve and the
average SEI thickness declines and reaches a constant value of 3 nm at 4 ms. This result
demonstrates that even a thick preexisting organic SEI will be degraded by diffusion
events that allow a significant fraction of the solvent to reach the surface. Inset images
are snapshots at different time-interval during the simulations. Reprinted with permission
from Ref.[265], Copyright 2023, Advanced Energy Materials, under the Creative Commons
CC-BY-NC license.

4.6. Conclusions

Although the SEI is widely recognized as a crucial element in liquid electrolyte batteries,
its growth mechanism and resulting structure and function remain elusive. The SEI growth
models must address a paradoxical situation in which electrons required for electrochemical
reactions that degrade the electrolyte into SEI precursors are available only within a
few nanometers of the electrode surface, while functional batteries exhibit an organic
SEI an order of magnitude thicker. In this research, we proposed a multi-scale model
that resolves this paradox by suggesting a solution-mediated pathway for SEI growth.
We established a reaction network for microscopic reactions relevant to SEI growth and
estimated the initial reaction rates based on literature data. As the transferability of
microscopic reaction parameters obtained under idealized assumptions to mesoscopic
models with various assumptions is limited, we conducted a design-of-experiment study to
explore the relevant parameter space of the reaction model, performing over 50000 model
simulations, each corresponding to a specific set of microscopic parameters. The model
balances the realism of the represented mechanisms and computational feasibility. Our
analysis of the simulations revealed three SEI outcomes: "inorganic," "bad," and "good"
SEI.
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Our simulations revealed that only parameter sets in a specific region allowed for the growth
of a thick and stable SEI that ultimately covered the electrode surface. Surprisingly, we
found that the SEI grew through a solution-mediated pathway, which involved a nucleation
reaction of SEI precursors taking place far away from the electrode surface, rather than
directly on it as most existing models postulate. We observed a positive correlation between
the thickness of the SEI and the distance from the electrode where the nucleation reaction
occurred. Strikingly, we found that the most stable SEI was grown when the nucleation
reaction occurred far from the surface. As a result of this solution-mediated pathway, some
of the degraded electrolyte diffused away from the surface and was no longer available for
SEI formation. Nonetheless, about 20% of the degraded electrolyte precursors were still
available for SEI formation.

Figure 4.24.: Images of SEI from experiments using advanced techniques (SEM, TEM).
(a) XHR-SEM image of the SEI layer on the graphite electrode after 5 minutes of ion
etching. Reprinted with permission from Ref.[282] Copyright (2013) Elsevier. (b) The
TEM image and the porosity analysis of the SEI layer. Reprinted with permission from
Ref.[283] Creative Commons Attribution 4.0 license. (c, d) cryogenic transmission electron
microscopy (Cryo-TEM) images of the compact SEI with an approximate thickness of 5
nm. (e, f) cryogenic high-resolution transmission electron microscopy (Cryo-HRTEM)
images of the extended SEI interfaced with carbon black. Reprinted with permission from
Ref.[284] Copyright 2019, American Chemical Society.

We identified the reaction leading to the formation of (Li2EDC)2 as an essential prerequisite
for the nucleation reaction. This insight into a controllable reaction offers opportunities for
designing the properties of the SEI. SEI grown via a solution-mediated pathway will exhibit
different electrochemical and mechanical properties from SEI grown in a continuous manner,
starting at the electrode and progressing towards the electrolyte. By using the outcome
of our simulations, our model presents an opportunity to investigate these properties for
functional studies of batteries. The organic SEI, depicted in Figure 4.6f, is much more
porous than the inorganic SEI, which has consequences for long-term battery operation.
The soft organic SEI is expected to crack with each charging cycle, leading to further
degradation of solvent molecules. This process causes the continuous, irreversible consump-
tion of active battery materials and ultimately limits the battery's lifetime. While only a
qualitative comparison is presently possible, it is interesting to compare our simulation
results with experimental observations. The morphology (thickness and porosity) of an
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SEI layer on graphite that is commensurate with the morphology of the SEI in region 3
of our simulation is shown in Figure 4.24a, an extreme high resolution scanning electron
microscopy (XHR-SEM) image of the SEI after 5 minutes of ion etching [282].
In both experimental and simulation studies, the morphology of the SEI has been observed
to have a size of around 40 nm, consisting of a dense inner zone and a more porous outer
zone[283] (Figure 4.24b). This supports the solution-mediated pathway scenario, as the
density of SEI precursors decreases with distance from the surface. A surface growth
mechanism would not produce the observed discontinuous porosity distribution. Addition-
ally, Figure 4.24(c-f) displays two examples of SEI growth under different conditions[284].
Figures 4.24 (c,d) correspond to a scenario where only the inorganic SEI is growing (region
1 in the SEI landscape), while Figures 4.24 (e,f) correspond to a scenario where substantial
SEI growth is observed (region called "good" SEI). Although this comparison is only
indicative of possible scenarios at present, it shows that the mesoscopic model discussed
in the study can produce SEI morphologies that agree with experimental observations
qualitatively. In future work, there will be attempts to establish a more quantitative
correspondence between the simulation results and experimental observations. Additionally,
the assumptions made in this study will be systematically tested, including whether a
three-dimensional model will produce different outcomes. However, the authors expect
that the two-dimensional model can still capture the qualitative mechanism of organic SEI
growth in LIBs. The model can also be extended to incorporate the presence of electrolyte
mixtures and additives, providing a solid foundation for further research into the growth
and function of SEI in LIBs. While this study focuses on the SEI growth mechanism, future
research can address more complex systems. Two possible avenues include using ab-initio
data to parameterize KMC simulations or relying on molecular dynamics simulations as an
intermediate model to inform KMC simulations[285]. The mesoscopic model developed
in this study can be readily expanded to include the presence of various additives and
electrolyte mixtures. The accuracy of the model will be validated through experiments,
such as X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy
(TEM) to refine the efficient continuum scale models for predicting SEI properties during
cycling in LIBs with high accuracy. Although the current study focuses on the general
mechanisms underlying SEI growth, future work may investigate more intricate systems.
Two approaches can be pursued in this regard. First, ab-initio data from other systems can
be directly utilized to parameterize the KMC simulations in some cases. Second, the KMC
model can be used as an intermediary to parameterize molecular dynamics simulations
on shorter time and length scales[285]. The mesoscopic model can be easily modified to
account for the presence of additives and different electrolyte mixtures. As with the original
model, experiments such as XPS and TEM results will be used to verify the modified model
and input parameters will be used to improve the accuracy of effective continuum scale
models for predicting SEI properties during cycling in LIBs.





5. Summary

Mesoscopic science deals with studying systems at intermediate length and time scales,
and has emerged as an essential subfield in condensed matter physics, materials science,
and biology. It encompasses a vast array of phenomena, including self-assembly, phase
transitions, diffusion, and reaction kinetics, all of which occur in systems ranging from a
few nanometers to micrometers in size and from picoseconds to microseconds in duration.
Despite its importance, mesoscopic science faces significant challenges due to the so-called
mesoscale gap, which arises when there is a substantial difference between the length
and time scales of the phenomena of interest and those that can be resolved by available
theoretical or experimental techniques. This gap presents a significant obstacle to the
accurate modeling and simulation of mesoscopic systems. On the one hand, atomistic
simulations based on first-principles calculations can provide detailed information about the
electronic structure and chemical reactions at the atomic scale. However, these methods are
computationally expensive and can only simulate systems with a limited number of atoms
and a short simulation time. On the other hand, continuum models, such as finite element
or continuum mechanics methods, can simulate macroscopic systems with a large number of
atoms and a long simulation time but lack the necessary resolution to capture the details of
the microstructure and the underlying physics. To overcome this challenge, researchers have
developed various computational methods, such as Kinetic Monte Carlo (KMC) simulation,
which allows for the efficient simulation of large systems over long simulation times. KMC
simulation is a stochastic method based on the Markovian assumption that the system
evolves through a sequence of discrete, randomly occurring events, such as diffusion or
chemical reactions. With the advancement of computational power and the development of
more sophisticated algorithms, KMC simulations have become increasingly popular and
accurate, enabling researchers to study complex mesoscopic systems.
KMC simulations offer a powerful and flexible approach for investigating the growth and
properties of graphene-based materials[286, 287]. One of the main areas of application for
KMC simulations in graphene research is the study of the growth process itself, considering
the effects of different growth conditions, as it is discussed in the third chapter of this
thesis. KMC simulations can also be used to investigate defects in graphene, such as
vacancies, dislocations[288], and grain boundaries[289]. For instance, KMC simulations
can be employed to study the effect of temperature, pressure, and precursor molecules on
the formation of defects[290], as well as the impact of different annealing conditions on
the healing of defects in graphene[291]. With the growing interest in graphene for various
applications, KMC simulations can be used to investigate new applications of graphene-
based materials. By predicting the optimal growth conditions and defect configurations,
KMC simulations can help to optimize the properties and performance of graphene-based
materials in new devices, such as gas sensors[292], electronic devices[293], and energy
storage devices[294].
KMC simulations are also a valuable tool for studying various aspects of lithium-ion
batteries (LIBs), including electrode materials, electrolytes, additives, solid electrolyte
interphases (SEI), and cathode electrolyte interphases (CEI). In the study of electrode
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materials, KMC simulations are used to model the diffusion of lithium ions within the
electrode material[61], which is crucial in determining battery capacity and cycle life[295].
Additionally, KMC simulations can be employed to study the transport of lithium ions
in the electrolyte solution and their interaction with the electrode surface[296]. Studying
the effects of additives on battery performance and safety by simulating the interactions
between additive molecules and electrode surfaces can be another application of such
simulation models[297, 298]. The forth chapter of this thesis is dedicated to study the SEI
formation in LIBs employing KMC simulation. In the case of CEI, KMC simulations have
been used to study the formation and stability of the CEI layer on cathode materials[299].
KMC simulations can also aid in the design of new electrolytes, and additives, and predict
their effects on the formation and degradation of the SEI and their influences on the battery
performance[300]. These simulations have the potential to significantly improve the design
and performance of LIBs by providing insights into the complex electrochemical processes
involved in battery operation. Advancements in computational power are anticipated to
enhance the accuracy and predictability of KMC simulations, leading to further progress
in a research and development areas.
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Appendix

A. Evolution of net rate constant with time for AS-KMC and FSR-KMC
simulations : Chapter 3

The time-dependent evolution of the net occurrence rate of all the reactions involved
(reactions 1 to 18, as shown in Table 3.2) was analyzed for the given simulations. Figures
A.1 to A.6 illustrate that the reaction rates change during the simulation and eventually
attain a steady state value. It was anticipated that the rates would achieve a steady state
value when the species concentrations reach their steady state values, based on the fact
that the rate (probability) of reactions can be expressed as the product of the rate constant
(provided in Table 3.2) and the species concentrations. The steady-state rate values are
presented in Figure 3.34.

Figure A.1.: Evolution of net rate constant with time for AS-KMC simulation with δ =
0.3. Net rate constant is calculated as forward minus backward occurrence per time.
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Figure A.2.: Evolution of net rate constant with time for AS-KMC simulation with δ =
0.4. Net rate constant is calculated as forward minus backward occurrence per time.

Figure A.3.: Evolution of net rate constant with time for AS-KMC simulation with δ =
0.5. Net rate constant is calculated as forward minus backward occurrence per time.
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Figure A.4.: Evolution of net rate constant with time for AS-KMC simulation with δ =
0.6. Net rate constant is calculated as forward minus backward occurrence per time.

Figure A.5.: Evolution of net rate constant with time for AS-KMC simulation with δ =
0.7. Net rate constant is calculated as forward minus backward occurrence per time.
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Figure A.6.: Evolution of net rate constant with time for FSR-KMC. Net rate constant
is calculated as forward minus backward occurrence per time.

B. Latin-Hypercube (lhs): Chapter 4

We employed the python pyDOE package[276] to generate random barrier lists. In this
package, the latin-hypercube designs can be created via the following syntax:

lhs(n = 15, [samples = 50, 000, criterion = ”correlation”])

Where n, samples, and criterion are the number of barriers, the number of samples, and the
way this function sample the points (here "correlation" stands for minimizing the maximum
correlation coefficient). in general:

• “center” or “c”: center the points within the sampling intervals.

• “maximin” or “m”: maximize the minimum distance between points, but place the
point in a randomized location within its interval.

• “centermaximin” or “cm”: same as “maximin”, but centered within the intervals.

• “correlation” or “corr”: minimize the maximum correlation coefficient

The sampling result was a 50000×15 parameter space where each row contains 15 randomly
generated activation energy barriers representing the specific sample.
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C. Dataset, including barriers and SEI observables: Chapter 4

Figure C.7.: A section of dataset as 50,000×18 table including reaction barriers and SEI
obervables. To evaluate the formation close to the electrode, only the first 15 reactions
are considered.
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D. Samples from bad, inorganic, and good SEI regions : Chapter 4

Figure D.8.: Samples taken from region 1 where inorganic SEI forms (labeled from 50000
dataset). Organic, inorganic SEI components are shown in red and purple respectively.
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Figure D.9.: Samples taken from region 2 where bad SEI forms (labeled from 50000
dataset). Organic, inorganic SEI components are shown in red and purple respectively.
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Figure D.10.: Samples taken from region 3 where good SEI forms (labeled from 50000
dataset). Organic, inorganic SEI components are shown in red and purple respectively.
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E. Good SEI samples growth multi-panel plots

Two further simulation cases where the SEI nucleation and growth are shown using multi-
panel figures E.11 and E.12. Both cases indicate the far nucleation of SEI cluster and
downward growth because of the gradient of Li2EDC on the lattice.

Figure E.11.: Different snapshots of the KMC simulation (50 × 50 nm2) for the sample
30613 at the indicated time. In the simulation box, the graphite electrode layer is
implemented at the bottom (black), the absorbing open interface at the top. Initially,
all other sites are occupied by EC-Li+ (white), the precursor for the SEI formation at
the start of the simulation. The reaction intermediates and products, namely Li2CO3,
C2H4OCOOLi, Li2EDC, (Li2EDC)2, and organic SEI clusters are represented by red,
green, orange, blue, and purple sites, respectively (see 4.2). During the simulation, a)
C2H4OCOOLi (green) and Li2EDC (orange) form rapidly a stable inorganic SEI layer
(red), and b) Li2EDC (orange) dimerized to form (Li2EDC)2 (blue). SEI clusters (purple)
start to grow (c-e) away from the electrode presence of (Li2EDC)2 and Li2EDC, and the
organic SEI deposited (f) on the inorganic SEI to form porous immovable SEI.
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Figure E.12.: Different snapshots of the KMC simulation (50 × 50 nm2) for the sample
36026 at the indicated time (see SI). In the simulation box, the graphite electrode layer
is implemented at the bottom (black), the absorbing open interface at the top. Initially,
all other sites are occupied by EC-Li+ (white), the precursor for the SEI formation at
the start of the simulation. The reaction intermediates and products, namely Li2CO3,
C2H4OCOOLi, Li2EDC, (Li2EDC)2, and organic SEI clusters are represented by red,
green, orange, blue, and purple sites, respectively (see 4.2). During the simulation, a)
C2H4OCOOLi (green) and Li2EDC (orange) form rapidly a stable inorganic SEI layer
(red), and b) Li2EDC (orange) dimerized to form (Li2EDC)2 (blue). SEI clusters (purple)
start to grow (c-e) away from the electrode presence of (Li2EDC)2 and Li2EDC, and the
organic SEI deposited (f) on the inorganic SEI to form porous immovable SEI.
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F. Correlation matrix plot of all barriers and SEI obseravles: Chapter 4

Figure F.13.: Correlation matrix plot of all barriers (except escape ones) and observables
(SEI thickness and porosity) where 0 is for no linear correlation, and any positive and
negative values indicate the positive and negative linear correlation between two variables.
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