
A Toolchain for Simulation Component
Specification and Identification

Sandro Koch(B) and Frederik Reiche

KASTEL – Institute of Information Security and Dependability, Karlsruhe Institute
of Technology (KIT), Karlsruhe, Germany
{sandro.koch,frederik.reiche}@kit.edu

Abstract. Reusing a simulation or parts of it is difficult, because sim-
ulations are tightly coupled to a specific domain or even to the analysed
system. In a set of simulation components, either publicly available or
from internal repositories, it is difficult for simulation developers to find
simulation components that can be reused in a new context. They have
to understand the structure and the behaviour of a component to deter-
mine, whether it fits for the new context. To address this problem, we
introduce our toolchain that allows simulation developers to specify the
structure and behaviour of a simulation component. We utilise a state-
of-the-art graph database and an SMT theorem prover to compare a sim-
ulation components. This allows simulation developers to compare and
search for simulation components that can be reused instead of being
redeveloped.

Keywords: simulation reuse · component compare · simulation
specification · domain-specific modelling language

1 Introduction

The specification of a software architecture, e.g. UML class models, is an abstrac-
tion of the actual code of the software system. The software architecture covers 
the structure of the software system; for the behaviour of a system, a different 
type of model is necessary. In the context of a simulation, the behaviour of the 
simulation and the behaviour of the system are very similar. For a software sys-
tem’s performance simulation, the developer must understand how to implement 
the simulation and how a performance simulation functions. To reduce the com-
plexity and the effort of implementing a simulation, especially reimplementing 
already existing parts of a simulation, we proposed our approach to specify the 
structure and behaviour simulation components [10]. We use the specification 
of simulation components to identify other components with similar structures

This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German 
Research Foundation) – Project number 499241390 (FeCoMASS) and by the Federal 
Ministry of Education and Research (BMBF) under the funding number 01IS18067D 
(RESPOND).



and behaviour. Our approach allows the simulation developer to compare and
find simulation components they can reuse in subsequent simulation projects.
We decompose a simulation into individual features that allow the simulation
developer to manage and reuse them individually. A simulation feature is an
abstraction of a system’s property that the simulation can analyse, for exam-
ple, the property throughput to simulate the performance of a system. We focus
on implementing a simulation feature, the simulation component. A simulation
component comprises packages, classes, and simulation algorithms.

The toolchain we present in this paper allows simulation developers to spec-
ify the structure and behaviour of a simulation component by using model-based
editors. We use the specification to compare simulation components to find simu-
lation components that the simulation developer can reuse in a different context.
To compare simulation components, we use two approaches. First, our tool uses
the specification to compare the structure of the simulation components to iden-
tify whether the compared simulation components are structurally identical.
However, an identical structure is insufficient to determine a reusable simula-
tion feature [18]. Therefore, we also implemented the second step, comparing a
simulation component based on the behaviour.

This paper is structured as follows: In Sect. 2 we present approaches related
to this work. In Sect. 3 we introduce our toolchain: First, we present the specifi-
cation part in Sect. 3.1, and then we present the identification part in Sect. 3.2.
Finally, in Sect. 4 we conclude the paper, and in Sect. 5 we present the next steps
we planned for the toolchain.

2 Related Work

For source code comparison we found the tool JPlag which can find similarities
in Java, C#, C, and C++ source code [14]. JPlag is used to detect software
plagiarism. Gitchel et al. [7] developed the tool SIM, which compares source code
written in C, Java, Pascal, and Lisp. Its approach is similar to JPlag, both use
a tokeniser approach for comparing the source code. SIM is also able to take the
correctness, style and uniqueness of the code into account. Measure Of Software
Similarity (MOOS) is another tool that can compare source code [17]. In contrast
to JPlag and SIM does MOOS support 26 different programming languages [1].
These tools focus on similarities regarding the structure of the source code, in
contrast to our work is the behaviour is not part of their analyses.

Another approach, FOCUS, by Ringert et al. [16] provides a mathematical
semantics for the specification of structure and behaviour of software systems.
FOCUS can also specify quality and domain-specific properties of a software
system [11]. Graphical approaches such as UML-based Activity Diagrams, Flow
Diagrams or Activity Cycle Diagrams can be used to describe the structure of a
simulation and specify the flow of events [2]. FOCUS and UML are too broad,
they can model any kind of software system; therefore, they require additional
training for non-domain experts to model Discrete-Event Simulation (DES).



The refinement of relations and various forms of simulation dependencies are
investigated by Milner [12]. Clarke et al. [4] investigate the satisfaction of tem-
poral logic formulas by automata, and Richters et al. [15] check the consistency
of object structures regarding data structures. The Discrete Event System Speci-
fication (DEVS) formalism [22] is a formal approach to describing and analysing
discrete event systems. Other approaches, like Condition Specification Language
(CSL) [13] or the OMNeT++ framework [20], combine simulation specifications
with a description language. These approaches use general-purpose languages like
C or Java for their specification, comparing these specifications would require
to compare the structure and behaviour on the source-code level. Our approach
allows the straightforward transformation of declarative expressions to Satisfi-
ability Modulo Theories (SMT)-instances and their comparison with an SMT-
solver.

For the specification of an architecture for distributed simulations that allow
the interoperability and reuse [9] of simulations, the High-Level Architecture
(HLA) was developed by the Modelling and Simulation Coordination Office of
the US Department of Defence. Another specification approach, the Functional
Mock-up Interface (FMI) [3] standard, helps to define an interface for exchang-
ing information and coupling between heterogeneous software systems used for
Model Exchange and Co-Simulation. Both approaches, the HLA and the FMI,
can be combined to facilitate the reuse of simulation models in complex engi-
neered systems [6]. However, in contrast to our work, these approaches lack the
ability to compare and identify simulation components.

3 The Toolchain for Simulation Specification
and Simulation Component Identification

We separated our toolchain to specify and identify simulation components into
two parts. Figure 1 depicts the third-party tools we used and the tools we devel-
oped to realise the specification and identification of simulation components.

Fig. 1. Specification and Analysis Toolchain



Our contributions are the Simulation Specification Editor, the Analysis Com-
mand Line Interface (CLI), and the Analysis Results; they are depicted in black.
This section details how we implemented the toolchain and how it is used. First,
in Sect. 3.1, we present how one can specify simulation components with our
tooling. Second, in Sect. 3.2, we present how one can use our tooling to identify
similar simulation components.

3.1 Specification of Simulation Components

The Simulation Specification Editor is based on our metamodels from our previ-
ous work [10]. Events, entities, and attributes are the three elements that make
up what we refer to as the structure of a simulation. According to this view-
point on the structure of a simulation, an event is nothing more than a different
object devoid of any behavioural characteristics. The structure of a discrete event
simulation can be modelled using the metamodel that is shown in Fig. 2. A Sim-
ulation is made of a collection of Entities and Events, and each Entity is made
of a collection of typed Attributes. In addition, Events can read Attributes of
Entities. This dependency indicates which attributes are affected by an event.
Because performing a read operation on an attribute has no impact on the sim-
ulation world, this relationship is considered to be a component of the structural
metamodel.

Fig. 2. Metamodel for Specifying the Structure of Simulation Components

The metamodel used to describe the behavioural aspects is displayed in Fig. 3.
Even though the term behaviour can have several distinct meanings, we define
the behaviour of a simulation to be the impacts of events on the state of the
simulation world, i.e., changes to attributes that are triggered through events.



Fig. 3. Metamodel for Specifying the Behaviour of Simulation Components

When attempting to specify the behaviour of a simulation, in addition to the
structure of the simulation, two additional notions are required. (i) During its
execution, a simulation will modify the simulation world. The metamodel must
be able to specify modified attributes in order for it to express changes to the
simulation world. Furthermore, the metamodel must be able to provide to model
the modification of attributes in order for it to express changes to the simulation
world. These changes are included as part of the simulation’s specification. (ii)
In DES, attribute changes can only take place during events. Furthermore, an
event can occur at any time, which signifies a change in the simulation world.
The order in which events are scheduled and the times at which they occur
indirectly will influence the simulation world’s status. Events will cause other
events to be delayed in their scheduling.

In order to specify a simulation, we implemented the metamodels in the
Eclipse Modelling Framework (EMF)1. EMF is an extension of the Integrated
Development Environment (IDE) Eclipse. EMF provides graphical editors to
create metamodels, and it also provides developers with code generators to create
code stubs of the metamodel classes and tree-editors for the metamodels.

As shown in Fig. 1, EMF provides the editor to create the simulation specifi-
cation. We utilised the tree-based editors so that the simulation developer could
model a simulation component graphically. The simulation developer can model
the structure and behaviour of a simulation component in the tree editor. It is
necessary to model both: the structure and the behaviour of a simulation com-
ponent to compare and identify identical components [10]. Figure 4 shows the
tree editor in Eclipse to specify simulation components.

Each simulation component is stored in a *.structure file. The developer
can edit these files with the structure tree-editor. Each node in the editor is
created with a unique ID and name property. The root node represents the

1 https://www.eclipse.org/modeling/emf/.



Fig. 4. Simulation Specification Editor

simulation component; the developer can add a description in addition to the ID
and name. The root node contains entities and events. All entities have attributes
that are either base datatypes like integers or booleans, or arrays or enums. Each
event can reference any number of attributes to indicate a reads relationship.

In order to separate the structure from the behaviour, the behaviour is mod-
elled in a separate section, but it is stored in the same file. The metamodels
of structure and behaviour are modelled according to the reference architec-
ture for domain-specific modelling languages [8]. The modular structure of the
metamodels allows us to maintain and extend the metamodels separately and
use an editor that references both metamodels. The behaviour consists of writes
attribute and schedules relationships. According to our metamodel, each writes
attribute is linked to one event. When the event is fired, the writes attribute con-
tains a condition; if this condition is true, the referenced attribute gets changed.
How an attribute is changed is also modelled in the writes attribute.

Events are also able to schedule other events. To model the scheduling of
events, developers can add the schedules node to the tree editor. A schedules
node references the causing event and the event to schedule. In order to determine
whether the simulation component schedules an event, the node also contains
the condition and a reference to the attributes that are evaluated.

For the specification to be used for comparison, we transform the specifi-
cation into a graph (cf. Koch et al. [10]). In Fig. 5, we show an example of
the structural information stored in the graph. The stored simulation compo-
nent represents the simulation of a traffic light. The graph contains one entity,
two attributes and two events. The entity TrafficLight represents the simu-
lated traffic light. The TrafficLight contains the two attributes colourTraffic and



waitingPedes. The attribute colourTraffic represents the colour of the traffic light
(red or green), and the attribute waitingPedes. represents the number of pedes-
trians that wait at the traffic light. Besides the entity and the two attributes,
the graph also contains the events PedestrianRed and PedestrianGreen. The
event PedestrianGreen can change the colour of the traffic light, as it has a
writes relation on the attribute colourTraffic. The event PedestrianGreen also
reads the number of waiting pedestrians. How we represent the structure and
behaviour of simulation components differs from how we differentiate structure
and behaviour when we compare them. The behaviour information is part of the
graph (i.e., schedules- and writes relations), and the expressions are annotated on
these relations. However, when our tool compares the structure of the simulation
components, the annotated information about the behaviour is discarded; thus,
Fig. 5 only contains the structural information (i.e., nodes and edges). The usage
of expressions in schedules- and writes-relationships, which reflects a paradigm
orthogonal to the graph notation, is why the behaviour specification of the sim-
ulation component cannot be compared using a graph-based method (cf. [10]).
The behaviour is stored as annotations on the schedules- and writes-relations;
thus, the graph-isomorphism approach cannot determine the behaviour’s simi-
larity. The expressions representing the simulation component’s behaviour are
first-order logic statements. We transform these statements into SMT statements
(as introduced in [10]).

Fig. 5. Graph-representation of Structural Elements

The specification in its graph form is stored in the graph database Neo4J2

as shown in Fig. 1. Our tool provides an interface to save the specification in
the database. For convenience, we recommend running the Neo4J database in a
Docker container.

Although the database is used to store the transformed specifications and to
perform the analysis to compare the specifications structurally, the user can visu-
alise each stored graph via the Neo4J UI. Figure 6 shows the graphs of six simula-
tion components of various sizes. The blue nodes represent a simulation compo-
nent. The yellow nodes represent the entities of a simulation component. The red
nodes represent the events of a simulation component. The grey nodes represent

2 https://neo4j.com/.



Fig. 6. Simulation Specification Graph Visualisation (Color figure online)

the datatypes of the simulation component. Reads- and writes-relationships are
represented by arrows between events and datatypes. Arrows between events also
represent schedules-relationships. Although it is possible to modify the graphs



in the Neo4J user interface, the editor does not automatically update the specifi-
cation in the tree editor based on the changed graph. Therefore, we recommend
using only the tree-based editor to modify the specifications.

3.2 Identification of Simulation Components

The specification of structure and behaviour of simulation components can serve
as documentation for the simulation. The analysis developers can use these spec-
ifications to understand the software better, and if necessary, they can compare
these specifications manually. However, besides the specification of simulation
components, our toolchain can also compare these specifications regarding their
structure and behaviour. To extend the specification’s purpose and allow the
identification of similar simulation components, we present a second tool. Our
second tool, the Analysis CLI, utilises the graphs derived from the simulation
specifications. Therefore, it accesses the Neo4J database to identify identical
simulation components based on their specification. Comparing two simulation
components is separated into two steps. First, the Analysis CLI performs a
graph-isomorphism analysis [19] in the Neo4J database. This analysis checks
whether the nodes and edges of a graph A can be mapped onto another graph
B, i.e. whether the structure is identical. The graph B that is searched can have
the same number of nodes and edges or a higher number of nodes and edges. We
use the graph-isomorphism implementation by Cordio [5], which is available as
plugin for the Neo4J database, for the subgraph analysis. Second, if the graph-
isomorphism identifies a structural match, the Analysis CLI proceeds with the
behaviour analysis. The behaviour information stored in the behaviour meta-
model is transformed into SMT statements based on the SMT-LIB standard3.
These statements are then analysed by an SMT-Solver. For our toolchain, we
use the Z3 Theorem Prover by Microsoft [21].

Tool Setup: The user of our tool can access the functionality of our tooling via
a CLI. We developed the CLI to enable the user to compare the specifications of
simulation components regarding their structure and behaviour. The CLI acts as
an interface so that the user does not have to invoke the graph-isomorphism and
behaviour analysis manually. Before the user can compare the specifications, they
must install the Z3 Theorem Prover and provide the path to it. They can either
extend the systems PATH variable manually or they use the following command
of the CLI:

sim -compare z3 <PATH TO libz3.dylib >

sim -compare z3java <PATH TO libz3java.dylib

Listing 1.1. Z3 Theorem Prover Setup

Whether the user must manually modify the PATH variable or invoke the
commands of our CLI depends on the used operating system. In the context of
3 https://smtlib.cs.uiowa.edu/.



the Analysis CLI, we tested the prerequisite commands for the operating system
MacOS. For more information and further instructions, please visit the official
Z3 website4 or the GitHub page5.

Furthermore, the user must have access to a running Neo4J instance with the
installed graph-isomorphism plugin. The default setting is that the tool assumes
that a standard Neo4J instance is running locally with the default user and
password. If the user wants to use a different configuration of the Neo4J database,
they can use the following commands:

sim -compare neoip <IP>

sim -compare neopw <PASSWORD >

Listing 1.2. Neo4J Setup

With the command neoip, the user sets the IP according to their Neo4J
installation. If they use another password, with the command neopw the user
can change the password corresponding to their Neo4J installation.

Analysis: Before the user can compare two specifications, they need to know
which simulation specifications are available for the analyses. Therefore, we pro-
vide the command list, which prints all simulation components that are stored
in the Neo4J Database. The print shows the names of the simulation components.

sim -compare list

Listing 1.3. List all Simulation Components

The user can compare two simulation components at a time with the infor-
mation on which simulation components are available. The command compare
<SIM A> <SIM B> allows the user to compare two simulation components:

sim -compare compare <SIM_A > <SIM_B >

Listing 1.4. Compare Simulation Components Command

The two parameters, <SIM A> and <SIM B>, represent the names of the speci-
fications of the two simulation components the user wants to compare. Although
the user can modify the entries in the database, i.e. change the structural and
behavioural specifications; we recommend avoiding using the Neo4J interface to
modify the entries. The changes are not part of the specification model; there-
fore, the changes will get lost when the database gets updated. The compare
command first invokes the structural comparison of the graphs by using the
graph-isomorphism plugin. If the graph-isomorphism analysis yields a positive

4 https://www.microsoft.com/en-us/research/project/z3-3/.
5 https://github.com/Z3Prover/z3.



result, the schedules- and writes-relationships are transformed into SMT state-
ments. Based on these SMT statements, the Z3 performs a satisfiable analysis,
i.e., a behavioural comparison.

Results: The results depend on whether the structural and behavioural analysis
is successful. After invoking the sim-compare compare <SIM A> <SIM B> com-
mand, the analysis result can have four outcomes. Figure 7 depicts the sequencing
of the analysis and the possible results. In the remainder of this section, we go
through the sequence, and we present the different results, depending on the
structural and behavioural analysis.

After the user starts the analysis, the two specifications are first com-
pared regarding their structure. The first result specifies whether the graph-
isomorphism analysis yields a negative result, i.e. they do not match structurally.
Listing 1.5 shows the result, when the simulation component SIM A is compared
to SIM B and the graph-isomorphism yields no result.

Compare SIM_A and SIM_B

No isomorphism between simulator graphs!

Listing 1.5. No Subgraph Found

The second result can be that the graph-isomorphism yields a positive result.
Listing 1.6 shows an excerpt of the result of the successful graph-isomorphism
analysis. Instead of the output No isomorphism between simulator graphs!
the analysis proceeds and starts the behavioural analysis by transforming
the schedules- and writes-relationships into SMT statements. The graph-
isomorphism analysis can have multiple mappings of nodes and edges; thus,
each mapping needs to be analysed. The currently analysed mapping is indi-
cated by the placeholder n, and the total number of mappings is indicated by
the placeholder m.

Compare SIM_A and SIM_B

...

Testing mapping n out of m:

Listing 1.6. Successful Subgraph Analysis

After the graph-isomorphism analysis, each mapping is analysed regarding
the matching behaviour. As graph-isomorphism can yield more than one result,
each result will be compared. The analysis proceeds until the SMT-Solver finds
a solution or the behaviour is not identical. Listing 1.7 shows the results for a
mapping that is not identical (SMT status: UNSATISFIABLE).



Fig. 7. Sequencing of the Analysis

Compare SIM_A and SIM_B

...

Testing mapping n out of m:

Comparing ’XYZ writes demand ’ with ’ABC writes demand ’

SMT status: UNSATISFIABLE

Listing 1.7. Behaviour does not match

If the graph-isomorphism analysis was successful and the behaviour is identi-
cal, the results show a mapping of the events and entities that yielded the result.
Listing 1.8 shows the result of a successful graph-isomorphism and behaviour
analysis.



...

Testing mapping n out of m:

Comparing ’XYZ writes demand ’ with ’ABC writes demand ’

Behaviour identical with mapping:

[Event] EventA = EventC

...

[Entity] EntityA = EntityZ

...

Listing 1.8. Matching Behaviour

4 Conclusion

In this paper, we present a toolchain for specifying and comparing components
of discrete event simulations. The specification allows the developer to model
the simulation components’ structure and behaviour. During the development
phase, our toolchain helps the developers find already implemented components
of a simulation by comparing the desired specification to the specifications of
already existing simulation components. Thus, the developers can avoid reim-
plementing simulation components that already exist. Also, before the implemen-
tation phase or during maintenance, our toolchain can be used; it can help the
software architect to find simulation components with different designs that have
the required structure and behaviour of the project at hand. Thus, they can anal-
yse the found simulation components regarding their design to determine which
design has already been done and is already used. In order to compare the speci-
fications, the models are transformed into a graph notation and then stored in a
graph database. We run a graph-isomorphism analysis based on the graph nota-
tion to find similar structures of specified simulation components. Suppose the
structural analysis yields a positive result, i. e. the compared graph is isomorph;
the toolchain starts the behaviour comparison. The behaviour comparison con-
verts the specifications of the simulation components into SMT-notation, which
we utilised to analyse the specifications regarding similar behaviour. Finding
related simulation components allows software architects to reuse existing sim-
ulation components while reducing the effort required to create new simulation
components. Thus, they can reuse simulation components that they otherwise
would implement again.

5 Future Development

The evaluation of our approach in [10] showed that it is possible to specify
and compare simulation components based on their structure and behaviour. To
extend our evaluation, we have to model more components of simulations of dif-
ferent domains. Our tree editor is cumbersome when modelling many simulation
components. Thus, we have to improve the usability of the editor to be able to
model more than a hand full of entities and events. It is hard to track complex



writes- and schedules-relationships of events, which makes the modelling process
prone to errors. Therefore, we plan to implement a graphical or textual language
to specify simulation components more quickly. Furthermore, our similarity anal-
ysis needs to identify specifications that match less than 100%. Thus, we plan
to extend our approach so that we can identify simulation specifications that do
not match perfectly. This would enable us to help the software architects in the
system design to explore more alternative designs.

References

1. Ahadi, A., Mathieson, L.: A comparison of three popular source code similarity
tools for detecting student plagiarism. In: ACM International Conference Proceed-
ing Series, pp. 112–117. Association for Computing Machinery (2019). https://doi.
org/10.1145/3286960.3286974

2. Balsamo, S., Marzolla, M.: Simulation modeling of UML software architectures.
In: 17th European Simulation Mulitconference, vol. 3, pp. 562–567. Society for
Modelling and Simulation International, SCS European Publishing House (2003)

3. Blockwitz, T., et al.: Functional mockup interface 2.0: the standard for tool inde-
pendent exchange of simulation models. In: Proceedings of the 9th International
MODELICA Conference, 3–5 September 2012, Munich, Germany, vol. 76, pp. 173–
184 (2012). https://doi.org/10.3384/ecp12076173

4. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACM Trans. Program.
Lang. Syst. 8, 244–263 (1983)

5. Cordio, S.: csb/neo4j-plugins/subgraph-isomorphism at master · msstate-dasi/csb.
https://github.com/msstate-dasi/csb/tree/master/neo4j-plugins/subgraph-
isomorphism. Accessed 01 July 2022

6. Falcone, A., Garro, A.: Distributed co-simulation of complex engineered systems
by combining the high level architecture and functional mock-up interface. Simul.
Model. Pract. Theory 97, 101967 (2019). https://doi.org/10.1016/j.simpat.2019.
101967. https://www.sciencedirect.com/science/article/pii/S1569190X19301005

7. Gitchell, D., Tran, N.: Sim: a utility for detecting similarity in computer programs.
SIGCSE Bull. 31(1), 266–270 (1999). https://doi.org/10.1145/384266.299783

8. Heinrich, R., Strittmatter, M., Reussner, R.: A layered reference architecture for
metamodels to tailor quality modeling and analysis. IEEE Trans. Softw. Eng. 47,
26 (2019)

9. IEEE: 1516-2010 - IEEE Standard for Modeling and Simulation High Level Archi-
tecture (HLA). Technical report (2010). https://doi.org/10.1109/IEEESTD.2010.
5553440

10. Koch, S., Hamann, E., Heinrich, R., Reussner, R.: Feature-based investigation of
simulation structure and behaviour. In: Gerostathopoulos, I., Lewis, G., Batista,
T., Bureš, T. (eds.) European Conference on Software Architecture, pp. 178–185.
Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16697-6 13

11. Maoz, S., et al.: OCL framework to verify extra-functional properties in component
and connector models. In: 3rd International Workshop on Executable Modeling,
Austin, p. 7. CEUR, RWTH Aachen (2017)

12. Milner, R.: Communication and Concurrency. PHI Series in Computer Science.
Prentice Hall (1989)



13. Overstreet, C., Nance, R.: A specification language to assist in analysis of discrete
event simulation models. Commun. ACM 28, 190–201 (1985). https://doi.org/10.
1145/2786.2792

14. Prechelt, L., Malpohl, G., Philippsen, M.: Finding plagiarisms among a set of
programs with JPlag. J. Univ. Comput. Sci. 8(11), 1016–1038 (2002)

15. Richters, M., Gogolla, M.: Validating UML models and OCL constraints. In: Evans,
A., Kent, S., Selic, B. (eds.) UML 2000. LNCS, vol. 1939, pp. 265–277. Springer,
Heidelberg (2000). https://doi.org/10.1007/3-540-40011-7 19

16. Ringert, J.O., Rumpe, B.: A little synopsis on streams, stream processing functions,
and state-based stream processing. Int. J. Softw. Inform. 5, 29–53 (2011)

17. Schleimer, S., Wilkerson, D.S., Aiken, A.: Winnowing: local algorithms for docu-
ment fingerprinting. In: Proceedings of the ACM SIGMOD International Confer-
ence on Management of Data, pp. 76–85 (2003)

18. Talcott, C., et al.: Composition of languages, models, and analyses. In: Heinrich, R.,
Durán, F., Talcott, C., Zschaler, S. (eds.) Composing Model-Based Analysis Tools,
pp. 45–70. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-81915-6 4

19. Ullmann, J.R.: An Algorithm for Subgraph Isomorphism. Technical report 1
(1976). https://doi.org/10.1145/321921.321925

20. Varga, A.: Omnet++. In: Wehrle, K., Güneş, M., Gross, J. (eds.) Modeling and
Tools for Network Simulation, pp. 35–59. Springer, Heidelberg (2010). https://doi.
org/10.1007/978-3-642-12331-3 3

21. Z3Prover: z3: The Z3 Theorem Prover (2019). https://github.com/Z3Prover/z3
22. Zeigler, B.P., Prähofer, H., Kim, T.G.: Theory of Modeling and Simulation: Inte-

grating Discrete Event and Continuous Complex Dynamic Systems, 2 edn. Aca-
demic Press, San Diego (2000). http://www.gbv.de/dms/goettingen/302567488.
pdf


	A Toolchain for Simulation Component Specification and Identification
	1 Introduction
	2 Related Work
	3 The Toolchain for Simulation Specification and Simulation Component Identification
	3.1 Specification of Simulation Components
	3.2 Identification of Simulation Components

	4 Conclusion
	5 Future Development
	References




