

#### CMRC-gekühlte Stromzuführungen zur Erprobung in COMPASS

J. Arnsberg, F. Boehm, S. Grohmann – DKV-Tagung 2023, AA I.07, 13.11.2023



#### www.kit.edu

OE Kälte- und Kryotechnik

#### **Motivation**

Bedarf an elektrischer Leistung f
ür kryogene Applikationen

- supraleitende Magnetsysteme z.B. f
  ür Teilchenbeschleuniger
- supraleitende Kabel f
  ür Stromtransport
- Stromtransport von  $T_{\rm u}$  zu  $T_{\rm 0}$  über Stromzuführungen
- Stromzuführungen verursachen maßgeblichen Wärmeeintrag auf das kryogene System

Optimierungsbedarf kryogener Stromzuführungen

- ohm'sche Verluste in resistiven Abschnitten
- Längswärmeleitung ins kryogene System







[1] Markus Breig, KIT, 2018 [2] NKT A/S, 2020



## Optimierung von resistiven Stromzuführungen



kontinuierlich gekühlte Stromzuführung ( $\infty$ -CL)

leitungsgekühlte Stromzuführung (CC-CL)



#### Kryogene Gemischkältekreisläufe (CMRC)



- Schlüsselkomponente in jedem Kühlsystem ist der Arbeitsstoff, insbesondere seine
  - Zustands- und Transportgrößen (EoS)
  - Zustandsänderungen während des thermodynamischen Prozesses / Kreislaufs





#### **CMRC-gekühlte Stromzuführungen**





[4] Gomse et al., 2016

# Compact Accelerator Systems Teststand (COMPASS)



- Versuchsumgebung zur Entwicklung neuer, integrierter K
  ühlsysteme z.B. f
  ür kompakte Beschleunigersysteme
- Infrastruktur zur Erprobung CMRC-gekühlter Stromzuführungen
- Anlagenaufbau COMPASS:
  - Kryostatbehälter mit konventionellem Kühlsystem (Cryocooler)
  - zwei Gemischkältekreisläufe unterschiedlicher Leistungsstufen
- Ausführliche Vorstellung von COMPASS:

DKV 2022 – Arnsberg et al., "Aufbau des Compact Accelerator Systems Teststand (COMPASS)"



### Aufbau "kombinierte Stromzuführung"

- hybride Stromzuführung für I = 10 kA
- resistiver Teil zweigeteilt
  - CMRC-Kühlung zwischen  $T_a$  und  $T_{CMRC,0}$ 
    - Berechnung mit numerischen Modell
  - Kühlung mit Cryocooler zwischen  $T_{\text{CMRC},0}$  und  $T_{\text{J}}$ 
    - Lösung der 1D-Temperaturfeldgleichung
- Antriebsleistungen

Q

- Verdichterkennfeld von COMPASS-Verdichter
- Datenblatt<sup>[5]</sup> GM-Cryocooler von Cryomech

Ziel: Minimierung der Antriebsleistungen von CMRC-Kreislauf und Cryocooler



## Karlsruher Institut für Technologie

#### Vorgehen zur Optimierung einer CMRC-CL



[7] Gomse et al., 2018

OE Kälte- und Kryotechnik

#### **Numerische Auslegungstools**



- thermodynamisches Modell zur Optimierung der Betriebsparameter von CMRC
  - stationäre Kreislaufsimulation
  - Variation der Zusammensetzung des Kältemittelgemischs und der Betriebsdrücke
  - populationsbasierte Optimierung mit Differential Evolution



AA I.16, Fr., 13:30 Uhr, Salon Herrenhausen: F. Boehm – "Modellierung und Optimierung kryogener Gemischkältekreisläufe"

- numerisches Modell zur Berechnung von Wärmeübertragern<sup>[7]</sup> und Stromzuführungen<sup>[3]</sup>
  - iterative Lösung der Erhaltungsgleichungen
  - Wärme- und Stofftransport in Zweiphasenströmungen über empirische Korrelationen
  - Thermoelektrische Integration der ohm'schen Verluste<sup>[3]</sup>



#### **Numerische Auslegungstools**



- Lösung der 1D-Temperaturfeldgleichung:  $\frac{\partial}{\partial x} \left( \lambda(T) \cdot A \cdot \frac{\partial T}{\partial x} \right) + I^2 \cdot \frac{\rho(T)}{A} = 0$
- Randbedingungen:
  - $T_{(x=0)} = T(L_{\text{CMRC}})$  $T'_{x=0} \propto T'(L_{\text{CMRC}})$

erfolgreiche Validierung durch Vergleich mit

Ergebnissen von Shabagin<sup>[3]</sup>

Variation der Länge  $L_{CC}$  bis  $T(L_{CC}) = T_{J}$ 

Vergleichsfall optimierte leitungsgekühlte 10 kA-Stromzuführung:



-Ò



#### Auslegungsparameter



#### Verlauf der Temperaturprofile





- unterhalb von ca. 200 K :  $\Delta T < 10$  K
- Zieltemperatur von  $T_J = 77.4$  K wird am kalten Ende erreicht
- glatter Übergang der Wandtemperatur von CMRC-gekühlten auf CC-gekühlten Abschnitt

| $T_{\rm J}$ 77.4 K77.4 K $\dot{Q}_{\rm CL,J}$ 425 W97 W $\dot{Q}_{\rm el}$ 425 W307 W $P_{\rm ges}$ 11.5 kW6.6 kW |                           | CC-CL   | CMRC-CC-CL |
|-------------------------------------------------------------------------------------------------------------------|---------------------------|---------|------------|
| $\dot{Q}_{CL,J}$ 425 W97 W $\dot{Q}_{el}$ 425 W307 W $P_{ges}$ 11.5 kW6.6 kW                                      | $T_{\rm J}$               | 77.4 K  | 77.4 K     |
| $\dot{Q}_{el}$ 425 W       307 W $P_{ges}$ 11.5 kW       6.6 kW                                                   | $\dot{Q}_{\mathrm{CL,J}}$ | 425 W   | 97 W       |
| <i>P</i> <sub>ges</sub> 11.5 kW 6.6 kW                                                                            | $\dot{Q}_{ m el}$         | 425 W   | 307 W      |
|                                                                                                                   | Pges                      | 11.5 kW | 6.6 kW     |

#### **Einfluss des Massenstroms**





#### **Einfluss des Massenstroms**





optimaler Betrieb der Stromzuführung bei vollständiger Auslastung der Cryocooler-Kapazität

-<u>Ò</u>-

#### Zusammenfassung

- Thermodynamische Optimierung von Stromzuführungen erfordert Kühlung entlang der gesamten Länge
  - CMRC-gekühlte, mikrostrukturierte Stromzuführungen als effiziente, skalierbare Technologie
- Optimierung von CMRC-gek
  ühlten Stromzuf
  ührungen kann nur unter Betrachtung von Anwendungsfall, Betriebsbereich und entsprechender Mischungsoptimierung erfolgen
- 55 % geringerer Leistungsbedarf kombinierter Stromzuführungen gegenüber leitungsgekühlten Stromzuführungen
  - > vollständige, einstufige Kühlung mit CMRC angestrebt

zukünftige Erprobung der Stromzuführungen in COMPASS









#### Quellenangaben

[1] Markus Breig, KIT, https://www.kit.edu/kit/english/pi\_2018\_149\_ultra-compact-accelerators-for-science-and-medical-research.php, abgerufen am 30.10.2023.

[2] NKT A/S, https://www.nkt.de/presse-events/nkt-entwickelt-den-prototyp-fuer-das-weltweit-laengste-supraleitende-stromkabel, abgerufen am 15.11.2023.

[3] E. Shabagin, "Development of a CMRC cooled 10 kA current lead for HTS applications", Dissertation, Karlsruher Institut für Technologie, 2022.

[4] D. Gomse, T. Kochenburger, J. Brandner, S. Grohmann, "Entwicklung eines Wärmeübertragers für kryogene Gemischkältekreisläufe", de, 2016. DKV Tagung Kassel, AA.I.19, 18.11.2016.

[5] Bluefors Oy, https://bluefors.com/products/gifford-mcmahon-cryocoolers/al125-gifford-mcmahon-cryocooler/, abgerufen am 15.11.2023.

[6] D. Gomse, S. Grohmann, "Heat transfer and pressure drop in the main heat exchanger of a cryogenic mixed refrigerant cycle", en, 2018. ICEC27-ICMC 2018, Oxford, England, September 3-7 2018.

[7] D. Gomse, "Development of heat exchanger technology for cryogenic mixed-refrigerant cycles", Dissertation, Karlsruher Institut für Technologie, 2019.