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ABSTRACT: This paper presents a machine learning based solar power forecast methode that can take 
into account partial shading related fluctuations. Generated PV power is difficult to predict because there 
are various fluctuations. Such fluctuations can be weather related when a cloud passes over the array. But 
they can also occur due to shading caused by stationary obstacles. In this work an approach is presented 
that improves the forecast under such fluctuations caused by partial shading. This adaptation is necessary, 
because partial shading is usually not detected directly. Such shading occurs after the growth of trees or 
later built buildings. The presented algorithm can detect such effects itself and thus works self-learning. A 
correction of the prediction of a forecast model could successfully reduce forecast error due to partial 
shading. The model is evaluated on the basis of two months of recorded shading data in which shading was 
caused by a tree infront a PV array. The correction uses internal inverter data and irradiance values of the 
previous day to perform the correction and was able to reduce the RMSE of a 10 kWp under shading and 
thus improve the prediction accuracy by up to 40% depending on how strong the shading is. The model can 
detect how intense the shading is and correct the forecast by itself. 
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1 Introduction 

The number of photovoltaic systems installed 
worldwide and the associated installed capacity rose 
by 23.6 % to more than 1100 GW in 2022. Further 
increase is expected to meet CO2 emission targets in 
the future [1]. Since the generated power fluctuates 
as PV systems are subject to cloud movements, rain 
or changes in irradiation, problems of grid stability are 
more and more in focus [2]. Accurate forecasts of 
generated power and energy are necessary to 
maintain and guarantee stability and availability. 
Especially machine learning methods have gained 
popularity in this context, since their advantage is to 
have a good generalization capability and are 
therefore able to adapt quickly to new situations [3]. 
The disadvantage of these methods is the large 
amount of data that has to be collected to achieve 
high accuracy. Typically, exogenous data such as 
irradiation data, wind speed or air temperature are 
used for solar power forecasting [4–8]. In addition, it 
is difficult to predict newly occurring situations that 
are not considered in the recorded data set because 
no information about them is available. For example, 
incoming shade from trees that have grown taller or 
buildings that were constructed later can reduce the 
PV system’s output. Other possible effects are 
pollution [9] by dust and leaves or degradation of the 
PV modules [10]. With information about irradiation, 
wind speed, ambient temperature or sun angle, it is 
not possible to represent such caused drops in 
power. The forecast error becomes larger when 
shading is present because the trained models are 
not able to handle the shading on their own. There is 
already a wide range of papers dealing in general 
with the prediction of the generated solar power 

[11,8] as well as with the effects of shading [12, 13] 
and how to model and analyze shading or solar 
systems under yield reducing effects [14,15]. 
Shading was already taken into account in power 
predictions, where the yield loss over the period of 
one year [16] was considered. Also, in daily forecasts 
as in [17], shading was included by reducing the 
effective irradiance and thus by preprocessing. In this 
paper, the focus is on a correction of the already 
existing prediction value with a model that has seen 
training data over years and thus could develop a 
good generalization capability. The consideration is 
therefore done by a postprocessing. In addition, loss 
effects such as shading and soiling are quantified 
and allow later condition monitoring approaches in an 
extension. To the authors' knowledge, there is no 
research that combines quantification of shading 
losses based only on PV yield data with solar power 
forecasting. Thus, no extra soiling or shading sensors 
are needed. This is investigated due to the significant 
impact of shading on solar cells. Long Short-Term 
Memory (LSTM) networks are used as a basis for the 
prediction model. The model is validated with four 
shading configurations with PV data recorded over 
several months. The RMSE of the shaded PV 
systems, which have different orientations and 
inclinations, is compared. In addition, soiling is taken 
into account. Additionally, soiling is considered. In 
this paper, one shading scenario is presented. 

The paper is structured as follows. First, the basic 
method of the procedure to consider shading for PV 
forecasts is described. For this purpose, three 
individual submodels are described, which are 
required for the understanding of the method. Then, 
the presented method is validated using data from a 
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array shaded by a tree. Finally, the results are 
discussed and an outlook is given. 

 

2 Methodology 

The following section explains how the whole 
approach works. Three sub-models are described, 
with a basic introduction of the models used for the 
forecasting part. The shading is taken into account 
by means of a correction value. For this purpose, the 
forecast values of the prediction model are corrected 
to take the effect of shading into account. First, the 
forecast model itself is described in this section. This 
method is first presented in a fundamentals section. 
Afterwards it is explained how the forecast model is 
trained to predict the generated PV power one day 
ahead. Then, a PV array model is used, which 
simulates the power that an unshaded PV array 
would provide based on irradiation and temperature 
values. Finally, it is discussed how the shading power 
is determined from the simulated PV power and the 
actual measured values. This refers to the power that 
is lost due to the shadows that occurs. 

The principle of the approach is visualized in Figure 
1. The forecast model provides a predicted value, 
which represents the solar power one day ahead. 
The PV array model calculates the power that an 
unshaded array will deliver under the same 
conditions. Together with the calculated and actual 
measured value, the shading power can be 
determined and the actual predicted value can be 
corrected afterwards so that the prediction can take 
the shading into account. 

 

 

Figure 1 Overall approach to considering shading for 
solar performance predictions. The approach is 
divided into three submodels with the prediction 
model, the PV array model and the separation of 
losses. 

2.1 Fundamentals 

In the following, the used forecast model is 
introduced. The focus lies on how the forecast 
models work and which parameters need to be 
trained or optimized using collected data (which will 
be explained more in detail in section 2.3).  

2.1.1 Long Short-Term Memory Networks (LSTM) 

The basic unit of each neural network is the 
perceptron. It maps a weighted sum of the input data 
xi with the edge weights wij and transfer function ψ to 
the output hj. 

Layers can be built up based on this unit. The output 
values of each neuron are finally calculated 
according to Equation 1. 

ℎ𝑗 = 𝛹(∑𝑤𝑖𝑗 ∙ 𝑥𝑖)

𝑛

𝑖=1

 

      ( 1) 

If several of these layers are linked together, this 
arrangement is called a neural network as displayed 
in Figure 2. These are called feed-forward networks 
(FFN) because the layers with pn neurons in the k-
th layer mesh in the forward direction from input to 
output with the transfer function Ψ [18]. 

 

Figure 2 Structure of a two-layer neural network with 
three input features, two hidden layers and one 
output 

Finally, the data are transformed from the input layer 
to the output yk. 

Such FFNs have been able to demonstrate good 
prediction capabilities in many publications in the 
past [19, 20]. In more recent publications, however, 
recurrent neural network architectures are used, 
which have shown an improvement in prediction 
accuracy several times [21,22]. In particular, LSTM 
networks have been able to achieve more and more 
popularity in scientific publications due to their 
memory capability [22,23] and their ability to deal with 
the exploding and vanishing gradient problem [24]. 
LSTM networks consist of a large number of gates 
that store knowledge about the previous state. These 
data are either written to, stored in or read from a cell 
that serves as a type of memory. When the cell reads, 
writes or deletes information using the input and 
forget gates, it makes a decision about whether to 
store the data. Based on the signals received, they 
become active and use their own weighted filters to 
decide whether to forward or suppress the 
information based on its importance and strength. 
These weights are similar to those that adapt during 
the training phase of the network to modulate the 
input and hidden states [25].  

2.2. Data 

The data are classified into endogenous and 
exogenous data. 
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Exogenous data: Since 1981 the German Weather 
Service (DWD) offers historical and forecast weather 
data from selected weather stations on its publicly 
accessible website [29,30]. Weather data includes 
data such as air temperature, irradiation, cloud cover, 
humidity and many others. In this work, weather data 
are used as input features to train and validate the 
forecast model. An LSTM network is used as the 
forecast model, as described in Section 2.1.1. 

Endogenous data: Data from the solar park at KIT 
Campus North are used. It is located at 49.1° north 
and 8.44° east. There are a total of 102 PV arrays 
with an installed capacity of around 10 kWp each. 
The arrays have inclinations between 2° and 60° and 
an orientation between 60° west and 60° east. The 
data of the solar park is recorded since 2014. Power 
data of the inverters (string voltage, string currents, 
string power) as well as irradiance and module 
temperatures of selected arrays are available. In 
addition, the geographical location is used to 
determine the solar angles with the help of the library 
pvLib [31] for the description of the solar trajectory.  

The hourly mean values of the data are used for all 
investigations and calculations. Since data can be 
corrupted, the data are filtered beforehand. These 
outliers can be explained by sensor errors or 
communication problems during transmission of the 
data to the database. From the outset negative 
values and values that are measured significantly 
above the Standard Test Conditions (STC) can be 
considered corrupt. However, since this concerns 
only a small amount of data, the corrupted values can 
be easily compensated by interpolation of the 
neighboring values. 

2.2.1 Shading structures 

For the evaluation of the methodology, one of the 
102 PV arrays is selected and is marked in Figure 
3. Later, the calculated power losses are used to 
subsequently correct the forecast values of the 
model.  

 

Figure 3. Solar park at the North Campus of the KIT 

with shaded array. The array has an inclination of 15° 

and orientation of 30° west. 

 

2.2.1 Forecast model 

An LSTM network is used to forecast the power one 
day ahead. As a data-driven algorithm, the 
endogenous and exogenous data described earlier 
are used to determine the parameters of the neural 
network. For this purpose, a total of seven years of 
recorded data are split into two data sets. A training 
data set to optimize the parameters and a validation 
data set to test the model on unknown data. Six 
years are used for training and one year for 
validation. 

2.4 PV array model 

To determine the power of an unshaded array, a 
model of a PV array is needed. This model uses 
irradiance and temperature data to determine the 
power of a PV array that does not face any shading. 
In general, it returns the power of an ideal PV array 
without yield degrading effects. 

This model can be built from the 1-diode model [35] 
and thus can be parameterized completely from 
existing data sheets of the used modules. A 
perturbation and observation (PO) algorithm is used 
to operate the array at the maximum power point 
(MPP). 

2.5 Separation of losses 

Now the ideal power can be described using the PV 
array model and the predictions can be calculated 
using the forecast model. The recorded data and the 
ideal PV model can be used to estimate the shading 
losses similar to [36]. A ratio ρ is defined, which puts 
the ideal (Pideal) and actual power (PDC) into a direct 
relation, as in Equation 2. 

𝜌 =
𝑃ideal
𝑃DC

 

( 2) 

Since soiling contributes to a reduction in output in 
addition to shading, a soiling ratio ρsoiling can be 
calculated as the average value of the ratio at midday 
hours (ρNoon), as in Equation 3. 

𝜌Soiling = 𝜌Noon̅̅ ̅̅ ̅̅ ̅̅  

      ( 3) 

In general, the average ρNoon should be calculated at 
unshaded times. The power dissipation on the soiling 
and shading are then calculated according to 
Equation 4-5. 

𝑃Soiling = 𝜌Soiling ∙ 𝑃ideal 

( 4) 

𝜌Shading =  𝜌 − 𝜌Soiling 

( 5) 

The shading PShading losses are calculated through 
Equation 6. 
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𝑃Shading = 𝜌Shading ∙ 𝑃ideal 

( 6) 

3. Results 

In the following section the results are presented. In 
the result part, an explaination is given how shading 
data are recorded and evaluated and how the entire 
approach is validated. Furthermore, the limitations 
of the method are discussed. 

3.1. Separation of losses 

Data has been recorded over two months. This 

allows the manipulation of power due to shading to 

be recreated and observed in real terms using the 

inverter data. Using the strongly shaded array as an 

example, the power that falls on the shading can be 

visualized well in Figure 4. 

 

Figure 4 The calculated portion of the power due to 
shading is shown in black. The theoretical maximum 
power is reduced by this amount. 

3.2. Validation 

With the help of the losses from the previous day and 
from the shading ratio ρShading a correction can now 
take place by multiplication with the forecast value. It 
is also conceivable to subtract the power loss from 
the forecast value. But the correction via the shading 
ratio makes more sense here, since the losses 
proportional to the occurring shading always depend 
on the actual irradiation and thus the power. 

It makes sense to multiply the forecast values by 1 − 
ρShading because the shading remains constant over 
the days if it comes from a stationary obstacle. At the 
same time, the forecast model that was trained with 
the historical data provide forecasts in the shading 
period. In Figure 1 the scheme of the correction is 
shown as well as the change of the RMSE over the 
hours of the day when the model is applied. However, 
since the correction model detects the shading power 
at these times, it can make the correction and adjust 
the power values downward. So, you can also see in 
Figure 5 the change of the RMSE by the correction 
model. In principle, other forms of correction are also 
possible with the method shown. Figure 5 also shows 
that a correction using the shading power of the 
previous  ay (”la  correctio ”) ca  alrea y result i  a 
significant improvement of the forecast error. A 
perfect correction would be if the power losses of the 
previous day are exactly equal to those of the current 
day. This illustrates the maximum potential of the 

presented method. In the period from February to 
March there was a 40% improvement in the RMSE, 
while in the April to May the improvement was 12.5%. 
The difference is in the intensity of the shading. Due 
to the low sun elevation in spring, there is much more 
shading of the array. Thus, the uncorrected LSTM 
model is more inaccurate than with a smaller amount 
of shading. 

 

Figure 5 Decrease in RMSE due to the correction 
process 

4. Discussion 

Although the correction method in the previous 

validation has consistently contributed to a noticeable 

improvement in the prediction error under shading, 

the method also has limitations. It is in the nature of 

forecast models to over- or underestimate the true 

value. If the prediction values are now reduced, 

although the true value is underestimated, an 

improvement in the prediction error is not 

guaranteed. 

In general, the power loss due to shading must be 

greater than the bias of the prediction model to 

improve the forecast error. The validation dataset 

showed that the true measured power value is 

underestimated, especially in the early morning 

hours and in general during the summer months. A 

correction in the case of very weak shading does not 

always lead to an improvement in the RMSE due to 

the negative Bias. 

5. Conclusion 

In this work, a forecast model was trained and a PV 
model was parameterized using endogenous and 
exogenous data. The PV model uses a PO algorithm 
to guarantee the MPP. Based on the power values of 
the PV model and the actual measured data, it was 
possible to calculate how much power is lost due to 
shading. This could finally be used to subsequently 
correct the prediction value of the trained prediction 
model and thus achieve an improvement in the 
prediction error under shading. 

        

           

 

 

 

 

 
     

 
       

 
      

 
       

 
       

 
       

     

           

 

 

 

 

 

 
     

 
       

 
      

 
       

 
       

 
       

       

           

 

 

 

 

 
     

 
       

 
      

 
       

 
       

 
       

       

           

 

 

 

 

 
     

 
       

 
      

 
       

 
       

 
       

40th European Photovoltaic Solar Energy Conference and Exhibition

10.4229/EUPVSEC2023/4AO.9.6
020285-004



In summary the subsequent correction and therefore 
postprocessing of day-ahead PV power forecasts 
can help improve forecast error. The presented 
procedure was able to contribute to an improvement 
of the forecast error for a shaded array based on two 
months of recorded shading data. Particularly large 
shadings can be recognized and corrected in the 
forecast model. An improvement of the RMSE by up 
to 40 % could be achieved depending on the extend 
of shading. 

As an outlook, the aproach should be extended. It 
would make sense to extend the forecast correction 
by including soiling. In principle, the following 
methodology could also be extended to other inverter 
faults. The error would then be detected at time n and 
the forecast would be corrected at time n + 1 day 
depending on the forecast horizon. In addition, the 
limitations of the methods were worked out. At the 
same time, the presented method is interesting for 
solar systems in general, since the quantified 
shading power can determine whether solar power 
optimizers can sensibly retrofit their performance. 
This application would lead to a reduction in the 
levelized cost of electricity (LCOE). 
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