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Abstract We present analytical results for all master inte-
grals for massless three-point functions, with one off-shell
leg, at four loops. Our solutions were obtained using differ-
ential equations and direct integration techniques. We review
the methods and provide additional details.
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1 Introduction

Form factors are important quantities in quantum chromody-
namics (QCD), N = 4 super Yang–Mills theory, and other

a e-mail: roman.n.lee@gmail.com
b e-mail: manteuffel@ur.de (corresponding author)
c e-mail: schabing@msu.edu
d e-mail: asmirnov80@gmail.com
e e-mail: smirnov@theory.sinp.msu.ru
f e-mail: matthias.steinhauser@kit.edu

theories. In the simplest cases, a single operator is inserted
in a matrix element between two massless states, and all
propagating particles are massless. Such form factors can be
constructed from vertex diagrams with two legs on the light
cone, p2

1 = p2
2 = 0, such that the corresponding Feynman

integrals depend on one mass scale, q2 = (p1 + p2)
2. In

this paper, we consider such integrals in dimensional regu-
larization, where d = 4 − 2ε is the number of space-time
dimensions used to regularize ultraviolet, soft, and collinear
divergences.

Two-loop corrections to form factors were computed more
than 30 years ago [1–4]. The first three-loop result was pre-
sented in Ref. [5] and later confirmed in Ref. [6]. Analytic
results for the three-loop form factor integrals were presented
in Ref. [7]. In Ref. [8], the results of Ref. [7] were used to
compute form factors at three loops up to order ε2, i.e., tran-
scendental weight 8, as a preparation for future four-loop
calculations. These integrals and form factors have been con-
firmed in Ref. [9].

Indeed, four-loop calculations have taken place since then.
The first analytical results for the four-loop form factors were
obtained for the quark form factor in QCD in the large-Nc

limit, where only planar diagrams contribute [10], and for the
fermionic contributions [11]. All the planar master integrals
for the massless four-loop form factors were evaluated in
[12]. The n2

f results were obtained in [13], and the complete

contribution from color structure (dabcdF )2 was evaluated in
[14] and confirmed in [15]. For the quark and gluon form fac-
tors, all corrections with three or two closed fermion loops
were calculated in [16,17], respectively, including also the
singlet contributions. The fermionic corrections to quark and
gluon form factors in four-loop QCD were evaluated in [18].
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Fig. 1 Reducible and irreducible top-level topologies for four-loop form factor integrals with one off-shell leg

The four-loop N = 4 SYM Sudakov form factor was ana-
lyzed in [19] and analytically evaluated in [20]. The complete
analytical evaluation of the quark and gluon form factors in
four-loop QCD was presented in [21]. The four-loop correc-
tions to the Higgs–bottom vertex within massless QCD were
evaluated in [22].

In these calculations, our two competing groups applied
two methods of evaluating master integrals: the method of
differential equations and the evaluation by integrating over
Feynman parameters. The first one was applied in [10,11,13,
14], and the second one in [12,15–17]. Then our two groups
combined their forces and applied these two methods when
collaborating [18,20–22]. A crucial building block for these
form factor calculations were the solutions for the four-loop
master integrals. In the above references, complete weight 8
information has been given only for a subset of the non-planar
master integrals. The main purpose of the current paper is to
provide full results also for the remaining master integrals.

In general, four-loop form factors with one off-shell and
two massless legs can involve integrals belonging to 100
reducible and irreducible top-level topologies with 12 lines,
as shown in Fig. 1, or sub-topologies thereof. In this work, we
present analytical solutions for the ε expansion of all master
integrals in these topologies. The results are given in terms
of zeta values and multiple zeta values (MZV), and are com-
plete at least up to and including weight 8, as required for
N4LO calculations.

The remainder of this paper is organized as follows. In
Sect. 2, we describe how we applied the method of differ-

ential equations. In a subsection, we describe peculiarities
of using integration by parts (IBP) to perform reduction to
master integrals. In Sect. 3, we describe how we applied the
method of analytical integration over Feynman parameters.
In a subsection, we discuss a dedicated reduction scheme
for integrals with many dots. In Sect. 4, we comment on the
explicit solutions for the master integrals that we provide
in the ancillary files. In Sect. 5, we compare the two basic
methods that we used.

2 Evaluation with differential equations

2.1 Two-leg off-shell integrals, reduction to ε-form

The four-loop form-factor Feynman integrals that we evalu-
ated have the following form:

Iν1,...,ν18 = �4(d/2 − 1)

π2d

∫
1

Dν1
1 · · · Dν18

18

4∏
l=1

ddkl , (2.1)

where Di are propagators and/or numerators raised to some
integer powers νi (indices). For the calculations presented
in this section, we choose the last six indices for numera-
tors, while the first 12 indices can be positive, i.e., they can
correspond to propagators. For example, for one of the most
complicated diagrams for four-loop form factors, the propa-
gators and numerators can be chosen as
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Fig. 2 One of the most complicated, non-planar diagrams for four-loop
form factors. This topology has four master integrals in the top-level
sector

D1 = k2
1 , D2 = (k1 + p1 + p2)2,

D3 = (k1 + k2 − k4 + p2)2, D4 = (k1 + k2 − k4 + p1 + p2)2,

D5 = (k2 + k3 + p2)2, D6 = (k2 + k3)2,

D7 = (k1 + k2 + k3 − k4 + p2)2, D8 = (k2 + k3 − k4 + p2)2,

D9 = (k1 + k2 + p1 + p2)2, D10 = k2
2 ,

D11 = k2
3 , D12 = k2

4 ,

D13 = (k1 − k2)2, D14 = (k1 − k3)2,

D15 = (k1 − k4)2, D16 = (k2 − k4)2,

D17 = (k2 + p1)2, D18 = (k3 − p1 − p2)2, (2.2)

where p1 and p2 denote the outgoing momenta of the two
massless legs.

According to the strategy of IBP reduction, which was
discovered more than 40 years ago [23,24], the evaluation of
integrals of a given family can be reduced to the evaluation of
the corresponding master integrals. In the next subsection, we
describe how we did this in the case of four-loop form-factor
integrals.

Let us now turn to the method of differential equations
[25–28]. Since p2

1 = p2
2 = 0, the integrals of our fam-

ily depend only on one variable q2 = (p1 + p2)
2, which

we often set to (−1) in intermediate expressions, since this
dependence is easily recovered from dimensional analysis

(namely, Gν1,...,ν18 ∝ (
q2

)2d−∑
νi ). In order to make use of

the differential equations method, we follow the approach of
Ref. [29]. We consider the family of the same topology as in
Fig. 2, now assuming that p2

2 = xq2, and derive the differen-
tial system in the variable x . In what follows, we will use the
terms two-scale and one-scale master integrals to refer to the
master integrals of the family with generic x and with x = 0,
respectively. At the point x = 1, we have p2

2 = q2, and we
can assume not only that p2

1 = 0 but also that p1 = 0, as can
be clearly seen, for example, from Feynman parametric rep-
resentation. The corresponding propagator-type master inte-

grals were evaluated in an ε expansion more than 10 years
ago [30] and are known even up to weight 12 [31]. The idea is
that the differential equations allow us to transfer data from
the simple point x = 1 to the desired point x = 0. The more
involved IBP reduction of the family with p2

2 �= 0 appears to
be a fair price for the advantages of the differential equations
method. The system of differential equations for the vector
of master integrals j has the usual form of

∂x j = M(ε, x) j , (2.3)

where M(ε, x) is a matrix, rational in x and ε.
For the family in Fig. 2, the size of the system (the num-

ber of two-scale master integrals) is as large as 374, but even
larger systems appear in other families. While not imme-
diately obvious, a far more important characteristic of the
complexity is the position of singular points in x . Since our
final results for the one-scale master integrals involve only
non-alternating MZV sums, one might speculate that the
only singular points of the emerging differential systems are
x = 0, 1, ∞. And indeed, this is the case for many families
that we considered. However, a few systems also contained
singularities at other points. In particular, the system for the
family in Fig. 2 contained singularities for

x ∈ {−1, 0, 1/4, 1, 4,∞}. (2.4)

Systems for other families contained only some of these sin-
gularities.

Note that the singularity at x = 1/4 is especially trouble-
some as it lies on the segment [0, 1], exactly on the integra-
tion path of the evolution operator connecting the point of
interest, x = 0, and the point x = 1, where the boundary
conditions are fixed. The general solution of the differential
system does have a branch point at x = 1/4. From physical
and technical arguments, this point cannot be a branch point
of the specific solution on the first sheet (but it is a branch
point on other sheets). This requirement provides yet another
check of the correctness of our procedure. We may check the
absence of a branch point by comparing the results obtained
by shifting the integration contour slightly up and down from
the real axis, which corresponds to the change x → x + i0
and x → x − i0, respectively. As the coefficients of the
differential system are all real, those two prescriptions are
related by complex conjugation. Therefore, the absence of a
branch point at x = 1/4 can be established by checking that
any of these two prescriptions leads to real-valued results.
For definiteness, we will assume that the integration contour
is shifted up.

In order to reduce the system to ε form, we use the algo-
rithm of Refs. [28,32] (see also Sect. 8 in Ref. [33]) as imple-
mented in Libra [34]. We had to introduce algebraic letters

x1 = √
x, x2 = √

x − 1/4, x3 = √
1/x − 1/4. (2.5)
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In this way, we reduce the system to the following form:

d J = ε dM J, dM =
8∑

k=1

Skwk, wk = d log Pk,

(2.6)
where

P1 = x, P2 = 1 + x, P3 = 1 − x,

P4 = 4 − x, P5 = 1/4 − x,

P6 = 1 + x1, P7 = 1
2 + i x3, P8 = 1

2 + i x2,

and Sk are some constant matrices. Note that there is no
variable simultaneously rationalizing x1, x2,, and x3, as they
correspond to more than three square-root branching points:
0,∞, 4, 1/4 (see Ref. [32]). However, it appears that the
weights depending on x1, x2, and x3 never appear together
in one iterated integral. More precisely, the iterated integrals
which appear in our results fall into one (or a few) of the
following four families:

1. those containing letters in the alphabet {w1, w2, w3},
2. those containing letters in the alphabet {w1, w3, w6},
3. those containing letters in the alphabet {w1, w3, w4, w7},
4. those containing letters in the alphabet {w1, w3, w5, w8}.

The integrals of the first two families are readily expressed
via Goncharov’s polylogarithms with indices 0,±1 (for the
second family, we have to pass to x1). For the integrals of the

third family, we pass to the variable y3 =
√

3
2x3

. When x varies
from 0 to 1, y3 also varies from 0 to 1. Taking into account
that

P1 = 4y2
3

y2
3 + 3

, P3 = (1 − y3)(1 + y3)

y2
3 + 3

,

P4 = 12

y2
3 + 3

, P7 = y3 + i
√

3

2y3
,

(2.7)

we obtain the result for the integrals of the third fam-
ily in terms of Goncharov’s polylogarithms with indices
0,±1,±i

√
3.

The last family is the most complicated. We introduce
the variable y2 = P8 = 1

2 + i x2. Taking into account our
prescription x → x + i0, we establish that y2 follows the
path C depicted in Fig. 3 when x varies from 0 to 1.

We replace this path by the equivalent path C ′ depicted in
the same figure. Since

P1 = y2(1 − y2),

P3 = y2
2 − y2 + 1 = (y2 − eiπ/3)(y2 − e−iπ/3),

P5 = (y2 − 1/2)2, (2.8)

we obtain the result for the iterated integrals of this fam-
ily in terms of Goncharov’s polylogarithms with indices

Fig. 3 Integration paths C and C ′ on the complex plane of y2

0, 1, e±iπ/3, 1/2 and argument eiπ/3. We can normalize the
argument to 1 by using a homogeneity property of polyloga-
rithms (as usual, we must exercise a certain care when dealing
with polylogarithms with the trailing zeros)

G(a1, . . . , an|a) = G(a1/a, . . . , an/a|1), an �= 0. (2.9)

Finally, the integrals of the fourth family are expressed via
Goncharov’s polylogarithms with indices 0, 1, e−iπ/3,

e−2iπ/3, 1
2e

−iπ/3 and unit argument.
To summarize, we have the following correspondence:

• Families 1 and 2: integrals are expressed via G(a|1) with
ak ∈ {0,±1} (alternating MZVs).

• Family 3: integrals are expressed via G(a|1) with ak ∈
{0,±1,±i

√
3}.

• Family 4: integrals are expressed via G(a|1) with ak ∈
{0, 1, e−iπ/3, e−2iπ/3, 1

2e
−iπ/3}.

Note that the polylogarithms for the fourth family are not
real-valued, so, as we explained above, the check of “real-
valuedness” of the integrals from the fourth family provides
a nontrivial check of our setup.

After we have obtained the results for the coefficients of
the ε expansion of all one-scale master integrals in terms
of the abovementioned polylogarithms, we used the PSLQ
[35] algorithm to recognize the results in terms of simple,
non-alternating MZVs.

2.2 IBP reduction of two-scale integrals

There are many public and private codes to perform IBP
reduction. In this work, we applied the public code FIRE
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[36,37] and the private code Finred by A. von Manteuf-
fel. The IBP reduction of one-scale four-loop form-factor
integrals is rather complicated, and the IBP reduction of
two-scale integrals when applying the method of differen-
tial equations is even more complicated. An important point
is to reveal a minimal set of master integrals. It is also impor-
tant to find a basis such that the only denominators in IBP
reductions are either of the form ad+b, where d is the space-
time dimension, and a and b are rational numbers, or simple
polynomials depending only on kinematic invariants and/or
masses. Otherwise, we refer to factors in denominators as
bad. To get rid of bad denominators, i.e., to turn to a basis in
which no bad denominators appear, one can apply the public
code described in Ref. [38] (see also Ref. [39]).

The presence of bad denominators can essentially compli-
cate the IBP reduction. It can happen that it is not possible to
get rid of bad denominators. Two examples of such a situation
were found in Ref. [40] in the context of five-loop massless
propagators. It turned out that there was a hidden relation
involving four master integrals with 11 positive indices from
four partially overlapping sectors.

For four-loop massless form factors, a similar situation
takes place at the level of nine positive indices. This hidden
relation is relevant for two one-scale families, one of which
is the family corresponding to the graph of Fig. 2,

I0,1,1,0,1,1,1,1,1,0,1,1,...

= 5(d − 5)I0,1,0,1,1,0,1,1,1,1,1,1,... + (3d − 11)I0,1,1,0,1,0,1,1,1,1,1,1,...

4(2d − 7)

+ · · · ,

(2.10)

where all terms from lower sectors (of levels less than nine)
are omitted, and dots in the indices mean that the last six
indices are zero. The complete relation can be found in a file
attached to this paper. We have derived this relation by run-
ning FIRE with two different options (withno_ presolve
and without it; this option turns off partial solving of IBPs
before index substitutions and thus leads to a reduction in
other direction), so that it is clear that this relation is a con-
sequence of IBP relations. This relation has previously been
depicted diagrammatically in [15], where it had been derived
with Finred, using integration-by-parts identities gener-
ated from seed integrals in a common parent topology.

Using the same strategy, we have derived a hidden relation
also for the two-scale integrals of this family. A file with this
relation is also attached to the paper. It has the same form
as Eq. (2.10) at level nine, but the contribution from lower
levels is different and depends on x . In fact, this relation
should transform into the corresponding relation in the one-
scale case in the limit x → 0, but to see this explicitly is
more complicated in comparison to the derivation described
above. In each of the two cases, the additional relation is

used to reduce the number of the master integrals. In the new
basis, all the bad denominators successfully disappear.

Let us mention, for completeness, that relations between
a current set of the master integrals can be revealed with
the help of various symmetries. This procedure is usually
included into codes to solve IBP relations. An explicit exam-
ple, together with a discussion of various ways of looking
for extra relations between master integrals, can be found
in [41] in the context of the master integrals needed for the
computation of the lepton anomalous magnetic moment at
three loops.

For the IBP reduction of one-scale integrals, both our
groups applied modular arithmetic (for early discussions of
such techniques, see e.g. [42,43]). One of our groups used
the private code Finred by A. von Manteuffel, which was
the first code to solve IBP relations with the help of mod-
ular arithmetic, and another group used FIRE. For the IBP
reduction of two-scale integrals appearing within the method
of differential equations, we applied FIRE, also with mod-
ular arithmetic. We first performed rational reconstruction
to transition from modular arithmetic to rational numbers.
Then after fixing d or x , we ran Thiele reconstruction [44]
to obtain a rational function of the other variable. Since we
have a good basis, the denominators factor into a function ofd
and a function of x . Hence, the worst possible denominator of
the coefficients of the master integrals, i.e., the least common
multiple of all occurring denominators, is obtained by multi-
plying the univariate factors. Knowing the worst denomina-
tor, we could multiply the functions being reconstructed by
it and perform an iterative Newton–Newton reconstruction
[44], i.e., apply two Newton reconstructions with respect to
two variables.

3 Evaluation by integration over Feynman parameters

3.1 Finite integrals, analytical integration

Perhaps the most straightforward way to solve a Feynman
integral is the direct integration of its Feynman parametric
representation. What we wish to obtain is the Laurent expan-
sion of the integral in the regulator ε. We find it convenient to
work with integrals which are finite for ε → 0, such that we
can expand the integrand in ε and then perform the integra-
tions for the Laurent coefficients. It has been shown in [45,46]
that one can always express an arbitrary (divergent) Feynman
integral as a linear combination of a basis of “quasi-finite”
integrals, which have convergent Feynman parameter inte-
grations for ε → 0. Requiring also the � pre-factor involving
the superficial degree of divergence to be finite, one can also
choose completely finite integrals for ε → 0 [9]. In this con-
struction, the finite integrals may live in higher dimensions
and may have “dots,” i.e., higher powers of propagators (see
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[47,48] for generalizations of quasi-finite integrals). A sys-
tematic list of such finite integrals can be obtained easily with
the program Reduze 2 [49]. Expressing a divergent Feyn-
man integral in terms of a basis of finite integrals, all poles
in ε become explicit in the coefficients of this rewriting. The
explicit linear relations needed to express an integral in terms
of finite basis integrals are obtained from dimension-shift
identities and integration-by-parts reductions, which will be
discussed in more detail below.

The integrands of the finite integrals can easily be
expanded in ε. In general, the integrations of the coefficients
can lead to complicated special mathematical functions and
may be difficult to perform. A given Feynman parametric
representation for some Feynman integral can have the prop-
erty of “linear reducibility.” For linearly reducible integrals,
there exists an order of integrations such that each integration
can be performed in terms of multiple polylogarithms in an
algorithmic way. Thanks to the algorithms of [50–52] and
their implementation in HyperInt [53], a suitable order of
integration can be determined with a polynomial reduction
algorithm. If a representation is not linearly reducible, it is
sometimes still possible to perform a rational transforma-
tion of the Feynman parameters such that the resulting new
parametrization is linearly reducible. For integrals resulting
in elliptical polylogarithms or more complicated structures,
no linearly reducible representations exists. Currently, no
algorithm is known to determine unambiguously whether a
linearly reducible parameterization exists for a given Feyn-
man integral.

In our case, we have been able to find linearly reducible
parametric representations for almost all topologies, with
the only exception being two trivalent (top-level) topologies
depicted as the last two entries in figure 1 of [15]. For these
two topologies, the method of differential equations allows
us to obtain the solutions from ε-factorized differential equa-
tions and integrations in terms of multiple polylogarithms, as
explained in Sect. 2. We cannot exclude the possibility that a
linearly reducible representation could also be found for these
topologies. We emphasize that in practice, direct integrations
allowed us to derive complete analytical solutions through to
transcendental weight 7 for all Feynman integrals, even in
those topologies which are not linearly reducible. For the lat-
ter, this was achieved by a suitable choice of basis integrals
and a high-precision numerical evaluation plus constant fit-
ting for a single remaining integral [54]. The key observation
was that certain Feynman integrals involve only the F poly-
nomial but not the U polynomial at leading order in ε, and
the F polynomial alone could be rendered linearly reducible
in all cases.

We performed the parametric integrations for the finite
integrals with the Maple program HyperInt. While
straightforward in principle, the integration generates a large
number of terms at intermediate stages. Performance chal-

lenges arise due to bookkeeping tasks and greatest com-
mon divisor computations to combine coefficients of the
same multiple polylogarithm. In order to obtain complete
information at a given transcendental weight, depending on
the choice of basis integrals, one needs a different num-
ber of terms in the epsilon expansion, and each such term
may require significantly different amounts of computational
resources. Usually, the first term in the ε expansion is rela-
tively inexpensive to compute, and with increasing order, the
computational complexity increases substantially. For this
reason, we usually start by trying out an over-complete list of
candidate integrals and compute the leading term(s) of their ε

expansion. We then select basis integrals, whose ε expansion
starts with high weight and which performed well in terms of
run times for the computation of the leading term(s) in ε. By
inserting the basis change into form factor expressions, we
check for unwanted weight drops due to our choice of basis
integrals. For our basis choice, more difficult topologies start
to contribute only at relatively high weight.

To perform the integrations at higher weight, in some cases
we used a parallelized HyperInt setup on compute nodes
with hundreds of gigabytes (GB) of main memory and weeks
of run time. In this way, we were able to analytically calcu-
late all Feynman integrals to weight 6, all but one to weight 7
(with the last one guessed from numerical data), and a large
number of integrals to weight 8. In all cases, we checked our
results with precise numerical evaluations using the program
FIESTA [55,56]. The numerical evaluations were performed
for our finite integrals, which allowed for better computa-
tional performance than generic integrals.

3.2 IBP reduction of dotted integrals

Our finite integrals typically have dots and are defined in
d = d0 − 2ε dimensions, where the reference dimension
d0 in many cases is larger than 4, d0 = 6, 8, . . .. In order
to express them in terms of integrals with d0 = 4 dimen-
sions, we exploit dimension-shift identities as described e.g.
in [57], which also introduces dotted integrals. In particular,
we employ dimension-increasing shifts which introduce four
additional dots for a four-loop integral. We establish the rela-
tion between the basis of finite integrals and a conventional
basis through integration-by-parts identities, where the par-
ticular challenge lies in the reduction of the dotted integrals.

The reduction scheme is based on integration-by-parts
relations in the Lee–Pomeransky representation [58–60].
Defining the (twisted) Mellin transform of a function
f (x1, . . . , xN ) as

M{ f }(ν1, . . . , νN ) ≡

N
[

N∏
i=1

∫ ∞

0

xνi−1
i dxi
�(νi )

]
f (x1, . . . , xN ) (3.1)
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and normalizing the integral (2.1) according to Iν1,...,ν18 =
N Ĩν1,...,ν18/�((L + 1)d/2 − ν), one has

Ĩν1,...,νN = M
{
G−d/2

}
(ν1, . . . , νN ), with G = U + F .

(3.2)

Here, U and F are the first and second Symanzik polynomi-
als, respectively, ν = ∑

νi , N = 18, L = 4, and N is an
normalization constant which is not relevant in the following.

The Mellin transform (3.1) has the properties

M{α f + βg}(ν) = αM{ f }(ν) + βM{g}(ν), (3.3)

M{xi f }(ν) = νiM{ f }(ν + ei ), (3.4)

M{−∂i f }(ν) = M{ f }(ν − ei ), (3.5)

with multi-index notation such that ν = (ν1, . . . , νN ), ei =
(0, . . . , 0, 1, 0, . . . , 0) has a nonzero entry at position i , and
∂i ≡ ∂/∂xi . From this, it is easy to see how insertions of xi
and ∂i translate to shifts of propagator powers. We use the
shift operators

(
î+ Ĩ

)
(ν1, . . . , νN ) = νi Ĩ (ν1, . . . , νi + 1, . . . , νN ), (3.6)(

î− Ĩ
)

(ν1, . . . , νN ) = Ĩ (ν1, . . . , νi − 1, . . . , νN ). (3.7)

A differential operator P consisting of powers of xi and ∂i
which annihilates G−d/2,

PG−d/2 = 0, (3.8)

generates from M{PG−d/2} = 0 via the substitutions

xi → î+ , (3.9)

∂i → −î−, (3.10)

a shift relation. In fact, every shift relation is generated in
this way [60].

To construct annihilators, we make ansätze of the form

P = c0 +
N∑
i=1

ci∂i +
N∑

i, j=1

ci j∂i∂ j + · · · . (3.11)

In the following, we will restrict ourselves to at most
second-order derivatives in P . The functions c0(x1, . . . , xN ),
ci (x1, . . . , xN ), and ci j (x1, . . . , xN ) are polynomials in the
Feynman parameters xi and are determined such that (3.8) is
fulfilled, which requires

c0

[
− 2

d
G2

]
+

N∑
i=1

ci [G∂iG]

+
N∑

i, j=1

ci j

[
G∂i∂ jG − (d + 2)

2
(∂iG)(∂ jG)

]
= 0. (3.12)

Since the expressions in brackets are explicitly known, one
can interpret this equation as a syzygy constraint for the
unknown functions c0, ci , and ci j . Such syzygies can be deter-
mined algorithmically. Once the functions c0, ci , and ci j are
known, one can obtain the desired shift relations for generic
ν1,…,νN from (3.8) by replacing the Feynman parameters
x1, . . . , xN with shift operators 1̂+, . . . , N̂+ in the arguments
of c0, ci , and ci j :

⎛
⎝

⎛
⎝c0(1̂

+, . . .) −
N∑
i=1

ci (1̂
+, . . .)î−

+
N∑

i, j=1

ci j (1̂
+, . . .)î− ĵ−

⎞
⎠ Ĩ

⎞
⎠ (ν1, . . . , νN ) = 0. (3.13)

These equation “templates” are then applied to “seed inte-
grals” with non-negative integer insertions for the νi , fol-
lowed by a standard “Laporta”-style reduction of these iden-
tities for the specific loop integrals. For the latter, we use
the modular arithmetic and rational reconstruction methods
available in Finred.

We compute the syzygies sector by sector, aiming at the
reduction of integrals without irreducible numerators. While
we found that annihilators of linear order in the derivatives
are insufficient in some cases, annihilators of second order
(involving also the ci j ) allowed us to generate the desired
reductions. Instead of computing complete syzygy modules,
we restrict ourselves in the construction of the c0, ci , and ci j
to a maximal degree in the Feynman parameters and employ
linear algebra methods (see also [48,61]) implemented in
Finred for their computation.

The fact that we may ignore numerators for the sector
in which we construct the annihilator deserves a comment.
Linear annihilators produce at most a single decrementing
shift operator in each term, such that no numerators will be
produced for seed integrals without numerators. This is no
longer the case in the presence of a second-order (î−)2 con-
tribution, which can indeed lead to a subsector integral with
a numerator. Interestingly, keeping also the subsector identi-
ties for a given sector, all of these auxiliary integrals can be
eliminated without additional effort.

In practice, we note that for subsectors with fewer lines,
integrals with rather large numbers of dots need to be reduced.
On the other hand, the identities produced by the annihila-
tor method can be reduced rather quickly. For the present
calculation, we chose to reconstruct full reduction identities
with full d dependence and rational numbers as coefficients,
which required a large number of samples in some cases
and thus non-negligible computational effort. We found this
approach attractive with regards to workflow considerations,
since it decoupled our experiments with different types of
basis changes from the computation of the reductions. By
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storing intermediate reductions of integrals at the level of
finite field samples and by reconstructing symbolic expres-
sions only after assembling the desired linear combinations
of integrals (e.g., for a specific basis change from finite field
to conventional integrals), one can work with a considerably
smaller number of samples and decrease the computational
effort.

4 Results in electronic files

We provide analytical results for the complete set of
all massless, four-loop, three-point master integrals with
one off-shell leg at https://www.ttp.kit.edu/preprints/2023/
ttp23-034/. Please see the file README for details regarding
the employed conventions and for a description of the various
files.

Our analytical results for the vertex integrals with one off-
shell leg are given as Laurent expansions in ε and allow quan-
tities to be computed at least up to and including weight 8, in
many cases up to and including weight 9. Results obtained by
the method of differential equations are given in a UT basis
(strictly speaking, the UT property is a conjecture at higher
orders in ε). The complete set of all master integrals is given
in terms of finite integrals, which allows for easier numerical
checks. In addition, we provide mappings to a more conven-
tional “Laporta basis,” determined by a generic ordering of
integrals.

We also provide auxiliary expressions for the vertex inte-
grals with two off-shell legs, which we used to employ the
method of differential equations. In particular, we define
basis integrals, which lead to ε-factorized differential equa-
tions. Moreover, we also provide the differential equations
themselves.

For the calculation of some (physical) quantity to weight 8
using some non-UT basis, it may seem that one needs infor-
mation from higher-order terms in the ε expansion that are not
provided here. To work around this problem, we introduced
tags in the expansions representing specific unknown higher
weight contributions. By expanding to sufficiently high order
in ε and making sure that these tags drop out in the final result,
one can still use such an alternative basis.

5 Conclusion

We presented solutions for all four-loop master integrals con-
tributing to massless vertex functions with one off-shell leg.
Our results for the Laurent expansion in the dimensional
regulator ε are given in terms of regular and multiple zeta
values and are complete up to and including at least tran-
scendental weight 8. We provide concise definitions of all
master integrals, their analytical solutions, basis transforma-

tions, and further auxiliary expressions in electronic files that
can be downloaded from https://www.ttp.kit.edu/preprints/
2023/ttp23-034/.

We employed two methods to obtain these results: one
based on differential equations for topologies with an addi-
tional off-shell leg, one based on direct parametric inte-
grations of finite integrals. In a large number of cases, we
employed both methods to compute integrals in the same
topology. Moreover, almost all integrals were checked up to
weight 7 by such redundant calculations. For the weight 6
and weight 7 contributions we also had nontrivial checks
available from the cusp and collinear anomalous dimensions
extracted from the poles of different form factors. Various
weight 8 contributions have been obtained using only one of
the two described methods, those we checked against precise
numerical evaluations with FIESTA.

We observed that it can be computationally rather inexpen-
sive to compute lower weight contributions in the parametric
integration approach, once one has a linearly reducible rep-
resentation available. Furthermore, a suitable basis choice
can avoid contributions from more complicated topologies
at lower weight. For that reason, the weight 7 contributions
could essentially be obtained from direct integrations. At
weight 8, the situation is different. For two particularly com-
plicated top-level topologies we could not even find a suit-
able starting point, that is, a linearly reducible representation.
Moreover, for a number of other topologies, we were not suc-
cessful with direct integrations due to the high computational
resource demands.

Remarkably, in all these challenging cases, the differen-
tial equation approach worked well and allowed us to obtain
analytical solutions. Despite the fact that one generalizes the
problem by taking one of the light-like legs off-shell, the
power of the method outweighed this potential drawback
in practice. As a bonus, the method allowed us to arrive at
uniformly transcendental basis integrals, and one can obtain
results also at even higher transcendental weight if needed.
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