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Abstract

In the biomedical environment, experiments assessing dynamic processes are
primarily performed by a human acquisition supervisor. Contemporary imple-
mentations of such experiments frequently aim to acquire a maximum number
of relevant events from sometimes several hundred parallel, non-synchronous
processes. Since in some high-throughput experiments, only one or a few
instances of a given process can be observed simultaneously, a strategy for
planning and executing an efficient acquisition paradigm is essential. To ad-
dress this problem, we present two new methods in this paper. The first method,
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Encoded Dynamic Process (EDP), is Artificial Intelligence (Al)-based and
represents dynamic processes so as to allow prediction of pseudo-time val-
ues from single still images. Second, with Experiment Automation Pipeline
for Dynamic Processes (EAPDP), we present a Machine Learning Operations
(MLOps)-based pipeline that uses the extracted knowledge from EDP to effi-
ciently schedule acquisition in biomedical experiments for dynamic processes
in practice. In a first experiment, we show that the pre-trained State-Of-The-
Art (SOTA) object segmentation method Contour Proposal Networks (CPN)
works reliably as a module of EAPDP to extract the relevant object for EDP
from the acquired three-dimensional image stack.

1 Introduction

For the imaging-based assessment of dynamic processes in biomedical settings,
objects of interest must be identified and relevant events that characterize the
dynamic process must be recorded during their time of occurrence. Commonly,
a human operator controls the imaging instrument to examine a biomedical
sample using a microscope and relevant objects are found in the sample by
inspection. Alternatively, the operator estimates for each object of interest
the time at which an event of interest is expected to occur based on previous
experience and triggers the recording of the event at that time. Nevertheless,
many contemporary experiments provide several hundred relevant objects that
can, in principle, be imaged in parallel. Events of interest, however, are non-
synchronous and the estimation of future event times requires extensive human
effort, is prone to error, and not necessarily time-efficient. These obstacles can
result in unnecessarily large amounts of irrelevant data, unnecessary experi-
mental repeats, or experimental biases inflicted by additional light exposure of
the sample [18]. To address these obstacles, we present two new methods for
the automated, real-time planning and execution of such experiments.

EDP. The traditional method of capturing all data or relying on human ex-
perience to predict future events is outdated and inefficient. Instead of relying
on human experience, an accurate and comprehensive model of the dynamic
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process should be created. This model should be capable of uniquely identi-
fying a relevant object state through a process known as fingerprinting, similar
to how humans do it. In biomedicine, it is crucial that this fingerprint remains
consistent despite contextual changes such as noise, brightness changes, or
affine transformations. By modeling the relationship between the fingerprints,
the dynamic process can be represented orderly. This representation suits as an
approximation of relative progress within the dynamic process. This relative
progress can also be interpreted as a relative time, known as pseudo-time. By
adopting this method, we can achieve efficiency in predicting future events and
a deeper understanding of the dynamic process.

EAPDP To unlock the full potential of the EDP, a well-designed pipeline is
an absolute must. Such a pipeline should be able to recognize specific states
in the real world, identify relevant objects, and then calculate a pseudo-time
for those states using the EDP. Armed with this knowledge, the pipeline can
automatically plan and execute a new state capture for any significant event
that occurs. Due to the uncertain nature of the EDP predictions, the pipeline
must be able to respond to unsuccessful recordings and learn from them. This
is where MLOps [1] comes in. By retraining an existing production model
in accordance with the live context, MLOps ensures that the pipeline always
uses a current and accurate model, resulting in a potentially better outcome in
real-world experiments.

2 Related Work

Object Extraction. Basically, there are different possibilities in Computer
Vision (CV) like object detection and object segmentation, to identify individ-
ual objects in an image [10] and thus extract them. In the biomedical context,
many methods mostly focus on segmentation [42] with SOTA methods like
StarDist [38] and CPN [46].

Pseudo-time predictions. A first approach for pseudo-time predictions with
classical, non Deep Learning (DL) methods was presented in [14]. For extract-
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ing relevant objects from the acquired image, thresholding is used as a classical
CV segmentation method. Then the object’s fingerprint is generated linearly
with a Principal Component Analysis (PCA) [19, 20]. However, biological
processes are usually not linear [5]. Therefore, recently, non-linear encodings
of the dynamic processes using DL methods have become popular [17, 9, 21,
32]. For example, [21] and [9] present DL approaches to encode cell cycles and
derive predefined cell phases. However, this classification-based approach does
not allow for deriving continuous relations like the pseudo-time to each other
directly. This continuous relation was modeled with DeepCycle in [32]. The
training of DeepCycle is performed supervised. For this purpose, virtual labels
are calculated based on the fluorescence intensity in specifically labeled chan-
nels of the cells. These classes can then be used as anchor points during training
to determine a (relative) cell state as a pseudotime. It is important to note that
the assumption that a correlation of fluorescence intensity to cell phase can be
used is not always true in the biological context. A DL method that follows
a comparable pseudo-time approach to the given constraints, in this paper,
was presented in [17]. In [17], an AutoEncoder (AE) approach for pseudo-
time approximation is used as a Self-Supervised Learning (SSL) approach. A
DL model is used as the Variational AutoEncoder (VAE) [23] encoding, from
whose Hierarchical Agglomerative Clustering (HAC) and Minimum Spanning
Tree (MST) code the pseudo-time is then determined. However, this approach
also has a few limitations. First, a recording necessarily contains exactly one
relevant object in one acquired image. Second, the entire dataset was acquired
under comparable acquisition conditions, which also only contain identical po-
sitioned and oriented objects and are not able to learn affine transformations [3]
between objects. Both constraints are generally not satisfied for microscopic
images, such as in [27, 36]. Furthermore, this pseudo-time method was not
designed as an End-to-end (E2E) model, which deprives the DL model of the
ability to internally bind affine transformed objects.

AutoEncoder. Autoencoders are SSL methods to learn a representation from
a given suitability, such as an image [49, 47]. For example, the autoencoder can
be represented by a Conventional AutoEncoder (CAE) [49] and/or a VAE [23].
Especially recently, Masked AutoEncoders (MAEs) [15] have become more
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popular than CAE because of their ability for a better visual representation
learning [49], either using a transformer-based approach [15] or the Convolu-
tional Neural Network (CNN)-based approach [47]. However, since in [47]
the higher efficiency of ConvNeXt V2 is shown, this model is chosen for this
work. In addition to the pure learning of a visual representation in the form of
a fingerprint, relations between the fingerprints can also be learned, e.g. with
VAE [17].

SSL To train the DL model in a supervised manner, labeled data are generally
rare in the biomedical domain [13]. There are DataBases (DBs) like BioMed-
Image.io [30] or several challenges with own datasets [26, 2, 28]. However,
especially for biological datasets with sometimes hundreds of relevant objects
in an image, the datasets are often limited to the 2D case. Furthermore, in
the context of this work, labeling the relevant events with pseudo-time stamps
is only approximate, demanding, error-prone and time-consuming. Therefore,
unsupervised or SSL methods are often used in the biomedical context [43].
Thereby, Active Learning (AL) [41] is used to selectively integrate expert
knowledge into the learning process. Since AL aims to keep the number of
interactions to a minimum [7, 33], data-efficient learning is preferable. For ex-
ample, existing datasets from a related context can be identified and leveraged
to train more robust models in transfer learning [11, 29, 48]. In order to be
able to use possibly directly existing pre-trained models from similar contexts,
a new concept was developed in [48].

3  Methodology

3.1 EDP

For the modeling of the dynamic process, a new concept is introduced with
EDP. The new concept of EDP is based on an AE and is visualized in Fig-
ure 1. The basic idea of the new concept is to separate the generation of the
fingerprint from the learning of the relation as a representation between all
states. The fingerprint generation is done using a MAE as an evolution of CAE.
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Fingerprint Decoder

Relation Representation

Figure 1: Visualization of the EDP model. A 3D object is transformed by an encoder into a
fingerprint (like MAE) and into a relation representation between the fingerprints (like
VAE). The example object is a recording of the DNA channel of a nucleus from an
internal zebrafish embryo dataset. A scale bar of 2um is indicated at the bottom of the
input/output image.

Specifically, the SOTA MAE-based method ConvNeXt V2 is chosen. During
the learning process, a maximum recovery of the encoded image is aimed in
accordance with SSL. According to the challenge posed by biological objects,
a context-independent representation is required. For this purpose, the images
can be modified during the learning process through Data Augmentation [16]
techniques like Rotations, reflections, contrast adjustments or noise additions.
In addition to the fingerprint, the relation must also be learned as the actual
modeling of the dynamic process. For this purpose, a VAE-like modeling
is used by learning the uncertainty v in addition to the circle angle . The
assumption is that objects succeeded each other in the dynamic process with
the relative distance ¢ corresponding to this relative distance and differ in the
same ratio in the circle representation. Such an exemplary circle representation
is shown in Figure 2 using a cell division process of the zebrafish embryo.
The state of the cell after cell division is visualized at 00 o’clock and up to
the state of the cell just before cell division at 11 o’clock. This corresponds
to a relative distance of ~0.92 (normalized between [0,1)). This temporal
difference must also be valid in reality for the temporal distance according
to the model statement.

3.2 EAPDP

The new EDP module is integrated as a module into the new MLOps-based
pipeline EAPDP. The pipeline concept is visualized in Figure 3 and contains
nine other modules besides the EDP module. Each of these ten modules is
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Figure 2: Example of a 2D feature space representation for an encoded dynamic process. Each
point represents an encoded image. The circle serves as an estimation for the positioning
of points in its vicinity. It’s worth noting that due to the presence of uncertainty, the
points may not always be precisely on the circle, but rather in its proximity. For the
seven red dots, example images of cell nuclei from zebrafish embryos at various stages
of cell division are shown. A scale bar of 2 m is indicated at the bottom of each example
image. The images are from an internal dataset.

briefly described below. The explanation of the modules and their relationships
to each other is based on the pipeline visualization of Figure 3.

Microscope setup. In the EAPDP, the microscope is used as an actuator
to the real-world environment represented by a biomedical sample. For this
purpose, all microscope components relevant to image acquisition and the
microscope accessories, such as lasers in the case of a laser scanning micro-
scope, must be controllable via appropriate interfaces of the specific micro-
scope setup. In addition, the microscope must be able to react on given com-
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Figure 3: MLOps pipeline with the new EDP module. Al-based MLOps modules are marked
with a green background, non Al-based ones with a blue background. Additionally, all
modules marked with a red border must be newly developed or only partially adapted
from existing methods.

mands like image acquisition or requested meta-information like the objective
position in a standardized way.

Image Pre-processing. To optimize the analysis of dynamic processes in the
biomedical environment, the raw images acquired through experiments must be
pre-processed according to the microscope setup and the context of the targeted
event. This may involve methods such as cropping, contrast adjustment, or
denoising. Various libraries, such as Albumentations [4], offer pre-processing
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methods that can be used to improve the quality of the images and optimize
their analysis by other modules in the machine learning operation pipeline.

Object Extraction. During an acquisition, the relevant object and the sur-
rounding context are captured. In order to better analyze the object, it is
necessary to separate it from the surrounding context. The extraction from the
whole image is done via pre-trained segmentation methods. To find a suitable
method, we compare the SOTA cell segmentation algorithms StarDist and
CPN using a microscopic dataset in a first experiment. Importantly, the actual
pseudo-time determination cannot be performed if both methods’ segmentation
is insufficient. Therefore, this submodule is of particular importance. Because
(well) labeled data are generally scarce in the biological context, this work
evaluates generalization performance during inference with already pre-trained
models on new, unknown images. Since there are only pre-trained weights for
2D segmentation for both methods, the dataset was split into 2D images along
the z-axis.

EDP. The EDP module gets the extracted object and should pass the pseudo-
time to the experiment planner. In order to do this, the module is equipped by
the Experiment planner before with the appropriate experiment setup. With the
setup, the EDP model can then query according to its existing knowledge like
pre-trained models in the context of data-efficient learning. If no weights are
available, training can also be done with/without AL as specified by the expert.
After successful training, the model is passed to the DB with the appropriate
required metadata for possible further use. Then, when the inference with the
original extracted relevant object has been determined, the results are passed
to the expert planner accordingly. The recorded inference image is also sent to
the Data-efficient Learning module and stored in its DB.

Experiment planner. The Experiment planner is the central module of the
experiment automatization. As input it gets the pseudo-times for the recorded
objects. Based on the experiment context, including interesting events, the
Experiment planner can plan future experiments with utmost precision. Once
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the plan is set, the Experiment planner gives the microscope the command to
ensure that the image captures the object’s state at the right time, leaving no
room for errors. Additionally, it can query the state of the microscope to ensure
that there was no hardware drift, such as when moving to the object position.
All the information about the experiment’s state is then passed on to the User
Interface (UI), ensuring that all aspects of the experiment are under control.

Ul. The Ul is the interface between the expert and the MLOps pipeline. On
the one hand, simple interactions can be provided, such as displaying meta-
information or adapting the experimental context, e.g. the cell classes that
occur. On the other hand, much more complex interactions such as result
justifications of DL models can be represented through Explainable Artificial
Intelligence (XAI) [34] or expert knowledge can be brought into the pipeline
within the context of AL. With XAlI, the expert should be able to understand
better the processes in the DL models used and why decisions were made,
e.g. for event detection. This helps the expert to eliminate potential errors like
unfavorable experiment settings at an early stage. Such XAI methods can be
realized using a library like PyTorch Captum [25]. For AL, only if the expert
can capture the actual state in the best possible way, the expert can transfer
his domain knowledge to the method in the best possible way and support the
method. For example, points, boxes, or entire segmented regions can be passed
to the method as hints. For this purpose, a custom segmentation module can be
developed based on exiting AL labeling platforms like ObiWanMicrobi [40] or
Karlsruhe Image Data Annotation (KalDA) [37].

Expert (Domain) Knowledge. The domain knowledge contributed by the
expert to the MLOps pipeline can take several forms. For example, the context
of the experiment with a specific cell class can improve a more efficient event
detection module. Furthermore, knowledge can be injected, e.g. by labeling
in the context of AL. For this, the expert must ensure the quality of the in-
jected domain knowledge with maximum correctness. Incorrect information
can affect the learning processes in the network.
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Data-efficient Learning. To minimize AL interactions with the human ex-
pert, as much existing knowledge as possible is reused. To this end, building
on [48], a new AE-based fingerprinting approach for datasets and Machine
Learning (ML) models is being implemented to reuse as much knowledge as
possible. For this, from a DB, context-given requirements can query existing
knowledge. If no data is available, it can be created synthetically e.g. with
biophysical simulations like Large-scale Atomic/Molecular Massively Parallel
Simulator (LAMMPS) [44].

Microscope control. In order for the planned experiment to be automated
and performed in real-time, a corresponding software library is needed to con-
trol the microscope. Since the first release in 2010, yManager has been used
for this purpose as one of the SOTA open-source solutions [6, 22, 31, 45].
Therefore, this is also used in this work.

3.3 Exemplary Use Cases

Example use cases for the presented EAPDP with the EDP are presented using
record extracts in Figure 4 below. A first use case is shown in Figure 4a and
represents the temporal sorting of RiboNucleic Acid (RNA) Polymerase II (Pol
II) clusters that occur in the nuclei of pluripotent zebrafish embryos. A method
for this use case has already been presented in [14]. A comparison of the
pipeline based on classical ML methods with our DL-based EDP method al-
lows a direct statement about limitations or improvements of our approach. The
second use-case in Figure 4b is the recording of cell divisions in pluripotent
zebrafish embryos, where the time of reaching a new division stage and thus
the regions of an event of interest need to be extrapolated. A final biological
application from the field of microbiology is presented in Figure 4c. In this
example, one interesting event could be the state at which n microbes reach the
recording region. For this purpose, a modeling of the cell division process with
EDP can be used to plan the experiment accordingly and automatically record
the event of interest at a time ¢. The modeling of the cell division process with
EDP can be used for this purpose.
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(a) [27] (b) Internal dataset () [39]

Figure 4: Three exemplary images from biological datasets for dynamic processes. Figure 4a
shows cell nuclei of zebrafish embryos with marked Pol II SerSP clusters. Figure 4b
shows the DeoxyriboNucleic Acid (DNA) of zebrafish embryos nuclei. In these first
two images, a scale bar of 20um is shown in the lower left. The last Figure 4c shows a
microbial cell division state.

In addition to these biological use cases, other use cases are also possible, e.g.
in medicine. For example, by modeling a tumor accordingly, a prediction can
be made about the relative stage. Consequently, a therapy concept such as
surgery or medication can be tailored to the patient.

4 Experiments

The comparison of segmentation algorithms was performed on Helmholtz Al
COmpute REssources (HAICORE) resources equipped with Intel Xeon Plat-
inum 8368 Central Processing Units (CPUs) and an Nvidia A100-40 Graphics
Processing Unit (GPU) [24]. The operating system utilized was Red Hat En-
terprise Linux (RHEL) version 8.6.

41 Dataset

The internal microscope dataset from Figure 4b is used to compare the seg-
mentation algorithms. This dataset was chosen over the other two example
datasets from Figures 4a and 4c because of the challenging, frayed structure of
the nuclei as the relevant image object. This is because the fibrillar structure
of the nuclei sometimes deviates strongly from their typical ellipsoidal shape
as in Figure 4a due to individually advanced cytokinesis. This poses a chal-
lenge because contiguous pixel regions are not trivially identifiable and correct
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boundary segmentation is a challenge. With microbeSEG [35], a working
SOTA solution for microbes like in Figure 4c also already exists.

For the dataset in Figure 4b, zebrafish embryo DNA was imaged. DNA was
stained with 1:10000 5’-TMR Hoechst in TDE or glycerol. Confocal z-sections
were obtained using a commercial instant SIM microscope (iSIM, VisiTech). A
Nikon 100x oil immersion objective (NA 1.49, SR HO Apo TIRF 100xAC Oil)
and a Hamamatsu ORCA-Quest camera were used for image acquisition. In
accordance with a common problem in biology, no labels exist for this dataset.
According to the desired 2D segmentation, the 3D images are split into 2D
images along the z-axis.

4.2 Object extraction

These 2D images were then segmented using each of the two methods. In the
following, the results are evaluated qualitatively because of the non-existent
labels. Therefore, the results are shown in Figure 5. The comparison of the
original image in Figure 5a with the StarDist prediction in Figure 5b, shows
that StarDist cannot well segment semantically related objects as the nucleus in
the upper area. For the method designs with center prediction, StarDist focused
primarily on segmenting ellipsoidal objects from [12] and was trained only on
these. The cell detection was designed to be more flexible and additionally
trained on a more heterogeneous set of non-elliptical cells such as MCF7 from
the dataset [8]. This leads to better generalization and results in qualitatively
evaluated good initial segmentation performance on this most challenging of
our datasets from Figure 4.

Thus, we could show that CPN is a good pre-trained SOTA approach for ex-
tracting the relevant objects from the 2D decomposition. The 2D segmenta-
tions can be reassembled back to 3D segmentations in post-processing, €.g.
using Nearest Neighbor. Based on this, the further submodules of EDP can be
developed in future work and the presented MLOps pipeline can be built upon
it.
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(a) Original (b) StarDist [38] (c) CPN [46]

Figure 5: Comparison of segmentation predictions for the two SOTA methods StarDist [38] and
CPN [46]. Figure 5a represents the original image, duplicated from Figure 4b. In
Figure 5b and Figure Sc, the predictions of pre-trained StarDist or CPN are then shown.
The predictions are highlighted differently for better visual differentiation depending on
the method used.

5 Conclusion and Further Work

In this work, we motivated that due to the large number of parallel non-
synchronous dynamic processes, a novel concept for automated planning and
execution of two novel DL-based approaches is essential. First, the EDP
was introduced to model dynamic processes and derivate a pseudo-time for
a given object state. The pseudo-time prediction can then be used with
the EAPDP for real-time experiment automation. We explained the EDP
realized within the MLOps pipeline by an AE and trained using SSL with
AL. At the same time, the key advantage of higher execution speed and lower
human cost while minimizing user interactions with data-efficient learning
was highlighted. Finally, as a first Proof of Concept (PoC), we showed the
necessary pre-processing step for the EDP to extract the relevant objects based
on good inference results of CPN.

However, the lack of pre-trained weights for 3D segmentation was a draw-
back of the segmentation experiments. However, since the fragmented objects
are partially reconnected along the z-axis, this could simplify the problem
and improve accuracy. This will be done as soon as appropriate weights are
available. In addition, a suitable affine-invariant 3D AE needs to be developed
for use within the EDP method. In this context, further research is needed to
investigate whether the ConvNeXt V2 is suitable for 3D segmentation, also
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from an efficiency perspective. Of course, the modules of the MLOps pipeline
must be implemented accordingly.
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