KIT | KIT-Bibliothek | Impressum | Datenschutz

Security Fence Inspection at Airports Using Object Detection

Friederich, Nils ORCID iD icon 1; Specker, Andreas ORCID iD icon 2,3; Beyerer, Jürgen 2,3
1 Institut für Automation und angewandte Informatik (IAI), Karlsruher Institut für Technologie (KIT)
2 Institut für Anthropomatik und Robotik (IAR), Karlsruher Institut für Technologie (KIT)
3 Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung (IOSB)

Abstract:

To ensure the security of airports, it is essential to protect the airside from unauthorized access. For this purpose, security fences are commonly used, but they require regular inspection to detect damages. However, due to the growing shortage of human specialists and the large manual effort, there is the need for automated methods. The aim is to automatically inspect the fence for damage with the help of an autonomous robot. In this work, we explore object detection methods to address the fence inspection task and localize various types of damages. In addition to evaluating four State-of-the-Art (SOTA) object detection models, we analyze the impact of several design criteria, aiming at adapting to the task-specific challenges. This includes contrast adjustment, optimization of hyperparameters, and utilization of modern backbones. The experimental results indicate that our optimized You Only Look Once v5 (YOLOv5) model achieves the highest accuracy of the four methods with an increase of 6.9% points in Average Precision (AP) compared to the baseline. Moreover, we show the real-time capability of the model. The trained models are published on GitHub: https://github.com/N-Friederich/airport_fence_inspection.


Zugehörige Institution(en) am KIT Institut für Anthropomatik und Robotik (IAR)
Institut für Automation und angewandte Informatik (IAI)
Publikationstyp Forschungsbericht/Preprint
Publikationsjahr 2023
Sprache Englisch
Identifikator KITopen-ID: 1000165028
HGF-Programm 47.14.02 (POF IV, LK 01) Information Storage and Processing in the Cell Nucleus
Verlag arxiv
Schlagwörter Computer Vision and Pattern Recognition (cs.CV)
Nachgewiesen in Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page