Computational, Label, and Data
Efficiency in Deep Learning for Sparse
3D Data

Zur Erlangung des akademischen Grades eines
DOKTORS DER INGENIEURWISSENSCHAFTEN (Dr.-Ing.)

von der KIT-Fakultat fir
Elektrotechnik und Informationstechnik
des Karlsruher Instituts fir Technologie (KIT)

angenommene
DISSERTATION
von

Lanxiao Li, M.Sc.

geb. in Shaanxi, China

Tag der mindlichen Prifung: 26.10.2023
Hauptreferent: Prof. Dr.-Ing. Michael Heizmann, KIT
Korreferent: Prof. Dr. Ralf Mikut, KIT

This document—excluding parts marked otherwise, the cover, pictures

@ ® @ and graphs—is licensed under a Creative Commons Attribution-Share
Alike 4.0 International License (CC BY-SA 4.0):

https://creativecommons.org/licenses/by-sa/4.0/deed.en

https://creativecommons.org/licenses/by-sa/4.0/deed.en

Abstract

The deep learning technology has made fast progress in recent years. It
is widely applied to sparse 3D data to perform challenging tasks, e.g., 3D
object detection and semantic segmentation. However, the high perfor-
mance of deep learning comes with high costs, including computational
costs and the effort to capture and label data. This thesis investigates and
improves the efficiency of deep learning for sparse 3D data to overcome
the obstacles to the further development of this technology.

For better computational efficiency, a depth map-based 3D object de-
tector is introduced. Also, transformer-based models are explored to
process point clouds that cannot be represented as depth maps. The pro-
posed novel architectures achieve competitive performance with lower
computational costs than existing methods.

Also, to reduce the dependence on labeled data and improve label effi-
ciency, this thesis researches self-supervised pre-training, which only re-
quires unlabeled data. Specifically, it provides a closer look at invariance-
based contrastive learning using 3D data and the masked auto-encoder
for point clouds. Compared to directly training neural networks on target
datasets, self-supervised pre-training brings a significant performance
boost without additional labels.

Furthermore, synthetic data generation for pre-training is investigated
to reduce the effort of capturing real-world 3D data and improve data effi-
ciency. Instead of applying sophisticated simulation, this thesis generates
data using a fully randomized approach. The generated synthetic data
perform well with different neural networks and pre-training methods.
Also, the performance is competitive compared to real-world data.

Zusammenfassung

Deep Learning hat in den letzten Jahren rasante Fortschritte gemacht.
Es wird haufig auf diinnbesetzten 3D-Daten eingesetzt, um anspruchs-
volle Aufgaben zu erfiillen, wie beispielsweise 3D-Objekterkennung und
semantische Segmentierung. Die hohe Leistung von Deep Learning ist
jedoch mit grofiem Aufwand verbunden, einschlieSlich dem Rechen-
aufwand und dem Aufwand fiir die Gewinnung und Annotierung der
Daten. Diese Arbeit untersucht und verbessert die Effizienz von Deep
Learning fiir diinnbesetzte 3D-Daten, um die Hindernisse fiir die weitere
Entwicklung dieser Technologie zu tiberwinden.

Zur Verbesserung der Recheneffizienz wird ein tiefenkartenbasierter
3D-Objektdetektor eingefiihrt. Aufierdem werden Transformer-basierte
Modelle untersucht, um Punktwolken zu verarbeiten, die sich nicht als
Tiefenkarten darstellen lassen. Die vorgeschlagenen neuen Architekturen
erreichen eine vergleichbare Leistung mit geringerem Rechenaufwand
als bestehende Methoden.

Um die Abhingigkeit von annotierten Daten zu verringern und die
Effizienz der Annotierung zu verbessern, wird in dieser Arbeit das selbst-
tiberwachte Vortraining erforscht, fiir das keine Labels erforderlich sind.
Insbesondere werden das invarianzbasierte kontrastive Lernen fiir 3D-
Daten und der Masked Autoencoder fiir Punktwolken nédher betrachtet. Im
Vergleich zum direkten Training auf Zieldatensatzen bringt das selbst-
iiberwachte Vortraining einen deutlichen Leistungsschub ohne zusatzli-
che Labels.

Dariiber hinaus wird die Erzeugung synthetischer Daten fiir das Vor-
training untersucht, um den Aufwand fiir die Erfassung realer 3D-Daten
zu verringern und die Dateneffizienz zu verbessern. Anstelle einer aus-
gefeilten Simulation werden in dieser Arbeit Daten mit einem vollstan-
dig stochastischen Ansatz erzeugt. Die generierten synthetischen Daten
schneiden mit verschiedenen neuronalen Netzen und vortrainierenden
Methoden gut ab. Aufierdem ist die Leistung im Vergleich zu realen
Daten konkurrenzfahig.

ii

Contents

Nomenclature
Preface

1 Introduction
1.1 Whatis Deep Learning for Sparse 3D Data?
1.2 Efficiency: a Challenge in Deep Learning for

Sparse3DData
1.3 OverviewoftheContents
14 Assumptions and Conventions

2 RelatedWorks
2.1 Basic Architectures of Neural Networks
211 Multi-Layer Perceptron

2.1.2 Convolutional Neural Network

213 Transformer

2.2 Feature Learning from3DData
221 ImputData

222 C(lassical Methods

2.2.3 Multi-View-Based Methods

224 Voxel-Based Methods

2.2.5 PointNetand Its Variants

2.2.6 Point Cloud Convolution-Based Methods

2.2.7 Transformer-Based Methods

2.2.8 Projection-Based Methods

229 Summary and Discussion

2.3 Tasks in Deep Learning for Sparse 3D Data
231 Object Classification

2.3.2 Semantic Segmentation

233 ObjectDetection

iii

Contents

iv

234

OtherTasks

2.4 Self-Supervised Pre-Training for Label Efficiency

241
242
243
244
245
24.6

BasicConcept
Early Methods
Contrastive Learning
Masked Autoencoder.
Self-Supervised Pre-Training in 3D Vision
Comparison with Semi-Supervised Learning . . .

2.5 Data Generation for Data Efficiency

251
252

Simulation-Based Methods
Randomized Methods

Real-Time 3D Object Detection using Depth Maps
3.1 Introduction
3.2 Depth Map-Based 3D Object Detection

321
322
323

Point Cloud-Based Pipeline
2.5D-VoteNet: a Depth Map-Based Pipeline
Relative Depth Convolution

3.3 Architecture and Configuration

3.3.1
3.3.2
3.3.3
3.3.4

Backbone and Feature Fusion
Detection Head and Loss Function
Training
Evaluation and Inference

3.4 Experimentsand Analysis

34.1
342
343

Comparison with State-of-the-Art Methods
Qualitative Results
Analysis L Lo Lo

3.5 Additional Comparisons with Related Works

3.5.1
352

2D CNNs for Range Images and Depth Maps . . .
RGB Fusion in 3D Detection

36 Conclusions

Invariance-Based Contrastive Learning for

Label Efficiency L
4.1 Introduction
4.2 Invariance-Based Contrastive Learning

421

Unified Framework

Contents

422 Variants of Strategies 85
423 Implementation Details 86
43 Experimentsand Results 89
4.3.1 Invariances in 3D Self-Supervised Pre-Training . . 90
43.2 Comparison with State-of-the-Art Methods 93
433 Label Efficiency 95
43.4 Additional Transfer Learning Results 95
44 Additional Comparison with Related Works 101
441 Hybrid Neural Networks for 3D Data 101
442 Multi-Modal Feature Fusion. 101
443 Contrastive Learning using Outdoor Data 101
45 Conclusions 102
Plain Transformers for Real-World Point
Cloud Understanding 103
51 Introduction 104
52 Method 106
52.1 Plain Transformers for Point Clouds 106
522 Patchifier. 0. 107
52.3 Position Embedding 109
524 Self-Supervised Pre-Training 110
525 Implementation Details 112
53 ExperimentalResults 114
53.1 ObjectDetection 115
5.3.2 Semantic Segmentation 116
533 Analysis 117
54 Conclusions 128

Efficient Pre-Training via Self-Supervision

and Randomized 3D Scene Generation 131
6.1 Introduction 132
62 Method oo 134
6.2.1 Concept of Randomized 3D Scene Generation . . 134
6.2.2 Spherical Harmonics 136
6.2.3 From ObjectstoScenes 136
6.24 Single-View PointClouds 137
6.2.5 Self-Supervised Pre-Training 138

Contents

Vi

6.3 Experiments 139
631 Setups o 139
6.32 MainResults 141
6.3.3 Comparison with other Pre-Training Methods . . 146
634 Analysis L. 147
6.4 Additional Details and Visualization 153
6.4.1 Generating Spherical Harmonics 153
6.4.2 Scene GenerationRules 154
6.4.3 Pre-Processing and Data Augmentation 155
644 GeneratedScenes, 156
65 Conclusion 156
Summary and Future Works 159
71 Summary. 159
72 FutureWorks 161
SEeNSOrs e 165
Al DepthCamera 165
A.2 Rotational LiDARSensor 166
Datasets 171
B.1 Real-World Datasets 171
B.1.1 S3DIS. e 171
B.12 SUNRGB-D 172
B.1.3 ScanNet 173
B.2 SyntheticDatasets. 175
B.21 ModelNetd0 175
B.22 ShapeNet 176
Evaluation Metrics and Protocol 179
C.1 Metrics for 3D Semantic Segmentation 179
C.2 Metrics for 3D Object Detection 181
C.3 EvaluationProtocol 184
Deployment of Neural Networks 185
D.1 Background 185
D.2 Constraints 186

Contents

D.3 Empirical Evaluation of 3D Neural Networks 188
E Evaluation withOwnData 191
Bibliography L 193
List of publications 226
List of supervised theses 227

vii

Nomenclature

Common abbreviations

Abbreviation Description

.
e.g.
etal.
etc.

ie.

1D
2D
3D
4D
ANN
AP
ASIC
BYOL
CAD
CL
CLIP
CNN
CPU
CT
DDCo
DETR
DPCo
DVCo
EMA
FC

Confer (lat. refer to)

Exempli gratia (lat. for example)
Et alii (lat. and others)

Et cetera (lat. and so forth)

Id est (lat. that means)
One-dimensional
Two-dimensional
Three-dimensional
Four-dimensional

Artificial neural networks
Average precision

Application specific integrated circuit
Bootstrap your own latent
Computer aided design
Contrastive learning
Contrastive language-image pre-training
Convolutional neural network
Central processing unit
Computed tomography
Depth-depth contrast
Detection transformer
Depth-point contrast
Depth-voxel contrast
exponential moving average
Fully connected

ix

Nomenclature

Abbreviation Description

FPC Farthest point clustering

FPS Farthest point sampling

FPS Frame per second

GAN Generative adversarial network
GFLOPs Giga floating point operations
GloU Generalized intersection over union
GPT Generative pre-trained transformer
GPU Graphics processing unit

InfoNCE Information noise contrast estimation
IoU Intersection over union

IPCo Image-point contrast

KNN k-nearest-neighbor

LiDAR Light detecting and ranging

mAcc Mean accuracy

MAE Masked autoencoder

mAP Mean average precision

mloU Mean intersection over union

MLP Multi-layer perceptron

MoCo Momentum contrast

NLP Natural language processing

NMS Non-maximum suppression

NPU Neural processing unit

ocC Overall accuracy

PPCo Point-point contrast

PVCo Point-voxel contrast

RDConv Relative depth convolution

ReLU Rectified linear unit

RGB-D Red green blue depth

RGB Red green blue

RM Random rooms

RNG Random number generator

RNN Recurrent neural network

SGD Stochastic gradient descent

SLAM Simultaneous location and mapping
SOTA State-of-the-art

Nomenclature

Abbreviation Description

SSL Self-supervised learning

SSP Self-supervised pre-training

ViT Vision transformer

N/A Not applicable

w/o Without

w/ With

Symbols

Latin letters

Symbol Description

v Vector

v; Element i of vector v (scalar)

Vv Matrix

Vl-,]- Element (i,) of matrix (scalar)

y N-dimensional tensor with shape (Cy,C,,...,Cy) (as-
suming N > 3)

Vi Element (i, /) of tensor V with length C5 (assuming V is
3D)

Vl-,j Element (i,) of tensor V with shape (C3,C,) (assuming
VY is 4D)

{Vi}?il Vector set with M vectors

b Bias

B Batch size

C Channel number

D Depth map (matrix notation)

dac...) Depth map (function notation)

E Position embedding

J Image

) Length

L(... Loss function

n(...) Neural network as a function

X1

Nomenclature

w

<
8
g
S
=5

Description

Offset function
Permutation matrix
Sample point

Input feature
Volume

Weight matrix
Convolution kernel
Point

(e}
—~
~

*xgsS<E°

Point set with M points

WE

o]
~

——

o
1
~—

Label
Prediction
Zero vector

(=1 S SIS

Greek letters

Occupancy grid (function notation)

Symbol Description

« Abstract data format
B Abstract data format
Q Point set

{Qi}?ﬁl M point sets

o(...) Activation function
T Temperature coefficient
0 Trainable parameters
Superscripts

Index Description

(e)? Anchor

(o)P Dropped

(oM Masked

xii

Nomenclature

Index Description
(o) Negative
(o)P Positive

(o)1 Quantization
(o)t Reference
(&R Reserved
(o)" Transposed
Subscripts

Index Description
(®)als Classification
(o) Global

(®)in Input

(o) Local

(L) out Output

(®)q Quantization

Mathematical operators

Operator

Description

Il
L]

Euclidean norm (L? norm)
Rounding down

xiii

Preface

I am profoundly grateful for the support and contributions that shaped
this thesis during my time at IIIT.

First, I sincerely express my deepest appreciation to my supervisor,
Prof. Dr.-Ing. Michael Heizmann. His constant guidance is the corner-
stone of my doctoral journey. Throughout the four years, his friendly and
supportive mentorship nurtured my academic development and boosted
my confidence.

I thank Prof. Dr. Ralf Mikut for his review of my thesis and for offering
inspiring suggestions that significantly enhanced its quality.

Also, I wish to express my gratitude to all my colleagues at IIIT whose
collaboration made this academic pursuit an enjoyful experience. Particu-
larly, I thank Muen Jin, Fabian Leven, Hannes Weinreuter, Johannes Anas-
tasiadis, Daniel Leyer, Markus Schwabe, Daniel Diaz Ocampo, Manuel
Bihler, Theresa Panther, Johannes Steffens, and Erik Tabuchi Barczak for
reviewing this thesis. Meanwhile, I want to thank Dieter Brandt, Manuela
Moritz, Patricia Nestl, and Marvin Winkler for their administrative and
technical support.

Moreover, I thank the Baden-Wiirttenberg Stiftung for the financial
support during the first two years of my research through the KOMO3D
project. Additionally, I am grateful to the state of Baden-Wiirttenberg for
providing access to the powerful computating platform bwHPC.

Furthermore, I want to thank my family. I thank Huihui and Tutu, my
lovely cats, for their companionship and for allowing me to include their
adorable pictures in this thesis. I thank my parents for their mental sup-
port throughout my journey in a foreign land and their encouragement
during the challenging times. Above all, I want to thank my wife, Yanling.
Her love, care, encouragement, and patience during this long pursuit
were my constant source of strength.

XV

Preface

As I finished this thesis shortly after my thirtieth birthday, I finally
want to express my gratitude to everyone who has entered my life. To all
of you, thank you for being a part of my story.

Karlsruhe, November 2023 Lanxiao Li

XVi

1 Introduction

1.1 What is Deep Learning for Sparse 3D Data?

Perception of the three-dimensional (3D) world is a long-existing demand
in computer vision. For instance, to grip an object, a robot arm must know
its accurate size, location, and orientation. Also, a self-driving car has
to understand the circumstance and determine its relative position to
other vehicles and pedestrians. Furthermore, an industrial visual inspec-
tion device must examine the surface of a product to identify potential
manufacturing failures. To accomplish these goals, a 3D measurement of
the surroundings, e.g., the 3D coordinates of sample points on objects’
surfaces, must be available. Also, the acquired information has to be
understood to obtain recognition, e.g., the existence and semantics of
objects.

In recent years, distance sensors have become compacter, faster, and
more affordable and have found a lot of practical applications. For in-
stance, many self-driving cars are equipped with LiDAR (light detection
and ranging) sensors [126, 187], which measure the distance to surround-
ing obstacles within a large range. In manufacturing, laser scanners are
often applied to inspect surfaces with a high accuracy [89, 234]. Also,
some consumer electronics, e.g., tablets, are embedded with depth cam-
eras, allowing users to capture 3D data in their daily life [9].

Since these sensors can only measure the distance to surfaces and can-
not inspect inner structures, the obtained 3D data are sparse, ¢.g., most
coordinates in the 3D space do not contain meaningful measurement
values. The sparsity and irregularity make it challenging to extract in-
formation from such data. In recent years, the deep learning technology
has significantly boosted the processing and understanding of sparse
3D data. One main characteristic of deep learning distinguishing it from
conventional machine learning is the application of deep artificial neural

1 Introduction

networks (ANNSs) [68]. Specifically, it models the direct mapping from
input data to labels using deep ANNSs. In this context, labels indicate the
desired output of the mapping, e.g., the correct semantic classes of objects
in classification tasks or bounding boxes in object detection tasks. Labels
represent the human interpretation of the corresponding data. To acquire
labels, people often have to annotate data manually. With data and labels
given, a deep ANN is trained by minimizing the difference between the
network’s outputs and labels using back-propagation [118-120].

Deep learning has the advantage that it requires less engineering ef-
fort since it trains ANNs in an end-to-end manner and enables models
to learn optimal features automatically. On the contrary, classical data
processing methods heavily rely on hand-crafted descriptors to capture
features [16, 40, 107, 141, 191, 192, 208]. Also, because less hard-coded
design is involved in deep learning, it is adaptive to data, and its per-
formance is not limited by the domain knowledge of the designers. In
practice, deep learning-based methods outperform classical ones with a
clear margin [80, 114, 170, 207].

Aside from its success in image processing [80, 81, 114, 180, 182, 186,
207] and natural language processing [46, 88, 177, 235], deep learning has
been widely applied to 3D data processing and understanding tasks, e.g.,
object classification [170, 171, 228], semantic segmentation [39, 96, 176,
228, 251], object detection [117, 152, 173, 203, 248, 270], object tracking [27,
250, 272], point cloud completion [166, 249, 274], 3D registration [8, 38,
211], and point cloud denoising [142, 168, 277].

In this thesis, the methodology of using deep learning to process sparse
3D data and accomplish 3D computer vision tasks is referred to as deep
learning for sparse 3D data.

1.2 Efficiency: a Challenge in Deep Learning for
Sparse 3D Data

Despite the promising progress of deep learning, it still faces challenges.
One of the most concerning obstacles to its application and development
is the high costs of training and deploying ANNSs. The costs can be
divided into three categories:

1.2 Efficiency: a Challenge in Deep Learning for Sparse 3D Data

Firstly, the computational cost. Generally, deeper (i.e., having more layers
and trainable parameters) neural networks have stronger representation
power than shallower ones [52, 221, 223, 275]. To perform challenging
tasks, modern ANNs are becoming increasingly deeper [80, 86, 114, 207].
However, the increased depth inevitably requires more computational
power. In terms of training, it means more hardware resources, e.g., GPUs
(graphics processing units), are necessary. Also, the energy consump-
tion and time cost for training deep neural networks are considerably
high [201]. Meanwhile, the high computational cost makes deploying
trained networks hard in practice. For instance, the deployment in cloud
computing scenarios suffers from higher operating costs and latency. On
edge devices, the available computational sources often cannot fulfill the
requirement of the increasingly deeper architecture of modern ANNSs,
since they are limited by the power consumption and the space [267].

The issues mentioned above are commonly observed in multiple do-
mains in deep learning, e.g., image and natural language processing. For
3D data, the problem of computational cost is more detrimental. First,
due to the higher dimension, processing 3D data is generally more ex-
pensive than the 1D and 2D cases. For instance, 3x3 convolution is one of
the most fundamental and commonly used operations in convolutional
neural networks (CNNs) for image processing [80, 207]. However, in
the case of 3D data, 3x3x3 convolution must be applied for a similar
effect. It means the complexity of a convolution operation is increased
from quadratic to cubic with respect to the side length of the convolution
kernel. Also, 3D data in deep learning are often represented as point
clouds, which are sparse, irregular, and unordered. Due to this property,
processing point clouds requires a lot of random memory access [138,
171, 228], significantly increasing the run time for training and inference.
Moreover, neural networks for 3D vision tasks often have to be deployed
on edge devices, e.g., embedded systems in robots and self-driving cars,
where the computational resources are limited by e.g., available space,
energy consumption, and manufacturing cost. At the same time, these
applications are also sensitive to latency for safety reasons. Running
deep ANNSs on such platforms while fulfilling real-time requirements
is especially challenging. Another technical issue in the computation
for sparse 3D data is the limited hardware and software support. In the

1 Introduction

computer vision domain, most neural ASICs (application-specific inte-
grated circuits) and their software tool-kits only support fundamental
2D operations, e.g., 2D convolution and 2D pooling. However, irregular
and unordered 3D data often rely on special operations [39, 171, 228].
Deploying neural networks for sparse 3D data has thus more technical
constraints and requires more engineering effort. More details about
hardware deployment for ANNs are provided in Appendix D.

Besides the computational cost, the cost for data labeling also bottle-
necks the progress of deep learning for sparse 3D data. As explained
in Section 1.1, deep learning relies on manually labeled data to provide
supervision in training. The importance of large-scale labeled datasets
is clearly shown in the history of image processing using deep learning.
The research on ANNSs began in 1940s [147]. In 1989, LeCun et al. [119]
started to apply CNNs for handwritten digit recognition. However, early
CNNs couldn’t outperform classical descriptor-based methods in image
recognition until Krizhevsky et al. [114] introduced AlexNet, an architec-
ture for CNNSs, in 2012. One essential factor that boosted this progress
was the introduction of large-scale labeled datasets [68]. For instance,
Deng et al. [44] published the ImageNet dataset in 2009, consisting of
millions of images labeled with semantic classes. Krizhevsky etal. de-
signed and trained AlexNet for image classification on ImageNet. The
outstanding performance of AlexNet then sparked tremendous research
interest in deep learning methods. Today, ImageNet is still one of the
most widely used datasets for image processing. Meanwhile, datasets
larger than ImageNet have been introduced in recent years [116, 143, 218].
Labeling the raw data becomes more challenging with the increasing
size of datasets. Some simple labels can be obtained with less effort. For
instance, labels for images can be extracted from their hashtags given
by users in social media [143]. However, more detailed and complicated
labels, e.g., bounding boxes and semantic maps, are often necessary in
practice, and a dedicated labeling process is inevitable.

Compared to 2D images, labeling 3D data is significantly more labori-
ous and time-consuming. For instance, to annotate 2D bounding boxes, a
data labeler can view the entire image on the screen and draw boxes by
simply clicking and dragging the mouse. However, observing 3D point
clouds and creating 3D bounding boxes using ordinary input-output de-

1.2 Efficiency: a Challenge in Deep Learning for Sparse 3D Data

Table 1.1 Size comparison of well-known datasets in 2D and 3D computer vision. The
last five datasets contain additional data, ¢.g., unannotated frames and color images. The
reported sample numbers refer to point clouds or depth maps annotated with bounding
boxes. Year: release year of the datasets. RGB: color images. RGB-D: aligned color images
and depth maps. PCD: point clouds. Class.: classification. Det.: object detection.

Dataset Data Type Year Samples Task
ImageNet-1K [44] RGB 2009 1M class.
ImageNet-21K [44] RGB 2011 14M class.
JFT-300M [218] RGB 2017 300M class.
Instagram [143] RGB 2018 3.5B class.
COCO [129] RGB 2014 328K det.
Open Image V4 [116] RGB 2020 30M det.
ModelNet40 [255] CAD models 2015 12K class.
ShapeNetCore [26] CAD models 2015 51K class.
ScanNet [43] indoor PCD 2017 1.5K det.
SUN RGB-D [212] indoor RGB-D 2015 10K det.
KITTI [65] outdoor PCD 2013 15K det.
nuScenes [22] outdoor PCD 2020 40K det.
Waymo [219] outdoor PCD 2020 230K det.

vices are non-trivial. More operations are required, e.g., rotating a point
cloud to view it from different perspectives and adjusting bounding
boxes in the 3D space. In commercial data labeling services, 3D labels
are orders of magnitude more expensive than their 2D counterparts. For
instance, labeling one frame of point clouds costs 3 dollars using Amazon
SageMaker Ground Truth, whereas the price for images varies from 0.02
to 0.08 dollars depending on the order volume'. Therefore, the cost to
label large-scale 3D datasets, which are essential to training strong deep
learning models for 3D computer vision, is extremely high.

Besides costs for computation and labels, the cost for data capturing
is also critical in deep learning for sparse 3D data. Unlabeled raw data
are sometimes easy to obtain. For instance, an enormous amount of

1 Source: https:/ /aws.amazon.com/sagemaker/data-labeling /pricing. Last accessed on
2023.03.28.

https://aws.amazon.com/sagemaker/data-labeling/pricing

1 Introduction

images and texts are available on the Internet. Thus, many datasets are
created based on existing data [44, 116, 143, 218]. Their creators pay more
attention to selecting and filtering the data since capturing or creating the
data from scratch is unnecessary. However, there are significantly fewer
openly accessible 3D data on the Internet, despite some synthetic CAD
(computer aided design) models [26, 255]. Capturing real-world 3D data
requires considerable labor, time, and measurement devices. Due to the
high cost, the development of large-scale 3D datasets lags behind the 2D
counterpart. The sizes of some well-known datasets in computer vision
are summarized in Table 1.1. The 2D data in the upper half are collected
from the Internet. However, all real-world 3D datasets in Table 1.1 are
captured by their creators, while the two synthetic ones are also gathered
from the Internet. Compared to 2D datasets at the same time, 3D ones are
orders of magnitude smaller in terms of data amount. For instance, the
Waymo dataset [219], one of the largest publically accessible 3D datasets,
is 130 times smaller than Open Image V4 [116], although both datasets
were released in 2020. Previous research [86, 218] empirically reports a
power-law between the size of training datasets and the performance of
neural networks: as the size increases exponentially, the performance (i.e.,
accuracy in classification tasks) grows linearly. Therefore, the scarcity of
real-world 3D data significantly constrains the progress of deep learning
for sparse 3D data.

This thesis aims to overcome the efficiency issues of deep learning for
sparse 3D data, which hinder its application and development. Corre-
sponding to the three aforementioned types of costs, i.e., the computa-
tional cost, the cost for data labeling, and for data capturing, three aspects
of efficiency are discussed:

Computational efficiency, which is primarily affected by the architecture
of ANNSs. According to different applications and scenarios, the com-
putational efficiency of ANNSs can have diverse meanings. For real-time
applications, it primarily means the networks require less computation
and memory access, so the latency between the input and output can be
kept low. For centralized computing in servers, high efficiency mainly
means a high throughput of the inference, e.g., the number of classified
images each second. For the hardware deployment where storage space is
limited, efficient ANNs must contain fewer parameters so that the trained

1.2 Efficiency: a Challenge in Deep Learning for Sparse 3D Data

weights can be saved. For platforms that support a limited amount of
operations, computational efficiency also means that the ANNs include
fewer (if any) special operations so that they can be easily deployed and
efficiently executed by hardware accelerators (cf. Appendix D). Since
deep learning for sparse 3D data is widely applied in real-time scenarios
and deployed on edge devices, this thesis focuses on reducing the latency
and improving the hardware-friendliness of neural networks for 3D data
processing. It is achieved by analyzing and optimizing the architectures
of networks. In addition, the computational cost and efficiency of the
pre- and post-processing are also considered.

Label efficiency, which means neural networks can obtain good perfor-
mance with fewer labels. One approach to achieving label efficiency is
exploiting unlabeled data. In recent years, self-supervised pre-training
has shown promising results in computer vision [13, 24, 31, 33, 35, 72,
82, 83] and natural language processing [46, 177]. The basic concept of
self-supervised learning is to train a feature extractor (also known as the
backbone) using unlabeled data in a pretext task, where the backbone
has to solve a non-trivial problem (more details in Section 2.4). By doing
this, the backbone is trained to capture informative features. Then, the
pre-trained backbone can be adopted in different downstream tasks. To
do so, the backbone is combined with a task-specific head (e.g., a detec-
tion head or a classification head) and fine-tuned jointly using labeled
data. With self-supervised pre-training, neural networks achieve better
performance and faster convergence without additional labels. One criti-
cal advantage of self-supervised pre-training over other approaches, i.e.,
semi-supervised learning [18, 210, 227, 233, 240, 266, 288], is that it decou-
ples the pre-training and the downstream tasks. With a proper design, a
pre-trained model can be easily transferred into multiple tasks [24, 31, 33,
72,82, 83,124]. On the other hand, semi-supervised learning methods are
usually specialized for one single task, e.g., image classification [18, 210]
or object detection [227, 240, 266, 288]. Many methods for self-supervised
pre-training with image data have been proposed recently. Although
they can be adopted to 3D data, careful considerations are still necessary
due to different data properties. Therefore, one focus of this thesis is to
apply and improve self-supervised pre-training for 3D data and tasks.

1 Introduction

Data efficiency. This property can be interpreted in two different ways.
One interpretation emphasizes the total amount of training data. The data
efficiency can be achieved by reducing the required data samples (as well
as labels) as much as possible. In this context, humans are significantly
more data efficient than ANNSs. For instance, humans can learn a new
category of objects with few data samples [58]. In contrast, orders of
magnitude more samples are necessary to train ANNs for a comparable
result. One shot learning [59, 237] and few shot learning [209, 220, 222]
can be employed to reduce the total amount of required training data.
Another interpretation of data efficiency is reducing the dependence on
real-world data by using synthetic data for training. This approach is also
efficient as synthetic data are less costly than real-world ones. This thesis
follows the second interpretation and explores synthetic data generation
for 3D computer vision tasks. While realistic synthetic 3D data can be
inexpensively generated using the simulation technology [45, 71, 101,
251], a lot of human efforts and computational resources are still involved,
e.g., to create the simulation environment and perform rendering. Instead
of generating data via simulation, this thesis explores the possibility of
using a randomized method to generate data at a lower cost. Also, the
generated synthetic data are utilized in self-supervised pre-training. This
approach requires neither real-world data capturing nor manual data
labeling to improve the performance of ANNS.

1.3 Overview of the Contents

Some fundamental knowledge on deep learning for sparse 3D data and
research results related to this thesis are first revisited in Chapter 2.
Chapter 3 focuses on improving the computational efficiency of 3D ob-
ject detectors for real-time applications. To this end, a depth map-based
method is proposed, which extracts features directly from depth maps
instead of point clouds converted from them. Thanks to the efficiency
of a CNN-based backbone, the detector is four times faster than the
point cloud-based baseline. Moreover, a novel convolution operation is
proposed, which learns informative features from relative depth values
instead of absolute ones. Experiments show that the new convolution
operation significantly improves object detection results. Furthermore,

1.3 Overview of the Contents

this chapter also explores the supervised pre-training for the proposed
3D detector and achieves significant performance gains. However, super-
vised pre-training requires massive amounts of labeled data, which are
costly and not always available in practice. It motivates the research on
self-supervised pre-training in Chapter 4.

Chapter 4 explores the application of contrastive learning, a successful
approach for self-supervised pre-training, to 3D data for better label effi-
ciency. This chapter summarizes and systematically compares previous
invariance-based contrastive learning methods in 3D computer vision.
Meanwhile, a new method exploiting the format invariance between
2D (e.g., depth maps) and 3D formats (e.g., point clouds and voxels) of
3D data is proposed. Compared to previous methods, it achieves supe-
rior results in multiple downstream tasks without the dependence on
additional information, e.g., camera extrinsics and color channels. Also,
the proposed method can be applied to neural networks with differ-
ent architectures, e.g., depth maps-based, points-based, or voxels-based
networks.

While the depth map-based method in Chapter 3 has shown promis-
ing results, it is not applicable when the data cannot be represented as
a depth map, e.g., a point cloud reconstructed from multiple captures
with different view angles or a fused point cloud from a multi-sensor
system. To address this issue, Chapter 5 investigates transformers [49,
235] for point cloud understanding. Unlike many previous works design-
ing transformers based on simple synthetic CAD models [62, 131, 163,
273, 279], this chapter focuses on real-world point clouds for better appli-
cability in practice. It proposes using a shorter sequence length to reduce
the computational cost. Also, some fundamental but long-overlooked
components of transformers, e.g., patchifiers and position embedding,
are analyzed and optimized for better efficiency and performance. To pre-
train transformers using self-supervision, the masked autoencoder [83],
initially presented for image processing, is explored. Instead of applying
the standard masked autoencoder, Chapter 5 proposes a simple method
to overcome the information leakage caused by position embedding and
significantly improves the effect of pre-training.

The proposed self-supervised methods in Chapters 4 and 5 boost the re-
sults in downstream tasks without using additional labels. However, they

1 Introduction

still rely on large-scale real-world datasets. To lift this limitation, Chap-
ter 6 researches the randomized 3D scene generation for self-supervised
pre-training. Instead of performing sophisticated simulation and render-
ing, this method randomly places 3D objects (e.g., CAD models) based on
pre-defined rules. Unlike previous works [179, 268], which focus on one
downstream task, this chapter explores the generalization of the models
pre-trained using randomly generated data. Specifically, it evaluates the
pre-trained models for 3D object detection and semantic segmentation
on multiple datasets. Also, the generated data are used for different
pre-training methods, e.g., contrastive learning and masked autoencoder.
Furthermore, Chapter 6 proposes a novel approach to generating 3D
objects using spherical harmonics. Since the method is fully rule- and
formula-driven, the data generation process can be automated. Experi-
mental results show that the generated data perform similarly to CAD
models and real-world data.

Chapter 7 summarizes the contents and contributions of this thesis
and discusses possible research topics for future works.

1.4 Assumptions and Conventions

Before presenting the main contents of this thesis, this section first in-
troduces some assumptions and conventions to narrow the scope of the
thesis and avoid confusion.

1. This thesis refers to data, tasks, or neural networks as 3D, as long
as information on three spatial dimensions are involved. However,
the meaning of dimension can be ambiguous. For instance, RGB
images also have three dimensions, i.e., height, width, and color.
However, this thesis does not consider them as 3D data since only
the former two dimensions are spatial while color channels be-
long to a spectral dimension. Similarly, ordinary videos are called
3D data in some contexts, as they consist of two spatial and one
temporal dimension. Video data are also excluded from this thesis
because they do not have three spatial dimensions.

2. Some medical and industrial data, e.g., captured using computed
tomography (CT), magnetic resonance imaging (MRI), and con-

10

1.4 Assumptions and Conventions

focal microscopy, also have three spatial dimensions. However,
unlike sparse point clouds from LiDAR sensors or depth cameras,
these data are dense, i.e., each spatial location contains meaningful
measurement values. Such dense 3D data are excluded from this
thesis because neural networks for dense and sparse 3D data are
generally not transferable. While dense 3D data can be processed
using standard dense 3D convolutional neural networks [4, 99,
189], sparse 3D data, e.g., point clouds, require more specialized
designs [39, 70, 169, 170, 215, 216].

Furthermore, since dense 3D data are excluded, the following
contents use the term 3D deep learning interchangeably with deep
learning for sparse 3D data for simplicity and better fluency.

. As mentioned in Section 1.1, there are a lot of tasks in deep learn-
ing for sparse 3D data. This thesis focuses on 3D object detection
since it is widely applied, e.g., in autonomous driving and robotics.
Also, it is a representative task in research because it requires
both semantic and spatial understanding of 3D data. However, to
demonstrate the generalization of proposed methods, this thesis
also discusses other essential tasks, e.g., 3D semantic segmentation
and 3D object classification.

. This thesis assumes 3D measurements, e.g., depth maps and point
clouds, are already available. The measuring or estimating process
to obtain the 3D data is beyond the scope of this thesis.

. This thesis assumes that all data are captured at single points in
time and are processed separately. Many depth cameras can cap-
ture RGB-D videos with a relatively high frame rate, e.g., 30 FPS
(frame per second). However, for 3D object detection and semantic
segmentation methods in this thesis, each frame is processed in-
dependently. Jointly understanding continuous frames in a video
clip is beyond the scope of this thesis. This choice has multiple
reasons. First, the perception using time sequence is generally
more computationally expensive. For instance, spatial-temporal
convolution can be used to understand 3D videos [39], which has a
higher complexity due to the extra temporal dimension. Therefore,
in real-time applications, e.g., autonomous driving, data frames

11

1 Introduction

12

are usually processed independently [96, 117, 151, 251, 270]. Also,
understanding measurements at single points in time is the base
of sequence processing. Since 3D deep learning is a relatively new
and under-explored research area [170], it is rational to first focus
on more fundamental problems. Moreover, single-frame methods
can be modified to process sequential inputs. For instance, object
tracking using multiple frames can be achieved by extending a
single-frame object detection pipeline [17, 60, 290].

. The scenes considered in deep learning for sparse 3D data can be

separated into indoor and outdoor scenes. The former are usually
captured in working and living areas, e.g., bedrooms and offices [43,
212]. The latter mainly contain traffic scenes for the usage in au-
tonomous driving [22, 65, 219]. Due to different properties, e.g.,
the scale and distribution of objects, of indoor and outdoor scenes,
most previous works only focus on one of them [96, 117, 151, 152,
173, 203, 270]. Generally, indoor data, which can be captured using
low-priced depth cameras, are easier to acquire than outdoor ones,
which often require expensive measurement devices, e.g., high-
accuracy LiDAR sensors. This thesis focuses on indoor scenes for
an easier evaluation of the proposed methods. However, previous
works show that the methods developed based on indoor data can
be transferred to outdoor ones, and vice versa [39, 76, 170-172, 260,
285]. Comparisons of methods for indoor and outdoor scenes are
also presented in this thesis.

. For simplicity and better fluency, the term artificial neural network is

often shortened into neural network or even network in the following
chapters. Also, following the convention in literature, it is used
interchangeably with deep learning model or the shortened model, if
it is not specified otherwise.

2 Related Works

This chapter introduces the fundamental knowledge and related research
results of this thesis. Section 2.1 explains some basic architectures used in
this thesis, e.g., the multi-layer perceptron, the convolutional neural net-
work, and the transformer. Then, Section 2.2 discusses neural networks
for sparse 3D data. Furthermore, Section 2.3 represents some important
tasks in 3D deep learning. Later, Section 2.4 introduces self-supervised
pre-training and its applications in 3D computer vision. Finally, Sec-
tion 2.5 presents technologies for synthetic data generation.

2.1 Basic Architectures of Neural Networks

Given a dataset {(u’,y") }fil which consists of N pairs of data sample u’
and label yi, an artificial neural network can be described as a non-linear
function from a data sample u’ to a prediction §' (i.e., an estimate of
the label y'), parameterized with trainable parameters 6, also known as
weights:
§' =n(u’0) . (2.1)
The data sample u’ in Equation 2.1 is abstracted as a vector. In practice,
it can also be ¢e.g., an image, a point cloud, or a video clip and represented
as a matrix or tensor. The label y, also known as ground truth, repre-
sents the desired output of the neural network and contains different
information depending on tasks. The network’s output (i.e., prediction)
' is an estimate of the label y'.
A neural network can be trained on dataset {(u’,y’) }i\il by optimizing
the parameter 6, so that the averaged deviation between the prediction y’
and the label y’ is minimized. The process can be formulated as follows:

N
argmin 1 Z L(n(u’;0),y"). (2.2)
o NI

13

2 Related Works

Here, the loss function L (§',y') calculates the deviation between §
and y' as a scalar (i.e., loss). The larger the value, the greater the differ-
ence. Its concrete form depends on tasks and representations of labels
and predictions. For instance, a norm function (e.g., Euclidean norm) is
commonly applied as the loss function in regression tasks, whereas the
cross-entropy is widely employed in classification tasks [68]. The param-
eters 6 can be optimized via gradient descent. The algorithm performs
numeric differentiation, calculates the gradients of loss with respect to 6
using back-propagation [118, 119] based on the chain rule, and iteratively
updates the parameters until convergence. In the literature, calculating
the prediction and loss is referred to as forward pass, while calculating
the gradients is called backward pass.

However, the approach in Equation 2.2 requires all gradient informa-
tion of N samples to be saved until the trainable parameters 6 are updated
in each iteration. It is impossible in the case of a large dataset size N since
the required storage space is extremely high. Instead, stochastic gradient
descent (SGD) [120, 184] is applied as an approximation in practice. This
approach randomly picks B samples with B « N in each iteration (the B
samples are referred to as a mini-batch) and updates parameters 6 based
on the mini-batch instead of the entire dataset with N samples.

Till now, a neural network is merely represented as an abstract pa-
rameterized function)7" =n (ui ; 6). In the following subsections, some
fundamental and general architectures of deep learning models are ex-
plained in detail. This section focuses on the neural networks applied
for image processing since they inspire many models for 3D computer
vision. Some well-known architectures, e.g., recurrent neural networks
(RNNs), are omitted since they are usually employed in natural language
processing and are less related to this thesis. Neural networks specific to
3D data and tasks are introduced in Section 2.2.

Since all artificial neural networks contain trainable parameters, the
vector 8 in notation §' = n (u’; 8) is omitted in following contents of this
thesis for simplicity.

14

2.1 Basic Architectures of Neural Networks

2.1.1 Multi-Layer Perceptron

The multi-layer perceptron (MLP) [188] is one of the earliest and most
fundamental architectures of artificial neural networks. Each layer (or
perceptron) in an MLP can be formulated as follows:

v=0c(Wu+b). (2.3)

It describes a mapping from a vector u € RS to a vector v & RCout,
The constants C;,, and C,; are input and output channel numbers. The
weight matrix W has the shape C,; x C;, and is multiplied by u. The
result is then added with a bias vector b € R eut, The parameters in
W and b are trainable, i.e., can be updated via training. The activation
function ¢ () is non-linear. It is necessary since neural networks are often
applied to approximate highly non-linear functions, whereas Wu + b
performs a linear transformation to u. Widely used activation functions
are e.g., the sigmoid function and the rectified linear unit (ReLU) [63],
which are given by

v; = ReLU (v?) = max {O, v?} , (2.4)
e v; = Sigmoid (vQ) = N . (2.5)
' 1+ exp (—v?)

Note that activation functions are usually applied in an element-wise
manner. That is, the result (i.e., activation) is calculated independently
for each element v? of the function’s input vector.

The layer described in Equation 2.3 is often referred to as a fully con-
nected layer (FC layer), since each element in the output v is influenced
by all elements in u. An MLP consists of multiple sequentially stacked
FC layers, i.e., each layer takes the output of its predecessor as the input.
The first and last layers are called the input and output layers, respec-
tively. Others are called intermediate layers or hidden layers. While the
expression power of one FC layer is limited, an MLP can describe very
sophisticated functions. Hornik et al. [91, 92] prove that an MLP with as
few as one hidden layers is a universal approximator: it is capable of arbi-
trarily accurate approximation to an arbitrary function and its derivatives
when its weights matrices contain sufficient parameters (i.e., the inter-
mediate layers have large enough channel numbers). Also, it is widely

15

2 Related Works

believed that a deeper MLP (i.e., with more layers) has the equivalent
expression power to a shallower one with more parameters [149].

Although MLPs are rarely applied as a standalone model in computer
vision and natural language processing, they are widely integrated into
other architectures, e.g., as classification heads in CNNs (Section 2.1.2),
as feed-forward networks in transformers (Section 2.1.3), and as feature
projectors in PointNet [170] (Section 2.2.5).

2.1.2 Convolutional Neural Network

Convolutional neural networks (CNNs) [64, 119] are applied to process
data with grid structures. They can be categorized according to the spatial
dimension of processed data. CNNs for image processing, their original
and most common application, are referred to as 2D. Also, 1D CNNs
are widely applied for time-sequence analysis [41, 286], while 3D CNNs
are often employed for medical data (e.g., CT scans) [4, 99, 189] and vox-
elized point clouds [38, 39, 76]. Moreover, CNNs with higher dimensions
have been explored for spatial-temporal analysis with point clouds [39].
Without loss of generality, this subsection introduces 2D CNNs as a
representative since a generalization to other variants is straightforward.

2.1.2.1 Convolution Layer

Similar to MLPs, a typical CNN consists of multiple sequentially con-
nected convolution layers, the essential component of which is the con-
volution operation. The input of convolution is a rectangular 2D feature
map (2D grid), described as U € RWxCin where H, W, and C;, indi-
cates the height, width, and channel number, respectively. Each discrete
coordinate (,j) withi € {1,2,...,H}and j € {1,2,..., W} is referred to
as a pixel. The output of a convolution operation has the same height
and width as the input, while the channel number C,; might differ from
Cin- Ina CNN, each convolution contains a trainable filter (also known
as weight or kernel) W with shape I; x I, x C,; x Cj,,. Without loss of

16

2.1 Basic Architectures of Neural Networks

generality, a square filter with [; = [, = [is assumed for simplicity. The
output v; ; at an arbitrary pixel (i,) is given by

1ol
Vij = Zl Ziwm,nui+o(m,l),j+o(n,l) . (2.6)
m=1n=

Here, the transformation matrix W,, ,, € R Cour*Cin jg obtained by fixing
the first two indices in the filter W to m and n, respectively. The function
o(m, 1) defines an offset to the indices:

o(m,l)=—EJ+m. (2.7)
Multiplied with matrix W, ,,, each feature vector u; ; in the feature map
U is transformed from a C;,-dimensional space to a C-dimensional
one. Such an operation is similar to the matrix multiplication in an FC
layer. However, unlike an FC layer, whose output is globally connected
to each element in the input (see Section 2.1.1), the output of a convo-
lution operation at each pixel (i, f) is solely influenced by the input at
the neighboring pixels. As defined by Equation 2.7, the neighborhood
is a square region centered at pixel (7, 7). The area of the neighborhood
I x I is referred to as filter size or kernel size. Also, different pixels share
the same filter W. The convolution layer acts as a sliding window filter,
which moves over each possible (i,), i.e., with stride 1.

In practice, the output of a convolution operation is often added with
a trainable bias b € R eut and transformed by a non-linear activation,
which can be described as follows:

1 1
Vz’,j = U(b + Z Z wm,nui+o(m,l),j+o(n,l)) ’ (2'8)

m=1n=1

where o (-) indicates an activation function, e.g., ReLU (Equation 2.4).
Like the convolution filter, the bias is also shared across all possible
(i,7). The convolution operation, bias, and activation function compose a
convolution layer.

When compared with an FC layer, the local connectivity and weight
sharing are two distinguishing characteristics of a convolution layer.
The local connectivity is motivated by an important assumption that

17

2 Related Works

neighboring pixels in an image have a stronger correlation with each
other than distant ones. In machine learning and deep learning, such
assumptions are referred to as inductive bias. Parameter sharing is applied
to reduce the number of parameters and provide translation invariance.
Such a concept is similar to filters in classical image processing (e.g.,
Sobel filter, median filter). However, instead of being manually designed
and hard-coded, the parameters in a convolution layer are automatically
optimized via back-propagation.

A CNN can be obtained by stacking multiple convolution layers, which
makes the deeper layers learn strong features and long-range depen-
dency [119, 275].

2.1.2.2 Other Components

Besides convolution layers, modern CNNs contain other components,
e.g., down-sampling layers, up-sampling layers, skip connections, and
batch normalization, which are briefly explained in the following:
Down-sampling layers. The motivation for down-sampling layers is to
reduce the spatial resolution of feature maps and the computational cost.
For instance, only one global feature is sufficient for image classification,
and a higher resolution is unnecessary. Also, reducing the resolution
helps the networks combine low-level features into high-level ones [68].
Commonly used down-sampling layers are the max pooling layer [119]
and the strided convolution layer [214]. The former calculates a channel-
wise maximum in small non-overlapping neighborhoods (e.g., 2x2), and
the latter performs a convolution operation with a stride greater than 1.
Up-sampling layers. Contrary to down-sampling layers, up-sampling
layers increase the spatial resolution. They are often applied to down-
sampled feature maps to obtain high-level features with high resolu-
tion [29, 182, 186]. However, they can also be employed independently of
down-sampling, e.g., for super-resolution tasks. Interpolation methods in
classical image processing, e.g., nearest-neighbor and bi-linear interpola-
tion, are often used as up-sampling layers. In addition, the deconvolution
layer [276], also known as transposed convolution, is widely used for
up-sampling feature maps. It can be regarded as a trainable interpolating
method.

18

2.1 Basic Architectures of Neural Networks

Skip connection. The skip connection (also known as residual connection
and identity mapping) [80] is motivated by the problem that very deep
neural networks are difficult to train since they often lead to performance
drops compared to shallower ones. Given a sub-network (e.g., consisting
of several convolution layers)

U=ngy (U), (2.9)
a skip connection is obtained by directly adding its input to the output:
U =ngy (U) +U. (2.10)

He et al. [80] demonstrate that CNNs with skip connections can be scaled
up to considerable depth with consistent performance improvement.
Also, skip connections can be integrated into networks other than CNN,
e.g., transformers [235] and MLP-Mixers [230].

Batch Normalization. Batch normalization [102] is a technique to normal-
ize feature maps in CNNs. In each mini-batch, it calculates the empirical
mean and variance for each channel and normalizes (i.e., re-centers and
re-scales) each channel, respectively. Afterwards, a trainable linear trans-
formation is applied to restore the representation power of the network.
Batch normalization stabilizes and accelerates the training process by
reducing the internal covariate shift [102]. In a CNN, batch normalization
is often applied after each convolution layer.

2.1.3 Transformer

A transformer [235] is a sequence model originally proposed for natural
language processing (NLP). Its input is a sequence of feature vectors and
can be represented as a matrix U € RM*C, where M and C indicate the
number of vectors (i.e., the sequence length) and the number of channels,
respectively. In NLP, each vector corresponds to a word or sub-word [150]
and is referred to as embedding or token. To extract informative features
from the sequence, a language model should be capable of learning
dependencies between the vectors. In a transformer, this is achieved by
using the attention mechanism, which is given by:

ve (V)T

Attn (VQ, vk, VV) = Softmax (\/_
C

)VV. (2.11)

19

2 Related Works

Matrices (or sequence of vectors) V@ € RMox¢ vK ¢ RMxC and

VYV € RM*C are referred to as query, key, and value, respectively. The
output of attention has the same shape as V® and can be interpreted as
a new sequence.

The softmax function Softmax(-) calculates a weighting matrix. When
applied to an arbitrary matrix V, it is defined by:

exp (Vi,]-)
Yeexp (Vik)
where V; ;and Z; ; indicate an element in the input and the output matrix,
respectively. Notice that the sum of each row in the output of Softmax(:)

equals one. Therefore, the softmax function in Equation 2.11 generates a
weight matrix with shape Mg x M. Multiplying the matrix by the value

Zi;= Softmax (V) = (2.12)

VV can be viewed as calculating weighted sums of the row vectors in
VV, where the weights are determined by the query V? and the key
VK. Multiple attention mechanisms can be applied in parallel, and the
outputs’ channels can be concatenated to create a new sequence. Such an
architecture is referred to as multi-head attention. The multi-head variant
can replace the single-head attention to improve the representation power
of transformers. Without loss of generality, this section explains the
architecture of transformers assuming the single-head attention.

Depending on how the three matrices (i.e., query, key, and value) are
calculated, the attention mechanism has two variants: self-attention and
cross-attention. In self-attention, each matrix is transformed from the
same sequence of vector U:

vQ =wQu, (2.13)
vK = wKy, (2.14)
vy =wVu. (2.15)

The matrices W2, WX, and WV apply a linear transformation, respec-
tively and serve as trainable weights. With self-attention, vectors in the
sequence U exchange information and generate a new sequence. In cross-
attention, however, the query is transformed from another sequence
U<

vQ = wQUQ. (2.16)

20

2.1 Basic Architectures of Neural Networks

Therefore, a cross-attention fuses information from the two sequences
and generates a new sequence with the same length as U®.

Another important component in transformers is the feed-forward
network, which is a shared MLP independently applying a non-linear
transformation on each vector in a sequence. A module consisting of one
self-attention and one feed-forward network is often referred to as an
encoder layer. It also contains layer normalization [11], a widely applied
normalizing method for sequence models, and skip connections con-
necting the input and output of the self-attention and the feed-forward
network, respectively. A transformer encoder can be established by stack-
ing multiple encoder layers. Similarly, a transformer decoder consists of
multiple decoder layers, each containing a self-attention, a cross-attention,
layer normalization, and skip connections.

A typical NLP pipeline using a transformer can be described as follows.
A paragraph is first embedded into a sequence U° using word embedding.
Then, a sequence E that encodes the position of each vector in UO, isadded
to U

U=U"+E. (2.17)

The sequence E is obtained via position embedding. However, a detailed
introduction of word embedding and position embedding in NLP is
beyond the scope of this thesis. The position embedding is necessary since
attention is equivariant to the permutation of query V® and invariant to
the permutation of key VX and value VV [235]:

Attn (PVQ, VK, VV) = P (Attn (VQ, VK, VY)) (2.18)

Attn (VQ, PVK, PVV) = Attn (VQ,VK,VV) , (2.19)

where P indicates an arbitrary permutation matrix that row-wise per-
mutes another matrix. Without position embedding, the output of the
encoder is equivariant to the order of sequence U°, which is undesired
since the order of vectors (i.e., order of words in a sentence) contains
crucial information. For instance, permuting words in a sentence may
completely change its meaning. With position embedding added, the
encoder extracts high-level features from the input sequence. Then, a
transformer decoder exchanges information from the feature and output
sequence and iteratively updates the prediction in the output.

21

2 Related Works

Transformer-based models are the de facto standard in NLP [46, 177].
In recent years, the vision transformer (ViT) [49] also shows promising
results in image processing. A ViT first splits an image into multiple
non-overlapping patches. A ViT treats such a patch analogously to the
way a word is treated by a transformer-based method in NLP. The pixel
values in each patch are vectorized (i.e., stacked into a vector) and trans-
formed into a high-dimensional space using a trainable transformation
matrix. The transformation matrix (i.e., patch embedding) is trained with
the ViT. On the contrary, the word embedding in NLP is usually pre-
trained [150]. Then, each vector is added with the position embedding of
its corresponding patch. A ViT applies a transformer encoder (i.e. with
self-attention) to extract features from the input sequence. Compared
with CNNSs, ViT and its variants have achieved similar or even superior
performance in image processing tasks [24, 34, 49, 83, 124, 137, 257].

Recently, transformers are also applied to point cloud data. These
methods are presented in Section 2.2.7.

2.2 Feature Learning from 3D Data

This section introduces the commonly used network architectures for
3D data. Most neural networks can be roughly separated into two parts:
a backbone and a task-specific head. The backbone extracts features
from input data, and its architecture is primarily determined by the data
properties. For instance, CNNs are widely used as feature-extracting
backbones for images, while transformers are often applied to texts. The
head (also known as prediction head) utilizes features from the backbone
and performs predictions. While a backbone’s architecture can be shared
across different tasks, the prediction head is usually task-specific. This
section focuses on backbones (i.e., feature extractors) in deep learning for
sparse 3D data, while some critical tasks and task-specific designs are
explained in Section 2.3.

2.2.1 Input Data

3D data can be represented in multiple ways. Before introducing the
neural networks in deep learning for sparse 3D data, this subsection

22

2.2 Feature Learning from 3D Data

explains some important representations (or formats) of their input data.
Some representative 3D data are illustrated in Figure 2.1.

2.2.1.1 Point Clouds

A point cloud consists of many sparse points, each given by a 3D coor-
dinate X’ € R3. Therefore, a point cloud can be described as a point set
{xi}i\il, where N indicates the number of points. Each point might also
contain extra features, e.g., a color spectrum or a reflection ratio. In this
case, each point can be described using a tuple (x/, f'), where f' € R©
represents a C-dimensional feature vector. A point cloud is then modeled

as a set of tuples {(x’, f') }fil

2.2.1.2 Depth Maps and Range Images

A depth map and a range image can be described as a function that
maps a discrete coordinate (7,) to a distance d : Z x Z — R. They can
also be represented as a matrix D. Despite the same description, their
conventional meanings differ. Measurement results from depth cameras
are often referred to as depth maps, while range images are captured
using rotational LiDAR sensors. A depth map or a range image can be
transformed into a point cloud. However, in range images, 3D coordinates
are projected onto a spherical surface [56, 128, 151], whereas depth maps
follow the pinhole camera model (i.e., projection on a plane). Depth maps
and range images can also be registered to other feature maps, e.g., color
images. The registered images, e.g., RGB-D images, can be described as
d:Zx7Z — R where C is the channel number of extra features.
Although depth maps and range images are 2D representations, they
contain 3D spatial information and can be converted to point clouds. Due
to this property, some literature refers to them as 2.5D data. In this thesis,
they are categorized as 3D data for simplicity. More details about depth
cameras and LiDAR sensors are provided in Appendix A.

23

2 Related Works

(a) Mesh (c) Voxels

(d) Depth map (e) RGB map (f) Point cloud

Figure 2.1 Visualization of representative data in 3D computer vision. Mesh from PyVista
library [217]. Depth and color map from the SUN RGB-D dataset [212].

2.2.1.3 Voxels

Voxels can be regarded as quantized point clouds. Each point in a point
cloud {xi}ﬁi1 can be quantized (or voxelized) using a quantization func-
tion g4 . ‘
XV =g (x,14) - (2.20)
The length I, is referred to as voxel size. One commonly used form of
quantization function is based on rounding
x!
9t _ i1 Y=|2 41
X, =8q (x]., lq) = I + Ak (2.21)

where x]g’l indicates the j-th element in a quantized coordinate x3 with
j € {1,2,3}. Similarly, x]’: is an element in the original coordinate. Voxels

converted from a point cloud {xi}N can then be described as a 3D

=1
occupancy grid: l

1,3 :8q (xi, lq) =[l,mmn]"

: (2.22)
0, otherwise

Xq(l, m,n) = {

24

2.2 Feature Learning from 3D Data

The discrete coordinate (I, m,) is called a grid or voxel cell. If the original
point cloud {(xi, ') }fil contains extra features, the value at each voxel
cell is a feature vector with the same dimension:

fl,m,n

= 1 8q (xi, q) =1, m,n]"

: (2.23)
0 , otherwise

Xq(l,m,n) :{

where 0 indicates a zero vector and i1 is ageregated from all points
x' belonging to the voxel cell (I, m, n). Commonly applied aggregation
functions are e.g., the average pooling and random sampling.

2.2.1.4 Polygon Meshes

A polygon mesh (or mesh) consists of vertices, edges, and faces. Math-
ematically, it is often modeled as a graph. Unlike point clouds, which
only contain independent sparse points, meshes are more informative
and also describe the connections between vertices and surfaces. Meshes
are widely applied to model 3D objects in computer graphics. However,
3D sensors usually provide depth maps, range images, or point clouds.
Reconstructing meshes from real-world data is non-trivial [106]. Since
this thesis focuses on applying deep learning to real-world data and tasks,
meshes and their corresponding methods are not further discussed.

2.2.2 Classical Methods

These methods do not use deep learning and follow the spirit of classi-
cal image processing by using hand-crafted descriptors and statistical
approaches to encode 3D shapes. For instance, extended Gaussian im-
ages [90] represent surfaces and shapes by binning surface normals.
Ankerst et al. [7] propose 3D shape histograms for similarity search and
classification. Kazhdan et al. [107] and Saupe and Vrani¢ [197] describe
3D shapes using spherical harmonics. Rusu et al. [193] present fast point
feature histograms for 3D registration. Generally, classical methods are
outperformed by deep learning methods with a clear margin [38, 39, 170,
171]. However, they are suitable when training data are scarce. Also, they
served as inspirations for a lot of deep learning approaches.

25

2 Related Works

2.2.3 Multi-View-Based Methods

Multi-view-based methods [169, 215] are early attempts to apply deep
learning to 3D shape recognition. They observe a 3D shape (usually a
mesh) from multiple views and render color images from corresponding
perspectives. Then, a 2D CNN is employed to recognize the rendered
images. Recognition results from multiple views are fused via voting.
These methods take advantage of mature 2D CNNs and save the ef-
fort of developing specialized neural networks for 3D data. However,
their computational costs are high due to rendering and multiple infer-
ences with CNNs. Also, the neural networks are unaware of the depth
information since it is lost because of rendering. Also, multi-view-based
methods underperform the deep learning methods directly using 3D
data as inputs [170].

2.2.4 Voxel-Based Methods

Neural networks using voxels as inputs are referred to as voxel-based. As
Section 2.2.1 explains, voxels or quantized point clouds have a 3D grid
structure. Therefore, it is natural to apply 3D CNNs to voxels. However,
early methods [26, 146, 169] suffer from unnecessarily high computational
costs and memory footprints. The problem is caused by the sparsity
of 3D spatial data. Unlike CT scanners, which can inspect the interior
structure, distance sensors (e.g., depth cameras and LiDAR sensors) can
only capture measurement values on surfaces. Most voxel cells in real-
world data, therefore, contain no meaningful features (i.e., are empty) and
are padded with zeros (cf. Section 2.2.1.3). However, early methods [26,
146, 169] apply dense 3D convolution to such sparse data, where the
convolution filters “walk” through all voxel cells regardless of the features
they contain.

Sparse convolution [39, 70, 216] is proposed to solve this issue. Rather
than a new class of convolution, sparse convolution is an efficient im-
plementation of dense convolution where the filter is only applied to
non-empty voxel cells (cf. Equation 2.8). Combined with other sparse
arithmetic operations, sparse convolution can be employed to build fully
sparse neural networks, i.e., sparse 3D CNNs, which are significantly
more efficient than the dense variants. Sparse 3D CNNs have broad

26

2.2 Feature Learning from 3D Data

applications in 3D computer vision tasks. For instance, Gwak et al. [76]
propose a generative sparse network for 3D object detection. Li [121]
presents a fully convolutional network for fast object detection using
sparse operations. Also, Choy et al. [39] apply sparse CNNs for semantic
segmentation and explore higher-dimensional convolution for spatial-
temporal data. Moreover, sparse 3D CNNs are also employed as feature
extractors for registration tasks [38, 67].

2.2.5 PointNet and Its Variants

PointNet [170] is a milestone in 3D deep learning since it is the first deep
learning method for direct point cloud understanding. On the contrary,
concurrent works are based on voxels or multi-view input.

As Section 2.2.1 explains, a point cloud is a point set whose information
is independent of the order of points. Such prior knowledge (or inductive
bias) can guide the design of a point cloud-based neural network: its
output should be independent of the input order. For a point set {xi}fil
and a neural network 7, this property can be formulated as follows:

n (Xl,"',Xm,"',Xn,"',XN) =n (xll.../xn,...,xm,...,xN) , (224)

where x and x" indicate two arbitrary points. Since the output does not
change after two arbitrary points are permuted, the property is often
referred to as permutation invariance.

To obtain permutation invariance, a PointNet first independently trans-
forms each point into a high-dimensional space using a shared MLP.
Then, a global max pooling is applied to compress the features into one
vector:

PointNet ({x}};) = MaxPool (MLP (x) -+, MLP (x)) , (2.25)

where MaxPool(-) aggregates the max value in each channel from mul-
tiple feature vectors. Since each point undergoes the same (non-linear)
transformation and the global pooling is independent of the input order,
a PointNet is guaranteed to be permutation invariant. PointNet is also

applicable to point clouds with extra features {(x', f') }Z\il In this case,
each feature vector f’ is concatenated with the corresponding coordinate

x' and transformed together by the shared MLP.

27

2 Related Works

PointNet is a simple and effective architecture for point cloud under-
standing [170]. Also, the calculation with the MLP can be easily paral-
lelized. However, the global pooling causes massive information loss,
which makes it unsuitable for large-scale point clouds. Also, since it
encodes an entire point cloud into one vector, it is unsuitable for tasks
where dense features are necessary, e.g., semantic segmentation, where
each point must be semantically classified.

To address this problem, PointNet++ [171] hierarchically applies Point-
Nets. Given a point cloud {x } , it sub-samples M key points {s }M1
using farthest point sampling [1 71] This algorithm randomly picks an
initial point and iteratively samples M — 1 points, so that the distances be-
tween a new sample to all sampled points are maximized. The algorithm
is also known as farthest-first traversal. Then, ball query is used to create
M groups of points {Ql}f\il Each group (), is a small set consisting of
points whose distance to key point s’ is within a pre-defined radius R:

O; = {xf IR > ij — siH} . (2.26)

After points are grouped, PointNet++ encodes each group into a fea-
ture vector v' using a shared PointNet:

v' = PointNet (();) . (2.27)

Each feature v’ is registered to its corresponding key point s’, which
results in a new point set { (s, v') }f\il The sub-sampling, ball grouping,
and shared PointNet are referred to as a set abstraction module since it
abstracts a point set into a smaller one. The concept of local connectivity
(within each group) and shared weights (i.e., the shared PointNet) is
similar to CNNs. In PointNet++, such set abstraction modules are applied
hierarchically to extract high-level features and reduce the resolution. For
tasks requiring a high spatial resolution, PointNet++ uses interpolation
to up-sample the point sets.

PointNet and PointNet++ inspire a lot of succeeding methods. For
instance, DGCNN [247] follows the topology of PointNet++, but groups
points in a feature space instead of using ball query in the Euclidean
space. Also, RandLA-Net [96] applies random sampling instead of far-
thest point sampling for efficiency and replaces max pooling with atten-
tive pooling for better performance. Moreover, HGNet [28] incorporates

28

2.2 Feature Learning from 3D Data

hierarchical spatial attention into PointNet++. Recently, PointNeXt [176]
rethinks the architecture and training strategy of PointNet++ and makes
the model stronger. Although these methods apply different sampling,
grouping, and pooling algorithms, the concept of hierarchically using
PointNet is unchanged. Therefore, they are referred to as PointNet vari-
ants. PointNet and its variants are widely applied in 3D deep learning as
feature extracting backbones, e.g., for shape recognition [170, 171, 247],
object detection [28, 172, 173, 202], semantic segmentation [96, 176], and
registration [8].

2.2.6 Point Cloud Convolution-Based Methods

Many works attempt to design convolution operations for sparse irregular
point clouds, i.e., point cloud convolutions. As explained in Section 2.2.5,
the set abstraction module in PointNet++ [171] is similar to convolu-
tion due to the local connectivity and shared weights. However, a set
abstraction (i.e., shared PointNet) transforms each point in a group using
the same MLP (i.e., isotropic transformation). In contrast, a convolution
applies different transformations on each pixel in a sliding window. Also,
the standard convolution only applies to structured discrete grid cells (cf.
Equation 2.6). It is unsuitable for point cloud data since the coordinates
are irregular and continuous.

To distinguish point cloud convolutions with PointNet variants and the
standard convolutions, this thesis considers a convolution-like operation
as point cloud convolution if it has the following two properties: the
transformation for each point feature is non-isotropic, and the operation
is defined in a continuous space. For instance, kernel point convolution
(KPConv) [228] defines rigid kernel points in 3D space with transforma-
tion matrices and applies transformations on each point depending on its
Euclidean distance to the kernel points. Li et al. [125] propose a learnable
X-transformation for weighting the point-wise features and permuting
them into canonical order. Monte Carlo convolution [85] phrases convolu-
tion on sparse point clouds as Monte Carlo integration and implements it
using Poisson disk sampling. Shi and Rajkumar [204] view a point cloud
as a graph and apply graph convolutions for point cloud understanding.
Wang et al. [241] present parametric continuous convolution, which ex-
ploits parameterized kernel functions in a continuous feature space to

29

2 Related Works

learn support relationship between points. Wu et al. [254] treat convolu-
tion filters as nonlinear functions of the local coordinates comprised of
weight and density functions and learn them respectively using MLPs.

2.2.7 Transformer-Based Methods

The success of vision transformers [24, 34, 49, 83, 124, 137, 257] demon-
strates that transformers, originally proposed for NLP tasks, are also
strong models in computer vision. A lot of works follow the idea of
ViT [49] and attempt to apply transformers to point clouds. However,
the standard transformer layer depends on global attention and does
not have locally constrained connectivity (cf. Section 2.1.3). On the con-
trary, locality is one of the most general inductive biases for designing
neural networks in computer vision. It refers to the assumption that
neighboring pixels or points are more strongly related. Due to the lack
of inductive bias, training vision transformers requires more data and
carefully designed strategies [34, 49, 257].

In order to improve results without increasing the amount of training
data, previous works modify the architecture of transformers by em-
ploying local attention and down-sampling. The former constrains the
attention mechanism in a local region to integrate local connectivity into
transformers [54, 162, 164, 287]. The latter shortens the sequence in trans-
formers to reduce the computational cost and improve the convergence
since training with a longer sequence is generally more challenging. For
instance, Hui et al. [100] perform hierarchical down-sampling to build
a pyramid architecture for large-scale point clouds. Zhang et al. [278]
down-sample the query for better efficiency. Guo et al. [75] apply Point-
Net++ [171] to encode raw point clouds and only use transformers to
aggregate high-level features.

2.2.8 Projection-Based Methods

The methods introduced in Sections 2.2.5 to 2.2.7 all directly use 3D repre-
sentations (i.e., voxels and point clouds) as the input of neural networks.
Generally, they have high time and space complexity due to the high
dimensionality. The concept of projection-based methods is projecting
sparse irregular point clouds onto a surface to obtain 2D representations

30

2.2 Feature Learning from 3D Data

of 3D information (e.g., depth maps). By doing this, ordinary 2D CNNs
can be applied to process 3D data for better efficiency.

Depending on how the point clouds are transformed, projection meth-
ods can be further separated into natural view-based and pseudo image-
based methods. The former projects point clouds according to the princi-
ple of applied sensors. For instance, it projects point clouds from depth
cameras, which can be described with a pinhole model, onto the image
plane. Point clouds from a rotational LiDAR sensor are projected onto
a spherical surface (cf. Appendix A.2). The projection and the obtained
view are called natural since they can be achieved using a straightforward
spatial transformation. Natural view-based methods have drawn some
research interest. For instance, SequeezeSeg [251], SequeezeSegV2 [252],
PointSeg [246], and RangeNet++ [151] exploit range images transformed
from LiDAR point clouds for fast semantic segmentation in outdoor
traffic scenarios. Furthermore, Li et al. [122] introduce a 2D fully convolu-
tional neural network for 3D detection. Bewley et al. [19] propose range
conditioned dilated convolution for 3D object detection on projected
point clouds. Liang et al. [127] and Fan et al. [56] carefully optimize range
image-based 3D object detectors for both speed and performance.

Pseudo image-based methods are primarily applied in outdoor traffic
scenes and project point clouds onto the ground plane to gain pseudo
images. This approach is feasible because LiDAR sensors for autonomous
driving have relatively low resolution (e.g., 64 or 128 lanes) in the ver-
tical direction. Also, important objects, e.g., pedestrians and vehicles,
do not overlap vertically. Therefore, the projection does not lead to a
severe information loss. The projection can be performed differently. For
instance, PointPillars [117] splits a point cloud into vertical pillars and
encodes them using a shared PointNet. VoxelNet [291] divides a point
cloud into voxels and transforms points within each voxel into feature
vectors, which are further encoded into a 2D feature map in bird-eye-view.
Complex-YOLO [206] converts a point cloud into a bird-eye-view RGB
map by encoding the height and density of points into pseudo colors.
Also, PolarNet [283] transforms a point cloud into a polar bird-eye-view
coordinate system and applies ring convolutions. Note that some works
also refer to these methods as bird-eye-view-based. However, the nam-
ing may lead to confusion in the context of recent 3D object detectors

31

2 Related Works

that perform bounding box regressions in bird-eye-view using only RGB
images as inputs [97, 133, 248]. Therefore, although pseudo image-based
methods transform point clouds into bird-eye-view, this thesis does not
refer to them as bird-eye-view-based to avoid ambiguity.

2.2.9 Summary and Discussion

The deep learning methods for images are already unified to a certain
extend: CNNs [29, 80, 180, 182, 207] and transformers [49, 137] are the
de facto standard. On the contrary, there is no dominant method in
deep learning for sparse 3D data, though multi-view-based methods are
rarely applied recently due to their low performance. The advantages
and disadvantages of the commonly applied approaches are summarized
as follows:

1. PointNet variants and point cloud convolution-based methods use
unstructured point clouds as input. They can capture accurate
spatial information since the point cloud directly represents 3D
coordinates. However, Liu et al. [138] show that they usually suffer
from dynamic kernels and random memory access, which leads to
high computational costs and a slow speed. Also, they rely on spe-
cial operations, e.g., for sampling and grouping point clouds, which
require a lot of engineering efforts for hardware deployment (cf.
Appendix D). Furthermore, they usually contain more hyperpa-
rameters (e.g., sample numbers for down-sampling [96, 171, 228],
grouping radius [171], and distribution of kernel points [228]),
which leads to high costs for parameter tuning.

2. Voxel-based methods, when implemented with sparse convolu-
tions, are generally more efficient than PointNet variants and point
cloud convolution-based methods [39] since the voxelization con-
verts irregular point clouds into structured grids and simplifies
the computation. Also, they can adopt mature architectures of 2D
CNN s thanks to their similarity. Moreover, due to the property of
convolution, they are applicable to voxels with arbitrary scale and
resolution [76]. However, the voxelization causes a quantization
error and information loss. Moreover, sparse convolutions, which
heavily rely on hash maps [39], are technically more complex than

32

2.2 Feature Learning from 3D Data

standard dense convolutions and are more challenging to deploy
on hardware (cf. Appendix D).

3. Projection-based methods are most efficient and hardware-friendly,
thanks to the simplicity of 2D CNNs and the mature technical opti-
mization in software and hardware infrastructures [117]. However,
they cause an inevitable information loss due to the projection,
and their performance is limited by the indirect representation of
3D data. Therefore, they usually require careful designs to com-
pensate for the performance gap [56]. Also, they are not applicable
when a projection is impossible or causes severe information loss,
e.g., with point clouds reconstructed from multi-view inputs.

4. One distinguishing advantage of transformer-based models is that
they are strong in capturing long-range dependency [136, 152].
Also, they have the potential to unify multi-modal inputs and
multi-tasks [12, 110, 178, 181]. Moreover, as shown in Section 2.1.3,
the standard transformer consists of only simple operations, e.g.,
matrix multiplication, element-wise addition, and softmax, which
makes it easy to parallelize. However, the standard transformer is
still costly since its complexity is quadratic to the sequence length.
Developing efficient transformers for 3D vision tasks is still an
open research topic [164, 278].

There are also hybrid methods that combine multiple structures men-
tioned above to take advantage of different methods. For instance, Dai
and Niefiner [42]jointly train a multi-view- and voxel-based model. Liang
etal. [127] consequently project a point cloud to the front view (i.e., as
a range image) and bird-eye-view (i.e., as a pseudo image) for fast and
accurate 3D object detection. Liu et al. [138] and Shi et al. [203] combine
PointNet variants and voxel-based methods. Moreover, Mao et al. [144]
apply transformers on voxels and project high-level features to bird-eye-
view.

In this thesis, Chapter 3 presents a novel projection-based method,
while Chapter 5 investigates the application of transformers to point
cloud understanding. Moreover, in Chapters 4 and 6, some experiments
use PointNet++ or sparse 3D CNN to compare the proposed pre-training
methods with previous works.

33

2 Related Works

2.3 Tasks in Deep Learning for Sparse 3D Data

Section 2.2 introduces the feature extraction from 3D data. This section
explains how the learned features are utilized to perform tasks.

2.3.1 Object Classification

Object classification is the simplest and most fundamental task in deep
learning for sparse 3D data. Given a data sample u’ (i.e., a 3D object) and
N, possible classes, a 3D backbone (see Section 2.2), often combined
with global pooling, encodes the object into a global feature. The pre-
diction is obtained by transforming the feature into an Njs-dimensional
space using an MLP and normalizing the result using a softmax func-
tion. The output is a probability distribution §' € RNes, where the j-th
element y]lf indicates the probability that the sample u’ belongs to the j-th

class. The ground truth that the sample belongs to the k’-th class is often
encoded as a one-hot vector y’, where only the k'-th element equals one
while all the others are zeros. The one-hot vector can be considered as a
probability distribution. The loss function in a classification task is the
cross-entropy, which measures the difference between distributions ¥
and y':

Nas

Las (7.y') = - Zl yjlog ;. (2.28)
]:

For evaluation, the predicted class k' is given by the index of the largest
element in y":
ki = argmax {7} . (2.29)
s)

A commonly applied evaluation metric for 3D object classification is
overall accuracy (OA), which is given by

N
_ 1 7 g
OA_N;I(k,k), (2.30)
where N indicates the total number of data samples. FunctionI(:, -) equals
one if the two arguments are identical. Otherwise, it is equal to zero.

34

2.3 Tasks in Deep Learning for Sparse 3D Data

In practice, 3D object classification is rarely performed as a standalone
task. However, the performance in classification is an essential metric for
designing and evaluating 3D backbones [54, 125, 169-171, 176, 215, 228,
241, 247, 254, 287] since it heavily relies on their capability of capturing
informative features. Also, classification serves as a sub-task in other
more complex tasks, e.g., semantic segmentation and object detection.

2.3.2 Semantic Segmentation

Semantic segmentation can be considered a dense classification problem,
where each unit in a data sample, e.g., each grid cell in voxels, point in
point clouds, or pixel in images, must be classified. It is an essential task
for environment understanding and is widely applied in autonomous
driving and robotics [39, 96, 151, 246, 251, 252]. Also, the performance in
semantic segmentation serves as a metric in designing and evaluating
3D backbones [138, 170, 171, 216, 228, 247]. Typical inputs and outputs
in semantic segmentation tasks are visualized in Figure 2.2.

Most networks employ a U-shaped architecture to capture informative
and high-resolution features, following the successful U-Net [186]. They
consist of an encoder hierarchically down-sampling the features and a
decoder progressively restoring the resolution via up-sampling. Also,
skip connections are often applied between the encoder and decoder.

For CNNs, e.g., voxel-based [39] or projection-based [251, 252] meth-
ods, establishing such an architecture is trivial. Down-sampling is usu-
ally accomplished using strided convolutions [214], where up-sampling
is achieved using interpolations or transposed convolutions [276]. For
methods directly applying point clouds as input, farthest point sam-
pling [171, 176, 228, 247] and random sampling [96] are often used for
down-sampling. A commonly applied method to up-sample point-wise
features is the k-nearest-neighbor interpolation [171]. For each new point,
it calculates a weighted sum of its k nearest neighbors depending on their
Euclidean distances to the new point.

The captured high-resolution features are then transformed by a shared
MLP and normalized to create point-wise (or voxel-wise, pixel-wise) pre-
dictions. During the training, a classification loss (cf. Section 2.3.1) is
applied to each point and is averaged to calculate a final loss function.
Commonly applied metrics for semantic segmentation are mean intersec-

35

2 Related Works

(c) Point cloud with color (d) Point cloud with semantic tags

Figure 2.2 TIllustration of typical inputs (left) and outputs (right) of semantic segmentation
tasks. Each color in the output indicates a unique class. Data source: ScanNet [43].

tion over union (mloU) and mean accuracy (mAcc), which are explained
in detail in Appendix C.1.

2.3.3 Object Detection

The general methodology of 3D object detection is first introduced. Then,
some representative 3D detectors are briefly revisited since they are used
as baselines in this thesis.

36

2.3 Tasks in Deep Learning for Sparse 3D Data

2.3.3.1 General Methodology

For object detection, a detector has to locate each object in a data sample
and predict its size and class. Each object is indicated by a box around
it (i.e., bounding box), which is usually rectangular in images [180, 182]
and cubic in 3D data, e.g., point clouds and voxels.

(a) 2D and axis-aligned (b) 3D and rotated

Figure 2.3 Visualization of bounding box predictions in object detection tasks. The num-
bers indicate confidence sores of predictions. Data source: the SUN RGB-D dataset [212].

Generally, nine parameters are required to describe a 3D bounding
box: the coordinate of its center point (three), its size (three), and the
rotation around each axis (three). However, in many scenes, all objects
are assumed to be placed on the ground or horizontal plains. Thus,
bounding boxes are only rotated around the vertical axis. In this case,
the degree of freedom of each bounding box is reduced to seven. Object
detection in outdoor traffic [22, 65, 219] and indoor domestic scenes [212]
often follows this assumption. Also, for scenarios where the orientation
of bounding boxes is not important, the rotation can be completely ne-
glected. The bounding boxes are referred to as axis-aligned in this case.
Some representative bounding box predictions are shown in Figure 2.3.

Predicting the bounding boxes is often formulated as a regression
problem (also known as bounding box regression). Also, each bounding
box has to be classified. Therefore, object detection can be considered a
combination of regression and classification tasks.

For object detection, a neural network first extracts high-resolution
features. However, unlike semantic segmentation, the resolution does

37

2 Related Works

not have to be as high as the input. A lot of 3D detectors apply a U-
shaped backbone [28, 56, 76, 117, 173, 203]. The extracted features can be
represented as point clouds, voxels, or 2D feature maps. Generally, they
can be described as high-level features with corresponding locations. For
each location, a detection head has to predict bounding boxes close to
it. To avoid predicting boxes at locations where no box exists (i.e., false
positives), the detection head also generates an objectness score for each
box. A low score indicates that the probability that a box actually exists
is low. Box predictions with low objectness scores can be removed in
post-processing.

As explained, an object detector has to predict much information,
e.g., spatial parameters of bounding boxes, the objectness scores, and
the class of boxes. Therefore, object detection usually applies multiple
loss functions, e.g., the cross-entropy for box classification and a norm
function for box center regression, and is viewed as a multi-task problem.
The total loss for back-propagation is a weighted sum of multiple sub-
losses. For inference, the non-maximum suppression (NMS) is often
applied to remove redundant bounding boxes [180, 182]. Mean average
precision (mAP) is used to evaluate the quality of detection results (see
Appendix C.2).

3D object detection is widely applied in autonomous driving and
robotics. Also, it is essential for other higher-level tasks, e.g., object track-
ing and instance segmentation. A lot of research efforts have been made
for 3D object detection, e.g., to optimize backbones [203], design stronger
detection heads [136, 152, 173], fuse features from other domains [172,
174, 238], improve efficiency [56, 117, 127], and design better loss func-
tions [128, 240, 289].

In this thesis, VoteNet [173] and 3DETR [152] are used as baseline
methods for object detection. They are briefly introduced in the following.

2.3.3.2 VoteNet

VoteNet is a representative method of 3D object detection using indoor
point clouds. One major difference of 3D object detection in indoor and
outdoor scenarios is the scale of objects. Compared to the entire scene,
outdoor objects are small (cars vs. streets). On the contrary, many in-
door objects are large compared to the environment (beds vs. bedrooms).

38

2.3 Tasks in Deep Learning for Sparse 3D Data

Additionally, unlike 2D object detectors using dense images, 3D object
detection often applies sparse data, e.g., point clouds, as input.

For object detection tasks, features on each object have to be aggregated.
The sparsity of 3D data and the large scale of indoor objects make the
features hard to aggregate since features on the same object might be
spatially distant. To solve this issue, VoteNet introduces a voting module,
which predicts an offset from each point to its closest object center. Then,
depending on the predictions, VoteNet translates all points toward their
corresponding object centers. By doing this, points are pushed together
toward object centers, and the feature aggregation can be performed
effortlessly. The voting module is implemented as a shared MLP, which
takes point-wise features as input and predicts the offset. It can be trained
since the ground truth offset can be calculated using bounding box labels.

The remaining components of VoteNet are standard ones. It employs
a U-shaped PointNet++ [171] as the backbone. The voting module pre-
dicts the offset and translates the point features. A prediction module
aggregates the translated features using a set abstraction module (see
Section 2.2.5) and predicts bounding boxes using an MLP. The regression
loss from the voting module is optimized jointly with other sub-tasks in
object detectors. Due to its simplicity and effectiveness, VoteNet inspires
many successors for 3D object detection [28, 50, 98, 174, 259, 284].

2.3.3.3 3DETR

The detector 3DETR [152] is inspired by the successful DETR (DEtection
TRansformer) [23] pipeline for 2D images. Instead of predicting dense
results at each location [180, 182], DETR (as well as 3DETR) views object
detection as a set prediction problem. Given a small set of learned object
queries, it directly outputs the final set of predictions by aggregating
information from the queries and the global context using a transformer
decoder (cf. Section 2.1.3). It applies a set-based global loss that forces
unique predictions via bipartite matching. Compared to previous ob-
ject detection frameworks, DETR is simpler and contains fewer ad hoc
designs.

3DETR expands the application of the DETR framework to 3D com-
puter vision. It employs a transformer-only architecture and consists of
a transformer encoder, which transforms a point cloud into patch-wise

39

2 Related Works

features (cf. Section 2.2.7), and a transformer decoder solving the set pre-
diction problem. Thanks to the global perceptive field of transformers,
capturing long-range dependencies is straightforward. Therefore, the
voting module in VoteNet [173] is unnecessary for 3DETR.

2.3.4 Other Tasks

Besides object classification, semantic segmentation, and object detection,
many other tasks are also extensively researched in 3D deep learning,

e.g.

1.

Data completion: Recovering lost information from corrupted
point clouds, meshes, or voxels [166, 249, 274].

. Point cloud denoising: recovering high-accuracy point clouds from

noisy ones [142, 168, 277].

Registration: Building correspondence between multiple data sam-
ples and transforming them into one coordinate system [8, 39,
211].

Tracking: Detecting 3D objects in continuous frames or across
different sensors and tracking their movements [27, 250, 272].

Instance segmentation: Detecting and delineating each unique ob-
ject in the input [77, 93, 244]. The difference to object detection is
that it indicates each object/instance with a mask, whereas object
detection applies bounding boxes. It also differs from semantic seg-
mentation since the latter does not distinguish objects/instances
in the same class.

. Panoptic segmentation: Combining semantic segmentation and in-

stance segmentation tasks [61, 292]. Specifically, it performs seman-
tic segmentation for background (e.g., sky and floor) and instance
segmentation for foreground objects.

However, since they are less relevant to the content of this thesis, a
detailed introduction to these tasks is not provided.

40

2.4 Self-Supervised Pre-Training for Label Efficiency

2.4 Self-Supervised Pre-Training for Label
Efficiency

This section first introduces the basic concept of self-supervised pre-
training (SSP). Then, it revisits some important methods for SSP in image
processing (Section 2.4.2,2.4.3, and 2.4.4). Later, pre-training methods
for 3D neural networks, inspired by their predecessors in image pro-
cessing, are explained in Section 2.4.5. Finally, SSP is compared with
semi-supervised learning, another option to improve label efficiency.

2.4.1 Basic Concept

Transfer learning is a well-known technique to improve the performance
of deep learning models. In a standard pipeline, a feature extractor is first
pre-trained on a large-scale annotated dataset (e.g., ImageNet [44]) using
a proxy task (e.g., image classification). Later, the pre-trained weights are
adopted to initialize a task-specific model (e.g., an object detector), which
is then fine-tuned on the target dataset (e.g., the COCO dataset [129]).
This approach is also known as supervised pre-training. As a result, the
knowledge learned on a large generic dataset is transferred into the final
task.

However, this pipeline requires both the pre-training and fine-tuning
datasets to be fully annotated. On the contrary, most real-world data
are unlabeled. The goal of self-supervised pre-training is to utilize unla-
beled data in transfer learning and save the effort for data labeling. This
approach is especially attractive in 3D computer vision since 3D data
labeling is more laborious and time-consuming than the 2D counterpart.

Similar to the fully supervised pipeline, SSP also pre-trains a feature
extractor (i.e., backbone) using an artificial proxy task (also known as
pretext task) and fine-tunes a task-specific model on the target dataset.
However, the pretext task is elaborately designed so that no human
annotation is necessary (see Section 2.4.2). Once a backbone is pre-trained,
it can be applied to multiple downstream tasks.

The term self-supervised pre-training (SSP) is sometimes used inter-
changeably with self-supervised learning (SSL). Strictly speaking, the
features learned in the proxy task do not necessarily have to be fine-tuned.

41

2 Related Works

For instance, they can be directly utilized for classification problems via
k-nearest-neighbor search [31, 72, 82]. In this case, SSL is a more suitable
description. This thesis uses SSP instead of SSL because all its proposed
methods follow the “pre-training + fine-tuning” pipeline.

Moreover, SSP is referred to as unsupervised learning in some litera-
ture since human supervision (i.e., labels) are not applied in the pretext
task. However, this description can be misleading since the pretext task
still requires supervision, although the ground truth can be automati-
cally generated without human effort (see Section 2.4.2). Therefore, this
description is avoided in this thesis.

2.4.2 Early Methods

The key to self-supervised pre-training is designing an effective pretext
task. First, the task must be challenging, so that the feature extractor is
forced to learn informative features to solve the problem. Also, the task
cannot rely on any human annotation, and the ground truth must be
automatically generated.

Many early methods apply autoencoders to generate a new image
from the input. For instance, Vincent et al. [236] present denoising as a
pretext task for self-supervised pre-training, where a neural network is
trained to restore the original clear image from a copy with artificial noise
(Figure 2.4(a)). Inspired by denoising, Xie et al. [258] remove continuous
regions from images and train a deep learning model to reconstruct the
missing information. This approach is referred to as inpainting and is il-
lustrated in Figure 2.4(b). Moreover, an autoencoder for colorization [281,
282] is effective for pre-training with self-supervision. As shown in Fig-
ure 2.4(c), a neural network uses gray-scale images as input and is trained
to predict the original color images.

Instead of generating raw images, discriminative methods train neural
networks to make abstract and discrete predictions. For instance, Noroozi
and Favaro [157] train a model to solve a jigsaw puzzle. Specifically,
each image is split into non-overlapping patches, and their positions are
randomly permuted. A model is trained to restore the original image by
predicting the correct order of the patches, as visualized in Figure 2.4(d).
Moreover, Gidaris et al. [66] randomly rotate images by a multiple of 90°
and train a model to predict the rotation angles (Figure 2.4(e)).

42

2.4 Self-Supervised Pre-Training for Label Efficiency

(e) Rotation prediction (i.e., predicting probability of each angles)

Figure 2.4 Concept of some pretext tasks for self-supervised pre-training.

All these pretext tasks are still supervised. However, the required
ground truth, i.e., uncorrupted images for denoising and inpainting,
color images for colorization, patch order for the jagsaw puzzle, and
rotation angles for rotation prediction, are obtainable without manual
labeling. The methods introduced in this subsection have demonstrated
that models can learn informative features using self-supervision. How-
ever, they are outperformed by later methods, e.g., contrastive learning
and masked autoencoder, which are explained in the following.

2.4.3 Contrastive Learning

In contrastive learning [24, 31, 33-35, 72, 82], a neural network is trained
by contrasting features extracted from different sources. The basic concept
of contrastive learning is illustrated in Figure 2.5. First, a random sample
from a dataset is chosen as an anchor. A positive sample is created via
data augmentation (transformations e.g., color jitter, translation, scaling,
and rotation). The anchor and the positive sample are often referred

43

2 Related Works

to as two views or a positive pair. Then, negative samples are sampled
from the dataset, exclusive of the anchor. By doing this, the essential
information in the positive sample and the anchor is similar, whereas
negative samples are distinct from the anchor. An encoder (e.g.,, a CNN
with global pooling and an MLP head) encodes the anchor, positive
sample, and negative samples into a feature, respectively. Contrastive
learning aims to maximize the similarity between features from the
anchor and positive sample while minimizing the similarity between
features from the anchor and each negative sample.

The InfoNCE (information noise contrastive estimation) loss [160] is
widely applied as the loss function in contrastive learning:

exp (sim (v®,vP) /1)

L = -1 - ,
InfoNCE 8 exp (sim (v3,vP) /T) + Y, exp (sim (v3, v™i) /T)

(2.31)
where v?, vP, and v indicate features from the anchor, positive sample,
and negative samples, respectively. The function sim(:, -) measures the
similarity of two vectors with the same dimension. A commonly used
similarity function is the cosine similarity. The hyperparameter 7 is called
temperature and must be tuned. The objective of contrastive learning
can be achieved by minimizing the loss Ly ¢oncE-

In practice, multiple anchors (as well as their corresponding positive
and negative samples) are re-sampled at each iteration. Consequently,
the encoder learns a unique feature for each sample in the dataset, which
is invariant to the data augmentation. Experiments show that the pre-
trained encoder achieves competitive results in different downstream
tasks [24, 31, 33-35, 72, 82].

Many well-known methods differ primarily in handling negative sam-
ples. For instance, SimCLR [31] contrasts samples within each mini-batch.
Despite its simplicity, it relies on a very large batch size to avoid mode
collapse, a hazard scenario where the features extracted from all data
samples become similar. Training neural networks using a large batch re-
quires a huge memory space, which limits the application of this method.
To address this issue, Momentum Contrast (MoCo) [34, 35, 82] introduces
a Siamese network structure, which consists of an encoder and a mo-
mentum encoder with the same architecture. The encoder is applied to
each anchor, and the momentum encoder is to positive samples. During

44

2.4 Self-Supervised Pre-Training for Label Efficiency

Data Augmentation

b A

|
|
|
|
|
|
|
|
|
| I
|
|
e [l o s [e [
|
|
| | |
|
|
|
|
|

! ! !

I ! ! ! !

Anchor Positive Negative

Figure 2.5 Concept of contrastive learning using global features.

training, only the encoder is updated via back-propagation. The weights
of the momentum encoder are adopted from the encoder via exponen-
tial moving average (i.c., with momentum). Also, MoCo uses a memory
bank to save features from positive samples. Since anchors alter in each
iteration, the positive samples from the past can be used as negative sam-
ples for the current iteration. The memory back is dynamically updated
during training. Since a large number of negative samples can be kept in
the memory bank, MoCo is less sensitive to the batch size than SimCLR.
To further simplify the pipeline of contrastive learning, some methods
only contrast anchors with positive samples and do not use negative
samples [14, 24, 33, 72]. For instance, BYOL [72] and DINO [24] use an
asymmetric structure with a momentum encoder. SimSiams [33] applies
the stop-gradient operation instead of momentum. However, the reason
why these methods do not lead to mode collapse is not fully understood.
Recently, Bardes et al. [14] show that a symmetric structure is sufficient if
features’ variance, invariance, and covariance are regularized.

The concept shown in Figure 2.5 contrasts global features from each
data sample (or instance). This pretext task is also called an instance

45

2 Related Works

Data Augmentation

Anchor Positive - __

Figure 2.6 Concept of contrastive learning using local features.

discrimination problem in some literature. Besides global features, some
methods also train local feature extractors using contrastive learning [25,
159, 245]. In this case, the neural network encodes each sample into dense
features instead of a global feature (i.c., the spatial resolution is reserved).

The concept of local (also called dense in some contexts) contrastive
learning is shown in Figure 2.6. For each image, a new view is created via
data augmentation. Then, an encoder encodes each view into a feature
map, respectively. Each local feature can be considered an anchor. In
the other view, the corresponding local feature is its positive sample,
whereas features at all the other locations are negative samples. There-
fore, contrastive learning can train the encoder using local features and
correspondences. Local contrastive learning is applicable to downstream
tasks requiring dense features, e.g., semantic segmentation and object
detection.

46

2.4 Self-Supervised Pre-Training for Label Efficiency

2.4.4 Masked Autoencoder

Masked autoencoder (MAE) [83] is a self-supervised generative ap-
proachl for pre-training vision transformers (ViT) [49]. As shown in
Figure 2.7, an MAE splits an image into non-overlapping patches, fol-
lowing a standard ViT. Then, it randomly masks a large proportion (e.g.,
75 %) of the input patches. The reserved patches are embedded using
a linear transformation to create a feature sequence. Also, the position
embedding of the patches is added. An encoder then extracts features
from the sequence. The encoder has a standard ViT structure consisting
of multiple transformer layers with self-attention (cf. Section 2.1.3).

Decoder

Figure 2.7 Concept of self-supervised pre-training using masked autoencoder.

The objective of masked autoencoder is to restore the masked patches
using the visible ones. To this end, a full-length sequence is created by
padding a shared learnable mask token into the encoder’s output. Also,
the positions of masked patches are embedded and injected into the
corresponding location in the sequence. Then, a decoder, consisting of

! The term MAE has two meanings in the literature. Usually, it refers to a pre-training
method. In some contexts, it also refers to the network architecture the method uses. This

thesis follows this convention.

47

2 Related Works

multiple transformer layers with self-attention, is trained to reconstruct
the pixel values in each masked patch. He et al. [83] show that a decoder
with fewer layers than the encoder is sufficient for pre-training. The loss
function is calculated by averaging the distance between reconstructed
patches and the original ones, e.g., using pixel-wise Euclidean distance.
During the pre-training, the encoder learns the relation between reserved
patches and describes the patches with informative features. The decoder
is abandoned in downstream tasks, and the encoder can be applied as a
pre-trained feature extractor.

MAE achieves impressive performance and is significantly faster than
previous methods, e.g., contrastive learning, since the encoder uses a
shorter sequence as input and the decoder is light-weight [24, 34, 83].
Also, itis simpler than the previous method BEiT [13] inspired by the well-
known BERT framework [46] in natural language processing, although
both methods reconstructed missing information from masked images.

2.4.5 Self-Supervised Pre-Training in 3D Vision

Inspired by the fast progress in self-supervised pre-training using images,
many methods have been proposed to apply this technique to 3D data.
For instance, Achlioptas et al. [2] present an autoencoder for point clouds,
which learns to reconstruct its input from a bottle-necked latent space.
Hassani and Haley [79] train a multi-scale graph-based encoder using
multi-tasks including clustering, reconstruction, and self-supervised
classification. Moreover, Sanghi [195] applies contrastive learning on 3D
shapes and maximizes the mutual information. Sauder and Sievers [196]
define a pretext task where a neural network is trained to restore point
clouds whose parts have been randomly placed. Also, Wang et al. [239]
reconstruct complete point clouds from occluded single-view ones.
However, these methods are all evaluated on synthetic datasets [26,
255]. PointContrast [260] is the pioneer in applying self-supervised pre-
training to real-world point clouds. Using contrastive learning, it learns
point-wise correspondences between two partially overlapping point
clouds captured from different view angles. Inspired by PointContrast,
Liu et al. [134] exploit the correspondence between aligned point cloud-
image pairs and pre-train a 3D encoder by contrasting its output with a
pre-trained 2D encoder. Also, Liu et al. [135] propose contrastive learn-

48

2.4 Self-Supervised Pre-Training for Label Efficiency

ing with pairs of point-pixel pairs. Moreover, Hou et al. [94] improve
PointContrast using spatial partition and investigate the data and label
efficiency of pre-trained models. Zhang et al. [285] extend the successful
MoCo [35, 82] pipeline to the 3D domain and exploit the cross-format
contrast between point clouds and voxels. Furthermore, Chen et al. [36]
utilize dynamic spatial-temporal correspondence and explore 4D contrast
in pre-training.

Instead of using contrastive learning, some works train neural net-
works by solving masked point cloud modeling problems, where the
masked proportion of point clouds has to be restored. For instance, Point-
BERT [273] predicts the missing tokens from corrupted point clouds.
Also, POS-BERT [62] augments PointBERT with a momentum tokenizer
and a contrastive loss. Recent works apply MAE [83] to point clouds. For
instance, Point-MAE [163] straightforwardly predicts the coordinates
of masked points following MAE. Point-M2AE [279] extends the MAE
pipeline to hierarchical multi-scale networks. Instead of reconstructing
raw point clouds directly, MaskPoint [131] learns an implicit representa-
tion to avoid information leakage.

Rather than learning features using 3D data, some methods attempt
to directly transfer knowledge from other domains, e.g., languages and
images. Zhang et al. [280] use a pre-trained CLIP model [280] to guide a
point cloud encoder. Xu et al. [264] show the possibility of initializing a
3D CNN using weights of a pre-trained 2D CNN. Qian et al. [175] follow
this idea and explore initializing a point cloud transformer with a pre-
trained ViT [49]. Although they do not belong to self-supervised learning,
these methods also improve label efficiency (especially in the case of 3D
labels). They are introduced in this subsection for easier comparison with
self-supervised methods.

2.4.6 Comparison with Semi-Supervised Learning

Semi-supervised learning assumes that only a proportion of training data
are annotated and trains neural networks on both labeled and unlabeled
data [233]. In this context, the pipeline “self-supervised pre-training +
supervised fine-tuning” can be considered a semi-supervised learning
approach. However, to avoid ambiguity, self-supervised pre-training is
excluded from semi-supervised learning in this thesis.

49

2 Related Works

One representative method of semi-supervised learning is self-training.
It is a progressive approach where a neural network is first trained ex-
clusively on labeled data. The predictions on unlabeled data are used
as pseudo labels further to update the neural network [18, 210]. Other
approaches for training neural networks using semi-supervision include
e.g., co-training, boosting, maximum-margin, and perturbation-based
methods [233]. Although many works apply semi-supervised learning for
classification, there are also attempts for other tasks, e.g., object detection
with images [227, 266] and point clouds [240, 288].

The limitation of semi-supervised learning is that it is specialized
for one single task (i.e., whose labels are partially available). A semi-
supervised learning pipeline must be redesigned and retrained for differ-
ent tasks (i.e., different types of labels). On the contrary, self-supervised
pre-training is decoupled from the fine-tuning tasks. For instance, a CNN
pre-trained on a large-scale image dataset can be freely transferred into
classification, detection, and semantic segmentation tasks [24, 35, 82, 83].
Because of its better flexibility and generalizability, this thesis chooses
self-supervised pre-training instead of semi-supervised approaches to
improve label efficiency.

2.5 Data Generation for Data Efficiency

Even though laborious data labeling can be avoided using self-supervised
pre-training or semi-supervised learning, capturing real-world 3D data is
still costly. Synthetic data can be applied to address this issue. Specifically,
neural networks are pre-trained on synthetic data and then fine-tuned on
real-world data for downstream tasks. By doing this, the neural networks
gain better performance in downstream tasks without using additional
real-world data. The methods for generating synthetic data can be split
into simulation-based and randomized methods.

2.5.1 Simulation-Based Methods

Thanks to the progress in computer graphics and optics, photo-realistic
data can be captured via simulation. These methods first require a simula-
tion environment, which models the behavior of objects and sensors in the

50

2.5 Data Generation for Data Efficiency

real world. The technique of transferring knowledge from a simulation
environment to the real world is often referred to as sim2real. Sim2real
is widely applied in 3D deep learning. For instance, Deschaud et al. [45]
employ the CARLA simulator [48], an open source software to simu-
late the urban environment, to generate synthetic LIDAR point clouds
for 3D mapping tasks. Griffiths and Boehm [71] present a large-scale
point cloud of the urban environment using BlenSor [73], a package mod-
eling various range sensors based on the open source project Blender.
Xiao etal. [256] collect point cloud data using Unreal Engine 4 (UE4), a
commercial software for developing 3D video games, and investigate the
transfer learning from synthetic to real-world data in semantic segmenta-
tion. Also, Wu etal. [251] and Hurl et al. [101] synthesize training data for
autonomous driving using Grand Theft Auto V, a popular video game.

Meanwhile, sim2real is also studied for industrial applications. For in-
stance, Bauerle et al. [15] apply Blender to render training data for 3D pose
estimation of electronic control unit housings. Moreover, Wu et al. [253]
use BlenSor to render point clouds of electric motors for autonomous
disassembly and train deep learning models for semantic segmentation.

Although generating synthetic data via simulation is significantly
less expensive than capturing data in the real world, developing the
simulation environments, crafting source materials, and designing the
scene layouts still require considerable efforts.

2.5.2 Randomized Methods

Instead of creating vivid scenes in a simulation environment, randomized
methods simplify the data generation process with randomness. This
approach generates 3D scenes by randomly placing “objects”, which can
be either CAD models [179] or formula-driven shapes [268], based on pre-
defined rules. Specifically, Rao et al. [179] generate scenes by randomly
placing CAD models in randomly created rooms. They create pairs of
scenes with the same objects but different layouts and perform contrastive
learning using object-level correspondence. Yamada et al. [268] employ
fractal point clouds as objects instead of CAD models. This method gen-
erates bounding box labels for each object and pre-trains object detectors
in a fully supervised manner. Both methods show promising perfor-

51

2 Related Works

mance in object detection tasks, compared with models pre-trained on
real-world data.

52

3 Real-Time 3D Object Detection
using Depth Maps

3D object detection is an essential task in 3D computer vision. Most ex-
isting 3D object detection methods take point clouds (despite quantized
or not) as input, even when each point cloud is converted from a single
depth map. Although they have achieved impressive performance, point
cloud-based 3D detectors usually have high computational costs and
complex structures, which limits their application in real-time scenar-
ios. Following the state-of-the-art VoteNet [173], this chapter presents
2.5D-VoteNet, a powerful and efficient depth map-based 3D detection
pipeline. Since the proposed models extract features directly on depth
maps, most computation remains in 2D space and can be efficiently exe-
cuted. Furthermore, instead of using an off-the-shelf 2D CNN, they apply
relative depth convolution (RDConv) to learn robust local features. The
end-to-end pipeline achieves state-of-the-art results on the challenging
SUN RGB-D [212] benchmark and surpasses the baseline with a clear
margin on the ScanNet [43] frame-level detection task. Meanwhile, this
method reaches a significantly higher inference speed than previous
ones (69 frames per second). The main contents of this chapter have been
published in [294].

3.1 Introduction

As explained in Section 2.2, 3D spatial data can be represented in various
ways. According to the applied data, 3D object detection methods can
be roughly categorized into projection-based [32, 115, 117, 121, 206, 291]
and point cloud-based methods [28, 39, 76, 93, 113, 172-174, 203, 204].
Projection-based methods project point clouds into bird-eye-view, front
view, or multi-views (cf. Section 2.2.8). By doing this, point clouds are

53

3 Real-Time 3D Object Detection using Depth Maps

converted into images so that mature 2D CNNs can be applied. How-
ever, they are rarely used in indoor scenarios because objects are more
cluttered than outdoors. Point cloud-based methods use raw or quan-
tized (i.e., voxelized) point clouds as input. To aggregate local and global
features from point clouds, they often hierarchically down-sample the
input and perform convolution-like operations (cf. Sections 2.2.4, 2.2.5,
and 2.2.6). Although they have achieved promising performance, point
cloud-based methods cannot achieve high inference speed. The state-of-
the-art methods for indoor scenes have a frame rate of ~10 FPS (frame
per second) [28, 50, 173, 174, 259, 284] and cannot fulfill the requirement
for some real-time applications'. Moreover, the high computational cost
and special self-defined operations in point cloud-based methods (e.g.,
PointNet++ [171], sparse 3D convolution [76]) prohibit hardware imple-
mentations on a lot of mobile or small devices (e.g., cell phones, small
robots, and drones) since they support solely efficient processors with
either less computational resources (e.g., ARM CPU and mobile GPU) or
limited operation support (e.g., neural ASIC).

The proposed method is motivated by the observation that in many
real-time applications a point cloud is converted from a single depth map.
Given the camera calibration, depth maps and point clouds are different
representations of the same information. Thus, it should be possible to
perform 3D object detection directly using depth maps instead of point
clouds.

This chapter presents a novel pipeline that captures features on depth
maps while keeping the detection head and post-processing in 3D space.
Unlike existing 2D CNNs, which use absolute depth as input, the back-
bone of the proposed networks is augmented with novel relative depth
convolution (RDConv), which learns local features from relative depth.
The RDConv is motivated by the simple intuition that local geometries
(e.g., edges and corners) depend more on relative depth and are invariant
to the absolute depth. Compared to the standard convolution using abso-
lute depth, RDConv extracts more informative features and improves the
detection result. The proposed pipeline shows higher inference speed

1" Conventionally, a frame rate higher than 30 FPS is regarded as real-time.

54

3.2 Depth Map-Based 3D Object Detection

and better hardware-friendliness than point cloud-based methods while
reaching competitive performance.
The contributions of this chapter are as follows:

1. It introduces a simple and efficient depth map-based 3D detection
pipeline.

2. It represents the novel approach of relative depth convolution,
which effectively captures local information on depth maps.

3. The proposed models achieve state-of-the-art results on the chal-
lenging SUN RGB-D [212] benchmark and are significantly faster
than existing methods. Also, they outperform the baseline [173] in
the ScanNet [43] frame-level detection with a clear margin.

3.2 Depth Map-Based 3D Object Detection

In this section, the pipeline of point cloud-based 3D detection is first revis-
ited (Section 3.2.1). Then, a computationally efficient depth map-based
pipeline is introduced (Section 3.2.2). Later, an important ingredient
of the pipeline, relative depth convolution (RDConv), is presented in
Section 3.2.3.

3.2.1 Point Cloud-Based Pipeline

The standard workflow of a point cloud-based 3D object detector can be
separated into four components: the pre-processing, a 3D backbone, a
detection head, and the post-processing. As illustrated in Figure 3.1(a),
depth maps are converted into point clouds at the pre-processing stage.
Usually, point clouds are further down-sampled or quantized to reduce
the computational cost. The backbone then applies sparse convolution
(Section 2.2.4), PointNet variants (Section 2.2.5), point cloud convolu-
tion (Section 2.2.6), or transformers (Section 2.2.7) to the sparse coor-
dinates. The output of the backbone is a down-sampled subset of the
input point cloud with high-level features attached to each point (also
called feature carriers or feature points). The detection head then aggre-
gates object-relevant information and performs bounding box regression

55

3 Real-Time 3D Object Detection using Depth Maps

Depth Map Point Cloud Feature Carriers Bounding Boxes

Detection Head
5
MS
~Oo-

0
5
k%)
0
[
9
¢o
2
F
[
¢
R~

(a) Point cloud-based

Feature Map
s [fl
&

Resized Depth Map

Feature Carriers

Bounding Boxes

Depth Map

Registration
Detection Head

(b) Depth map-based (proposed)

Figure 3.1 3D object detection pipelines using a single depth map as input.

and semantic classification. In the post-processing stage, non-maximum
suppression (NMS) is applied to remove redundant predictions. More
details on 3D object detection is provided in Section 2.3.3.

3.2.2 2.5D-VoteNet: a Depth Map-Based Pipeline

The proposed depth map-based pipeline is illustrated in Figure 3.1(b).
A U-shaped 2D CNN encodes a high-resolution depth map into a low-
resolution feature map. It means the feature aggregation occurs in the
2D space rather than the 3D space, significantly reducing computational
costs. However, to fully utilize the spatial information, the feature carriers,
the detection head, and the NMS remain in the 3D space. To build feature
carriers, the input depth map is scaled to the same resolution as the
feature map and lifted into the 3D space. Then, each feature vector in the
feature map is registered to the corresponding 3D point. Since feature
carriers are in the 3D space, they can be processed as in a standard point
cloud-based pipeline. The proposed pipeline adopts the detection head
with the voting module and the post-processing from VoteNet [173].

56

3.2 Depth Map-Based 3D Object Detection

Thus, the model is named 2.5D-VoteNet. More details on the baseline
method VoteNet are presented in Section 2.3.3.2.

Compared to point cloud-based methods, the presented depth map-
based pipeline brings multiple advantages. First, the network is acceler-
ated thanks to the efficiency of the 2D CNN. Moreover, the low computa-
tional cost allows a deeper backbone and higher-resolution input, which
results in more informative features and better detection quality. Point
cloud-based networks usually have limited model depth and only accept
down-sampled or voxelized point clouds to avoid excessive run-time and
memory usage. Also, the simple architecture simplifies the hardware
implementation in real-world applications (¢f. Appendix D). Meanwhile,
the pipeline simplifies the fusion of geometrical and color information
since the depth map and color map have 2D grid structures and can be
scaled to the same resolution. On the contrary, it is non-trivial to incor-
porate RGB images into the point cloud-based pipeline due to different
data properties (e.g., regularity vs. irregularity, high resolution vs. low
resolution), as discussed in previous works [93, 174, 238]. Specifically,
2.5D-VoteNet gains a significant performance boost by using only one
additional layer to accept RGB images. This fusion strategy is further
explained in Section 3.4.3.3.

One concern of the depth map-based 3D detection is that the 2D back-
bone is unaware of the camera calibration. However, experimental results
imply that the models learn calibration invariance via data augmenta-
tion (see Section 3.4.3.7). The limitation of this method is that it cannot
directly handle 3D scans that are reconstructed from multiple views of
depth maps (cf. Section 2.2.9). However, it is not a detrimental problem
in real-time applications since single-view point clouds are usually used
as input in this case.

3.2.3 Relative Depth Convolution

This chapter introduces a novel convolution operation that depends on
relative rather than absolute depth. The intuition behind this design is
trivial: local geometries (e.g., edges and corners) rely more on relative
depth than absolute depth. The observation implies that absolute depth
invariance can help a 2D CNN to capture more informative and robust
features on depth maps.

57

3 Real-Time 3D Object Detection using Depth Maps

Following this intuition, the proposed relative depth convolution (RD-
Conv) normalizes the depth values in each sliding window with respect
to a local reference depth. The new convolution negligibly increases
the computational cost and can replace the first convolution layer in a
standard 2D CNN without changing its overall structure.

The standard convolution operation is introduced in Equation 2.6.
Following the notation, a depth map (i.e., input) can be described as a
matrix D with shape H x W, where H and W indicate the height and
width of the depth map, respectively. The output feature map can be
represented as a tensor U with shape H x W x C, where C indicates the
channel number. Let (7, j) be an arbitrary 2D coordinate. The depth value
and feature vector at (i, j) are D, ; and v, ;, respectively. The RDConv with
kernel size [x | is defined as

ij’

1 1
f
Vij = Z Z Win,n (Di+0(m,l),j+0(n,l) - D35)Hi+o(m,l),j+o(n,l) , (31

m=1n=1
where the function o(:,-) defines an offset to the indices and is given
in Equation 2.7. The vector w,,, , € RC indicates learnable weights in
the convolution operation?, following the standard convolution (see Sec-
tion 2.1.2). Matrix H defines a binary mask whose elements are given

by
Hl. = O 7 Di,j = 0 . (32)
71, Dy #0

The local reference depth D?j‘ff is defined as the average depth within
each sliding window:
! !
Dref _ m=1 Zn=1 Di+o(m,l),j+o(n,l)Hi+o(m,l),j+o(n,l) (3 3)
oo !] ’ :
m=1 anl Hi+o(m,l),]'+o(n,l) +€

where the € indicates a small constant avoiding dividing by zero.

The binary mask H is necessary since real-world depth maps might
contain bad pixels. It means their depth values are not measurable or in-
valid. The depth of bad pixels is usually set to zero by the pre-processing.

2 Since the input is a depth map with only one channel, the weight matrices in the standard
convolution become vectors in this case.

58

3.3 Architecture and Configuration

The binary mask prevents bad pixels from affecting the convolution
kernel and reference depth. The binary mask is unnecessary for a stan-
dard convolution. Because the depth values of bad pixels are zeroed
by pre-processing and are directly multiplied by the filters in standard
convolution, the depth map already has the masking effect in this case.
Therefore, the advantage of RDConv comes from the local depth normal-
ization rather than the binary mask. Some previous works, e.g., sparsity
invariant convolution [231], also apply similar masks. However, unlike
sparsity invariant convolution [231], the proposed pipeline applies no
binary mask in deeper layers. It is because sparsity invariant convolution
is used in a neural network which increases the resolution of LiDAR
range images. Compared to its output, the original range image is very
sparse. Therefore, masks are necessary for the sparsity invariance. How-
ever, depth maps in indoor scenes have limited sparsity on the image
plane (cf. Appendix A).

3.3 Architecture and Configuration

This section introduces the architecture of the proposed models and the
configuration for training and evaluation.

3.3.1 Backbone and Feature Fusion

The backbone is built up based on the well-known ResNet-34 [80]. As
shown in Figure 3.2, modifications are made by adding an RDConv layer
parallel to the first (standard) convolution layer. This redundant structure
aims to preserve information in absolute depth. Outputs of the two layers
are directly added for simplicity, while concatenation also generates sim-
ilar results. However, experiments show that the proposed models also
work without absolute depth (explained later in Section 3.4.3.1). Unlike
the original ResNet, the feature map after the first layer is down-sampled
using strided convolution [214] instead of pooling. Also, the output chan-
nel number of the last residual block in ResNet-34 is reduced from 512
to 256 for better efficiency. Skip connections are added between down-
sampling and up-sampling parts, following the spirit of U-Net [186]
and feature pyramid networks [130]. The output of the backbone is a

59

3 Real-Time 3D Object Detection using Depth Maps

Feature Map
N s=8
X6 x3
1

Conv2d, 7x7, s=2 RDConv, 7x7,s=2 [Residual Block
Conv2d, 3x3,s=2 E=] Upsample, s=2 RGB Fusion
© Concatenate ~==~ Skip Connection € Add

x3

Figure 3.2 Backbone of 2.5D-VoteNet. Notation s indicates the stride, i.e., sampling factor.
The RGB fusion is optional.

feature map down-sampled by factor 8 (compared to the input) with 256
channels.

Until now, the network utilizes only the geometrical information (i.e.,
depth map). For RGB fusion, a convolution layer is added and accepts
RGB images at the beginning of the network. Then, the RGB features and
the geometrical features are concatenated. Such an early fusion strategy
fuses information from two modalities efficiently since it requires only
one additional layer. In the fused model, the channel numbers of all 7x7
layers are reduced from 64 to 32, so the first scale level has the same
output channel number as in the geometry-only model.

3.3.2 Detection Head and Loss Function

To build the feature carriers, the depth map is resized to the same resolu-
tion as the output feature map from the backbone. With camera calibra-
tions, the scaled depth map is lifted to the up-right coordinate system
(i.e., world coordinate system) by reverting the pitch and roll angles
of the camera. Then, the detection head further samples 1024 points
using farthest point sampling [171]. The remaining components in the
pipeline, e.g., the voting module and prediction module, are adopted
from VoteNet [173].

Following the baseline method, all networks are trained end-to-end
with a multi-task loss, defined as a weighted sum of a voting loss (Eu-

60

3.3 Architecture and Configuration

clidean norm), an objectness loss (cross-entropy), a bounding box loss
(multi-task), and a semantic classification loss (cross-entropy). Further-
more, the bounding box loss consists of center regression (Euclidean
norm), heading and size classification (cross-entropy), and 3D-GloU
(generalized intersection over union) sub-losses. The heading angles
are classified since the ground truth angles are binned into intervals.
The precise heading angle for a bounding box is obtained by predict-
ing which interval the rotation angle belongs to and the residual. Also,
the box sizes are classified because VoteNet uses template boxes (also
known as anchor boxes), following the standard practice in 2D object
detection [182]. The network predicts to which template box a prediction
is most similar (i.e., a classification problem). Like the heading angle, a
residual is also predicted for the most similar template box.

The only difference to VoteNet is that the proposed method uses a 3D-
GIoU loss [289], improving the detection results by directly maximizing
the overlap between predicted bounding boxes and the ground truth. In
contrast, the original VoteNet applies mean squared error as sub-losses
for the residual angles and sizes.

3.3.3 Training

The input depth maps and RGB images are scaled to a resolution of 416 x
544. Zero padding is applied to keep the original aspect ratio. For data
augmentation, the input is randomly resized by scaling the short edge
in the range [320,512]. Also, images are randomly horizontally flipped
and rotated around their principal points by a uniform distribution in
[—15°,15°]. To improve the robustness against bad pixels, the depth
values of 20 % pixels are randomly set to zeros. Also, when images are
scaled, rotated, and flipped, the intrinsic and extrinsic camera parameters
are augmented accordingly. Nearest neighbor interpolation is used to
scale and rotate depth maps since interpolation methods with a higher
degree generate unexpected noise around bad pixels.

The proposed models are evaluated on the SUN RGB-D dataset [212].
Models are trained on the 5000 RGB-D images in the training set and eval-
uated on the validation set. All models are trained using the Adam [111]
optimizer for 160 epochs with an initial learning rate of 0.001 and batch
size of 16. The learning rate is reduced with a factor of 0.1 after 100 and

61

3 Real-Time 3D Object Detection using Depth Maps

130 epochs, respectively. More details about this dataset can be found in
Appendix B.1.2.

To explore the generalization of the depth map-based pipeline, the pro-
posed models are also trained on the ScanNet dataset [43]. The dataset
consists of approximately 1500 scans reconstructed from sequences of
RGB-D images. The scans are labeled with axis-aligned bounding boxes
(for more details, see Appendix B.1.3). Since the proposed 2.5D-VoteNet
accepts single depth maps as input, the ScanNet dataset is unpacked into
approximately 2.5 million RGB-D frames. Following the official train/val-
idation split, 78 000 frames are sampled for training and 10 000 for vali-
dation. To gain frame-level labels, the scan-level bounding box labels are
transformed into each camera coordinate system using the known camera
calibrations. All models are trained for 40 epochs on ScanNet. The learn-
ing rate is reduced by 0.1 after 20 and 30 epochs. Other configurations
follow the training procedure for the SUN RGB-D dataset.

3.3.4 Evaluation and Inference

This chapter uses mean average precision with 25 % 3D-IoU (3D inter-
section over union) threshold (i.e., AP25) as an evaluation metric for
the detection results, following previous works [28, 98, 172-174, 259].
More details about the metrics for 3D object detection are provided in
Appendix C.2. All reported metrics are calculated on the validation set
since the test labels are not released [43, 212].

The inference latency is carefully measured to evaluate the computa-
tional efficiency of models. Following previous works, axis-aligned 3D
NMS (C++ implementation) is applied as post-processing. The latency is
measured with batch size one on a desktop computer with an Intel Core
i7-8700 CPU and an NVIDIA RTX 2080Ti GPU using PyTorch [167].

3.4 Experiments and Analysis
This section first demonstrates the main experimental results by compar-

ing the proposed methods with existing ones. Then, qualitative results
are shown by visualizing predicted bounding boxes and learned fea-

62

3.4 Experiments and Analysis

tures. Finally, analysis experiments are conducted to justify the proposed
designs.

3.4.1 Comparison with State-of-the-Art Methods

The geometry-only and fused versions of 2.5D-VoteNet are first compared
with state-of-the-art (SOTA) methods on the SUN RGB-D benchmark.
Then, they are compared with VoteNet in the ScanNet frame-level detec-
tion task.

3.4.1.1 SUN RGB-D Object Detection Benchmark

The SOTA methods on the SUN RGB-D dataset are briefly summarized
as follows: COG [183] represents features with cloud of oriented gradi-
ent descriptors. VoteNet [171] uses PointNet++ [171] to capture features
and centralizes the features with deep Hough voting. MLCVNet [259]
optimizes VoteNet via multi-level context, while HGNet [28] improves
VoteNet with multi-scale features and attention mechanism. Ahmed
and Chew [3] utilize unsupervised clustering to perform class-agnostic
instance segmentation and improve the detection results. EPNet [98]
enhances point features with image semantics. H3DNet [284] introduces
hybrid geometric primitives to the 3D detection pipeline. SPOT [50]
proposes selective point cloud voting for better object proposals. Deep
sliding shapes (DSS) [213] captures 3D features with volumetric con-
volution. PointFusion [265] and Frustum-PointNet [172] generate 2D
proposals using off-the-shelf 2D detectors and predicts 3D bounding
boxes from each 2D proposal. ImVoteNet [174] fuses RGB images by
using a pre-trained 2D detector to gain 2D geometrical and color cues.

The SOTA methods can be separated into methods without and with
additional data. The latter have components pre-trained on other datasets
(e.g., ImageNet [44], COCO [129], ScanNet [43]), whereas the former are
directly trained on the target dataset.

As shown in Table 3.1, both proposed models achieve competitive
results and are significantly faster than previous methods. The geometry-
only and fused models reach 3.1 % and 4.0 % (absolute) higher AP25
than the baseline VoteNet (57.7 % AP25), respectively. The fused model
achieves the best results (61.7 % AP25) among methods without extra

63

3 Real-Time 3D Object Detection using Depth Maps

Table 3.1 Quantitative detection results on validation set of SUN RGB-D with V1 anno-
tation. AP25 is calculated over the 10 most common object classes. The upper half of the
table shows the results of methods pre-trained using extra data. The models in the lower
half are trained from scratch. Proposed models marked with * are pre-trained on ScanNet
frame-level dataset. The average precision for each class is presented in the intermediate
columns. Some values are absent because they are not reported in the original publications.
Latency: inference latency per frame on a single GPU. The hardware might differ in different
publications. Bold: the best result. P: raw point clouds. I: color images. D: depth maps. V:
voxels.

3 F
ko) <
= HooXx [- s 2 B 9] I
(<9 = o [} © %) Q [a b= - ™
Methods = 8 2 8 85 s 8 E % = 8 — <
DSS [213] V+I v/ |44.2 78.8 119 61.2 20.5 6.4 15.4 53.5 50.3 78.9| 19.6s 42.1

PointFusion [265] P+I
F-PointNet [172] P+I
ImVoteNet [174] P+I
Proposed* (geo) D
Proposed* (fused) D+I

COG [183] P+I
Ahmed etal. [3] P
VoteNet [173] P

37.3 68.6 37.7 55.1 17.2 23.9 32.3 53.8 31.0 83.8| 1.3s 45.4
43.3 81.1 33.3 64.2 24.7 32.0 58.1 61.1 51.1 90.9| 0.12s 54.0
759 87.6 41.3 76.7 28.7 41.4 69.9 70.7 51.1 90.5 - 634
75.3 88.1 41.6 75.6 29.2 39.1 61.0 70.5 49.7 89.8|14.5ms 62.0
76.4 87.1 50.5 75.0 31.2 41.4 64.4 70.7 49.7 90.3|14.5ms 63.7

58.3 63.7 31.8 62.2 45.2 15.5 27.4 51.0 51.3 70.1| 10 min 47.6
79.4 88.2 32.1 17.0 37.4 53.7 50.0 65.3 53.3 95.8| 1.24s 57.2
74.4 83.0 28.8 75.3 22.0 29.8 62.2 64.0 47.3 90.1| 0.1s 57.7

MLCVNet [259] P 79.2 85.8 31.9 75.8 26.5 31.3 61.5 66.3 50.4 89.1 - 598
EPNet [98] P+I X|75.4 85.2 35.4 75.0 26.1 31.3 62.0 67.2 52.1 88.2 - 598
H3DNet [284] P - - - - - - - - - -1015s 601
SPOT [50] P L - 604

HGNet [28] P
Proposed (geo) D
Proposed (fused) D+I

78.0 84.5 35.7 75.2 34.3 37.6 61.7 65.7 51.6 91.1| 0.1s 61.6
77.5 86.8 36.5 75.3 27.0 37.5 64.0 66.8 48.7 87.8|14.5ms 60.8
71.8 85.3 44.8 76.2 27.0 33.4 68.3 70.0 51.8 88.6/14.5ms 61.7

N X X XXX XXX XN NN N \|Pre-Train

data. Moreover, supervised pre-training on ScanNet frame-level data is
also explored. That is, the proposed models trained on the ScanNet
dataset are further fine-tuned on the SUN RGB-D dataset. The pre-
training further improves the AP25 of proposed models by 1.2 % and
2 %, respectively. The fused model reaches the best AP25 (63.7 %) among
all methods.

Also, bookshelves are challenging for point cloud-based detectors, as
they are large and hard to distinguish from walls. Thanks to the large
perceptive field and the capability to capture fine-grained local features

64

3.4 Experiments and Analysis

of 2D CNNs, the proposed geometry-only model achieves the best AP25
on the class bookshelf among all geometry-only methods. Furthermore,
the fused model surpasses all previous methods by a large margin.

It is worth noting that several methods in comparison [28, 50, 174,
259, 284] are optimized variants of VoteNet [173]. They aim to improve
the mean average precision rather than the speed. The proposed 2.5D-
VoteNet, however, significantly improves both aspects at the same time.
The results show that both geometry-only and fused models achieve
impressive trade-offs between the detection quality and inference latency.
Also, thanks to the efficiency of the early fusion strategy, the run-time
difference between the geometry-only and fused models is unnoticeable.

3.4.1.2 ScanNet Single-Frame Object Detection

The detection results in the ScanNet frame-level detection task are shown
in Table 3.2. The reported AP25 is averaged over 18 object classes, fol-
lowing the standard configuration on this dataset [28, 173]. Since the
task is newly introduced and not considered in previous works, the per-
formance of SOTA methods on this task is unavailable. This chapter
compares proposed methods with the baseline VoteNet using its official
open-source code base. As shown in Table 3.2, the geo-only and fused
2.5D-VoteNet achieves 6.8 % and 7.2 % higher AP25 than the baseline
VoteNet, respectively. The improvement on this dataset is more signifi-
cant than on SUN RGB-D. It is because frames from ScanNet are more
challenging due to more partially visible objects and more hard samples,
e.g., doors and curtains (see Figure 3.4).

Table 3.2 Detection results on the ScanNet frame-level detection task.

Methods AP25 (%)
VoteNet [173] 44.0
2.5D-VoteNet (geo) 50.8

2.5D-VoteNet (fused) 51.2

65

3 Real-Time 3D Object Detection using Depth Maps

3.4.2 AQualitative Results

Qualitative results are provided to visualize the detection results and
learned features of the proposed method.

3.4.2.1 Object Detection Results

Ground Truth VoteNet 2.5D-VoteNet

N
Bookshelf ~ Sofa

Figure 3.3 Qualitative results on SUN RGB-D dataset. Some labels in the dataset have
flaws.

As qualitative results, the detected boxes from 2.5D-VoteNet (geometry-
only version for a fair comparison) and VoteNet are illustrated in Fig-
ure 3.3. The proposed model can detect partially visible objects (i.e., sofas
in the top scene), large objects (i.e., bookshelves in the middle scene),
and severely cluttered small objects (i.e., chairs in the bottom scene).
2.5D-VoteNet obtains better detection quality than the baseline method
VoteNet. Notice that the labels in the SUN RGB-D dataset have some
flaws since the ground truth in Figure 3.3 misses some bounding boxes
(e.g., sofas in the top row). However, these objects are correctly detected by

66

3.4 Experiments and Analysis

o

Figure 3.4 Qualitative results on single frames from the ScanNet dataset.

2.5D-VoteNet. It implies that the proposed method generalizes well and
does not over-fit the labels. Besides the SUN RGB-D dataset, Figure 3.4
also illustrates the detection results on ScanNet.

3.4.2.2 Feature Maps from Backbone

An interesting question about the depth map-based 3D detection pipeline
is, what features can the 2D backbone learn? In this experiment, the
output feature map of the backbone, which has a resolution of 52x68
and 256 channels, is visualized. Specifically, each channel of the feature
map is normalized into the interval [0, 1] and plotted as color maps (also

67

3 Real-Time 3D Object Detection using Depth Maps

Figure 3.5 Visualization of learned feature maps from the backbone in a 2.5D-VoteNet.
The lighter the colors, the higher the activations.

known as activation maps or heat maps). Some representative activation
maps are shown in Figure 3.5. It illustrates that the 2D backbone can
learn rich features from depth maps. For instance, maps in the first row
show high activation at object edges, whereas the second row highlights
object surfaces. Meanwhile, the last row presents large values in the
background.

3.4.3 Analysis

Comprehensive experiments are conducted to justify the design of the
proposed models.

3.4.3.1 Impact of RDConv

Experiments are conducted to clarify the impact of the proposed RD-
Conv. Table 3.3 shows that, with standard convolution as the first layer,
the depth map-based pipeline does not generate good detection re-
sults (56.1 % AP25). Also, the training process is unstable, where a mas-
sive fluctuation of the training loss can be observed. It might be due to

68

3.4 Experiments and Analysis

Table 3.3 Impact of first layers and GloU-loss on the detection results on SUN RGB-D.
First layers refer to layers that directly use RGB images or depth maps as input. Metric:
AP25 in percentage. D: depth maps. I: RGB images.

First Layers Input w/o GIoU w/GIoU
Conv D 55.0 56.1
RDConv D 58.7 60.4
Conv + RDConv D 59.0 60.8
Conv + RDConv ~ D+I 60.6 61.7

over-fitting since standard convolution takes absolute depth as input
and learns relative spatial relations indirectly. By simply replacing the
first layer with RDConv, the network gains a significant performance im-
provement (~4 %), and the instability is also removed. The result proves
that RDConv is the key component that enables the proposed depth map-
based detector to learn informative features. While the network with
one RDConv alone as the first layer already achieves competitive per-
formance (60.4 % mAP), combining the absolute depth and RGB fusion
brings further improvement (0.4 % and 0.9 %), respectively.

3.4.3.2 GloU Loss

As explained by Zhou et al. [289], object detection benefits from IoU-
based losses since they unify the optimization objective and the evalu-
ation metric, i.e., the overlap of predictions and group truth boxes (cf.
Appendix C.2). To clarify the influence of the GloU-loss, this experi-
ment removes it and trains 2.5D-VoteNet with the same loss function
as the baseline method VoteNet [173]. As shown in Table 3.3, using 3D-
GloU loss, the geometry-only network gains 1.8 % improvement, whereas
the fused version gains 1.1 % (absolute). However, even without the ad-
vanced loss function, the proposed networks outperform the baseline
VoteNet and reach comparable results with SOTA methods.

3.4.3.3 Fusion Strategies

This experiment evaluates different fusion strategies, including directly
concatenating normalized depth maps to RGB images as the fourth chan-

69

3 Real-Time 3D Object Detection using Depth Maps

Table 3.4 Detection results with different fusion strategies on the SUN RGB-D validation
set. Early Fusion is the proposed strategy in this chapter.

Fusion First Layers AP25 (%)
Geometry-only RDConv + Conv 60.8
RGB-only Conv 53.3
Naive concatenation Conv 59.9
Early fusion RDConv + Conv 61.7
Late fusion RDConv + Conv 54.5

nel, early fusion with an extra convolution layer to accept RGB values (see
Figure 3.2), and late fusion with two backbones. By the late fusion, the
RGB backbone is a ResNet-34 pre-trained on ImageNet [44] with similar
up-sampling layers as in Figure 3.2. With such a two-stream structure,
the network learns geometrical and color features with different back-
bones. Learned features are then concatenated to build feature carriers.
To balance the learning rate in different modalities, the late fusion variant
applies the multi-tower training strategy [242], following the method
of Qietal. [174].

As shown in Table 3.4, the simple and efficient early fusion strategy
brings the best result (61.7 % AP25). On the contrary, early fusion often
worsens the detection results of point cloud-based methods, as discussed
in [93, 174]. It is because images and point clouds have distinct proper-
ties. For instance, images are regular dense data with a high resolution.
However, point clouds are irregular and sparse. Also, they have a lower
resolution due to down-sampling. This observation implies that a depth
map-based pipeline simplifies the fusion of geometry and color infor-
mation. Also, the geometry-only model brings better results than naive
concatenation (60.8 % vs. 59.9 % AP25), which proves the effectiveness
of RDConv. Interestingly, the late fusion does not generate good results
(54.5 % AP25). It might be caused by over-fitting, as the two-stream struc-
ture requires more training data.

70

3.4 Experiments and Analysis

65

55 | 1
| —e— Mean —e— Max —e— center |
:

AP25 (%)

50
0 20 50 75

Percentage of extra bad pixels

Figure 3.6 Performance of different reference depths on the SUN RGB-D dataset. Absolute
depth is not used, to emphasize the contribution of RDConv.

3.4.3.4 Reference Depth

RDConv uses the masked mean average depth in each sliding window as
a reference (Equation 3.3). This experiment evaluates other options, e.g.,
using the mean or max value in each sliding window instead. Moreover,
depth maps in the real world may contain more noise than the SUN
RGB-D dataset since offline post-processing is applied in the dataset
for a better data-to-noise ratio [212]. To validate the robustness of the
proposed networks, this experiment randomly adds extra bad pixels
into depth maps. Figure 3.6 shows that the three choices deliver similar
results when no additional bad pixels are added. However, the mean
value brings a slightly better result than the max and center values when
depth maps have more bad pixels. This experiment shows that using the
mean value in RDConv makes models less sensitive to noises in data.

3.4.3.5 Kernel Size

62
60| o—e—"°
58 L L L L

3 5 7 9
Kernel’s side length in RDConv

AP25 (%)

Figure 3.7 Performance of RDConv with different kernel sizes on the SUN RGB-D dataset.

71

3 Real-Time 3D Object Detection using Depth Maps

Since RDConv is an essential component in 2.5D-VoteNet, it is mean-
ingful to investigate the impact of its kernel size. A 7x7 kernel is applied
with the default setup. This experiment trains a series of models with
kernel sizes of 3x3, 5x5, 7x7, and 9x9, respectively. The absolute depth is
not used in this experiment, so the performance relies only on RDConv.
As shown in Figure 3.7, the 3x3 kernel generates 59.9 % AP25 on the
SUN RGB-D dataset. The value increases to 60.0 % and 60.4 % with 5x5
and 7x7 kernel, respectively. A larger kernel (9x9) does not bring more
improvement.

3.4.3.6 Different Encoders

This experiment tests the geometry-only 2.5D-VoteNet with different
input resolutions and encoders (i.e., the down-sampling parts of the
backbone). As shown in Table 3.5, the AP25 drops by 1.1 % when the
resolution is reduced to 320x416. It implies that a high input resolution is
beneficial for 3D detection. However, a resolution higher than 416x544 is
not applicable due to the limitation of the dataset. To research the impact
of model depth, the default ResNet-34 in the 2D backbone is replaced
with ResNet-18 and ResNet-50 [80]. The AP25 of the ResNet-34-based
backbone is 0.5 % better than the ResNet-18-based one. However, the
deeper ResNet-50 leads to a worse result. It is probably due to over-fitting
since only ~5000 depth maps are used to train the model.

Table 3.5 also reports the performance with other well-known CNNss,
e.g., VGG-16 [207] and MobileNetV2 [194]. Similar to the configuration
with ResNets, VGG-16 and MobileNetV2 are modified by replacing their
first layer with a strided 7x7 convolution and a strided 7x7 RDConv. The
detectors reach similar performance with ResNet-34 and MobileNetV2.
The performance with VGG-16 is 2.1 % lower than ResNet-34 and 1.4 %
lower than MobileNetV2. It is reasonable since VGG-16 is an early archi-
tecture with less optimization, e.g., skip connections [80]. On the contrary,
MobileNetV2 and ResNet-32 perform similarly. The results show that
the proposed 2.5D-VoteNet is not sensitive to the choice of 2D encoders.

72

3.4 Experiments and Analysis

Table 3.5 Detection results with different structures of 2D encoders in the backbone. All
models use depth maps as input.

Resolution Encoder AP25 (%)

416x544 ResNet-18 60.3
320x416 ResNet-34 59.7
416x544 ResNet-34 60.8
416x544 ResNet-50 59.9
416x544 VGG-16 58.7

416x544 MobileNetV2 60.1

3.4.3.7 Calibration-Awareness of the Backbone

With the known camera calibration, a depth map can be converted to
a point cloud. As mentioned in Section 3.2.2, the 2D backbone of 2.5D-
VoteNet does not take the camera calibration as input. On the contrary,
point cloud-based networks are calibration-aware, as point clouds al-
ready contain this information. Since the proposed pipeline applies a
2D CNN to extract features directly from depth maps, the backbone
receives less information than point cloud-based methods. Therefore,
one interesting question is, would the performance of proposed models
be improved if the camera calibration is explicitly or implicitly provided?

A straightforward approach is concatenating additional features to
feature carriers. This experiment compares different choices of additional
features, including 3D coordinates of feature carriers in the world coordi-
nate system (i.e., intrinsic and extrinsic parameters), the 3D coordinates
of feature carriers in camera coordinate (i.e., intrinsic), the vectorized cam-
era matrix (i.e., intrinsic), and the Euler angles of the camera rotation (i.e.,
extrinsic). This experiment also evaluates a unique type of convolution
layer CAM-Conv [55], directly incorporating camera intrinsic parameters
into the standard convolution operation.

The obtained AP25 using these variants are reported in Table 3.6. In-
terestingly, although the additional features inject camera calibrations
into the detection head, they either worsen the results or do not make
significant differences. One hypothesis is that the 2D backbone of 2.5D-

73

3 Real-Time 3D Object Detection using Depth Maps

Table 3.6 Detection results when camera calibrations are concatenated as additional
features to the output of the 2D backbone. The baseline in this experiment is a geometry-
only 2.5D-VoteNet. The additional features are normalized if necessary.

Features AP25 (%)
Baseline (256D features) 60.8
+ 3D coord. (upright) 60.3
+ 3D coord. (camera) 60.1
+ Camera matrix 60.6
+ Euler angles 60.7
+ CAM-Conv [55] 60.6

Table 3.7 Impact of scaling and rotating the depth maps. The geometry-only 2.5D-VoteNet
is applied in this experiment.

Data Augmentation AP25 (%)

With scaling and rotation 60.8
Without scaling and rotation 56.4

VoteNet already learns invariance to the camera calibration, thanks to
the applied data augmentation. Specifically, depth maps and images are
randomly scaled and rotated around principle points during training.
Meanwhile, the camera calibrations are adjusted accordingly, so the aug-
mented depth maps can be converted to the same 3D coordinates as the
original depth maps. By doing this, the network has to learn calibration
invariance, as the calibration changes during the training, but the 3D
geometry remains the same. To validate this hypothesis, a 2.5D-VoteNet
is trained without scaling and rotation. As Table 3.7 shows, the AP25
drops by 4.4 % (absolute). The result implies that the proposed models
learn calibration invariance via data augmentation. Therefore, the extra
features mentioned above are unnecessary.

74

3.4 Experiments and Analysis

Table 3.8 Speed and model size of 2.5D-VoteNet models and the baseline. Pre-processing
is excluded since it runs in parallel on the CPU.

Methods Latency (ms) Size

Backbone Head NMS Total | (MB)
VoteNet (original) [173] - - - 100 | 11.7
VoteNet (reproduced) 59.1 6.6 03 66.0 | 11.7
2.5D-VoteNet (geo) 7.7 6.6 03 145 | 674
2.5D-VoteNet (fused) 7.7 6.6 03 145 | 674

3.4.3.8 Model Size and Speed

For a fair comparison, this chapter adopts the open source code of VoteNet
and measures the model speed with the same setup in Section 3.3.4. Due
to different hardware and setup, the run-time is shorter than in the
original publication. As shown in Table 3.8, the proposed models are 4.5
times faster than the baseline, thanks to the efficient 2D backbone. The
speed of the geometry-only and the fused model is reported as the same
since the difference is too small to be measured. Also, the fused version
has one more convolution layer than the geo-only model, and the layer
has less than 5000 parameters.

To validate the proposed pipeline on mobile devices, a 2.5D-VoteNet
is also tested on an NVIDIA Jetson Xavier NX, an onboard computer
system for edge computing using GPU. The model runs with 148 ms per
frame (~7 FPS) using PyTorch.

3.4.3.9 Run-Time of Pre-Processing

The inference time reported in Section 3.4.3.8 excludes the pre-processing
since it usually runs in parallel on the CPU. However, pre-processing
greatly impacts the latency when the CPU has less computational power
or has to accomplish all computations (i.e., no co-processor available).
Table 3.9 compares the pre-processing times of the depth map-based
detection pipeline and the baseline VoteNet. The former includes scaling
a depth map and an RGB image to a fixed size of 416x544 and normalizing
their pixel values to [0, 1]. Also, an 8-times down-sampled copy of the

75

3 Real-Time 3D Object Detection using Depth Maps

Table 3.9 Comparison of single-thread pre-processing time of proposed models and the
baseline.

Methods Pre-Processing (ms)
VoteNet 19.3
2.5D-VoteNet (geo-only) 11.6
2.5D-VoteNet (fused-only) 17.1

depth map is created. To build feature carriers, the CPU also lifts the
down-sampled depth map to the 3D space and further samples 1024
points using farthest point sampling. The latter contains primarily the
time cost of transforming the original depth map into the 3D space and
randomly sampling 20000 points.

The run-time is measured using the desktop computer described in
Section 3.3.4. The reported times include loading data from the memory
and sending data to the GPU. For a fair comparison, all implementations
use standard libraries e.g.,, NumPy and OpenCV, with multi-threading
disabled. As shown in Table 3.9, both proposed models require shorter
pre-processing time than the baseline VoteNet, as converting depth maps
to point clouds is computationally expensive. The results show that the
depth map-based pipeline accelerates not only the computation of neural
networks but also the pre-processing compared to point cloud-based
methods.

Moreover, the geometry-only model requires less time than the fused
model since it does not load and process RGB images. The single-thread
pre-processing time of the fused model is longer than its inference
time (14.5 ms). However, it would not bottleneck the frame rate of pro-
posed models, as multi-threading and multi-processing are often em-
ployed in real-world applications for parallelized pre-processing.

3.5 Additional Comparisons with Related Works

The previous contents of this chapter focus on comparing the perfor-
mance of 3D object detection using depth maps and point clouds. This

76

3.5 Additional Comparisons with Related Works

chapter compares the proposed method with other related approaches
to clarify its uniqueness and novelty.

3.5.1 2D CNNs for Range Images and Depth Maps

As discussed in Section 2.2.8, many methods for autonomous driving
project point clouds to the bird-eye-view [117, 206, 283, 291]. However,
they are not suitable for cluttered indoor scenes. Also, some methods [32,
122, 148] transform LiDAR point clouds into range images. However, they
directly predict 3D bounding boxes on 2D feature maps and consequently
lose precise 3D spatial information. RangeRCNN [127] combines the
LiDAR range image with point cloud and bird-eye-view representations
for 3D detection. However, this pipeline is still computationally expensive
due to the complicated hybrid structure. Bewley et al. [19] propose range-
conditioned dilated convolution for scale invariant 3D detection on range
images. In contrast, the proposed method in this chapter addresses the
absolute depth invariance of local features. Moreover, some methods [243,
261, 262] mimic the behavior of 3D CNNs using 2D CNNs. However, this
chapter shows that capturing geometrical features on depth maps does
not necessarily depend on such behaviors.

3.5.2 RGB Fusion in 3D Detection

Since RGB images provide complementary information to 3D coordinates,
many works fuse color and geometrical features for more robust and
accurate object detection. Some methods [172, 265] generate 2D regions
of interest (Rol) on RGB images using a pre-trained 2D detector, while
objects within each 2D Rol are detected via point cloud-based networks.
Also, some approaches [10, 98, 213, 238] enrich point features with high-
level features from RGB images. ImVoteNet [174] augments the voting
module of VoteNet [173] using image votes from a 2D detector. However,
all these methods extract color features using a separate 2D CNN (i.e.,
late fusion), which inevitably increases the computational cost. On the
contrary, the proposed pipeline in this chapter applies a simple and
efficient early fusion strategy.

77

3 Real-Time 3D Object Detection using Depth Maps

3.6 Conclusions

This chapter introduces 2.5D-VoteNet, a simple, powerful, and efficient
method for real-time 3D object detection. The proposed models achieve
state-of-the-art performance and show significant speed improvement
over previous point cloud-based methods. Also, a simple yet effective
relative depth convolution is proposed to capture strong features from
depth maps. This chapter also explores supervised pre-training and fea-
ture fusion for better detection results. Comprehensive experiments are
conducted to justify the design choices, e.g., kernel size, fusion strategy,
and reference depth.

Moreover, the supervised pre-training on ScanNet frame-level object
detection task shows promising benefits (see Table 3.1). However, 3D
labels might be unavailable or costly to obtain in practice. To pre-train
3D neural networks using unlabeled data, Chapters 4 and 5 explore
self-supervised technologies for better label efficiency.

Furthermore, this chapter provides an interesting observation that even
though single-view depth maps and point clouds represent the same
information, they lead to different results in object detection. It implies
that data representations affect the feature learning in 3D computer vision
and inspires Chapter 4 to exploit properties of different representations
in contrastive learning.

On the other hand, the proposed depth map-based method has the
limitation that it is not applicable if the input point cloud cannot be
represented as a single-view depth map. It motivates Chapter 5 to apply
transformers [235] as computationally efficient models for multi-view
point cloud understanding.

78

4 Invariance-Based Contrastive
Learning for Label Efficiency

Chapter 3 has demonstrated that supervised pre-training can signifi-
cantly improve the performance of neural networks in downstream tasks.
However, this technique relies on labeled data, which limits its applica-
tion in practice. At the same time, self-supervised pre-training for 3D
vision has drawn increasing research interest in recent years (cf. Sec-
tion 2.4). To learn informative representations, a lot of previous works
exploit invariances of 3D features, e.g., perspective invariance [260] be-
tween view angles, modality invariance between depth maps and RGB
images [134], format invariance! between point clouds and voxels [285].
Although they have achieved promising results, previous research lacks
a fair comparison of these invariances. To address this issue, this chap-
ter introduces a unified framework, under which various pre-training
methods are systematically investigated. This chapter conducts extensive
experiments and provides a closer look at the contributions of different
invariances in 3D pre-training. Also, it proposes a simple but effective
method that jointly pre-trains a 3D encoder and a depth map encoder us-
ing contrastive learning. Models pre-trained with the proposed strategy
gain significant performance boosts in downstream tasks. For instance, a
pre-trained VoteNet [173] outperforms previous methods on SUN RGB-
D [212] and ScanNet [43] object detection benchmarks with a clear margin.
The main contents of this chapter have been published in [295].

1 In this chapter, point clouds, voxels, and depth maps are referred to as different formats
of 3D data. The term data format is used instead of data representation. Since the learned
features are often referred to as representations in the literature, the term data represen-
tation and the corresponding representation invariance might cause confusion in the
context of contrastive learning.

79

4 Invariance-Based Contrastive Learning for Label Efficiency

4.1 Introduction

In order to cope with challenging tasks, e.g., object detection, scene un-
derstanding, and large-scale semantic segmentation, neural networks
for 3D vision are continuously becoming deeper, more complicated, and
thus, more data-hungry. In recent years, self-supervised pre-training
has shown promising progress in natural language processing and com-
puter vision (cf. Section 2.4). The models gain better performance and
convergence in downstream tasks by learning powerful representations
on unlabeled data. Self-supervised pre-training is especially appealing in
3D vision because 3D annotation is more costly than the 2D counterpart.

Self-supervised pre-training for 3D vision has already gained some
research interest. A lot of previous works use contrastive learning as a
pretext task to pre-train models, as it has shown superior performance
in other domains [94, 134, 135, 260, 285] (cf. Section 2.4.3). One clas-
sic hypothesis in contrastive learning is that a powerful representation
should model view-invariant factors. A common approach to creating
different views is data augmentation. Moreover, a 3D scene can be cap-
tured from various view angles, with different sensors (e.g., RGB and
depth cameras), and represented with different formats (e.g., voxels, point
clouds, and depth maps), whereas these factors do not change the major
semantic information in the scene. Thus, previous works exploit the per-
spective [260], modality [134] and format invariance [285] of 3D features
using contrastive learning, as shown in Figure 4.1. Although these works
have shown impressive results, the contribution of the invariances is still
under-explored, and a fair and systematic comparison of them has not
been performed.

This chapter establishes a unified framework for 3D self-supervised
learning. The framework takes into account the local point/pixel-level
correspondence as well as the global instance-level correspondence. Also,
the framework unifies contrastive learning with different input data for-
mats and network structures, including depth-depth, point-point, depth-
point, image-point, and point-voxel contrast. The first insight of this
chapter is that jointly pre-training a 3D encoder and a 2D encoder (e.g.,
image-point, depth-point) brings better performance than pre-training
them separately or jointly pre-training two encoders with the same di-

80

4.1 Introduction

(a) Perspective invariance (b) Modality invariance (c) Format invariance

Figure 4.1 Invariances in contrastive learning for 3D vision. Without loss of generality,
only the local correspondence is considered. Each column includes two views of the same
scene. The exemplary correspondences across two views are illustrated with arrows, which
means the two points/pixels have the same coordinate in the 3D space. In self-supervised
pre-training, the similarity between corresponding local features is maximized, which
forces networks to learn invariance between views. (a) Perspective invariance in two views
of the same scene from different view angles. RGD images are visualized instead of point
clouds for better clarity. (b) Modality invariance in an aligned image-point cloud pair. The
data formats are also different in this case. This chapter refers to it as modality invariance
to distinguish it from the format invariance within a single modality. (c) Format invariance
between a depth map and a point cloud converted from: it.

mension, e.g., a voxel and a point cloud encoder, which are both three
dimensional.

Furthermore, a simple but effective method is proposed to exploit the
format invariance between depth maps and point clouds/voxels. The in-
tuition behind this design is that depth maps are complementary to point
clouds and voxels, although they contain almost the same information.
The depth map format has the advantage of being the natural view of a
scene and clearly showing the perspective relationship between objects.
Also, real-world depth maps usually contain bad pixels, which means
the depth values are unmeasurable (c¢f. Appendix A.1). In depth maps,
the outlines of unmeasurable regions are sharp and clear, e.g., the chair
leg in Figure 4.1(c). On the contrary, this information is lost if depth maps
are lifted into 3D space. Moreover, thanks to its efficiency, a 2D encoder
allows high-resolution depth maps as input, which preserves more fine-

81

4 Invariance-Based Contrastive Learning for Label Efficiency

grained details in data. However, point or voxel-based networks usually
take down-sampled or quantized input to avoid the high computational
cost and memory usage, which results in an inevitable information loss.
On the other hand, point clouds and voxels are 3D formats, and the corre-
sponding networks can directly capture accurate 3D geometry, whereas
depth map-based networks learn spatial relationships indirectly. Also,
depth maps alone do not contain information on camera calibrations. By
contrasting the features extracted from two complementary data formats,
the two networks learn appreciated properties from each other.
The contribution of this chapter is many-fold:

1. It introduces a unified self-supervised pre-training framework for
multiple network architectures and data formats in 3D vision.

2. It provides a closer look at invariances in 3D pre-training, e.g.,
format, perspective and modality invariance.

3. It proposes a novel approach for 3D self-supervised pre-training
based on the format invariance between depth maps and a 3D
format (e.g., point clouds and voxels).

4. A point cloud-based object detector pre-trained using the proposed
method archives SOTA results on multiple downstream datasets,
e.g., object detection on the SUN RGB-D [212] and the ScanNet [43]
benchmark.

5. The proposed method is the first self-supervised pre-training ap-
proach for depth map-based networks (e.g., the depth map-based
object detector proposed in Chapter 3).

4.2 Invariance-Based Contrastive Learning

This chapter researches the invariances in 3D self-supervised learning,
including perspective, modality and format invariance. For a fair com-
parison, it is meaningful to investigate them under a unified framework.
In this section, some representative works are first briefly revisited. Then,
a unified framework is introduced to which all previous methods fit.

82

4.2 Invariance-Based Contrastive Learning

Moreover, several contrastive learning methods under the unified frame-
work are presented. At last, some technical details of the framework are
provided.

4.2.1 Unified Framework

The concept of contrastive learning is provided in Section 2.4.3. This
chapter pays attention to three previous works:

1. PointContrast [260]: It generates two views of a scene from different
perspectives and learns the local correspondences between 3D
points. This method assumes that the extrinsic camera parameters
are available.

2. DepthContrast [285]: Following the successful MoCo pipeline [35,
82] (see Section 2.4.3), it augments two views of the same point
cloud to build a positive pair and learns global correspondences
by distinguishing the positive samples from a large number of neg-
ative samples. Also, it proposes exploiting cross-format contrast
between point clouds and voxels.

3. Pixel-to-point [134]: Its overall pipeline is similar to PointContrast.
However, it learns local correspondences between a point cloud
and an RGB image to benefit from RGB encoders pre-trained on
large-scale datasets, e.g., ImageNet [44].

To compare these methods, a unified framework must support both
the local and global correspondence of 3D data and at least two different
input types, either from different modalities (e.g., RGB images and point
clouds) or with different data formats (e.g., voxels and point clouds).

The proposed framework is shown in Figure 4.2, which uses a single-
view depth map or RGB-D image to generate required data. However,
experiments show that the pre-trained weights generalize well on recon-
structed multi-view 3D scans. Without loss of generality, the following
explanations assume that the input of the framework is a depth map.
The input is randomly cropped into a crop C;, which is further randomly
augmented and converted into views a; and ;. Here a and S refer to

83

4 Invariance-Based Contrastive Learning for Label Efficiency

v .

i i I:> PaEnCOder]-T-[Head}q—

%
b o Point/Pixel-level

EMA
_L Contrastive Loss
- @
Ness E> B Encoder Head i Memory Bank
! EMA vy o (" etmcetovd)

Instance-level
| 4 “ - a Encoder J [Head
7‘ ERLIN | W afbncoder) ‘

Contrastive Loss

L +Momentum +M. |k«
i Memory Bank
Instance-level
pEncoder | | Contrastive Loss
+ Momentum +M.
|:>input of encoders \: input of momentum encoders - without gradient =~ — with gradient

Figure 4.2 A unified framework for 3D contrastive learning. Here, a and S refer to data
formats, e.g., point clouds, images, and depth maps.

data formats (e.g., depth maps and point clouds, as visualized in Fig-

ure 4.2). Then, &1 and $; go through respective encoders and are encoded
B
1

indicate local feature vectors, respectively. Here, a subscript i instead of a
superscript is used to distinguish local features with the same format, in
order to emphasize that the features are from one view (i.e., they can be
regarded as vectors from a matrix). The « and the § encoder are usually
different networks matching the input formats. However, in the case
of « = B, they share the weights, following PointContrast [260]. As «;

and B; are generated from the same crop C;, the dense correspondence
B

between sets {v¥} and {vi }
extrinsics. In this chapter, the InfoNCE loss [160] is used to train dense
local correspondences, which is further explained in Section 4.2.3.

To learn informative representations, the framework also considers the
global correspondence between views. Following DepthContrast [285],

instance discrimination is performed using global features q* and g,

into pixel-wise or point-wise features {v{} and {Vf }, where v{ and v

can be easily calculated without camera

84

4.2 Invariance-Based Contrastive Learning

which are globally pooled and transformed from {v} and {viS }, respec-

tively.

To preserve a large number of negative samples for effective contrastive
learning, memory banks and momentum encoders are also applied, fol-
lowing the successful MoCo pipeline [35, 82] (cf. Section 2.4.3). Moreover,
Section 4.3.4.4 further shows that the proposed methods also work with
other contrastive learning schemes, e.g., BYOL [72] and SimSiams [33].
Similar to crop C;, the framework crops C, from the same depth map,
generates a, and f,, and feeds them to the momentum encoders. The
globally pooled and transformed features from momentum encoders are
indicated by k* and kP, respectively. They are dynamically saved and
updated in memory banks during training. More details on the MoCo
pipeline are provided as related works in Section 2.4.3.

4.2.2 Variants of Strategies

As the overall framework is shown, various contrastive learning strate-
gies under this framework are now introduced. As shown in Figure 4.3,
following variants are investigated in this chapter:

1. DPCo (Depth-Point Contrast), which is proposed in this chapter
and learns format invariance between depth maps and point clouds.

2. DVCo (Depth-Voxel Contrast), which is proposed in this chapter
and learns format invariance between depth maps and voxels.

3. PVCo (Point-Voxel Contrast), which learns format invariance be-
tween point clouds and voxels. It is extended from DepthCon-
trast [285].

4. PPCo (Point-Point Contrast), which only uses point clouds as input.
It serves as a baseline method as it only learns invariance against
data augmentation.

5. IPCo (Image-Point Contrast), which learns modality invariance be-
tween RGB images and point clouds. It is inspired by Pixel-to-
point [134].

85

4 Invariance-Based Contrastive Learning for Label Efficiency

6. PointContrast [260], which learns perspective invariance between
view angles. It is a special case of the unified framework since it
generates the crops C; and C, from two overlapping depth maps
from different view angles and only considers the local correspon-
dence.

Point Cloud

Point Cloud E>

Voxel)

Point Cloud

i) (] (7]
B £ £
& e i
2 £ 2
Ry R~y £~y
el

g 3 g
& & &
=1 [=1 =1
5 5 5

P Point Cloud Vil
(a) DPCo (c) PVCo
P
P. 1)
¥ Point Cloud |:> ° © Point Cloud | Ly v
C B £ &
: @ 9 Point Cloud |:> &,
ﬁ o% L& P, -9
) 9 ‘ 8 e
Point Cloud & = &
R E El TG 5
Q| ° =) Q
(d) PPCo (e) IPCo (f) PointContrast

Figure 4.3 Contrastive learning strategies under a unified framework.

This chapter proposes contrasting a 3D and a 2D format of the same
geometric data (i.e., DPCo and DVCo). Although they represent the
same 3D scene, the two formats are complementary to some extent. As
discussed in Section 4.1, point clouds and voxels directly represent 3D
geometry while having inevitable information loss due to sampling. On
the contrary, depth maps reserve more information but only represent
the 3D scene indirectly. Experiments show that the proposed methods
perform significantly better than PPCo and PVCo, which contrast only
3D formats.

4.2.3 Implementation Details

The implementation details of the unified framework are provided in
the following.

86

4.2 Invariance-Based Contrastive Learning

4.2.3.1 Point Cloud Encoder

A U-shaped PointNet++ [171] is used as a point cloud encoder, following
the network configuration of Qi etal. [173]. The encoder consists of 4
down-sampling and 2 up-sampling modules. 20 000 points are used as
input in the pre-training. The number of output points is fixed at 1024.
More details on PointNet++ are presented in Section 2.2.5.

4.2.3.2 Voxel Encoder

A sparse residual U-Net [39] with 34 convolution layers is used to encode
voxel inputs, following previous works [94, 260]. Point clouds are quan-
tized in pre-training with the voxel size 2.5 cm. The output of the voxel
encoder has the same resolution as the input. The concept of sparse 3D
CNN:s is provided in Section 2.2.4.

4.2.3.3 Depth Map Encoder

The U-shaped 2D CNN presented in Chapter 3 is employed as a depth
map encoder for all experiments in this chapter. The network is a modi-
fied ResNet-34 [80] with relative depth convolution and additional up-
sampling layers. Its input is resized and zero-padded to the resolution
352x352. The output is a feature map down-sampled with factor 8.

4.2.3.4 Color Image Encoder

Analogous to the depth map encoder, a ResNet-34 with extra up-sampling
layers is employed to encode the RGB images. It is initialized with the pre-
trained weights on ImageNet [44] provided in PyTorch [167], following
the setup of Liu et al. [134].

4.2.3.5 Momentum Encoders and Projection Heads

The momentum encoders have the same structure as the encoders. Their
weights are updated via exponential moving average (EMA) from the
corresponding encoders instead of back-propagation. Global max pooling
is used to aggregate a global feature. The pooling layer is followed by an
MLP consisting of 3 fully connected layers. The channel number of the

87

4 Invariance-Based Contrastive Learning for Label Efficiency

input layer is determined by the output dimension of the encoder. The
intermediate and the output layer have 512 and 128 channels, respectively.
The projection heads of momentum encoders are updated via EMA as
well.

4.2.3.6 Loss Function

This chapter applies contrastive learning for self-supervised pre-training.
The loss function consists of a local sub-loss L; and a global sub-loss L.
The local sub-loss is an InfoNCE loss [160] which optimizes the dense
local correspondence:

L =-Y1 '
! Z % exp (vi v} /7) + Zjppexp (vi v /7)

If the corresponding 3D coordinates of feature vector v and vf are close,

exp (Vf‘ -vf/r)

(4.1)

they are considered as a positive pair and have i = j (cf. Section 2.4.3).
The temperature 7 is a hyperparameter empirically set to 0.07 in all
experiments. All features are normalized using Euclidean norm before
being fed into the loss function (i.e., using the cosine similarity as the
similarity measure in Equation 2.31).

The global sub-loss is applied to perform an instance discrimination
task:

exp (q”‘ -kﬁ/T)
exp (q¢ - kP/7) + Z;\’:l‘l exp (q* - kP"/7)

(4.2)

The vector q* refers to the global feature from the & encoder and k?
the global feature from the § momentum encoder. Since q* and k” are
generated from the same data sample, they compose a positive pair.
Features kP correspond to other samples (i.e., negative samples) and
are read from a memory bank with the size N,. All experiments in this
chapter use N,,, = 21°.

Following previous works, the final loss is made symmetric to « and
B, which is given by

_ 1 ap Ba ap B
L_Z(Ll + L 4 Ly +Lg). (4.3)

88

4.3 Experiments and Results

4.2.3.7 Pre-Training Dataset

The ScanNet dataset [43] is used for pre-training, following previous
works [36, 134, 135, 260, 285]. ScanNet is a large-scale indoor dataset
that contains approximately 1500 scans reconstructed from 2.5 million
RGB-D frames. This chapter follows the official train/validation split
and samples 78 000 frames (one in every 25 frames) from the training set.
More details about ScanNet are provided in Appendix B.1.3. Note that
ScanNet is, in fact, a richly labeled dataset. However, no label is used in
the pre-training stage.

4.2.3.8 Data Augmentation

In each iteration, C; and C, are randomly cropped. Also, a random
square area in each crop is masked out. Standard data augmentations,
e.g., random rotation, scaling, translation, and flipping, are applied to
the point clouds and voxels. Also, depth maps are randomly rotated
around principal points, and 20 % pixels on the depth map are set to
zero, following Chapter 3. Furthermore, random color jitter, grayscale,
and Gaussian blur are used for color images.

4.2.3.9 Pre-Training Setups

All encoders are pre-trained for 120 epochs using the SGD (stochastic
gradient descent) optimizer with a momentum of 0.9 and an initial learn-
ing rate of 0.03. Pre-training is performed on two NVIDIA Tesla V100
GPUs with a total of 64 GB memory. The batch size is chosen to be as
large as possible. The batch size of different strategies varies from 32 to
64. The learning rate is reduced with a cosine schedule [139].

4.3 Experiments and Results

In this section, different contrastive learning strategies are compared and
analyzed in detail under the proposed unified framework. This section
first focuses on the point cloud-based object detection task to evaluate
the pre-training performance. Then, transfer learning results on voxels

89

4 Invariance-Based Contrastive Learning for Label Efficiency

and depth maps are demonstrated. This section also evaluates proposed
methods on synthetic data and using different contrastive schemes.

4.3.1 Invariances in 3D Self-Supervised Pre-Training

This section first focuses on the performance of transfer learning on the
point cloud-based 3D detection task since it reflects the encoder’s capa-
bility of capturing both semantic (i.e., object classification) and geometric
information (i.e., bounding box regression) and is thus representative.
Also, 3D detection using raw points is well studied in previous works (cf.
Chapter 3). Therefore, different strategies are applied to pre-train a Point-
Net++ [171]. The pre-trained weights are used to initialize a VoteNet [173],
a representative 3D object detector (see Section 2.3.3.2 for more details).
Then, the VoteNet is fine-tuned on the SUN RGB-D [212] and the Scan-
Net [43] object detection benchmark. The evaluation metrics are the mean
average precision over multiple classes with the threshold of 25 % and
50 % 3D-IoU (i.e., AP25 and AP50). Evaluation metrics for object detec-
tion are explained in Appendix C.2. Since the fine-tuning configuration is
identical for all models, the performance of fine-tuned models indicates
the effectiveness of pre-training.

4.3.1.1 Comparison under the Unified Framework

This experiment compares various contrastive learning strategies under
the proposed unified framework. As shown in Table 4.1, all pre-training
methods deliver better results than training from scratch in both 3D
detection benchmarks. Note that the ScanNet benchmark uses point
clouds reconstructed from multiple views. The unified framework, which
assumes that the pre-training data are independent single depth maps
or RGB-D images, still significantly improves the detection results on
this dataset. It implies that the weights pre-trained on single-view data
generalize well on multi-view data.

The baseline strategy PPCo utilizes the invariance against data aug-
mentation solely. However, it surpasses PointContrast [260], which relies
on extrinsic camera parameters, in two out of four metrics. It implies that
with a proper design (in this case, the dense local contrast and the MoCo-
style instance discrimination), the perspective invariance is unnecessary

90

4.3 Experiments and Results

Table 4.1 VoteNet fine-tuning performance of self-supervised pre-training strategies with
different invariances. The results without pre-training are reproduced using the open-
source code of Qi etal. [173]. They are slightly better than the original publication. All
reported values are in percentage.

Method Invariance Correspond. | SUN RGB-D ScanNet
AP25 AP50 | AP25 AP50

From scratch N/A N/A 58.4 33.3 60.0 37.6
PPCo augmentation local+global | 58.6 34.9 62.6 39.5
PointContrast perspective local 59.6 34.1 62.8 38.1
PVCo format (3D-3D) local+global 59.3 34.9 62.8 39.5
IPCo modality local+global 60.2 35.5 63.9 40.9
DPCo format (2D-3D) local+global 59.8 35.6 64.2 41.5

in pre-training. Zhang et al. [285] also report a similar observation. It is
hypothesized that the network has to distinguish inputs from very simi-
lar view angles in the instance discrimination sub-problem, as training
data are sampled from continuous RGB-D videos. This process can be in-
terpreted as hard example mining, which forces the network to focus on
perspective-relevant details. Thus, with the help of the global correspon-
dence in pre-training, the encoders implicitly learn perspective-relevant
information, but not necessarily the invariance in this case.

Moreover, PVCo, which contrasts features from point clouds and vox-
els, brings slightly better though very similar results as PPCo. It is due to
the nature of point clouds and voxels, as they both represent 3D coordi-
nates directly. Also, PointNet++ (see Section 2.2.5) and sparse 3D CNNs
(see Section 2.2.4) have similar working principles, as they all perform
local feature aggregation with shared weights and have a hierarchical
topology with sub- and up-sampling. Thus, jointly pre-training voxel and
point cloud encoders brings limited benefits to the point cloud encoder
compared to pre-training them separately. In this case, incorporating
voxel features can be regarded as a data augmentation applied to point
clouds.

However, IPCo and DPCo, which contrast a 2D data format (i.e., color
images or depth maps) and a 3D format (i.e., point clouds) achieve signif-
icantly better results than PPCo and PVCo, which utilize only 3D formats.
It supports the intuition that 2D data formats are complementary to
3D formats, and the correspondence between them can provide strong

91

4 Invariance-Based Contrastive Learning for Label Efficiency

contrast in self-supervised pre-training. More interestingly, the proposed
method DPCo, which uses only the geometrical information, achieves
on-par or better performance than the one using both geometrical and
color inputs (i.e., IPCo). It implies that the primary performance gains
of IPCo do not come from the color information but from other factors,
e.g., different resolutions and perspective fields of 2D and 3D networks.
Compared to IPCo, DPCo has the advantage that it is applicable even
if the RGB images are unavailable or hard to align with depth maps.
Furthermore, DPCo trains faster than PPCo and PVCo, thanks to the
efficiency of 2D CNNE.

4.3.1.2 Local and Global Correspondence

The unified framework supports both the local and global correspon-
dence of 3D data in the pre-training. The results in Table 4.1 are simulta-
neously affected by the two types of correspondences. In the following
experiments, the contributions of each type of correspondence are in-
vestigated separately. As shown in Table 4.2 and Table 4.3, using local
and global correspondence alone in the pre-training improves the per-
formance of encoders. This observation demonstrates the advantage of
contrasting features from 2D and 3D neural networks.

Table 4.2 Impact of different choices of local correspondences in pre-training.

Strategy SUN RGB-D ScanNet
AP25 (%) AP50 (%) | AP25 (%) AP50 (%)

From scratch 58.4 33.3 60.0 37.6
PPCo 58.7 34.8 62.2 38.8
PVCo 59.1 34.6 62.2 39.0
PointContrast 59.6 34.1 62.8 38.1
IPCo 60.1 35.6 62.5 394
DPCo 59.6 35.1 64.2 40.5

Furthermore, comparing with Table 4.1, it is clear that combining them
can bring further improvement, which is also observed in 2D pre-training,
as discussed by Wang et al. [245]. Moreover, Table 4.2 and Table 4.3 show

92

4.3 Experiments and Results

Table 4.3 Impact of different choices of global correspondences in pre-training.

Strategy SUN RGB-D ScanNet

AP25 (%) AP50 (%) | AP25 (%) AP50 (%)
From scratch 58.4 33.3 60.0 37.6
PPCo 59.3 35.1 62.7 39.3
PVCo 59.0 35.3 62.5 39.6
IPCo 59.4 34.5 63.3 40.2
DPCo 59.4 34.9 63.8 41.0

similar trends as Table 4.1, where IPCo and DPCo show superior perfor-
mance over other methods. Interestingly, in Table 4.2 IPCo and DPCo
achieve better results than PointContrast even without the global corre-
spondence.

4.3.1.3 Summary

The insights obtained from the above-presented experiments can be
summarized as follows:

1. Explicit perspective invariance in 3D self-supervised learning is
unnecessary.

2. Format invariance between 3D formats (e.g., point clouds and vox-
els) improves the performance, but the gains are marginal.

3. Format invariance between depth map and 3D formats (e.g., depth
maps and point clouds) significantly improves the performance.
Moreover, it performs slightly better than modality invariance
between point clouds and RGB images but has fewer requirements
on the training data.

4.3.2 Comparison with State-of-the-Art Methods

In Tables 4.1, 4.2, and 4.3 the proposed method DPCo shows the best
performance among all variants. It is further compared with other SOTA
self-supervised pre-training methods. Still, the fine-tuning performance

93

4 Invariance-Based Contrastive Learning for Label Efficiency

Table 4.4 Fine-tuning results of VoteNet on the SUN RGB-D and the ScanNet (scan-level)
object detection benchmark with different pre-training methods. The absent values are
not reported in original publications. The reproduced results of PointContrast and pixel-
to-point using PointNet++ as a backbone are reported, as the original publications use
voxel-based backbones. Grayed methods use additional data or annotations (i.e., unfair
comparisons). Specifically, DepthContrast (x3) [285] uses a scaled PointNet++ backbone
with more parameters and is pre-trained on both the ScanNet and the Redwood indoor
RGB-D scan dataset [165].

Pre-Training SUN RGB-D ScanNet
AP25 AP50 | AP25 AP50

From scatch 58.4 33.3 60.0 37.6

PointContrast [260] - 34.8 - 38.0

PointContrast (reproduced) | 59.5 34.0 61.6 38.2

Hou et al. [94] - - - 39.2
Pixel-to-point [134] 57.2 33.9 59.7 38.9
Pixel-to-point (reproduced) | 60.1 35.6 | 625 39.4
DepthContrast (x1) [285] 60.4 - 61.3 -

DPCo (proposed) 59.8 35,6 | 642 415
DepthContrast (x3) [285] 61.6 35.5 64.0 429
Supervised 62.0 36.3 61.9 38.6

in point cloud-based object detection tasks is used as the metric. Also, the
setup in Section 3.3.3 is applied to obtain a strong supervised baseline.
Specifically, bounding box annotations for single frames in the ScanNet
dataset are generated using the scene-level labels. Then, a VoteNet is
pre-trained with full supervision. For a fair comparison, the supervised
baseline and other self-supervised methods use the same number of
frames for pre-training.

In Table 4.4, the proposed method DPCo is compared with PointCon-
trast [260], DepthContrast [285], pixel-to-point [134], and the method
of Hou et al. [94], which have been already discussed in Section 2.4.3
and Section 4.2.1. As Table 4.4 shows, the proposed method outperforms
other self-supervised pipelines in three metrics out of four. It even out-
performs the fully supervised baseline on ScanNet with a higher AP25
and AP50. Also, DPCo has on-par performance on SUN RGB-D AP50

94

4.3 Experiments and Results

and ScanNet AP25 with the up-scaled version of DepthContrast [285],
which uses a three times larger network and is pre-trained with five times
more data. This result implies that the contribution of format invariance
between point clouds and depth maps is comparable with scaling up the
model capacity and the data amount. Furthermore, besides depth maps
(or the equivalence, e.g., range images) and camera intrinsics, which are
available in almost all 3D datasets, the proposed method DPCo does
not require any additional information, e.g., color images and extrinsic
camera parameters, while many SOTA methods do [134, 260, 285].

4.3.3 Label Efficiency

One important goal of pre-training is to transfer the features to very small
datasets. To simulate this scenario, small partitions from the downstream
datasets (e.g., 5 % and 10 %) are sampled. A VoteNet with the backbone
pre-trained by DPCo is then fine-tuned using these data. Experiments
with the same percentage share the same training samples. The validation
set is not sampled. As shown in Figure 4.4(a) and Figure 4.4(b), the pre-
training brings more improvement when less fine-tuning data (as well
as labels) are available. The trend is more evident on ScanNet, as it
contains fewer training samples than SUN RGB-D (1200 vs. 5000 in total).
Especially, the DPCo pre-training increases the AP25 on ScanNet from
13.3% to 36.5 % and the AP50 from 2.4 % to 14.4 %, when only 5 % of
fine-tuning data are used.

The experimental results demonstrate that self-supervised pre-training
significantly improves label efficiency, as the same performance can be
obtained using fewer labeled data.

4.3.4 Additional Transfer Learning Results

Previous experiments use the fine-tuning performance of point cloud-
based object detectors to evaluate different pre-training methods. Addi-
tional transfer learning results with different networks, tasks, data, and
contrastive methods are provided in the following.

95

4 Invariance-Based Contrastive Learning for Label Efficiency

60| q 60|
50| : 50|

40 1 40

AP (%)
AP (%)

30 |- 30 |-

&~ Scratch AP25 |]
—6— Scratch AP50
—= DPCo AP25 (]
—6— DPCo AP50

—E&- Scratch AP25 |]
—6— Scratch AP50
-5 DPCo AP25] 0}
—6— DPCo AP50

20 |- 20 -

10

L I
510 20 50 100 510 20 50 100

Used Data (%) Used Data (%)
(a) SUN RGB-D dataset (b) ScanNet dataset

Figure 4.4 Detection results with reduced data and label amount during fine-tuning.

4.3.4.1 Depth Map Encoders

In this experiment, a 2.5D-VoteNet is fine-tuned with its backbone ini-
tialized using pre-trained weights. The detector, which is a variant of
VoteNet with a depth map-based backbone, is introduced in Chapter 3.
To clarify the contribution of format invariance, a depth map encoder
is pre-trained using only depth maps. This strategy is similar to PPCo
in Figure 4.3 and is referred to as DDCo (Depth-Depth Contrast). Since
2.5D-VoteNet does not support multi-view input, it is only fine-tuned on
the SUN RGB-D dataset.

Table 4.5 shows that the pre-training using DDCo degrades the perfor-
mance. As a depth map is an indirect representation of 3D coordinates,
DDCo might make the depth map encoder focus on the 2D textures
instead of the actual 3D geometry, which can be regarded as over-fitting
in the pre-training task. It also implies that the pre-training of depth
map encoders is non-trivial and requires a careful design. However, the
proposed methods DPCo and DVCo consistently improve the detection
results. Since the point cloud and voxel encoders can capture 3D geomet-
rical information by their nature, they can guide the depth map encoder
and prevent it from paying too much attention to 2D patterns.

With the results in Table 4.4, it is worth noting that DPCo improves
the 3D and 2D encoders at the same time. This proves that the principle
of the proposed methods is different from knowledge distillation [87],

96

4.3 Experiments and Results

Table 4.5 Fine-tuning results of 2.5D-VoteNet on the SUN RGB-D dataset with different
contrasting strategies.

Pre-Training AP25 (%) AP50 (%)

From scratch 60.8 36.9
DDCo 56.0 31.2
DVCo 61.0 39.3
DPCo 61.4 38.8

which uses a stronger model as a teacher to improve a weaker student
model.

4.3.4.2 Voxel Encoders

To evaluate the proposed strategy on voxel-based networks, this exper-
iment applies DVCo to pre-train a voxel encoder and fine-tunes it for
semantic segmentation on the S3DIS [10] and the ScanNet [43] dataset.
More details on the two datasets are given in Appendix B.1.1 and Ap-
pendix B.1.3, respectively. The evaluation metrics for semantic segmenta-
tion tasks are explained in Appendix C.1. The performance is compared
with the not pre-trained baseline and PVCo. As shown in Table 4.6, DVCo
significantly increases the mloU (mean intersection over union) on both
segmentation tasks. Also, the results are better than PVCo, consistent
with the transfer learning results of point cloud encoders shown in Sec-
tion 4.3.1.

Table 4.6 Fine-tuning results of a sparse 3D CNN in semantic segmentation tasks. The
evaluation metric is mean IoU over multiple classes (mloU).

Pre-Training S3DIS (%) ScanNet (%)

From scratch 66.1 69.6
PVCo 66.6 70.3
DVCo 67.2 70.5

97

4 Invariance-Based Contrastive Learning for Label Efficiency

Table 4.7 Overall classification accuracy on ModelNet40 [255] test set. All reported values
are in percentage.

Network Input From Scratch Pre-Trained
PointNet++ [171] point clouds 88.6 90.4
Sparse 3D CNN [39] voxels 88.1 89.2

4.3.4.3 Object Classification on Synthetic Data

Till now, the pre-training and fine-tuning use real-world data from depth
sensors. This experiment investigates whether the pre-trained features
can generalize on synthetic data. To this end, a point cloud and a voxel
encoder are pre-trained with DPCo and DVCo, respectively. Then, they
are fine-tuned for object classification on the ModelNet40 dataset [255],
which consists of ~9800 and ~2400 CAD models for training and testing,
respectively. The dataset is explained in detail in Appendix B.2.1. For this
experiment, the CAD models are converted into point clouds and voxels
via pre-processing. Note that the PointNet++ and the sparse 3D CNN in
this chapter contain up-sampling layers to increase the resolution. The
up-sampling layers are abandoned for the classification task, and the
global features are aggregated at the lowest scale level.

As shown in Table 4.7, the weights pre-trained using real-world indoor
data improve the fine-tuning performance on synthetic CAD models.
Despite the domain gap, the classification accuracy with point clouds
and voxels is improved by 1.8 % and 1.1 % (absolute), respectively. Notice
that the baseline performance is lower than the original PointNet++ pub-
lication [171], as the network configuration in this chapter is specialized
for complex indoor scenes and is non-optimal for simple single-object
synthetic data in ModelNet40.

4.3.4.4 Other Contrastive Learning Schemes

The pipeline introduced in Section 4.2 uses a contrastive loss consisting of
a local and a global sub-loss. The global sub-loss follows the well-known
MoCo [35, 82]. This experiment investigates whether the idea of jointly

98

4.3 Experiments and Results

« Encoder]-[Head]-[Projector]— — with gradient

-+ no gradient
ﬂ |:> ﬁ Encoder = Head = Projector —[
Cosine
ey ey e
= P Momentum] +M. Similarity
e ———
= + Momentum +M. ty

(a) using BYOL [72]

E> [,a Encoder]-[Head]-[PrOJector]—

share

ﬂ E> B Encoder =~ Head = Projector
share 1

R o Cosine

i il E> P a Encoder][Head] Similarity

(b) using SimSiams [33]

Figure 4.5 Depth-point contrast with other contrastive learning methods.

pre-training a 2D and a 3D encoder works with other contrastive learning
methods e.g., SimSiams [33] and BYOL [72] (more details in Section 2.4.3).

Compared to MoCo, BYOL applies the cosine similarity loss instead of
the InfoNCE loss. Also, it uses a projector to break the symmetry and pre-
vent the mode collapse. SimSiams further simplifies the BYOL pipeline
by removing the momentum encoder and sharing weights of the Siamese
networks (i.e., two models with the same architecture). To address the
mode collapse issue, SimSiams stops the gradient from back-propagation
in one of the Siamese networks. In this experiment, SimSiams and BYOL
are modified for jointly pre-training two distinct networks. As shown in
Figure 4.5, the losses are calculated with features from different input
formats, following the unified framework in Chapter 4.2.

99

4 Invariance-Based Contrastive Learning for Label Efficiency

A depth map and a point cloud encoder are jointly pre-trained using
these methods. The point cloud encoder is then fine-tuned for 3D object
detection. For simplicity, the local correspondence is not applied in this
experiment. Besides the two methods mentioned above, this experiment
also tests an even simpler end-to-end pipeline, which pre-trains the two
encoders and projection heads end-to-end and optimizes the cross-format
similarity directly.

Table 4.8 VoteNet fine-tuning results on point cloud-based object detection tasks. Only
global correspondence is used in pre-training.

Pre-Training SUN RGB-D ScanNet

AP25 (%) AP50 (%) | AP25(%) AP50 (%)
Fromscatch | 584 333 | 600 37.6
BYOL 582 325 62.7 402
SimSiams 58.6 33.6 62.4 39.9
End-to-end 58.5 34.0 62.5 39.7
DPCo (MoCo) | 59.4 34.9 63.8 41.0

The results in Table 4.8 show that all pre-training methods improve
the detection quality on the ScanNet benchmark. However, the proposed
method DPCo, which follows the idea of MoCo [35, 82], achieves better
results than other methods. It is because the pre-training data are ex-
tracted from continuous RGB-D videos and contain many similar (i.e.,
hard) samples. To optimize the contrastive loss, the encoder of MoCo
must maximize the similarity of anchors to positive samples and the dis-
similarity to negative samples (cf. Chapter 2.4.3). On the contrary, other
methods do not consider the dissimilarity and cannot benefit from hard
samples. Moreover, other methods either bring marginal improvement
or degrade the performance on the SUN RGB-D dataset. The SUN RGB-
D benchmark is more challenging because it contains more noisy data
and requires oriented bounding box predictions instead of axis-aligned
ones. Another interesting result of this experiment is that the simple
end-to-end method performs well in fine-tuning. Note that this method
leads to mode collapse in the case of Siamese networks. To address this
issue, previous works apply e.g., momentum encoders, memory banks,

100

4.4 Additional Comparison with Related Works

unsymmetrical projectors, stop-gradient, and regularization [14, 33, 35,
72, 82]. Since two different encoders are applied with the end-to-end
method, the problem is avoided without the bells and whistles.

4.4 Additional Comparison with Related Works

This section compares the contrastive learning methods in this chapter
with additional works.

4.4.1 Hybrid Neural Networks for 3D Data

As explained in Section 2.2.9, some methods use hybrid models for 3D
data understanding. They combine multiple architectures, e.g., voxel-
based and PointNet variants, in a single model. These methods and the
proposed training strategy in this chapter share the same motivation to
combine the advantages of different data formats and neural networks.
Although the proposed method jointly pre-trains two encoders, the pre-
trained encoders are used separately in downstream tasks.

4.4.2 Multi-Modal Feature Fusion

Learning from two complementary sources is also similar to data fusion.
In 3D computer vision, fusing the color and geometry information is a
common practice. A lot of fusing approaches have been proposed, ¢e.g.,
for object detection [93, 98, 172, 174, 213, 238, 265], as discussed in Sec-
tion 3.5.2. Also, Liu et al. [135] use self-supervised pre-training to improve
the fusion of geometric and color features. The difference between fusing
and contrasting multi-modal features is that fusion enriches features
by combining complementary information from different modalities,
while contrastive learning maximizes the shared information between
modalities.

4.4.3 Contrastive Learning using Outdoor Data

The pre-training methods proposed in this chapter are evaluated on
indoor datasets. Some concurrent works also apply contrastive learning

101

4 Invariance-Based Contrastive Learning for Label Efficiency

for self-supervised pre-training in outdoor scenarios (i.e., autonomous
driving) [132, 145, 198]. Especially, Sautier et al. [198] propose a pipeline
similar to Pixel-to-point [134] (as well as IPCo), where features from a
LiDAR point cloud encoder are contrasted with color features from a pre-
trained 2D CNN. However, due to the architecture of the measurement
system, LiDAR point clouds and RGB images in outdoor scenes have
different resolutions and field-of-views. On the contrary, indoor datasets
often use RGB-D cameras that directly capture registered depth maps
and color images. Therefore, Sautier et al. [198] focus on addressing this
issue and propose using superpixels to pool 3D and 2D features from
visually similar regions.

4.5 Conclusions

This chapter establishes a unified framework to fairly compare the con-
tribution of perspective, format and modality invariance in 3D self-
supervised pre-training. Comprehensive experiments show that con-
trasting a 3D data format (e.g., point clouds and voxels) with a 2D data
format (e.g., images and depth maps) is especially beneficial. Moreover,
this chapter proposes contrasting point clouds or voxels with depth
maps instead of RGB images, which brings better performance and has
fewer requirements on the training data. The proposed method shows
promising results in improving the label efficiency of 3D deep learning
by exploiting unlabeled data.

Moreover, this chapter demonstrates that contrastive learning can pre-
train various types of neural networks, e.g., PointNet++, sparse 3D CNNSs,
and 2D CNNs. However, contrastive learning fails on transformer-based
3D neural networks (see Section 5.3.3.7). Therefore, Chapter 5 investigates
the masked autoencoder [83] instead of contrastive learning to pre-train
transformers for point cloud understanding.

Although better label efficiency can be obtained using contrastive
learning, all methods in this chapter rely on real-world pre-training data.
However, capturing 3D data in the real world is also costly and time-
consuming. It inspires Chapter 6 to explore data generation technologies
and apply synthetic data in self-supervised pre-training.

102

5 Plain Transformers for Real-World
Point Cloud Understanding

The depth map-based method introduced in Chapter 3 shows good com-
putational efficiency in 3D object detection. However, it is not applicable
when the input is captured from multiple views (i.e., multi-view point
clouds). To overcome this limitation, this chapter revisits transformer-
based architectures for point cloud understanding.

Due to the lack of inductive bias, transformer-based models usually
require much training data (cf. Section 2.2.7). The problem is especially
concerning in 3D vision, as 3D data are more difficult to acquire and
annotate than the 2D counterpart. To address this issue, previous works
modify the architecture of transformers to incorporate inductive biases
by applying, e.g., local attention and down-sampling. Although they
have achieved promising results, earlier works on transformers for point
clouds have two issues. First, the power of plain transformers is still
under-explored. Second, they focus on simple and small point clouds
instead of complex real-world ones. This chapter rethinks the appli-
cation of plain transformers to real-world point clouds. It first takes
a closer look at some fundamental components of plain transformers,
e.g., patchifier and positional embedding, for both efficiency and per-
formance. To close the performance gap due to the lack of inductive
bias and annotated data, it investigates self-supervised pre-training with
masked autoencoder (MAE) [83]. Specifically, a new technique drop patch
is proposed, which prevents an information leakage caused by position
embedding and significantly improves the effectiveness of MAE. The
proposed models achieve SOTA results in semantic segmentation on
the S3DIS dataset [10] and object detection on the ScanNet dataset [43]
with low computational costs. Meanwhile, this chapter provides a new
baseline for future research on transformers for point clouds.

The main contents of this chapter have been published in [296].

103

5 Plain Transformers for Real-World Point Cloud Understanding

5.1 Introduction

While transformers [235] have been the de facto standard for natural
language processing (NLP) since they were proposed [46, 177], they have
also shown promising performance in computer vision tasks in recent
years [49, 137]. One of the most representative architectures is Vision
Transformer (ViT) [49], which models an image as a patch sequence and
extracts features using a plain transformer encoder. It is called plain since
a ViT consists of stacked transformer layers and does not incorporate
inductive biases, e.g., translation equivariance and locality, which are, on
the contrary, essential ingredients in CNNs (cf. Section 2.1.2). Although
simple and effective, a plain transformer requires more training data
or careful designs to gain comparable performance as CNNs in image
processing [34, 49, 257].

Because of its global perceptive field and the capability to capture
informative features, transformer-based methods are also attractive in
point cloud understanding. Many methods have been proposed to utilize
transformers in 3D vision tasks [54, 75, 100, 136, 248, 287]. Since 3D data
and annotation are scarcer and more expensive than the 2D counterparts,
which makes it hard to train plain transformers, previous works inject
inductive bias by using, e.g., hierarchical sub-sampling and local atten-
tion (cf. Section 2.2.7). Although they have achieved impressive results,
a strong baseline, which shows the potential of plain transformers in
point cloud understanding, is still missing. Meanwhile, multi-modal
transformers have invoked research interest recently, as they unify lan-
guage, vision, and audio understanding [12, 110, 178, 181]. Although the
inductive bias improves performance for one specific modality, it usually
cannot generalize to others [12]. Thus, a baseline of plain transformers
for point clouds is necessary for future research on multi-modal models.

Another issue of previous works is the complexity of evaluation tasks.
Many works [54, 62, 75, 163, 273, 279, 287] focus on either clean synthetic
data, e.g., the ShapeNet dataset [26] or single-object real-world data, e.g.,
the ScanObjectNN dataset [232]. These tasks might be too simple to
convincingly justify the network design and show the full potential of
transformers, which are known to have a large model capacity [49]. Also,
the design based on simple data might not generalize well on complex
real-world point clouds, which limits the application in real-world tasks,

104

5.1 Introduction

e.g., robotics and autonomous driving. Moreover, due to the quadratic
complexity of the attention mechanism [235], plain transformers are
usually computationally expensive for real-world 3D data. However, this
problem could be neglected if solely small point clouds are studied.

To address these issues, this chapter revisits the design of plain trans-
formers and evaluates proposed methods on complicated large-scale
real-world point clouds. To narrow the scope of research, it focuses
on transformers as backbones and does not consider the usage as task-
specific necks or heads [136, 248]. While keeping the overall architec-
ture plain, this chapter optimizes some components of transformers for
point clouds, e.g., the patchifier and position embedding. Existing patchi-
fiers, e.g., ball query and kNN (k-nearest-neighbor), are systematically
compared. Meanwhile, this chapter introduces Farthest Point Cluster-
ing (FPC) to investigate the effect of non-overlapping patchifiers. Also,
this chapter revisits the design of position embedding in transformers
and proposes incorporating global information to describe the patches’
position better. Furthermore, the self-supervised pre-training of the pro-
posed models is explored. Based on the successful masked autoencoder
(MAE) [83], this chapter introduces a novel method called drop patch. It
suppresses the information leakage caused by the position embedding
in the decoder by only reconstructing a proportion of unseen patches.
The method significantly improves the effect of pre-training and reduces
the computational cost.

The contribution of this chapter is many-fold:

1. It analyzes and optimizes some essential components of plain
transformers, e.g., the patchifier and position embedding, for more
effective point cloud understanding.

2. It investigates MAE for 3D vision and proposes drop patch for
better transfer learning results.

3. It focuses on complex real-world point clouds to evaluate the pre-
sented designs.

4. It shows that with proper designs and self-supervised pre-training,
plain transformers can achieve SOTA results in real-world 3D
object detection and semantic segmentation while being efficient.

105

5 Plain Transformers for Real-World Point Cloud Understanding

5.2 Method

This section reviews the basic architecture of plain transformers for
point clouds (Section 5.2.1). Then, it investigates two crucial but long-
overlooked components in plain transformers, i.e., the patchifier (Sec-
tion 5.2.2) and position embedding (Section 5.2.3). Later, it shows how to
pre-train the proposed models using self-supervision (Section 5.2.4).

: . Position Embedding

. "a
...... [Hll
5 ol E ” = i Classification,
g [:§ i HEl | Detection,
cing! B Z 3@ Segmentation, :
ST £ i
= sshared & _. K
Hll

Patch Embedding

Figure 5.1 A plain transformer for point clouds. It simply uses stacked transformer layers
without further modification.

5.2.1 Plain Transformers for Point Clouds

As shown in Figure 5.1, a plain transformer can be separated into five
components: a patchifier, patch embedding, position embedding, a trans-
former encoder consisting of multiple transformer layers, and a task-
specific head. The patchifier divides the input point cloud into small
patches. The patch embedding encodes each point patch into a feature
vector. A PointNet [170] is usually used for patch embedding [131, 152,
163, 273]. All patch features compose a sequence, which is then fed into
the transformer encoder. Since the attention mechanism is permutation
equivariant and unaware of the position of each patch, transformers re-
quire position embedding, which directly injects positional information
into the sequence (cf. Section 2.1.3). The transformer encoder then extracts
informative features which are further utilized by the task-specific head.
More details on transformers and their application in 3D computer vision
are provided as related works in Section 2.1.3 and 2.2.7, respectively.

106

5.2 Method

5.2.2 Patchifier

This section first revisits the patchifiers in previous transformer-based
models and explains why they should be researched. Then, a novel non-
overlapping patchifier is introduced.

5.2.2.1 Background and Motivation

The process to build point patches (i.e., patchify a point cloud) can be
separated into sampling and grouping. Without loss of generality, the
following explanation only considers inputs with 3D coordinates and
ignores other channels, e.g., colors, because they do not affect patchifying
and are assigned to respective coordinates afterward [131, 152, 163, 273].

Given a point cloud {x'|x’ € R3}f\il with N points, the patchifier first
down-samples M key points {s'|s’ € R} using farthest point sam-
pling (FPS) [171]. Then, the patchifier searches K neighbors for each key
point to build M patches {Qi}ﬁ\;l1 with |();| = K. In previous works, ball
query [152, 171] and k-Nearest-Neighbor (kNN) [131, 163, 175, 273] are
used for grouping. The former searches K points in a sphere with a given
radius around each key point, while the latter assigns K closest neighbors
to each key point. Then, each patch (; is encoded into a C-dimensional
feature f' € RC using the patch embedding, which is usually a shared
PointNet (cf. Section 2.2.5).

Despite the different choices of patchifiers, previous works usually
use a large patch number M with N « MK. For instance, 3DETR [152]
divides an input of 40 000 points into 2048 patches, which is an order of
magnitude greater than a common ViT [49]. As the complexity of the
attention mechanism is quadratic to the sequence length, it results in high
computational costs, which limits the application of plain transformers to
point cloud understanding, especially for large real-world ones. Also, the
patchifiers in previous works generate overlapping patches. Although
such a design can improve the stability of plain transformers [257], it
causes information leakage during pre-training with MAE since the
masked and reserved patches share some points (see Section 5.2.4).

The impact of shorter sequences and different choices of patchifiers
have not drawn much attention in previous research. This chapter uses a
shorter sequence with N ~ MK to improve the computational efficiency

107

5 Plain Transformers for Real-World Point Cloud Understanding

of plain transformers. Also, different patchifiers are systematically com-
pared with various setups. In addition to the two overlapping patchifiers
mentioned above, this chapter also evaluates non-overlapping ones, e.g.,

k-means and the proposed method Farthest Point Clustering (FPC).

5.2.2.2 Farthest Point Clustering

Algorithm 1: Farthest Point Clustering

-

w N

'S

© ® N o

11
12

13
14

15
16

17

-

9

Input :A point set {x’ }f\il, number of patches M, number of samples in each

patch K '
Output: An assignment matrix A € NM*K where A,y = iindicates that x' is the
k-th point in the m-th patch.

/* Sample M key points {si}?fl from {xi}ﬁ1 using Farthest
Point Sampling (FPS) */
N AN
{shisy < FPS({x'}.2))
/* find nearest key point s; for each point x; */

foreach x' € {x"}fil do

t; < arg min{”xi - s’”}
]
end foreach
Initialize A € with zeros
/* make sure each patch has K points */
for(i<—1;i<M;i++)do
c+<0// define a counter
for(j—1,j<Nandc<K;j++)do
if t; = i then
Ai,c ‘_]
c++

NMXK

end for
/* check if the patch has K points */
e—K-c
if e > 0 then
/* duplicate points in each cluster */
for(j<1,j<ej++)do
‘ Az’,c+j‘—Ai,j
end for

end for
return A, x

108

5.2 Method

The algorithm still uses FPS to sample M key points {si}?il. The N
input points are clustered into M patches by assigning each point x' to
its nearest key point s’. Note that, unlike kNN, each point is assigned
to only one key point so that the generated patches do not overlap. The
algorithm further samples K points in each cluster so that each patch has
the same number of points, following ball query [171]. This algorithm’s
pseudo-code is provided in Algorithm 1.

5.2.3 Position Embedding

Position embedding is a mapping R*® — R, which encodes the coordi-
nate of each key point into a vector:

e = "posEmbed (Si) . (5.1)

Previous works use Fourier features [152, 226] or multi-layer percep-
tron (MLP) [131, 163] as position embedding for point clouds. They all
treat each position s’ separately, as formulated in Equation 5.1, and ne-
glect the global information in all key points s’. While the “positions” in
natural languages and images are fixed and shared across all data sam-
ples, they are content-dependent and more informative in point clouds,
as shown in Figure 5.2. Therefore, the global information in position
embedding might benefit point cloud understanding since it directly
makes each patch aware of others’ positions.

™

Figure 5.2 “Positions” of patches (orange dots) in different data. In images, they are
independent of the content. The “positions” alone contain almost no information. In point
clouds, “positions” are unique for each data sample and thus more informative, i.e., one
can know how the point cloud roughly looks like by only observing the “positions”.

This chapter proposes a novel method to incorporate the global in-
formation. Specifically, each coordinate s’ is transformed into a high-

109

5 Plain Transformers for Real-World Point Cloud Understanding

dimensional space using an MLP. The global feature g is aggregated
via global max pooling. The global feature is then concatenated to each
coordinate and further transformed with another MLP. The proposed
position embedding can be described as follows:

g =MLP, (s), (5.2)
g = MaxPool (gl, ...,gi, ...,gM) , (5.3)
e’ = MLP, (Concat (g,s')) . (5.4)

Then, e’ is added to its corresponding patch feature, following the com-
mon practice in previous works [235].

Note that in pre-training with MAE (Section 5.2.4), the global pooling
in the encoder aggregates the global feature g only from visible patches.
Thus, the pooling operation does not leak information about masked
patches in pre-training.

5.2.4 Self-Supervised Pre-Training

This chapter uses masked autoencoder to pre-train transformers. The
contrastive learning method introduced in Chapter 4 is unsuitable. Sec-
tion 5.3.3.7 provides more discussion on contrastive learning.

5.2.4.1 Masked Autoencoder for Point Clouds

Masked autoencoder is explained as a related work in Section 2.4.4. Here,
its basic concept is briefly revisited.

In an MAE [83], input patches {Q);} from a data sample are first ran-
domly divided into two disjoint subsets {QF} and {szl} Patches {Qf\d}
are masked out, and the transformer encoder only sees the reserved
patches {QF} With a transformer-based decoder, the model is trained

to reconstruct the masked patches {Q?/I} using features extracted from

{QZR} After pre-training, the decoder is abandoned, and the transformer
encoder (with patch embedding, position embedding, etc.) can be used
for downstream tasks. In the original publication, He et al. [83] suggest
using a large mask ratio (e.g., 75 %) for good performance.

However, for point clouds, MAE encounters two possible information
leakage problems. On the one hand, the patches might overlap with each

110

5.2 Method

(a) Complete point cloud (b) Standard MAE (c) MAE with drop patch

Figure 5.3 Illustration of drop patch for point cloud MAE. Green patches are reserved.
Purple patches are masked out and to be reconstructed. Grey patches are dropped and
neglected by both the encoder and decoder. Orange dots are key points visible for the
decoder of the MAE.

other, i.e., {QF} might share points with {Q?A}, which makes the pre-
training less effective. MaskPoint [131] suggests using an extremely high
mask ratio (e.g., 90 %) as a workaround. With non-overlapping patchi-
fiers, e.g., k-means and FPC, the problem can be completely avoided.
On the other hand, the decoder uses the positional information of both
masked and reserved patches as queries. As discussed in Section 5.2.3,
the position embedding of point clouds corresponds to the sub-sampled
input (i.e., key points) and leaks the positional information of the points
to be reconstructed. In this case, reconstructing the masked patches is
equivalent to up-sampling the key points and becomes trivial, as shown
in Figure 5.3(b).

5.2.4.2 Drop Patch

To address the information leakage in the decoder, Liu et al. [131] discrim-
inate if a randomly generated point is close enough to the original input
point cloud instead of reconstructing masked patches directly. However,
the method is still complex and has more hyperparameters (e.g., the dis-
tance threshold and distribution of the random points) than the standard
MAE.

In contrast, this chapter proposes an awkwardly simple but effective
method to fix the information leakage. In each iteration, the input patches
{€);} are randomly split into three disjoint sets {QP}, {QF}, and {Qf\/l},

111

5 Plain Transformers for Real-World Point Cloud Understanding

1
former decoder reconstructs {Qf\d} by using features from {QF} and the

instead of two. Then, patches {QD} are immediately dropped. The trans-

positional information of both Q?/I} and {QF} This method is referred
to as drop patch. With enough patches dropped, the decoder sees too
few key points to perform the trivial up-sampling. This chapter uses
|{QP}| : ‘{QFH : |{Q£VI} =2:1:1, which is similar to the original MAE
with a mask ratio of 75 %, as the encoder sees 25 % patches in both cases.
The principle of drop patch is illustrated in Figure 5.3(c). Notice that drop
patch also reduces the patches to be reconstructed and thus decreases
the computation during pre-training.

5.2.4.3 Prediction and Loss Function

After the decoder, a fully connected layer is applied to generate a predic-
tion. For each masked patch consisting of a key point and its K neighbors,
the layer predicts K offsets from the key point to its neighbors. The Cham-
fer distance (i.e., sum of the squared Euclidean distances between nearest
neighbor correspondences of ground truth and predictions) is used as a
loss function, following the standard practice in point cloud reconstruc-
tion [166, 249, 274]. Also, the loss function is only applied on masked
patches, following He et al. [83].

5.2.5 Implementation Details

This subsection provides implementation details about pre-training and
fine-tuning. Introductions of used datasets are provided in Appendix B.

5.2.5.1 Default Setup

This chapter uses a transformer encoder with 3 layers as the backbone if
it is not otherwise specified. Each transformer layer has 256 channels and
4 heads, while the feed-forward networks have 512 channels. Unlike ViT,
the proposed models use no class token [49]. All experiments employ an
AdamW optimizer [140] with a weight decay of 0.01, the cosine annealing
schedule [139], and gradient clip of 0.1. The training is warmed up for
10 epochs [139]. Other task-specific configurations are explained in the
following.

112

5.2 Method

5.2.5.2 Pre-Training

The MAE decoder consists of 2 transformer layers with multi-head self-
attention (see Section 2.1.3). Each layer has 256 channels and 4 heads.
The feed-forward dimension is 256.

As in Chapter 4, this chapter uses the ScanNet [43] dataset to pre-
train the models. This dataset consists of 2.5 million frames of RGB-D
images captured in 1513 indoor scenes. Every 25 frames are sampled
from the training set, following previous works [94, 260] and Chapter 4.
For each frame, 20 000 points are randomly sampled for pre-training. The
patchifier divides each point cloud into 256 patches and samples 128
points in each patch (i.e., M = 256, K = 128). The pre-training uses an
initial learning rate of 5 x 10~%. All models are pre-trained for 120 epochs
with a batch size of 64.

Most previous object detectors [28, 152, 173, 260, 285] do not use color
information, whereas the models for semantic segmentation methods
do [39, 171, 176, 228, 260, 285]. Thus, the color channels are handled
differently in the pre-training. For object detection, the models only
use geometry information in pre-training. For semantic segmentation,
models are pre-trained with both geometry and color. However, the color
channels are not reconstructed using MAE, as it shows no significant
effect on the fine-tuning performance.

Data augmentation is performed on the flight by randomly scaling,
rotating, flipping, and cropping input point clouds. For color channels,
random contrast and random grayscale are applied. Also, all colors of
each point cloud are randomly dropped with the probability of 50 % (i.e.,
color drop out).

5.2.5.3 Object Detection

This chapter adopts the detection pipeline from 3DETR [152], an end-
to-end transformer-only detector consisting of 3 encoder layers and 8
decoder layers. The backbone of 3DETR is replaced by the above intro-
duced plain transformer. Other configurations are as same as 3DETR.
The detector is trained on the ScanNet dataset [43]. This chapter follows
the official train/validation split and uses 1201 multi-view point clouds
for training and 312 for validation. In each iteration, 40 000 points are

113

5 Plain Transformers for Real-World Point Cloud Understanding

randomly sampled from the original point cloud. The sampled point
clouds are divided into 512 patches with 128 points. All models are
trained for 1080 epochs with an initial learning rate of 5 x 107* and a
batch size of 8. Metrics are mean average precision with 25 % and 50 %
3D-IoU threshold (i.e., AP25 and AP50) over 16 representative classes.

More details on the baseline method 3DETR are provided in Chap-
ter 2.3.3.3. The evaluation metrics for object detection are explained in
Appendix C.2.

5.2.5.4 Semantic Segmentation

Since the segmentation task requires point-wise output, the features
from the transformer encoder are up-sampled using nearest neighbor
interpolation [171]. The point-wise features are further transformed by a
shared MLP and fed into an MLP-based prediction head. The models are
evaluated on the S3DIS dataset [10], which consists of real-world scans
from 6 indoor areas. Following previous works, this chapter reports the
validation results on Area 5 and trains models in other areas. Due to the
large size of each point cloud, the raw point clouds are voxelized with
a voxel size of 4 cm. However, the models do not contain voxel-based
architecture (e.g., 3D convolution). For each forward pass, 24 000 points
are randomly cropped as input. The patchifier uses the hyperparameters
M =512 and K = 64. This chapter applies the same data augmentation
as Qian et al. [176] for semantic segmentation. All models are trained for
300 epochs with a batch size of 16. Mean accuracy (mAcc) and mean
intersection over union (mloU) over 13 classes are used to evaluate the
segmentation results. These metrics are explained in Appendix C.1.

5.3 Experimental Results

This section first demonstrates the performance of the proposed models
in 3D object detection and semantic segmentation tasks. Then, it provides
a detailed analysis of the design choices and properties of the proposed
models.

114

5.3 Experimental Results

5.3.1 Object Detection

The proposed models are compared with SOTA methods in object detec-
tion on ScanNet (Table 5.1). The methods in the upper half use PointNet++
or 3D CNN as the backbone. Most models are pre-trained using con-
trastive learning, as introduced in Section 2.4.5. The lower half of the
table shows the results of transformer-based models. MaskPoint [131] is
the most comparable method to the proposed ones, as it is also based on
3DETR and pre-trained using a variant of MAE.

Table 5.1 Object detection results on ScanNet V2 validation set. Pre.: pre-trained. Tr.:
transformer-based. Mark v*: using local attention.

Method Pre. Tr. AP25(%) AP50 (%)
VoteNet [173] 58.6 335
PointContrast [260] v 59.2 38.0
Hou et al. [94] v - 39.3
4DContrast [36] v - 38.2
DepthContrast (x1) [285] v 61.3 -
DepthContrast (x3) [285] v 64.0 429
DPCo (Section 4) v 64.2 41.5
3DETR [152] v 62.1 37.9
PointFormer [162] v* 64.1 42.6
MaskPoint (L3) [131] v v 63.4 40.6
MaskPoint (L12) [131] v v 64.2 42.1
Proposed (512 patches)

— from scratch v 61.6 38.8
- MAE v v 62.7 422
— MAE + drop patch v v 64.1 43.0
Proposed (1024 patches)

— from scratch v 62.4 413
- MAE v v 64.6 44.8
— MAE + drop patch v v 65.6 45.3

With 512 patches, the proposed detector without pre-training performs
similarly to the original 3DETR with 2048 patches. This demonstrates that
it is possible to use a much shorter sequence length without a significant
performance drop. With MAE, the results are improved (+1.1 % AP25

115

5 Plain Transformers for Real-World Point Cloud Understanding

and +3.6 % AP50, absolute), showing the power of pre-training. Drop
patch further raises the AP25 by 1.4 % and AP50 by 0.8 %. The results
of the proposed model with 512 patches (64.1 % AP25 and 43.0 % AP50)
surpass the previous SOTA MaskPoint (L3 variant, i.e., with 3 encoder
layers) with a clear margin while showing similar performance as the
heavy 12-layer variant.

Table 5.1 also evaluates transformers using 1024 patches. The model
already surpasses 3DETR without pre-training. When pre-trained, it
achieves 65.6 % AP25 and 45.3 % AP50, significantly outperforming pre-
vious works. Note that this chapter uses farthest point clustering for 512
patches, but ball query for 1024 patches since FPC brings sub-optimal
results with a longer sequence. More discussions on patchifiers are pro-
vided in Section 5.3.3.1.

5.3.2 Semantic Segmentation

The semantic segmentation results on the S3DIS dataset are reported in
Table 5.2. While the performance of the model trained from scratch is
low (66.4 % mAcc and 60.0 % mloU), pre-training with MAE improves
the metrics by 7.2 % and 7.2 %, respectively. The gains are more signifi-
cant than on the ScanNet dataset (Table 5.1). Since the S3DIS dataset is
smaller than ScanNet (see Appendix B), results on this dataset benefit
more from the pre-training. Also, drop patch further increases the mAcc
and mloU by 1.1 % and 0.4 %, respectively. When scaled up from 3 to
12 layers, the proposed model achieves significantly better results with
77.0 % mAcc and 70.4 % mloU. This performance surpasses some highly
optimized models, e.g., PointTransformer [287] and PointNeXt [176]. It im-
plies that self-supervised pre-training brings comparable improvement
to architecture optimization.

Also, when pre-trained, the proposed models show on-par perfor-
mance with SOTA transformer-based models that contain more induc-
tive bias, e.g., PointTransformer [287]. The observation demonstrates that
self-supervised pre-training can close the performance gap caused by
lack of inductive bias.

116

5.3 Experimental Results

Table 5.2 Semantic segmentation on the S3DIS dataset Area 5. Pre.: pre-trained. Tr.:
transformer-based. Mark v*: with modified transformers. The proposed models use 512
patches.

Methods Pre. Tr. mAcc (%) mloU (%)
PointNet++ [171] - 53.5
MinkowskiNet-32 [39] 71.7 65.4
KPConv [228] 72.8 67.1
PointNeXt-B [176] 74.3 67.5
PointNeXt-L [176] 76.1 69.5
Pixel-to-point [134] v 75.2 68.3
PointContrast [260] v - 70.3
DepthContrast [285] v - 70.9
PCT [75] v* 67.7 61.3
PatchFormer [278] Vi - 68.1
PointTransformer [287] ¥ 76.5 70.4
Pix4Point [175] v v 73.7 67.5
Proposed (3 layers)

— from scratch v 66.4 60.0
- MAE v v 73.6 67.2
— MAE + drop patch v v 74.7 67.6
Proposed (12 layers)

— from scratch v 70.0 63.2
- MAE v v 75.9 69.5
— MAE + drop patch v v 77.0 70.4

5.3.3 Analysis

Additional experimental results are provided to justify the designs in
this chapter, e.g., the choices of patchifier, position embedding, hyperpa-
rameters, and pre-training methods. Moreover, the computational costs
and label efficiency of the proposed models are discussed.

5.3.3.1 Patchifier

Extensive experiments are conducted to clarify the impact of different
patchifiers. Their interaction with position embedding, pre-training, and
patch numbers is also researched.

117

5 Plain Transformers for Real-World Point Cloud Understanding

As shown in Table 5.3, k-means achieves the worst performance with
all setups. It is because k-means is sensitive to the spatial density of points.
Since real-world point clouds are usually captured with depth sensors
and the point density varies with depth, k-means lead to irregular patch
sizes and is sub-optimal.

Table 5.3 Ablation study on patchifiers. Drop patch is applied for pre-training. Global
information is used in position embedding. Group: grouping methods. M: number of
patches. Pre.: pre-trained or not. PE: with position embedding or not.

ID Group M Pre. PE AP25(%) AP50 (%)

1 Ball 512 59.8 37.9
2 kNN 512 60.8 38.0
3 kmeans 512 59.5 36.3
4 FPC 512 60.3 38.1
5 Ball 512 v 61.1 39.7
6 kNN 512 v 61.7 41.0
7 k-means 512 v 60.2 34.0
8 FPC 512 v 61.6 38.8
9 Ball 512 v v 63.4 421
10 kNN 512 v v 63.7 424
11 k-means 512 v v 62.7 38.7
12 FPC 512 v v 64.1 43.0
13 Ball 1024 v 62.4 41.3
14 kNN 1024 v 63.5 39.9
15 k-means 1024 v 59.0 36.6
16 FPC 1024 v 61.6 36.9
17 Ball 1024 v v 65.6 45.3
18 kNN 1024 v v 65.0 43.5
19 k-means 1024 v v 63.8 40.3
20 FPC 1024 v v 64.6 443

When models are not pre-trained, the kNN patchifier achieves the best
performance (experiment 2, 6, and 14). Similar results are also observed
in image processing, where early convolutions improve the performance
of a standard ViT [257]. However, when models are pre-trained with
MAE, it is sub-optimal compared to FPC (experiment 10 and 12). Since

118

5.3 Experimental Results

kNN generates overlapping patches, it leaks the information of points to
be reconstructed and thus degrades the effect of MAE.

FPC performs best when the patch numbers are small (e.g., 512) and
models are pre-trained. However, when it comes to 1024 patches, it is
inferior compared to kNN and ball query. Since patches cannot overlap,
FPC generates small and irregular patches in this case, which harms the
performance.

Ball query outperforms other methods for large patch numbers (e.g.,
1024), because it guarantees a consistent scale and shape of patches,
which helps models learn spatial features. Such an advantage is also
reported by Thomas et al. [228]. However, ball query is sub-optimal for a
small patch number (e.g., 512) since it is difficult to set a suitable radius in
this case. While the patch embedding cannot capture fine-grained details
with a large radius, the patches cannot cover the entire point clouds with
a small radius.

One can see that the performance of patchifiers is often affected by
competing factors, which makes the optimal option of patchifiers condi-
tional. Depending on patch numbers and pre-training, ball query, FPC,
and kNN can deliver the best result. This chapter pays more attention
to the performance of pre-trained models, as pre-training is crucial to
compensate for the performance gap due to the lack of inductive bias.
Thus, this chapter uses FPC for a smaller patch number (M < 512) and
ball query for a larger patch number (M > 512).

5.3.3.2 Position Embedding

Different types of position embedding are systematically compared to
clarify their impact. Besides Fourier features [226], MLP, and the pro-
posed method with global information, models without position embed-
ding in the transformer encoder are also evaluated as a baseline. Note
that besides the transformer encoder, the decoder in MAE and the detec-
tion head in 3DETR also require position embedding. For simplicity, all
experiments use the same type of position embedding in the transformer
encoder, the MAE decoder, and the detection head. For variants without
position embedding in the encoder, Fourier features [226] are applied in
other components, following Misra et al. [152].

119

5 Plain Transformers for Real-World Point Cloud Understanding

Table 5.4 Ablation study on position embedding. Drop patch is applied in pre-training.
Group: grouping methods of patchifiers. M: number of patches. Pre: pre-trained or not.
PE: type of position embedding. Add: the encoder layers where the position embedding is
added.

ID Group M Pre PE Add AP25 (%) AP50 (%)

1 Ball 512 - - 59.8 37.9
2 Ball 512 - - 60.4 38.3
3 FPC 512 - - 60.3 38.1
4 FPC 512 v/ - - 59.7 37.2
5 FPC 512 Fourier first 59.9 38.6
6 FPC 512 MLP first 61.1 37.9
7 FPC 512 Global first 61.6 38.8
8 FPC 512 v Fourier first 61.6 40.9
9 FPC 512 v MLP first 62.4 42.6
10 FprC 512 v Global first 64.1 43.0
11 FPC 512 Fourier all 60.3 38.6
12 FPC 512 MLP all 60.7 39.0
13 FPC 512 Global all 61.3 36.7
14 FPC 512 « Fourier all 61.4 39.2
15 FPC 512 V/ MLP all 61.4 38.6
16 FPC 512 « Global all 63.3 42.0
17 Ball 1024 MLP first 62.1 40.1
18 Ball 1024 Global first 62.4 41.3
19 Ball 1024 v MLP first 64.3 44.0
20 Ball 1024 < Global first 65.6 45.3

Comparing experiment 3, 5, 6, and 7 in Table 5.4, it is obvious that
Fourier features degrade the performance when trained from scratch,
which is also observed in previous work [152]. On the contrary, MLP
and the proposed method bring significant improvement compared to
the variant without position embedding. Also, experiment 1-4 show that
pre-training is ineffective if position embedding is not added. It is reason-
able since the positional information of input patches is necessary for the
reconstruction in MAE. On the other hand, experiment 8-10 show that
position embedding makes the pre-training more effective. Meanwhile,

120

5.3 Experimental Results

experiment 5-10 demonstrate that parametric position embedding (i.e.,
MLP and Global) performs better than the non-parametric Fourier fea-
tures. Also, the proposed position embedding performs better than MLP,
which supports the intuition in Section 5.2.3 that the global information
in position embedding is beneficial. The results are consistent when a
larger patch number is applied, as shown in experiment 17-20.

Another critical design choice is the location where the position em-
bedding is added. While many previous methods add it to all encoder
layers [131, 163, 273], experiment 11-16 show that this design degrades
the performance. The contradiction is probably due to the domain gap
between datasets. Since position embedding is more informative in point
clouds, injecting it into all encoder layers makes a model pay more at-
tention to the key points. Previous works mainly validate their designs
on small point clouds (e.g., ModelNet40 [255]). Such a behavior might be
beneficial in this case since the overall shape is crucial. Nevertheless, for
complex point clouds and tasks, the model might neglect fine-grained
details. Thus, only injecting patch positions once performs better on
real-world data.

5.3.3.3 Drop Patch

With the benefit of drop patch shown in Tables 5.1 and 5.2, additional
experiments are conducted to study its hyperparameters. As explained
in Section 5.2.4.2, drop patch addresses the issue that the position em-
bedding of masked patches makes the MAE pre-training trivial.
MaskPoint [131] proposes using an extremely high ratio of masked
patches (90 %). Experiment 2 and 3 in Table 5.5 show that it does not
bring significant improvement because this approach aims to reduce the
information leakage caused by overlapping patches. The information
leakage caused by position embedding is still unsolved. In experiment
3-9, the percentage of reserved patches is fixed to highlight the impact of
the drop ratio. With only 10 % patches dropped, the model already gains
an improvement of 0.6 % AP25 and 0.2 % AP50. Also, the improvement
becomes more significant with a higher drop ratio and reaches the maxi-
mum at 50 %. A very high drop ratio (60 % and 70 %) is sub-optimal since
7y is low, and the model receives less supervision in the pre-training.

121

5 Plain Transformers for Real-World Point Cloud Understanding

Table 5.5 Ablation study on drop patch. rp, 1, 7r: the percentage of dropped, masked
and reserved patches, respectively. All models use FPC patchifier with 512 patches.

ID r, ry e AP25(%) AP50 (%)

1 50 25 25 64.1 43.0
2 0 9 10 62.8 40.5
3 0 75 25 62.7 422
4 10 65 25 63.3 424
5 20 5 25 63.6 43.1
6 30 45 25 63.9 43.0
7 40 35 25 63.4 44.3

50 25 25 64.1 43.0
8§ 60 15 25 63.8 424
9 70 5 25 63.2 41.2
10 50 10 40 63.6 40.2
11 50 20 30 63.8 43.2

50 25 25 64.1 43.0
12 50 30 20 63.7 43.1
13 50 40 10 62.7 43.2

In experiment 10-13, the drop ratio is fixed. The best performance is
achieved when ry; and ry are approximately equal.

5.3.3.4 More Patches and More Layers

The following experiments investigate the impact of the number of en-
coder layers and patches, with the detection and segmentation head
unchanged.

The upper half of Table 5.6 shows that more encoder layers harm the
performance in object detection. Even though the models are pre-trained,
only ~78000 frames are available for pre-training. Since the detection
head of 3DETR already consists of 8 transformer layers, an encoder
with more layers leads to over-fitting. However, adding layers to the
encoder improves the performance in segmentation tasks, as the used
segmentation head is simpler and has fewer parameters.

122

5.3 Experimental Results

Table 5.6 Impact of the number of encoder layers and patches. Models are pre-trained
using MAE with drop patch.

Patches Layers ScanNet Detection S3DIS Segmentation
AP25 (%) AP50 (%) mAcc (%) mloU (%)

512 3 64.1 43.0 74.7 67.6
512 6 63.1 421 76.8 70.1
512 12 62.1 40.7 77.0 70.4
256 3 60.8 40.4 71.5 65.0
1024 3 65.6 45.3 73.5 67.1
2048 3 65.0 45.2 73.6 66.7

The lower half of Table 5.6 shows that using more patches is generally
beneficial because it increases the computation of the networks without
increasing the number of trainable parameters. However, the effect shows
saturation at a large patch number (i.e., 1024 for detection or 512 for
segmentation).

5.3.3.5 Computational Costs

The computational costs of the proposed models are compared with
SOTA methods. Models in Table 5.7 are all pre-trained on ScanNet with
self-supervision. Memory usage and latency are measured with a batch
size of 8, following previous works [152]. MaskPoint [131] uses 2048
patches. The proposed model with 512 patches performs similarly to
MaskPoint (L12), with 5 times lower operations, 4 times less memory
usage, and 4 times higher speed, which highlights the efficiency of the
model design and the effectiveness of pre-training.

Table 5.7 also compares the proposed models with DPCo (introduced
in Chapter 4). Here, DPCo is used to pre-train a VoteNet (cf. Section 2.3.3.2)
with a PointNet++ backbone. The model introduced in this chapter is
faster than DPCo but with a higher GFLOPs requirement. This is because
PointNet++ (as well as similar architectures explained in Sections 2.2.5
and 2.2.6) requires a lot of random memory access since it hierarchically
down-samples and up-samples point clouds [138]. On the contrary, a
plain transformer only performs down-sampling once (i.e., for building

123

5 Plain Transformers for Real-World Point Cloud Understanding

Table 5.7 Comparison of computational costs in object detection. GFLOPs: Giga floating
point operations for each forward pass. Memory: memory usage during training with a
batch size of 8. Latency: inference latency with a batch size of 8 on an NVIDIA Tesla V100
GPU. The proposed models have 3 transformer layers in the encoder.

Method Operations Memory Latency AP25 AP50
(GFLOPs) (GB) (ms) (%) (%)
DPCo (Chapter 4) 5.7 6.6 134 64.2 415
MaskPoint (L3) 214 17.3 187 634 40.6
MaskPoint (L12) 46.9 32.0 301 642 421
Proposed (M=512) 8.2 7.0 73 64.1 43.0
Proposed (M=1024) 11.7 8.7 108 65.6 45.3

patches). When scaled up to 1024 patches, the proposed model achieves
significantly higher AP than previous methods with lower costs.

Table 5.8 reports the results of the semantic segmentation task. The
proposed transformer-based models are compared with PointNeXt [176],
which is a modernized variant of PointNet++ [171]. The proposed model
with 3 encoder layers shows similar performance and throughput as

Table 5.8 Computational costs in semantic segmentation task. The same setup as Qian et al.
[176] is used. GFLOPs: giga floating point operations for each forward pass. Parameters:
number of parameters. Throughput: throughput during testing, with a batch size 16 on an
NVIDIA Tesla V100. The proposed model uses 512 patches.

Method Operation Parameter Throughput mAcc mloU
(GFLOPs) ™M) (frames/s) (%) (%)
PointNeXt-S 3.6 0.8 227 70.7 642
PointNeXt-B 8.9 3.8 158 743 67.5
PointNeXt-L 15.2 71 115 761 69.5
Proposed
— 3 layers 6.0 1.9 147 747 67.6
— 6 layers 7.2 3.5 138 76.8 70.1
— 12 layers 9.7 6.7 123 77.0 70.4

PointNeXt-B. Also, the 12-layer variant achieves higher performance and
is more efficient than PointNeXt-L. Note that PointNeXt models are not

124

5.3 Experimental Results

pre-trained but have a more optimized architecture and more inductive
biases. These results imply that self-supervised pre-training can close
the performance gap between plain transformers and highly optimized
models.

The models introduced in this chapter are not compared with 2.5D-
VoteNet from Chapter 3, because the transformers in this chapter are
evaluated on multi-view point clouds. However, 2.5D-VoteNet only ap-
plies to single-view ones.

5.3.3.6 Label Efficiency

Figure 5.4 illustrates the performance of the proposed 3D detector with
3 encoder layers with reduced fine-tuning data and labels. The benefits
from pre-training is more significant when less data are available in
fine-tuning. Specifically, the pre-trained model achieves 37.7 % AP25
and 12.1 % AP50 with only 10 % annotated data. In contrast, the model
trained from scratch reaches 7.4 % and 0.8 %, respectively. On the other
hand, the pre-trained model performs similarly to the model trained
from scratch but uses significantly less fine-tuning data and labels. For
instance, it achieves 36.6 % AP50 with 50 % labeled data, while the model
trained from scratch reaches 38.8 % with 100 % data.

60 |- 40 |

50 |-
30 |-

T 40t 9
g 2
o 301 o 20
< <
20 |-
10 |-
10 —8— From scratch —@- From scratch
~@— Pre-trained ~@- Pre-trained
R L L L
510 20 50 100 510 20 50 100
Used Data (%) Used Data (%)
(a) AP25 (b) AP50

Figure 5.4 Detection results on the ScanNet dataset with reduced fine-tuning data and
labels.

125

5 Plain Transformers for Real-World Point Cloud Understanding

These results demonstrate that the self-supervised pre-training ap-
proach introduced in this chapter improves label efficiency.

5.3.3.7 Comparison with Contrastive Learning

Chapter 4 demonstrates the successful application of contrastive learning
to self-supervised pre-training for 3D neural networks. It is possible to
pre-train transformer-based models using contrastive learning. Table 5.9
compares the performance of MAE with MoCoV3 [34, 35, 82], a MoCo
variant specialized for transformers, in point cloud-based object detec-
tion. As shown in Table 5.9, models pre-trained using contrastive learning
underperform the randomly initialized one (i.e., trained from scratch).
The observation is also reported in 2D detection [123], where contrastive
learning on ImageNet [44] degrades the fine-tuning performance of vi-
sion transformers [49] on the COCO detection benchmark [129]. However,
the reason behind this observation is not fully understood.

Because of its superior performance, this chapter uses MAE instead of
contrastive learning to pre-train transformers on point clouds.

Table 5.9 Comparison of MAE and MoCo with point cloud data. Fine-tuning results in ob-
ject detection on the ScanNet dataset. Fixed Patch Embed.: parameters in patch embedding
are fixed in pre-training, which stabilizes vision transformers during contrastive learning,
proposed by Chen et al. [34].

Pre-Training Fixed Patch Embed. AP25 (%) AP50 (%)
From scratch 61.6 38.8
MoCo 57.5 38.1
MoCo v 60.0 38.4
MAE 62.7 422
MAE + Drop Patch 64.1 43.0

5.3.3.8 Results on Synthetic Point Clouds

This chapter focuses on large real-world point clouds, while a lot of
previous works explore the self-supervised pre-training for transformers
on synthetic point clouds. In a standard pipeline, a transformer-based
model is pre-trained on ShapeNet [26] and then fine-tuned for object

126

5.3 Experimental Results

Table 5.10 Comparison of classification results on the ModelNet40 dataset. All models
are pre-trained on ShapeNet. OA: overall accuracy on the test set. Proposed models are
pre-trained with drop patch.

Method OA (%)

PointBERT [273] 93.2
POS-BERT [62] 93.6
PointMAE [163] 93.8
MaskPoint [131] 93.8
Proposed (FPC) 93.6
Proposed (kNN) 93.8

classification on ModelNet40 [255]. Table 5.10 compares the proposed
method with previous works.

The proposed models follow the standard setup using a transformer
encoder with 12 layers. Each point cloud with 1024 points is split into
64 patches. As shown in Table 5.10, the proposed model using kNN
achieves 93.8 % overall accuracy on ModelNet40, slightly better than
the FPC variant. Among previous works, PointMAE and MaskPoint are
most comparable to this chapter since they also apply plain transformers
and MAE to point clouds. The former applies a standard MAE for point
clouds, whereas the latter addresses the information leakage by learn-
ing an implicit function instead of reconstructing the masked patches.
Despite different designs, MaskPoint and the proposed method (kNN)
achieve the same accuracy as PointMAE on ModelNet40. On the contrary,
they perform differently on real-world data, as shown in Table 5.1. This
result implies that small synthetic point clouds, e.g., ShapeNet and Mod-
elNet40, are too simple to reveal the full potential of transformers, so a
standard MAE (i.e., PointMAE) already reaches the upper bound of the
task. The benefit of further optimization is marginal or even unnoticeable.

This experiment can be regarded as the pilot study of this chapter.
The result demonstrates that evaluating transformer-based models on
more complex data and tasks is important. Therefore, synthetic point
clouds are not the main focus of this chapter, although they are frequently
researched in previous works.

127

5 Plain Transformers for Real-World Point Cloud Understanding

5.3.3.9 Reconstruction Results in Pre-Training

An MAE with drop patch is trained to reconstruct the complete point
cloud from a masked one. Some representative reconstruction results are
illustrated in Figure 5.5. Each patch is painted with a unique color. One
can see that MAE mainly reconstructs the low-frequency information of
point clouds. Also, the reconstructed patches usually show symmetries,
although the ground truth patches have irregular shapes.

5.4 Conclusions

This chapter rethinks the application of plain transformers to point clouds.
The proposed models show competitive performance and computational
efficiency in 3D object detection and semantic segmentation. Also, the
pipeline is label efficient since the models are pre-trained using self-
supervised MAE. The experimental results also imply the necessity of
evaluating transformers with real-world data, as the designs based on
simple and small point clouds might not generalize well.

However, the self-supervised pre-training method in this chapter (i.e.,
MAE with drop patch) still relies on real-world data (i.e., the ScanNet
dataset). To further reduce the cost of pre-training, Chapter 6 explores
pre-training neural networks using synthetic data.

128

5.4 Conclusions

(e) A round table

Figure 5.5 Reconstruction results with point clouds. From left to right: original, masked
and reconstructed point clouds, respectively. The mask ratio is set to 75 % for evaluation.

129

6 Efficient Pre-Training via
Self-Supervision and Randomized
3D Scene Generation

Pre-training technologies are widely applied in previous chapters. Specif-
ically, Chapter 3 discusses the fully supervised pre-training of object
detectors. Chapters 4 and 5 explore self-supervised pre-training to avoid
the labeling of large-scale 3D datasets. However, these approaches still
rely on real-world data, which are laborious and time-consuming to cap-
ture. Therefore, pre-training 3D neural networks using previous methods
in this thesis is still costly, even though data labeling is avoidable with
self-supervision. To reduce the dependence on real-world data, previ-
ous works [179, 268] generate randomized 3D scenes for pre-training.
Although the pre-trained models show promising performance boosts,
previous works have two major shortcomings. Firstly, they focus on only
one downstream task (i.e., object detection), and the generalization to
other tasks is unexplored. Secondly, an in-depth comparison of generated
data is still lacking, and the impact of the data generation technology is
not clear. This chapter systematically compares methods for randomized
3D scene generation using a unified setup. To study the generalization
of the pre-trained models, this chapter evaluates their performance in
multiple tasks, e.g., object detection and semantic segmentation, and with
different pre-training methods, e.g., contrastive learning (cf. Chapter 4)
and masked autoencoder (cf. Chapter 5). Moreover, this chapter proposes
a new method to generate 3D scenes with spherical harmonics. It sur-
passes the previous formula-driven method with a clear margin and
achieves on-par results with methods using real-world scans and CAD
models. The main contents of this chapter have been published in [297].

131

6 Efficient Pre-Training via Self-Supervision and Randomized 3D Scene Generation

6.1 Introduction

Deep neural networks are data-hungry, while capturing and labeling data
requires significant time and human effort. This problem is especially
concerning in 3D computer vision, as 3D data and labels are more scarce
and expensive. To train strong 3D neural networks with a lower cost,
many works apply synthetic data in pre-training and fine-tune the models
onreal-world data. One possible approach for generating synthetic data is
simulation [45, 71, 101, 251] (see Section 2.5.1 for more details). Although
realistic scenes can be simulated, developing the simulation environment,
crafting the source materials, and designing scene layouts still require a
lot of effort.

Recently, randomized 3D scene generation [179, 268] has shown promis-
ing results. This approach generates 3D scenes by randomly placing “ob-
jects”, which can be CAD models [179] or formula-driven shapes [268],
based on pre-defined rules. The concept of this approach is visualized in
Figure 6.1. Randomized 3D scene generation requires neither real-world
data nor manual annotation. Also, it reduces the effort in designing the
scene layouts. However, previous works [179, 268] have two major issues.

Figure 6.1 Concept of randomized 3D scene generation. Key components: an object set
and generation rules. RNG: random number generator.

132

6.1 Introduction

First, their pre-training methods are task-specific. Specifically, they are
only designed and evaluated in the case of object detection, which limits
their application to other tasks. Moreover, since they use different pretext
tasks for pre-training, the contribution of the generated data is not clear.
A fair comparison of different data-generating methods is still missing.

For a better understanding and application of randomized 3D scene
generation in 3D computer vision, it is necessary to compare previous
methods under a fair condition. Also, to pre-train models which can
generalize to different downstream tasks, it is required to apply a gen-
eral pre-training approach instead of task-specific ones. In this chapter,
the masked autoencoder (MAE) [83] and contrastive learning [34, 35,
82] are used to pre-train models, as they generalize well and show im-
pressive performance in Chapters 4 and 5. This chapter combines the
self-supervision and randomized data generation to efficiently pre-train
3D neural networks. Experimental results demonstrate that randomly
generated 3D scenes bring on-par improvement as real-world data. Also,
the pre-trained models generalize well in different downstream tasks,
e.g., object detection and semantic segmentation.

Using formula-driven shapes, e.g., fractal point clouds [268], instead
of CAD models for scene generation is more promising since it does not
rely on additional data and saves the cost of crafting or gathering CAD
models. However, this chapter demonstrates that fractal point clouds
lead to sub-optimal results in pre-training. One explanation is that the
appearance of fractal point clouds is not close to real-world objects (see
Figure 6.2(b)). This domain gap leads to inferior performance. Moreover,
since real-world 3D data are usually captured with depth sensors (e.g.,
laser scanners or RGB-D cameras), which cannot measure the internal
structure of objects, real-world data only contain sample points on object
surfaces. It implies that the objects used for scene generation should con-
tain sufficient surfaces so that the pre-trained models can be transferred
to downstream tasks with real-world data. Fractal point clouds, on the
contrary, do not contain continuous surfaces (see Figure 6.2(b)). In ad-
dition to the overall appearance, this chapter hypothesizes that the lack
of surfaces also makes the pre-training less effective. Instead of fractal
point clouds, this chapter proposes using spherical harmonics, which
are formula-driven shapes with natural surfaces. Also, their appearance

133

6 Efficient Pre-Training via Self-Supervision and Randomized 3D Scene Generation

is closer to real-world objects compared to fractal point clouds. Experi-
mental results in this chapter show that spherical harmonics outperform
fractal point clouds with a clear margin and are competitive compared
to CAD models and real-world data in pre-training.

The contribution of this chapter is many-fold:

1. It explores generalizable pre-training using randomized 3D scene
generation and systematically compares the generated data in
multiple tasks.

2. Experimental results provide a deeper understanding of random-
ized 3D scene generation, e.g., the impact of object sets and view
angles.

3. It proposes generating scenes with formula-driven spherical har-
monics. The models pre-trained using this approach achieve com-
petitive results in 3D object detection and semantic segmentation
without using real-world data or CAD models in the pre-training
stage.

6.2 Method

This section first briefly revisits the concept of randomized 3D scene gen-
eration. Then, it presents details on the data generation process, including
a novel method to create formula-driven shapes using spherical harmon-
ics. Finally, it explains the self-supervised pre-training with generated
data.

6.2.1 Concept of Randomized 3D Scene Generation

As shown in Figure 6.1 and explained in Section 6.1, randomized 3D
scene generation requires an object set and pre-defined rules. A room
with a random size is first created to generate a new scene. A 3D object
is randomly picked from the set, undergoes data augmentation (e.g.,
rotation and scaling), and is randomly placed in the room. The process is
repeated until the room contains enough objects. The rules define e.g., the
distribution of room size, choices and parameters for data augmentation,

134

6.2 Method

distribution of objects in the room, and the number of objects in each
scene. With an object set and rules given, a vast amount of scenes can be
easily generated.

Previous works use similar rules while having different choices on
object sets. Rao et al. [179] use CAD models, which is straightforward
since openly accessible datasets of CAD models are commonly used in
3D computer vision [26, 255]. This choice has the drawback that creating
or gathering CAD models is still laborious and time-consuming. On
the contrary, Yamada etal. [268] propose generating the object set in
a randomized manner. Specifically, they create fractal point clouds by
randomly sampling affine transformations and iteratively applying them
to 3D points. However, this method is sub-optional as the fractal point
clouds are not close to real-world objects and do not have surfaces (see
Figure 6.2(b)).

(b) Fractal point clouds [268]

SAS &

(c) Spherical harmonics

Figure 6.2 Examples of objects used for scene generation. Some objects are shown as
meshes, although only sampled points are used for pre-training.

135

6 Efficient Pre-Training via Self-Supervision and Randomized 3D Scene Generation

6.2.2 Spherical Harmonics

This chapter suggests generating object sets using spherical harmonics,
which can be represented in a spherical coordinate system with radial
distance 7, polar angle 8, and azimuthal angle ¢:

r = sin(mq)P + cos(myp)P2 + sin(m30)P3 + cos(m,0)P+, (6.1)

where m; € R and p; € Z* withi € {1,2,3,4}. With fixed coefficients m;
and p;, Equation 6.1 describes a closed surface in 3D space. Diverse 3D
objects can be generated when the coefficients are randomly set. Some
generated spherical harmonics are visualized in Figure 6.2(c). Spheri-
cal harmonics are initially employed to solve partial differential equa-
tions [155]. In computer vision, they are also applied to describe surfaces
and shapes [107, 197]. The form in Equation 6.1 is motivated by the
original definition but does not strictly follow it. In this chapter, the
mathematical and physical meanings of spherical harmonics are not
considered. They are only used to parameterize the object set. This idea
is also inspired by a web page written by Paul Bourke!. Notice that the
generated spherical harmonics can be easily represented as (rectangular)
meshes when coordinates ¢ and 6 are sampled with constant intervals.
The mesh representation greatly simplifies further processing, e.g., point
sampling and ray-casting (explained Section 6.2.4).

6.2.3 From Objects to Scenes

This chapter assumes all scenes are static, following previous works. Also,
only downstream tasks in indoor scenes are considered, while extending
the methods to outdoor scenarios is straightforward. This chapter adopts
the generation rules of Rao et al. [179] and represents generated 3D scenes
as point clouds. Each randomly picked object is normalized into a unit
sphere. Then, 3000 points are randomly sampled and undergo random
data augmentation. Each generated scene contains 12 to 16 objects. Since
random scaling is used as data augmentation, the point density on each
object might differ. To make the point density consistent across each
scene, grid sampling (i.e., voxelization) with the voxel size of 0.04 m is

1 http://paulbourke.net/geometry /sphericalh /. Last accessed on 2023.04.03.

136

http://paulbourke.net/geometry/sphericalh/

6.2 Method

Figure 6.3 Examples of generated 3D scenes in point cloud representation. From left
to right: using CAD models from ShapeNet [26], CAD models from ModelNet40 [255],
fractal point clouds, and spherical harmonics, respectively. The colors here are solely for
visualization purposes. The generated synthetic point clouds do not contain color channels.

applied to the point clouds. The same rules are employed for all object
sets (e.g., CAD models and fractal points). Some generated scenes are
visualized in Figure 6.3. More details on generation rules are provided
in Section 6.4.2.

In this chapter, single point clouds are generated independently. On
the contrary, Rao et al. [179] create pairs of point clouds with object-level
correspondence, and Yamada et al. [268] additionally generate bounding
box labels for each scene.

6.2.4 Single-View Point Clouds

Previous works represent the generated scenes as multi-view point
clouds. In this thesis, a point cloud is referred to as multi-view when it
cannot be projected to one surface without information loss. A typical
example of multi-view point clouds is a 3D scan reconstructed from
data sequences, e.g., using the SLAM (simultaneous location and map-
ping) technology. On the contrary, many point clouds in practice are
single-view and represented as depth maps (e.g., from depth cameras)
or range images (e.g., from rotational laser scanners). Besides comparing
different methods for randomized scene generation, it is also meaningful
to compare the synthetic data with real-world ones. A lot of works use
single-view real-world data for self-supervised pre-training [94, 260, 264,
285, 295] since they are the direct output from sensors and easy to obtain.

To clarify the impact of single-view and multi-view representations in
pre-training and for a fairer comparison with the real-world data, this
chapter also studies single-view point clouds. Specifically, meshes are
used as objects to create scenes instead of sampled point clouds. The same

137

6 Efficient Pre-Training via Self-Supervision and Randomized 3D Scene Generation

Figure 6.4 Examples of generated depth maps via ray-casting. From left to right: with
objects from ShapeNet [26], with objects from ModelNet40 [255], with spherical harmonics,
respectively. According to the rules of Rao et al. [179], objects might be stacked on others.
Depth values are normalized for visualization.

rules of Rao etal. [179] are used to generate 3D scenes. Then, a virtual
camera with a random pose captures a depth map using ray-casting [190].
The camera pose is checked so that each depth map contains sufficient
objects (empirically set to 7 in this chapter). In pre-training, the depth
maps are converted into point clouds on the flight. Data augmentations,
e.g., cropping the depth maps, and scaling and rotating the point clouds
converted from them, are also applied.

Some generated depth maps are visualized in Figure 6.4. No depth
maps are generated with fractal point clouds since ray-casting is non-
trivial in this case.

6.2.5 Self-Supervised Pre-Training

To pre-train 3D neural networks, Rao et al. [179] create pairs of scenes with
the same objects but different layouts and perform contrastive learning
using object-level correspondence. Yamada ef al. [268] generate bound-
ing box labels for each object and pre-train object detectors in a fully
supervised manner. Both methods are only evaluated in object detection
tasks.

On the contrary, this chapter explores generalizable pre-training using
generated synthetic data. Instead of using a pre-training strategy spe-
cific to one downstream task, this chapter applies masked autoencoder
(MAE) [83] and MoCoV2 [35], following Chapters 4 and 5, to evaluate
the generated data. The concepts of the two pre-training methods are
briefly revisited in the following.

138

6.3 Experiments

MAE [83] is employed to pre-train vision transformers [49, 235]. An
input point cloud is divided into small patches, and a large proportion
is masked. A transformer-based encoder extracts patch-wise features
from the remaining patches, and a decoder is trained to reconstruct
the masked patches. After the pre-training, the decoder is abandoned,
and the encoder can be transferred into downstream tasks. This chapter
adopts the architecture and training method in Chapter 5 for MAE.

Also, scene-level contrastive learning is applied to pre-train a point
cloud encoder following Chapter 4. Two overlapping regions are cropped
from each generated scene to create a positive pair (i.e., an anchor and a
positive sample). Point clouds from other scenes are regarded as negative
samples. Given a point cloud as an anchor, the encoder is trained to
distinguish its positive sample from many negative samples. This chap-
ter applies MoCoV2 [35] by using an exponentially moving averaged
momentum encoder and a memory bank to save global features from
negative samples.

6.3 Experiments

This section first introduces the experimental setups in this chapter.
Then, it demonstrates the main results by comparing different synthetic
datasets. Furthermore, the proposed methods are compared with state-
of-the-art methods using synthetic or real-world data for pre-training.
Finally, additional experimental results are provided to justify the design
choices and demonstrate the generalization of the proposed methods.

6.3.1 Setups

Experimental setups used in this chapter are explained in the following.

6.3.1.1 Real-World baseline

To create a baseline using real-world data, the baseline models are pre-
trained on ScanNet [43], a large-scale indoor dataset captured in approx-
imately 1500 rooms. 78 000 frames are sampled (approximately one in
every 25 frames or one per second) from the raw data in the training set,
following setups in Chapters 4 and 5.

139

6 Efficient Pre-Training via Self-Supervision and Randomized 3D Scene Generation

6.3.1.2 Scene Generation

To evaluate the impact of different object sets, four object sets are used to
generate synthetic data, summarized in Table 6.1.

ShapeNet [26] and ModelNet40 [255] are used as CAD model sets.
The former consists of ~50000 models of ordinary everyday objects
(e.g., chairs and shelves), while the latter contains ~10000. This chapter
follows their official train/test split and uses only objects from training
sets. More details on the two datasets are provided in Appendix B.2.1
and Appendix B.2.2, respectively.

In the default setup, 10000 formula-driven objects are used to gen-
erate scenes, so the object number is aligned with ModelNet40. The
configuration of Yamada et al. [268] is used to create fractal point clouds.
For spherical harmonics, the coefficients m; and p; in Equation 6.1 are
constrained in range [—5, 5] and [0, 4], respectively.

78000 scenes are generated with each object set in the default setup,
following the real-world baseline. The generated datasets are named RM-
ShapeNet, RM-ModelNet, RM-Fractal, and RM-Harmonics according to
object sets. The abbreviation RM stands for RandomRooms [179], as the
generation rules are adopted from this work.

Table 6.1 Summary of generated datasets.

Dataset Object Set Object Number
RM-ShapeNet ShapeNet [26] ~50000
RM-ModelNet ModelNet40 [255] ~10000
RM-Fractal fractal points [268] 10000
RM-Harmonics spherical harmonics 10000

6.3.1.3 Masked Autoencoder

This chapter uses the same setup to pre-train and fine-tune masked au-
toencoders as Chapter 5. Specifically, a 3-layer transformer encoder [235]
extracts features from input patches. A decoder with 2 layers is attached
to the encoder for pre-training. All models are pre-trained for 120 epochs
with a batch size of 64 and an AdamW optimizer [140].

140

6.3 Experiments

The pre-trained encoder is evaluated for 3D object detection on the
ScanNet [43] benchmark. 3DETR [152] is used as the detection head
and is fine-tuned for 1080 epochs with batch size 8. The mean average
precision with a 3D-IoU threshold of 25 % and 50 % (i.e., AP25 and AP50)
over 18 classes are evaluation matrices. This chapter also fine-tunes the
pre-trained transformer for semantic segmentation on the S3DIS [10]
dataset. The segmentation head introduced in Chapter 5 is connected to
the pre-trained encoder. The entire network is fine-tuned for 300 epochs
with batch size 12. Mean accuracy (mAcc) and mean IoU (mloU) over 13
classes in Area 5 are reported as metrics.

6.3.1.4 Contrastive Learning

This chapter pre-trains a PointNet++ [171] using contrastive learning,
following previous works [179, 268, 285] and Chapter 4.

The network architecture is adopted from Qi et al. [173], which consists
of 4 down-sampling modules [171] and 2 up-sampling modules [171].
The model is pre-trained using the well-known MoCoV2 pipeline [35].
Chapter 4 investigates multiple strategies using different invariances of
3D features (cf. Section 4.2.2). For simplicity and better comparability with
previous works in literature, this chapter primarily uses the most basic
strategy Point-Point Contrast (PPCo) with only global correspondence.
However, the evaluation results of Depth-Point Contrast (DPCo) are also
reported in Section 6.3.4.5.

The PointNet++ is pre-trained for 120 epochs using an SGD optimizer,
an initial learning rate of 0.01, a batch size of 12, and the cosine annealing
schedule [139]. After pre-training, a VoteNet [173] is initialized with
the pre-trained model and is fine-tuned for 3D object detection on the
ScanNet [43] and the SUN RGB-D [212] benchmark. The setup is the same
as in Chapter 4.3.1. This chapter reports AP25 and AP50 as evaluation
metrics.

6.3.2 Main Results

The generated datasets in Table 6.1 are used for pre-training models
using masked autoencoder and contrastive learning.

141

6 Efficient Pre-Training via Self-Supervision and Randomized 3D Scene Generation

Table 6.2 Downstream task performance of an MAE pre-trained on different datasets.
Detection results are on the ScanNet detection benchmark. Segmentation results are on
S3DIS dataset. The second column refers to the pre-training data. All metrics in percentage.

Detection Segmentation
Pre-Training Data View AP25 AP50 | mAcc mloU
N/A (Chapter 5) - 616 388 | 664 60.0
ScanNet (Chapter 5) single 641 43.0 | 74.7 67.6
RM-ShapeNet multi 63.8 426 | 74.6 67.8
RM-ModelNet multi 635 420 | 73.6 67.0
RM-Fractal multi 628 404 | 70.2 64.1
RM-Harmonics multi 63.8 43.2 74.1 67.1
RM-ShapeNet single 63.8 429 73.8 67.2
RM-ModelNet single 625 416 | 735 66.3
RM-Harmonics single 635 421 73.5 67.1

6.3.2.1 Masked Autoencoder

First,an MAE is pre-trained using the generated data, and the fine-tuning
performance is reported in Table 6.2. Compared to results without pre-
training (row 1), all pre-trained models gain a significant improvement
in object detection and semantic segmentation, showing the benefit of
self-supervised pre-training.

Among multi-view variants of randomly generated data (row 3 to 6),
using ShapeNet as an object set (i.c., RM-ShapeNet) delivers the best per-
formance since ShapeNet is significantly larger than other object sets (see
Table 6.1). Meanwhile, RM-Fractal brings the slightest improvement. It
supports the intuition that fractal point clouds as objects are non-optimal
in data generation due to their unrealistic appearance and lack of sur-
faces. Interestingly, with the same object number, the RM-Harmonics
dataset outperforms RM-ModelNet. The result is promising since it im-
plies that randomly generated objects can replace CAD models for scene
generation. However, most CAD models in ModelNet40 are ordinary
objects in daily life, e.g., chairs and tables. At the same time, both datasets
in downstream tasks are captured in indoor environments, e.g., living

142

6.3 Experiments

rooms and offices. One should expect ModelNet40 to perform better
than spherical harmonics because of the similarity between pre-training
and fine-tuning data. The diversity of the object set might cause this
contradiction. Although ModelNet40 contains 40 classes, the appearance
of the objects in the same class is similar. Also, the class distribution in
ModelNet40 is long-tailed (cf. Appendix B.2.1), which might also have a
negative impact [229]. On the other hand, spherical harmonics are gen-
erated by uniformly sampling the coefficients, which results in a more
diverse and balanced object set.

Furthermore, Table 6.2 compares the results of generated synthetic
data with the real-world ScanNet dataset (row 2). With the same number
of point clouds, the performance of RM-ShapeNet and RM-Harmonics is
close to real-world data, demonstrating the effectiveness of randomized
scene generation in self-supervised pre-training.

With generated single-view data (i.e., depth maps), a similar trend can
also be observed: RM-ShapeNet performs the best, while RM-Harmonics
is more effective than RM-ModelNet. Data generation with fractal points
is not performed since ray-casting relies on mesh data. However, com-
pared to their corresponding multi-view variants, all single-view datasets
perform worse with MAE.

6.3.2.2 Contrastive Learning

For contrastive learning, a PointNet++ is pre-trained, and a VoteNet is
fine-tuned using it as the backbone. Object detection results on ScanNet
and SUN RGB-D are reported in Table 6.3. Generally, pre-trained models
achieve better detection quality than the baseline without pre-training on
both benchmarks. For the multi-view datasets (row 3 to 6), RM-ShapeNet
and RM-Harmonics show on-par performance. RM-ModelNet performs
worse than these two datasets, while RM-Fractal brings the smallest im-
provement in pre-training. Compared to real-world data from ScanNet?,
all randomly generated data shows significantly worse results on the
SUN RGB-D dataset, while the gap disappears on the ScanNet detection
benchmark.

2 Due to technical issues, this chapter uses different hardware and batch size to Chapter 4.
Therefore, the results of ScanNet using PPCo slightly differ in the two chapters.

143

6 Efficient Pre-Training via Self-Supervision and Randomized 3D Scene Generation

Table 6.3 Fine-tuning results of contrastive learning using generated data. Evaluation for
3D object detection on SUN RGB-D and ScanNet benchmark. All metrics in percentage.
Absent values are not reported in the original publication.

SUN RGB-D ScanNet
Pre-Training Data View AP25 AP50 | AP25 AP50
N/A[173] - 58.4 333 | 60.0 376
ScanNet single 608 357 | 622 39.0
RM-ShapeNet multi 598 341 | 627 379
RM-ModelNet multi 593 337 | 623 373
RM-Fractal multi 591 334 | 613 386
RM-Harmonics multi 596 357 | 626 397
RM-ShapeNet single 589 33.0 | 641 40.0
RM-ModelNet single 579 324 | 634 3938
RM-Harmonics single 58.6 33.1 63.5 398
RandomRooms [179] multi 59.2 - 61.3 -
PC-FractalDB [268] multi 594 339 | 619 383

The relative performance of single-view variants of generated data is
similar to the multi-view ones, e.g., RM-ShapeNet > RM-Harmonic > RM-
ModelNet. However, the detection results on the SUN RGB-D dataset are
worse compared to using multi-view data. On the contrary, single-view
datasets show significantly better results on the ScanNet benchmark.
This observation is counter-intuitive. Note that SUN RGB-D consists of
single-view point clouds, whereas the ScanNet benchmark applies point
clouds reconstructed from multi-views. One should expect the models
pre-trained using single-view data to perform worse on the ScanNet
benchmark due to the domain gap. The reason for the observation is not
fully understood. However, it must be correlated with the pre-training
schema since it is not observed with MAE.

Table 6.3 also compares the generated datasets with two previous
works, i.e., RandomRooms [179] and PC-FractalDB [268], each applies
a training strategy specialized for object detection. Both methods use
VoteNet as the detector and apply PointNet++ as the backbone. The
model pre-trained with RM-Fractal achieves similar performance as PC-

144

6.3 Experiments

FractalDB [268], which also generates scenes using fractal point clouds.
However, RM-Harmonics (multi-view) outperforms both previous works
by a clear margin. It shows that the choice of object sets has a larger impact
than pre-training methods. Also, it implies that a task-specific design is
unnecessary in pre-training, and general purpose methods (e.g., MAE
and MoCoV?2) are sufficient.

6.3.2.3 Discussion

The experimental results in Tables 6.2 and 6.3 can be summarized as
follows:

1. Randomized scene generation is effective for pre-training 3D mod-
els with self-supervision. This approach generalizes well across
different pre-training methods and downstream tasks. Also, its
performance is comparable with real-world data.

2. Formula-driven spherical harmonics perform significantly better
than fractal point clouds and achieve on-par results as hand-crafted
CAD models.

3. The diversity of objects impacts the effect of pre-training. An object
set with a larger diversity is generally beneficial.

4. Single-view and multi-view variants of generated data bring dif-
ferent results. However, the impact is inconsistent across different
pre-training methods and fine-tuning datasets.

The observation that randomly generated data have a similar effect
as real-world ones in self-supervised pre-training is interesting since
the synthetic data do not look photo-realistic (Figures 6.3 and 6.4), es-
pecially when formula-driven objects are applied. It is because neural
networks perform different tasks in self-supervised pre-training and
supervised fine-tuning (i.e., pre-training and downstream tasks are de-
coupled). Therefore, the performance in fine-tuning is not sensitive to
the domain gap between pre-training and fine-tuning data. Neverthe-
less, a large gap can still harm the performance, e.g., fractal point clouds
perform worse than spherical harmonics in experiments.

145

6 Efficient Pre-Training via Self-Supervision and Randomized 3D Scene Generation

6.3.3 Comparison with other Pre-Training Methods

Table 6.4 compares the fine-tuning performance of models pre-trained
on RM-Harmonics with other state-of-the-art methods. All methods
indicated with “real” are pre-trained on real-world data from ScanNet,
while DepthContrast (x3) in Table 6.4 additionally uses data from the
larger Redwood indoor RGB-D scan dataset [165]. All methods in the
upper half of Table 6.4 fine-tune a VoteNet with a pre-trained PointNet++
as the backbone, while methods in the lower half use a 3DETR with a
pre-trained transformer.

Compared with methods using real-world data for pre-training, the
proposed RM-Harmonics achieves competitive performance. However,
pre-training using RM-Harmonics is more efficient since the data are
randomly generated and require neither real-world 3D scans nor hand-
crafted CAD models.

Table 6.4 Object detection results on the ScanNet detection benchmark. Data: type of
pre-training data (real-world, synthetic or none). Model: the architecture of backbones. P:
PointNet++, T: transformer. All reported values are in percentage.

Methods Data Model AP25 AP50
VoteNet [173] N/A P 60.0 37.6
Hou etal. [94] real P - 39.3
DepthContrast (x1) [285] real P 61.3 -

DepthContrast (x3) [285] real P 64.0 429
DPCo (Chapter 4) real P 642 415
RandomRooms [179] syn. P 61.3 -

PC-FractalDB [268] syn. P 61.9 38.3
RM-Harmonics (multi-view) syn. P 62.6 39.7
RM-Harmonics (single-view) syn. P 635 3938
3DETR [152] N/A T 62.1 37.9
MaskPoint (L3) [131] real T 63.4 40.6
MaskPoint (L12) [131] real T 64.2 42.1
Plain Transformer (Chapter 5) real T 64.1 43.0
RM-Harmonics (multi-view) syn. T 63.8 43.2
RM-Harmonics (single-view) syn. T 63.5 421

146

6.3 Experiments

6.3.4 Analysis

Experiments are conducted to demonstrate the impact of colors, ob-
ject, and scene numbers on the pre-training. Also, the label efficiency
of models pre-trained on synthetic data are analyzed. Furthermore, the
generalization of the proposed methods to stronger models and DPCo
(Chapter 4) is discussed.

6.3.4.1 Pseudo Color in Pre-Training

Since simulation and rendering are not involved, the scenes generated in
this chapter do not contain color information. However, color channels
are crucial in some downstream tasks, e.g., semantic segmentation. To
transfer models trained on colorless point clouds to such tasks, this
chapter applies pseudo colors and data augmentation to color channels in
pre-training. Specifically, all color channels are set to a constant value (i.e.,
0.5), and random color jitter is applied to each point. Also, color values
of all points are simultaneously set to 0 with the probability 0.5 (i.e., color
drop out).

Experiments are conducted to analyze the effect of this approach. As
shown in Table 6.5, when no data augmentation (i.e., jitter and drop out)
is applied to color values, the constant pseudo color leads to significantly
worse results with RM-Harmonics. Table 6.5 also shows the results of

Table 6.5 Impact of colors in pre-training using MAE. Fine-tuned for semantic segmen-
tation on the S3DIS dataset and evaluated in Area 5. The first two columns refer to the
pre-training data. Const.: constant RGB values for all points. DA: data augmentation on
color channels.

Pre-Train Dataset Colors mAcc (%) mloU (%)

N/A N/A 66.4 60.0
RM-Harmonics const. 69.8 62.8
RM-Harmonics const. + DA 74.1 67.1

ScanNet const. 69.8 63.6
ScanNet const. + DA 73.1 67.0
ScanNet real 74.7 67.6

147

6 Efficient Pre-Training via Self-Supervision and Randomized 3D Scene Generation

models pre-trained on ScanNet to compare the performance of pseudo
colors and real-world colors. Without data augmentation on pseudo
colors, the performance of pseudo colors is much lower than real-world
colors. However, applying data augmentation significantly shrinks the
gap. Interestingly, when both use pseudo colors, RM-Harmonics slightly
outperforms ScanNet in pre-training.

Results in Table 6.5 show that pseudo colors can be applied to pre-train
models requiring colors on colorless point clouds. Also, data augmenta-
tion is essential for improving performance. This chapter hypothesizes
that models learn color invariance via data augmentation and focus on the
geometric information in the pre-training. In contrast, color-dependent
information is learned in fine-tuning where real-world colors are avail-
able.

6.3.4.2 Object and Scene Numbers

This chapter proposes generating scenes using spherical harmonics as
objects. The following experiments investigate the impact of object and
scene numbers. All experiments are conducted using MAE.

The number of used spherical harmonics in scene generation is first
fixed (i.e., 10000), and the scene number is scaled. As shown in the
upper half of Table 6.6, using more scenes in pre-training is generally
beneficial. However, there is no further improvement when more than
78000 scenes (x1) are applied.

Furthermore, the scene number is fixed to the default value, and the
object number is scaled. With a small object number (x0.2), the generated
scenes have a smaller diversity, which harms the effect of pre-training.
However, a large object number (e.g., x5) produces significantly worse re-
sults. Also, scaling up the scene and object numbers simultaneously (the
last two rows) does not bring improvement compared to the default
setup. It is probably due to the limited diversity of spherical harmonics
described by Equation 6.1. Since the equation has only 8 coefficients, with
a too large object number, the minimal “distance” between generated

148

6.3 Experiments

Table 6.6 Impact of object and scene numbers. All experiments use multi-view point
clouds generated with spherical harmonics. Models are evaluated for object detection on
ScanNet. x1: 10 000 objects or 78 000 scenes, respectively (i.e., default numbers). xa: scaling
with factor a.

Objects Scenes AP25 (%) AP50 (%)

N/A N/A 61.6 38.8
x1 x0.2 62.9 41.1
x1 x0.5 63.5 42.7
x1 x1 63.8 43.2
x1 x2 63.8 43.4
x1 x5 63.4 429
x0.2 x1 62.4 41.8
x0.5 x1 63.9 42.8
x1 x1 63.8 43.2
x2 x1 63.2 41.7
x5 x1 62.5 40.6
x2 x2 63.2 425
x5 x5 63.0 422

objects becomes smaller®. As a result, some generated scenes contain
very similar objects, and the model might learn a bias and expect objects
in a scene to be similar. Even though a real-world scene can contain
similar objects (e.g., chairs from the same producer), their appearance in
real-world 3D data is usually different because objects are often obscured
differently, and the data are subject to measurement noises. Therefore,
such a bias hurts the effectiveness of pre-training.

Based on the discussion, searching for new parameterized shapes with
more degrees of freedom is beneficial. The exploration is left to future
works.

3 Consider the situation where n points in a continuous interval [0, 1] have to be inde-
pendently and uniformly sampled. The minimal distance between two points decreases
with increasing n.

149

6 Efficient Pre-Training via Self-Supervision and Randomized 3D Scene Generation

6.3.4.3 Label Efficiency

40 -

30|

20 -

AP25 (%)
AP50 (%)

-8~ From scratch |]
-®- ScanNet
—8- RM-Harmonics

-@— From scratch 10
10} -@- ScanNet 1
~@—- RM-Harmonics

L .
510 20 50 100 510 20 50 100

Used Data (%) Used Data (%)
(a) AP25 (b) AP50

Figure 6.5 Detection results of MAE with reduced fine-tuning data and labels.

Label efficiency is one focus of this thesis. Sections 4.3.3 and 5.3.3.6
evaluate models pre-trained on real-world data with reduced annotated
fine-tuning data. They demonstrate that self-supervised pre-training can
improve label efficiency. A similar experiment is conducted using syn-
thetic data from RM-Harmonics. Specifically, an MAE is pre-trained on
the generated RM-Harmonics dataset. Then, it is fine-tuned on ScanNet
for object detection using 5 %, 10 %, 20 %, 50 %, and 100 % data, respec-
tively.

Experimental results are visualized in Figure 6.5. Pre-training with
RM-Harmonics shows a similar effect as ScanNet. Also, the improvement
from pre-training is more significant when fewer data are used in fine-
tuning. However, when fewer annotated samples (e.g., 5 % and 10 %) are
available, the performance gap between the two pre-training datasets is
larger. It is understandable since the generated scenes are not as realistic
as ScanNet. The model requires more real-world samples to adapt to the
downstream dataset. However, the performance gap is closed when the
detector is fine-tuned with more annotated data (e.g., 20 %).

This experiment shows that pre-training using randomly generated
data improves label efficiency. It can be interpreted from two aspects. On
the one hand, with the same amount of annotated (fine-tuning) data, pre-
trained models achieve better performance. On the other hand, the pre-

150

6.3 Experiments

trained model gains the same results with less annotated data compared
to models trained from scratch.

6.3.4.4 Pre-Training Stronger Models

This chapter adopts the plain transformer in Chapter 5. The transformer
encoder consists of 3 layers in the default setup. Section 5.3.3.4 demon-
strates that using more layers improves the performance in semantic
segmentation tasks. This experiment investigates if the randomly gener-
ated synthetic data apply to models with a larger capacity.

As Table 6.7 shows, pre-training using RM-Harmonics also improves
the performance of the 12-layer model compared with the model trained
from scratch. The result implies that the proposed method can generalize
to stronger models. However, the improvement is smaller than the real-
world ScanNet dataset. It is because the scenes in RM-Harmonics are not
photo-realistic and contain no color information (cf. Section 6.3.4.1). Also,
the difference (1.8 % mAcc and 1.9 % mloU) is more significant than the
3-layer variant (0.6 % mAcc and 0.5 % mloU) since models with a larger
capacity generally benefit more from pre-training.

Table 6.7 Comparison of semantic segmentation results with different model capacity.
Evaluated on the S3DIS dataset Area 5. All models use 512 patches.

Encoder Layers Pre-Train Data mAcc (%) mloU (%)

3 layers N/A 66.4 60.0
3 layers ScanNet 74.7 67.6
3 layers RM-Harmonics 74.1 67.1
12 layers N/A 70.0 63.2
12 layers ScanNet 77.0 70.4
12 layers RM-Harmonics 75.2 68.5

6.3.4.5 Pre-Training using Depth-Point Contrast

As explained in Section 6.3.1.4, Section 6.3.2.2 investigates contrastive
learning using only point clouds for better comparability with previous

151

6 Efficient Pre-Training via Self-Supervision and Randomized 3D Scene Generation

Table 6.8 Detection results of VoteNet pre-trained using different data. Models are pre-
trained using DPCo introduced in Chapter 3.

Pre-Training Data | SUN RGB-D | ScanNet

| AP25 (%) AP50 (%) | AP25(%) AP50 (%)
N/A 58.4 33.3 60.0 37.6
ScanNet 59.8 35.6 64.2 415
RM-Harmonics 58.8 34.1 63.7 404

works. However, Chapter 4 proposes a more advanced method DPCo, pre-
training a point cloud encoder and a depth map encoder simultaneously.

To clarify if randomized 3D scene generation works with DPCo, a
PointNet++ is pre-trained with the setup in Chapter 4 but using depth
maps from RM-Harmonics. Then, a VoteNet is fine-tuned on the SUN
RGB-D and the ScanNet dataset for object detection, using the pre-trained
PointNet++ as the backbone. Table 6.8 shows that pre-training on RM-
Harmonics significantly improves the detection results on both datasets.
Also, the improvement is larger on the ScanNet (fine-tuning) dataset,
which is in line with the observation in Section 6.3.2.2.

Moreover, a 2.5D-VoteNet (Chapter 3) is pre-trained using DPCo and
RM-Harmonics. The model is evaluated on the SUN RGB-D dataset,
following the setup in Section 4.3.4.1. As shown in Table 6.9, the generated
synthetic data improve AP25 from 60.8 % to 61.3 % and AP50 from 36.9 %
to 37.4 %.

Tables 6.8 and 6.9 show that randomized 3D scene generation can
be applied to other proposed methods in this thesis, e.g.,, DPCo and
2.5D-VoteNet.

Table 6.9 Fine-tuning results of 2.5D-VoteNet on the SUN RGB-D dataset with different
pre-training data. Models are pre-trained using DPCo introduced in Chapter 4.

Pre-Training Data AP25 (%) AP50 (%)

N/A 60.8 36.9
ScanNet 61.4 38.8
RM-Harmonics 61.3 37.4

152

6.4 Additional Details and Visualization

6.4 Additional Details and Visualization

This section presents additional implementation details and qualitative
results.
6.4.1 Generating Spherical Harmonics

To generate sufficient objects for creating randomized scenes, this chap-
ter randomly sets the coefficients in spherical harmonics described in
Equation 6.1.

P U e

U S e

p1=5 p1 =06

Figure 6.6 Impact of coefficient p; in spherical harmonics. For all objects:
[my,my, mg,my] =12,1,2,2]and [p,, p3,psl = [2,1,2].

The coefficients m; are constrained in the range [-5, 5] and p; in [0, 4],
because too large coefficients lead to high-frequency structures. Due to
the sampling theorem, these details are lost when points are sampled
from spherical harmonics (represented as meshes) and are thus invisible
in the pre-training.

The impact of the coefficients is illustrated in Figure 6.6, where all
coefficients are fixed except p;. With increasing p, the “fins” of the corre-
sponding spherical harmonics become finer. A similar effect can be seen
in Figure 6.7, where the influence of m, is visualized. With large coef-
ficients, the overall appearance of spherical harmonics is similar. Thus,

153

6 Efficient Pre-Training via Self-Supervision and Randomized 3D Scene Generation

Figure 6.7 Impact of coefficient 71, in spherical harmonics. For all objects: [m1,, 113, m,] =
[1,2,2] and [pq, P2, p3, P4l = [2,2,1,2].

this chapter constraints the spherical harmonics in the low-frequency
range to generate diverse scenes.

6.4.2 Scene Generation Rules

This chapter generates scenes using the rules of Rao etal. [179]. Some
modifications are made to the original configurations. The resulting
procedure can be summarized as follows:

1. Randomly pick 12 to 16 objects from the object set.

2. Independently apply data augmentation to each object (more de-
tails in Section 6.4.3).

3. Sort the objects in descending order based on their projection areas
on the horizontal plane (X-Y plane).

4. Randomly set the area (X-Y plane) of a rectangular room depend-
ing on the area sum of objects so that the objects can fit into the
generated scene.

5. Randomly generate walls and floors according to the room area.

154

6.4 Additional Details and Visualization

6. Place each object by randomly choosing a position on the X-Y
plane. Objects can be stacked on previous ones as long as the
current height of the position is below 2 m. Otherwise, choose a
new position. Objects cannot overlap.

7. For multi-view point clouds, voxelize the entire scene with voxel
size 0.04 m. Then, randomly sample 40000 points and save them
for pre-training.

8. For single-view point clouds, randomly place a virtual camera
in the scene and capture a depth map via ray-casting. Check the
result so that each depth map contains at least 7 objects. All depth
maps have the resolution 640x480, following the real-world dataset
ScanNet [43]. The camera intrinsics and camera pose are also saved.

6.4.3 Pre-Processing and Data Augmentation

The pre-processing and data augmentation in this chapter are explained
in the following.

6.4.3.1 Data Generation

Data augmentation is applied to each object during scene generation.
Specifically, each object is first normalized into a unit sphere and is
randomly scaled with a factor uniformly distributed in [0.7,1.5]. Then
the object is left-right flipped with a probability of 0.5 and is rotated
around the vertical axis (Z-axis) with an arbitrary angle.

For spherical harmonics, the Z-axis and Y-axis are swapped with the
probability 0.5 since spherical harmonics show approximate rotational
symmetry around Z-axis (see Figures 6.6 and 6.7). The motivation is to
prevent models from learning the bias that all objects are approximately
symmetric around the vertical axis. At last, 3000 points are randomly
sampled from each object for generating multi-view point clouds. For
generating single-view data via ray-casting, the mesh representation is
directly used without sampling.

155

6 Efficient Pre-Training via Self-Supervision and Randomized 3D Scene Generation

6.4.3.2 Pre-Training

The primary pre-processing involved in the pre-training pipeline is crop-
ping regions from an entire scene. However, the generated data must
be differently pre-processed depending on pre-training methods and
inputs.

1. For MAE with multi-view point clouds: A random point is picked
from a complete point cloud, and the closest 20000 points (i.e.,
50 %) around it are cropped.

2. For MAE with single-view point clouds: A rectangular region
with a random ratio in [0.6,0.8] is cropped from a depth map and
transformed into a point cloud.

3. For contrastive learning: Similar approaches are applied as for
MAE. This chapter crops spherical regions in multi-view point
clouds and crops depth maps for single-view point clouds. How-
ever, two overlapping crops are generated in each scene instead of
one to create a positive pair for contrastive learning.

Subsequently, standard data augmentation is applied to each crop,
including random translation, rotation around the Z-axis, scaling, point
jitter, and left-right flipping.

6.4.4 Generated Scenes

More generated scenes are visualized in Figure 6.8.

6.5 Conclusion

This chapter combines self-supervised pre-training with randomized 3D
scene generation. Compared to previous supervised and self-supervised
approaches, the introduced pipeline is especially efficient since it requires
neither annotation nor real-world data. Experimental results show that
the generated data perform well with different pre-training methods,
e.g., contrastive learning and mask autoencoder, and the pre-trained
models achieve impressive results in multiple downstream tasks, e.g.,
object detection and semantic segmentation.

156

6.5 Conclusion

Furthermore, this chapter takes a closer look at the impact of object
sets and proposes replacing hand-crafted CAD models with formula-
driven spherical harmonics. The method further reduces pre-training
costs without harming performance.

157

6 Efficient Pre-Training via Self-Supervision and Randomized 3D Scene Generation

Figure 6.8 More examples of generated scenes. From the first to the fourth row: RM-
ShapeNet, RM-ModelNet, RM-Fractal, and RM-Harmonics, respectively.

158

7 Summary and Future Works

7.1 Summary

This thesis addresses the high costs of applying neural networks to 3D
computer vision tasks. Three aspects of efficiency in deep learning for
sparse 3D data are discussed in depth, i.e., computational, label, and data
efficiency.

Chapter 3 represents a computationally efficient depth map-based
object detector, which extracts features directly on depth maps instead of
from point clouds. Thanks to the regular grid structure of depth maps,
the detector uses a 2D CNN as its backbone instead of complicated
and costly point cloud- or voxel-based models. Furthermore, Chapter 3
introduces a novel relative depth convolution layer to capture more in-
formative features from depth maps. The proposed 3D detector achieves
state-of-the-art performance and is significantly faster than previous
methods. Besides the depth map-based model, Chapter 5 revisits plain
transformers for point cloud understanding. By systematically evaluat-
ing and optimizing the patchifiers and position embedding, Chapter 5
introduces a transformer-based model with a simple structure and low
computational cost.

To reduce the dependence on labeled data and improve the label ef-
ficiency of the training process, this thesis investigates self-supervised
pre-training using unlabeled data. Chapter 4 revisits previous invariance-
based contrastive learning methods and compares them under a unified
framework. Moreover, it proposes a novel approach to contrasting fea-
tures from depth maps and a 3D format (e.g., voxels and point clouds).
Extensive experiments demonstrate that the proposed strategy achieves
superior results while having fewer requirements on the pre-training
data. Additionally, Chapter 5 explores the masked autoencoder (MAE)
to pre-train the proposed plain transformers. It discusses two informa-

159

7 Summary and Future Works

tion leakage problems in applying standard MAE to point clouds. A
non-overlapping patchifier is introduced to fix the information leakage
caused by overlapping patches. Furthermore, a novel method drop patch
is proposed to prevent the position embedding from leaking positional
information during the pre-training. The proposed models achieve state-
of-the-art results in 3D object detection and semantic segmentation tasks
thanks to the optimized structure and pre-training strategy.

For better data efficiency, Chapter 6 explores pre-training neural net-
works without real-world data. Instead of using the simulation technol-
ogy, Chapter 6 uses randomized 3D scene generation to create synthetic
data. It demonstrates that despite the poor fidelity of the generated data,
this approach cooperates well with different self-supervised pre-training
methods and model architectures. The pre-trained models generalize
seamlessly in multiple downstream tasks. Furthermore, Chapter 6 pro-
poses using formula-driven spherical harmonics as objects for data gen-
eration. The generated data show on-par performance as CAD models
and real-world data. Furthermore, the proposed data-generating method
is fully formula-driven, rule-based, and requires no additional data.

The methods proposed in this thesis have many application prospects.
For instance, the neural networks introduced in Chapters 3 and 5 can be
deployed for real-time applications, e.g., 3D object detection on robots,
thanks to their efficiency and simplicity. Also, the self-supervised meth-
ods proposed in Chapters 4 and 5 help train strong models without
labeling large-scale datasets. Furthermore, the data generation technol-
ogy presented in Chapter 6 allows pre-training neural networks without
capturing real-world data.

Meanwhile, this thesis provides references for future research and
potentially has a broader impact. For instance, the unified framework in
Chapter 4 can be regarded as a tool for analyzing contrastive learning
methods. Chapter 5 demonstrates the power of plain transformers. It
may encourage the community to rethink the design of transformer-
based models for point cloud data. Moreover, Chapter 6 addresses the
generalization issues of models pre-trained on randomly generated data,
which is overlooked in previous works.

The author hopes this thesis can inspire more research interest in the
efficiency of deep learning for sparse 3D data.

160

7.2 Future Works

7.2 Future Works

The efficiency of deep learning for sparse 3D data is still a new research
area with many open questions.

This thesis applies 2D CNNs (Chapter 3) and transformers (Chapter 5)
to 3D data for computational efficiency. Recent research also shows the
potential of MLP-Mixer [230], a simple and efficient architecture, in com-
puter vision tasks. Extending MLP-Mixer into the 3D domain can be an
interesting topic for future works. On the other hand, this thesis reduces
the computational costs of neural networks by analyzing their architec-
ture and manually tuning the hyperparameters. Alternatively, the goal
can be achieved via automatic optimization, e.g., using evolutionary algo-
rithms [47, 153] and neural architecture search [53, 293]. Although these
methods have achieved promising results in image processing [95, 225],
their application to 3D neural networks is still under-explored. Another
possible way to improve the computational efficiency of deep learning
models is using low-precision arithmetic (e.g., 8-bit integer instead of
32-bit floating point number). Training and inference using low-precision
arithmetic have drawn attention in image [78, 154] and neural language
processing [109, 263, 271]. However, this technology is not well-developed
for 3D computer vision tasks.

Chapter 4 applies a heterogeneous structure by contrasting features
from two different neural networks. Jointly optimizing multiple networks
is challenging since balancing their learning rates is non-trivial. This
problem is researched in many contexts, e.g., multi-task learning [37,
108, 199], generative adversarial networks (GANSs) [69, 74], and multi-
modal learning [242]. However, it is under-explored in self-supervised
learning with 3D data. A deeper investigation into the learning rate and
convergence of different networks during pre-training might further
improve the method proposed in Chapter 4.

Chapter 5 modifies the standard MAE for point cloud data. As ex-
plained in Section 2.4.4, the idea of MAE is inspired by masked language
modeling (MLM) [46], where a language model is trained to recover some
randomly masked words based on words around them. A competing ap-
proach with MLM is autoregressive pre-training [177], where a language
model has to predict the next word in a text based on previous predic-
tions. The recent success of ChatGPT and GPT4 [161] demonstrates the

161

7 Summary and Future Works

promising capability of autoregressive pre-training. However, extending
this method to the computer vision domain is still an open problem.

Chapter 6 pre-trains neural networks using synthetic data generated
using pre-defined formulas and rules. Meanwhile, generative models,
e.g., GANs [69], autoregressive models [178], and diffusion models [185]
are widely applied for data generation. They learn a distribution from
a dataset and create novel samples following the learned distribution.
Previous works show promising results of generating e.g., texts [57], hy-
perspectral signals [5, 6], and color images [69, 74, 105, 178, 185]. Also,
recent research explores 3D shape generation using neural networks [104,
156]. These results allow training (or pre-training) strong networks us-
ing generative models as data generators and are worth more research
interest in future works.

Furthermore, this thesis improves the label efficiency of deep learning
methods via self-supervised pre-training. However, labels are still neces-
sary for fine-tuning the pre-trained models. In practice, the fine-tuning
data might be ambiguously or erroneously labeled. Such uncertainties
lead to performance degradation in real-world tasks since neural net-
works are trained to fit the labels. Moreover, the automatically generated
labels in the self-supervised pre-training can also contain uncertainties.
For instance, the local correspondence in Chapter 4 can be ambiguous
due to the limited resolution of feature maps or feature points. Also, the
MAE in Chapter 5 might generate a reconstruction which is plausible but
distinct from the ground truth. Handling the uncertainties of labels has
drawn much research attentions [20, 103, 112, 158, 200, 269]. On the other
hand, Hendrycks et al. [84] demonstrate that supervised pre-training can
improve the robustness of models against label uncertainties. However,
the impact of label uncertainties in the context of self-supervised pre-
training, especially with sparse 3D data, is still under-explored and can
be another interesting topic for feature works.

162

Appendix

A Sensors

This chapter introduces two types of widely applied sensors in 3D com-
puter vision.

A.1 Depth Camera

A depth camera can be modeled as a standard pinhole camera. However,
instead of capturing the color values of each pixel, a depth camera mea-
sures the distance from objects to the image plane, which results in a
depth map. A depth map can be transformed into a single-view point
cloud using the camera calibration [224]. A representative scene captured
by a depth camera is shown in Figure A.1.

Different methods are applied for the distance measurement:

1. Structured light: The camera projects a known pattern onto a scene.
The depth can be calculated by analyzing the deformation of the
pattern.

Figure A.1 Visualization of a point cloud and a depth map from a depth camera. Data
source: the SUN RGB-D dataset [212].

165

A Sensors

2. Stereo photography: The camera has two or more lenses and cap-
tures images from multiple slightly shifted view points. The depth
is obtained by comparing the differences in the images.

3. Time-of-Flight (ToF): The camera emits light onto a scene and
measures the time of reflected light to return to the sensor.

In a depth map, the depth at some pixels might be not measurable,
e.g., the dark pixels on the depth map in Figure A.1. These pixels are
often called bad pixels or dead pixels. For instance, if a surface absorbs the
light emitted by a ToF camera, the depth values on the surface cannot be
determined. Also, if a stereo camera captures a scene lacking texture, the
textureless regions contain many bad pixels because texture is necessary
for comparing images from different view points.

To provide an overview of depth cameras’ properties, Table A.1 shows
the technical specifications of an Intel RealSense L515 depth camera’ as

a representative.

Table A.1 Technical specifications of an Intel RealSense L515 depth camera.

Environment Indoor
Range 0.25mto9m
Horizontal field of view (HFOV) 70°

Vertical field of view (VFOV) 55°
Resolution 1024 x 768
Frame rate 30 FPS
Depth accuracy 14 mm

A.2 Rotational LIDAR Sensor

LiDAR (light detection and ranging) is a method for measuring ranges by
casting laser beams at objects and determining the time for the reflected
light to return to the receiver. The rotational LiDAR sensor is widely
applied in 3D computer vision for autonomous driving [65, 219]. The

L' Source: https:/ /www.intelrealsense.com/lidar-camera-1515/. Last accessed: 2023.06.29.

166

https://www.intelrealsense.com/lidar-camera-l515/

A.2 Rotational LiDAR Sensor

A Laser Beams

y

Sensor Azimuth

Figure A.2 Measurement concept of a rotational LiDAR sensor.

principle of the rotational LiDAR sensor is visualized in Figure A.2. As
the name suggests, the sensor rotates around a vertical axis. By each
measurement, it emits multiple laser beams at the same time. Assuming
that the sensor is located at the origin of a Cartesian coordinate system,
all laser beams and the vertical axis (Z-axis) are in the same plane. A
range value can be measured with each beam. The sensor also determines
the magnitude of each reflected laser beam (i.e., intensity), which is often
used as an additional feature. Then, the sensor rotates by a fixed angle
Af and performs a new measurement. A spherical coordinate system
(see Figure A.2) is often used for easier data processing.

Note that all beams at each time share an azimuth 6. Also, one beam at
all times in a scan cycle (i.e., the rotation of 360°) shares an inclination ¢.
Therefore, the measurement results in each scan cycle can be represented
as a mapping from angles (0, ¢) to range r. The mapping can also be
described using a W x H matrix, where W = 27/A6 and H equals the
number of laser beams. The matrix is referred to as a range image. Due
to the rotational movement of the sensor, a range image always has a
horizontal field of view (HFOV) of 360°.

167

A Sensors

NN
SN
‘\\'\\\\\\ N
B AR

i

Figure A.3 Visualization of a LiDAR point cloud and its corresponding range image. Data
source: the KITTI dataset [65].

A transformation from the spherical to the Cartesian coordinate system
is given by:

x = rcos(¢) cos(8), (A1)
y = rcos(¢)sin(9), (A.2)
z =rsin(¢), (A.3)

where (x,y, z) denotes the Cartesian coordinates of points. Note that only
a single-view point cloud can be transformed into a range image without
information loss. Otherwise, multiple points may overlap in one pixel in
the range image. The point cloud and the range image representations
of 3D data are illustrated in Figure A.3.

To provide an overview of rotational LiDAR sensors’ properties, Ta-
ble A.2 shows the technical specifications of a Velodyne HDL-64E LiDAR
sensor?, which is used by the well-known KITTI dataset [65]. One can see

2 Source: https:/ /hypertech.co.il/wp-content/uploads/2015/12/HDL-64E-Data-Sheet.
pdf. Last accessed: 2023.06.28.

168

https://hypertech.co.il/wp-content/uploads/2015/12/HDL-64E-Data-Sheet.pdf
https://hypertech.co.il/wp-content/uploads/2015/12/HDL-64E-Data-Sheet.pdf

A.2 Rotational LiDAR Sensor

that rotational LiDAR sensors and depth cameras have distinct ranges,

fields of view, resolutions, and refresh rates.

Table A.2 Technical specifications of a Velodyne HDL-64E LiDAR sensor.

Environment

Range

Horizontal field of view (HFOV)
Vertical field of view (VFOV)
Beams (vertical resolution)
Horizontal resolution

Rotation speed

Depth accuracy

Outdoor
up to 120 m
360°

26.6°

64

450

up to 15Hz
2cm

169

B Datasets

This chapter briefly introduces the openly accessible datasets used in
this thesis.

B.1 Real-World Datasets

Three real-world datasets are applied in this thesis, i.e., the S3DIS, the
SUN RGB-D, and the ScanNet dataset.

B.1.1 S3DIS

Figure B.1 Visualization of point clouds in the S3DIS dataset. Left: with colors. Right:
with semantic labels.

The Stanford 3D Indoor Scene (S3DIS) dataset [10] contains point
clouds captured in 6 large-scale indoor areas with 271 rooms. According

171

B Datasets

to the convention of previous works, point clouds from Area 1,2, 3, 4, and
6 are used as the training set, while Area 5 is reserved for validation. Each
point is labeled with one of the 13 semantic categories: ceiling, floor, wall,
beam, column, window, door, chair, table, bookcase, sofa, board, and
clutter. Some representative scenes in the dataset are shown in Figure B.1.

In this thesis, the S3DIS dataset is used in Chapters 4, 5, and 6 to
evaluate neural networks for 3D semantic segmentation tasks.

B.1.2 SUN RGB-D

The SUN RGB-D dataset [212] consists of 10335 RGB-D images of indoor
scenes. 5285 images are used for training and 5050 for validation. Each
RGB-D image comprises a depth map and an aligned color image. Some
depth maps and images are visualized in Figure B.2.

(b) Depth maps (normalized for visualization)

Figure B.2 Data samples from the SUN RGB-D dataset.

Also, the SUN RGB-D dataset contains rich labels, e.g., semantic maps,
3D bounding boxes, and scene categories. This thesis only uses the bound-

172

B.1 Real-World Datasets

ing box labels to train 3D object detectors (see Chapters 3, 4, and 6). Each
bounding box in SUN RGB-D has 7 degrees of freedom, i.e., the box center,
the box size, and the rotation angle around the gravity direction. Also, 10
representative categories of objects are considered in the object detection
task, i.e., bathtub, bed, bookshelf, chair, desk, dresser, nightstand, sofa,
table, and toilet. The annotations of the dataset have two versions, where
the V2 annotation has a better quality than V1. However, due to historical
reasons, most previous works use the V1 annotation. This thesis follows
this convention for better comparability with these works.

B.1.3 ScanNet

(b) Depth maps (normalized for visualization)

Figure B.3 Raw frames from the ScanNet dataset. Each row is sampled from the same
video with the interval of approximately one second.

The ScanNet dataset [43] contains 2.5 million RGB-D images collected

in 1513 indoor scenes. Also, it provides reconstructed scans for each scene.
Data from 1201 scenes are used for training, and the other 312 belong to

173

B Datasets

Figure B.4 Visualization of data and labels in the ScanNet dataset. Left: point clouds with
bounding boxes. Right: point-wise semantic labels.

the validation set. ScanNet provides semantic masks for each object in

reconstructed scans (i.e., for the instance segmentation). Additional labels

can be generated from the instance-level masks, ¢.g., bounding boxes for

object detection and semantic maps for semantic segmentation. The raw

frames from ScanNet are visualized in Figure B.3. Furthermore, Scene-

level bounding boxes and semantic labels are illustrated in Figure B.4.
The ScanNet dataset is widely used in this thesis:

1. In Chapter 3, the scene-level bounding boxes are transformed to
each camera coordinate system to obtain frame-level labels and
train depth map-based detectors.

2. Chapters 4, 5, and 6 use reconstructed scans and scene-level bound-
ing box labels to train object detectors.

174

B.2 Synthetic Datasets

3. Chapter 4 applies this dataset to evaluate a pre-trained voxel-based
network for semantic segmentation.

4. Raw RGB-D frames from the ScanNet dataset are used in Chap-
ters 4, 5, and 6 for self-supervised pre-training.

In the semantic segmentation task, 20 semantic classes are considered,
i.e., wall, floor, cabinet, bed, chair, sofa, table, door, window, bookshelf,
picture, counter, desk, curtain, refrigerator, shower curtain, toilet, sink,
bathtub, and a category for all other furniture. However, 18 classes are
used for 3D object detection since class wall and floor are excluded. Also,
only garbage bin in the other furniture class is used. Moreover, bounding
box labels in ScanNet are axis-aligned without rotation.

B.2 Synthetic Datasets

Two synthetic datasets, i.e., ModelNet40 and ShapeNet, are used in this
thesis.

B.2.1 ModelNet40

The ModelNet40 dataset [255] consists of 12311 synthetic CAD mod-
els (i.e., 3D meshes), 9843 are for training and 2468 for testing. Some
representative meshes in the dataset are visualized in Figure B.5.

Figure B.5 Data samples from ModelNet40 training set. Object sizes are normalized.

175

B Datasets

Table B.1 Classes and object numbers in ModleNet40 training set.

chair 889 sofa 680 airplane 626 bookshelf 572
bed 515 vase 475 monitor 465 table 392
toilet 344 bottle 335 mantel 284 tvstand 267
plant 240 piano 231 nightstand 200 dresser 200
desk 200 car 197 bench 173 glass box 171
cone 167 tent 163 guitar 155 flower pot 149
laptop 149 keyboard 145 curtain 138 sink 128
lamp 124 stairs 124 rangehood 115 door 109
bathtub 106 radio 104 xbox 103 stool 90

person 88 wardrobe 87 cup 79 bowl 64

Each mesh in ModelNet40 is labeled with one of 40 semantic classes.
The 40 classes are listed in Table B.1. One can see that the classes corre-
spond to ordinary objects in daily life. The table also demonstrates the
object numbers of each class in the training set (gathering statistics in
test sets is not permitted in practice). The numbers show that the class
distribution in this dataset is imbalanced (i.e., long-tailed).

In this thesis, ModelNet40 is exploited for two purposes:

1. Chapters 4 and 5 employ this dataset to fine-tune pre-trained neu-
ral networks in object classification tasks, where the classification
accuracy is regarded as a measure of the pre-training effect.

2. Chapter 6 creates randomized 3D scenes using ModelNet40 as an
object set. In this case, the class labels are not used.

B.2.2 ShapeNet

ShapeNet [26] is a large-scale CAD model dataset containing multiple
subsets. Also, the ShapeNet dataset was once revised and has two ver-
sions. In this thesis, only the V1 version of the ShapeNetCore subset is
used. For simplicity, ShapeNet in this thesis refers to the V1 version of
the ShapeNetCore subset.

ShapeNetCore V1 consists of approximately 51300 objects categorized
into 55 classes. The class names and corresponding object numbers are
listed in Table B.2. Similar to ModelNet40 (see Table B.1), the ShapeNet-
Core V1 dataset is also long-tailed. However, ShapeNet contains more

176

B.2 Synthetic Datasets

Table B.2 Classes and object numbers in ShapeNetCore V1 training set.

table 8443 car 7497 chair 6778 airplane 4045
sofa 3173 rifle 2373 lamp 2318 watercraft 1939
bench 1816 loudspeaker 1618 cabinet 1572 display 1095
telephone 1052 bus 939 bathtub 857 guitar 797
faucet 744 clock 655 flowerpot 602 jar 597
bottle 498 bookshelf 466 laptop 460 knife 424
train 389 trash bin 343 motorbike 337 pistol 307
file cabinet 298 bed 254 piano 239 stove 218
mug 214 bowl 186 washer 169 printer 166
helmet 162 microwaves 152 skateboard 152 tower 133
camera 113 basket 113 can 108 pillow 96
mailbox 94 dishwasher 93 rocket 85 Dbag 83
birdhouse 73 earphone 73 microphone 67 remote 67
keyboard 65 bicycle 59 cap 56

R e
= R

Figure B.6 Data samples from ShapeNetCore V1 training set. Object sizes are normalized.

data samples and categories. Some representative meshes from ShapeNet-
Core V1 are visualized in Figure B.6.
In this thesis, ShapeNetCore V1 has two applications:

1. InChapter 5, itis used as a pre-training dataset to evaluate multiple
self-supervised methods on synthetic data.

2. Chapter 6 employs it as an object set to generate synthetic scenes.

No labels are used in both cases.

177

C Evaluation Metrics and Protocol

This section introduces the evaluation metrics and protocol used in this
thesis.

C.1 Metrics for 3D Semantic Segmentation

As explained in Section 2.3.2, 3D semantic segmentation is a dense classi-
fication task. For simplicity, this section assumes that the neural network
uses point clouds as input. The generalization to other 3D data, e.g., voxels
and depth maps, is straightforward. Usually, a dataset consists of many
point clouds, each containing many points. However, the actual number
of point clouds (or scenes) is not important for calculating the metrics of
semantic segmentation. Therefore, this section describes a dataset as a
set of (independent) points for simplicity.

Given a dataset with totally N points {x i}N a neural network makes

1
N point-wise predictions {kl} _,» where k' € {1,2,...,Ng} is the pre-
dicted category of the i-th point and N, indicates the number of cat-
egories. Similarly, the ground truth can be descrlbed as {kl} _1, Where
k' € {1,2,..., N} indicates the true class of point x'.

In this thesis, the mean accuracy (mAcc) is used as an evaluation
metric for semantic segmentation. To calculate the mAcc, the semantic
segmentation task is viewed as a binary classification problem for each
classj € {1,2,...,Ngs}. The accuracy for class j is given by:

N Tioqd o
i= fint k /k /]

ACCj = d 1N I(Py)/ (C]')
Do LKL)

179

C Evaluation Metrics and Protocol

where f,;(...) is an auxiliary function which can be used to count the
number of points where the prediction is correct (i.e., intersection of the
labels and predictions):

1,k=jand kK =

0, otherwise

fine (KK 1) = { (C2)
The function I(...) equals one if two arguments have identical values.
Otherwise, it is equal to zero. The denominator means the number of
points whose label (i.e., ground truth) is equal to the class index j, while
the numerator gives the number of points where the neural network
correctly predicts the category j. Then, the mean accuracy over N

classes is given by
N,

cls

mAcc =

Acg;. (C.3)
cls j=1
Obviously, mAcc € [0, 1] always applies. Therefore, mAcc is often used
in percentage. The higher the value, the better the prediction quality.
Besides mAcc, the mean intersection over union (mloU) is also widely
applied to evaluate the quality of semantic segmentation results. For

each class j, the intersection over union IoU; is given by:
St fine (KK 5)

IoU; = —= —
Zizlfuni (kl’ kll])

where the function f,,,; is defined as

, (C4)

S 1,k=jorki=j

i (KK) = C5
Juni (]) {0 , otherwise (C3)
Equations C.1 and C.4 have the same numerator. However, the denomi-
nator in Equation C.4 represents the total number of points where the

prediction or the ground truth is equal to the class index j (i.e., the union).

The mloU is then obtained by averaging IoU; over Ny classes:
Ncls
mloU = IoU;. (C.6)
cls j=1

180

C.2 Metrics for 3D Object Detection

Similar to mAcc, mloU is also constrained in the range [0, 1] and used in
percentage in practice. A higher mloU indicates a better segmentation
result.

C.2 Metrics for 3D Object Detection

This section introduces the mean average precision (mAP) as an eval-
uation metric for 3D object detection. Without loss of generality, point
clouds are assumed as inputs.

Given a dataset of N point clouds {Ql}fi 1» @ neural network predicts

Npreq bounding boxes with {(frm, k™, cm, pm)} ¢ The geometrical pa-
rameters, e.g., the center coordinate and size, are given as a vector y""*
Since bounding boxes can be differently parameterized, e.g., as rotated
boxes or axis-aligned boxes (cf. Section 2.3.3), this section uses this ab-
stract form for simplicity. The class prediction k" € {1, ..., Ny} indi-
cates that the box is predicted to belong to the k"-th class. Also, the
neural network predicts a confidence score ¢ € [0, 1], which is an esti-
mate of the probability that the predicted box matches a ground truth
box. The sample index p™ € {1,2,...,N} means the box is predicted
using p™'-th point cloud in the dataset. Similarly, the labels are given by
{(Gy™ k", p™)},2 label . Note that number of labels and predictions usually
differ with Nlabel # Npred-

To calculate the mAP, the average precision for each class must be
determined. For class j, predictions with k" = j and labels with k"* =

. . . . N]
are selected, resulting in two sub-sets ‘F] red = {(ym’ , P , me)} freld and
ml/=
]
\Piabel = {(m],pm])} lablel The constants N; eq and Nlab | indicate the

number of predictions and labels for class j, respectively. The class labels
k™ = j and predictions k" are omitted here since they are all identical in
these two sub-sets. Also, the selected predictions ‘I’i) req are sorted by the
confidence score in descending order.

A prediction §' in ‘F]p roq 18 Tegarded as true if its 3D (i.e., volumetric)
intersection over union with a ground truth box corresponding to the

same point cloud is higher than a threshold t;,;. In practice, the value of

181

C Evaluation Metrics and Protocol

tiou 1s chosen empirically. The higher the value, the stricter the require-
ments for the detection quality. In this thesis, 25 % and 50 % are used as
thresholds. Given two boxes y! and y?, the 3D intersection over union
(8D-IoU) is given by

Vine (', ¥°)
1 2\ _ int
frow (y Y) - Vuni (yl/yz) '

where V. (...) and V,;(...) calculate the volume of the intersection
and the union of two 3D boxes, respectively.

(C.7)

Based on the IoU, the average precision of predictions ‘I’i) roq €an be
calculated by evalua"cing the Ni) +oq DOXes step by step. For the n-th step

withn € {1,2,... ,Né red)r the number of correct predictions (i.e., true
positive) is given by

TP = Y frnatcn " ¥lpet) - (C8)

mi=1

The function f, . is defined as

»] 1 , f (ymj’ ymmatch) >t
ol ToU ToU
- _ , c9o
fmatch(y abel) {0 , otherwise ()

where the index m,, 441, indicates the label in ‘Y{abel that has the largest
ToU with the prediction

Mppatch = argmax {floU(S’mI,yl)} P (C.10)
1
subject to pm/ = pl and yl = ‘P{abel .
The constraint pm/ = p' is necessary since the prediction and label must

correspond to one data sample. For each step 7, the true positive TP;(n)

increases by one if the n-th prediction in v req Nas a matched ground
truth box with an IoU larger than the pre-defined threshold. The preci-
sion at the n-th step is defined as the ratio of correct predictions to all

predictions.
TPj(n)
PR]-(n) = pank (C.11)

182

C.2 Metrics for 3D Object Detection

The recall of the predictions is defined as the the ratio of detected
ground truth boxes to all ground truth boxes. The true positive for recall
TP]T (n) is calculated using a similar approach to TP]-(n), i.e., by counting
ground truth boxes that have matched predictions with an IoU higher
than the threshold t;,y;. The difference is how they handle redundant
predictions. When multiple predictions match one ground truth box,
they are counted independently by TP;(n). On the contrary, they are
counted only once by TP]._ (n). The — symbol in the notation indicates
that TP]._ (n) < TPj(n). The recall on the n-th step RCj(n) is given by:

) TP (n)
RC/ (n) =]’ . (C.12)

Nlabel

Note that the predictions in ‘I’; -oq are sorted by the confidence scores.

d
Generally, the predictions on the first several steps are more accurate, i.e.,

PR;(n) »~ 1. Also, since only a few bounding box predictions are available,
the recall is low on early steps, i.e., RCj(n) ~ 0. When n becomes larger,
PR]-(n) decreases and RCj(n) increases.

The precision and recall on each step can be plotted in a diagram, result-
ing in a precision-recall curve. The red curve in Figure C.1 corresponds
to bounding box predictions with a bad quality, where the precision
drops rapidly. Also, the curve ends with a recall lower than 100 %, which
means some ground truth boxes do not have matched predictions (i.e.,
they are not detected). The blue curve in Figure C.1 is an example of a
good precision-recall curve, where the precision remains high as recall
increases. The green curve can be obtained using the ground truth as the
prediction, so the precision is always 100 %.

For each class j, the metric average precision AP; is defined as the area
under the precision-recall curve of this class. As illustrated in Figure C.1,
the value of average precision is constrained in the range of [0,1]. The
higher the value, the better the quality of the predictions. The mean
average precision (mAP) is obtained by averaging AP; over all classes:

N

cls
mAP = ——) AP;. (C.13)
cls j=1

183

C Evaluation Metrics and Protocol

100
80 |
9
= 60
.S
R
|9}
& 40
~
— Bad
20 | — Good
—— Perfect
O | | | | |
0 20 40 60 80 100

Recall (%)

Figure C.1 Visualization of precision-recall curves.

As Equation C.9 shows, the choice of t,i; has a large impact on mAP
since it defines the threshold of a predicted bounding box to be true.
Therefore, the metric mAP is only meaningful with an IoU threshold
given. This thesis uses mAP with 25 % and 50 % 3D-IoU thresholds as met-
rics. For simplicity, they are referred to as AP25 and AP50, respectively.
Note that some literature uses the notations AP,5 and APs instead.

C.3 Evaluation Protocol

Due to randomness in the training process, e.g., random initialization of
weights, random sampling for mini-batches, and random data augmen-
tation, the performance of a neural network fluctuates if it is initialized
and trained multiple times. Depending on the computational costs, all
experiments in this thesis are repeated three to five times. The best result
instead of the averaged metric is reported, following the convention in
previous works [152, 173, 179, 260, 268, 285]. This protocol is feasible
because it is a common practice to train multiple neural networks with
the same architecture and configuration and only to apply the one with
the best performance.

184

D Deployment of Neural Networks

The design of neural networks has to consider the deployment on target
platforms since the deployment is the last step of applying deep learn-
ing models. This chapter introduces some fundamental knowledge in
deploying neural networks. Also, it explains the software and hardware
constraints in this process and empirically evaluates the deployment-
friendliness of various architectures in 3D deep learning.

D.1 Background

Modern neural networks rely on heterogeneous computing, i.e., CPUs
are responsible for the logical control and data preparation, while the
computation within neural networks is performed by co-processors (also
known as accelerators). However, training neural networks and deploying
trained models on target platforms have distinct requirements.

During training, both the forward and the backward pass are necessary
to compute the loss and gradients. Also, models are trained using a
large batch size for more effective parallel computing. Therefore, neural
networks are usually trained centralized on high-performance GPUs.
Although they massively accelerate the training process, the GPUs have
high manufacturing costs and energy consumption.

On the contrary, neural networks are often deployed on edge devices in
a decentralized manner, e.g., locally in smartphones or self-driving cars.
It is especially the case for 3D deep learning since many applications, e.g.,
robotics and autonomous driving, are sensitive to latency. Therefore, a
centralized solution is unsuitable due to the high communication over-
head. Because back-propagation is not performed during the inference
and data are usually processed with a tiny batch size (e.g., one), low-cost
and energy-efficient processors are sufficient for edge devices, e.g., edge
GPU, FPGA, and ASIC.

185

D Deployment of Neural Networks

Besides the hardware, the training and deployment of neural networks
rely on different software infrastructures. Training frameworks, e.g., Ten-
sorFlow [1], PyTorch [167], and JAX [21], must consider accelerating the
back-propagation to reduce the overall time cost of training. However, it
inevitably increases the computational cost of the forward pass. More-
over, training frameworks often trade off computational efficiency for
better usability. For instance, most frameworks use Python instead of
C++ as the programming language for their front-ends [1, 21, 167]. Also,
dynamic computational graphs are often employed instead of static ones
for easier troubleshooting in developing and training models [167]. On
the contrary, frameworks for deployment, e.g., TVM [30], ONNX, and
NVIDIA TensorRT, are exclusively and aggressively optimized for faster
inference. Also, the computation is often executed using low-precision
arithmetic, e.g., with 16-bit floating point numbers or 8-bit integers, in-
stead of 32-bit floating point numbers, which are commonly used for
training.

Therefore, deploying neural networks means migrating trained models
to different software and hardware infrastructures, which involves much
engineering efforts and technical constraints.

D.2 Constraints

The gap between training and deploying neural networks leads to some
constraints.

Non-programmable co-processors, e.g., ASICs, have a fixed list of sup-
ported operations. Unsupported operations cannot be accelerated and
fall back to CPUs, which results in a significant latency increase due to
the additional IO (input-output) overhead and CPUs’ low performance.
Since image and neural language processing using deep learning is devel-
oped and applied earlier than 3D deep learning [88, 114, 119, 170], most
existing non-programmable co-processors are designed for 2D CNNs
or RNNs [51, 205]. For instance, the supported operations of a Google
Coral Edge TPU!, an ASIC for edge neural computing, are given in Ta-
ble D.1. Obviously, the processor primarily supports MLPs, RNNs, and

1 Source: https:/ /coral.ai/docs/edgetpu/models-intro. Last accessed on 2023.05.31.

186

https://coral.ai/docs/edgetpu/models-intro

D.2 Constraints

Table D.1 All operations supported by a Google Coral Edge TPU. Original names in the
official documentation are used.

Operation Names

Add AveragePool2d Concatenation
Conv2d DepthwiseConv2d ExpandDims
FullyConnected L2Normalization Logistic

LSTM Maximum MaxPool2d
Mean Minimum Mul

Pack Pad PReLU
Quantize ReduceMax ReduceMin
ReLU ReLU6 ReLUN1To1
Reshape ResizeBilinear ResizeNearestNeighbor
Rsqrt Slice Softmax
SpaceToDepth Split Squeeze
StridedSlice Sub Sum
Squared-difference Tanh Transpose

2D CNNs. Deploying other architectures on such hardware is challenging
or impossible.

Programmable co-processors, e.g., GPUs and FPGAs, can theoretically
execute arbitrary operations. However, their corresponding deployment
frameworks often have software constraints, i.e., the supported layers
and functions are still limited. For instance, the officially supported layers
of TensorRTz, a framework for accelerating inference on NVIDIA GPUs,
are presented in Table D.2. Note that the terms layer and operation are
often interchangeably used in the context of deployment. This section
follows the convention of each framework, i.e., using layer for NVIDIA
TensorRT and operation for Google Coral. Table D.2 implies that TensorRT
can primarily accelerate MLPs, 2D CNNs (dense), 3D CNNs (dense),
and transformers. Such software constraints can be overcome by adding
custom operations since the processors are programmable. For instance,
TensorRT allows users to define new layers as plugins (i.e., PluginV2Layer

2 Version 8.6. Source: https:/ /docs.nvidia.com/deeplearning/tensorrt/operators/index.
html. Last accessed on 2023.05.31.

187

https://docs.nvidia.com/deeplearning/tensorrt/operators/index.html
https://docs.nvidia.com/deeplearning/tensorrt/operators/index.html

D Deployment of Neural Networks

Table D.2 All layers supported by NVIDIA TensorRT. Original names in the official
documentation are used.

Layer Names

ActivationLayer AssertionLayer
CastLayer ConcatenationLayer
ConstantLayer ConvolutionLayer (2D)

ConvolutionLayer (3D) DeconvolutionLayer (2D)
DeconvolutionLayer (3D) DequantizeLayer

EinsumLayer ElementWiseLayer
FillLayer FullyConnectedLayer
GatherLayer IdentityLayer
LRNLayer MatrixMultiplyLayer
PaddingLayer ParametricReluLayer
PluginV2Layer PoolingLayer
PoolingLayer QuantizeLayer
RaggedSoftMaxLayer ReduceLayer
ResizeLayer ReverseSequenceLayer
RNNLayer ScaleLayer
ScatterLayer SelectLayer
ShapeLayer ShuffleLayer
SliceLayer SoftMaxLayer
TopKLayer UnaryLayer

in Table D.2). However, it significantly increases the engineering effort
compared to using off-the-shelf layers.

Due to the hardware and software constraints, a neural network should
contain as few (if any) unsupported operations and layers as possible for
easier deployment.

D.3 Empirical Evaluation of 3D Neural Networks

Some commonly used architectures in 3D deep learning are summarized
in Section 2.2.9. This section provides an empirical evaluation of their

188

D.3 Empirical Evaluation of 3D Neural Networks

deployment-friendliness. The more star marks they have, the easier they
can be deployed in practice.

1. Voxe-based methods (cf. Section 2.2.4).
Evaluation: *.
Reason: They heavily rely on hash maps and sparse operations,
which current software and hardware do not support well.

2. PointNet variants (cf. Section 2.2.5).
Evaluation: *.
Reason: They hierarchically sample, group, and interpolate un-
structured point clouds. The sampling, grouping, and interpola-
tion algorithms are frequently called in each forward pass but are
not standard in most frameworks.

3. Point cloud convolution-based methods (cf. Section 2.2.6).
Evaluation: *.
Reason: They have similar issues as PointNet variants.

4. Transformer-based methods (cf. Section 2.2.7).

Evaluation: %%.

Reason: the standard transformers consist of simple operations and
layers, e.g., the soft-max and matrix multiplication (cf. Section 2.1.3).
However, current hardware and software are not well-optimized
for transformers, since the architecture is relatively new [235]. Also,
some variants rely on down-sampling and local attention (Sec-
tion 2.2.7) and have similar issues of non-standard layers as Point-
Net variants.

5. Projection-based methods (cf. Section 2.2.8).
Evaluation: %%
Reason: They adopt mature and standard 2D CNNs, which are
well-supported across various hardware and software.

189

E Evaluation with Own Data

In Chapter 3, the proposed 2.5D-VoteNet is evaluated on openly accessible
datasets, e.g., SUN RGB-D [212] and ScanNet [43], for better comparability
with state-of-the-art methods. To further investigate its generalization, the
author has captured data using an Intel L515 depth camera (cf. Table A.1)
at the Institute of Industrial Information Technology (IIIT) at Karlsruhe
Institute of Technology (KIT). Data samples are captured primarily in
offices, libraries, and conference rooms. The camera is held by hand. The
camera’s pitch and roll angles are obtained using the integrated inertial
measurement unit (IMU) in the camera.

The detector is pre-trained using DPCo on the ScanNet dataset (cf.
Chapter 4), fine-tuned on the SUN RGB-D dataset, and finally evaluated
using data captured at IIIT. Some results are visualized in Figure E.1.
Note that the ScanNet and the SUN RGB-D dataset use other cameras (e.g.,
Microsoft Kinect) instead of Intel RealSense 1.515. However, the detector
performs well despite the domain gap, demonstrating the good general-
ization of this neural network. However, since the evaluation data are
not annotated, quantitative metrics, e.g., AP25 and AP50, are unavailable.

191

E Evaluation with Own Data

Figure E.1 Object detection results of 2.5D-VoteNet on data captured at IIIT. 3D bounding
boxes are projected to RGB images. Red: chair. Blue: table. Light blue: bookshelf. Green:
sofa.

192

Bibliography

(1]

3]

Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy
Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geof-
frey Irving, Michael Isard, et al. TensorFlow: a system for large-scale
machine learning. In: USENIX symposium on operating systems de-
sign and implementation. Vol. 16. 2016. Savannah, GA, USA. 2016,
pp. 265-283.

Panos Achlioptas, Olga Diamanti, loannis Mitliagkas, and
Leonidas Guibas. Learning representations and generative models
for 3D point clouds. In: International conference on machine learning.
PMLR. 2018, pp. 40—49.

Syeda Mariam Ahmed and Chee Meng Chew. Density-based clus-
tering for 3D object detection in point clouds. In: Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition. 2020,
pp- 10608-10617.

Wafaa Alakwaa, Mohammad Nassef, and Amr Badr. Lung cancer
detection and classification with 3D convolutional neural network (3D-
CNN). In: International journal of advanced computer science and
applications 8.8 (2017).

Johannes Anastasiadis and Michael Heizmann. Generation of
artificial training data for spectral unmixing by modelling spectral
variability using Gaussian random variables. In: OCM (2021), pp. 129-
139.

Johannes Anastasiadis and Michael Heizmann. GAN-regularized
augmentation strategy for spectral datasets. In: tm-Technisches Messen
89.4 (2022), pp. 278-288.

193

Bibliography

[7]

(8]

[9]

194

Mihael Ankerst, Gabi Kastenmiiller, Hans-Peter Kriegel, and
Thomas Seidl. 3D shape histograms for similarity search and clas-
sification in spatial databases. In: Advances in spatial databases: 6th
International Symposium, SSD’99 Hong Kong, China, July 20—23,
1999 Proceedings 6. Springer. 1999, pp. 207-226.

Yasuhiro Aoki, Hunter Goforth, Rangaprasad Arun Srivatsan,
and Simon Lucey. PointNetLK: Robust & efficient point cloud regis-
tration using PointNet. In: Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition. 2019, pp. 7163-7172.

Apple Newsroom. Apple unveils new iPad Pro with breakthrough
LiDAR scanner and brings trackpad support to iPadOS. Last accessed
on 2023.03.18. 2020. urL: https:/ /www.apple.com/newsroom/
2020/03/apple-unveils-new-ipad-pro-with-lidar-scanner-and-
trackpad-support-in-ipados/.

Iro Armeni, Sasha Sax, Amir Roshan Zamir, and Silvio Savarese.
Joint 2D-3D-Semantic Data for Indoor Scene Understanding. In: CoRR
abs/1702.01105 (2017).

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer
normalization. In: arXiv preprint arXiv:1607.06450 (2016).

Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Ji-
atao Gu, and Michael Auli. Data2Vec: A general framework for self-
supervised learning in speech, vision and language. In: International
conference on machine learning. PMLR. 2022, pp. 1298-1312.

Hangbo Bao, Li Dong, Songhao Piao, and Furu Wei. BEiT:
BERT pre-training of image transformers. In: arXiv preprint
arXiv:2106.08254 (2021).

Adrien Bardes, Jean Ponce, and Yann Lecun. VICReg: Variance-
invariance-covariance regularization for self-supervised learning. In:
ICLR 2022-10th International Conference on Learning Representations.
2022.

Simon Béuerle, Jonas Barth, Elton Tavares de Menezes, An-
dreas Steimer, and Ralf Mikut. CAD2Real: Deep learning with do-
main randomization of CAD data for 3D pose estimation of electronic
control unit housings. In: Proceedings—30. Workshop Computational
Intelligence. KIT Scientific Publishing. 2020, pp. 33-52.

https://www.apple.com/newsroom/2020/03/apple-unveils-new-ipad-pro-with-lidar-scanner-and-trackpad-support-in-ipados/
https://www.apple.com/newsroom/2020/03/apple-unveils-new-ipad-pro-with-lidar-scanner-and-trackpad-support-in-ipados/
https://www.apple.com/newsroom/2020/03/apple-unveils-new-ipad-pro-with-lidar-scanner-and-trackpad-support-in-ipados/

Bibliography

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool.
Speeded-up robust features (SURF). In: Computer vision and image
understanding 110.3 (2008), pp. 346-359.

Philipp Bergmann, Tim Meinhardt, and Laura Leal-Taixe. Tracking
without bells and whistles. In: Proceedings of the IEEE/CVF interna-
tional conference on computer vision. 2019, pp. 941-951.

David Berthelot, Nicholas Carlini, lan Goodfellow, Nicolas Pa-
pernot, Avital Oliver, and Colin A. Raffel. MixMatch: A holistic
approach to semi-supervised learning. In: Advances in neural informa-
tion processing systems 32 (2019).

Alex Bewley, Pei Sun, Thomas Mensink, Dragomir Anguelov, and
Cristian Sminchisescu. Range conditioned dilated convolutions for
scale invariant 3D object detection. In: arXiv preprint arXiv:2005.09927
(2020).

Charles Bouveyron and Stéphane Girard. Robust supervised classi-
fication with mixture models: Learning from data with uncertain labels.
In: Pattern recognition 42.11 (2009), pp. 2649-2658.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James
Johnson, Chris Leary, Dougal Maclaurin, George Necula, Adam
Paszke, Jake VanderPlas, Skye Wanderman-Milne, etal. JAX:
composable transformations of Python+NumPy programs. In: (2018).

Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora, Venice
Erin Liong, Qiang Xu, Anush Krishnan, Yu Pan, Giancarlo Bal-
dan, and Oscar Beijbom. nuScenes: A multimodal dataset for au-
tonomous driving. In: Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition. 2020, pp. 11621-11631.

Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas
Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-end
object detection with transformers. In: Computer Vision—-ECCV 2020:
16th European Conference, Glasgow, UK, August 23-28, 2020, Pro-
ceedings, Part I 16. Springer. 2020, pp. 213-229.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien
Mairal, Piotr Bojanowski, and Armand Joulin. Emerging properties
in self-supervised vision transformers. In: Proceedings of the IEEE/CVE
international conference on computer vision. 2021, pp. 9650-9660.

195

Bibliography

[25]

196

Krishna Chaitanya, Ertunc Erdil, Neerav Karani, and Ender
Konukoglu. Contrastive learning of global and local features for medical
image segmentation with limited annotations. In: Advances in neural
information processing systems 33 (2020), pp. 12546-12558.

Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat Han-
rahan, Qixing Huang, Zimo Li, Silvio Savarese, Manolis Savva,
Shuran Song, Hao Su, et al. ShapeNet: An information-rich 3D model
repository. In: arXiv preprint arXiv:1512.03012 (2015).

Ming-Fang Chang, John Lambert, Patsorn Sangkloy, Jagjeet
Singh, Slawomir Bak, Andrew Hartnett, De Wang, Peter Carr, Si-
mon Lucey, Deva Ramanan, and James Hays. Argoverse: 3D track-
ing and forecasting with rich maps. In: Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition. 2019.

Jintai Chen, Biwen Lei, Qingyu Song, Haochao Ying, Danny
Z Chen, and Jian Wu. A hierarchical graph network for 3D object
detection on point clouds. In: Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition. 2020, pp. 392-401.

Liang-Chieh Chen, George Papandreou, lasonas Kokkinos,
Kevin Murphy, and Alan L. Yuille. DeepLab: Semantic image seg-
mentation with deep convolutional nets, atrous convolution, and fully
connected CRFs. In: IEEE transactions on pattern analysis and machine
intelligence 40.4 (2017), pp. 834-848.

Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng,
Eddie Yan, Meghan Cowan, Haichen Shen, Leyuan Wang, Yuwei
Hu, Luis Ceze, etal. TVM: An automated end-to-end optimizing
compiler for deep learning. In: arXiv preprint arXiv:1802.04799 (2018).

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey
Hinton. A simple framework for contrastive learning of visual repre-
sentations. In: International conference on machine learning. PMLR.
2020, pp. 1597-1607.

Xiaozhi Chen, Huimin Ma, Ji Wan, Bo Li, and Tian Xia. Multi-
view 3D object detection network for autonomous driving. In: The IEEE
Conference on computer vision and pattern recognition. 2017, pp. 1907—
1915.

Bibliography

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

Xinlei Chen and Kaiming He. Exploring simple Siamese representa-
tion learning. In: Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition. 2021, pp. 15750-15758.

Xinlei Chen, Saining Xie, and Kaiming He. An empirical study
of training self-supervised vision transformers. In: Proceedings of
the IEEE/CVF international conference on computer vision. 2021,
pp. 9640-9649.

Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He. Improved
baselines with momentum contrastive learning. In: arXiv preprint
arXiv:2003.04297 (2020).

Yujin Chen, Matthias NieBner, and Angela Dai. 4DContrast: Con-
trastive learning with dynamic correspondences for 3D scene under-
standing. In: Proceedings of the european conference on computer vision.
2022.

Zhao Chen, Vijay Badrinarayanan, Chen-Yu Lee, and Andrew
Rabinovich. GradNorm: Gradient normalization for adaptive loss bal-
ancing in deep multitask networks. In: International conference on
machine learning. PMLR. 2018, pp. 794-803.

Christopher Choy, Wei Dong, and Vladlen Koltun. Deep global
registration. In: Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition. 2020, pp. 2514-2523.

Christopher Choy, JunYoung Gwak, and Silvio Savarese. 4D
spatio-temporal ConvNets: Minkowski convolutional neural networks.
In: Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition. 2019, pp. 3075-3084.

Gabriella Csurka, Christopher Dance, Lixin Fan, Jutta Willam-
owski, and Cédric Bray. Visual categorization with bags of keypoints.
In: Workshop on statistical learning in computer vision, ECCV. Vol. 1.
1-22. Prague. 2004, pp. 1-2.

Zhicheng Cui, Wenlin Chen, and Yixin Chen. Multi-scale convolu-
tional neural networks for time series classification. In: arXiv preprint
arXiv:1603.06995 (2016).

197

Bibliography

[42]

[43]

198

Angela Dai and Matthias NieBner. 3DMV: Joint 3D-multi-view
prediction for 3D semantic scene segmentation. In: Proceedings of the
european conference on computer vision. 2018, pp. 452—468.

Angela Dai, Angel X. Chang, Manolis Savva, Maciej Halber,
Thomas Funkhouser, and Matthias NieBner. ScanNet: Richly-
annotated 3D reconstructions of indoor scenes. In: Proceedings of the
IEEE conference on computer vision and pattern recognition. 2017,
pp. 5828-5839.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li
Fei-Fei. ImageNet: A large-scale hierarchical image database. In: 2009
IEEE conference on computer vision and pattern recognition. leee. 2009,
pp- 248-255.

Jean-Emmanuel Deschaud, David Duque, Jean Pierre Richa,
Santiago Velasco-Forero, Beatriz Marcotegui, and Francois
Goulette. Paris-CARLA-3D: A real and synthetic outdoor point cloud
dataset for challenging tasks in 3D mapping. In: Remote sensing 13.22
(2021), p. 4713.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. BERT: Pre-training of deep bidirectional transformers for
language understanding. In: arXiv preprint arXiv:1810.04805 (2018).

Shifei Ding, Hui Li, Chunyang Su, Junzhao Yu, and Fengxiang
Jin. Evolutionary artificial neural networks: a review. In: Artificial
intelligence review 39.3 (2013).

Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio
Lopez, and Vladlen Koltun. CARLA: An Open Urban Driving Sim-
ulator. In: Proceedings of the 1st annual conference on robot learning.
2017, pp. 1-16.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk
Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa De-
hghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, etal.
An image is worth 16x16 words: Transformers for image recognition at
scale. In: arXiv preprint arXiv:2010.11929 (2020).

Bibliography

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

Hongyuan Du, Linjun Li, Bo Liu, and Nuno Vasconcelos. SPOT:
Selective point cloud voting for better proposal in point cloud object
detection. In: Computer Vision—ECCV 2020: 16th European Conference,
Glasgow, UK, August 23-28, 2020, Proceedings, Part XI 16. Springer.
2020, pp. 230-247.

Zidong Du, Robert Fasthuber, Tianshi Chen, Paolo lenne, Ling Li,
Tao Luo, Xiaobing Feng, Yunji Chen, and Olivier Temam. ShiDian-
Nao: Shifting vision processing closer to the sensor. In: 2015 ACM/IEEE
42nd annual international symposium on computer architecture. 2015,
pp- 92-104.

Ronen Eldan and Ohad Shamir. The power of depth for feedfor-
ward neural networks. In: Conference on learning theory. PMLR. 2016,
pp- 907-940.

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural
architecture search: A survey. In: vol. 20. 1. JMLR. org, 2019, pp. 1997-
2017.

Nico Engel, Vasileios Belagiannis, and Klaus Dietmayer. Point
transformer. In: IEEE Access 9 (2021), pp. 134826-134840.

Jose M Facil, Benjamin Ummenhofer, Huizhong Zhou, Luis Mon-
tesano, Thomas Brox, and Javier Civera. CAM-Convs: Camera-
aware multi-scale convolutions for single-view depth. In: Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition.
2019, pp. 11826-11835.

Lue Fan, Xuan Xiong, Feng Wang, Naiyan Wang, and Zhaoxiang
Zhang. RangeDet: In defense of range view for LiDAR-based 3D object
detection. In: Proceedings of the IEEE/CVF international conference on
computer vision. 2021, pp. 2918-2927.

William Fedus, lan Goodfellow, and Andrew M Dai. MaskGAN:
better text generation via filling in the _. In: arXiv preprint
arXiv:1801.07736 (2018).

Li Fei-Fei. Knowledge transfer in learning to recognize visual objects
classes. In: Proceedings of the International Conference on Development
and Learning. Vol. 11. 2006.

199

Bibliography

[59]

[60]

[61]

200

Li Fei-Fei, Robert Fergus, and Pietro Perona. One-shot learning of
object categories. In: IEEE transactions on pattern analysis and machine
intelligence 28.4 (2006), pp. 594-611.

Christoph Feichtenhofer, Axel Pinz, and Andrew Zisserman. De-
tect to track and track to detect. In: Proceedings of the IEEE international
conference on computer vision. 2017, pp. 3038-3046.

Whye Kit Fong, Rohit Mohan, Juana Valeria Hurtado, Lubing
Zhou, Holger Caesar, Oscar Beijbom, and Abhinav Valada. Panop-
tic nuScenes: A large-scale benchmark for LiDAR panoptic segmenta-
tion and tracking. In: IEEE robotics and automation letters 7.2 (2022),
pp- 3795-3802.

Kexue Fu, Peng Gao, ShaoLei Liu, Renrui Zhang, Yu Qiao, and
Manning Wang. POS-BERT: Point cloud one-stage BERT pre-training.
In: arXiv preprint arXiv:2204.00989 (2022).

Kunihiko Fukushima. Cognitron: A self-organizing multilayered neu-
ral network. In: Biological cybernetics 20.3-4 (1975), pp. 121-136.

Kunihiko Fukushima. Neocognitron: A self-organizing neural network
model for a mechanism of pattern recognition unaffected by shift in
position. In: Biological cybernetics 36.4 (1980), pp. 193-202.

Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urta-
sun. Vision meets robotics: The KITTI dataset. In: The international
journal of robotics research 32.11 (2013), pp. 1231-1237.

Spyros Gidaris, Praveer Singh, and Nikos Komodakis. Unsuper-
vised representation learning by predicting image rotations. In: arXiv
preprint arXiv:1803.07728 (2018).

Zan Gojcic, Caifa Zhou, Jan D. Wegner, Leonidas J. Guibas,
and Tolga Birdal. Learning multiview 3D point cloud registration.
In: Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition. 2020, pp. 1759-1769.

lan Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learn-
ing. MIT press, 2016.

Bibliography

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

lan Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu,
David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua
Bengio. Generative adversarial nets. In: Proceedings of the 27th inter-
national conference on neural information processing systems. 2014,
PP 2672-2680.

Ben Graham. Sparse 3D convolutional neural networks. In: arXiv
preprint arXiv:1505.02890 (2015).

David Griffiths and Jan Boehm. SynthCity: A large scale synthetic
point cloud. In: arXiv preprint arXiv:1907.04758 (2019).

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec,
Pierre Richemond, Elena Buchatskaya, Carl Doersch, Bernardo
Avila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar, etal.
Bootstrap your own latent: A new approach to self-supervised learn-
ing. In: Advances in neural information processing systems 33 (2020),
pp- 21271-21284.

Michael Gschwandtner, Roland Kwitt, Andreas Uhl, and Wolf-
gang Pree. BlenSor: Blender sensor simulation toolbox. In: Advances
in Visual Computing: 7th International Symposium, ISVC 2011, Las Ve-
gas, NV, USA, September 26-28, 2011. Proceedings, Part II 7. Springer.
2011, pp. 199-208.

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Du-
moulin, and Aaron C. Courville. Improved training of Wasserstein
GANs. In: Advances in neural information processing systems 30
(2017).

Meng-Hao Guo, Jun-Xiong Cai, Zheng-Ning Liu, Tai-Jiang Mu,
Ralph R Martin, and Shi-Min Hu. PCT: Point cloud transformer. In:
Computational visual media 7 (2021), pp. 187-199.

JunYoung Gwak, Christopher Choy, and Silvio Savarese. Gener-
ative sparse detection networks for 3D single-shot object detection. In:
Computer Vision-ECCV 2020: 16th European Conference, Glasgow,
UK, August 23-28, 2020, Proceedings, Part IV 16. Springer. 2020,
pp- 297-313.

201

Bibliography

[77]

202

Lei Han, Tian Zheng, Lan Xu, and Lu Fang. OccuSeg: Occupancy-
aware 3D instance segmentation. In: Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition. 2020, pp. 2940—
2949.

Song Han, Huizi Mao, and William J Dally. Deep compression: Com-
pressing deep neural networks with pruning, trained quantization and
huffman coding. In: 2015.

Kaveh Hassani and Mike Haley. Unsupervised multi-task feature
learning on point clouds. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision. 2019, pp. 8160-8171.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. In: Proceedings of the IEEE
conference on computer vision and pattern recognition. 2016, pp. 770—
778.

Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross Girshick.
Mask R-CNN. In: Proceedings of the IEEE international conference on
computer vision. 2017, pp. 2961-2969.

Kaiming He, Haoqgi Fan, Yuxin Wu, Saining Xie, and Ross Gir-
shick. Momentum contrast for unsupervised visual representation
learning. In: Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition. 2020, pp. 9729-9738.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollar,
and Ross Girshick. Masked autoencoders are scalable vision learners.
In: Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition. 2022, pp. 16000-16009.

Dan Hendrycks, Kimin Lee, and Mantas Mazeika. Using pre-
training can improve model robustness and uncertainty. In: Interna-
tional conference on machine learning. PMLR. 2019, pp. 2712-2721.

Pedro Hermosilla, Tobias Ritschel, Pere-Pau Vazquez, Alvar
Vinacua, and Timo Ropinski. Monte Carlo convolution for learning
on non-uniformly sampled point clouds. In: ACM Transactions on
Graphics (TOG) 37.6 (2018), pp. 1-12.

Bibliography

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

Joel Hestness, Sharan Narang, Newsha Ardalani, Gregory Di-
amos, Heewoo Jun, Hassan Kianinejad, Md Patwary, Mostofa
Ali, Yang Yang, and Yanqi Zhou. Deep learning scaling is predictable,
empirically. In: arXiv preprint arXiv:1712.00409 (2017).

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowl-
edge in a neural network. In: arXiv preprint arXiv:1503.02531 (2015).

Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term mem-
ory. In: Neural computation 9.8 (1997), pp. 1735-1780.

Sven T. S. Holmstrém, Utku Baran, and Hakan Urey. MEMS laser
scanners: A review. In: Journal of microelectromechanical systems 23.2
(2014), pp. 259-275.

Berthold Klaus Paul Horn. Extended Gaussian images. In: Proceed-
ings of the IEEE 72.12 (1984), pp. 1671-1686.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer
feedforward networks are universal approximators. In: Neural networks
2.5 (1989), pp. 359-366.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Universal
approximation of an unknown mapping and its derivatives using mul-
tilayer feedforward networks. In: Neural networks 3.5 (1990), pp. 551
560.

Ji Hou, Angela Dai, and Matthias NieBner. 3D-SIS: 3D semantic in-
stance segmentation of RGB-D scans. In: Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition. 2019, pp. 4421-
4430.

Ji Hou, Benjamin Graham, Matthias NieBner, and Saining Xie.
Exploring data-efficient 3D scene understanding with contrastive scene
contexts. In: Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition. 2021, pp. 15587-15597.

Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen,
Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu, Ruoming
Pang, Vijay Vasudevan, et al. Searching for MobileNetV 3. In: Pro-
ceedings of the IEEE/CVF international conference on computer vision.
2019, pp. 1314-1324.

203

Bibliography

[96]

[100]

[101]

[102]

[103]

204

Qingyong Hu, Bo Yang, Linhai Xie, Stefano Rosa, Yulan Guo,
Zhihua Wang, Niki Trigoni, and Andrew Markham. RandLA-Net:
Efficient semantic segmentation of large-scale point clouds. In: Pro-
ceedings of the IEEE/CVF conference on computer vision and pattern
recognition. 2020, pp. 11108-11117.

Junjie Huang, Guan Huang, Zheng Zhu, Yun Ye, and Dalong
Du. BEV Det: High-performance multi-camera 3D object detection in
bird-eye-view. In: arXiv preprint arXiv:2112.11790 (2021).

Tengteng Huang, Zhe Liu, Xiwu Chen, and Xiang Bai. EPNet:
Enhancing point features with image semantics for 3D object detection.
In: Computer Vision—-ECCV 2020: 16th European Conference, Glasgow,
UK, August 23-28, 2020, Proceedings, Part XV 16. Springer. 2020,
pp. 35-52.

Xiaojie Huang, Junjie Shan, and Vivek Vaidya. Lung nodule detec-
tion in CT using 3D convolutional neural networks. In: 2017 IEEE 14th
international symposium on biomedical imaging. IEEE. 2017, pp. 379-
383.

Le Hui, Hang Yang, Mingmei Cheng, Jin Xie, and Jian Yang.
Pyramid point cloud transformer for large-scale place recognition. In:
Proceedings of the IEEE/CVF international conference on computer
vision. 2021, pp. 6098-6107.

Braden Hurl, Krzysztof Czarnecki, and Steven Waslander. Precise
synthetic image and LiDAR (PreSil) dataset for autonomous vehicle
perception. In: 2019 IEEE intelligent vehicles symposium. IEEE. 2019,
pp. 2522-2529.

Sergey loffe and Christian Szegedy. Batch normalization: Accel-
erating deep network training by reducing internal covariate shift. In:
International conference on machine learning. pmlr. 2015, pp. 448-
456.

Jeremy Irvin, Pranav Rajpurkar, Michael Ko, Yifan Yu, Silviana
Ciurea-licus, Chris Chute, Henrik Marklund, Behzad Haghgoo,
Robyn Ball, Katie Shpanskaya, etal. CheXpert: A large chest ra-
diograph dataset with uncertainty labels and expert comparison. In:
Proceedings of the AAAI conference on artificial intelligence. Vol. 33.
01. 2019, pp. 590-597.

Bibliography

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

Heewoo Jun and Alex Nichol. Shap-E: Generating conditional 3D
implicit functions. In: arXiv preprint arXiv:2305.02463 (2023).

Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko
Lehtinen, and Timo Aila. Analyzing and improving the image quality
of stylegan. In: Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition. 2020, pp. 8110-8119.

Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe. Pois-
son surface reconstruction. In: Proceedings of the fourth eurographics
symposium on geometry processing. Vol. 7. 2006, p. 0.

Michael Kazhdan, Thomas Funkhouser, and Szymon
Rusinkiewicz. Rotation invariant spherical harmonic represen-
tation of 3D shape descriptors. In: Symposium on geometry processing.
Vol. 6. 2003, pp. 156-164.

Alex Kendall, Yarin Gal, and Roberto Cipolla. Multi-task learning
using uncertainty to weigh losses for scene geometry and semantics.
In: Proceedings of the IEEE conference on computer vision and pattern
recognition. 2018, pp. 7482-7491.

Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W Mahoney,
and Kurt Keutzer. [-BERT: Integer-only BERT quantization. In: In-
ternational conference on machine learning. PMLR. 2021, pp. 5506
5518.

Wonjae Kim, Bokyung Son, and lldoo Kim. Vilt: Vision-and-
language transformer without convolution or region supervision. In:
International conference on machine learning. PMLR. 2021, pp. 5583
5594.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. In: arXiv preprint arXiv:1412.6980 (2014).

Simon Kohl, Bernardino Romera-Paredes, Clemens Meyer, Jef-
frey De Fauw, Joseph R Ledsam, Klaus Maier-Hein, SM Eslami,
Danilo Jimenez Rezende, and Olaf Ronneberger. A probabilistic
U-Net for segmentation of ambiguous images. In: Advances in neural
information processing systems 31 (2018).

205

Bibliography

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

206

Artem Komarichev, Zichun Zhong, and Jing Hua. A-CNN: Annu-
larly convolutional neural networks on point clouds. In: Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition.
2019, pp. 7421-7430.

Alex Krizhevsky, llya Sutskever, and Geoffrey E. Hinton. [mageNet
classification with deep convolutional neural Networks. In: Advances
in neural information processing systems. Vol. 25. Curran Associates,
Inc., 2012.

Jason Ku, Melissa Mozifian, Jungwook Lee, Ali Harakeh, and
Steven L. Waslander. Joint 3D proposal generation and object detec-
tion from view agqregation. In: 2018 IEEE/RS] international conference
on intelligent Robots and systems. IEEE. 2018, pp. 1-8.

Alina Kuznetsova, Hassan Rom, Neil Alldrin, Jasper Uijlings,
Ivan Krasin, Jordi Pont-Tuset, Shahab Kamali, Stefan Popov, Mat-
teo Malloci, Alexander Kolesnikov, etal. The open images dataset
v4: Unified image classification, object detection, and visual relationship
detection at scale. In: International journal of computer vision 128.7
(2020), pp- 1956-1981.

Alex H Lang, Sourabh Vora, Holger Caesar, Lubing Zhou, Jiong
Yang, and Oscar Beijbom. PointPillars: Fast encoders for object
detection from point clouds. In: Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition. 2019, pp. 12697-12705.

Yann LeCun. A theoretical framework for back-propagation. In: Pro-
ceedings of the 1988 connectionist models summer school. Vol. 1. 1988,
pp- 21-28.

Yann LeCun, Bernhard Boser, John Denker, Donnie Henderson,
Richard Howard, Wayne Hubbard, and Lawrence Jackel. Hand-
written digit recognition with a back-propagation network. In: Advances
in neural information processing systems 2 (1989).

Yann LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert
Miiller. Efficient backprop. In: Neural networks: Tricks of the trade.
Springer, 2002, pp. 9-50.

Bo Li. 3D fully convolutional network for vehicle detection in point
cloud. In: 2017 IEEE/RS] international conference on intelligent robots
and systems. IEEE. 2017, pp. 1513-1518.

Bibliography

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

Bo Li, Tianlei Zhang, and Tian Xia. Vehicle detection from 3D LiDAR
using fully convolutional network. In: arXiv preprint arXiv:1608.07916
(2016).

Yanghao Li, Saining Xie, Xinlei Chen, Piotr Dollar, Kaiming He,
and Ross Girshick. Benchmarking detection transfer learning with
vision transformers. In: arXiv preprint arXiv:2111.11429 (2021).

Yanghao Li, Hanzi Mao, Ross Girshick, and Kaiming He. Explor-
ing plain vision transformer backbones for object detection. In: Computer
Vision—-ECCV 2022: 17th European Conference, Tel Aviv, Israel, Oc-
tober 23-27, 2022, Proceedings, Part IX. Springer. 2022, pp. 280-
296.

Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di, and
Baoquan Chen. PointCNN: Convolution on X-transformed points.
In: Advances in neural information processing systems 31 (2018).

Ying Li, Lingfei Ma, Zilong Zhong, Fei Liu, Michael A. Chapman,
Dongpu Cao, and Jonathan Li. Deep learning for LIDAR point clouds
in autonomous driving: A Review. In: IEEE transactions on neural
networks and learning systems 32.8 (2021), pp. 3412-3432.

Zhidong Liang, Ming Zhang, Zehan Zhang, Xian Zhao, and Shil-
iang Pu. RangeRCNN: Towards fast and accurate 3D object detection
with range image representation. In: arXiv preprint arXiv:2009.00206
(2020).

Zhidong Liang, Zehan Zhang, Ming Zhang, Xian Zhao, and Shil-
iang Pu. RangeloUDet: Range image based real-time 3D object detector
optimized by intersection over union. In: Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition. 2021, pp. 7140-
7149.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro
Perona, Deva Ramanan, Piotr Dollar, and C. Lawrence Zitnick.
Microsoft COCO: Common objects in context. In: Computer Vision—
ECCV 2014: 13th European Conference, Zurich, Switzerland, Septem-
ber 6-12, 2014, Proceedings, Part V 13. Springer. 2014, pp. 740-755.

207

Bibliography

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

208

Tsung-Yi Lin, Piotr Dollar, Ross Girshick, Kaiming He, Bharath
Hariharan, and Serge Belongie. Feature pyramid networks for object
detection. In: Proceedings of the IEEE conference on computer vision
and pattern recognition. 2017, pp. 2117-2125.

Haotian Liu, Mu Cai, and Yong Jae Lee. Masked Discrimination
for Self-Supervised Learning on Point Clouds. In: Proceedings of the
european conference on computer vision (2022).

Minzhe Liu, Qiang Zhou, Hengshuang Zhao, Jianing Li, Yuan
Du, Kurt Keutzer, Li Du, and Shanghang Zhang. Prototype-Voxel
contrastive learning for LiDAR point cloud panoptic segmentation. In:
2022 international conference on robotics and automation. IEEE. 2022,
pp- 9243-9250.

Yingfei Liu, Tiancai Wang, Xiangyu Zhang, and Jian Sun. PETR:
Position embedding transformation for multi-view 3D object detection.
In: Computer Vision—-ECCV 2022: 17th European Conference, Tel Aviv,
Israel, October 23-27, 2022, Proceedings, Part XXVII. Springer. 2022,
pp- 531-548.

Yueh-Cheng Liu, Yu-Kai Huang, HungYueh Chiang, Hung-Ting
Su, Zhe Yu Liu, Chin-Tang Chen, Ching-Yu Tseng, and Winston
H. Hsu. Learning from 2D: Pixel-to-point knowledge transfer for 3D
pretraining. In: CoRR abs/2104.04687 (2021).

Yunze Liu, Li Yi, Shanghang Zhang, Qingnan Fan, Thomas A.
Funkhouser, and Hao Dong. P4Contrast: contrastive learning with
pairs of point-pixel pairs for RGB-D scene understanding. In: CORR
abs/2012.13089 (2020).

Ze Liu, Zheng Zhang, Yue Cao, Han Hu, and Xin Tong. Group-free
3D object detection via transformers. In: Proceedings of the IEEE/CVF
international conference on computer vision. 2021, pp. 2949-2958.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang,
Stephen Lin, and Baining Guo. Swin transformer: Hierarchical vision
transformer using shifted windows. In: Proceedings of the IEEE/CVF
international conference on computer vision. 2021, pp. 10012-10022.

Zhijian Liu, Haotian Tang, Yujun Lin, and Song Han. Point-Voxel

CNN for efficient 3D deep learning. In: Advances in neural information
processing systems 32 (2019).

Bibliography

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

llya Loshchilov and Frank Hutter. SGDR: Stochastic gradient descent
with warm restarts. In: arXiv preprint arXiv:1608.03983 (2016).

llya Loshchilov and Frank Hutter. Decoupled weight decay reqular-
ization. In: arXiv preprint arXiv:1711.05101 (2017).

David G. Lowe. Object recognition from local scale-invariant features.
In: Proceedings of the 7th IEEE international conference on computer
vision. Vol. 2. 1999, 1150-1157 vol.2.

Shitong Luo and Wei Hu. Score-based point cloud denoising. In:
Proceedings of the IEEE/CVF international conference on computer
vision. 2021, pp. 4583-4592.

Dhruv Mahajan, Ross Girshick, Vignesh Ramanathan, Kaiming
He, Manohar Paluri, Yixuan Li, Ashwin Bharambe, and Laurens
Van Der Maaten. Exploring the limits of weakly supervised pretraining.
In: Proceedings of the European conference on computer vision (ECCV).
2018, pp. 181-196.

Jiageng Mao, Yujing Xue, Minzhe Niu, Haoyue Bai, Jiashi Feng,
Xiaodan Liang, Hang Xu, and Chunjing Xu. Voxel transformer for
3D object detection. In: Proceedings of the IEEE/CVF international
conference on computer vision. 2021, pp. 3164-3173.

Rodrigo Marcuzzi, Lucas Nunes, Louis Wiesmann, Ignacio Vizzo,
Jens Behley, and Cyrill Stachniss. Contrastive instance association
for 4D panoptic segmentation using sequences of 3D LiDAR scans. In:
IEEE robotics and automation letters 7.2 (2022), pp. 1550-1557.

Daniel Maturana and Sebastian Scherer. VoxNet: A 3D con-
volutional neural network for real-time object recognition. In: 2015
IEEE/RS] international conference on intelligent robots and systems.
IEEE. 2015, pp. 922-928.

Warren S. McCulloch and Walter Pitts. A logical calculus of the
ideas immanent in nervous activity. In: The bulletin of mathematical
biophysics 5 (1943), pp. 115-133.

209

Bibliography

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

210

Gregory P. Meyer, Ankit Laddha, Eric Kee, Carlos Vallespi-
Gonzalez, and Carl K Wellington. LaserNet: An efficient probabilis-
tic 3D object detector for autonomous driving. In: Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition. 2019,
pp. 12677-12686.

Hrushikesh Mhaskar, Qianli Liao, and Tomaso Poggio. When and
why are deep networks better than shallow ones? In: Proceedings of the
AAAI conference on artificial intelligence. Vol. 31. 1. 2017.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Ef-
ficient estimation of word representations in vector space. In: arXiv
preprint arXiv:1301.3781 (2013).

Andres Milioto, Ignacio Vizzo, Jens Behley, and Cyrill Stach-
niss. RangeNet++: Fast and accurate LIDAR semantic segmentation.
In: 2019 IEEE/RS] international conference on intelligent robots and
systems. IEEE. 2019, pp. 4213-4220.

Ishan Misra, Rohit Girdhar, and Armand Joulin. An end-to-
end transformer model for 3D object detection. In: Proceedings of
the IEEE/CVF International Conference on Computer Vision. 2021,
pp- 2906-2917.

Norbert Mitschke, Michael Heizmann, Klaus-Henning Noffz, and
Ralf Wittmann. Gradient based evolution to optimize the structure
of convolutional neural networks. In: 2018 25th IEEE international
conference on image processing. IEEE. 2018, pp. 3438-3442.

Norbert Mitschke, Michael Heizmann, Klaus-Henning Noffz, and
Ralf Wittmann. A fixed-point quantization technique for convolutional
neural networks based on weight scaling. In: 2019 IEEE international
conference on image processing. IEEE. 2019, pp. 3836-3840.

Claus Miller. Spherical harmonics. Vol. 17. Springer, 2006.

Alex Nichol, Heewoo Jun, Prafulla Dhariwal, Pamela Mishkin,
and Mark Chen. Point-E: A System for generating 3D point clouds
from complex prompts. In: arXiv preprint arXiv:2212.08751 (2022).

Bibliography

[157]

[158]

[159]

[160]

[161]
[162]

[163]

[164]

[165]

[166]

Mehdi Noroozi and Paolo Favaro. Unsupervised learning of visual
representations by solving [igsaw puzzles. In: Computer Vision—-ECCV
2016: 14th European Conference, Amsterdam, The Netherlands, October
11-14, 2016, Proceedings, Part V1. Springer. 2016, pp. 69-84.

Curtis Northcutt, Lu Jiang, and Isaac Chuang. Confident learn-
ing: Estimating uncertainty in dataset labels. In: Journal of artificial
intelligence research 70 (2021), pp. 1373-1411.

Pedro O. O Pinheiro, Amjad Almahairi, Ryan Benmalek, Florian
Golemo, and Aaron C. Courville. Unsupervised learning of dense
visual representations. In: Advances in neural information processing
systems 33 (2020), pp. 4489-4500.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representa-
tion learning with contrastive predictive coding. In: arXiv preprint
arXiv:1807.03748 (2018).

OpenAl. GPT-4 Technical Report. 2023. arXiv: 2303.08774.

Xuran Pan, Zhuofan Xia, Shiji Song, Li Erran Li, and Gao Huang.
3D object detection with PointFormer. In: Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition. 2021, pp. 7463—
7472.

Yatian Pang, Wenxiao Wang, Francis EH Tay, Wei Liu, Yonghong
Tian, and Li Yuan. Masked autoencoders for point cloud self-supervised
learning. In: Proceedings of the european conference on computer vision
(2022).

Chunghyun Park, Yoonwoo Jeong, Minsu Cho, and Jaesik Park.
Fast point transformer. In: Proceedings of the IEEE/CVF Conference
on computer vision and pattern recognition. 2022, pp. 16949-16958.

Jaesik Park, Qian-Yi Zhou, and Vladlen Koltun. Colored point
cloud registration revisited. In: Proceedings of the IEEE international
conference on computer vision. 2017, pp. 143-152.

Jeong Joon Park, Peter Florence, Julian Straub, Richard New-
combe, and Steven Lovegrove. DeepSDF: Learning continuous
signed distance functions for shape representation. In: Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition.
2019, pp. 165-174.

211

https://arxiv.org/abs/2303.08774

Bibliography

[167]

[168]

[169]

[170]

[171]

[172]

[173]

[174]

212

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James
Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia
Gimelshein, Luca Antiga, etal. Pylorch: An imperative style, high-
performance deep learning library. In: Advances in neural information
processing systems 32 (2019).

Francesca Pistilli, Giulia Fracastoro, Diego Valsesia, and Enrico
Magli. Learning graph-convolutional representations for point cloud
denoising. In: Computer Vision—-ECCV 2020: 16th European Confer-
ence, Glasgow, UK, August 23-28, 2020, Proceedings, Part XX 16.
Springer. 2020, pp. 103-118.

Charles R. Qi, Hao Su, Matthias NieBner, Angela Dai, Mengyuan
Yan, and Leonidas J. Guibas. Volumetric and multi-view CNNs for
object classification on 3D data. In: Proceedings of the IEEE conference
on computer vision and pattern recognition. 2016, pp. 5648-5656.

Charles R. Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas.
PointNet: Deep learning on point sets for 3D classification and segmen-
tation. In: Proceedings of the IEEE conference on computer vision and
pattern recognition. 2017, pp. 652-660.

Charles R. Qi, Li Yi, Hao Su, and Leonidas J. Guibas. PointNet++:
Deep hierarchical feature learning on point sets in a metric space. In:
Advances in neural information processing systems 30 (2017).

Charles R. Qi, Wei Liu, Chenxia Wu, Hao Su, and Leonidas J.
Guibas. Frustum PointNets for 3D object detection from RGB-D data.
In: Proceedings of the IEEE conference on computer vision and pattern
recognition. 2018, pp. 918-927.

Charles R. Qi, Or Litany, Kaiming He, and Leonidas J. Guibas.
Deep Hough voting for 3D object detection in point clouds. In: Pro-
ceedings of the IEEE/CVF international conference on computer vision.
2019, pp. 9277-9286.

Charles R. Qi, Xinlei Chen, Or Litany, and Leonidas J. Guibas.
ImVoteNet: Boosting 3D object detection in point clouds with image
votes. In: Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition. 2020, pp. 4404—4413.

Bibliography

[175]

[176]

[177]

[178]

[179]

[180]

[181]

[182]

Guocheng Qian, Xingdi Zhang, Abdullah Hamdi, and Bernard
Ghanem. Pix4Point: Image pretrained Transformers for 3D point cloud
understanding. In: arXiv preprint arXiv:2208.12259 (2022).

Guocheng Qian, Yuchen Li, Houwen Peng, Jinjie Mai, Hasan
Hammoud, Mohamed Elhoseiny, and Bernard Ghanem. Point-
NeXt: Revisiting PointNet++ with improved training and scaling strate-
gies. In: Advances in neural information processing systems 35 (2022),
pp- 23192-23204.

Alec Radford, Karthik Narasimhan, Tim Salimans, llya Sutskever,
etal. Improving language understanding by generative pre-training.
Last accessed on 2023.03.18. 2018. URL: https:/ /s3-us-west-
2.amazonaws.com/openai-assets / research-covers /language-
unsupervised /language_understanding_paper.pdf.

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea
Voss, Alec Radford, Mark Chen, and llya Sutskever. Zero-shot text-

to-image generation. In: International conference on machine learning.
PMLR. 2021, pp. 8821-8831.

Yongming Rao, Benlin Liu, Yi Wei, Jiwen Lu, Cho-Jui Hsieh, and
Jie Zhou. RandomRooms: unsupervised pre-training from synthetic
shapes and randomized layouts for 3D object detection. In: Proceedings
of the IEEE/CVF international conference on computer vision. 2021,
pp. 3283-3292.

Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali
Farhadi. You only look once: Unified, real-time object detection. In:
Proceedings of the IEEE conference on computer vision and pattern
recognition. 2016, pp. 779-788.

Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gomez
Colmenarejo, Alexander Novikov, Gabriel Barth-Maron, Mai
Gimenez, Yury Sulsky, Jackie Kay, Jost Tobias Springenberg,
etal. A generalist agent. In: arXiv preprint arXiv:2205.06175 (2022).

Shaoging Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster
R-CNN: Towards real-time object detection with region proposal net-
works. In: Advances in neural information processing systems 28
(2015).

213

https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf

Bibliography

[183]

[184]

[185]

[186]

[187]

[188]

[189]

[190]

[191]

[192]

214

Zhile Ren and Erik B. Sudderth. Three-dimensional object detection
and layout prediction using clouds of oriented gradients. In: Proceedings
of the IEEE conference on computer vision and pattern recognition. 2016,
pp- 1525-1533.

Herbert Robbins and Sutton Monro. A stochastic approximation
method. In: The annals of mathematical statistics (1951), pp. 400-407.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick
Esser, and Bjorn Ommer. High-resolution image synthesis with la-
tent diffusion models. In: Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition. 2022, pp. 10684-10695.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net:
Convolutional networks for biomedical image segmentation. In: Medical
image computing and computer-assisted intervention—-MICCAI 2015:
18th International Conference, Munich, Germany, October 5-9, 2015,
Proceedings, Part III 18. Springer. 2015, pp. 234-241.

Ricardo Roriz, Jorge Cabral, and Tiago Gomes. Automotive Li-
DAR technology: A survey. In: IEEE transactions on intelligent trans-
portation systems 23.7 (2022), pp. 6282-6297.

Frank Rosenblatt. The perceptron: A probabilistic model for informa-
tion storage and organization in the brain. In: Psychological review 65.6
(1958), p. 386.

Holger R. Roth, Hirohisa Oda, Xiangrong Zhou, Natsuki Shimizu,
Ying Yang, Yuichiro Hayashi, Masahiro Oda, Michitaka Fujiwara,
Kazunari Misawa, and Kensaku Mori. An application of cascaded
3D fully convolutional networks for medical image segmentation. In:
Computerized medical imaging and graphics 66 (2018), pp. 90-99.

Scott D Roth. Ray casting for modeling solids. In: Computer graphics
and image processing 18.2 (1982), pp. 109-144.

Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski.
ORB: An efficient alternative to SIFT or SURF. In: 2011 international
conference on computer vision. 2011, pp. 2564-2571.

Radu Bogdan Rusu. Semantic 3D object maps for everyday manipu-
lation in human living environments. In: KI-Kiinstliche Intelligenz 24
(2010), pp. 345-348.

Bibliography

[193]

[194]

[195]

[196]

[197]

[198]

[199]

[200]

[201]

Radu Bogdan Rusu, Nico Blodow, and Michael Beetz. Fast point
feature histograms (FPFH) for 3D registration. In: 2009 IEEE interna-
tional conference on robotics and automation. IEEE. 2009, pp. 3212—
3217.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmogi-
nov, and Liang-Chieh Chen. MobileNetV?2: Inverted residuals and
linear bottlenecks. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. 2018, pp. 4510-4520.

Aditya Sanghi. Info3D: Representation learning on 3D objects us-
ing mutual information maximization and contrastive learning. In:
Computer Vision-ECCV 2020: 16th European Conference, Glasgow,
UK, August 23-28, 2020, Proceedings, Part XXIX 16. Springer. 2020,
pp. 626-642.

Jonathan Sauder and Bjarne Sievers. Self-supervised deep learn-
ing on point clouds by reconstructing space. In: Advances in Neural
Information Processing Systems 32 (2019).

Dietmar Saupe and Dejan V Vranié. 3D model retrieval with spher-
ical harmonics and moments. In: Pattern Recognition: 23rd DAGM
Symposium Munich, Germany, September 12—14, 2001 Proceedings
23. Springer. 2001, pp. 392-397.

Corentin Sautier, Gilles Puy, Spyros Gidaris, Alexandre Boulich,
Andrei Bursuc, and Renaud Marlet. Image-to-LiDAR self-supervised
distillation for autonomous driving data. In: Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition. 2022,
pp- 9891-9901.

Maximilian Schambach, Jiayang Shi, and Michael Heizmann.
Spectral reconstruction and disparity from spatio-spectrally coded light
fields via multi-task deep learning. In: 2021 International conference
on 3D vision. IEEE. 2021, pp. 186-196.

Marcel P. Schilling, Tim Scherr, Friedrich R. Miinke, Oliver Neu-
mann, Mark Schutera, Ralf Mikut, and Markus Reischl. Automated
annotator variability inspection for biomedical image segmentation. In:
IEEE access 10 (2022), pp. 2753-2765.

Roy Schwartz, Jesse Dodge, Noah A Smith, and Oren Etzioni.
Green Al In: Communications of the ACM 63.12 (2020), pp. 54-63.

215

Bibliography

[202]

[203]

[204]

[205]

[206]

[207]

[208]

[209]

[210]

216

Shaoshuai Shi, Xiaogang Wang, and Hongsheng Li. PointRCNN:
3D object proposal generation and detection from point cloud. In: Pro-
ceedings of the IEEE/CVF conference on computer vision and pattern
recognition. 2019, pp. 770-779.

Shaoshuai Shi, Chaoxu Guo, Li Jiang, Zhe Wang, Jianping Shi,
Xiaogang Wang, and Hongsheng Li. PV-RCNN: Point-voxel fea-
ture set abstraction for 3D object detection. In: Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition. 2020,
pp. 10529-10538.

Weijing Shi and Raj Rajkumar. Point-GNN: Graph neural network
for 3D object detection in a point cloud. In: Proceedings of the IEEE/CVE
conference on computer vision and pattern recognition. 2020, pp. 1711-
1719.

Dongjoo Shin, Jinmook Lee, Jinsu Lee, Juhyoung Lee, and
Hoi-Jun Yoo. DNPU: An energy-efficient deep-learning processor
with heterogeneous multi-core architecture. In: IEEE micro 38.5 (2018),
pp- 85-93.

Martin Simony, Stefan Milzy, Karl Amendey, and Horst-Michael
Gross. Complex-YOLO: An Euler-region-proposal for real-time 3D ob-
ject detection on point clouds. In: Proceedings of the european conference
on computer vision (ECCV) workshops. 2018.

Karen Simonyan and Andrew Zisserman. Very deep convolu-
tional networks for large-scale image recognition. In: arXiv preprint
arXiv:1409.1556 (2014).

Josef Sivic and Andrew Zisserman. Video Google: a text retrieval
approach to object matching in videos. In: Proceedings 9th IEEE inter-
national conference on computer vision. 2003, 14701477 vol 2.

Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical net-
works for few-shot learning. In: Advances in neural information pro-
cessing systems 30 (2017).

Kihyuk Sohn, David Berthelot, Nicholas Carlini, Zizhao Zhang,
Han Zhang, Colin A. Raffel, Ekin Dogus Cubuk, Alexey Kurakin,
and Chun-Liang Li. FixMatch: Simplifying semi-supervised learning
with consistency and confidence. In: Advances in neural information
processing systems 33 (2020), pp. 596-608.

Bibliography

[211]

[212]

[213]

[214]

[215]

[216]

[217]

[218]

Hessam Sokooti, Bob De Vos, Floris Berendsen, Boudewijn PF
Lelieveldt, lvana ISgum, and Marius Staring. Nonrigid image regis-
tration using multi-scale 3D convolutional neural networks. In: Medical
image computing and computer assisted intervention- MICCAI 2017:
20th International Conference, Quebec City, QC, Canada, September
11-13, 2017, Proceedings, Part I 20. Springer. 2017, pp. 232-239.

Shuran Song, Samuel P. Lichtenberg, and Jianxiong Xiao. SUN
RGB-D: A RGB-D scene understanding benchmark suite. In: Proceed-
ings of the IEEE conference on computer vision and pattern recognition.
2015, pp. 567-576.

Shuran Song and Jianxiong Xiao. Deep sliding shapes for amodal
3D object detection in RGB-D images. In: Proceedings of the IEEE
conference on computer vision and pattern recognition. 2016, pp. 808-
816.

Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox,
and Martin Riedmiller. Striving for simplicity: The all convolutional
net. In: arXiv preprint arXiv:1412.6806 (2014).

Hang Su, Subhransu Maji, Evangelos Kalogerakis, and Erik
Learned-Miller. Multi-view convolutional neural networks for 3D
shape recognition. In: Proceedings of the IEEE international conference
on computer vision. 2015, pp. 945-953.

Hang Su, Varun Jampani, Deqing Sun, Subhransu Maji, Evan-
gelos Kalogerakis, Ming-Hsuan Yang, and Jan Kautz. SplatNet:
Sparse lattice networks for point cloud processing. In: Proceedings of
the IEEE conference on computer vision and pattern recognition. 2018,
pp- 2530-2539.

Bane Sullivan and Alexander Kaszynski. PyVista: 3D plotting
and mesh analysis through a streamlined interface for the Visualization
Toolkit (VTK). In: Journal of open source software 4.37 (2019), p. 1450.

Chen Sun, Abhinav Shrivastava, Saurabh Singh, and Abhinav
Gupta. Revisiting unreasonable effectiveness of data in deep learning
era. In: Proceedings of the IEEE international conference on computer
vision. 2017, pp. 843-852.

217

Bibliography

[219]

[220]

[221]

[222]

[223]

[224]

[225]

[226]

218

Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien
Chouard, Vijaysai Patnaik, Paul Tsui, James Guo, Yin Zhou,
Yuning Chai, Benjamin Caine, etal. Scalability in perception for
autonomous driving: Waymo open dataset. In: Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition. 2020,
pp. 2446-2454.

Qianru Sun, Yaoyao Liu, Tat-Seng Chua, and Bernt Schiele. Meta-
transfer learning for few-shot learning. In: Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition. 2019, pp. 403—
412.

Shizhao Sun, Wei Chen, Liwei Wang, Xiaoguang Liu, and Tie-
Yan Liu. On the depth of deep neural networks: A theoretical view. In:
Proceedings of the AAAI conference on artificial intelligence. Vol. 30. 1.
2016.

Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang, Philip HS Torr,
and Timothy M. Hospedales. Learning to compare: Relation net-
work for few-shot learning. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. 2018, pp. 1199-1208.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott
Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke,
and Andrew Rabinovich. Going deeper with convolutions. In: Proceed-
ings of the IEEE conference on computer vision and pattern recognition.
2015, pp. 1-9.

Richard Szeliski. Computer vision: algorithms and applications.
Springer Nature, 2022. Chap. 2.1, pp. 29-51.

Mingxing Tan and Quoc Le. EfficientNet: Rethinking model scal-
ing for convolutional neural networks. In: International conference on
machine learning. PMLR. 2019, pp. 6105-6114.

Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara
Fridovich-Keil, Nithin Raghavan, Utkarsh Singhal, Ravi Ra-
mamoorthi, Jonathan Barron, and Ren Ng. Fourier features let
networks learn high frequency functions in low dimensional domains.
In: Advances in neural information processing systems 33 (2020),
pp. 7537-7547.

Bibliography

[227]

[228]

[229]

[230]

[231]

[232]

[233]

[234]

Peng Tang, Chetan Ramaiah, Yan Wang, Ran Xu, and Caiming
Xiong. Proposal learning for semi-supervised object detection. In: Pro-
ceedings of the IEEE/CVF winter conference on applications of computer
vision. 2021, pp. 2291-2301.

Hugues Thomas, Charles R. Qi, Jean-Emmanuel Deschaud,
Beatriz Marcotegui, Francois Goulette, and Leonidas J Guibas.
KPConv: Flexible and deformable convolution for point clouds. In: Pro-
ceedings of the IEEE/CVF international conference on computer vision.
2019, pp. 6411-6420.

Yonglong Tian, Olivier J. Henaff, and Aéron van den Oord. Di-
vide and contrast: Self-supervised learning from uncurated data. In:
Proceedings of the IEEE/CVF international conference on computer
vision. 2021, pp. 10063-10074.

llya O Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas
Beyer, Xiaohua Zhai, Thomas Unterthiner, Jessica Yung, An-
dreas Steiner, Daniel Keysers, Jakob Uszkoreit, et al. MILP-Mixer:
An all-MLP architecture for vision. In: Advances in neural information
processing systems 34 (2021), pp. 24261-24272.

Jonas Uhrig, Nick Schneider, Lukas Schneider, Uwe Franke,
Thomas Brox, and Andreas Geiger. Sparsity invariant CNNs. In:
2017 international conference on 3D Vision (3DV). IEEE. 2017, pp. 11—
20.

Mikaela Angelina Uy, Quang-Hieu Pham, Binh-Son Hua, Thanh
Nguyen, and Sai-Kit Yeung. Revisiting point cloud classification:
A new benchmark dataset and classification model on real-world data.
In: Proceedings of the IEEE/CVF international conference on computer
vision. 2019, pp. 1588-1597.

Jesper E. Van Engelen and Holger H. Hoos. A survey on semi-
supervised learning. In: Machine learning 109.2 (2020), pp. 373-440.

Nick Van Gestel, Steven Cuypers, Philip Bleys, and Jean-Pierre
Kruth. A performance evaluation test for laser line scanners on CMMs.
In: Optics and lasers in engineering 47.3 (2009), pp. 336-342.

219

Bibliography

[235]

[236]

[237]

[238]

[239]

[240]

[241]

[242]

[243]

220

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and lllia Polo-
sukhin. Attention is all you need. In: Advances in neural information
processing systems 30 (2017).

Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-
Antoine Manzagol. Extracting and composing robust features with
denoising autoencoders. In: Proceedings of the 25th international con-
ference on machine learning. 2008, pp. 1096-1103.

Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra,
etal. Matching networks for one shot learning. In: Advances in neural
information processing systems 29 (2016).

Sourabh Vora, Alex H. Lang, Bassam Helou, and Oscar Beijbom.
PointPainting: Sequential fusion for 3D object detection. In: Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition.
2020, pp. 4604-4612.

Hanchen Wang, Qi Liu, Xiangyu Yue, Joan Lasenby, and Matt
J. Kusner. Unsupervised point cloud pre-training via occlusion com-
pletion. In: Proceedings of the IEEE/CVF international conference on
computer vision. 2021, pp. 9782-9792.

He Wang, Yezhen Cong, Or Litany, Yue Gao, and Leonidas J.
Guibas. 3DIoUMatch: Leveraging iou prediction for semi-supervised
3D object detection. In: Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition. 2021, pp. 14615-14624.

Shenlong Wang, Simon Suo, Wei-Chiu Ma, Andrei Pokrovsky,
and Raquel Urtasun. Deep parametric continuous convolutional neu-
ral networks. In: Proceedings of the IEEE conference on computer vision
and pattern recognition. 2018, pp. 2589-2597.

Weiyao Wang, Du Tran, and Matt Feiszli. What makes train-
ing multi-modal classification networks hard? In: Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition. 2020,
pp. 12695-12705.

Weiyue Wang and Ulrich Neumann. Depth-aware CNN for RGB-D
segmentation. In: Proceedings of the european conference on computer
vision. 2018, pp. 135-150.

Bibliography

[244]

[245]

[246]

[247]

[248]

[249]

[250]

[251]

Weiyue Wang, Ronald Yu, Qiangui Huang, and Ulrich Neumann.
SGPN: Similarity group proposal network for 3D point cloud instance
segmentation. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. 2018, pp. 2569-2578.

Xinlong Wang, Rufeng Zhang, Chunhua Shen, Tao Kong, and Lei
Li. Dense contrastive learning for self-supervised visual pre-training.
In: Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition. 2021, pp. 3024-3033.

Yuan Wang, Tianyue Shi, Peng Yun, Lei Tai, and Ming Liu.
PointSeg: Real-time semantic segmentation based on 3D LiDAR point
cloud. In: arXiv preprint arXiv:1807.06288 (2018).

Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael
M. Bronstein, and Justin M. Solomon. Dynamic graph CNN for
learning on point clouds. In: ACM Transactions On Graphics (TOG)
38.5(2019), pp. 1-12.

Yue Wang, Vitor Campagnolo Guizilini, Tianyuan Zhang, Yilun
Wang, Hang Zhao, and Justin Solomon. DETR3D: 3D object de-
tection from multi-view images via 3D-to-2D queries. In: Conference
on robot learning. PMLR. 2022, pp. 180-191.

Xin Wen, Tianyang Li, Zhizhong Han, and Yu-Shen Liu. Point
cloud completion by skip-attention network with hierarchical folding.
In: Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition. 2020, pp. 1939-1948.

Xinshuo Weng, Jianren Wang, David Held, and Kris Kitani. 3D
multi-object tracking: A baseline and new evaluation metrics. In: 2020
IEEE/RS] international conference on intelligent robots and systems.
2020, pp. 10359-10366.

Bichen Wu, Alvin Wan, Xiangyu Yue, and Kurt Keutzer. Squeeze-
Seg: Convolutional neural nets with recurrent CRF for real-time road-
object segmentation from 3D LiDAR point cloud. In: 2018 IEEE inter-
national conference on robotics and automation. IEEE. 2018, pp. 1887-
1893.

221

Bibliography

[252]

[253]

[254]

[255]

[256]

[257]

[258]

[259]

222

Bichen Wu, Xuanyu Zhou, Sicheng Zhao, Xiangyu Yue, and Kurt
Keutzer. SqueezeSegV2: Improved model structure and unsupervised
domain adaptation for road-object segmentation from a LiDAR point
cloud. In: 2019 international conference on robotics and automation.
IEEE. 2019, pp. 4376—4382.

Chengzhi Wu, Xuelei Bi, Julius Pfrommer, Alexander Cebulla,
Simon Mangold, and Jiirgen Beyerer. Sim2real transfer learning for
point cloud segmentation: an industrial application case on autonomous
disassembly. In: Proceedings of the IEEE/CVF winter conference on
applications of computer vision. 2023, pp. 4531-4540.

Wenxuan Wu, Zhongang Qi, and Li Fuxin. PointConv: Deep convo-
lutional networks on 3D point clouds. In: Proceedings of the IEEE/CVF
Conference on computer vision and pattern recognition. 2019, pp. 9621-
9630.

Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang
Zhang, Xiaoou Tang, and Jianxiong Xiao. 3D ShapeNets: A deep
representation for volumetric shapes. In: Proceedings of the IEEE con-
ference on computer vision and pattern recognition. 2015, pp. 1912—
1920.

Aoran Xiao, Jiaxing Huang, Dayan Guan, Fangneng Zhan, and
Shijian Lu. Transfer learning from synthetic to real LIDAR point cloud
for semantic segmentation. In: Proceedings of the AAAI conference on
artificial intelligence. Vol. 36. 3. 2022, pp. 2795-2803.

Tete Xiao, Mannat Singh, Eric Mintun, Trevor Darrell, Piotr Dollar,
and Ross Girshick. Early convolutions help transformers see bet-
ter. In: Advances in neural information processing systems 34 (2021),
pp- 30392-30400.

Junyuan Xie, Linli Xu, and Enhong Chen. Image denoising and in-
painting with deep neural networks. In: Advances in neural information
processing systems 25 (2012).

Qian Xie, Yu-Kun Lai, Jing Wu, Zhoutao Wang, Yiming Zhang,
Kai Xu, and Jun Wang. MLCV Net: Multi-level context VoteNet for
3D object detection. In: Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition. 2020, pp. 10447-10456.

Bibliography

[260]

[261]

[262]

[263]

[264]

[265]

[266]

[267]

Saining Xie, Jiatao Gu, Demi Guo, Charles R. Qi, Leonidas
Guibas, and Or Litany. PointContrast: Unsupervised pre-training for
3D point cloud understanding. In: Computer Vision—-ECCV 2020: 16th
European Conference, Glasgow, UK, August 23-28, 2020, Proceedings,
Part III 16. Springer. 2020, pp. 574-591.

Yajie Xing, Jingbo Wang, and Gang Zeng. Malleable 2.5D convo-
lution: Learning receptive fields along the depth-axis for RGB-D scene
parsing. In: Computer Vision-ECCV 2020: 16th European Confer-
ence, Glasgow, UK, August 23-28, 2020, Proceedings, Part XIX 16.
Springer. 2020, pp. 555-571.

Yajie Xing, Jingbo Wang, Xiaokang Chen, and Gang Zeng. 2.5D
convolution for RGB-D semantic segmentation. In: 2019 IEEE interna-
tional conference on image processing. IEEE. 2019, pp. 1410-1414.

Chen Xu, Jiangiang Yao, Zhouchen Lin, Wenwu Ou, Yuanbin Cao,
Zhirong Wang, and Hongbin Zha. Alternating multi-bit quantization
for recurrent neural networks. In: International conference on learning
representations. 2018.

Chenfeng Xu, Shijia Yang, Bohan Zhai, Bichen Wu, Xiangyu Yue,
Wei Zhan, Peter Vajda, Kurt Keutzer, and Masayoshi Tomizuka.
Image2point: 3D point-cloud understanding with pretrained 2D Con-
vNets. In: Proceedings of the european conference on computer vision
(2022).

Danfei Xu, Dragomir Anguelov, and Ashesh Jain. PointFusion:
Deep sensor fusion for 3D bounding box estimation. In: Proceedings of
the IEEE conference on computer vision and pattern recognition. 2018,
pp. 244-253.

Mengde Xu, Zheng Zhang, Han Hu, Jianfeng Wang, Lijuan
Wang, Fangyun Wei, Xiang Bai, and Zicheng Liu. End-to-end
semi-supervised object detection with soft teacher. In: Proceedings
of the IEEE/CVF international conference on computer vision. 2021,
pp- 3060-3069.

Xiaowei Xu, Yukun Ding, Sharon Xiaobo Hu, Michael Niemier,
Jason Cong, Yu Hu, and Yiyu Shi. Scaling for edge inference of deep
neural networks. In: Nature electronics 1.4 (2018), pp. 216-222.

223

Bibliography

[268]

[269]

[270]

[271]

[272]

[273]

[274]

[275]

[276]

224

Ryosuke Yamada, Hirokatsu Kataoka, Naoya Chiba, Yukiyasu
Domae, and Tetsuya Ogata. Point cloud pre-training with natural
3D structures. In: Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition. 2022, pp. 21283-21293.

Shuicheng Yan, Huan Wang, Thomas S. Huang, Qiong Yang,
and Xiaoou Tang. Ranking with uncertain labels. In: 2007 IEEE
international conference on multimedia and expo. IEEE. 2007, pp. 96—
99.

Yan Yan, Yuxing Mao, and Bo Li. SECOND: Sparsely embedded
convolutional detection. In: Sensors 18.10 (2018), p. 3337.

Zhewei Yao, Reza Yazdani Aminabadi, Minjia Zhang, Xiaoxia Wu,
Conglong Li, and Yuxiong He. ZeroQuant: Efficient and affordable
post-training quantization for large-scale transformers. In: Advances
in neural information processing systems 35 (2022), pp- 27168-27183.

Tianwei Yin, Xingyi Zhou, and Philipp Krahenbuhl. Center-based
3D object detection and tracking. In: Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition. 2021, pp. 11784—
11793.

Xumin Yu, Lulu Tang, Yongming Rao, Tiejun Huang, Jie Zhou,
and Jiwen Lu. Point-BERT: Pre-training 3D point cloud transformers
with masked point modeling. In: Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition. 2022, pp. 19313-
19322.

Wentao Yuan, Tejas Khot, David Held, Christoph Mertz, and
Martial Hebert. PCN: Point completion network. In: 2018 international
conference on 3D vision. 2018, pp. 728-737.

Matthew D. Zeiler and Rob Fergus. Visualizing and understand-
ing convolutional networks. In: Computer Vision—-ECCV 2014: 13th
European conference, Zurich, Switzerland, September 6-12, 2014, Pro-
ceedings, Part I 13. Springer. 2014, pp. 818-833.

Matthew D. Zeiler, Dilip Krishnan, Graham W. Taylor, and Rob
Fergus. Deconvolutional networks. In: 2010 IEEE computer society
conference on computer vision and pattern recognition. IEEE. 2010,
pp- 2528-2535.

Bibliography

[277]

[278]

[279]

[280]

[281]

[282]

[283]

[284]

[285]

Jin Zeng, Gene Cheung, Michael Ng, Jiahao Pang, and Cheng
Yang. 3D point cloud denoising using graph Laplacian regularization
of a low dimensional manifold model. In: IEEE transactions on image
processing 29 (2019), pp. 3474-3489.

Cheng Zhang, Haocheng Wan, Xinyi Shen, and Zizhao Wu. Patch-
Former: An efficient point transformer with patch attention. In: Pro-
ceedings of the IEEE/CVF conference on computer vision and pattern
recognition. 2022, pp. 11799-11808.

Renrui Zhang, Ziyu Guo, Peng Gao, Rongyao Fang, Bin Zhao,
Dong Wang, Yu Qiao, and Hongsheng Li. Point-M2AE: multi-scale
masked autoencoders for hierarchical point cloud pre-training. In: arXiv
preprint arXiv:2205.14401 (2022).

Renrui Zhang, Ziyu Guo, Wei Zhang, Kunchang Li, Xupeng Miao,
Bin Cui, Yu Qiao, Peng Gao, and Hongsheng Li. PointCLIP: Point
cloud understanding by CLIP. In: Proceedings of the european confer-
ence on computer vision. 2022, pp. 8552-8562.

Richard Zhang, Phillip Isola, and Alexei A. Efros. Colorful image
colorization. In: Computer Vision — ECCV 2016. 2016, pp. 649-666.

Richard Zhang, Phillip Isola, and Alexei A. Efros. Split-brain au-
toencoders: Unsupervised learning by cross-Channel prediction. In:
Proceedings of the IEEE Conference on computer vision and pattern
recognition. 2017.

Yang Zhang, Zixiang Zhou, Philip David, Xiangyu Yue, Zerong Xi,
Boqing Gong, and Hassan Foroosh. PolarNet: An improved grid
representation for online LiDAR point clouds semantic segmentation.
In: Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition. 2020, pp. 9601-9610.

Zaiwei Zhang, Bo Sun, Haitao Yang, and Qixing Huang. H3DNet:
3D object detection using hybrid geometric primitives. In: Computer
Vision—-ECCV 2020: 16th European Conference, Glasgow, UK, August
23-28, 2020, Proceedings, Part XII 16. Springer. 2020, pp. 311-329.

Zaiwei Zhang, Rohit Girdhar, Armand Joulin, and Ishan Misra.
Self-supervised pretraining of 3D features on any point-cloud. In: Pro-
ceedings of the IEEE/CVF conference on computer vision and pattern
recognition. 2021, pp. 10252-10263.

225

Bibliography

[286]

[287]

[288]

[289]

[290]

[291]

[292]

[293]

Bendong Zhao, Huanzhang Lu, Shangfeng Chen, Junliang Liu,
and Dongya Wu. Convolutional neural networks for time series classi-
fication. In: Journal of systems engineering and electronics 28.1 (2017),
pp- 162-169.

Hengshuang Zhao, Li Jiang, Jiaya Jia, Philip HS Torr, and Vladlen
Koltun. Point transformer. In: Proceedings of the IEEE/CVF interna-
tional conference on computer vision. 2021, pp. 16259-16268.

Na Zhao, Tat-Seng Chua, and Gim Hee Lee. SESS: Self-
ensembling semi-supervised 3D object detection. In: Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition.
2020, pp. 11079-11087.

Dingfu Zhou, Jin Fang, Xibin Song, Chenye Guan, Junbo Yin,
Yuchao Dai, and Ruigang Yang. IoU loss for 2D/3D object detection.
In: 2019 international conference on 3D vision. IEEE. 2019, pp. 85-94.

Xingyi Zhou, Vladlen Koltun, and Philipp Kréhenbiihl. Tracking
objects as points. In: Computer Vision—-ECCV 2020: 16th European
Conference, Glasgow, UK, August 2328, 2020, Proceedings, Part IV.
Springer. 2020, pp. 474-490.

Yin Zhou and Oncel Tuzel. VoxelNet: End-to-end learning for point
cloud based 3D object detection. In: Proceedings of the IEEE conference
on computer vision and pattern recognition. 2018, pp. 4490-4499.

Zixiang Zhou, Yang Zhang, and Hassan Foroosh. Panoptic-
PolarNet: Proposal-free LIDAR point cloud panoptic segmentation. In:
Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition. 2021, pp. 13194-13203.

Barret Zoph and Quoc Le. Neural architecture search with reinforce-

ment learning. In: International conference on learning representations.
2017.

List of publications

[294]

226

Lanxiao Li and Michael Heizmann. 2.5D-VoteNet: depth map based
3D object detection for real-time applications. In: British Machine Vision
Conference. 2021.

List of publications

[295]

[296]

[297]

Lanxiao Li and Michael Heizmann. A closer look at invariances in
self-supervised pre-training for 3D vision. In: European Conference on
Computer Vision. Springer. 2022, pp. 656-673.

Lanxiao Li and Michael Heizmann. Applying plain transformers to
real-world point clouds. In: arXiv preprint arXiv:2303.00086 (2023).

Lanxiao Li and Michael Heizmann. Randomized 3D scene genera-
tion for generalizable self-supervised pre-training. In: arXiv preprint
arXiv:2306.04237 (2023).

List of supervised theses

[298]

[299]

[300]

[301]

[302]

[303]

[304]

[305]

Zhuowei Dong. Inference acceleration of point based neural networks.
Master thesis. Karlsruher Institut fiir Technologie (KIT), 2022.

Chuhao Fan. 3D object detection in indoor scenario for mobile device
applications. Master thesis. Karlsruher Institut fiir Technologie
(KIT), 2020.

Hang Ji. Transformer-based neural networks for point clouds. Master
thesis. Karlsruher Institut fiir Technologie (KIT), 2022.

Chi Nan. Multitask learning for indoor scenes: object detection, scene
classification, and situation recognition. Master thesis. Karlsruher
Institut fiir Technologie (KIT), 2020.

Si Ni. Research of cost functions for three dimensional object detection
in indoor scenes. Master thesis. Karlsruher Institut fiir Technologie
(KIT), 2021.

Kunyu Peng. 3D object detection in point clouds using Pillar features
and multi-attention mechanism. Master thesis. Karlsruher Institut
fur Technologie (KIT), 2021.

Hang Zhao. FPGA-based three-dimensional object classification. Mas-
ter thesis. Karlsruher Institut fiir Technologie (KIT), 2020.

Yifan Zhao. Monocular depth estimation with neural networks. Master
thesis. Karlsruher Institut fiir Technologie (KIT), 2022.

227

	Nomenclature
	Preface
	Introduction
	What is Deep Learning for Sparse 3D Data?
	Efficiency: a Challenge in Deep Learning for Sparse 3D Data
	Overview of the Contents
	Assumptions and Conventions

	Related Works
	Basic Architectures of Neural Networks
	Multi-Layer Perceptron
	Convolutional Neural Network
	Transformer

	Feature Learning from 3D Data
	Input Data
	Classical Methods
	Multi-View-Based Methods
	Voxel-Based Methods
	PointNet and Its Variants
	Point Cloud Convolution-Based Methods
	Transformer-Based Methods
	Projection-Based Methods
	Summary and Discussion

	Tasks in Deep Learning for Sparse 3D Data
	Object Classification
	Semantic Segmentation
	Object Detection
	Other Tasks

	Self-Supervised Pre-Training for Label Efficiency
	Basic Concept
	Early Methods
	Contrastive Learning
	Masked Autoencoder
	Self-Supervised Pre-Training in 3D Vision
	Comparison with Semi-Supervised Learning

	Data Generation for Data Efficiency
	Simulation-Based Methods
	Randomized Methods

	Real-Time 3D Object Detection using Depth Maps
	Introduction
	Depth Map-Based 3D Object Detection
	Point Cloud-Based Pipeline
	2.5D-VoteNet: a Depth Map-Based Pipeline
	Relative Depth Convolution

	Architecture and Configuration
	Backbone and Feature Fusion
	Detection Head and Loss Function
	Training
	Evaluation and Inference

	Experiments and Analysis
	Comparison with State-of-the-Art Methods
	Qualitative Results
	Analysis

	Additional Comparisons with Related Works
	2D CNNs for Range Images and Depth Maps
	RGB Fusion in 3D Detection

	Conclusions

	Invariance-Based Contrastive Learning for Label Efficiency
	Introduction
	Invariance-Based Contrastive Learning
	Unified Framework
	Variants of Strategies
	Implementation Details

	Experiments and Results
	Invariances in 3D Self-Supervised Pre-Training
	Comparison with State-of-the-Art Methods
	Label Efficiency
	Additional Transfer Learning Results

	Additional Comparison with Related Works
	Hybrid Neural Networks for 3D Data
	Multi-Modal Feature Fusion
	Contrastive Learning using Outdoor Data

	Conclusions

	Plain Transformers for Real-World Point Cloud Understanding
	Introduction
	Method
	Plain Transformers for Point Clouds
	Patchifier
	Position Embedding
	Self-Supervised Pre-Training
	Implementation Details

	Experimental Results
	Object Detection
	Semantic Segmentation
	Analysis

	Conclusions

	Efficient Pre-Training via Self-Supervision and Randomized 3D Scene Generation
	Introduction
	Method
	Concept of Randomized 3D Scene Generation
	Spherical Harmonics
	From Objects to Scenes
	Single-View Point Clouds
	Self-Supervised Pre-Training

	Experiments
	Setups
	Main Results
	Comparison with other Pre-Training Methods
	Analysis

	Additional Details and Visualization
	Generating Spherical Harmonics
	Scene Generation Rules
	Pre-Processing and Data Augmentation
	Generated Scenes

	Conclusion

	Summary and Future Works
	Summary
	Future Works

	Sensors
	Depth Camera
	Rotational LiDAR Sensor

	Datasets
	Real-World Datasets
	S3DIS
	SUN RGB-D
	ScanNet

	Synthetic Datasets
	ModelNet40
	ShapeNet

	Evaluation Metrics and Protocol
	Metrics for 3D Semantic Segmentation
	Metrics for 3D Object Detection
	Evaluation Protocol

	Deployment of Neural Networks
	Background
	Constraints
	Empirical Evaluation of 3D Neural Networks

	Evaluation with Own Data
	Bibliography
	List of publications
	List of supervised theses

