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Thesis abstract

Optical metamaterials consist of subwavelength inclusions that possess unconventional

optical properties that are unavailable in natural materials. The specific shape, composition,

and arrangement of these inclusions determine the optical response of the metamaterials.

However, designing them for specific applications with traditional simulations and exper-

imental tests is impractical due to their high degree of complexity. To address this, the

effective medium theory provides an efficient approach by linking the actual metamaterial

to a homogeneous material with specific constitutive relations, allowing it to interact with

light in the same manner.

Local material laws have been frequently used to model metamaterials as a homogeneous

medium, assuming that the electromagnetic response at a point depends solely on the

fields at that point. However, the accuracy of these models depends on the characteristic

length scale of the metamaterial, which is the ratio between the lattice period and the

operational wavelength. When this ratio is not much smaller than one, as is the case

with optical metamaterials, spatial nonlocality becomes dominant, and the electromagnetic

response of a point is influenced by the fields at many other points within the material.

As a result, traditional local material laws cannot accurately describe the behavior of

optical metamaterials. To address this challenge, we propose a new approach for modeling

the behavior of optical metamaterials using nonlocal material laws. Specifically, we use a

Taylor expansion in the Fourier space to approximate a general and exact nonlocal response

function of the electric field, allowing us to derive a set of effective material parameters.

Our approach accurately captures the spatial nonlocality of optical metamaterials and can

be used to design novel and unique optical properties for various applications.

In this thesis, firstly, we present two nonlocal models that account for significant spatial

dispersion effects and analyze the dispersion behavior of eigenmodes in homogenized



metamaterials. We then derive the interface conditions that facilitate the calculation of

reflection and transmission coefficients for a homogeneous slab with an incident field.

Secondly, to conduct the actual homogenization of a MM, we discuss two methods. The first

approach treats the metamaterial as a bulk material and utilizes computational parameter

retrieval techniques to assign effective material parameters to the bulk. This technique

employs a least-square fitting algorithm to determine the optimal values for the effective

material parameters by comparing the reflection and transmission coefficients of the bulk

with those of the actual metamaterial. Further, we use this method to study three artificial

structures with predetermined scattering properties that are quantified in terms of multipole

moments they sustain and reveal that the effective permittivity and permeability are linked

to the electric and magnetic dipole moments of the scatterers. Additionally, nonlocal

material parameters are related to higher-order multipolar moments and their interaction

with dipolar terms. By understanding the significance of each material parameter, we can

decide the truncation order for the Taylor expansion of the considered constitutive relations

for a given metamaterial.

We also investigate the role of the period-to-operational wavelength ratio in homogenizing a

metamaterial, specifically an electric dipolar lattice. Surprisingly, we observe a breakdown

in homogenization at shorter lattice constants due to near-field interactions among the

particles forming the lattice. This suggests that the period should not only be much smaller

than the operational wavelength to homogenize a metamaterial but there exists an optimal

period for a given inclusion size.

The second method introduced in this thesis is a novel homogenization approach using

the "effective transition matrix" or Teff -matrix, which provides an exact description of the

linear interaction between light and the bulk material without the need for any computa-

tional retrieval processes. By homogenizing an isotropic 3D metamaterial made of gold

nanospheres, we detail the calculation of the corresponding effective material parameters

and further obtain the reflection and transmission coefficient for the homogeneous material.

The highlight of this approach is the promise to homogenize a 3D metamaterial without

requiring a target object as opposed to the case of any parameter retrieval methods.

Finally, we summarize all the analytical and numerical results and discuss possible future

research endeavors as an extension of the results obtained in the thesis. Overall, the thesis



contributes to a deeper understanding of the behavior of optical metamaterials at the

effective level and offers valuable insights for future research in this field.
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1. Introduction

1.1. Metamaterials

The introduction of artificial materials, or metamaterials (MM), into the field of optics

aims to attain unconventional properties that are not present in natural materials. Initially,

this pertains to non-traditional properties of light propagation, but strictly speaking,

it refers to non-conventional material properties. Generally, metamaterials consist of a

dense arrangement of meta-atoms, which serve as the basic building block. The average

electromagnetic response of a MM, in its lowest-order approximation, is derived from the

optical response of these individual meta-atoms. Thus, research efforts in the context of

MM involve the careful design of these meta-atoms to control and predictively manipulate

electric and magnetic fields. Several design strategies have enabled the use of MM to

achieve groundbreaking applications at optical frequencies. These include non-linear

optics, graphene-based applications, perfect lenses, digital metamaterials, and coding

metamaterials, among others [1–12].

The exciting properties in a MM often emerge from the resonant behavior of the structural

organization of the meta-atom and their arrangement. The interplay of the shape of the

inclusion (e.g., a sub-wavelength unit cell), the composition of the constituent materials,

and the periodicity of the meta-atom arrangement [13–16] are a few parameters worth

mentioning. Unlike natural materials, which mostly lack magnetic properties at optical

frequencies (with a relative magnetic permeability term µ(ω) = 1), metamaterials offer a

frequency-dependent effective permeability, µ(ω), determined by a non-vanishing magnetic

susceptibility χm(ω) = µ(ω) − 1. Advances in fabrication technologies have made it

increasingly possible to achieve sophisticated and complex optical designs at nanoscales.

This, combined with the ability to respond to both electric and magnetic fields of light at

optical frequencies, has enabled metamaterials to achieve groundbreaking applications.

1
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To point out some of the major applications, the introduction of the perfect lens by Victor

Veselago in 1968 [1] enabled the development of flat optics and miniaturized lenses, which

have been a priority for centuries. The perfect lens offered improved optical performance

and the ability to miniaturize conventional curved lenses. Veselago’s seminal work revealed

that the medium has dramatically different light propagation characteristics, stemming from

the negative phase velocity absent in conventional materials. Special design strategies such

as the metallic wire medium, the split-ring resonator, and chiral metamaterials have further

led to surprising effects like the reversal of both the Doppler shift and Cherenkov radiation,

and anomalous refraction [3, 5, 16–18]. In addition to these exotic examples, MM designs

have allowed general-purpose applications like the perfect absorber in solar cell devices and

found use in light sail systems, controlled holography, and other applications [8, 19–36].

In addition to having a specific design for the meta-atoms, the consequence of connecting

them in a lattice creates a complex optical response that is otherwise not accessible by

the scattering response of a single nanoparticle [37]. Typically, to simplify the theoretical

analysis and characterization of metamaterials, it is preferred to arrange the meta-atoms

periodically [38–41]. The reason is that in a periodic arrangement of meta-atoms, the

collective response of the entire lattice can be tuned and extracted, rather than just the

response of a single meta-atom in the far field. The periodicity of a metamaterial lattice,

as in the case of an array made from all-dielectric nano-particles, usually dictates the

wavelength at which resonance takes place. Additionally, by controlling the spacing of

the meta-atoms within a fixed volume of the metamaterial, it is possible to tune the

interaction among the meta-atoms. This leads to a complex interference of multiple

scattering modes among the particles, which can give rise to new physics and effects in

the metamaterial. [42, 43]. To put it differently, periodicity provides an extra level of

flexibility to manipulate the electric and magnetic response of the metamaterial to external

fields. [44–46].

At this point, we come to the idea of using a dimensionless quantity called the characteristic

length defined as Λ
λ , the ratio between the periodicity Λ and the operating wavelength λ of

the incoming wave. This ratio describes to which extent the propagating wave experiences

the periodicity. Therefore, at a given wavelength, the choice of periodicity highly influences

the far-field response of the considered MM. Exemplarily is the case of photonic crystals

that support, if suitably designed, a photonic stop band. For frequencies inside this stop
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band, the waves are exponentially decaying (evanescent), which requires a period close to

half the wavelength, Λ
λ ≈

1
2 [47].

To this end, intentionally linking the geometrical aspects of a system with the optical degrees

of freedom has become a principal goal of contemporary photonics research. For many

high-frequency optical applications, it is imperative that Λ
λ < 1 is essential owing to the

requirement for subwavelength design. The recent development of three-dimensional LASER

printing techniques has enabled the fabrication of sub-micrometer and nanometer scale

features [48–51]thus enhancing its prominence in commercial optical design. This pertains

to having closely packed meta-atoms (small periodicity Λ) operating at shorter wavelengths

λ. In the theoretical domain, it is crucial to efficiently simulate the electromagnetic response

of such nano-scale designs for interpreting experimental results and designing new materials

and devices. Therefore, to fully benefit from these advancements, theoretical tools and

nanofabrication techniques must develop in parallel.

Of course, any full-wave numerical simulations allows for an accurate and reliable compu-

tation of both the wave propagation and the scattering aspects of any structure. specifi-

cally, some tools such as the Fourier model method (FMM) [52], Finite element methods

(FEM) [53], and Finite-Difference-Time-Domain method (FDTD) [54] provide exact field

information including the transient, at any point within the simulation domain. In spite of

the merits, the viability of these tools demands a heavy load on computational resources and

requires additional post-processing to reveal the underlying physics. Moreover, any change

in the geometry of the unit cell calls for a complete re-run of the numerical simulation even

if the same materials are used. To circumvent most of these issues, we could shift our focus

from the discrete nature of the material array to a more continuous and averaged picture.

In other words, we can consider the entire material as a single entity with an overall far-field

response and minimizing the importance of its specific geometrical features. This approach

significantly simplifies the granular details associated with the infinite arrangement of

discrete unit cell structures and instead emphasizes the significant collective effects. As a

result, there is less of a need for meshing and the required memory space is reduced. This

process of replacing the subwavelength periodic structure with its homogeneous equivalent

medium is known as homogenization, which is governed by the effective medium theory

(EMT). [5, 55–57]. A pictorial representation of the general idea behind homogenization is

given in Fig. 1.1.
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Figure 1.1.: The figure illustrates the homogenization problem. The left panel shows a cut
of the metamaterial structure, while the right panel shows the equivalent homogeneous
slab. By homogenizing a MM, we seek to find an equivalent homogeneous slab that can
reproduce the reflection and transmission properties of an inhomogeneous metamaterial
structure under plane wave illumination.

.

After homogenization, the overall response of the metamaterial can be represented by a set

of frequency-dependent, complex-valued parameters known as the effective material param-

eters. These parameters are purely material-specific and do not contain any geometrical

information. Consequently, if the homogenization process is deemed valid, it needs to be

performed only once to predict the optical response of the material for a given geometry,

as well as for changes in thickness.

1.2. Effective Medium Theory (EMT)

Traditionally, the study of light propagation through matter has been approached using

macroscopic theories, which combine Maxwell’s equations with an appropriate constitutive

relation. The macroscopic Maxwell equations involve the four macroscopic fields: electric

field E, magnetic field H, electric displacement D, and magnetic induction B. The

constitutive relations describe the relationship between these fields, allowing the electric

displacement and magnetic induction to be derived from the electric and magnetic fields,

respectively.
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In general, the constitutive relation can be written as,

D(r, k0) = ε(k0)E(r, k0)

B(r, k0) = µ(k0)H(r, k0) (1.1)

In this relation, the electric permittivity tensor is denoted by ε and the magnetic permeability

tensor is denoted by µ. All quantities depend on the frequency ω or, alternatively, on

the free space wavenumber k0 = ω
c , where c = 1√

ε0µ0
is the speed of light in vacuum.

Throughout this thesis, we use a normalized system with natural constants ε0 = 1 and

µ0 = 1 giving ω = k0, as stated in [58].

It is important to note that the constitutive relation depends on the properties of the

medium, which can vary depending on many factors such as temperature, pressure, and

the presence of other materials, to name a few. Therefore, the constitutive relation must

be determined through theoretical models that take these factors into account.

Homogenization is a method used to derive constitutive relations for complex materials

by approximating their behavior with that of an equivalent homogeneous material. This

approach is typically based on the assumption that the material structure exhibits a

periodicity that is smaller than half of the operating wavelength (Λ
λ < 1

2), which is usually the

case for metamaterials. The homogenization technique is often used in a phenomenological

manner and offers a simplified approach to describing the behavior of complex materials

[56]. The effective medium theory (EMT) is the theoretical framework that governs the

homogenization technique.

The real advantage of using effective medium theory is to describe the material’s response

in terms of the effective material parameters). Ideally, after homogenization, these effective

material parameters are sufficient to compute the electromagnetic response of a target object

of any shape. Consequently, constructing and analyzing new geometries is a straightforward

process by employing these effective material parameters.

Occasionally, it is useful to condense all of the material parameter tensors onto the dis-

placement vector D(r, k0) using an arbitrary but differentiable gauge field Q(r, k0). This is

possible because the displacement vector by definition is not uniquely formulated. In fact,
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the Maxwell equations are invariant under the transformation [59]:

D′(r, k0) = D(r, k0) +∇×Q(r, k0), H′(r, k0) = H(r, k0)− ik0Q(r, k0). (1.2)

On choosing Q(r, k0) = α(k0)∇×E(r, k0) and by setting
(
k2

0α + µ−1) = 1, w.r.t normalized

units, we have the new form of constitutive relation as

D(r, k0) = ε(k0)E(r, k0) +∇× α(k0)∇×E(r, k0)

with

B(r, k0) = H(r, k0). (1.3)

Notice that the effective magnetic permeability becomes an implicit quantity now described

as a consequence of the second-order gradient of the electric field.with its components

written as

µij(k0) = 1
1− k2

0αij(k0) .

The constitutive relation in its transformed form has proven to be effective in describing

the impact of artificial optical magnetism in structures composed of materials that are

not inherently magnetic. Specifically, certain designs involving sub-wavelength inclusions,

such as those discussed in [4, 60–63] are known to carry signatures of induced magnetic

effects. Investigating the microscopic current multipoles, this inclusion reveal a circular

displacement currents within the unit cell particles. These currents act like a point source

generating localized magnetic fields. A dense arrangement of such unit cell structures

can be tuned to resonate at optical frequencies thereby manifesting a stronger optical

magnetism. In the context of effective medium theory, the constitutive relation given in

Eq. (1.3) shows a non-unity value for the magnetic permeability tensor µ(k0), thereby

revealing the existence of an induced local magnetic field in the optical structure.

For a Constitutive relation as in Eq. (1.1) to be valid, it is necessary that the characteristic

length scale is Λ
λ << 1. This necessarily suggests that the wavelength of incoming light

sees a dense arrangement of the unit cell particles, thereby capitalizing only on the average

optical response. One of the first successful homogenization models dates back to the

work of Maxwell-Garnett [64]. This approach is particularly applicable to systems with a
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dilute concentration of unit cell particles immersed in a matrix medium with large volumes.

In other words, operating the metamaterial in a quasi-static regime, where the spatial

variation of the field across the period, Λ is negligible. Therefore the necessary but not

sufficient condition of Λ
λ << 1 is met [65].

In the course of time, further extensions to the Maxwell-Garnett models were made

to unravel new physics [66–68]. For instance, additional terms were introduced in the

constitutive relations by Condon and Tellegen to accommodate optical activities in crystals

[69, 70]. This effect is a consequence of the lack of mirror symmetry in the geometry of the

unit cell structure. The Condon-Tellegen form of the constitutive relation is written as

D(r, k0) = ε(k0)E(r, k0) + iκ(k0)H(r, k0)

B(r, k0) = µ(k0)H(r, k0)− iκ(k0)E(r, k0) (1.4)

where the additional term, the chirality tensor, given here as κ(k0), collects the natural

coupling among the electric and magnetic fields. This coupling is generally referred to as

the magnetoelectric effect and is the consequence of any mirror-asymmetry in the material.

These materials are classified as chiral materials and are a very important class of materials.

Conveniently, a transformation similar to Eq. (1.3) can be defined for the chirality parameter,

thereby condensing once again all the material tensors onto the displacement field. Further

discussions and application of the same are continued in detail in Section 3.2.

All the benefits of these analytical triumphs can be fully harvested only if the complete set

of material parameterss is known a-priori to substitute the actual material. This indeed

is not true for many MM and thus requires a means to assign the right set of material

parameters that can completely describe the optics of the actual MM. This process of

mapping effective material parameters with the optical response of the actual optical

structure is called homogenization. Generally, a thin film made up of the desired material

system is subjected to an incident beam of specific polarization (known state). Then, the

interaction between the thin film and the incident light beam is quantified in terms of

complex reflection and transmission coefficient which is then compared to the predictions

from the homogenization models. A broad database containing the frequency-dependent

material tensors is already in place for many metal and dielectric materials [71].

In the case of composite or artificial materials, experimental determination exists but is
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not always viable [72–74]. Especially at optical and infrared frequencies, the fabrication

of deterministic unit cell designs is challenging due to their very small unit cell sizes.

However, recent advances in fabrication technology do offer improved means to tackle some

of these shortcomings. Alternatively, computational optimization or retrieval methods have

been put forward to carry out homogenization. In this technique, numerical experiments

substitute for a lab environment [75,76] and consequently, the simulated optical coefficients

are then compared with the predictions out of the theoretical model. One such reliable

approach is the S-parameter retrieval method [77]. In this approach, material parameters

are extracted by inverting the scattering matrix calculated from bi-periodic slabs, periodic

in two dimensions, and with a finite thickness in the third dimension, made from the

considered MM unit cell.

Although retrieval methods are lucrative, they often encounter the non-uniqueness challenge

in optimization problems.This challenge emerges when several sets of parameters can yield

closely similar optimal outcomes. The issue is deeply rooted in the complexity of the

optimization problem and the existence of numerous local optima, leading to ambiguity

when selecting the most optimal solutions. Nevertheless, several strategies can be deployed

to address this issue, such as including additional constraints or regularization terms or

employing stochasticoptimization methods that sample from the solution space [78, 79], to

mention a few.

In recent years, thanks to the computational prowess of modern computers, artificial neural

networks (ANN) have emerged as a valuable tool for parameter retrieval. ANN offers a

distinctive advantage in the realm of metamaterials, as the retrieval algorithm remains

agnostic to unit cell design, thereby facilitating the simultaneous evaluation of multiple

designs within a single simulation [80,81].

On the theoretical front, significant efforts have been devoted to formulating fully analytical

homogenization approaches, as it was done for the wire medium [82, 83], multi-layered

structures [84–86], and certain resonator-based design [87–89]. Although these analytical

approaches are very promising, the structural dependency of these approaches limits their

usability.

Another noteworthy challenge in homogenization pertains to handling partial differential

equations with highly oscillating coefficients. Asymptotic homogenization mitigates this
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problem by studying the behavior of the response function from the homogenized medium

ϕΛ as Λ → 0 assuming the approximation ϕΛ ≈ ϕ holds, where ϕ is the actual response

function [90–94]. Conversely, there are semi-analytical approaches grounded in field

averaging techniques [95–97]. In these methods, numerical calculations are employed to

determine the fields within the material domain, while the homogenization process itself

remains entirely analytical. Additionally, a segment of mathematical asymptotic analysis

delves into analytical homogenization methods [98–101].

All these approaches reveal that homogenization is a strong endeavor that allows one to

discuss large systems with different components at the same physical level as any other

natural material. In the limit of Λ
λ << 1 (negligibly small), the mesoscopic details remain

relaxed and so the physical response of any material/metamaterial can be fully approximated

by only a few material parameters. But when the Λ
λ is not negligible, but still smaller

than one, the light fields start to probe the heterogeneities of the unit cell and, therefore,

the spatial dynamics become important. Many important applications, such as flat optics

seek to boost and leverage these spatial dynamics to probe exciting qualities previously

inaccessible [7, 102–104].

To not deviate from the focus of this thesis, we will limit our discussion to periodic

metamaterials for which homogenization remains valid but when operated at a larger length

scale, Λ
λ < 1. These materials are characterized by structural features that are designed on

the order of the wavelength of the electromagnetic waves they interact with. As a result,

when the wavelength of the incoming light is comparable to the size of these structural

features, the electromagnetic response of the material to electromagnetic excitation extends

beyond a single point in space and incorporates the field values in the vicinity. This

response is called the non-local response and is highly exploited in the development of

advanced technologies.

In the quasi-static limit (Λ
λ << 1), where the wavelength is much longer than the period, Λ,

non-locality is present but negligible. Therefore, it is important to keep the characteristic

length scale in mind when studying metamaterials.

To appreciate the practical benefits of non-locality, it is helpful to consider reciprocal space

or Fourier space, where fields can be expanded as plane waves. In this space, the transfer

function becomes a function of both the spatial frequency, represented by the wave vector
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k, and the temporal frequency, represented by k0. The resulting function, denoted by

R(k, k0), varies with k, which is characteristic of non-locality. This property provides an

additional degree of freedom that has a wide range of applications [105–107].

Composite media, such as MM with non-negligible Λ
λ , have a non-local response and thus

spatial dispersion [108–111]. At this point, it is important to distinguish between weak spatial

dispersion (WSD) and strong spatial dispersion (SSD). We do so in the context of effective

medium theory. The zeroth order spatial dispersion effect or the natural impulse type

response in a material is the electric permittivity ε. This is usually a basic electric response

owing to the dipole polarization fields in a medium. Next, the first-order spatial dispersion

effect
(

Λ
λ

)1
, given by the chirality parameter κ. This parameter is the consequence of lack of

reflection symmetry for the unit cell structure. Thus, for a unit cell design of high-symmetry,

this effect vanishes. Further moving on to the second order spatial dispersion effects,
(

Λ
λ

)2
,

captured by the magnetic permeability tensor µ as in Eq. (1.3). This is an important effect

because µ also accounts for any induced magnetic response, i.e., an artificial magnetization

in an otherwise non-magnetic unit cell structure. At optical frequencies, natural material

shows very negligible values for
(

Λ
λ

)2
. This explains the absence of any magnetic response in

natural materials. Both the first and second-order spatial dispersion effects are categorized

under the weak spatial dispersion (WSD). The model is called weak because it is possible

to re-write both chirality and the magnetic permeability tensors in terms of magnetic

induction B, a local field similar to the electric field E, such that no spatial derivatives are

involved. This sets in the definition for the strong spatial dispersion (SSD) model. The

quantities in a constitutive relation that cannot be reduced to a local model and thus have

to retain spatial derivatives, usually, third order parameter,
(

Λ
λ

)3
and further higher orders,

are categorized under the SSD models. Consequently, the existence of non-zero spatial

derivatives assumes great importance in capturing non-local effects. Therefore, in efforts to

capture these non-negligible spatial interactions and to record their impact on the response

function, additional material parameters are introduced into the constitutive relation plus

the additional interface conditions. Now, it becomes necessary that we develop tools to

effectively characterize such non-local MM and study them on a similar footing to that of

natural materials. This is the central idea of this thesis.
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1.3. Structure of the Thesis

In this thesis, we explore a promising approach for investigating bulk optical metamaterials.

A general-purpose constitutive relation is used to describe the linear relationship between the

induction vector D and the incident vector fields E through a generalized response function

R. This response function is formally defined as an entity of the space of distributions

D′ across the spatial domain, where the derivatives of the distribution functions form a

complete set. Conveniently, the distribution is decomposed into a sequence comprising

material coefficients and their corresponding spatial derivatives. Describing the response

function in D′ also provides a built-in definition of the functions at surface boundaries,

which can be leveraged to solve the interface problem and establish continuity among the

additional transverse propagating modes excited within the material volume, indicating the

non-locality experienced by the medium. A detailed derivation of the same can be found in

the works of Prof. Dr. Michael Plum and Dr. Andrii Khrabustovskyi [112] and a further

extension of the applicability of the interface conditions up to an arbitrary order can be

found in the work from Dr. Fatima. Z. Goffi [113] from the Institute of Analysis (IANA)

at the Karlsruhe Institute of Technology (KIT), all the credits to the mathematical rigor

go to them.

In chapter 2, we develop the core theoretical background required by this thesis. We

start by discussing the phenomenological approach to the derivation of the macroscopic

constitutive relation. This forms the basis for our discussions later on the physical origin of

non-locality in metamaterial systems. To have a formal definition of the response function

and to facilitate the derivation of the associated interface condition, we provide a brief

overview of selected topics from distribution theory and functional analysis, with a focus

on the weak formulation. At this stage, we would be equipped with the necessary response

function but in an abstract form. After laying this groundwork, we move on to discuss the

linear constitutive relation and present a detailed derivation of the curl-based non-local

constitutive relation from a geometrical group theory perspective. This involves expanding

the response function as an infinite series of tensor components, each of which contains a

spatial derivative term acting on the field vector and associated tensor coefficients. We

show that these tensor components can be reduced to matrices, whose elements carry

the spatially independent effective material parameters. More importantly, deriving the

curl-based formulation also contributes to understanding the underlying constraints obeyed
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by the constitutive relations as a consequence of their mathematical definitions.

In chapter 3, we present two nonlocal models that incorporate significant spatial dispersion

effects. Alongside the local WSD approach, we derive dispersion relations to analyze the

behavior of electromagnetic waves within homogenized metamaterials. Subsequently, we

obtain interface conditions for each model that enable the reconstruction of the Fresnel

matrix, thereby facilitating the calculation of reflection and transmission coefficients for a

homogeneous slab subjected to an incident wave.

Chapter 4 of this thesis delves into two different methods for achieving efficient homogeniza-

tion of complex optical metamaterials. The first method involves treating the metamaterial

as a bulk material and using efficient parameter retrieval techniques to assign effective

material parameters. This methodology is primarily applied to artificial structures with

predetermined scattering properties, allowing for a systematic study of homogenization

models and leading to insightful conclusions, which are discussed in detail in this chapter.

The second method introduced in this chapter aims to capture the exact response of a

material composed of a 3D lattice of electromagnetic scatterers. The key concept behind

this novel homogenization approach is the "effective transition matrix" or the Teff-matrix,

which is a linear operator that provides an exact description of the linear interaction between

light and the bulk material, i.e., the infinite 3D lattice of scatterers. This approach offers

an attractive incentive, namely the ability to provide an exact effective material parameter

without the need for any computational retrieval processes.

Finally, in chapter 5, we summarize all the analytical and numerical results of this thesis

and discuss possible future research endeavors as an extension of the results obtained in

this thesis.



2. Theoretical Background

This chapter aims to establish the fundamental physical principles of electrodynamics in

continuous media. Our first focus is on deriving the general constitutive relation, which we

will use to study the propagation of light within a medium. To achieve this, we adopt a

phenomenological approach that involves solving the Maxwell equations while considering

the macroscopic behavior of materials under different electromagnetic conditions, such as

their response to electric and magnetic fields. While the final fields obtained from this

phenomenological approach provide us with useful information, it is only part of the picture.

In this thesis, we are also interested in exploring the underlying material properties that

contribute to the observed behavior of the medium. This study requires the introduction of

a general response function R, which is a function of both space and frequency, to redefine

the constitutive relation in an abstract form, where the displacement vector D(r, k0) is

expressed as a convolution of the response function R(r, r′, k0) and the exciting electric

field E(r′, k0). As a reminder, we are using the normalized units with ε0 = 1 and µ0 = 1

making ω = k0. Furthermore, throughout this thesis, we consistently employ the plane

wave ansatz for all the fields under consideration. Specifically, for the monochromatic case

with frequency k0 for some field U(r, t), the field is given by U(r, t) = U0ei(k·r−k0t), where

U0 represents the complex amplitude of the wave, and its real part corresponds to the

physical field [ subsection 9.2.2, [114]].

To obtain a more practical form of the constitutive relation, we express it in Fourier space

and expand the response function as a sequence. The moment coefficient of this sequence

contains the material parameter in its tensor form. And for the associated differential

operator, We then delve into tensor algebra to arrive at the "curl" based constitutive

relation that we will use in the following chapter to calculate the dispersion relation and the

interface conditions. In the latter part of the derivation, we attempt to provide justification

13
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for the choice of the "curl" operator-based form for the constitutive relation.

2.1. Linear Constitutive Relation: Phenomenological Approach

When a medium is exposed to an external electromagnetic field, the medium becomes

polarized in response to the field. This polarization characterizes the medium’s response

to the applied electric and magnetic fields. Two primary quantities used to describe the

polarization response of a homogeneous medium are the electric and magnetic polarization

fields P[E, B] and M [E, B], respectively. In the most general case of absence of any

centrosymmetry, both quantities are induced by the macroscopic electric field E and the

magnetic induction B [section 1.4, [115]], [116]. These quantities contain the actual response

of the material. It is not possible within the realm of electrodynamics to get access to

the exact functionality of the polarization/magnetization on the fields, this requires a

microscopic/multipolar treatment [Chapter 1, [117]].

The concept of non-locality or spatial dispersion arises when the values of the polarization

fields at any point in the medium depend not only on the local fields but also on the electric

and magnetic fields at distant points in the same medium. This means that the polarization

response at any given point is influenced not only by the local fields but also by the fields

at other locations in the medium, and this influence is conveyed by the spatial derivatives

of the electric and magnetic fields [58]. This notion will be justified in the following.

When an electric field is applied to a medium, it can induce a separation of charges and

create a polarization within the material. This polarization results in the accumulation of

bound charge density ρb, which gives us the net charge per unit volume of the material.

This ρb proportional to the strength of the electric field. Consequently, induced charge

densities arise as the applied field induces slight shifts or distortions in the bound charge

density. This effect is specifically significant in metamaterials with characteristic lengths

only slightly smaller than the wavelength of light. In such cases, spatially non-uniform

electromagnetic fields across the material’s unit cell need to be taken into consideration.

Broadly speaking, the motion of the bound charge density can be divided into two induced

charge densities [Chapter 4, [114]]. The electric polarization field is characterized in a

phenomenological manner by the induced charge density [Section 4.3, [115]]

ρe
ind(r, k0) = −∇.P(r, k0) , (2.1)
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Which gives the induced current density, a consequence of the transnational motion of the

induced charge density whence obeying the continuity equation

∇.(Je
ind(r, k0) + ik0P(r, k0)) = 0 . (2.2)

Here, both ρe
ind(r, k0) and Je

ind(r, k0) refers to the amount of charge that is redistributed

within the material due to the applied electric field.

The complementary quantity the magnetic charge density ρm
ind is a quantity, when excited

by an incident field moves along a closed loop. This motion generates a divergence-free

magnetic polarization field, giving rise to a faint magnetic current density, written as

Jm
ind(r, k0) = ∇×M (r, k0) , (2.3)

Reciprocal systems, defined by the Casimir-Onsager relations, do not allow induced po-

larization from magnetic current elements unless introduced externally. In such systems,

it is meaningless to separate the induced currents into electric or magnetic components.

However, the presence of magnetic polarization fields M is not invalidated, and artificial

magnetization effects are associated with it due to spatial dispersion effects. Similarly, if

the unit cell geometries of the material lack central symmetry, the overall material shows

significant first-order spatial dispersion effects further contributing to M . The total current

density throughout the entire material volume can be written as

J(r, k0) = −ik0∇.P(r, k0) +∇×M (r, k0) . (2.4)

This total current density in the medium can be used to express the electric displacement

and magnetic induction fields [chapter 4, [115]], given as

D(r, k0) = E(r, k0)− J(r,k0)
ik0

, B(r, k0) = H(r, k0) , (2.5)

and therefore rewriting them w.r.t Eq. (2.4), we arrive at the desired form of the constitutive
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relation

D(r, k0) = E(r, k0) + P(r, k0) +∇×M (r, k0),

B(r, k0) = H(r, k0) . (2.6)

This form for the D(r, k0) and B(r, k0) fields is fundamental as they can be used to

reproduce all of the Maxwell equations for the given medium [Section 4.3, [115]].

In conclusion, we have obtained the constitutive relation using a phenomenological approach,

which involved utilizing polarization fields to calculate the displacement field for a given

electric field. While this approach offers valuable insights into the fields present in the

medium, it offers only a limited perspective on the material’s characteristics. To gain

a more complete understanding of the material properties, it is necessary to derive the

constitutive relation in terms of a response function, which we will investigate in upcoming

sections.

2.2. General Response Function and Spatial Dispersion

If we assume that metamaterials (MMs) are inherently non-magnetic, we can express the

linear relationship between the magnetic induction and the magnetic field as H(r, k0) =

B(r, k0). Additionally, for mesoscopic MMs where Λ
λ < 1, the response tensors linking the

electric field to the electric displacement exhibit non-local effects. Specifically, the response

of MMs to an electric field at a particular point r is influenced not only by the electric field

at that point but also at distant points r′ within a specified spatial domain surrounding

the observation point r. This results in a constitutive relation given by [113]:

D(r, k0) =
∫

R(r, r′, k0)E(r′, k0)dr′ . (2.7)

where k0 represents the frequency dispersion of the medium, accounting for temporal

retardation in real space. The explicit dependence of the response function on both r and

r′ reflects the spatial non-locality.

At the effective level, non-local homogenization theory simplifies the response function to

only depend on the Euclidean distance between the observation point r and distant points
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r′. This is expressed by the general constitutive relation:

D(r, k0) =
∫

R(r− r′, k0)E(r′, k0)dr′ . (2.8)

where the non-local response kernel R(r− r′, k0) is defined as [Section 3.2.2, [118]]:

R(r− r′, k0) = 1δ(r− r′) + χ(r− r′, k0). (2.9)

By introducing the macroscopic susceptibility function χ(r− r′, k0), all spatial dispersion

effects, including both weak and strong ones, can be accounted for at the effective level.

The susceptibility function is not restricted to the long wavelength approximation and

incorporates information from higher-order gradients of the electric field. Additionally, a

direct relationship between the response kernel and the polarization fields is apparent when

comparing this definition of the response kernel with Eq. (2.6).

P(r, k0) =
∫

χ(r− r′, k0)E(r′, k0)dr′ . (2.10)

It is worth noting that we assume M to be zero in our material since it is intrinsically non-

magnetic. This assumption is reasonable as artificial magnetization in optical metamaterials

arises from spatial dispersion effects, which can be fully captured by the susceptibility

function χ(r− r′, k0).

Performing a Fourier transform on the positional difference r− r′ and transforming it to

reciprocal space k corresponds to spatial dispersion. The spatial frequency k is a vector

representing inverse length units, and the Fourier transforms simplifies convolution into

algebraic products, giving Eq. (2.8) as

D̂(k, k0) = R̂(k, k0)Ê(k, k0) (2.11)

The response function strictly follows the Casimir-Onsager relation as it satisfies all the

restrictions imposed by Maxwell’s equations. For any arbitrary k = {kx, ky, kz} and k0, we

have

R̂ij(k, k0) = R̂ji(−k, k0) (2.12)
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In the special case where the unit cell of the material lacks central symmetry, the material

is categorized as non-gyrotropic to ensure a reflection symmetry. This gives the response

function an additional symmetry:

R̂ij(k, k0) = R̂ji(k, k0). (2.13)

Such symmetry for the response function is later exploited to simplify the analytic expres-

sions, and therefore, expedite the homogenization process.

Please note in this thesis, we work only with harmonic fields. so it’s simpler to work with

reciprocal space for all fields and associated functions. To enhance readability, we omit the

extra .̂ symbol on Fourier space quantities.

2.3. Derivation of the Special Curl-Based Constitutive Relation

The main objective of this thesis is to develop a response function that can effectively

describe the physics of metamaterials. However, the expressions presented in equations

Eq. (2.8) or Eq. (2.11) are only applicable to infinitely extended homogeneous media. Since

the material is actually confined to a finite volume, which must be significantly larger

than the wavelength (V >> λ3), we need to formulate the response function in a way that

can describe a finite medium. Specifically, the homogeneous material with volume V is

embedded in a homogeneous host medium, typically a local medium defined by electric

permittivity and permeability, which leads to an interface problem. In other words, there

is an interface between a local and a non-local medium, necessitating the derivation of new

interface conditions. This, in turn, requires both fields to be in the real space notation.

Previously, [59] proposed an asymptotic method for converting the response function

R(k, k0) from the reciprocal space notation to the real space notation. The approach

involves taking a three-dimensional Taylor series of the response function as |k| approaches

zero. By doing so, convolution integrals can be avoided, and lower orders of field gradients

can be retained. If we keep up to the second-order derivatives, the expression becomes [59]:

R(k, k0) ≈ Rij(k = 0, k0) + ∂Rij(k, k0)
∂kk

∣∣∣∣
k=0

kk + 1
2

∂Rij(k, k0)
∂2kk∂kl

∣∣∣∣
k=0

kkkl

= 1
i k0

[aij(k0) + bijk(k0)kk + cijkl(k0)kkkl] (2.14)
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The i k0 factor is collected from the derivatives and the tensor indices are assumed to follow

Einstein summation.

The first term in the expansion describes the local response of the material when |k| = 0.

This constant term in reciprocal space does not depend on the components of the wave

vector, and as a result, the constitutive relation in real space (given in Eq. (2.8)) considers

only the response at the point r. However, as the average field variations across the material

volume become significant, higher-order gradients of k become important. In Eq. (2.14),

these gradients are considered up to the second order. The initial assumption, which holds

for |k| → 0 (i.e., λ → ∞), requires the unit cell dimensions (Λ) to be small or for the

concentration to be very dilute, for the ratio Λ
λ to be finite. This implies weak interaction

among the unit cell structures and limits the analysis to the WSD limit. Additionally, as

|k| → 0, the quality of the approximation of R worsens as 1
|k| , making this model unsuitable

for analyzing non-local metamaterials.

2.3.1. Functional Space Definition of the Response Function

In order to clarify the mathematical operations involved with the response function and the

general non-local constitutive relation introduced in Eq. (2.8), it is necessary to provide a

detailed mathematical definition. This is particularly important because in Eq. (2.9), it is

apparent that the response function is a distribution. Additionally, in the later parts of the

thesis, the wave propagation inside a medium is studied by solving the dispersion relation

using a plane wave ansatz for the eigenmodes excited in the homogeneous medium. It is

worth noting that the electric field is only locally integrable mathematically, and therefore,

their Fourier transform must be introduced carefully. With this in mind, this section aims

to clarify the mathematical foundation of the response function and the definition of the

general non-local constitutive relation.

We refer to the alternate definition of the response kernel from the work of K.Mnasri in [118].

Here, the response function is defined as a linear combination of Dirac δ−distribution and

their partial derivatives w.r.t. spatial quantity r. In equation form, we write

R(r− r′, k0) =
∑

n∈N3,|n|≤3
Cn(k0)Dnδ(r− r′) , (2.15)

with N ∈ N the truncation order, Cn ∈ C3×3 are the coefficients associated with the power
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series expansion: called the effective material parameters, and Dn = ∇n1,∇n2,∇n3. As a

consequence of homogenization, this definition ensures the effective material parameters Cn

are spatially independent and show only a temporal dispersion across the given frequency

k0.

Figure 2.1.: Illustration of a distributional function f = 1
ϵ e

−x2

ϵ2 and its first three deriva-
tives, ∇1f,∇2f,∇3f representing the inclusion of long-range interactions.

Before we move ahead, some remarks are necessary. The non-locality in the medium is

encrypted in the derivatives of the δ−distribution. Additionally, In mathematical terms,

this treatment comes with strict restrictions on the response function. Furthermore, the

Dirac δ−distribution and its derivatives are categorized as a special type of function called a

"generalized function" or a "distribution" that acts on infinitely differentiable complex-valued

functions ϕ ∈ C∞ vanishing at infinity, i.e., having a compact support. Usually, the space

of C∞ functions is called the space of test function in a material domain Ω. This notion of

compact support ensures the test function ϕ is a slowly varying function that vanishes as

we approach the boundary enclosing the material domain Ω of volume |Ω| = V . Thereby

compensating for the boundary problem w.r.t. response R. In a more formal mathematical

definition [Chapter 2, [119], [118]],

Definition 2.3.1 The space of distributions, denoted with D′(Ω) on a domain Ω ⊂ Rn,

is defined as the space of linear functionals acting on the space of infinitely differentiable

functions, C∞ with compact support, denoting this space by D(Ω).



Chapter 2. Theoretical Background 21

Therefore, the distribution D′(Ω) is the dual space of D(Ω). This definition allows one to

further define the Dirac δ−distribution, δ ∈ D′(R) as a linear continuous map ∗:

⟨δ(r− r0), ϕ(r)⟩ =
∫

ω
δ(r− r0) ϕ(r) dr = ϕ(r0) ∀ ϕ ∈ D(ω). (2.16)

where, ⟨., .⟩ represents the duality pairing for the spaces D(Ω) and D′(Ω) .

The derivative of a distribution Θ ∈ D′(Ω) is defined in a weak sense, meaning for a test

function ϕ ∈ D(Ω), we have,

⟨DαΘ, ϕ⟩Ω = (−1)|α|⟨Θ, Dαϕ⟩Ω . (2.17)

The aim of the general discussion is to address the interface problem between a non-local

and a local medium [113, 116]. In this context, "the interface problem" refers to the

challenge of reconciling the different behaviors of a local material and a non-local material

at their interface. This is accomplished by obtaining the weak form of the response function,

which involves multiplying the strong form (i.e., the partial differential equation with no

reduction in the order of derivatives) by a test function ϕ. This allows us to perform a

partial integration operation at the interface Γ, where the response function is otherwise

discontinuous and any continuous operators are not well-defined. This allows for a smooth

transition between the local and non-local regions and ensures that any continuous operators

are well-defined.

Furthermore, it is important to note another significant benefit of defining the response as

an element of the space of generalized functions. This approach enables the independent

treatment of the Fourier transform of the response function and the Fourier transform of

both the Delta distribution and its derivative [Chapter 9, [119]], [120].

1. To elaborate, we first describe the distribution and its derivatives, defining the response

function, to be a slowly growing functional. When interpreted mathematically, This

allows one to define a distribution T and its derivatives DαT as an element of the

space S ′(Ω) ⊂ D′(Ω). The space S ′(Ω) is called the space of tempered distribution

and is very restrictive compared to D′(Ω). Such a definition of the response function
∗We would like to draw the reader’s attention to a minor but yet important mathematical detail: since

Dirac δ−distribution is not a actual function in a strict mathematical language, writing an integral
is not correct. To overcome this, it is understood that, the function F(r) holding the relation F(r) =
δ(r − r0) ϕ(r) = lim

△r→0 F(r) has a point-wise convergence outside of singular point r0.
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in terms of the space S ′(Ω) further allows finer gradients (higher order derivatives)

of the response function to be significant therefore enabling one to consider further

long-range interactions. Nevertheless, in this setting, the definition of the test function

must also be revised. To ensure a finite value for the response function, the test

function ϕ is an element of the rapidly decreasing infinitely differentiable functions

are defined in the less restrictive space S(Ω). As it is obvious, S ′(Ω) is the dual space

for the space S(Ω).

Therefore, the Fourier transform of the tempered distribution function is defined in a

weak sense, (a corollary of Parseval’s identity), as

Definition 2.3.2 The Fourier transform, F [T] for any T ∈ S ′(Ω) and any ϕ ∈

S(Ω),

⟨F [T], ϕ⟩ := ⟨T, F [ϕ]⟩ . (2.18)

Using this definition, the Fourier transform of the δ−distribution is read as,

⟨F [δ], ϕ⟩ := ⟨δ, F [ϕ]⟩ =
∫

Ω
ϕ̂(r) dr = ϕ̂(0) =⇒ ⟨1, ϕ⟩ . (2.19)

2. With respect to the Fourier transform of the derivatives. For all the slowly decreasing

functions, |f(r)| → 0,∀|r| → 0 in L2(Rn) and for all the dense subset of L2(Rn) (e.g

S(Ω)) , the Fourier transform over a variable r follows,

F [Dαf ](r) = i|α|rαF [f ](r) , (2.20)

implying that, the derivative simply reduces to an algebraic product with the variable

r

Dα → i|α|rα , (2.21)

Thereby representing the 3-dimensional spatial derivative, ∇, and the time derivative

operator in Fourier space as,

∇x,y,z = (∂x, ∂y, ∂z)←→ i(kx, ky, kz)

∇t = ∂t ←→ −i ω ≈ −i k0|c=1 (2.22)
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Next, we move ahead to define the fields defining the material system and thus the

constitutive relation in the functional space setting.

When studying theoretical electrodynamics, we constantly encounter 4 major vectors:

E, H, D and B. These vectors are convenient to handle because of their definition in

the Hilbert space of square-integrable functions (L2), resulting in a well-defined norm ∥.∥.

Additionally, Maxwell equations relates all these four quantities through simple partial

differential equations (PDE), which conveniently fetch the solution for these vector fields

in a medium with well-defined energy operator [Section 1.3, [121]].

Definition 2.3.3 Let V be a vector space with a scalar product ( . , . )V . If V is complete

w.r.t. the norm ∥.∥V it is called a Hilbert space.

Here, the scalar product on V is a map ( . , . )V : V × V → C such that it satisfies the

following properties:

1. for all (u, v) ∈ V, the map is symmetric in (u, v) as (u, v))V = (v, y)V

2. for all vectors u, the map is positive definite: (u, u)V ≥ 0 and (u, u)V = 0 only if

u = 0

3. it is linear with respect to the scalar α, β as

(αu + βv, w) = α(u, w) + β(v, w)

for all u, v, w ∈ V

4. and the associated norm is given as

∥u∥2V = (u, u)V (2.23)

We have placed significant emphasis on the formal definitions of these functions, as they

hold great importance. Specifically, defining these functions in a Hilbert space with an

L2-norm is highly attractive in physics, as all physical observables, such as energy, are

defined in the space of square-integrable functions. Additionally, the L2 space conveniently

connects with the Fourier domain.
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Furthermore, spatial derivatives in real space are equivalent to polynomial multiplication of

k in reciprocal space. As a result, the constitutive relation can be expressed in its complete

form as follows.

D(k, k0) = R(k, k0)E(k, k0) =
∑

n∈N,|n|≤N
Cn(k0)knE(k, k0) (2.24)

The zeroth order coefficient, C0 is the standard electric permittivity tensor εij(k0), which

captures the local electric response of the medium. Consequently, we can map the coefficient

C1 to a magnetoelectric effect owing to its association to the first-order gradient of the

∇1E field, and then the coefficient C2 to the artificial magnetism due to its association

with the second order gradient ∇1∇2E field. The further higher-order gradient terms and

the associated coefficients represent the additional non-local material parameters.

In this regard, the ith component Di of the displacement field up to an arbitrary number

of terms can be read as,

Di = aijEj + bijk kkEj + cijklkkklEj + dijklm kkklkmEj + H.O.T. (2.25)

Each tensorial coefficient in this context possesses dimensions of both lengths and inverse

time [58,59]. As a result, each tensor coefficient is an element of the tangent space, denoted

as Ti...r ∈ Tp, with Ti...r serving as a placeholder for each tensor coefficient. These coefficients

contain frequency-dependent material parameters, requiring a suitable means of decoding

to obtain effective material parameters for effective medium theory. Further discussion on

this topic is presented in the subsequent subsection.

Since the response function Rij itself abides by the Casimer-Onsager relations as written

in Eq. (2.12) and Eq. (2.13), the tensor components also inherit the symmetry properties,

thereby reducing the number of independent coefficients:

aij = aji bijk = −bσ(jik)̸=(ijk) cijkl = cσ(ijkl) (2.26)

where the permutation operator σ ∈ G is used from the symmetric group of all permutations

G .
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2.3.2. Introduction to Tensors

In this particular section of the thesis, the focus is on deriving the special "curl" form of the

constitutive relation. Although this form has been previously utilized in both the WSD and

SSD models, the reason for choosing a curl-based formulation is to match the divergence-free

nature of the homogeneous Maxwell equations. By using abstract mathematical concepts

and calculus, the aim is to understand the origin of this derivation and comprehend the

fundamental constraints that govern our general constitutive relations.

The starting point of the derivation is to express the response function R(k, k0) in terms

of tensors living in a 3-dimensional Euclidean space. This approach facilitates the repre-

sentation of the constitutive relation in a convenient form, which helps us to uncover its

underlying properties and limitations. Through this process, we explore how the curl form

of the constitutive relation emerges and the reasons why it is of particular significance in

certain physical applications.

A mathematical vector is an element of the vector space V, which has a dimension of d

over a field K that can be either Rn or Cn. The dual vector space, denoted as V∗, is the

space of linear functional mappings from V to K.

When a basis {ei} ∈ V is chosen, the vector v can be viewed as having components vi in

the co-variant basis. This selects
{
ei
}

as the choice for the contravariant basis, and the

vector v∗ ∈ V∗ is the vector components in the dual space.

This formalism allows us to define a scalar-valued multi-linear function with variables in

either V or V∗ called a tensor over V and the space of tensors called a tensor space T over

V. A tensor Tr
s ∈ T is typically represented as,

Tr
s = v∗ ⊗ . . . v∗ ⊗︸ ︷︷ ︸

r times

v ⊗ . . . v︸ ︷︷ ︸
s times

, (2.27)

where, v ∈ V and v ∈ V∗ are the d-dimensional vectors in their respective spaces. In this

representation, the degree of the tensors Tr
s is written as (r, s) and denotes r the number of

vector contributions from the contra-variant vector space V∗ and s the contribution from

co-variant vector space V. As a corollary, we can also conclude that the dimension of the

tensor Tr
s is dn(r + s) where d is the dimension of each vector. For instance, (2, 0) is a

purely contra-variant tensor of degree 2 written as T2
0(V ) = v∗ ⊗ v∗, (0, 2) denotes a
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purely co-variant tensor of degree 2 written as T0
2(V ) = v∗ ⊗ v∗ and a mixed form of

degree (1, 1) written as T1
1 = v∗ ⊗ v.

In the interest of reducing complexities, it is wise to briefly discuss the lowering and raising

operation on the tensors. In reality, when dealing with a tensor defined on a vector space of

spatial coordinates, it is safe to assert that the co-variant and contra-variant contribution

to the construction of the tensor is less relevant. The metric tensor g can be employed as an

isomorphism between the vector space and their dual, therefore allowing one to express a

co-variant index of a tensor as a contra-variant index linearly scaled by the metric tensor g.

To formally introduce the metric tensor: g : V × V → K is a bi-linear form that allows

defining the distance and angle between any two vectors in V. The action of the metric

tensor can be written as g(vi, vj) = gij forming an n× n symmetric matrix. Additionally,

g assumes a non-degenerate value, meaning g(u, v) = 0, only if u = v ∀ u, v ̸= 0 ∈ V.

This guarantees the inverse metric tensor gij also exists [Section 0.2.2, 2.13, [122]].

Then, for tensors of order (0, s), the raising of the tensor indices can be generally written

as [Chapter 2, [122]][chapter 2, [123]]

gj1i1gj2i2 . . . gjsisTi1...is = T j1...js (2.28)

and for tensors of order (r, 0), the lowering of the tensor indices can be written as

gj1i1gj2i2 . . . gjrir T i1...ir = Tj1...jr . (2.29)

Therefore, the contribution from the co-variant and the contra-variant vector space to the

construction of tensors can be assumed to be invariant under the raising and lowering

operator.

2.3.3. Series Expansion of Response Function in Tensor Space

In the previous section, we discussed the functional space representation of the non-local

response function R(k, k0) in reciprocal space and the potential for non-uniqueness of the

auxiliary fields. To characterize the homogeneous medium, it is essential to determine the

dispersion relation and the corresponding interface condition. This involves approximating

the constitutive relation up to an arbitrary order as in Eq. (2.25) and subsequently
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recalculating the effective material parameters, We can write the ith component of the

displacement field D as D(k, k0)

Di = aijEj + bijk kkEj + cijklkkklEj + dijklm kkklkmEj + H.O.T. (2.30)

It is crucial that the coefficient tensors are associated with an Euclidean space R3, where

each tensor index is represented as a 3-dimensional vector. When using an orthogonal basis,

each tensor component belongs to either a complete co-variant tensor space or, through

isomorphism, to a contra-variant tensor space that is scaled by the metric tensor g. For

example, the first term (aij) in Eq. (2.30) can be deconstructed in the contra-variant tensor

space as aij : v∗ ⊗ v∗. Similarly, the second term can be represented as bijk : v∗ ⊗ v∗ ⊗ v∗,

and so on. The purity of the coefficient tensor is crucial for it to remain invariant under all

linear transformations. This means that the tensor coefficients must not be a mixed type

of (r, s) tensors [Problem 2.15.1, [124]].

From a general perspective, each of these tensors can be further described as a sum of their

symmetric and anti-symmetric constituents[Chapter 2, [124]], [125] .

Theorem 2.3.1 A tensor T ∈ T is said to be symmetric in its pth and qth contra-variant

indices if the components with respect to the basis remain unchanged when the pth and qth

indices are inter-changed [124].

Let’s take the instance of a tensor of type (0, 2). If Tpq is given, it is deemed symmetric if

it satisfies the following condition:

Tσ(pq) = Tpq . (2.31)

Here, σ is a permutation operator chosen from the symmetric group G , which comprises

all possible permutations.

Conversely, for the skew-symmetric counterpart, we have the definition:

Theorem 2.3.2 A tensor T ∈ T is anti-symmetric in its pth and qth contra-variant indices

if the components with respect to the basis are scaled by (−1) when the pth and qth indices

are inter-changed, i.e.,

Tσ(pq) ̸= pq = −Tpq . (2.32)
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Both the symmetric and the anti-symmetric tensors are elements of a vector space themselves.

Therefore, we can further split the terms in Eq. (2.30) as a sum of their symmetric and

anti-symmetric constituents, (written up to n = 4 order tensors for readability),

Rij =

asym
ij + aA-sym

ij

2!

+

bsym
ijk + bA-sym

ijk

3!

 kk +

csym
ijkl + cA-sym

ijkl

4!

kkkl , (2.33)

which consequently describes the ith component of the D field as

Di =

asym
ij + aA-sym

ij

2!

Ej+

bsym
ijk + bA-sym

ijk

3!

 kkEj+

csym
ijkl + cA-sym

ijkl

4!

kkklEj . (2.34)

Here, the factor 1
n! is the consequence of the symmetrizing/anti-symmetrizing operator

that respects the permutation order of the tensor indices [section 2.16,2.18, [124]].

According to Casimer-Onsager relations for a reciprocal media, we require that, in the most

general sense, the response function satisfies the transposition Rij(k, k0) = Rji(-k, k0),

for any arbitrary k and k0. Additionally, a material that possesses a mirror reflection

symmetry along either of its quadrant also restricts the symmetry of the response function,

Rij(k, k0) = Rji(k, k0). This additionally implies the tensor coefficients also follow the

symmetries [ Chapter 3, [58]]

aij : symmetric

bijk : Anti− symmetric

cijkl : symmetric

dijklm : Anti− symmetric (2.35)

and analogously for higher-order terms.

Therefore, we can finally reduce Eq. (2.34) into

Di = 1
2! asym

ij Ej + 1
3! bA-sym

ijk kkEj + 1
4! csym

ijkl kkklEj + . . . (2.36)
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2.3.4. Tensor Contraction

Before we move into the discussion on the tenor reduction methods, it’s important to

explain why such a detailed discussion of tensor calculus is necessary [124,126–128].

Here, our objective is to convert tensors of arbitrary order into their corresponding matrix

representations. To achieve this, we must first consider how to handle symmetric and

anti-symmetric tensors separately. This is necessary because tensor contraction involves a

linear transformation between different basis sets, which may involve adding or removing

elements depending on the basis transformation, without changing the tensor rank. In

either case, we must ensure that the matrix rank remains unchanged, as its elements are

linearly independent, and discarding any of them would result in the loss of information.

2.3.4.1. Anti-Symmetric Tensors: Exterior Algebra and Hodge Star Decompo-

sition

We first define the exterior algebra and the associated Hodge start operator to deal with

all the anti-symmetric parts of the tensor coefficient [124,126,128] and then later move to

describe their symmetric counterpart.

Figure 2.2.: This diagram demonstrates that a flat surface in three-dimensional space (R3)
can be expressed using either two directional vectors (represented as α and β) or a single
vector perpendicular to the surface (represented as γ). Essentially, any information that
is conveyed by a two-dimensional measure, such as the area of a parallelogram formed by
projecting vectors u and v onto the surface, can be simplified and represented using a
one-dimensional measure given by the cross product of u and v with the normal vector γ
(i.e., γ(u× v) = α ∧ β(u, v)).

The set of all anti-symmetric tensors of order (r, 0) (or (0, s)) is contained within a subspace

called the exterior algebra, denoted as A. Subspace constaining the pure tensors are



30 Doctoral Dissertation:

represented by Ar ⊂ A or As ⊂ A resepctively. The algebra that is associated with A

is known as the exterior algebra and is typically denoted by the wedge operator ∧. As

a result, the space of anti-symmetric tensors of order (r, 0) is alternatively expressed as

∧rV, whereas the anti-symmetric space for (0, s) is written as ∧sV. Here, V refers to the

corresponding vector space.

Now that we have established the necessary background, it is appropriate to proceed with

the discussion on tensor contraction.

Theorem 2.3.3 The dimension of ∧rV is the permutation

d

r

 = d!
r!(d− r)! , (2.37)

where d = dim(V).

For instance, in the case of a ∧2V tensor with indices {i, j}, we can conclude that even

transpositions such as (1, 2), (1, 3), and (2, 3) have even permutation with a positive sign,

while odd permutations such as (2, 1), (3, 1), and (3, 2) have the same information as their

even permutation but with a negative sign.

Moreover, based on this theorem, it is straightforward to argue that for a 3-dimensional

vector space, dim
(
∧0V

)
= dim

(
∧3V

)
, dim

(
∧1V

)
= dim

(
∧2V

)
and vice-versa. This follows

from the equivalence relation of

d

r

 =

 d

d− r

 , (2.38)

expressed by the Hodge star operator (*), which is an isomorphism between two spaces of

equal dimension [126,129]:

∗ : ∧rV → ∧d−rV (2.39)

The Hodge star operator denoted by "*" is a function that maps r vector indices of an

anti-symmetric tensor ∧rV to d− r vector indices without changing the dimension of the

tensor. This operator defines a one-to-one correspondence between the two spaces, where

the original space is referred to as the domain space and the resulting space is called the
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Hodge Dual space. Fig. 2.2 depicts an example of the Hodge star operator acting on a

space in R3.

In the special case of having the vector space to be attached with an orthonormal basis set,

this Hodge operator additionally forms an isometry, meaning the volume or the determinant

action ⟨., .⟩ is also preserved.

Hence, it is possible to conclude that the first-order coefficient of the anti-symmetric tensor,

bijk ∈ ∧3V , can be contracted into a pseudovector βil ∈ ∧0V . In other words, we have

bijk → βil

where b and β belong to the 3-D vector space V. It should be noted that βil is a matrix

representation of the pseudovector with dummy indices (i, l).

In order to fully apply this knowledge to extract material properties from the tensor

coefficients of the response function’s series expansion, it is necessary to understand the

action of the Hodge operator on a tensor defined in the tangent space Tp around a point

p of the relevant tensor space. This is important because, as mentioned earlier in the

constitutive relation for the tensor, the tensor coefficients in Eq. (2.30) have units of length

and frequency since they are part of the response function R(k, k0).

Definition 2.3.4 Given a tanget vector space Tp at some point p, let us define F∞ ⊂ Tp

as the space of linear operator t that act on any collection of C∞ function:

t : F∞ → Rn , (2.40)

such that for any f, g ∈ F∞ and a, b ∈ R,

• t is linear: t(af + bg) = atf + btf

• t satisfy the product rule, t(fg) = (tf)g + f(tg) .

In Euclidean d-space, a tangent vector is simply a set of all derivatives within an orthogonal

basis set
{

∂
∂xi

. . . ∂
∂xd

}
, along with their metric tensor gij =

(
⟨ ∂

∂xi
, ∂

∂xj
⟩
)
. These quantities

are defined for a general d-dimensional vector space V = Tp and its dual {dxi . . . dxn}, with

an inverse metric tensor g∗
ij = ⟨dxi , dxj⟩ on the dual vector space V∗ = T ∗

p .
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In this setting, any differential decomposable form α(dxi . . . dxr) ∈ ∧r∗V can be expressed

as

α = αi1...ir dxi1 ∧ dxir

Furthermore, the Hodge star operator can be applied to α to obtain a differential form of

(d− r) vectors.

∗(α) = ∗
(
αi1...ir d xi ∧ dxr

)
=

√
|det[gij ]|

r! αir+1...inϵi1...in (2.41)

It should be noted that the Levi-Civita symbol ϵ1...d sums over all the vector space and

performs a contraction over the repeated indices of the (d− r) terms of the tensor α. While

it is possible to apply this tensor contraction, as described in Eq. (2.41), to any tensor

α regardless of its permutation symmetry, the resulting tensor is always anti-symmetric.

This is due to the Levi-Civita symbol canceling out all but the anti-symmetric part of the

tensor. In a 3D Euclidean vector space, the term |det[gij ]| = 1, and can thus be ignored.

Alternatively, the Hodge star operator can also be defined using the inner product of the

Hodge dual operator [126]:

Definition 2.3.5 A Hodge dual of a tensor ζ ∈ Tp whose dual space tensor elements are

∗(ζ) ∈ T ∗
p exist if there exists a real-valued function for some η ∈ Tp such that,

ξ ∧ ∗(ζ) = ⟨ξ, ζ⟩v , (2.42)

where v =
√
|det[gij ]| dx1 ∧ · · · ∧ dxd is the unit volume. Integrating this over the whole

volume Ω yields an L2 square integrable inner product form,

∫
Ω

ξ ∧ ∗(ζ) =
∫

Ω
⟨ξ ∧ ζ⟩v . (2.43)

Now, we can finally reduce our 3rd-order tensor coefficient associated with the first-order

field derivative in the series Eq. (2.30), as

bijkkkEj = 1
3! ϵljk βil kk Ej , (2.44)

According to Eq. (2.38) the material parameter βil ∈ ∧0V connects the displacement
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field with the first-order gradient of the electric field E and is commonly referred to as

the chirality term. In the literature, it is represented by the symbol iκ. To simplify the

notation, we express the product of the 3rd order Levi-Civita tensor ϵljk and the wave

vector component kk as a curl operator: ϵljkkkEj = (k×E)l = iωµ0Hl. Here we have used

the Maxwell’s third law corresponding to the Faraday’s law of induction.

Based on equation Eq. (2.39), we can make an important observation regarding the

application of the Hodge star operator. The relationship between the dimensions d and r

is described by equation Eq. (2.38). For instance, in a 3D Euclidean space where d = 3,

it is not possible to have tensors Ti1...ir with r > 3. In other words, the maximum order

of any anti-symmetric tensor in a 3D Euclidean space is limited to three, and tensors of

higher order may be either redundant parameters that can be reduced to the chirality term

or have no meaningful interpretation. However, to validate this claim, a robust physical

explanation is necessary, and this issue remains open for further exploration.

Under the assumption that the second-order gradients are negligible, the ith component of

the D field can be expressed as:

Di = εijEj +
( 1

3!

)( 1
3!ϵlkjβilkkEj

)
(2.45)

with the coefficient of the zeroth order gradient of the electric field mapped to the electric

permittivity tensor εij and the coefficient of the first order gradient mapped to the chirality

βil.

2.3.4.2. Symmetric Tensors: Symmetric Algebra and Symmetric Tensor De-

composition

Symmetric tensor of type (r, 0) (or (0, s)) form a subspace S. Subspace constaining the

pure tensors are represented by Sr ⊂ S and Ss ⊂ S resepctively. Defining further a

symmetrization operation whose action on some tensor A of type (r, 0) A→ Asym

Asym(v∗, . . . v∗) = 1
r!

∑
i1,...ir

A(v∗, . . . v∗) . (2.46)

The factor 1
r! avoids repetition of symmetric elements in the following equation. Additionally,

the dimension of the space of all symmetric tensors S of type (r, 0) defined over a vector
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space Vd is given by [124],

dim(Sr) =

d + r − 1

r

 , and dim(Ss) =

d + s− 1

s

 . (2.47)

The aim of this section here is to decompose the symmetric tensor coefficient in Eq. (2.30)

into our special curl-based form. To do so, we approach this problem by defining the

symmetric rank.

To appreciate the notion of symmetric rank, let us first define a general rank of a tensor.

The concept of rank is central to understanding tensors. For a given tensor A of order r,

the rank represents the minimum number of rank-1 tensors that are needed to construct it.

The rank of a tensor can be mathematically expressed as

rank(A) := min
{

r|A =
r∑

i=1
ui ⊗ yi · · · ⊗ wi

}
(2.48)

This rank(A), can go higher than the dimension d for orders r > 2 [130]. However, for

symmetric tensors, a more specialized notion of rank, known as symmetric rank, is used.

Symmetric Rank

Symmetric tensors of order (r, 0) in a basis of Vd are bijectively mapped to their dual basis

in Vd, expressed as a homogeneous polynomial form of degree r and d variables

F (x) =
∑

j

ajXp(j) , (2.49)

where Asym = aji...jr is the symmetric tensor and F (x) ∈ C[ x1 . . . xn] is a polynomial

function on variables [x] in some arbitrary basis in V∗. The multiplicity p(j) is a non-

negative integer counting the symmetric elements in the tensor, with |p(j)| = r. [130,131]

We focus on the corollary for our analysis. The space of symmetric tensors Sr and its dual

space of polynomials F (x) ∈ C[x1 . . . xn] allow the representation of a symmetric tensor

as a symmetric outer product of r non-zero rank-1 tensors vi ∈ V and weights λi where

i = {1 . . . r}. This is expressed as [132,133]:

ranks(A) := min
{

r|Asym =
r∑

i=1
λi vi ⊗ vi

}
. (2.50)
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The symmetric rank of a tensor A is the minimum number r of linearly independent vi

vectors, where 1 ≤ i ≤ r, required to completely decompose Asym into a symmetric outer

product. In contrast to the generic rank definition, the rank-1 tensors constructing Asym

must satisfy the additional condition ui = yi = · · · = wi = vi for every i.This condition

guarantees that Asym can be expressed as a symmetric outer product. This is expressed

mathematically as

Asym =
r∑

i=1
λi vi ⊗ vi , (2.51)

yielding a symmetric rank r.

Moreover, the symmetric rank must strictly follow the condition ranks(A) = min(r) < d,

where d is the dimension of the vector space Vd. The vectors in the minimal expression for

Asym are the principal axes of the tensor and form an orthogonal basis set in Vd. These

vectors can be uniquely decomposed using 1-form notation, as shown in Eq. (2.46).

Additionally, In certain cases, the symmetric decomposition of a symmetric tensor can

reveal that its rank and symmetric rank are equal. This is true for any A ∈ Sr with

ranks(A) ≤ d over a closed complex vector field.

Why is this important? Well, the number of unique solutions offered by the dual space

representations depends on the rank of the tensors. Therefore, knowing that the rank and

symmetric rank are equal can simplify calculations and provide additional insight into the

structure of the tensor.

In fact, in [130], a comprehensive analysis of this phenomenon and all possible closed-form

solutions is provided. Based on this analysis, it has been shown that when d = 3, the upper

bound on the generic rank of a symmetric tensor of arbitrary order r is ranks(A) ≤ 3. This

means that any higher-order tensor can be expressed as a polynomial with at most three

linearly independent variables.

If the tensor satisfies pairwise linear independence (as in the case of orthonormal basis

sets), the restriction becomes even stricter: ranks(A) = 3 when d = 3. This implies that

any higher-order tensors can be expressed as a polynomial with exactly three linearly

independent variables.

In summary, this means that for any higher-order tensor, there exists a linear transformation

that decomposes the tensor into a matrix.
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Using the given information, we can revisit the equation Eq. (2.47), but this time considering

r to represent the symmetric rank. Substituting r with the symmetric rank, we get the

dimensions of the resulting symmetric tensor as shown below:

d + r − 1

r

 =

d + r − 1

d− 1

 . (2.52)

For the case where d = 3, this simplifies to

3 + r − 1

r

 =

2 + r

2

 (2.53)

which reduces to a new tensor order r′ = d− 1 = 2 for any symmetric tensor in d = 3. This

is a significant result, as it implies that any even-ordered symmetric tensor can be reduced

to a simple matrix defined in an orthogonal basis set of dimension 2.

Therefore, this new finding provides an avenue to transform even-ordered symmetric tensors

into easily manageable matrices defined in a simpler basis set. Next let us discuss the action

of a (multi-)linear transformation that facilitates this tensor contraction of the symmetric

tensors.

When it comes to symmetric tensors, employing the diagonalization operator is the natural

choice. Firstly, diagonalization transforms the tensor A into a preferred matrix form. This

is because the eigenvector associated with the diagonalization operator for a symmetric

tensor always forms an orthogonal basis set. And we saw previously that symmetric tensors

reduce to their d− 1 order when expressed on the orthogonal basis. Thus, the action of

the diagonalization operator on a symmetric tensor is equivalent to the tensor contraction

as in Eq. (2.52). Also for symmetric matrices, it is possible to choose an orthonormal basis

of eigenvectors. This results in the diagonalization being unitary.

Secondly, geometrically, the diagonalization of a symmetric tensor is equivalent to a rotation

of the coordinate system in which the tensor is represented. The eigenvectors of the matrix

form the new coordinate axes, and the eigenvalues determine the scaling of the new

coordinate system along each axis. This geometric interpretation is particularly useful

because there is an intrinsic relation between the rotational behaviour of a vector field with

the Levi-Civita tensor or the curl operator. See Appendix A for the underlying relation
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between Levi-Civita and the rotatio matrix.

Finally, diagonalization is preferred because it results in a diagonal matrix with eigenvalues

as the diagonal elements and zero off-diagonal elements, providing a simple and useful

representation of the tensor.

Let’s clarify the process of diagonalization with the example of a symmetric matrix. In

essence, diagonalization involves finding two matrices: a diagonal matrix D and an invertible

matrix P whose columns are the eigenvectors of the matrix. The diagonal matrix D contains

the corresponding eigenvalues. When we diagonalize a symmetric matrix B of type d×d, the

eigenvectors form an orthonormal basis for the vector space. This implies that the matrix

P is orthogonal, and thus its inverse is simply its transpose, i.e., P−1 = PT . Therefore, we

can write the diagonalization of a symmetric matrix as

B = P D PT . (2.54)

In the light of polar decomposition theorem [Section 4.2.1, [134]]: every orthogonal matrix can

be written as a product of rotation matrices. Therefore, We can express the diagonalization

in terms of rotation operators as

B = P D PT = (R1 . . . Rd)D(R1 . . . Rd)T . (2.55)

As mentioned in the case of anti-symmetric decomposition, in the constitutive relation

given by Eq. (2.30), The tensor coefficient in Eq. (2) is a tensor in the tangent space

with respect to the orthonormal basis
{

∂
∂xi

. . . ∂
∂xd

}
and the corresponding metric tensor

gij . Similarly, the dual basis {dxi . . . dxd} and the inverse metric tensor gij are defined

on the dual vector space. This tangent basis definition facilitates expressing any linear

transformation (basis-transformation) as a combination of Levi-Civita tensors. Thus,

attmepting to contract a (r, 0) symmetric tensor A ∈ Tp gives

A = (R1 . . . Rr) α (R1 . . . Rr)T ,

↕

A = (ϵ1...r) α (ϵ1...r)T , (2.56)
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At this point, we wish to communicate that the rigorous derivation of the linear transfor-

mation, which is represented as a curl operator, remains an unresolved matter and will be

a task to tackle in the future.

Through the use of the Levi-Civita symbol and the rotation representation of the linear

transformation, we can simplify the expression for the response component associated with

the second-order gradient in Euclidean 3-D vector space

tijklkkklEj = ϵnkmϵmljαinkkklEj = k × αin × k (2.57)

where we have also used the Fourier equivalent form of the definition ∇×E = (ϵijk∇jEk)i.

A natural extension of the same is possible to higher order tensors as the dimensionality

property in Eq. (2.52) holds in general.

It is to be noted that, all these formulations are additionally bound by the Casimer-Onsager

relations, and therefore, all even ordered tensor coefficients must hold a total symmetry in

their indices, meaning [58,135]:

aij = aji

aijkl = ajikl = aijlk = aklij = . . .

.

.

.

These findings are of significant importance to this thesis for several reasons. Firstly, they

provide a new justification for the definition of the curl-based special constitutive relation

that was utilized in our prior works [113,118,136]. Moreover, each step of this derivation

revealed various constraints on both the odd and even ordered tensors. Specifically,

both tensors must be an element of the tangent vector space of the orthogonal basis set{
∂

∂xi
. . . ∂

∂xn

}
. This finding further confirms that the tensor coefficients in Equation 2.30

are not dimensionless, as previously speculated [59,118]. Additionally, by transitioning to

the dual space representations of both the symmetric and antisymmetric tensors, these

tensor coefficients can be decomposed into dimensionless matrix coefficients representing the

effective material parameters, and the Levi-Civita tensors that carry the spatial dimensions

(∇i) in the tangent vector space. While the linear transformation into the dual space
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differs in principle for both the symmetric and antisymmetric components, the symmetry

arguments, particularly the invariance in the tensor dimension and definition of the inner

product among the vectors over the transformations, and the orthogonality of the tangent

basis support a well-posed transformation in both cases. It is important to note that the

presented derivation is not rigorous; however, the arguments themselves can be proven,

which opens up the possibility for further exploration in this area.

Secondly, it is now easy to rewrite the tensor form of the constitutive relations Eq. (2.30)

into a more practical form. If we assume a general first-order chiral medium with a non-local

correction, then the ith component of the D field for the response function expanded up to

the sixth-order series coefficient can be expressed as:

Di =(εij)Ej + ϵlkj(βil)kkEj + ϵnkmϵmlj(αin)kkklEj + ϵdkcϵclbϵbmaϵanj(γid)kkklkmknEj

+ ϵfkeϵeldϵdmcϵcnbϵboaϵapj(τif )kkklkmknkokpEj (2.58)

consequently can be written in terms of the respective curl operators in the Fourier domain

as

D(k, k0) = ε(k0)E(k, k0) (2.59)

+ β(k0) i k×E(k, k0)

− k× α(k0)k×E(k, k0)

+ k× k× γ(k0)k× k×E(k, k0)

− k× k× k× τ(k0)k× k× k×E(k, k0),

and as usual H(k, k0) = B(k, k0).

To ease our understanding we have written each term in a dedicated line. The first three

terms in this sequence are a consequence of a weak spatial dispersion or weak non-locality.

The first term captures the permittivity ε(k0) which corresponds to a local electrical

response. The second term expresses the magnetoelectric parameter β(k0), a first order
Λ
λ term denoting the coupling between the electric and the magnetic effects in a spatially

dispersive medium. An immediate example of non-zero β would be a chiral material. These

are material systems that can be engineered by having an array of unit cells that have no
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orthogonal mirror symmetries [137–141]. The third term is a magnetic contribution α(k0),

a second order
(

Λ
λ

)2
term that carries any form of internal magnetization experienced

by the material array. Upon considering the non-uniqueness nature of the displacement

field D, a suitable gauge transform can be used to translate the components of α into an

effective permeability term:

αij(k0) = µij(k0)− 1
k2

0 µij(k0)

Finally, here we consider two higher order non-local material parameters γ(k0) from the

fourth order spatial dispersion
(

Λ
λ

)4
and τ(k0) that arise from the sixth order spatial

dispersion
(

Λ
λ

)6
. Care must be taken that the even-ordered tensor coefficients are already

diagonalized as a consequence of Eq. (2.57), thus the material parameters ε, µ, γ and τ are

diagonal matrices.

With our constitutive relation at hand, we can now proceed to solve the associated dispersion

relation and also solve the fields at the interface to obtain the respective optical coefficients

for a spatially dispersive homogeneous medium.



3. Dispersion Relation and Interface

Condition

In the previous chapter, we explored how non-locality arises in mesoscopic MMs and

developed a mathematical expression for it through a phenomenological approach. Our

focus was on deriving the unique ’curl’ form of the non-local constitutive relation, which is

instrumental in describing the optical characteristics of a homogeneous medium. In this

chapter, we move forward by discussing the dispersion relation and interface condition for

centrosymmetric and chiral MMs. By doing so, we provide a brief overview of the analytical

techniques developed to homogenize non-local MMs.

We begin by providing a thorough description of our Maxwell solver. The solver is designed

to analyze MMs that have already been homogenized, meaning that their effective material

parameters (including frequency dispersion, if applicable) are known. To use our Maxwell

solver, one must provide the known effective material parameters (whether local or non-

local) as inputs. Once these inputs are provided, the solver uses them to determine the

electromagnetic eigenmodes sustained by the given MM by solving the dispersion relations

within the homogeneous medium. Furthermore, our Maxwell solver calculates the reflection

and transmission coefficient upon illuminating with a plane wave at an interface that

separates two half spaces characterized by distinct materials. These optical coefficients

play a crucial role in determining the effective properties of the MM.

In this thesis, our focus is on studying the homogenization of MMs, and we consider three

different constitutive relations to achieve this. The first is a local model, also known as

the weak spatial model (WSD), which is the conventional model containing terms up to

the truncation order two in the series defined by Eq. (2.74). This model includes the

matrices ϵ, κ, and µ. Moving beyond the WSD model, we consider two strong spatial

models (SSD) that incorporate additional non-local parameters. The first is the SSD-γ

41
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model, which adds the non-local parameter γ to the WSD model. The second is the SSD-τ

model, which includes the sixth-order non-local material parameter τ in addition to the

parameters included in the SSD-γ model.

The solver initiates the study by solving the Helmholtz wave equation in Fourier k−space,

utilizing a response R(k, k0) that follows the homogenization model. The Helmholtz wave

equation thus reads [Subsection 4.1, [118]]

[
k× k×+ k2

0R(k, k0)
]

E(k, k0) = Φ(k, k0)E(k, k0) = 0, (3.1)

which represents the eigenvalue equation whose solutions determine the possible eigenmodes

of light excited within the infinitely extended homogeneous medium characterized by the

material properties specified in R(k, k0). To ensure non-trivial solutions, the determinant

of the wave-operator Φ(k, k0) is set to zero and the functional dependency of k and k0 is

found.

Our analysis is focused on two-dimensional scenarios, with the ẑ direction as the principal

propagation direction, and the propagation direction is confined to a single plane. The

corresponding wave vector component can be ky = 0 or kx = 0, making the wave vector

k = (kx, 0, kz) or k = (0, ky, kz), respectively.

Moreover, We concentrate on calculating the dispersion relation solely for the non-local

SSD case, as the WSD model can be treated as a special case of the SSD models when

the SSD parameters (γ, τ)→ 0. We investigate only the fourth order SSD-γ model for the

Chiral MM and up to the sixth order SSD-τ model for centrosymmetric MMs. This choice

is driven by the increasing polynomial orders of the dispersion relation, leading to higher

complexity during solving.

For additional reading, a detailed analysis of the WSD and the SSD-γ models can be found

in the references [59,118].

3.1. Centrosymmetric Metamaterial

Centrosymmetry refers to a point group of material symmetries that exhibits inversion

symmetry over every point in the unit cell with respect to some central coordinate [142]. This

type of symmetry significantly simplifies the response function, which takes on a symmetric

tensor form Rij = Rji. As a result, the tensor elements aij , bijk, cijkl, and dijklmn from
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the series expansion are also simplified. Furthermore, in the case of centrosymmetry, the

optical activity vanishes, i.e., bijk = 0, and this leads to the preservation of the linear

polarization of the incident field. Ultimately, the constitutive relations for the SD-τ model,

in Fourier spatial domain reads,

D(k, k0) = ε(k0)E(k, k0)− k× α(k0)k×E(k, k0) (3.2)

+ k× k× γ(k0)k× k×E(k, k0)− k× k× k× τ(k0)k× k× k×E(k, k0).

All material parameters in the expression above are assumed to be diagonal matrices. In

our calculation, we use the matrix form of the curl operator,

ik× =


0 −kz −ky

kz 0 −kx

−ky kx 0

 (3.3)

Furthermore, in the subsequent text, all components of the material parameters specified,

in general, can vary with frequency. To enhance readability, we exclude the frequency k0

argument while writing the dispersion relations.

3.1.1. Disperion Relation

When investigating the behavior of waves propagating through a homogeneous medium,

the primary objective is to find eigensolutions, which involves conducting a modal analysis.

To accomplish this, we need to consider the dispersion relations, which are described by a

single equation with three parameters: frequency k0 and the two components of the wave

vector kx and kz. However, to solve for the third parameter, usually kz, we must fix the

other two, namely k0 and kx. Later when solving the interface problem, we relate the

incident field at an incidence angle θ to the dispersion relation of the homogeneous medium

through kx = k0 sin(θ).

When conducting the modal analysis for a medium having inversion symmetry, it is useful

to separate the eigenmodes into two distinct categories with well-defined polarization:

transverse electric (TE) and transverse magnetic (TM) modes. In the case of TE mode,

the electric field is polarized perpendicular to the plane of incidence, while in TM mode the
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electric fields are parallel to the plane of incidence. Considering ẑ to be the propagation

direction for the incident fields,

TM(kx,0,kz)-polarization: E(k, k0) = Ex(k, k0) x̂+Ez(k, k0) ẑ and H(k, k0) = Hy(k, k0) ŷ

TE(kx,0,kz)-polarization: H(k, k0) = Hx(k, k0) x̂+Hz(k, k0) ẑ and E(k, k0) = Ey(k, k0) ŷ.

By introducing the non-local response function R(k, k0) from the SSD-τ model into the

Helmholtz wave equation Eq. (3.1), the corresponding dispersion relations can be calculated

as

[(
k2

xεx + k2
zεz
)]
−
[
k2

0µy
(
k2

xγz + k2
zγx

)(
k2

xεx + k2
zεz
)]

−
[
k2

0µy
(
k2

x + k2
z

)2
τy
(
k2

xεx + k2
zεz
)] = k2

0εxεzµy, (3.4)

for the TM(kx,0,ky) polarization and,

[(
k2

xµx + k2
zµz

)]
−
[
k2

0µxµz
(
k2

x + k2
z

)2
γy

]

−
[
k2

0µxµz
(
k2

x + k2
z

)2(
k2

xτz + k2
zτx
)] = k2

0µxµzεy, (3.5)

for the TE(kx,0,ky) polarization.

Remark: To enhance clarity, we have organized the terms in the dispersion relation according

to their corresponding material parameter. This arrangement makes it easier to perceive

the gradual increase in complexity with each homogenization model and better understand

the limiting cases. Specifically, the dispersion relation for the SSD-τ model is presented in

Equations Eq. (3.4) and Eq. (3.5). As τ approaches zero, the dispersion relation for the

fourth order SSD-γ model is obtained as [Subsection 4.1.3, [118]]

[(
k2

xεx + k2
zεz

)]
−
[
k2

0µy

(
k2

xγz + k2
zγx

)(
k2

xεx + k2
zεz

)]
= k2

0εxεzµy, (3.6)

[(
k2

xµx + k2
zµz

)]
−
[
k2

0µxµz

(
k2

x + k2
z

)2
γy

]
= k2

0µxµzεy, (3.7)

for the TM(kx,0,ky) and TE(kx,0,ky) polarizations, respectively. Similarly, assuming both

γ, τ → 0 gives the dispersion relation corresponding to the local material laws or the WSD
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model:

(
k2

xεx + k2
zεz

)
= k2

0εxεzµy, (3.8)

(
k2

xµx + k2
zµz

)
= k2

0µxµzεy, (3.9)

for the TM(kx,0,ky) and TE(kx,0,ky) polarizations respectively.

Figure 3.1.: Isofrequency curve depicting the eigenmodes of a specific isotropic ho-
mogeneous medium with material parameters ε = 1.23 + 0.016i, µ = 1.26 + 0.118i,
γ = −0.003− 0.007i, and τ = 2.26× 10−5 + 5.54× 10−6i. The wave vector kx takes the
range ranging from −k0 to k0 and the working frequency is k0 = 4.2764 µm−1. The colors
used in the figure represent the forward and backward propagating eigenmodes, which
are indicated in the legend. the first sub-figure (a) shows the solution obtained from the
WSD model. The solutions from the SSD-γ model are depicted in sub-figures (b) and (c),
while sub-figures (d), (e), and (f) represent the solutions from the SSD-τ model.

The dispersion relations written as polynomials show that every order of spatial dispersion

in a homogeneous medium excites two extra eigenmodes within the material volume. To

ascertain whether the associated eigenmodes are forward or backward propagating, we

must analyze the direction of energy flow for each sign of the imaginary part, represented

by Im{kz}.

In the WSD model, solving for kz results in two complex solutions corresponding to forward
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or backward propagating modes. Similarly, in the SSD-γ model, solving the fourth-order

dispersion relation Eq. (3.6) generates four eigenmodes, two of which propagate forward,

and two propagate backward. Additionally, the sixth-order dispersion relation Eq. (3.6) of

the SSD-τ model generates six eigenmodes, three of which propagate forward, and three

propagate backward. To better understand the eigenmodes supported in a homogeneous

medium, we visually represent the eigenvalues (kz) corresponding to each kx value calculated

for different homogenization models. This representation can be seen in Fig. 3.1.

Care must be taken while solving the dispersion relation as we include higher and higher

order non-local terms in Eq. (2.54):

Theorem 3.1.1 The Abel-Ruffini Theorem: States that there is no radical analytical solu-

tion to a general polynomial equation of degree five or higher with arbitrary coefficients [143].

In other words, there is no general formula for finding the roots of a polynomial equation

of degree five or higher that is analogous to the quadratic formula for solving second-degree

equations. This is because the solutions to these higher degree equations require taking the

square root of negative numbers, such as
√
−1 = i, which cannot be expressed using these

operations. As a result, the coefficients of the polynomial equations become indeterminate,

and a closed-form solution is not possible.

Therefore, finding analytic roots of the dispersion relations offered by the sixth-order

dispersion equation from the SSD-τ model for centrosymmetric systems is limited. Hence,

numerical methods are the predominant choice when dealing with higher-order non-local

homogenization examples.

For the sake of thoroughness, we have also included in Appendix B.1 the analytical

expressions for determining the Poynting vector for both TE and TM polarization. These

expressions represent the energy flow in the direction of propagation for both the SSD-γ

and SSD-τ models.

3.1.2. Interface Conditions

This section is based on a collaboration with the Institute for Analysis (IANA), Karlsruhe

Institute for Technology (KIT), Karlsruhe. Credits for the mathematical rigor and specifi-

cally for the generalized formulation of the interface condition that enables one to handle
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any number of additional material parameters go to my collaborators Dr. Michael Plum

and Dr. Fatima Z. Goffi.

Before we start, we would like to motivate the reader to refer to our previous works

[112,113,144] for a detailed and rigorous mathematical derivation of the formulation we

have borrowed here.

Typically, the continuity of the tangential components of E(r, k0) and H(r, k0) and the

normal components of D(r, k0) and B(r, k0) is required at the interface between two local

media. This requirement is valid because an equal number of eigenmodes (two for the WSD

model) exist on both sides of the interface. However, when spatial dispersion occurs in one

of the media, the dispersion relation becomes complicated, and multiple eigenmodes are

excited within the non-local material. To maintain balance at the interface, an additional

condition is needed.

To establish the additional interface condition, we examine two half-spaces with distinct

material properties. Specifically, the upper half-space (R3,+) is a medium subject to the

local constitutive law (WSD model) in which the local electric permittivity is εloc and the

magnetic permeability is µloc = 1. In contrast, the lower half-space (R3,−) is governed by

the non-local constitutive law (SSD), characterized by the effective electric permittivity

ε and an,m, which is used to condense all the material parameters that respect spatial

dispersion. In this scenario, the constitutive relation in real space can be written up to the

(2N)th order material parameter,

D(r, k0) =


εlocE+(r, k0) R3,+

ε(k0)E−(r, k0) +∑N
n=1

∑2n
m=0 (∇×)man,m(k0)(∇×)(2n−m)E−(r, k0) R3,−.

(3.10)

By substituting this constitutive relation into the Helmholtz wave equation

∇×∇×E(r, k0)− k2
0D(r, k0), (3.11)

the electric field E± := E |R3,± can be understood as the generalized solution of the wave
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equation when,

∇×∇×E+(r, k0) = k2
0εlocE+(r, k0) R3,+,

∇×∇×E−(r, k0) = k2
0
(
ε(k0) +∑N

n=1
∑2n

m=0 (∇×)man,m(k0)(∇×)(2n−m)
)
E−(r, k0) R3,−.

(3.12)

Here, the electric fields E± are required to satisfy certain smoothness conditions as discussed

in [113].

It is important to note that the non-local constitutive relation governing the second half

space R3,−, as expressed in Eq. (3.10), is the most comprehensive representation that

includes all possible combinations of the curl operator and the material coefficients, totaling

{N(N + 1) + 1} terms.

However, the constitutive relations must adhere to the Casimir-Onsager condition [59,

116].This requires an equal number of Curl operators on each side of the material coefficient

an,m (as discussed in Section 2.4.2). This simplifies the constitutive relation, reducing the

number of terms to only N + 1, and expresses Eq. (3.10) in the form of Eq. (2.74). To

achieve this, we write the constitutive relation for the second half space R3,− up to the

(2N)th spatial dispersion order as follows:

D(r, k0) = ε(k0)E−(r, k0) +
{∑N

n=1
∑2n

m=0 (∇×)man,m(k0)(∇×)(2n−m)δn,m

}
E−(r, k0),

(3.13)

where δm,n is the two variable Kronecker delta (δm,n = 1 when m = n and 0 otherwise)

that facilitates the contraction.

Please note, throughout this section, we assume that all field quantities have the argu-

ment (r, k0). Therefore for the sake of readability, we omit writing them explicitly in the

following.

Generalized Interface Condition

This study considers two half-spaces, as shown in Fig. 3.2. The local medium is represented

by R3,+, while the non-local medium is represented by its counter, R3,−. The interface

between these two half-spaces is denoted by Γ = R3,+ ∩R3,−, and is located at z = 0 in the

zx plane.
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Figure 3.2.: The figure depicts the region in which light propagates, where the upper
half-space is filled with a homogeneous local medium and the lower half-space is filled with
a metamaterial (MM). The surface that separates the two half-spaces is represented by the
symbol Γ. The normal vector n is directed outward from the homogenized metamaterial.

The interface condition at Γ for the generalized solution E satisfying Eq. (3.12) can be

written in terms of the normal vector n to Γ, as discussed in [113],(
E+ −E−

)
× n = 0,

δk,0
(
∇×E+ −∇×E−

)
× n + LkE− × n = 0. (3.14)

Here, the surface operator Lk for k ∈ {0, . . . , 2N − 1} is an operator that acts on E− as

LkE− = k2
0

N∑
n=⌈ k+1

2 ⌉

2n∑
m=k+1

(∇×)m−(k+1)an,m(k0)(∇×)2n−m E−, (3.15)

We recall that ⌈.⌉ is the ceiling operator that maps x ∈ R to the next integer greater

than or equal to x. A general derivation of the expressions in Eq. (3.14) can be found in

appendix (C.1).

Some clarifications are needed at this stage. It should be noted that the 2N + 1 equations

in Eq. (3.15) may not be entirely independent, as some of them could reduce to 0 = 0 if

certain matrices αm,n are zero. Thus, the total number of independent interface conditions

given by Eq. (3.15) is at most 2N + 1. By imposing the constraints from Eq. (2.74) and

Eq. (3.13) on the interface conditions, we can reduce the number of independent interface

conditions to at most N + 1, which is less than 2N + 1. Therefore, we can express the
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operator Lk now with the added δn,m as.

LkE− = k2
0

N∑
n=⌈ k+1

2 ⌉

2n∑
m=k+1

(∇×)m−(k+1)an,m(k0)(∇×)2n−mδn,m E− , (3.16)

for k ∈ {0, . . . , 2N − 1}. Therefore, we can now set N = 3 (2N = 6) to yield the interface

condition relevant for the SSD-τ model,

(
E+ −E−

)
×n = 0, (IC 1)

(
∇×E+ −∇×E−

)
× n + k2

0
(
α(k0)∇×E−)×n

+k2
0
(
∇× γ(k0)∇×∇×E−)× n + k2

0
(
∇×∇× τ(k0)∇×∇×∇×E−)×n = 0,

(IC 2)

(
γ(k0)∇×∇×E−)× n +

(
∇× τ(k0)∇×∇×∇×E−)×n = 0, (IC 3)

(
τ(k0)∇×∇×∇×E−)×n = 0. (IC 4)

This formulation can be interpreted physically. The first interface condition, Eq. (IC 1),

expresses the well-known principle that the tangential component of the electric field

must be continuous across the interface Γ. The second condition, Eq. (IC 2), reveals the

discontinuity in the H field caused by the spatial dispersion. As γ and τ approach zero,

Eq. (IC 2) approaches the standard continuity condition for the tangential component of H,

(
∇×E+ −

{
1− k2

0α(k0)
}
∇×E−

)
× n =⇒

(
B+ − µ−1(k0)∇×B−

)
× n = 0

(
H+ −H−

)
× n = 0. (3.17)

Here, we have once again used the transformation µij(k0) = 1
1−k2

0 αij(k0) .

Furthermore, Eq. (IC 3) and Eq. (IC 4) are the additional conditions required by the

tangential components of the eigenmodes excited purely by spatial dispersion. Recall that

as the order of spatial dispersion increases, one forward and one backward propagating

eigenmode are excited in the homogeneous construct of the MM medium. Therefore,

the total electric field E−(r, k0) within the homogeneous medium is a superposition of n

eigenmodes, where n is an even number representing the spatial dispersion order. considering
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each eigenmode has a propagation constant kzi , we can write

E−(r, k0) =
n/2∑

i

Ef
0,i(r, k0)eiki·r + Eb

0,i(r, k0)e−iki·r, (3.18)

where Ef/b
0,i is the amplitude vector, the labels {f,b} represent the forward and backward

propagating modes corresponding to the sign of the Im {kz}, within the MM. Therefore,

for each additional order of spatial dispersion, there is one extra interface condition.

Once again, the interface conditions for the WSD and the SSD-γ models can be immediately

studied by simply setting the respective material parameters in Eq. (IC 1)-Eq. (IC 4) to

zero. i.e., the interface condition for SSD-γ model is simply Eq. (IC 1)-Eq. (IC 4) with

τ → 0 and the standard interface condition discussed in the literature for the WSD model

is the case when {τ, γ} → 0.

By utilizing the information obtained from the dispersion relation and associated interface

conditions, we can formulate the Fresnel expressions. In the later part of this chapter, we

will detail the Fresnel equations, covering their derivation, and finally, calculate the complete

set of optical coefficients at an interface. This amounts to calculating the amplitudes of

all the transmitted and reflected modes for a given amplitude of some plane wave used to

illuminate the interface.

3.2. Chiral Metamaterial

Chirality refers to a geometric property that characterizes the asymmetry in the structure

of materials. An object is considered chiral if it cannot be superimposed onto its mirror

image, known as its enantiomer, by any translation or rotation. Chirality plays a crucial

role in chemistry, specifically in pharmaceuticals because most pharmaceutical molecules

are developed as enantiomers and therefore have vastly different biological activities due

to differences in their interaction with enzymes and receptors in the body. The challenge

in working with chiral molecules lies in their characterization, as both enantiomers have

identical physical properties and are difficult to distinguish from each other. Nevertheless,

various efficient measuring techniques have been developed over time. [145–148].

This section aims to investigate the possibility of utilizing effective medium theory as a

viable technique to characterize the material properties of a medium that contains multiple

chiral molecules. This characterization is essential in gaining insight into the medium’s
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optical response, making it a crucial step in understanding the potential applications of

chiral molecules in optical devices. We provide a brief introduction to the Condon-Tellegen

constitutive relation, which serves as the weak spatial dispersion model for chiral materials.

The dispersion relation resulting from this model can effectively describe the fundamental

propagating modes of a chiral metamaterial. Additionally, we extend our model to the

non-local scenario by introducing the γ(k0) parameter into the Condon-Tellegen form of

the constitutive relation. We discuss the potential variations in the dispersion relation that

may arise as a result. We also briefly address the necessary interface conditions for both

the WSD and the SSD models.

It is important to note that we present a comprehensive analytical formulation for using

effective medium theory on a non-local chiral metamaterial. However, we leave the numerical

analysis as an open question for further research.

3.2.1. Condon-Tellegen Constitutive Relation

The Condon-Tellegen form of the constitutive relation discusses the magneto-electric

coupling in a material due to spatial dispersion [149]. Considering a reciprocal chiral

medium, the constitutive relations read,

D(r, k0) = ε(k0)E(r, k0) + iκ(k0)H(r, k0),

B(r, k0) = µ(k0)H(r, k0)− iκ(k0)E(r, k0), (3.19)

where the material parameters ε is the permittivity matrix, κ is the chirality parameter

and µ is the magnetic permeability term.

Under weak spatial dispersion, we can set the Q field as

Q = i
k0

((
1− µ−1(k0)

)
∇×E− iκ(k0) µ−1(k0)E

)
. (3.20)

Using Equation (1.2), we can express all the material tensors on the electric displacement
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field, as given by [150],

D(r, k0) = ε̃(k0)E(r, k0) + iκ̃(k0)∇×E(r, k0)

+∇×
(

µ(k0)− 1
k2

0

)
µ(k0)−1∇×E(r, k0), and

B(r, k0) = H(r, k0) . (3.21)

Here, the transformed set of material parameters are expressed as

ε̃(k0) =
(
ε(k0)− κ2(k0) µ−1(k0)

)
and κ̃(k0) =

(
2
k0

κ(k0) µ−1(k0)
)
. (3.22)

This form of the material parameters significantly simplifies the achiral-chiral interface

conditions [70], which will be further discussed in this thesis.

The first approach involves designing the unit cell to have no reflection symmetry, as

demonstrated in various studies [151–154]. Alternatively, one can introduce materials that

are naturally chiral as the constituting material of the unit cell or the surrounding matrix

medium [155–161].

In such chiral metamaterial structures, Optical activity is generally considered to be a

first-order effect, proportional to Λ
λ . However, to account for strong spatial dispersion

effects beyond the long wavelength limit, the non-local parameter γ(k0) can be added to

the constitutive relations given in Eq. (3.21). This results in new constitutive relations

that can be expressed up to the fourth order in real-space notation

D(r, k0) =ε̃(k0)E(r, k0) + iκ̃(k0)∇×E(r, k0) +∇×
(

µ(k0)− 1
k2

0

)
µ(k0)−1∇×E(r, k0)

+∇×∇× γ(k0)∇×∇×E(r, k0), and

B(r, k0) =H(r, k0) . (3.23)

In the above equations, it is assumed that the homogeneous medium is always aligned along

the optical axis, resulting in the effective material tensors being diagonal. Once again to

ensure readability, we have chosen to leave out the frequency k0 argument in the following

subsection while presenting the dispersion relations for these material parameters.
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3.2.2. Disperion Relation

To find the eigenmodes excited in the non-local chiral MM, we solve the Helmholtz wave

equation Eq. (3.1) with the response function making up the non-local constitutive relation

Eq. (3.23). The corresponding dispersion relation is an eight-order polynomial equation

written explicitly here,

{[
k2

xε̃x + k2
z ε̃z − k2

0 ε̃xε̃zµy

]
−
[
k2

0µy

(
k2

xγz + k2
zγx

)(
k2

xε̃x + k2
z ε̃z

)]}
{[

k2
xµx + k2

zµz − k2
0µxµz ε̃y

]
−
[
k2

0µxµz

(
k2

x + k2
z

)2
γy

]}

+ k4
0κ̃yµxµyµz

(
k2

z ε̃zκ̃x + k2
xε̃xκ̃z

)
= 0 (3.24)

Here, once again we stick to the definition of the material tensors from Eq. (3.22). Addi-

tionally, we group the terms in a way that, it is easy to distinguish the influence of each

material parameter on the polynomial. As of before, the Able-Ruffini theorem suggests

that we must rely on a fully numerical method to solve the polynomial since Eq. (3.24) is

an eight-order polynomial.

Once again, setting the non-local contribution to a zero function, γ → 0, we get back the

standard dispersion relation corresponding to Eq. (3.21) for a local-chiral medium,

(
k2

xε̃x + k2
z ε̃z − k2

0 ε̃xε̃zµy

)(
k2

xµx + k2
zµz − k2

0µxµz ε̃y

)
+ k4

0κ̃yµxµyµz

(
k2

z ε̃zκ̃x + k2
xε̃xκ̃z

)
= 0. (3.25)

It is important to make a brief note of the eigenmodes excited in a chiral medium. The

response of a chiral anisotropic medium depends on the handedness of the eigenmodes.

As a result, the eigenmodes excited in the homogeneous chiral medium can be classified

as right circularly polarized (RCP) for κ̃ > 0 or left circularly polarized (LCP) for κ̃ < 0

[162,163].

3.2.3. Interface Conditions

This section is based on the formulations developed by Elias Kunzweiler in his Bachelor

thesis "Homogenization of chiral Metamaterials" at the Institute of Theoretical solid state
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physics (TFP), Karlsruhe Institute of Technology. I also would like to thank Dr.Fatima

Z. Goffi from the Institute of Analysis (IANA), Karlsruhe Institute of Technology, for her

contribution during the derivation of the interface conditions.

From the constitutive relations for a chiral metamaterial in Eq. (3.21) and Eq. (3.23), we

can infer that κ̃ is a local term and only weakly contributes to the spatial effects. As a

result, an interface containing a chiral medium doesn’t require any additional interface

condition if non-local chirality terms are absent [70]. Thus, with the above information, we

can express the interface condition in a general form similar to the centrosymmetric case,

as given by Eq. (3.14), but with the inclusion of a chirality term as

(
E+ −E−

)
× n = 0,

δk,0
(
∇×E+ −∇×E−

)
× n +

(
k2

0 i κ̃(k0) E−
)
× n + LkE− × n = 0, (3.26)

for k ∈ {0, . . . , 2N − 1}.Please refer to Appendix (C.1) for a detailed derivation of these

interface conditions.

Assuming the SSD in the MM is governed by the SSD-γ model with 2N = 4, we can rewrite

the interface conditions derived in Section 3.1.2 to include the additional chirality term.

(
E+ −E−

)
× n = 0 (c-IC 1)

(
∇×E+ −∇×E−

)
× n + k2

0
(
i κ̃(k0) E−)× n + k2

0
(
α(k0)∇×E−)× n

+k2
0
(
∇× γ(k0)∇×∇×E−)× n = 0

(c-IC 2)

(
γ(k0)∇×∇×E−)× n = 0 (c-IC 3)

Once again the relation µij(k0) = 1
1−k2

0 αij(k0) has been used.

3.3. Fresnel Equations

When electromagnetic waves move from one material to another, they undergo changes in

their amplitude and phase due to differences in the material properties of the two media. If

the two materials have different polynomial dispersion relations, the electric and magnetic

fields in each medium can be expressed as a combination of eigenmodes with distinct
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amplitudes and phases. At the interface between the two materials, the interface conditions

determine how to identify the amplitude of each mode that is excited by the incoming

wave.

To calculate the amplitudes of the reflected and transmitted waves, it is necessary to match

the amplitudes of these modes with those of the incident wave at the interface. This

requires solving the interface conditions for the amplitudes of all the involved modes, using

the interface conditions described earlier. Once the amplitudes of the modes are known,

the power carried by the reflected and transmitted waves can be calculated.

For the derivation of the Fresnel expressions and the corresponding reflection and trans-

mission coefficient for both centrosymmetric and chiral MM, see appendix (B) and ap-

pendix (C.1), respectively.

In the following chapter, we will delve into the homogenization process in detail and

provide a step-by-step explanation of how to assign effective material parameters to the

homogeneous equivalent of a MM. This is a critical step in accurately analyzing the optical

properties of the MM and utilizing our Maxwell solver effectively.



4. Results and Discussion

In the preceding chapters, we have proposed models to homogenize non-local metamaterials

and discussed the theory of the non-local constitutive relations and the associated interface

conditions. Each model prescribes a given set of effective material parameters necessary

to capture the strong interaction within the material. The above set of formulation

promises to describe the associated wave properties, from the given dispersion relations,

and to calculate the accurate reflection and transmission coefficients of plane waves at

metamaterial interfaces and entire slabs as a function of frequency and incidence angle. In

this chapter, we outline our computations in which we assign effective material parameters

to the homogeneous equivalent to the actual structrue. In the course of this chapter,

we also introduce a Maxwell solver that takes the mesoscopic spatial distribution of an

actual material, as a function of frequency and the lattice constants as input to predict the

associated wave properties of the eigenmodes within the material domain.

Furthermore, we also introduce the alternative Teff-matrix approach that calculates the

excited effective material parameters from a complete effective (induced) multipolar de-

scription of the entire MM within the homogenizable limit for the considered range of

frequencies. As will be discussed, this approach has the ability to isolate the material

response from lattice effects. . This promises a clear advantage over other existing methods.

To highlight these special features, We show the numerical results for the homogenization

of a 3D metamaterial made from gold nanoparticles. Further, we upstep by employing

the homogeneous counterpart of the gold nanoparticles to construct a novel lattice that

illustrates the practicality of the material’s properties for reuse.

4.1. Computational Setup and Simulation

In this section, we describe how the analytical framework for non-local homogenization

introduced in the previous chapter is computationally implemented to actually retrieve

57
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effective material parameters of selected metamaterials in following sections. The accuracy

of the parameter retrieval method is validated using numerical simulations of the actual

MM.

4.1.1. Parameter Retrieval Method

Computational optimization procedures in mathematical analysis rely on numerical approx-

imation as the foundation. The goal is to find approximate solutions that accurately predict

the behavior of a system based on an existing quantitative theory. As computational power

has advanced, the complexity of mathematical models used in this field has also increased,

enabling the development of highly accurate models that have transformed the fields of

science and engineering [164,165].

In the context of homogenization, the focus is on deriving a set of effective material

parameters for a given target structure using the models presented in this work, such

that the resulting optical response matches the target spectrum. Here, this referential

target spectrum is always obtained from a full wave analysis of the actual metamterial.

This requires to solve the inverse problem from the perspective of the effective medium.

Therefore, instead of calculating the optical response of a structure, e.g. a slab, made from

a homogeneous material made from a mateial characterized by a certain set of constitutive

parameters, the inverse problem needs to be solved. We are asked to determine the effective

constitutive parameters that lead to a particular optical response. Essentially, this requires

minimizing the difference between the target spectrum and the one obtained using our

models by adjusting the actual material parameters for a given constitutive relation, which

can be formulated as a nonlinear least-squares problem.

To compute the target data, computational simulation tools are utilized to conduct numerical

experiments actual metamaterial structure. The outgoing field information obtained from

these simulations is then compared with a prescribed homogenization model to complete

the optical characterization, replacing experimentally measured data. In this thesis, simple

geometries with known T-matrices are considered from which complex reflection (Rdata)

and transmission (Tdata) spectra are calculated over a range of incidence angles, serving as

the target spectrum for the optimization procedure.

To achieve this goal of numerical homogenization, a two-stage retrieval algorithm has

been developed, which comprises a forward Maxwell solver and an optimization engine.
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The forward solver is designed to evaluate the general constitutive relations and interface

conditions for a material represented by a homogenization model. To operate, the solver

requires several input parameters, such as effective material parameters, the thickness of the

slab being examined, the frequency spectrum (k0) relevant to the problem being addressed,

and a set of wave vectors specified for the polarization of the incident field. The solver

employs this information to compute the dispersion relation Eq (3.1), and the associated

eigenmodes for the specified homogenization model.

Assuming the thickness of the homogeneous slab to be one lattice period, the solver obtains

information on all excited Bloch modes within the material domain corresponding and the

corresponding interface conditions, similar to the procedure explianed in Subsection 3.1.2.

Using this information, complex reflection (Rmodel) and transmission (Tmodel)coefficients

are computed as a function of k0 and the wave vector, kx. Here, the superscript denotes

the type of homogenization model employed. This approach is particularly applicable in

the context of a thin film or a 2D MM.

Figure 4.1.: This flow chart depicts the optimization procedure associated with the
Maxwell solver, which optimizes the relevant material parameters and calculates the
reflection and transmission coefficient as a function of both frequency and incidence angle
for the prescribed homogenization model.

Next, the optimization algorithm starts with an initial guess of the model parameters at an

initial frequency k0,i and iteratively adjusts them until the distance (loss function: L(e))
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between the predicted and target values of the reflection and transmission coefficients is

minimized. In each iteration of k0, the algorithm computes the gradient of the loss function

with respect to the model parameters, and the corresponding residuals are introduced into

a least square solver as implemented in SciPy [166] with a smooth loss function:

L(e) = 2
(√

1 + e− 1
)
, (4.1)

whose L2 norm ∥L∥2 is minimized. In Eq. (4.1) we have the residual vector e that measures

the distance between the observed data and the predicted values at each data point as

e = |Rdata (k0, kx)−Rmodel (k0, kx) |2

+ |Tdata (k0, kx)−Tmodel (k0, kx) |2.

(4.2)

Additionally, to measure the overall quality of the fit between the observed data and the

model predictions for a given frequency point, we define an error function δ(k0):

δ(k0) =
∑
kx

(
|Rdata (k0, kx)−Rmodel (k0, kx) |2

+ |Tdata (k0, kx)−Tmodel (k0, kx) |2
) (4.3)

that compares the optical coefficients, i.e. reflection Rdata and transmission Tdata, of the

actual MM with the predictions from each model.

The forward solver is implemented using JAX [167] to enable both JIT-compilation as well

as automatic differentiation. Automatic differentiation provides fast and precise Jacobians

to the optimization, resulting in quick convergence and high-quality results. The algorithm

allows for multiple restarts, where the fitting procedure is repeated from different initial

guesses until a sufficiently small final error is achieved. However, it is often found that a

single trial is sufficient for many problems, and no additional restarts are required.

The optimization process continues until the convergence criteria are satisfied, and the

optimal parameters are obtained. Once a set of material parameters for a particular k0,i is

found, the optimization proceeds to the next closest k0,i+1, depending on the discretization.

To ensure a smooth constitutive relation and improve convergence, the optimized material

parameters from the previous iteration serve as the initial guess for the current k0,i+1. This

procedure is repeated for all k0,i, resulting in the final constitutive relation for all material
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TM-Polarization TE-Polarization
(kx, 0, kz) (0, ky, kz) (kx, 0, kz) (0, ky, kz)

εxx εyy εyy εxx

εzz εzz µxx µzz

µyy µxx µzz µzz

γxx γyy γyy γxx

γzz γzz −− −−
τyy τxx τxx τzz

−− −− τzz τzz

Table 4.1.: The table lists the relevant material parameters that couple to light based on
the polarization and incidence plane

parameters considered. (i.e., the procedure is the same for all models discussed herein).

This approach also allows us to optimize and fine-tune the optical response from the models

by evaluating the material behavior under different input conditions. The algorithm is

represented as a flowchart in Figure 4.1.

In the present context, homogenization can be understood as the optimal mapping between

heterogeneous MM and the effective material parameters that can predict the optical

properties of the actual heterogeneous medium with minimal deviation.

Although the focus of this thesis is on homogenizing thin films, it is important to note

that this methodology can be generalized to effectively homogenize a 3D anisotropic

metamaterials. To retrieve all entries of the anisotropic material tensors, it is crucial to

consider all possible illumination directions and polarizations. The four combinations of

transverse magnetic (TM) and transverse electric (TE) modes and wavevectors (kx, ky)

have to be analyzed, and the corresponding material parameters for each case are calculated.

The corresponding combinations of material parameters are given in Table 4.1. Notably,

the nonlocal parameter γ behaves similarly to the permittivity ε, while the parameter τ

behaves similarly to the permeability parameter µ.

Now that the retrieval is introduced, we need to know how to numerically obtain the target

reflection and transmission coefficients Rdata and Tdata from a periodic metamaterial slab.

In this work, we have not access to experimental data.
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4.1.2. Numerical Experiment Using the T-Matrix Method

We aim to demonstrate the practicality of our homogenization models by studying a

metamaterial (MM) composed of regularly spaced spherical scatterers with a predetermined

multipolar response. To analyze the MM, we investigate three different MMs, each consisting

of meta-atoms with increasing complexities of supported multipole moments. To design the

meta-atoms and compute the electromagnetic response of the MM, we utilize the transition

matrix formalism (T-matrix) method. This method describes the scattering properties of

the meta-atoms using a matrix known as the T-matrix, which linearly relates the vector

containing the expansion coefficient of the incident fields q ( with the coefficients qe and

qm for the electric and magnetic contributions, respectively) and the vector containing the

scattered fields p (with the coefficients pe and pm for the electric and magnetic contributions,

respectively). The coefficients contained in p and q are a fundamental solution to the

vector Helmholtz equations both of which are expanded in a vector spherical harmonic

basis. The relationship between the two is expressed as

p = T · q. (4.4)

By using the T-matrix, the scattered field of the meta-atom can be calculated for any given

incident field. The T-matrix approach has been extensively studied in literature [168–170].

To calculate the complete scattering response of a MM, we use the algorithm described

in Ref. [171]. This algorithm assumes that the MM is composed of identical copies of a

meta-atom with a 2D periodicity, and uses the translational addition theorem to apply the

T-matrix to the meta-atom. This approach enables the use of the 2D Ewald summation

method, which leads to a rapidly converging solution for determining the scattering response

of the MM [172]. The outcome of the algorithm is a set of reflection and transmission

coefficients for the MM under a given illumination condition.

The choice of a spherical scatterer in this article is made for convenience, as the T-matrix

can describe any unit cell regardless of its shape or material. Spherical particles are also

commonly used in Mie theory because they provide a convenient way to describe the

scattering behavior of small particles [173,174]. The Mie coefficients, which describe the

scattering of light by a spherical particle, can be calculated analytically for a wide range

of particle sizes and frequencies. This makes it relatively easy to model the behavior of a
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large number of identical particles, as is often the case in metamaterials.

Mie theory provides a means to express the ratio between the scattered and incident

fields using the Mie coefficients an and bn, which correspond to the electric and magnetic

contributions, respectively, for a given multipolar order n [174]. Consequently, the T-matrix

can also be defined in terms of these Mie coefficients, making this a convenient approach

for design. Additionally, this approach allows for the polarizabilities of an isotropic particle

to be related to the Mie coefficients [175],

an = k3

6πiα
e
n(ω) (4.5)

bn = k3

6πiα
m
n (ω). (4.6)

Here, αe
n(ω) and αm

n (ω) are the corresponding polarizabilities for the nth multipolar order.

In addition to spherical symmetry, polarizability in Mie theory calculations is frequently

assumed to have a Lorentzian dispersion. Such an assumption on a Lorentzian dispesion

provides a relatively simple and accurate way to describe the behavior of small particles in

response to electromagnetic fields in spectral proximity to a resonance. Such a resonance

can be particle plasmon polariton in the case of a small metallic nanoparticle or any other

resonance in the structure. The polarizability is a complex number that describes the

response of a particle to an oscillating electric field. It takes into account both the particle’s

size and its resonance frequency, which determines how easily the particle can be polarized

by the electric field.

We can now establish the scattering characteristics of our meta-atom with a polarizability

α
e/m
n that is based on a Lorentzian-type oscillator. This can be expressed as:

αe/m
n (ω) = α0

e/m
n

(ω2
0)e/m

n − ω2 − iωσ0
e/m
n

, (4.7)

where ω0 = k0 is the resonance frequency of the oscillator, α0
e/m
n is the oscillator strength,

and σ0
e/m
n is the associated Ohmic loss with the dimension of inverse time. The labels

{e/m} refer to the electric and magnetic contribution and n = {d, q, . . . } to the multipolar

order.

In this way, we can incorporate pre-determined Lorentzian polarizabilities of individual
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nanospheres into the T-matrix that defines the scattering behavior of a single sphere. For

example, below is the T-matrix of size 6× 6 describing pure electric and magnetic dipolar

sphere at some frequency ω:

T =



a1 0 0 0 0 0

0 a1 0 0 0 0

0 0 a1 0 0 0

0 0 0 b1 0 0

0 0 0 0 b1 0

0 0 0 0 0 b1


. (4.8)

The choice of spherical symmetry for the meta-atoms further simplifies the T-Matrix to

have only diagonal entries. This method can be adapted to include arbitrarily higher

multipolar orders – limited only by the available computational resources – by simply

adding the corresponding Mie coefficients to the diagonal.

Using the T-matrix approach, we construct a square array of spherical scatterers with

a periodicity of Λ. The scatterers are arranged freely, and the corresponding reflection

(Rdata) and transmission (Tdata) coefficients are determined for all frequencies ω when the

array is illuminated by a plane wave with a TM polarization. The incident angle of the

plane wave is adjusted by modifying the x-component of the wave vector kx of the incident

field. These reflection and transmission coefficients constitute the reference data that is

subsequently utilized in the parameter retrieval analysis.

4.2. Investigation of Non-Local Isotropic Metamaterials

In this section of the thesis, we will homogenize an isotropic array of spherical scatterers.

The section is divided into four subsections. The first three subsections focus on analyzing

metamaterials (MM) made from scatterers that sustain either an electric dipole, electric

quadrupole, or both an electric dipole and an electric quadrupole moments, as well as a

magnetic dipole moment. We apply local and non-local constitutive relations to homogenize

each metamaterial and assess their efficacy by employing the error function described

in Eq. (4.3).. Our analysis provides new insights into the physical relevance of effective

material parameters and their relationship with the multipolar order of the meta-atom and

the periodicity of the lattice. We also determine the optimal order of the Taylor expansion
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for the constitutive relation to homogenize a MM composed of scatterers with a complex

multipolar response.

In the latter subsection, we conduct a more systematic study to quantify the improvement

in the predictions of optical coefficients resulting from a non-local MM. While the benefits

of using non-local constitutive relations have been established in prior research, only a

limited number of examples have been studied so far [65, 176]. Moreover, accurately

determining the improvement resulting from varying the typical length scale relative to

the wavelength has proven challenging. Analyzing exact structures like fishnet material

or simpler metamaterials such as spheres on a cubical lattice is difficult due to changes

in geometry affecting the entire optical response of the unit cell. Therefore, we aim to

investigate the possibility of homogenizing the potentially simplest metamaterial [177, 178],

electric dipolar lattice, using both local and non-local constitutive relations when the period

tends to be comparable to the wavelength.

In addition to the superiority of the SSD models at longer lattice periods, We also observe

a surprising breakdown of the ability to homogenize the metamaterial at shorter periodicity.

This unexpected failure occurs when energy is transported across the lattice due to a well-

pronounced near-field interaction among the particles forming the lattice. This suggests that

the period should not just be much smaller than the operational wavelength to homogenize

a metamaterial, but for a given size of the inclusion, there is an optimal period.

All the results for the isotropic homogeneous medium are obtained using the parametric

fitting procedure outlined in Section 4.1.1 and a suitable homogenization model from

Chapter 3. Our analysis shows that by examining the homogenized arrays, we can gain

insights into their behavior and identify their key properties. Through this analysis, we seek

to gain a better understanding of these structure’s behavior and advance our knowledge of

the relationship between geometry and optical response. The pictorial representation of

the general homogenization idea can be found in Fig. 4.2. Nevertheless, it is important to

note that the techniques used and the corresponding insights drawn from this study can be

applied to any mesoscopic centrosymmetric slab structures, regardless of the scatterer’s

shape [179–181].

It should be noted that the results presented in this section of the thesis have already been

published in Ref. [182]. I would like to express my gratitude to Yannick Augenstein for his
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Figure 4.2.: This figure shows the transition from an inhomogeneous metamaterial, of
peridicity Λ, to an optically equivalent homogeneous slab described with effective material
parameters ε, µ, γ, τ , etc., up to an arbitrary order. An optical excitation, illustrated by
the blue-colored cloud, emanates from the spheres but spreads across the entire MM. It
is used to indicate a long-range interaction among the constituting scatterers.

.

valuable contributions and discussions that aided in the development of the optimization

algorithm utilized in this section of the thesis.

Please note, the findings and insights highlighted in the following three subsections of the

thesis have been previously reported in [182]

4.2.1. Pure Electric Dipolar Scatterer

To model the actual metamaterial (MM), we utilized the technique outlined in Section 4.1.2.

Our initial example involves a MM constructed from a sphere, modeled as a pure electric

dipole in air. The polarizability of this sphere is described by a resonance frequency of(
ke

0d

)
iso

= 6.823 µm−1, an oscillator strength of α0e
q = 0.5×

(
6π
√

2c0
)
, and an Ohmic loss

factor of σ0e
d = 0.1 THz. The characteristic polarizability is displayed in Fig. 4.3(a). The

MM is made by arranging this sphere periodically along the XY-plane with a periodicity

of Λ = 300 nm. After utilizing the approach outlined in Section 4.1.2 to determine the

referential optical coefficients Rdata and Tdata as a function of frequency (k0) and incidence

angle (θ), we proceed to initiate the homogenization procedure through implementation of

the parameter retrieval technique detailed in Section 4.1.1.

To put it in simpler terms, the objective of this study is to assess the ability of all three

homogenization models, WSD,SSD-γ and SSD-τ , to accurately predict the reflection and

transmission coefficients as compared to the actual metamaterial. This is done by evaluating

the error function Eq. (4.3) as a qualitative measure. i.e., the homogenization model that



Chapter 4. Results and Discussion 67

Figure 4.3.: (a) The magnitude and phase of the electric dipolar polarizability are depicted
for the first example. (b) The error function is plotted in logarithmic scale and as a
function of the frequency that was considered when homogenizing the MM at a lattice
with a period of Λ = 300 nm. Three different models, the WSD model (red), SSD-γ
model (green), and SSD-τ model (violet), are used to homogenize the MM. The error
function indicates the accuracy of the homogenization. The frequency domain where
homogenization may not be entirely reliable due to significant anisotropy is indicated by
the shaded gray region. The Lorentzian resonance at frequency

(
ke

0d

)
iso = 6.823 µm−1 for

the isolated particle is represented by the black dashed line.

produces the smallest error function value is considered to have the most accurate prediction.

Fig. 4.3 (b) gives the corresponding results for the electric dipole example. The dashed line

indicates the resonance frequency of the isolated sphere as
(
ke

0d

)
iso

. The shaded region

beyond
(
ke

0d

)
iso

indicates frequencies where the system is less isotropic due to symmetry

breaking in the third dimension and thus difficult to homogenize. This is a consequence of

using a single-layer mesoscopic metamaterial instead of a stacked version, which causes

a significant difference between the effective material parameters in the normal direction

and those in the transverse directions. As a precaution, we examine the T-matrix of the

complete MM, as discussed in the works [183] and require identical Mie coefficients in the

{x, y, z} directions across the frequency spectrum k0 for an expected isotropic structure.

If any deviations from isotropy are observed, the corresponding frequencies are excluded

from the analysis.

We begin by analyzing the considered MM using the WSD model. The results presented in

Fig. 4.3 (b) indicate that the WSD model exhibits larger errors as compared to both SSD

models, across all frequencies that permit homogenization. Particularly, as we approach the

resonance frequency, we observe a significant increase in the error. This is an anticipated

outcome because the resonance leads to a spread of excitation throughout the lattice,

indicating a pronounced non-local behavior. The non-local behavior caused by resonance
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cannot be captured by a local constitutive relation. Therefore, the SSD model is investigated

at the considered frequency range.

As shown in Figure 4.3 (b), homogenizing with either the SSD-γ model (green curve) or the

SSD-τ model (violet curve) results in the same value for the error function. This suggests

that a fourth-order homogenization model is sufficient for accurately predicting the optical

properties of the studied metamaterial, and thus there is no need to use higher-order spatial

dispersion.

Figure 4.4.: The figure shows the effective material parameters obtained using the WSD-γ
model (in red), the SSD-γ model (in green), and the SSD-τ model (in violet) plotted as
a function of frequency k0, for a mesoscopic metamaterial composed of a periodic array
of spheres exhibiting an electric dipole response. The gray shaded area corresponds to
a frequency range where the homogenization process is not entirely reliable due to the
emergence of strong anisotropy in the system.

To delve deeper into this matter, we will examine the real and imaginary components of

the effective material parameters, as presented in Fig. 4.4. It’s important to note that the

parameteric space for ℑε was confined to positive real numbers to maintain passivity.

At first glance, we notice that all the three homogenization models exhibit a Lorentzian

resonance in the electric permittivity ε. This aligns well with the Lorentzian characteristics

of the electric dipolar resonance demonstrated by the meta-atom in Fig. 4.3(a). Additionally,
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we also note the presence of a faint anti-resonance in the permeability µ. Despite some

variations in magnitude between the WSD and SSD models, the dispersion in these material

parameters remains qualitatively consistent across all three constitutive relations.

In addition, we found that adding the non-local terms γ and τ to the constitutive relation

has little effect on the local parameters ε and µ. However, as shown in Fig. 4.3(b), employing

the SSD models in the homogenization process improves the accuracy of the optical response.

This indicates that any non-local effects present in this MM are fully represented only by

the additional eigenmodes that are excited in the homogeneous equivalent medium when

using a non-local term in the constitutive relation, as discussed in Chapter 3.

Moreover, looking at the material parameters obtained from the SSD-τ model, we can

observe an insignificant τ parameter that does not affect the optical coefficients. Despite the

algorithmic retrieval procedure resulting in non-zero τ values, there is no observable impact

on the reflection and transmssion coefficients, as observed from Fig. 4.3(b). Therefore, the

inclusion of the τ parameter is unnecessary, and the SSD-γ model is sufficient for capturing

the lattice interactions among the dipolar meta-atoms. This finding is consistent with the

results depicted in Fig. 4.3(b), where the SSD-γ model (green curve) and the SSD-τ model

(violet curve) perform equally well in homogenizing the metamaterial. The error function is

almost identical when the metamaterial is homogenized with either of the two constitutive

relations.

To some extent, the results for this simple system are expected. However, to gain deeper

insights into the performance of the homogenization models, we need to test their effective-

ness on more complex systems. Thus, we will consider individual scatterers with higher

multipolar orders to increase the system’s complexity and evaluate the effectiveness of the

homogenization models.

4.2.2. Pure Electric Quadrupolar Scatterer

To push the limits of the SSD-γ model, we analyze a system consisting solely of electric

quadrupolar (EQ) scatterers. Previous research has shown that the magnetic permeability

tensor of periodic systems is significantly influenced by an increase in the quadrupolar

excitation [184–188]. As a result, higher-order spatial derivatives of the electric field tensor

are required for a complete description of the response of the periodic system.
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Figure 4.5.: (a) The magnitude and phase of the electric quadrupolar polarizability
are depicted (b) The error function is plotted in logarithmic scale and as a function
of the frequency that was considered when homogenizing the MM at a lattice with a
period of Λ = 300 nm. The homogenization is performed using the WSD model (red),
the SSD-γ model (green), and the SSD-τ model (violet). The frequency domain where
homogenization may not be entirely reliable due to significant anisotropy is indicated by
the shaded gray region. The Lorentzian resonance at frequency

(
ke

0q

)
iso

= 5.89 µm−1 for
the isolated particle is represented by the black dashed line.

To explore this scenario, we consider a spherical scatterer as before with a polarizability (αe
q)

having a resonant frequency at
(
ke

0q

)
iso

= 5.89 µm−1, oscillator strength of αe
0q

= 0.35×(
6π
√

2c0
)
, and an Ohmic loss factor of σe

0q
= 0.1 THz. The characteristic polarizability is

displayed in Fig. 4.5 (a). To describe the polarizability of the isolated particle, we create

the T-matrix using the angular momentum basis. The Mie coefficients (aq) that correspond

to αe
q can be found in the matrix components with angular momentum j = 2, while the

dipolar components (j = 1) are excluded by setting them to zero. The corresponding MM

has a periodicity of Λ = 300 nm.

In Fig. 4.5 (b), we have plotted the error function as a function of frequency on a logarithmic

scale. Our discussion now focuses on the performance of the WSD model. It is evident

that the WSD model performs poorly compared to the SSD models. Comparing to the

previously discsussed electric dipole example, the error for the WSD model is one order of

magnitude higher across the entire frequency range. The poor performance of the WSD

model can be attributed to the high amplitude of the pure EQ contribution to the overall

system response, which is much higher compared to the induced quadrupolar moments in

the ED example. Therefore, the WSD model is not suitable for accurately describing the

response of a MM composed of EQ scatterers at a homogeneous level.

Upon examining the SSD models, we notice a significant improvement in the accuracy
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of predicting the optical coefficients when using the SSD-τ model as compared to the

SSD-γ model, particularly at lower frequencies k0 < k0iso (longer wavelengths). On the

other hand, closer to k0iso , both SSD models present identical values for the error function.

This strongly suggests that the inclusion of τ in the constitutive relation leads to a better

representation of long-range lattice interactions.

Figure 4.6.: Effective material parameters for a MM made from a periodic arrangement
of spheres characterized by an electric quadrupolar response retrieved within the WSD-γ
model (red), the SSD-γ model (green), and the SSD-τ model (violet) as a function
of the frequency k0. The gray shaded area marks the frequency domain where the
homogenization is not entirely reliable because of an emerging strong anisotropy.

To quantitatively judge the impact of these additional material parameters, it is necessary

to examine the retrieved effective material parameters. In Fig. 4.6, the real and imaginary

parts of the effective material parameters for all the three models are shown as a function

of frequency. The figure legend dictate the curve representing each models.

After examining the material properties retrieved with the WSD model is incapable of

giving a precise fit for the imaginary component of electric permittivity while adhering to

the passivity condition of ℑε > 0. The model appears to saturate near zero, rendering
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it impossible to draw any significant insights about the material. On the other hand,

when analyzing the results obtained from the SSD models, it is observed that the SSD-τ

model significantly re-normalizes the non-local parameter γ, while ε and µ remain relatively

unchanged. This contrast in the γ value can be attributed to the improvement observed in

the error function depicted in Fig. 4.5 (b). Therefore, employing the SSD-τ model leads to

a renormalization of the γ parameter, resulting in a better representation of long-range

lattice interactions.

To further investigate the long-range effects observed in the MM and its impact on the τ

parameter, we systematically modify the oscillator strength αe
0q

and homogenize the MM

made of these scatterers. The amplitude |αe
0q
| of the EQ is varied while maintaining the

polarizability phase ϕ and consistency with all other parameters for the scatterers in the

MM as shown in Fig. 4.5.

Subsequently, we evaluate the absolute values of τ in the homogenized MM and plot the

results in Fig. 4.7(b). The plots clearly indicate that |τ | increases as the EQ’s contribution

increases. Hence, for an effective description of this MM that carry a strong EQ, it is

essential to incorporate τ in the constitutive relation, at a minimum.

Figure 4.7.: (a) Amplitude and phase of the electric quadrupolar polarizability of the sphere
considered in the second example but with a modified oscillator strength αe

0q
. The black

dashed vertical line represents Lorentzian resonance at frequency
(
ke

0d

)
iso = 5.89 µm−1 for

the isolated particle. Please, note the phase is the same in all examples, hence there is only
a single line for the phase. (b) The absolute value of the effective material parameter τd
from the retrieval as a function of the oscillator strength αe

0q
in the considered frequency

range.

In conclusion, both the pure electric dipole and the pure electric quadrupole examples

highlight how crucial it is to carefully choose a homogenization model that is appropriate

for the multipolar order of the MM in question.
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4.2.3. Spherical Scatterer with a Combination of Multipoles

Figure 4.8.: (a) This figure shows the amplitude and phase of the polarizabilities of a
sphere characterized by electric and magnetic dipole and electric quadrupole moments.
At k0 = 5.63 µm−1, the polarizabilities all exhibit the same resonance frequency, but with
different oscillator strengths. (b) The error function is plotted in logarithmic scale and as
a function of the frequency that was considered when homogenizing the MM at a lattice
with a period of Λ = 300 nm. The error function is shown for three homogenization
models: the WSD model (in red), the SSD-γ model (in green), and the SSD-τ model (in
violet). (c) The absolute values of the reflection (|Rdata|) and (d) transmission (|Tdata|)
are shown as a function of the incidence angle (θ) and the frequency (k0) for the actual
MM of periodicity Λ = 300 nm.

Finally, we intend to access the possibility of homogenizing a MM made from a scatterers

that sustaines a combination of different resonant multipolar contributions. The scatterers

are characterized by the electric dipole, magnetic dipole, and electric quadrupole moments,

each with Lorentzian polarizabilities centered at the same frequency
(
k

e/m
0d/q

)
iso

= 5.63 µm−1.

The associated oscillator strengths are given in the order of electric dipole, magnetic dipole,

electric quadrupole as α
e/m
0d/q

= {0.5, 0.15, 0.4}×
(
6π
√

2c0
)
, while the damping parameter is

kept the same for all multipole moments at σ
e/m
0d/q

= 0.1 THz for all the considered moments.

This particular example provides an opportunity to explore the homogenization for a

metamaterial that exhibits contributions from both induced and pure electric quadrupole

effects. The amplitude and phase of the multipolar polarizabilities for the spherical scatterers

with varying resonant multipolar contributions are depicted in Fig. 4.8 (a).
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To showcase the strong interaction among the multipoles, we depict the absolute reflection

and transmission in Fig. 4.8 (c) and (d) as a function of frequency k0 and incidence angle

θ, which are computed for the actual metamaterial. In Fig. 4.8 (d), we observe that

the primary resonance features of the infinite periodic array redshift from the resonance

frequency of the individual particle, indicating significant lattice interactions. Unlike the

examples discussed earlier, which did not involve the combination of electric quadrupole

(EQ) and magnetic dipole (MD) moments, we conjecture that more intricate interactions

between multipole moments must be taken into account, as implied by the spectral sharp

features, such as the absolute value for the reflection coefficient |R| → 0, in Fig. 4.8 (c)

emerging at lower frequencies, indicating long-range interactions.

This particular configuration demonstrates a robust interaction between the intrinsic

multipole moments resonating at the same frequency, as reported in [183,189]. Therefore,

it provides an excellent illustration to examine the limitations of all three considered

homogenization models.

We begin our analysis by examining the error function obtained from each model as a

function of frequency. As shown in Fig. 4.8 (b), the WSD model once again shows very

high values for the error function, particularly at high frequencies. This is expected as

the present example has dominant spatial dispersion effects. On the other hand, the SSD

models show a large improvement in the prediction by at least two orders of magnitude as

compared to the WSD model. Based on these results, it can be concluded that the WSD

model is unsuitable for accurately describing complex metamaterials within a homogeneous

framework. The physical reasoning for these trends would be discussed later when studying

the material parameters.

An analysis of the SSD models (shown by the green and violet curves) at lower frequencies

(k0 < 5.63 µm−1 or longer wavelengths) in Fig. 4.8 (b) indicates that the SSD-τ model

outperforms the SSD-γ model significantly. This observation emphasizes the importance of

using SSD-τ over SSD-γ to obtain more accurate effective material parameters.

Further, We present the effective material parameters obtained from all three homogeniza-

tion models in Fig. 4.9. The insets in the figure show the fine features in the EMP, with

the non-local parameters normalized by the corresponding powers of k0.

The effective permeability parameter µ in the WSD model displays a Lorentzian resonance,
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Figure 4.9.: The figure depicts the effective material parameters obtained using three
different models: the WSD model (in red), the SSD-γ model (in green), and the SSD-
τ model (in violet) plotted against frequency k0. The metamaterial studied in this
analysis comprises a periodic arrangement of spheres exhibiting electric dipolar, electric
quadrupolar, and magnetic dipolar responses (see Fig.4.8(a)). The insets present the
same data but with the y-axis of both γ and τ parameters scaled by powers of frequency
k0 (i.e., γ × k4

0 and τ × k6
0) to emphasize the sharp features of the non-local material

parameters.
.

indicating the presence of the intrinsic magnetic dipole moment. However, it fails to account

for lattice-induced magnetic contributions as expected from EQ resonance. Additionally,

while ℜε captures the Lorentzian shape for its resonance, indicating the presence of an

electric dipole moment, the ℑϵ curve saturates at the zero line, indicating that the WSD

model cannot provide a satisfactory fit, respecting the passivity condition ℑε > 0, for the

considered parametric space. Therefore, we conclude that the WSD model is unsuitable for

homogenizing this MM.

On the contrary, the SSD models present several notable findings. Firstly, the material

parameters ε and µ clearly demonstrate a Lorentzian resonance indicating the presence

of the resonant electric and magnetic dipole moments. Additionally, we observe a slight

blue shift in the resonance frequency corresponding to both ε and µ. The ℑγ values from

both SSD models also indicate a similar blue shift in the resonance frequency. This offset

is consistent with the blue shift observed in Fig. 4.8 (d). Thus, we can conclude that the
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intrinsic electric quadrupolar moments (EQ) and their interaction with other multipolar

moments are the cause of this blue shift in the resonance frequency.

Furthermore, as shown in Fig. 4.9, incorporating the non-local parameter τ into the

constitutive relation leads to a significant renormalization of both µ and γ relative to

the SSD-γ model. In particular, the magnetic permeability µ exhibits subtle features at

frequencies approaching the blue-shifted resonance frequency. These features arise from the

interaction between EQ and the magnetic dipole moments, which induces a weak magnetic

response in the material. Such subtle details are not captured by either the WSD model or

SSD-γ model.

Figure 4.10.: In the figure, the absolute value of reflection is plotted as a function of
frequency k0 and incidence angle θ. (a) shows the results obtained from the WSD model,
(b) shows the results from the SSD−γ model, and (c) shows the results from the SSD−τ
model. These predictions will be compared to the full-wave simulations presented earlier
in Fig. 4.8 (c).

Once we have the effective material parameters, we can now calculate the reflection and

transmission coefficient of both frequency k0 and angle of incidence, θ ∈ (0, 89◦]. The

corresponding absolute reflection coefficients are depicted in Fig. 4.10. This will allow us to
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evaluate the spectral features captured by each model compared to full-wave simulations

already shown in Fig. 4.8 (c). Consistent with our prior analysis of the error function and

material parameters, the reflection spectra for the WSD model in Fig. 4.10 (a) lacks any

notable spectral features.

To examine the distinct spectral features displayed in Fig. 4.8 (c), as in |R| → 0, that stem

from long-range lattice interactions in the MM, we concentrate on frequencies below k0iso

and angles θ ranging from 30◦ to 75◦ for the SSD models. An initial inspection reveals that

the reflection spectra of the SSD-γ model in Fig. 4.10 (b) do not display any prominent

features obtained from Fig. 4.8 (c), whereas the spectra obtained from the SSD-τ model in

Fig. 4.10 (d) exhibit some of these distinct characteristics. The ability of the SSD-τ model

to capture several of these prominent spectral features can be once again atributed to the

renormalization of the effective material parameters that happens when τ is introdcued

into the constitutive relation. Therefore employing the SSD-τ model promises improved

accuracy for the predicted optical coefficients.

Despite the absence of the unique features in the reflection spectra of the SSD-γ model, a

close examination indicates a noticeable dip in the reflection coefficient as the frequency

approaches k0iso , which matches the trend observed in the SSD-τ plot shown in Fig. 4.10(c).

Additionally, the error plots depicted in Fig. 4.8(b) demonstrate a narrow frequency range

where there is no clear benefit in using the SSD-τ model. Referring back to the material

parameters presented in Fig. 4.9, we observe that the ε values overlap for both the SSD

models for a narrow frequency range towards the blue shifted resonance frequency. This

behavior indicates the presence of a dipole-like resonance that is accounted for equally by

both the SSD models. This observation aligns with our conclusion from the electric dipole

example discussed in Section 4.2.1. Therefore, we can conclude that the γ model predicts

only the pure dipolar resonances near k0iso found in Fig. 4.10(c) by limiting itself to the

effects up to the first-order approximation of the effective quadrupolar moment.

As our final results for this study, we depict the predicted optical coefficients of the SSD

models, with a focus on the angular-dependent absolute reflection coefficient, given in

Fig. 4.11 (a), and absolute absorption + transmission coefficients, given in Fig. 4.11 (b), at a

specific free space wavelength λ = 1651 nm. This wavelength demonstrates a Brewster-like

effect that emerges from the interplay between the multipolar fields, as described in [46].

The analysis reveals that even though the SSD-τ model accurately captures sharp features
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Figure 4.11.: The figure depicts the variation of absolute reflection coefficient (|R|) and
the sum of absolute absorption and transmission coefficient (|A + T|) with respect to
incidence angle for a wavelength of λ = 1651 nm.

at small angles of incidence, it underestimates the Brewster angle. This observation suggests

that the model does not adequately account for long-range interactions and higher-order

field gradients, and material parameters may be needed to address these issues.

In conclusion, we examined in this part of the thesis the advantage of using the non-local

constitutive relations in homogenizing metamaterials (MMs) and the significance of effective

material parameters in describing strong lattice effects that lead to non-local responses. We

also demonstrate that each effective material parameter is influenced by either the intrinsic

multipolar moments or their interactions along the lattice. Further, in all three examples

that we have considered, the WSD model or the local constitutive relations fail to capture

the essence of spatial dispersion in the medium and therefore constantly underestimate the

predictions of the reflection and transmission coefficients for the homogeneous equivalent

medium. In contrast, the SSD models perform relatively well for all three examples.

Specifically, the non-local parameter τ becomes increasingly important as the complexity of

the multipoles used to describe the meta-atom increases. This emphasizes the importance

of additional material parameters when homogenizing an optical MM with non-local effects.

Further, we learn that analyzing the scattering behavior of the meta-atom can help to

determine the appropriate truncation order for the constitutive relation. It also proposes

a rule of thumb for choosing the correct homogenization model based on the system’s

polarizability. For example, a pure mesoscopic dipole system requires at least the SSD-γ

model, while the presence of an intrinsic quadrupole moment needs at least the SSD-τ

model. By understanding the multipolar moments carried by the meta-atom and studying

the induced moments in the original MM, researchers can make an educated guess on the
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truncation order for the considered material system.

4.2.4. Determining the Lower Limit of Homogenization Methods.

The findings and insights highlighted in this subsection of the thesis have been previously

reported in Ref. [136] and were also discussed by Timon Höß in his Bachelor’s thesis entitled

"Nonlocal effects in particle arrays with multipolar resonance" at the Institute of Theoretical

Solid State Physics (TFP), Karlsruhe Institute of Technology (KIT).

Having analyzed the physical significance of effective material parameters and their de-

pendence on induced multipolar moments, we now turn our attention to examining the

reliability of non-local constitutive relations for homogenizing an electric dipolar lattice at

different period-to-wavelength ratios. Through a systematic manipulation of the parameter
Λ
λ , we investigate the extent to which these constitutive relations can homogenize the mate-

rial as the periodicity gets shorter. Our observations reveal a breakdown in homogenization

ability, regardless of the choice of the homogenization model. This breakdown can be

attributed to the spread of excitation across the lattice caused by near-field interactions

that become increasingly pronounced as lattice periods decrease. These findings challenge

the conventional belief that small lattice periods are necessary for homogenizing a given

metamaterial and suggest instead an optimal period at which homogenization is achievable.

Once again we assume a spherical scatterer of electric dipolar type surrounded by air. The

polarizability is characterized by a resonance frequency of
(
ke

0d

)
iso

= 6.3 µm−1, oscillator

strength of αe
0d

=
(
6π
√

2c0
)
, and the absorption in the particle is given by the Ohmic

loss factor σ0e
d = 0.1 THz. The corresponding amplitude and phase of the electric dipole

polarizability are depicted in Fig. 4.12(a). Then, we construct an array of these scatterers

with infinite repetition, arranged in a square lattice pattern with a periodicity denoted by

Λ.

To calculate the optical response of the actual metamaterial, we utilized a full-wave solver

based on the T-matrix method described in Section 4.1.2. We considered a frequency

range that is spectrally close to the resonance and determined the complex reflection

and transmission coefficients as a function of the frequency (k0) and angle of incidence

θ ∈ (0◦, 89◦] for selected periodicities (Λ).The simulation parameters included TM-kx

polarization with a plane wave incidence, and the calculations were performed for 100
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Figure 4.12.: (a) Amplitude and phase of the electric dipolar polarizability of the
sphere considered in the initial example. (b) The amplitude of the reflection coeffi-
cient, |Rdata(k0, kx = 0)|, as a function of the frequency and the lattice constant as
calculated using the general Mie method described earlier.

different incident angles and 240 frequencies ranging from k0 = 3 µm−1 to 8.4 µm−1, while

varying the periodicity from 100 nm to 400 nm.

Once we have the target data, we employ the parameter retrieval method discussed in

Section 4.1.1 to obtain the material parameters and the homogeneous description such

that the optical coefficients match to those from the full-wave simulation in an optimal

sense, i.e., with minimal error function δ. Here, using the SSD-τ model falls redundant as

the τ parameter has no significant influence on an array made from pure electric dipole

scatterers, as already discussed previously in Section 4.2.1. Therefore, we only use the

constitutive relation given by WSD and SSD-γ.

In order to see the salient optical features of the metamaterial being studied, the absolute

reflection coefficient, |Rdata|, is evaluated at normal incidence as a function of frequency

(k0) and periodicity (Λ) and presented in Fig. 4.12(b). When the periodicity is large, the

resonance frequency of the meta-atom is maintained at
(
ke

0d

)
iso

= 6.3 µm-1. As the lattice

period is reduced, the amplitude of the reflection spectra increased, and a greater red

shift relative to
(
ke

0d

)
iso

in the resonance for the metamaterial is observed, which can be

attributed to the increased filling fraction. This study enables us to assess the effectiveness

of the considered homogenization models in capturing these salient characteristics.

Our analysis of the metamaterial begins with a study of the WSD model, and Fig. 4.13

displays the retrieved effective material parameters using this model. As the considered
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Figure 4.13.: The retrieved effective material parameter obtained for the WSD model
is presented in terms of its real and imaginary components. The electric permittivity
ε(k0) is displayed in the top figures, while the magnetic permeability µ(k0) is shown in
the bottom figures.

structure is an electric dipole array, the permittivity ε(k0) exhibits a strong resonance with

high absorption near the isolated particle resonance at
(
ke

0d

)
iso

= 6.3 µm-1, resulting in a

real part of the permeability µ that remains close to 1. At frequencies beyond
(
ke

0d

)
iso

,

a secondary resonance is acquired by the permeability but is missing for the electric

permittivity ε. This resonance displays a blue shift as the periodicity is further decreased.

The observed characteristic can be linked to the excitation of an anti-symmetric mode

in the dipole array leading to dipole moments in neighboring particles to oscillate out of

phase by π. Such oscillations produce a portion of a ring current which is reflected as

the magnetic permeability in the bulk. The dense packaging of the scatterers sustains a

pronounced near-field interaction on reducing the lattice constant, and these excitations

spread across the lattice, requiring the optical response to exhibit non-local behavior. This

constitutes the motivation to investigate the SSD-γ model at the considered parameter
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range.

Figure 4.14.: The amplitude of the reflection coefficient |Rdata| calculated using the
T-matrix method at different angles of incidence. (a) represents the value at normal
incidence. (b) and (c) show the value at angles of 30◦ and 60◦, respectively. The figure
highlights the emergence of a secondary resonance with increasing angle of incidence.

To reveal the emergence of the symmetric and anti-symmetric modes more clearly, we

plot |Rdata| at 3 different incidence angles: θ = 0◦, 30◦, and 60◦ as given in Fig. 4.14.

In Fig. 4.14 (a), the case for normal incidence is illustrated, where a red shift in the

resonance frequency relative to
(
ke

0d

)
iso

(dashed line) is observed as the lattice period

decreases. The observed shift can be explained by the in-phase oscillation of the neighboring

dipoles mimicking the symmetric mode of the coupled oscillator. This apparent red-shift

is anticipated based on ordinary hybridization theory [190, 191]. On the other hand,

Fig. 4.14(b) and Fig. 4.14 (c) depict a secondary resonance that develops corresponding to
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the out-of-phase oscillation of the neighboring dipoles, as in the anti-symmetric mode. The

anti-symmetric mode results in a change in the ring current, hence its appearance in the

effective permeability is expected.

Figure 4.15.: The figures (a) and (b) show the error function δ(k0) in logarithmic scale for
a range of periodicity Λ as a function of frequency, with (a) corresponding to the WSD
model and (b) to the SSD-γ model.

As we now know our goal, we shall now proceed to homogenize this MM with the SSD-γ

model by using our parameter retrieval method as discussed in Fig. 4.1. We compare

the error function δ(k0) in the logarithmic scale of both the SSD-γ model and the WSD

model for the considered range of periodicity in Fig. 4.15. As expected, the SSD-γ model

provides a more accurate estimate of the optical coefficients, with the improvement being

at least two orders of magnitude for the given frequency range. Specifically, at frequencies

k0 >
(
ke

0d

)
iso

, the SSD-γ model is very much more reliable at predicting the secondary

resonance than the WSD model. One can arrive at the same observation by additionally

studying Fig. 4.16, where we plot the summation of the error function across the considered

frequency range as a function of the period.

Furthermore, the WSD model exhibits a drastic deterioration at larger periods, which is

anticipated due to the characteristic ratio Λ
λ dictating an increase in the degree of spatial

dispersion with periodicity. In contrast, the SSD-γ model is capable of achieving satisfactory

material homogenization, regardless of the period.

As we decrease Λ, the SSD-γ model continues to outperform the WSD model, but we also

observe a range of periodicity (Λ = 200 nm− 300 nm) where both models exhibit relatively

good performance. This is somewhat anticipated since homogenization accuracy is expected

to increase when the period is significantly smaller than the operational wavelength.



84 Doctoral Dissertation:

Figure 4.16.: This figure depicts the sum of the error function over the considered frequency
range plotted as a function of lattice period. The red squares denote the WSD model
and the green square denotes the SSD-γ model.

As we further decrease the period, a surprising observation emerges: both the SSD-γ and

WSD models demonstrate inadequate performance, with rapid deterioration. The plot

shown in Fig. 4.16 indicates the existence of a critical periodicity value, represented by

Λcritical = 200 nm, below which the homogenization itself becomes suboptimal. Notice

that, these Λ values are within the range where the anti-symmetric modes are stimulated,

resulting in incomplete consideration of the secondary resonance by the effective parameters

in the SSD-γ model. The inability to homogenize the MM at this range can be explained

as follows. When the filling fraction is high, the near field interactions become dominant.

Therefore enabling strong coupling between adjacent particles allows for the individually

polarized particles to transport energy over longer distances within the material. This

coupling mechanism has been utilized before in [192, 193] for waveguiding. While it is

understandable that the local constitutive relation cannot homogenize interactions over

long distances, it is unexpected that even the SSD-γ model fails to be insufficient. As a

result, the range of validity for the analyzed models is restricted, and their ability to provide

a comprehensive effective description of the slab is limited for lower periodicities. Therefore,

Λcritical can be deemed as the minimum periodicity limit for successful homogenization of

the electric dipole slab.

In conclusion, we investigate the ability of a non-local constitutive relation in accounting

for the optical response of an electric dipole array by systematically varying the lattice

constant. We show the reliability of the non-local model for all the considered frequencies
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and lattice constants. The non-local constitutive relation performs always better when

compared to its local counterpart and is particularly able to capture the optical response

at the effective level when the period tends to be rather large. On the other hand, at

very small periods where the spread of excitation caused by near-field interactions among

adjacent particles are pronounced, both relations became less optimal. The study also

revealed an optimal period for homogenization, i.e., when the period got smaller, the spread

of near-field excitation in essence denies reasonable homogenization. This insight clearly

suggests that in addition to the constraint on the Λ
λ < 1, for each inclusion there is an

optimal period.

4.3. Effective Transition Matrix: Teff- matrix

The findings presented in this subsection of the thesis were published earlier in Ref. [194].

I would like to express my gratitude to Benedikt Zerulla and Dr. Ivan Fernandez-Corbaton

for their valuable contributions and discussions that aided in the development of this section

of the thesis.

Identifying material parameters in the constitutive relation traditionally involves a fitting

procedure, which can be challenging and is associated with various shortcomings. One

potential weakness is that a reference object is involved from the beginning. As discussed

in Section 4.1.1, Before using the fitting algorithm, the target optical coefficient must

be determined, which can be a restricting factor as it involves an additional step of

performing a full wave simulation to generate the target data. Another potential issue

is that multiple parameter sets can produce the same objective function value. While

the solution may be optimal, it is not immediately clear whether the retrieved material

parameters can be applied to target objects with different shapes. For instance, machine

learning methods demonstrate a non-uniqueness issue [55], indicating that measurements

can often be adequately approximated by various sets of material parameters [78]. The

validity of all these different parameter sets for different objects is yet to be established.

To circumvent such limitations, we present a new semi-analytical method for homogenizing

materials in three dimensions. Our novel homogenization method is based on a linear

operator that accurately describes the linear interaction of light with the bulk material,

i.e., the infinite 3D lattice of scatterers. This linear operator is represented in the form

of an effective T-matrix, denoted as Teff , which is computed using the lattice vectors to
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obtain the mutual interaction and the T-matrix of a single isolated copy of the unit cell,

referred to as Tcell.

The effective T-matrix includes all the couplings due to the infinite lattice, transforming

Tcell into Teff and removing the lattice interactions. Consequently, the material response

can be described by replacing the copies of Tcell interacting with each other with copies

of Teff , which do not interact with each other. The effective T-matrix is an excellent

starting point for homogenization because it is shape-independent, decouples the unit cells,

and provides an exact description of the light interaction with the 3D lattice of scatterers

forming the material. Notably, Teff does not suffer from spatial dispersion.

In our research, we present a bijective connection between the dipolar component of Teff ,

denoted as Tdip
eff , and the 6×6 model describing the local constitutive relations of the

effective medium. Specifically, Tdip
eff contains 36 parameters and is directly related to the

effective material parameters in the constitutive relations. These material parameters

are exclusively determined by the 3D lattice and scatterers present in the unit cell and

are not affected by the shape of the target object. Additionally, they account for all the

modifications induced by the lattice on the dipoles and are free from spatial dispersion.

When compared to other methods, neither retrieval nor fitting procedures are needed, and

the actual assignment of effective properties is a straightforward computation using the

T-matrix framework. Within one calculation, all entries of the effective material tensors

are computed.

We start with the definition of the effective T-matrix T̃eff(k∥) as discussed in Eq. (17) of

Ref. [171]. This T̃eff(k∥) describes the scattering by an object located at the origin of a

2D periodic lattice, including all lattice couplings. The effective T-matrix depends on the

component of the wave vector parallel to the lattice plane, denoted as k∥. For a 3D lattice,

the formula remains the same, but k∥ is replaced by the total wave vector k [195].

T̃eff(k) =

I−Tcell
∑
R ̸=0

C(3)(−R)eik·R

−1

Tcell, (4.9)

where Tcell is the T-matrix of an isolated unit cell. The infinite sum ∑
R ̸=0 C(3)(−R)eik·R,

which is evaluated with the Ewald summation method, includes the interaction of the

scatterers forming the material [171]. In this matrix, R is a lattice vector, C(3)(−R) is a
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matrix of translation coefficients, and k is the wave vector of the incident field. By summing

a maximum allowed multipolar order, the computation of the total electromagnetic coupling

between the unit cell located at R = 0 and all other unit cells in the infinite 3D lattice

becomes exact.

The elements of the T̃eff(k) linearly relate q(ki), the multipolar expansion coefficient of the

incident plane wave with wave vectors ki, on the unit cell placed at the origin and p(ki)

the multipolar expansion coefficient of the corresponding scattered plane waves up to an

arbitrary multipolar order. The relation reads as follows:

p̃(k) = T̃eff(k) · a(k). (4.10)

The definition of the multipolar expansion functions, also known as multipolar fields or

vector spherical harmonics, can be found in Eq. (15, S3a-S3d) of Ref. [171].

The T̃eff(k) matrix in Eq. (4.10) can only be used for a specific incident field, i.e., a plane

wave with momentum k. This is because the 3D lattice displays distinct properties when

viewed from different directions, which affects the lattice sums through the eik·R factor.

Thus, T̃eff(k) cannot be used for any other incident direction, making it a significant

disadvantage as a starting point for homogenization. In other words, if material parameters

are determined using T̃eff(k), they will be dependent on the direction of k, which is

undesirable in the context of a homogeneous medium. This issue can be mitigated if

considering a planar slab and the plane wave decomposition of the scattered field.

On decomposing the scattered field p̃ in Eq. (4.10) into plane waves, This decomposition

allows us to view Eq. (4.10) as providing one of the columns of a T-matrix in the plane

wave basis Tpw
eff , where the system is excited by a plane wave and produces scattered plane

waves. By scanning the direction of k, we can obtain the entire Tpw
eff . The next step involves

transforming Tpw
eff from the plane wave basis to the multipolar basis, which yields Teff ,

an effective T-matrix in the multipolar basis that is valid for all k directions and is not

explicitly dependent on the k direction. To compute Teff , we can adapt the procedure

described in Ref. [196]. This involves selecting a finite number of points on the k̂ sphere

(i.e., the sphere of directions of k), which can be accomplished using the method outlined

in [197]. Then, we compute the T̃eff(k) matrices corresponding to each k̂ and use Eq. (4.10)

two times for each k̂ (once for each of the two possible polarization handedness of an
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incident plane wave with momentum k). The coefficients of all the incident plane waves

ak1 , . . . , akK , and their corresponding expansions of the scattered waves p̃k1 , . . . , p̃kK , can

then be collected in a matrix equation as follows:

(p̃k1 , . . . , p̃kK ) = Teff · (ak1 , . . . , akK ), (4.11)

To obtain Teff , it is important to select a large number of points in the direction sphere, as

it should be much larger than the size of Teff . An important aspect of Eq. (4.11) is that

it ensures that the response of Teff to an incident plane wave with a specific propagation

direction k̂ is similar to the response of T̃eff(k).

Once the Teff of type Eq. (4.11) is known, we can proceed to calculate the effective material

parameters for a given homogenization model. since we are interested only in the dipolar

elements Tdip
eff , we have opted for a linear 6×6 local bi-anisotropic Condon-Tellegen model

written in the frequency domain:

D(k0)

B(k0)

 =

 εeff(k0) iκeff(k0)

−iκeff(k0) µeff(k0)


E(k0)

H(k0)

 , (4.12)

where εeff(k0) is the effective electric permittivity, µeff(k0) the effective magnetic perme-

ability, and the κeff(k0) is the effective chirality parameter describing the coupling between

the electric and magnetic fields.

The derivation connecting the 6×6 effective constitutive matrix given in Eq. (4.12) to

the dipolar part of Teff , denoted as Tdip
eff , is provided in the appendix Appendix D. Tdip

eff

consists of 36 parameters and is obtained by setting all the entries of Teff to zero, except

those that relate to the incident and scattered dipolar fields. This connection is bijective

and can be expressed as follows:

 εeff iκeff

iγeff µeff

 =

εhI3 0

0 µ0I3

+ n
(
I6 − n · q s1

[
Tdip

eff , L
])−1

× q s2
[
Tdip

eff

]
. (4.13)

The expression in Eq. (4.13), which defines the effective constitutive parameters in terms

of Tdip
eff , involves a depolarization tensor L and various functions, as described in Eq. (D.6)

in the Appendix D. For brevity, we drop the explicit frequency argument (k0). The
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term containing L accounts for the depolarization of a lattice of non-interacting scatterers,

as opposed to other methods where depolarization arises from the interaction between

scatterers [198,199].

It should be emphasized that Tdip
eff contains information not only on the dipolar component

but also the non-dipolar component of the T-matrix of the isolated scatterer Tcell. The

non-dipolar contributions emerging from the multipolar interactions in the lattice where

they couple to the dipolar terms of the effective T-matrix, and can be especially prominent

in dense lattices, even for objects that are electromagnetically small. All the changes that

arise from non-local lattice interactions to the dipolar response are accounted well within

the local material parameters. The frequency-dependent formulation accommodates any

existing temporal dispersion.

It is crucial to verify that the non-dipolar component of Teff does not dominate when

utilizing the local constitutive relation as shown in Eq. (4.12). To evaluate this, the

following equation can be used:

δ (Teff) =

√√√√√√√
Tr
{(

Tdip
eff −Teff

)† (
Tdip

eff −Teff
)}

2
(

Tr
{

Tdip
eff

†
Tdip

eff

}
+ Tr

{
T†

effTeff
}) , (4.14)

The formula above uses δ(Teff) ∈ [0, 1] where δ(Teff) = 0 indicates that Teff is equal to its

effective dipolar part Tdip
eff , which is located in the upper-left corner of the matrix, while the

rest of the entries are zero. The symbol † represents the transpose conjugate operation. To

compute δ(Teff), Tdip
eff is constructed to have the same dimensions as Teff , with the effective

dipolar part located only in the upper-left corner of the matrix. that the square root of

the sum of the absolute values, squared individually, , of every entry in the matrix A is

given by
√

Tr{A†A}, which is the expression of the Hilbert-Schmidt norm of A. In order

to ensure the appropriateness of Eq. (4.12), a very small value of δ(Teff)→ 0 is necessary.

In the following example, we demonstrate the effectiveness of the Teff methodology by

using it to homogenize an array of gold spheres arranged on a cubic lattice. This particular

example is selected to ensure that the non-dipolar terms in Teff are negligible, and that the

local constitutive relation is sufficient to describe the gold array as a homogeneous medium.
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4.3.1. Gold Spheres in a Cubic Lattice

To illustrate, let’s examine gold spheres arranged in a cubic lattice with a lattice constant

of Λ = 2.05 nm and a radius of 1 nm. The symmetry of the cubic lattice by default sets the

chirality parameter κ to be zero. The host medium that surrounds them has a relative

permittivity of εr,h = 2.25. This particular example was chosen with consideration to the

findings in Ref. [200].

The material parameters of gold utilized in this study are obtained from [71]. All multipoles

up to the N = 5 multipolar order are taken into account in the calculations. Initially, the

T-matrix of a isolated sphere is computed using Mie theory. Fig. 4.17(a) displays the ratio

of the electric dipolar entry of the effective temperature (Teff) of a material to the same

T-matrix entry of an isolated sphere Tcell. While the response of an individual sphere is

well approximated by an electric dipolar polarizability (N = 1), the interactions of the

lattice involving up to the N = 5 multipolar order significantly modify the electric dipolar

polarizability of the individual sphere. At certain frequencies, the amplitude of the electric

dipolar entry of Teff is more than twice the corresponding value for the isolated sphere in

Tcell. Incorporating higher multipolar orders in the computation of Teff is crucial due to

the significant influence of lattice-induced effects on the dipolar part of Teff . These effects

also have an impact on the effective permittivity, as demonstrated in Fig. 4.17(b), where a

very distinct resonance is observed near 800 nm. A much less notable resonance can also

be observed close to 600 nm.

We have not included the permeability as there is no significant magnetic resonance in the

frequency range under consideration. However, it has been taken into account in calculating

the responses of the slab and sphere presented below. In Fig. E.6 of the Appendix D,

we show that the dipolar part dominates the effective T-matrix (δ (Teff) < 8 × 10−5 in

the entire frequency range), indicating the importance of incorporating higher multipolar

orders in the calculation of Teff . Hence, we expect accurate results from the homogenized

models for target objects of various shapes.

Next, we examine a specific geometry: a slab of thickness 2.15 mm, equivalent to 220 layers

of gold spheres. We use the well-established Fresnel equations and standard interface

conditions to obtain the reflection coefficient of the slab using the effective material

parameters. We then compare the obtained reflection coefficients with the exact solutions
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Figure 4.17.: (a) The figure displays the ratio of the electric dipolar entry of the effective
temperature (Teff) of a material to the same T-matrix entry of an isolated sphere. (b)
The Eq. (4.13) is used to derive the effective permittivity of a lattice structure. (c) The
transverse magnetic (TM) reflection coefficient for normal incidence and (d) for oblique
incidence is presented for a 2.15 mm thick slab, equivalent to 220 layers of gold spheres.
The wave vector direction in the case of oblique incidence is k̂inc = [sin(θ), 0, cos(θ)]T,
with θ = 75◦. The results obtained using the effective parameters show perfect agreement
with the exact results for the non-homogeneous slab made from the lattice of gold spheres,
as calculated with the full-wave solver mpGMM, in both cases.

for a slab made from the actual lattice of gold spheres, calculated using the full-wave solver

Multilayer Periodic General Mie Method (mpGMM) whose functionality is described in

Ref. [171]. Since the slab is highly absorbing and thick, its transmission is zero. We use

a transverse magnetic (TM)-polarized plane wave with a wave vector in the XZ-plane,

k̂inc = [sin(θ), 0, cos(θ)]T, where θ represents the angle of incidence. We consider two

cases: normal incidence (θ = 0◦) in Fig. 4.17(c), and oblique incidence with θ = 75◦ in

Fig. 4.17(d). For normal incidence, TM polarization means polarization along the negative

x-direction. For oblique incidence, the polarization is correspondingly rotated [see e.g.,

Eq. (2.62) in Ref. [201]].

Since the material is effectively isotropic, only the x-components of the effective permittivity

and permeability are used to calculate the response of the effective slab. It is observed that
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Figure 4.18.: The cubic lattice of gold spheres analyzed in Fig. 4.17 is used to create an
object that is approximately spherical in shape. An equatorial cross-cut of the arrangement
is presented in Fig. 4.18(a), where a black circle of radius Reff = 8a = 16.4 nm is shown.
In (b), The scattered plane wave cross-section is then shown for both the cluster and the
effective sphere, and it is found that the calculated cross-section for the cluster agrees
well with the effective material parameters.

the results obtained with mpGMM are in excellent agreement with the results obtained

using the effective parameters. However, it should be noted that in the material described

above, the distance between particles is so small that electron spill-out and tunneling can

occur, and these quantum-mechanical effects are not taken into account in the effective T-

matrix. It is important to note that the T-matrix formalism is not suitable when significant

electronic currents flow across the smallest spheres surrounding the scatterers [168,202].

This example serves to illustrate the homogenization approach.

In the following analysis, we investigate a target object that has a different shape than

the previous one. Specifically, we utilize the same discrete gold-spheres-in-cubic-lattice

material to form a cluster with an approximately spherical shape having a radius of

Reff = 8a = 16.4 nm, as illustrated in the inset of Fig. 4.18(a), and presented in Fig. 4.18(b).

We compare the scattering cross-sections calculated in two different ways: using CELES [203]

to compute the exact solution for the cluster and Mie theory to calculate the cross-section

for a homogeneous effective sphere with radius Reff and effective material parameters

derived from Tdip
eff .

Cross-sections for the scattered waves is given as:
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Csca =
2π
∑

k̂sca
|Ek̂sca

|2

k2
sca,h

, (4.15)

where Ek̂sca
are the scattered field amplitudes computed with CELES, ksca,h is the absolute

value of the wave vector of the scattered plane waves in the surrounding medium, and k̂sca

is the propagation direction of the scattered plane waves.

The results reveal a good agreement between the two cross-sections, supporting the idea

that effective material parameters can be utilized regardless of the target object’s shape.

The resonance observed in the figure corresponds to a localized plasmon-polariton excited in

the sphere when the effective permittivity closely satisfies the Fröhlich condition. However,

some differences are observed in Fig. 4.18(b), which can be attributed to the non-perfect

spherical shape of the cluster. Furthermore, for homogenization techniques to be applicable,

a cluster must have a sufficiently large number of unit cells, and some inaccuracies may

arise due to having a finite number of spheres in the cluster.

In conclusion, we present a method for homogenizing artificial materials composed of

three-dimensional lattices of electromagnetic scatterers. The homogenization process is

based on the non-spatially dispersive yet exact response of the discrete material, which

includes all lattice interactions. By truncating to dipolar order, the material parameters of

the homogeneous effective medium are determined without relying on any specific shape of

a target object. Our results demonstrate that the effective homogeneous models accurately

predict the electromagnetic response of finite objects made from the actual 3D lattice

of scatterers, regardless of the object’s shape. Our findings also demonstrate that the

electromagnetic behavior of finite objects constructed from the real 3D lattice of scatterers

can be accurately predicted by the corresponding effective homogeneous models, regardless

of the target object’s shape. The only significant approximation in this method is the

truncation to dipolar order, which imposes a small difference between the exact description

of the discrete material and its dipolar part. This condition is not a strict limitation on the

Teff formalism but rather depends on the type of material and the choice of constitutive

relation for the homogenization procedure.

We believe that our method for homogenizing artificial materials made from three-dimensional

lattices of electromagnetic scatterers will prove valuable for designing photonic devices
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and interpreting experimental measurements. This approach is especially well-suited for

objects created using three-dimensional laser printing and those containing structured

molecular materials. Going forward, a promising extension of this method would involve

incorporating quadrupolar orders of the exact response in the homogeneous model. By

doing so, we can expand the range of materials that can be homogenized while considering

higher orders than the dipole.



5. Summary

In this thesis, a novel approach for describing homogenized metamaterials in an effective

manner is presented. The method assumes a nonlocal response in order to determine

effective properties that can replicate the full wave response of the actual metamaterial,

including all its fine details, while still treating the metamaterial as homogeneous. To

achieve this, nonlocal constitutive equations are advocated for, which go beyond the local

equations that are commonly used to describe metamaterials. One of the key contributions

of this work is the establishment of an understanding of these effective parameters and

their meaning.

To linearly relate the displacement field D(k, k0) to the electric field of light E(k, k0),

the thesis proposes the use of a Taylor expansion of the nonlocal kernel R(k, k0) in the

Fourier space. Traditionally, the curl form of Maxwell’s equations was used to express the

constitutive relation through a Taylor expansion of the nonlocal response function, leading

to differential operators also having the curl form. However, this consideration was never

formally proven. As a result, the thesis presents its first contribution by proving, on analyt-

ical grounds, that the effective constitutive relation can only be reduced to curl-differential

operators. The findings presented in this work have two main implications. Firstly, they

provide a new justification for the definition of the curl-based special constitutive relation

used in prior works [113, 118, 136]. Secondly, the tensor coefficients can be decomposed

into dimensionless matrix coefficients and Levi-Civita tensors by transitioning to the dual

space representations of both symmetric and antisymmetric tensors. The derivation is

not rigorous, but the arguments can be proven, which opens up possibilities for further

exploration. Finally, the new findings enable the tensor form of the constitutive relations

to be rewritten into a more practical form, which facilitates the evaluation of the interface

problem.

95
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In Chapter 3, we study the dispersion relation by solving the wave equation for the general

constitutive relation in the Fourier frequency space. This allows one to study the bulk

properties of the MM in terms of an eigenmode analysis. Furthermore, to connect the

constitutive relation with a prescribed incident plane wave, the interface conditions are

derived using a generalized formulation of Maxwell’s equations. Based on such interface

conditions, Fresnel expressions are then obtained, which predict the amplitude of the

reflected and transmitted plane wave when a slab of such a nonlocal metamaterial is

illuminated. The comprehensive analytical expression derived in this chapter can be used

to characterize both chiral and achiral (centrosymmetric) metamaterials. Our approach

allows in-depth analysis of metamaterials with strong spatial dispersion and is applicable

to a wide range of metamaterials.

Chapter 4 discusses two efficient methods for homogenization of optical metamaterials.

The first method involves using parameter retrieval techniques to assign effective material

parameters by treating the metamaterial as a bulk material. A Maxwell solver is introduced

to predict the wave properties of the eigenmodes within the material domain, and a

least-square fitting algorithm is coupled with it to conduct the parameter retrieval process.

With this procedure, we examine our initial example, which is a non-local isotropic meta-

material composed of scatterers that maintain either an electric dipole, electric quadrupole,

or both an electric dipole and quadrupole moments, along with a magnetic dipole moment.

We apply three homogenization models (WSD, SSD-γ, and SSD-τ) to homogenize the MM

in this example. The quality of these homogenization models is assessed using an error

function δ, which quantifies the difference between the predicted and actual reflection and

transmission coefficients of the bulk material. Several conclusions are derived from this

study.

Firstly, this study explores the use of non-local constitutive relations in homogenizing

metamaterials and demonstrates the significance of effective material parameters in de-

scribing strong lattice effects that lead to non-local responses. The study also shows that

the WSD model fails to capture the essence of spatial dispersion in the medium, while the

SSD models perform relatively well. Secondly, we learn that, the analysis of the scattering

behavior of the meta-atom can help determine the appropriate truncation order for the

constitutive relation. For instance, to fully understand the optical behavior of a basic

mesoscopic electric dipole system, the SSD-γ model is necessary, while the presence of
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an intrinsic electric quadrupole moment requires the SSD-τ model to capture its optical

behavior accurately at an effective level. Additionally, our observations indicated that the

material parameter τ becomes more important as the complexity of the multipolar mo-

ments utilized to describe the meta-atoms increases. We attribute this phenomenon to the

strong multipolar interaction present in the actual metamaterial, which manifests as strong

spatial dispersion or non-locality in its homogeneous counterpart. Thus, understanding the

multipolar moments carried by the meta-atom can aid in making an informed estimate of

the appropriate truncation order for the constitutive relation for the material system under

consideration.

As our second example of the parameter retrieval method, we examine the use of the

non-local constitutive relation in homogenizing a metamaterial whose period-to-wavelength

ratio is systematically varied. Our findings indicate that the non-local models are both

stable and reliable in calculating the correct effective material parameters and optical

coefficient at larger lattice periods. But for shorter lattice periods, even homogenizing

with the non-local constitutive relation can be difficult and unreliable. This is due to the

increased packing fraction in the metamaterial as the lattice period is reduced, resulting in

an increase in near-field interactions among the meta-atoms that spread over a long range.

Although this effect mimics the properties of strong spatial dispersion, our study suggests

that even non-local models fail to account for the spread of excitations due to near-field

effects. We finally conclude from this study that, there is a critical lattice period denoted

by Λcritical = 200 nm for the considered MM, below which homogenization makes no sense.

In the latter part of Chapter 4, we present a new semi-analytical method based on the

T-matrix to homogenize a metamaterial. We introduce a new linear operator called the

effective transition matrix, or Teff -matrix. The elements of the Teff -matrix linearly connect

the multipolar expansion coefficient of the incident plane wave with wave vectors on the

unit cell located at the origin and the multipolar expansion coefficient of the corresponding

scattered plane waves up to an arbitrary multipolar order. Here, we develop the Teff-

matrix to encompass the full material properties, including interactions, while remaining

independent of any lattice information such as shape. Thus, a complete Teff-matrix

provides a comprehensive electromagnetic characterization of the periodic metamaterial

under consideration. One major advantage of using the Teff method instead of parameter

retrieval methods is that it allows for the calculation of effective material parameters
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without the need for a specific target object, as long as the T-matrix of the individual

meta-atoms is fully known. Although the Teff -matrix is exact upto an arbitrary multipolar

order, we restrict our analysis to the local constitutive relation for convenience. Thus the

only significant approximation in this method, at the moment, is the truncation of the

Teff -matrix to dipolar order, which imposes a small difference between the exact description

of the discrete material and its dipolar part.

In addition, we demonstrate the utility of the Teff -method by homogenizing a 3D isotropic

metamaterial composed of gold nano-spheres. The effective material parameters ε and

µ, as well as the corresponding reflection and transmission coefficients, are computed

and compared to those obtained from a complete wave solution. The results show that

the effective homogeneous models accurately predict the electromagnetic response of the

actual metamaterial. Furthermore, we utilize the effective material parameters calculated

previously to construct a new target object with an approximate spherical shape of radius r.

To validate our findings, we calculate the scattering cross section of the actual metamaterial

using CELES and compare it with that of the homogeneous equivalent computed using the

Teff-matrix. The two cross sections are found to be in good agreement, indicating that

the homogeneous medium can be used to construct a new lattice. The Teff method shows

great potential in designing and characterizing metamaterials with considerably less effort.

The technique and results presented here are shown to expand the capabilities of the

effective medium theory into the strong spatial dispersion regime. Additionally, the tools

and methods developed in this project can be readily applied to the characterization of

metamaterials exhibiting sixth-order spatial dispersion.

An interesting avenue for future research, building upon the findings of this thesis, would

involve investigating spatio-temporal metamaterials that exhibit either spatial non-locality,

temporal non-locality, or both. Local time-varying metamaterials have demonstrated

significant potential, and we anticipate that expanding into the non-local regime would

reveal novel and compelling physics. Another possible field for exploration, would be to

extend the Teff method to encompass non-local effects, which would prove beneficial in

dealing with meta-atoms featuring arbitrarily large multipolar orders. Additionally, the

techniques presented in this thesis can be further applied within the framework of machine

learning to envision a purely non-local material that could uncover exciting new physics.
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A. Expressing Levi-Civita in Terms of the Rotation Matrix

Expressing the Levi-Civita symbol ϵ in terms of the rotation matrix R̄(θ) is a bit tricky.

This is because the R̄(θ) contains both rotation and reflection components, while the

Levi-Civita is purely a measure of orientation. Nonetheless, one possible expression for the

3D Levi-Civita ϵijk in the Cartesian basis can be written as

ϵijk = 1
2
([

R̄T
x (θ)Sx

]
⊗
[
R̄T

y (θ)Sy

]
⊗
[
R̄T

z (θ)Sz

])
. (A.1)

Figure A.1.: In this figure, we see the effect of the rotation matrix R̄i(θ) on a 3D vector
r = x x̂ + y ŷ + z ẑ, where x̂, ŷ, and ẑ are the unit vectors along the Cartesian coordinate
axes. The rotation matrix Ri(θ) represents a rotation of angle θ around an axis of rotation
n with unit vector components n = (nx, ny, nz) [204]. The action of the rotation matrix
on the vector r is R̄i.ni corresponding to the change in the orientation in space w.r.t
the rotation axis specified by n. This operation is also equivalent to the action of the
Levi-Civita operator ϵijk, which can be expressed in terms of the rotation matrix.

Here, using the right-hand rule, the basic rotation matrix R̄i(θ) with i = {x, y, z} indicating

99
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the axis of rotation, that rotates any vector by an angle θ can be written as a matrix:

R̄x(θ) =


1 0 0

0 cos(θ) −sin(θ)

0 sin(θ) cos(θ)



R̄y(θ) =


cos(θ) 0 sin(θ)

0 1 0

−sin(θ) 0 cos(θ)



R̄z(θ) =


cos(θ) −sin(θ) 0

sin(θ) cos(θ) 0

0 0 1



S =


0 −nz ny

nz 0 −nx

−n2 nx 0



(A.2)

and the S matrix contains the components ni, with i = {x, y, z} of the unit vector n with

|n| = n2
x + n2

y + n2
z = 1 that defines the axis of rotation. The illustration of the action of

the rotation operator R̄(θ) is given in Fig. A.1.

Before we move forward, let us also remark on some useful properties of the Levi-Civita

symbol that will aid us:

1. The Levi-Civita symbol is also an intrinsic tensor field of a manifold, meaning that it

is independent of any particular choice of the coordinate system if the basis vectors of

the tangent space are orthonormal with respect to the metric tensor g for the chosen

orientation [Section 21.5, [205]. It is a completely antisymmetric tensor of rank d

(where d is the dimension of the manifold), and it is defined in terms of the metric

tensor and its derivatives.
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2. Transpose property of the 3D Levi-Civita indices follow

ϵijk =



1 if σ(i, j, k) is even

−1 if σ(i, j, k) is odd

0 if any index repeat.

(A.3)

3. The Levi-Civita symbol and the Kronecker delta are related by the equation:

ϵijkϵlmn =

∣∣∣∣∣∣∣∣∣∣∣
δil δim δin

δjl δjm δjn

δkl δkm δkn

∣∣∣∣∣∣∣∣∣∣∣
Using this relationship, we can derive the following expression:

3∑
l=1

ϵijlϵmnl = δjnδnj − δimδmi

Consequently, any multiplication of an even number of Levi-Civita symbols must

yield a symmetric result.

B. Centrosymmetric Metamaterial

B.1. Energy Flux Associated with the SSD Models: Poynting Vector

Formulation

In this subsection of the appendix, we provide a brief summary of the derivation of the

Poynting vector S for both the TE and TM polarization. We focus on obtaining the energy

flux through a plane in normal direction Sz = S · ẑ when the wave propagates in the ẑ

direction.

Assuming a plane wave ansatz, E(r, t) = ℜ[E(r)e−ik0t] and H(r, t) = ℜ[H(r)e−ik0t] where

E(r) and H(r) are generally complex, we have the expression for the time-averaged power

flow over a complete time cycle T in the time domain can be expressed as:

⟨S(r, t)⟩ = 1
T

∫
T

(E(r, t)×H(r, t))dt. (B.1)
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In the frequency domain, the expression for the Fourier transform of the time-averaged

power flow becomes [section 6.9, [115]]:

⟨S(k, k0)⟩ = 1
2ℜ(E(k, k0)×H∗(k, k0)). (B.2)

This corresponds to the intensity I = ⟨S(k, k0)⟩.

We begin by using Ampere’s law to derive the expression for ⟨Sz⟩. Ampere’s law is given

by

ik×H(k, k0) + ik0R(k, k0)E(k, k0) = 0, (B.3)

We then substitute the expression for R(k, k0) corresponding to the choice of the SSD

model. In our calculation, we use the matrix form of the curl operator

ik× = i


0 −kz ky

kz 0 −kx

−ky kx 0

 , (B.4)

Consider the first case of TM polarization, where we have two electric field components

Ex and Ez, and one magnetic field component Hy. In this case, the ẑ component of the

Poynting vector can be expressed as:

⟨Sz(k0)⟩ = 1
2ℜ(Ex(k0)Hy

∗(k0)). (B.5)

Thus, we can solve Equation B.2 for the Hy component as

Hy = Ex

(
k2

0µypTM
0 +

(
k2

xϵx + k2
zϵz
)

(µy − 1)
)

kzk0µyϵz
for SSD-γ model, (B.6)

Hy = Ex

(
k2

0µypTM
0 + k2

0µyqTM
0

(
k2

xϵx + k2
zϵz
)

(µy − 1)
)

kzk0µyϵz
for SSD-τ model (B.7)

where,

pTM
0 = k4

xγzϵx + k4
zγxϵz + k2

xk2
z (γxϵx + γzϵz) + ϵxϵz

qTM
0 =

(
k2

x + k2
z

)2(
k2

xεx + k2
zεz

)
τy. (B.8)
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Therefore, the time average energy flux component for the considered SSD model can be

written as

⟨Sz⟩ = |Ex|2 ℜ


(
k2

0µypTM
0 +

(
k2

xϵx + k2
zϵz
)

(µy − 1)
)

2kzk0µyϵz

 for SSD-γ model, (B.9)

⟨Sz⟩ = |Ex|2 ℜ

k2
0µy

(
pTM

0 + qTM
0
)

+
(
k2

xϵx + k2
zϵz
)

(µy − 1)
2kzk0µyϵz

 for SSD-τ model. (B.10)

Note, we have dropped the arguments associated with all the components for readability.

Analogously, we can also derive the expressions for the TE polarization, which involves

an electric field component Ey and two magnetic field components Hx and Hz, with the

propagation direction assumed to be along ẑ. Following Eq. (B.2) we may express the

Poynting vector component ⟨Sz⟩ as:

⟨Sz(k, k0)⟩ = −1
2ℜ(Ey(k, k0)Hx

∗(k, k0)). (B.11)

By solving Eq. (B.3) with the appropriate expression for R(k, k0) based on the selected

SSD model, we can determine the magnetic field component Hy,

Hy = Ey
k0kz

k2
0(k2

x + k2
z)
{

pTE
0 −

(
k2

x + k2
z

)}
for SSD-γ, (B.12)

Hy = Ey
k0kz

k2
0(k2

x + k2
z)
{

pTE
0 − qTE

0 −
(
k2

x + k2
z

)}
for SSD-τ, (B.13)

where we have

pTE
0 =

(
k2

xµx + k2
zµz

)
− k2

0µxµz(k2
x + k2

z)2γy + k2
0µxµy, ϵy

qTE
0 = −k2

0µxµz(k2
x + k2

z)(k2
xτz + k2

zτx). (B.14)

Thus, we can express the expression for ⟨Sz⟩ for the different SSD models when the incident

polarization is TE as follows:

⟨Sz⟩ = |Ey|2 ℜ
(

k0kz

2k2
0(k2

x + k2
z)
{

pTE
0 −

(
k2

x + k2
z

)})
for SSD-γ, (B.15)

⟨Sz⟩ = |Ey|2 ℜ
(

k0kz

2k2
0(k2

x + k2
z)
{

pTE
0 − qTE

0 −
(
k2

x + k2
z

)})
for SSD-τ, (B.16)
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B.2. Fresnel Expressions: Calculating Reflection and Transmission Coeffi-

cients

Figure B.2.: General scenario considered where a slab Ω divides a substrate and cladding
into two distinct half-spaces Ω+ and Ω− separated by the boundary Γ1 and Γ2, respectively.
In this thesis, we consider only symmetric configurations, i.e., both the substrate and the
cladding are made from the same material. Additionally, we restrict ourselves to systems
where the host medium is an isotropic homogeneous local medium characterized by a
permittivity ε and permeability µ = 1, containing the nonlocal MM in the domain Ω.

The figure Fig. B.2 depicts a scenario where a slab Ω of thickness d separates a substrate

and cladding into two distinct half-spaces, Ω+ and Ω−, respectively. The substrate and

cladding are identical materials and can be described generally as a homogeneous isotropic

local medium characterized by a nondispersive permittivity ε and permeability of µ = 1.

The figure shows the boundaries that define the interfaces between the substrate, slab, and

cladding. In this setup, the nonlocal MM is contained within the domain Ω. Finally, the

figure shows the backward propagating modes excited at the second interface contributing

to the total reflection in the cladding.

Illuminating with TM-Polarization

Without loss of generality, we assume that the incidence plane is the zx-plane as before

with the incident wave vector kinc =
(
kx, 0, kinc

z

)
with z-direction being the principle

propagation direction. The electric field lie on the incident plan, such that Einc(r, k0) =(
Einc

x (k0) x̂, Einc
z (k0) ẑ

)
eikinc·r for r ∈ Ω+. Consequently, the reflected and transmitted fields

are defined similarly with the filed vector ER(r, k0) =
(
ER

x (k0) x̂, ER
z (k0) ẑ

)
eikR·r for r ∈ Ω+

and ET(r, k0) =
(
ET

x (k0) x̂, ET
z (k0) ẑ

)
eikT·(r−d ẑ) for r ∈ Ω− with the corresponding wave

vectors kR =
(
kx, 0, kR

z

)
and kT =

(
kx, 0, kT

z

)
respectively. Notice that we have considered
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the phase shift acquired by the transmitted field as the waves within the homogeneous

medium travel the thickness |z| = d from the Γ+ to Γ−.

Within the slab Ω, the metamaterial is described by the constitutive relation Eq. (2.28).

In this setting, we know that each additional nonlocal parameter advances the dispersion

relation and excites additional modes inside the medium, which are pairwise forward and

backward propagating. In this sense, for the TM- polarization, we have the total field

inside the medium as

Eslab(r, k0) =
N∑

i=1

({
Ef

x,i(k0) + Eb
x,i(k0)

}
x̂ +

{
Ef

z,i(k0) + Eb
z,i(k0)

}
ẑ
)
eiki·r (B.17)

In our scenario, only the incident field is the known quantity, all the other field amplitudes

have to be deduced from the interface conditions IC 1-IC 4.

Additionally, for the case of TM-polarization, the electric field components/eigenmodes

can be related through the Gauss divergence law ∇ ·D = 0∗, as

kxEx + kzEz = 0 =⇒ Ex = −kz

kx
Ez for Ω± (B.18)

εxkxEf/b
x,i + εzk

f/b
z,i Ef/b

z,i = 0 =⇒ Ef/b
x,i = −εz

εx

k
f/b
z,i

kx
Ef/b

z,i for Ω, (B.19)

assuming that all field components and material parameters follow the argument (k0).

where the label f/b represent the forward or backward propagating eigenmodes and i =

{1 . . . 2N} correspond to the 2N order of the polynomial dispersion relation.

A quantity called the Fresnel matrix is used to relate the unknown fields and the input vector,

E =
(
ER

z , Ef
z,1, Ef

z,2, Ef
z,3, Eb

z,1, Eb
z,2, Eb

z,3, ET
z

)
and I = −Einc

z

(
kinc

z ,
(
kR
)2

, 0, 0, 0, 0, 0, 0
)T

,

respectively, via the equation

FSSD,TM ·E = I. (B.20)

The construction of the Fresnel matrix is to summarize the dispersion relations and interface

conditions. The first three rows correspond to the interface conditions at the first interface

Γ+, while the last three rows correspond to the second interface Γ−. The first and last

columns contain coefficients for the reflected and transmitted fields, respectively. Zeros
∗It should be noted that only the permittivity tensor is relevant here, as all coefficients associated with

the curl disappear due to the fact that ∇ · (∇ × F) = 0 for any vector F.
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appear where there is no reflection or transmission. The middle four columns represent

the field amplitudes within the slab, with the first two columns containing the forward

propagating modes and the last two columns containing the backward propagating modes.

The backward modes are important for the correct calculation of the reflection coefficient.

The Fresnel matrix for the SSD-τ model reads,

FSSD,TM =



−kR
z A1 A2 A3 A4 A5 A6 0(

kR
)2

B1 B2 B3 B4 B5 B6 0

0 C1 C2 C3 C4 C5 C6 0

0 D1 D2 D3 D4 D5 D6 0

0 A1eikz,1d A2eikz,2d A3eikz ,3d A4eikz,4d A5eikz,5d A6eikz,6d kT
z

0 B1eikz,1d B2eikz,2d B3eikz,3d B4eikz,4d B5eikz,5d B6eikz,6d
(
kT
)2

0 C1eikz,1d C2eikz,2d C3eikz,3d C4eikz,4d C5eikz,5d C6eikz,6d 0

0 D1eikz,1d D2eikz,2d D3eikz,3d D4eikz,4d D5eikz,5d D6eikz,6d 0


(B.21)

Here the coefficients that appear in the Fresnel matrix read,

Ai = εz(k0)
εx(k0)kz,i, (B.22)

Bi =
(

k2
x + εz(k0)

εx(k0)k2
z,i

)(
k2

0

{
k2

z,iγx(k0) + k2
xγz(k0) +

(
k2

x + k2
z,i

)2
τy(k0)

}
− µ−1(k0)

)
,

(B.23)

Ci = −kz

(
k2

x + εz(k0)
εx(k0)k2

z,i

){
γx(k0) +

(
k2

x + k2
z,i

)
τy(k0)

}
, (B.24)

Di =
(

k2
x + εz(k0)

εx(k0)k2
z,i

){(
k2

x + k2
z,i

)
τy(k0)

}
. (B.25)

The wave vectors and their ẑ components are given by the dispersion relation governed

by the local constitutive relations for the isotropic homogeneous surrounding medium

characterized by ε(k0):

(kinc
z )2 = ε(k0)k2

0 − k2
x, (B.26)

with kR
z = −kinc

z and kT
z = −kinc

z . Finally, the complex reflection and transmission

coefficients are obtained by inverting the Fresnel matrix FSSD,TM and multiplying with the
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input vector I and respectively taking the first and last component, as

RSSD−τ,TM =
[ (

FSSD,TM
)−1
· I
]

1
, (B.27)

TSSD−τ,TM =
[ (

FSSD,TM
)−1
· I
]

8
. (B.28)

Correspondingly, the same procedure can be repeated with the limiting conditions τ → 0

giving a rank 6 Fresnel matrix for the SSD-γ model and then the limit {τ, γ} → 0 giving

the rank 4 Fresnel matrix for the WSD model to calculate the corresponding complex

reflection and transmission coefficients.

For completeness, we next discuss the case for an incident TE polarization field.

Illuminating with TE-Polarization

In the case of having an incident TE polarization with the wave vector components

k = (kx, 0, kz), we have two magnetic components Hx, Hz and one electric component Ey.

Since we only have one electric field component, it is quite straightforward to write the

incident as Einc(r, k0) = E0,yeikinc·rŷ, the reflection ER(r, k0) and transmission ET(r, k0)

field vectors follow correspondingly.

Within the slab Ω, we have the additional eigenmodes contributing to the propagating

electric field as

Eslab(r, k0) =
2N∑
i=1

{
Ef

y,i(k0) + Eb
y,i(k0)

}
eiki·r ŷ. (B.29)

On computing the interface conditions IC 1-IC 4 for the wave vector components thus

obtained for the TE illumination, we have the corresponding Fresnel matrix

FSSD,TE =



1 A1 A2 A3 A4 A5 A6 0

kR
z B1 B2 B3 B4 B5 B6 0

0 C1 C2 C3 C4 C5 C6 0

0 D1 D2 D3 D4 D5 D6 0

0 A1eikz,1d A2eikz,2d A3eikz ,3d A4eikz,4d A5eikz,5d A6eikz,6d 1

0 B1eikz,1d B2eikz,2d B3eikz,3d B4eikz,4d B5eikz,5d B6eikz,6d kT
z

0 C1eikz,1d C2eikz,2d C3eikz,3d C4eikz,4d C5eikz,5d C6eikz,6d 0

0 D1eikz,1d D2eikz,2d D3eikz,3d D4eikz,4d D5eikz,5d D6eikz,6d 0


(B.30)
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Once again, the Fresnel matrix relates the unknown fields and the input vector, E =(
ER

y , Ef
y,1, Ef

y,2, Ef
y,3, Eb

y,1, Eb
y,2, Eb

y,3, ET
y

)
and I = −Einc

y

(
1, kinc

z , 0, 0, 0, 0, 0, 0
)T

, respec-

tively, via the equation

FSSD,TE ·E = I. (B.31)

Now the coefficients that appear in the Fresnel matrix is read as,

Ai = 1, (B.32)

Bi = −kz

(
µ−1(k0)− k2

0
(
k2

x + k2
z

)(
γy(k0) + k2

zτx(k0) + k2
xτz(k0)

))
, (B.33)

Ci =
(
k2

x + k2
z

)(
γy(k0) + k2

zτx(k0) + k2
xτz(k0)

)
), (B.34)

Di = kz

(
k2

x + k2
z

)
τx(k0). (B.35)

The component kR
z and kT

z are given by the dispersion relation governed by the local

constitutive relations: (kinc
z )2 = εk2

0 − k2
x with kR

z = −kinc
z and kT

z = −kinc
z . Finally, the

complex reflection and transmission coefficients are obtained by inverting the Fresnel matrix

FSSD,TE and multiplying with the input vector I and respectively taking the first and last

component, as

RSSD−τ,TE =
[ (

FSSD,TE
)−1
· I
]

1
(B.36)

TSSD−τ,TE =
[ (

FSSD,TE
)−1
· I
]

8
. (B.37)

C. Chiral Metamaterial

C.1. Derivation of the General Interface Condition

To derive the interface conditions, a thorough understanding of the Helmholtz wave equation

is necessary, particularly its generalized form. The Maxwell equations consist of four coupled

partial differential equations for the fields D, B, E, and H, as well as their spatial derivatives.

The solutions to these equations must ensure a well-defined energy, which is contingent

on the four vectors (D, B, E, H) ∈ L2(Ω), ∇ ·D ∈ L2(Ω), ∇ ·B ∈ L2(Ω), ∇×E ∈ L2(Ω),

and ∇×H ∈ L2(Ω). Therefore, the vector functions D, B, E, and H must be elements

of the Sobolev space H(div, Ω) and H(curl, Ω), where Ω denotes the MM domain [section

2.2.1, [118]].
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One can obtain the complete set of additional interface conditions between centrosymmetric

metamaterials by defining the fields in the Sobolev space and applying the weak formulation

of the wave equation, as elaborated in Section 2.4.1. These interface conditions are given

by Eq. (3.15) and can be derived by incorporating the concepts presented in [113,116,144].

These works cover the necessary theory and the derivation process, up to a general expansion

order of the response function.

Investigating the interface between chiral-achiral materials, we simply can add a chirality

term on the left-hand side of the interface condition to account for the non-centrosymmetric

nature of the structure. This term, expressed as k2
0 iκ̃(k0)E × n, is crucial in deriving

interface conditions for inversion-asymmetric metamaterials. The complete set of interface

conditions for inversion-asymmetric structures can be obtained by following a similar

methodology as for centrosymmetric structures and incorporating the extra term.

First Interface Condition

Figure C.3.: The figure depicts the region in which light propagates, where the upper
half-space is filled with a homogeneous local medium and the lower half-space is filled with
a chiral metamaterial (MM). The surface that separates the two half-spaces is represented
by the symbol Γ. The normal vector n is directed outward from the homogenized
metamaterial.

We can define the distribution action of the curl operator (∇×E) on a test function ϕ in a

weaker sense by incorporating ϕ ∈ D(Ω) and E ∈ H(curl, Ω) for Ω ∈ R3. This distribution

action can be expressed as:

∫
R3

(∇×E) · ϕ dr =
∫

R3
E · (∇× ϕ) dr. (C.1)
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Assuming two half-spaces, namely R3+ and R3−, depicted in Fig. C.3, where the upper

half-space contains a homogeneous local medium described by constant material parameters

ε(loc) and µ(loc) = 1, and the lower half-space contains a chiral nonlocal metamaterial

(MM), the region of light propagation can be observed. The interface between these two

half-spaces is denoted by the symbol Γ, with the normal vector n directed outward from

the homogenized metamaterial.

When using the integration by parts on Eq. (C.1) in each half-space, we can separate

the terms into a volume integral along the domain Ω and a surface integral along the

boundary Γ.

∫
R3

(∇×E) · ϕ dr =
∫

R3+
(∇×E) · ϕ dr +

∫
R3−

(∇×E) · ϕ dr

=
∫

R3+
εlocE · (∇× ϕ) dr +

∫
R3−

ε(k0)E · (∇× ϕ) dr

+
∫

Γ

(
E+ × n−E− × n

)
· ϕds, (C.2)

denoting the surface element on Γ as ds = dxdy, where Γ = ∂Ω is the boundary between

the chiral MM and the surrounding medium, the electric field E satisfies certain smoothness

conditions as discussed in [113]. Here, we use the notation E± := E |R± to represent the

electric field in each half-space.

The first interface condition Eq. (c-IC 1) follows from Eq. (C.1) and Eq. (C.2) requiring the

integral at the boundary to vanish. This argument remains true for any arbitrary choice

of ϕ.

Additional Interface Condition

By assuming that the regularity condition

{
E, ∇×E, ∇×∇×E, an,m(∇×)(2n−m)E

}
∈ L2

loc(Ω), (C.3)



Appendix 111

holds and using the definition of the generalized derivative, we can write the weak form of

the wave equation for a nonlocal chiral MM governed by the general constitutive relation,

∫
R3

(∇×E) · (∇× ϕ)dr = k2
0

∫
R+

εlocE · ϕdr + k2
0

∫
R−

ε̃E · ϕdr

+
∫

R−
k2

0(i κ̃ E) · (∇× ϕ)dr

+
∫

R−

N∑
n=1

2n∑
m=0

an,m(∇×)(2n−m)E · ((∇×)mϕ)dr. (C.4)

For readability, the explicit arguments on the material parameters and electric field compo-

nents are often omitted. However, it should be noted that all material parameters carry

the argument (k0), while the fields carry (k, k0).

To establish the remaining interface condition, we can decompose the integral on the

left-hand side of Eq. (C.4) into a sum of integrals over the half-spaces R3+ and R3−. By

using integration by parts, as presented in Eq. (C.1), we can move all instances of (∇×)

from the test function ϕ to the electric field in each term of Eq. (C.4). This yields the

following expression:

∫
R3+

(
∇×∇×E− k2

0 εlocE
)
· ϕ dr

+
∫

R3−

(
∇×∇×E− k2

0εE + k2
0 i κ̃ ∇×E

)
· ϕ dr

+
∫

R3−

(
k2

0

N∑
n=1

2n∑
m=0

(∇×)man,m(∇×)(2n−m)E
)
· ϕ dr

=
∫

Γ

((
∇×E− −∇×E+

)
× n

)
· ϕ ds +

∫
Γ

((
k2

0 i κ̃ E−
)
× n

)
· ϕ ds

+ k2
0

N∑
n=1

2n∑
m=1

m−1∑
k=0

∫
Γ

((
(∇×)kan,m(∇×)(2n−m)E−

)
× n

)
·
(
(∇×)(m−k−1) ϕ

)
ds. (C.5)

Furthermore, due to the constitutive relation and the corresponding dispersion relation in

the pertinent half-spaces, the left-hand side of Eq. (C.5) evaluates to zero. As a result, the

right-hand side of the equation also evaluates to zero. We can reorganize the summation
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order and write the equation in the following form:

∫
Γ

((
∇×E+ −∇×E− + k2

0 i κ̃ E−
)
× n

)
· ϕ ds

+
2N−1∑
k=0

∫
Γ

(
LkE− × n

)
·
(
(∇×)kϕ

)
ds = 0. (C.6)

where the Lk are defined by Eq. (3.15). Finally, we can conclude by writing down the

general form of the interface condition for the chiral-achiral interface,

(
E+ −E−

)
× n = 0,

δk,0
(
∇×E+ −∇×E−

)
× n +

(
k2

0 i κ̃ E−
)
× n + LkE− × n = 0. (C.7)

for k ∈ {0, . . . , 2N − 1}. Setting N = 2 finally reveals the interface condition (c-IC 1) - (c-IC

3) for the SSD-γ model.

Notice that, setting the chirality parameter κ to zero immediately transforms the general

interface conditions Eq. (C.7) to the interface condition Eq. (3.14) for an interface having

a centrosymmetric material on either side.

C.2. Field Modelings

In a chiral medium, the polarization of eigenmodes can exhibit right or left-circular

polarization, depending on the magnitude and handedness of the material’s chirality. As a

result, the electric and magnetic fields in the medium are coupled, and their orientations

change as the wave propagates through it. Circularly polarized light features fixed angular

velocity rotation of the electric and magnetic fields around the direction of propagation.

The magnitude and direction of this rotation are influenced by the chirality of the material,

which is quantified by the chirality parameter.

A forward propagating circularly polarized plane wave in the z-direction can be described

mathematically as

E(r, t) = E0√
2

(
1, ±i, 0

)
ei(kzz−k0t) (C.8)

where E0 is the magnitude of the electric field, k is the wave vector, k0 is the angular

frequency, r is the position vector, and t is time. The ±i term indicates the two possible
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handednesses of circular polarization

Figure C.4.: Spherical polar coordinate system, where the position of a point in space is
described by the radial distance |k|, the polar angle θ, and the azimuthal angle φ. The x,
y, z axes are defined accordingly, with the origin at the center of the sphere.

To write the eigenmodes of circularly polarized plane wave in cartesian coordinates, one

can first express the Cartesian coordinates in terms of the radial, azimuthal, and polar

components,see Fig. C.4. Further, to connect these eigen modes with the incident field, we

can modify the wave vector k to account for the angle of incidence θi and ϕi between the

wave vector and the parallel coordinate to the incident plane. Therefore, the corresponding

wave vector components


kx

ky

kz

 = k


− cos θi cos ϕi

− cos θi sin ϕi

sin θi

 , (C.9)

where k = |k| is the magnitude of the wave vector along the [̂r, θ̂, ϕ̂, ]. In this setting, ϕi is

the azimuthal angle of incidence (measured relative to some reference direction), and we

have assumed that the interface is in the XZ plane.

Substituting this expression for k into the equation for E(r, t), we obtain [chapter 2, section

2.24, [206]]:
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E(r, t) = E0√
2


± cos θi cos ϕi + i sin ϕi

± cos θi sin ϕi − i cos ϕi

sin θi

 ei(kxx+kyy+kzz−k0t). (C.10)

This represents a forward propagating circularly polarized plane wave with oblique inci-

dence, where the direction of polarization is determined by the angle of incidence and the

handedness is determined by the sign of the phase difference between the two orthogonal

components of E0. Note that the ± sign in the expression for the polarization components

depends on the choice of handedness.

C.3. Fresnel Expressions: Calculating Reflection and Transmission Coeffi-

cients

To compute the transmission and reflection coefficients from the slab, interface conditions

are necessary to establish the continuity of the fields at interfaces Γ1 and Γ2. The situation

is sketched in figure Fig. C.5 Here, we denote the angle of incidence, and the corresponding

angles made by the wave vectors inside the MM are henceforth given as

θ0 = arcsin (kx/k0), θRC = arctan (kx/ |kz,i,RC|), θLC = arctan (kx/ |kz,i,LC|). (C.11)

Assuming the surrounding medium in Ω± are identical, then angle of transmittance, denoted

by θt, is equal to the angle of incidence θ0. The incident, transmitted, and reflected fields

in a circular basis are given by omitting the complex phase.

Einc/T
RC = 1√

2


− cos θ0

−i

sin θ0

E
inc/T
RC , Einc/T

LC = 1√
2


cos θ0

−i

− sin θ0

E
inc/T
LC , (C.12)

ER
LC = 1√

2


− cos θ0

−i

− sin θ0

ER
LC, ER

RC = 1√
2


cos θ0

−i

sin θ0

ER
RC. (C.13)
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Figure C.5.: Sketch of a geometry where we consider a homogeneous nonlocal chiral
slab of thickness ’d’ with two interfaces labeled as Γ+ and Γ−. The incident wave is a
right-handed circularly polairzed plane wave with a wave vector denoted as kinc

RC. The
corresponding transmitted wave is denoted as kT

RC, and the reflected wave is given by the
wave vector kR

LC. Inside the chiral homogeneous slab volume, there are expected to be
i = 2N roots of the wave vector component kz corresponding to the N th order polynomial
dispersion relation. These roots correspond to both forward and backward propagating
waves with the corresponding wave vectors denoted as kf

RC and kb
LC, respectively.

As the reflected wave travels in the opposite direction, it maintains its sense of rotation

with respect to the incident wave, causing a reversal of its handedness. This effect can also

be seen by noting that the x- and y-components of both the incident field Einc
RC and the

reflected field ER
LC are identical. The third component is determined by the first Maxwell

equation, which mandates that the divergence of the displacement field is zero,

∇ ·D = 0 =⇒ ∇ ·RE =⇒ k · εE = 0 ky=0=⇒ Ez = −εx

εz

kx

kz
Ex. (C.14)

For the sake of readability, the arguments for the fields and material parameters are omitted
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in the following equations.

Similarly, the fields propagating in both directions inside the slab can be described by

Ef
RC = 1√

2


− cos θRC

−i

sin θRC

Ef
RC, Ef

LC = 1√
2


cos θLC

−i

− sin θLC

Ef
LC, (C.15)

Eb
RC = 1√

2


cos θRC

−i

sin θRC

Eb
RC, Eb

LC = 1√
2


− cos θLC

−i

− sin θLC

Eb
LC. (C.16)

Furthermore, we present the components of the IC Vectors(c-IC 1)-(c-IC 3) for a material

that follows the SSD-γ model. The complete SSD Fresnel matrix is given in Eq. (C.22).

The incident field is expressed as:

I =
(

cos θ0 (−Einc
RC + Einc

LC), 0, −Einc
RC − Einc

LC, 0,

g51 (−Einc
RC + Einc

LC), 0, µ k0,z (Einc
RC + Einc

LC), 0, 0, 0, 0, 0
)T

. (C.17)

and the electric field

E =
(
ER

RC, ER
LC, Ef

RC,1, Ef
RC,2, Ef

LC,3, Ef
LC,4,

Eb
RC,1, Eb

RC,2, Eb
LC,3, Eb

LC,4, ET
RC, ET

LC
)T

. (C.18)

relating the unknown fields E and the input vector I via the equation

FSSD ·E = I, (C.19)

Finally, the complex reflection and transmission amplitudes from the slab are calculable

according to

RSSD−γ =
[ (

FSSD
)−1
· I
]

1
(C.20)

TSSD−γ =
[ (

FSSD
)−1
· I
]

12
. (C.21)
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FSSD =



− cos θ0 cos θ0 − cos θRC,1 − cos θRC,2

0 0 − cos θRC,1 e
(

ikf
z,1,RCd

)
− cos θRC,2 e

(
ikf

z,1,RCd
)

1 1 −1 −1

0 0 −e
(

ikf
z,1,RCd

)
−e
(

ikf
z,2,RCd

)
g51 −g51 g53 g54

0 0 g53 e
(

ikf
z,1,RCd

)
g54 e

(
ikf

z,2,RCd
)

. .

µ k0,z µ k0,z g73 g74

0 0 g73 e
(

ikf
z,1,RCd

)
g74 e

(
ikf

z,2,RCd
)

0 0 g93 g94

0 0 g93 e
(

ikf
z,1,RCd

)
g94 e

(
ikf

z,2,RCd
)

0 0 (kRC,1)2 (kRC,2)2

0 0 (kRC,2)2 e
(

ikf
z,1,RCd

)
(kRC,2)2 e

(
ikf

z,2,RCd
)

cos θLC,1 cos θLC,2 cos θRC,1 cos θRC,2

cos θLC,1 e
(

ikf
z,1,LCd

)
cos θLC,2 e

(
ikf

z,2,LCd
)

cos θRC,1 e
(

ikf
z,1,RCd

)
cos θRC,2 e

(
ikf

z,1,RCd
)

−1 −1 −1 −1

−e
(

ikf
z,1,LCd

)
−e
(

ikf
z,2,LCd

)
−e
(

ikf
z,1,RCd

)
−e
(

ikf
z,2,RCd

)
g55 g56 g53 g54

g55 e
(

ikf
z,1,LCd

)
g56 e

(
ikf

z,2,LCd
)

g53 e
(

ikf
z,1,RCd

)
g54 e

(
ikf

z,2,RCd
)

g75 g76 −g73 −g74

g75 e
(

ikf
z,1,LCd

)
g76 e

(
ikf

z,2,LCd
)

−g73 e
(

ikf
z,1,RCd

)
−g74 e

(
ikf

z,2,RCd
)

g95 g96 −g93 −g94

g95 e
(

ikf
z,1,LCd

)
g96 e

(
ikf

z,2,LCd
)

−g93 e
(

ikf
z,1,RCd

)
−g94 e

(
ikf

z,2,RCd
)

(kLC,1)2 (kLC,2)2 (kRC,1)2 (kRC,2)2

(kLC,1)2 e
(

ikf
z,1,LCd

)
(kLC,2)2 e

(
ikf

z,2,LCd
)

(kRC,2)2 e
(

ikf
z,1,RCd

)
(kRC,2)2 e

(
ikf

z,2,RCd
)

− cos θLC,1 − cos θLC,2 0 0

− cos θLC,1 e
(

ikf
z,1,LCd

)
− cos θLC,1 e

(
ikf

z,2,LCd
)

cos θ0 − cos θ0

−1 −1 0 0

−e
(

ikf
z,1,LCd

)
−e
(

ikf
z,2,LCd

)
1 1

g55 g56 0 0

. . g55 e
(

ikf
z,1,LCd

)
g56 e

(
ikf

z,2,LCd
)

g51 −g51

−g75 −g76 0 0

−g75 e
(

ikf
z,a,LCd

)
−g76 e

(
ikf

z,2,LCd
)

−µ(k0) k0,z −µ(k0) k0,z

−g95 −g96 0 0

−g95 e
(

ikf
z,1,LCd

)
−g96 e

(
ikf

z,2,LCd
)

0 0

(kLC,1)2 (kLC,2)2 0 0

(kLC,1)2 e
(

ikf
z,1,LCd

)
(kLC,2)2 e

(
ikf

z,2,LCd
)

0 0



. (C.22)
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with the corresponding terms,

g51 = µ(k0) k2
0 cos θ0

k0,z

g53 = 2κ̃(k0) k0 −
(kRC,1)2 (1− k2

0 µ(k0)γ(k0) (kRC,1)2) cos θRC,1
kRC

f,z,2
,

g54 = 2κ̃(k0) k0 −
(kRC,2)2 (1− k2

0 µ(k0)γ(k0) (kRC,2)2) cos θRC,2
kRC

f,z,2
,

g55 = 2κ̃(k0) k0 + (kLC,1)2 (1− k2
0 µ(k0)γ(k0) (kLC,1)2) cos θLC,1

kLC
f,z,1

,

g56 = 2κ̃(k0) k0 +
(kLC,2)2

(
1− k2

0 µ(k0)γ(k0) (kLC,2)2
)

cos θLC,2

kLC
f,z,2

,

g73 = −2κ̃(k0) k0 cos θRC,1 + kf
,z,1,RC

(
1− k2

0 µ(k0)γ(k0) (kRC,1)2
)

,

g74 = −2κ̃(k0) k0 cos θRC,2 + kf
,z,2,RC

(
1− k2

0 µ(k0)γ(k0) (kRC,2)2
)

,

g75 = 2κ̃(k0) k0 cos θLC,1 + kf
,z,1,LC

(
1− k2

0 µ(k0)γ(k0) (kLC,1)2
)

,

g75 = 2κ̃(k0) k0 cos θLC,2 + kf
,z,2,LC

(
1− k2

0 µ(k0)γ(k0) (kLC,2)2
)

,

g93 = −(kRC,1)2 cos θRC,1,

g94 = −(kRC,2)2 cos θRC,2,

g95 = (kLC,1)2 cos θLC,1,

g96 = (kLC,2)2 cos θLC,2.
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D. Deriving Effective Material Parameters from Teff-matrix

In this section of the appendix, we show the derivation for extracting the effective material

parameters from a Teff-matrix for a given MM. For this, we consider a periodic lattice

surrounded by a homogeneous host medium with permittivity εh and permeability µh. As

before, we set the natural constants ε0 and µ0 as unity, making the frequency ω = k0.

Please note, throughout the derivation, we assume a plane wave ansatz for the fields. Also,

we presume that all quantities, except for purely geometric factors, depend on frequency

k0.

To start our derivation, we calculate the induce effective electric Peff,e and magnetic

polarizations Peff,m in a scatterer located at the center of the 3D lattice caused by all other

fields present in the medium. We obtain the effective polarizations of the scatterer by using

the effective T-matrix (Teff) of the lattice. the relation can be written as

By focusing solely on the dipolar component of Teff Tdip
eff , we can express the polarizations

as follows:

Peff,e

Peff,m

 = nq

 Tj,j′=1,1
eff,EE,cart iZhTj,j′=1,1

eff,EM,cart

−iZhTj,j′=1,1
eff,ME,cart Z2

hTj,j′=1,1
eff,MM,cart


Eext

Hext

 , (D.1)

where Externally applied electric Eext and magnetic Hext fields in a scatterer in the lattice,

n is the concentration of the scatterers per unit cell, Zh =
√

µ0/εh = 1 the wave impedance

of the host medium, q = −i6π
chZhk3

h
[207], ch = 1/

√
εhµ0 = 1 is the speed of light in the host

medium, and kh the wave number in the host medium. The Tj,j′=1,1
eff,νν′,cart are block matrices

building Tdip
eff in the Cartesian basis:

Tdip
eff ≡

Tj,j′=1,1
eff,EE,cart Tj,j′=1,1

eff,EM,cart

Tj,j′=1,1
eff,ME,cart Tj,j′=1,1

eff,MM,cart

 . (D.2)

In the frequency domain, the Condon-Tellegen constitutive relation can be used to relate

the electric displacement D and magnetic flux density B to the fields inside a material

consisting of the lattice read

D

B

 =

 εeff iκeff

−iκeff µeff


E

H

 . (D.3)
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Here the εeff is the effective tensorial permittivity, µeff the permeability, and κeff is the

chirality parameter. Notice that, here the fields E and B are the internal fields in a unit

volume of the homogenized MM.

In order to relate this field to the internal fields of the actual MM (in-homogeneous medium),

we must take care of the depolarization field, that arises due to the induced polarization.

However, the depolarization tensor in Equation (D.6) accounts for the depolarization of a

unit cell by external fields and doesn’t include the interaction between scatterers within

the lattice. The interactions between scatterers modify the dipolar terms in Tdip
eff and,

therefore, the effective material parameters.

Borrowing the expression for the depolarization factor for a cuboid, L = (1/3)I3 found

in [208,209] we can write the internal fields as

E

H

 =

Eext

Hext

−
 1

εh
L 0

0 1
µ0

L


Peff,e

Peff,m

 , (D.4)

where Tdip
eff and the polarizations are considered at the origin of the lattice.

Alternatively, we know that, the electric displacementD and the magnetic flux B can be

written in terms of the polarization Peff,e and Peff,m [115] as

D

B

 =

εhI3 0

0 µ0I3


E

H

+

Peff,e

Peff,m

 . (D.5)

Finally, using Eq. (D.1),Eq. (D.4) in Eq. (D.5)) we obtain an expression of (D,B) as a

function of Tdip
eff .

Comparison of the result with Equation (D.3) gives the material parameters

 εeff iκeff

−iκeff µeff

 =

εhI3 0

0 µ0I3

+

+ n

I6 − n · q

 1
εh

Tj,j′=1,1
eff,EE,cartL ichTj,j′=1,1

eff,EM,cartL

−iZh
εh

Tj,j′=1,1
eff,ME,cartL chZhTj,j′=1,1

eff,MM,cartL




−1

(D.6)

× q

 Tj,j′=1,1
eff,EE,cart iZhTj,j′=1,1

eff,EM,cart

−iZhTj,j′=1,1
eff,ME,cart Z2

hTj,j′=1,1
eff,MM,cart

 .
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E. Analysis on the Impact of the Number of Multipoles N on the Accuracy

of Teff

Figure E.6.: (a) The electric dipolar entry of the effective T-matrix of a 3D lattice of
gold spheres is compared to the T-matrix of a single isolated sphere for calculations
that include only dipoles N = 1, or up to N = 5 multipoles. The ratio between these
quantities is presented. (b) The dipolar entry of the effective T-matrix is strongly modified
by the interaction with higher order multipoles inside the lattice. However, the direct
contribution of higher multipoles to the effective T-matrix is negligible. This implies
that the effective dipolar entries alone can be safely used to describe the homogeneous
medium. (c) The reflection coefficient of a slab of gold spheres is presented. The predicted
response of the slab is significantly modified when higher-order multipoles are included in
the calculations.

The gold example discussed in Section 4.3.1 involves placing gold spheres with a radius of

1 nm in a cubic lattice with a lattice constant of 2.05 nm and a medium with a relative

permittivity of 2.25. The effective T-matrix is calculated up to the N = 5 multipolar

order„as shown in Figure Fig. E.6(a). We notice a large influence of the higher-order

multipoles on the dipolar entry of the T-matrix.

Figure E.6(b) shows the plot of δ(Teff) as defined in Eq. (4.14), which determines the

significance of the non-dipolar components of the Teff -matrix on the optical response. Based

on this figure, we can conclude that the direct contribution of higher-order multipoles to the
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final effective T-matrix is negligible, and thus, the higher-order terms can be disregarded

for the homogenization process.

In Fig. E.6(c), the results obtained from the Teff method are compared to the results

from a full wave simulation (mpGMM). The comparison shows that the results obtained

from both methods agree well. Additionally, the inclusion of higher multipolar orders is

crucial, as they introduce a shift towards smaller frequencies, which is not observed when

restricting to N = 1 as seen in Fig. E.6(c).

We also noticed that, including multipoles higher than N = 5 leads to higher numerical

errors, so the number of included multipoles is limited to N = 5.
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