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Local versus global stability in dynamical systems with consecutive Hopf bifurcations
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Quantifying the stability of an equilibrium is central in the theory of dynamical systems as well as in engineer-
ing and control. A comprehensive picture must include the response to both small and large perturbations, leading
to the concepts of local (linear) and global stability. Here, we show how systems displaying Hopf bifurcations
show contrarian results for these two aspects of stability: Global stability is large close to the point where the
system loses its stability altogether. We demonstrate this effect for an elementary model system, an anharmonic
oscillator, and a realistic model of power system dynamics with delayed control. Detailed investigations of the
bifurcation explain the seeming paradox in terms of the location of the attractors relative to the equilibrium.
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I. INTRODUCTION

Stability is an essential concept in the study of dynamical
systems across disciplines [1]. Given a perturbation, does a
system relax back to a desired equilibrium state or not? A loss
of stability can have catastrophic consequences, for instance,
the collapse of an ecosystem [2], the tipping of an element
of the climate system [3], or a blackout of technical infras-
tructure such as the power grid [4]. Large perturbations are
particularly hard to grasp, and one typically has to resort to
extensive numerical simulations to assess the stability of an
equilibrium. In this paper, we demonstrate a surprising aspect
of stability in the presence of large perturbations: Certain
systems are most stable when one expects the opposite, just
before they become entirely unstable.

Traditionally, local stability has been central in the study of
dynamical systems in the physical sciences. For a system in
equilibrium affected by a small perturbation, the equations of
motion can be linearized around its equilibrium point [1]. The
resulting Jacobian matrix gives a comprehensive picture of the
dynamics in the neighborhood of the equilibrium according to
the Hartman-Grobman theorem [5]. If all eigenvalues of the
Jacobian matrix have a negative real part, then small pertur-
bations will relax exponentially fast back to the equilibrium
point. Thus we denote this equilibrium as linearly stable. Note
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that there are different definitions of local stability with the
weakest one being Lyapunov stability. For an equilibrium that
is Lyapunov stable, the dynamics stays close to the equilib-
rium but does not necessarily converge to it. In this paper,
we will focus on the linear or exponential stability described
above, which is a type of asymptotic stability, to quantify the
local stability of the equilibrium point (i.e., the fixed point).

Large perturbations are much more challenging to address
as linearization around an equilibrium is no longer justified. In
some cases it is possible to prove global stability in systems
as diverse as neural networks and power systems [6–9], but
in many cases one has to resort to numerical investigations.
An important domain-independent concept to quantify the
global stability is the basin of attraction B [10]: the set of
initial points in state space from which the system converges
to a given attractor. The geometry of such a basin can be
extremely complex, especially in large dimensions [11]. Its
volume, however, can be evaluated by numerical simulations:
Drawing E randomly sampled initial conditions from a range
of suitable points, the relative volume of the basin of attraction
of one fixed point is estimated as SB = M/E , where M is the
number of initial conditions converging to that fixed point. If
the sampling is extensive enough, the volume provides a quan-
titative measure of global stability, which can be interpreted
as the likelihood of returning to an attractor after a random
perturbation [12,13]. We will focus exclusively on the basin
of fixed points and will not consider more complex attractors.

Local stability and global stability do not necessarily align
[14]. Obviously, local (i.e., linear) stability is a necessary
condition for a nonzero basin size, but little can be said beyond
this statement. In this paper, we demonstrate that local stabil-
ity and global stability can even behave in completely opposite
ways. We introduce a class of systems where the basin size
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assumes its maximum at a bifurcation point where linear
stability is lost. This surprising behavior is demonstrated both
for stylized models which allow for an analytic treatment and
for advanced models inspired by engineering applications. All
three systems share the same basic mechanism: The variation
of an external control parameter induces a series of consec-
utive super- and subcritical Hopf bifurcations. We find that
large basins with slow reconvergence to the fixed point may
explain this contrarian behavior.

Overall, we have to understand that stability is a concept
with multiple facets where linear stability and basin size may
provide complementary information [13,15] and local stabil-
ity implies global stability only under specific conditions [16].
Furthermore, the basin size is obviously not the only measure
that characterizes the global stability of a fixed point. A large
basin size implies that a fixed point is typically stable in the
presence of large displacements in phase space. However, it
does not allow for any conclusions about the speed of recon-
vergence or the stability with respect to ongoing deterministic
or stochastic perturbations.

We note that extensions of network stability and syn-
chronization often still rely on linear stability [17], while
extensions of basin stability in terms of “survivability” are
concerned with the transient behavior of the system with
respect to a fixed point [18] but do not provide further insights
into the basin of attraction of individual fixed points. In the
following, we focus on basin volume estimates to quantify
the global stability of a system, and we use the terms “local
stability” and “linear stability” as synonyms.

This paper is organized as follows: We first study a styl-
ized model in Sec. II to introduce the basic mechanism. We
then proceed to a more advanced model in Sec. III, a kicked
anharmonic oscillator, for which some analytic insights can
be drawn by discretizing the dynamics. Finally, we analyze a
dynamical system inspired by the load-frequency control in
electric power engineering in Sec. IV. Taking into account
delays in the control cycle, the system shows a similar series
of Hopf bifurcations.

II. PROTOTYPICAL SYSTEM

We will show the basic mechanism of how local and global
stability yield contradicting results using a stylized model
which allows for a fully analytic treatment. We consider a
particle moving in the two-dimensional plane R2, generaliz-
ing the standard form of the Hopf bifurcation. Using polar
coordinates with radius r and angle ψ , the equations of motion
read

ṙ = μr − (1 + μ)r3 + αr5,

ψ̇ = ω + br2. (1)

Here, the dot denotes the differentiation with respect to
time, and μ, ω > 0, α > 0, and b > 0 are parameters. In
the following, we analyze the system’s dynamics when the
parameter μ is varied while all other parameters are kept fixed.
In all numerical examples, we set α = 0.1, ω = 1, and b = 1.

Attractors are found by setting ṙ = 0. The resulting attrac-
tors for the previously mentioned parameters are illustrated
in Fig. 1. The system always has a fixed point at r∗ = 0.

FIG. 1. Attractors in the prototypical system (1). Left: Visualiza-
tion of the equations of motion. Fixed points or limit cycles are found
where ṙ = 0 is the case, which is indicated by the solid and dashed
vertical lines for stable and unstable limit cycles, respectively. Right:
Bifurcation diagram. The radius of the stable attractors r∗ is shown
by the solid green lines, and the radius of the unstable fixed point and
limit cycle is shown by the dashed red lines. A supercritical Hopf
bifurcation occurs at μ = 0.

Furthermore, limit cycles are found at the real positive roots
of the polynomial equation

μ − (1 + μ)r2 + αr4 = 0. (2)

Varying the value of the parameter μ, we find the following
scenario: For μ < 0, the fixed point r∗ = 0 is linearly stable,
and one unstable limit cycle exists at a radius

r2
2 = 1 + μ

2α
+

√
(1 + μ)2

4α2
− μ

α
.

A supercritical Hopf bifurcation takes place at μ = 0. For μ >

0, the fixed point is unstable, and a stable limit cycle exists at

r2
1 = 1 + μ

2α
−

√
(1 + μ)2

4α2
− μ

α
.

Let us first consider the local stability of the fixed point
r∗ = 0. Using Cartesian coordinates, the linearized dynamics
reads

d

dt

(
x
y

)
=

(
μ −ω

ω μ

)
︸ ︷︷ ︸

=:J

(
x
y

)
, (3)

and the eigenvalues of the Jacobian J are found as λ± = μ ±
iω. The real part, which encodes the linear stability of the fixed
point, is directly given by the parameter μ. The fixed point
is stable for μ < 0, and stability is lost at μ = 0 in a Hopf
bifurcation.

Now we turn back to global stability. We can directly read
off the basin of attraction of the fixed point r∗ = 0 for μ < 0,

Br∗ = {�x ∈ R2|‖�x‖ < r2}, (4)

and we can use r2 to quantify the basin size. For μ � 0, the
fixed point r∗ = 0 is unstable, and we set the basin size to zero
for the sake of convenience.

The basin of attraction is shown together with the limit
cycles in Fig. 2 for three values of μ. We find that the local
stability and the global stability behave in opposite ways. As
μ increases from negative values towards zero, the unstable
limit cycle moves outwards such that the basin of attraction of
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FIG. 2. The basin of the fixed point is limited by the surrounding
limit cycle. Upper panels: Visualization of the equations of motion
(1) for μ = −1, −0.1, 1 (from left to right). Fixed points or limit
cycles are found where ṙ = 0. Lower panels: Stable and unstable
fixed points (dot and cross, respectively) and stable and unstable limit
cycles (solid and dashed lines, respectively) in the plane. The green
area shows the basin of attraction of the stable fixed point. A Hopf
bifurcation occurs at μ = 0, where the fixed point loses stability and
a new stable limit cycle emerges. The basin of the fixed point is
bounded by the limit cycle, whose radius increases monotonically
with the parameter μ. For μ > 0 there is no basin of attraction since
the fixed point is not stable.

the fixed point grows. However, the local stability of the fixed
point weakens until it is lost in a Hopf bifurcation at μ = 0.
Summarizing, the system reaches its maximal global stability
(in terms of basin volume) at the same time that linear stability
is lost at the bifurcation point.

III. DRIVEN NONLINEAR OSCILLATOR

The contrarian behavior of global and local stability can
generally be found in systems where limit cycles and fixed
points coexist. This scenario can occur repeatedly in a system
with consecutive super- and subcritical Hopf bifurcations, as
we will now demonstrate for a more general model system.
In particular, we examine a damped and driven anharmonic
oscillator.

We emphasize that the generalization to higher-
dimensional dynamical systems is not trivial. In contrast
to the prototypical example discussed above, the basin of
attraction is no longer bounded by unstable limit cycles.
However, the basic mechanism remains similar: The basin of
attraction of the fixed point grows as the limit cycles move
outwards.

We assume that the complex amplitude z ∈ C evolves ac-
cording to the equations of motion

ż = (i ω(|z|) − η)z + g(|z|, t ), (5)

with η being the damping constant and i being the imaginary
unit. Here, we consider that the oscillator is anharmonic,
such that the frequency ω decreases monotonically with the

amplitude |z|. The driving function is periodic in time, i.e.,
g(|z|, t + T ) = g(|z|, t ) for a given period T ∈ R>0. Further-
more, the strength increases with the amplitude such that
g(0, t ) = 0.

The dynamical system (5) always has a trivial fixed point
z∗ = 0, which we interpret as the desired equilibrium state.
The stability of this fixed point—both local and global—
crucially depends on the existence of limit cycles. We will
analyze this relation in detail for two special realizations of
the external driving.

A. Kicked system

We now consider the case of a periodically kicked system,
which allows for an approximate analytical solution. The non-
linear driving term reads

g(|z|, t ) = a
+∞∑

n=−∞
δ(t − nT )|z| (6)

with an amplitude a > 0. The nonlinear kicking is interpreted
as

z(nT + ε) − z(nT − ε) = a|z(nT + ε)|, ε → 0. (7)

Furthermore, we assume that the amplitude of the anharmonic
oscillator decreases with the amplitude as

ω(|z|) = μ

T (1 + |z|2)
. (8)

We will discuss the resulting dynamics as a function of the
control parameter μ.

If the damping constant η is sufficiently small, we can
simplify the dynamics by assuming that the amplitude and
thus the frequency ω remain approximately constant between
two kicks. Then we obtain

z((n + 1)T − ε) ≈ exp{(iω − η)T } z(nT + ε). (9)

Defining zn = z(nT + ε), we thus obtain a discrete map

zn+1 = eiν(|zn|) · γ · zn + c|zn| (10)

with ν(|zn|) = ω(|zn|)T , γ = e−ηT ∈ [0, 1], and c = γ a > 0.
Limit cycles with period T are found by evaluating the

condition zn+1 = zn. Writing z = |z|eiα , the fixed-point equa-
tion reads

eiα|z| = γ |z|ei(α+ν(|z|)) + c|z|. (11)

For the nontrivial limit cycles, we can solve this equation for
the amplitude and phase and obtain

cos (ν(|z|)) = 1 + γ 2 − c2

2γ
, (12)

cos(α) = 1 − γ 2 + c2

2c
. (13)

Since real solutions only exist if the right-hand side of both
equations is in the interval [−1,+1], we assume this from now
on. Note that the function ν(|z|) critically determines whether
limit cycles exist or not. For the function given in Eq. (8), we
find the following behavior: For μ = 0, we typically find no
solution to Eq. (12) and thus no limit cycle. As μ increases,
additional solutions come into being as illustrated in Fig. 3.
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FIG. 3. Understanding the bifurcations in the kicked anharmonic
oscillator as a function of the control parameter μ. Limit cycles are
approximately determined by the solutions of Eq. (12). Unstable
limit cycles are found for ν(|z|) = 2πn + cos−1(ξ ), and stable limit
cycles are found for ν(|z|) = 2πn − cos−1(ξ ) with the abbreviation
ξ = (1 + γ 2 − c2)/2γ and n ∈ N. The figure shows the function
ν(|z|) for different values of the control parameter μ. Stable (unsta-
ble) limit cycles exist where the function crosses the solid (dashed)
horizontal lines.

The emerging limit cycles are alternately unstable and stable,
and their amplitude |z| increases monotonically with μ.

As a consequence, the phase space of the kicked system
shows a characteristic structure for large values of μ: The
trivial fixed point z∗ = 0 is surrounded by multiple stable and
unstable limit cycles. These limit cycles grow as μ increases,
and new limit cycles emerge repeatedly via Hopf bifurcations.
The fixed point becomes unstable when a new stable limit cy-
cle emerges, and it becomes stable again when a new unstable
limit cycle emerges.

The phase space structure determines the system’s global
stability. The basin of attraction is shaped by coexisting com-
peting attractors, which are the emerging limit cycles in this
case. Since the size of the emerging limit cycles grows mono-
tonically with μ, we expect that local stability and global
stability behave in opposite ways and that the basin size as-
sumes its maximum right before local stability is lost.

We test these qualitative statements by scanning the pa-
rameter μ in the range [0, 20π ] and simulating the discrete
dynamics given by Eq. (10) numerically. To check which
states run into different attractors, we chose the random com-
plex initial condition z0 = z0,r + z0,i i by uniformly sampling
the real part z0,r and the imaginary part z0,i from the interval
[−4, 4]. The map is iterated for tn = 1000 steps to check
whether the discrete dynamics runs into an attractor. Since
we are interested in how the trivial fixed point at z∗ = 0 is
affected by the other attractors, we quantify its global stability
by counting the number of initial conditions that run into this
fixed point; that is, SB is the fraction of initial conditions that
return to z∗.

Setting the parameters to c = 0.5, γ = 0.9, and T = 1,
we find that the simulations confirm the expected behavior
(see Fig. 4). As μ increases, the trivial fixed point repeatedly
switches from stable to unstable as new limit cycles emerge.
During the stable intervals, the basin size SB of the fixed point
increases monotonically with μ and assumes its maximum at
the bifurcation point. Notably, the limit cycles undergo further

FIG. 4. Attractors and basin stability SB of the discrete map
[which approximates the kicked anharmonic oscillator (5)] as a
function of the control parameter μ. Upper panel: Absolute value
of the stable limit cycles with period Nseq. The trivial fixed point
z∗ = 0 undergoes a series of consecutive super- and subcritical Hopf
bifurcations, where it changes from stable to unstable and vice versa.
The positions of supercritical Hopf bifurcations are shown by the
vertical black dotted lines, and the stable limit cycles, calculated
by solving Eq. (12), are indicated by the solid black lines. Lower
panel: The basin stability SB of the trivial fixed point increases
monotonically with μ until it jumps to zero when stability is lost in
a supercritical Hopf bifurcation, which is indicated by the vertical
black dotted lines. The relative basin size SB was computed by
sampling E = 1000 initial conditions at random from the subset
[−4, 4] × [−4i, 4i] of the complex plane.

bifurcations which are not treated here as we focus on the
stability of the fixed point.

B. Continuously driven system

To show that the analytical and numerical results also
hold for a time-continuous system, we return to the original
continuous dynamical system given in Eq. (5) and assume
a continuous driving. We replace the delta function or more
specifically the kick by using a Gauss function (t ) =
(2π )−

1
2 · exp (− t2

2 ), which results in

g(|z|, t ) = a
∞∑

n=0

Nd · (Nd · [t − nT ]) · |z|, (14)

where Nd ∈ N is a positive constant. Using this substitute, we
study the dynamics numerically as a function of the control
parameter μ. We sample uniformly in [−4, 4] to get both the
real and imaginary parts of the initial conditions z0. Choosing
the same parameters, i.e., c = 0.5, γ = 0.9, and T = 1, as
in the discrete map, we solve the ordinary differential equa-
tion (ODE) in the time interval t ∈ [0, 200]. Only a short
range (i.e., tc = 20) at the end of the resulting time series
is used to evaluate whether or not the trivial fixed point is
reached. The size of the basin SB is again given by the frac-
tion of initial states that end in the trivial fixed point. The
simulation results (see Fig. 5) confirm the qualitative picture
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FIG. 5. Fixed points and limit cycles of the driven anharmonic
oscillator (5) as a function of the control parameter μ. Top panel:
For each stable fixed point or limit cycle with a period of T = 1,
we plot the minimum of the magnitude |z|min. Green dots indicate
where the trivial fixed point is stable, and red crosses show where
stable limit cycles were detected. Bottom panel: Basin stability SB
for the trivial fixed point. The relative basin size SB was computed
by sampling E = 400 initial conditions at random from the subset
[−4, 4] × [−4i, 4i] of the complex plane for every value of μ. The
periodic driving is given by Eq. (14).

obtained for the discrete map. In particular, we again find that
the local stability and global stability of the trivial fixed point
have opposite behaviors. The upper panel of Fig. 5 shows the
trivial fixed point surrounded by limit cycles that increase in
diameter with increasing μ. Again the size of the basin of
attraction increases with the diameter of the limit cycle and is
largest slightly before the fixed point loses stability and a new
limit cycle with small diameter appears. Note that as in the
case of the discrete map there are more bifurcations present in
the system that are hard to detect numerically. The limit cycles
presented in Fig. 5 are only the stable ones that have a period
of T = 1 and follow the same path in phase space.

IV. OSCILLATORS WITH DELAYED CONTROL

Hopf bifurcations often occur in delayed dynamical sys-
tems. Such a delay can arise in a feedback or control
loop, where measurements and information processing re-
quire some time. We will now demonstrate that the previously
introduced scenario of consecutive Hopf bifurcations may
occur in a control system of immense practical importance:
the load-frequency control of electric power systems [19–21].

A. Power system dynamics and control

We consider an aggregated model of an electric power grid
[22,23], decomposing the grid into certain regions or control
areas. The areas are strongly coupled internally, such that
local differences in the grid frequency are negligible. Hence
every area i = 1, . . . , N is characterized by its voltage phase
angle θi(t ) and the frequency deviation ωi(t ) = θ̇i(t ) from
the reference frequency ω0. Ideally, all areas should run at
the same nominal reference frequency ω0 = 2π × 50 Hz or

ω0 = 2π × 60 Hz, but imbalances of power generation and
load induce deviations. The load-frequency control measures
these frequency deviations and adapts the generation to restore
the balance and limit deviations from the reference state.

The dynamics of the aggregated model is described by the
aggregated swing equation

θ̇i(t ) = ωi(t ), (15)

Ai ω̇i(t ) + kl,i ωi(t ) = P0,i(t ) + Pc,i(t ) −
∑

j

Pi j (t ), (16)

using a frame of reference rotating at the frequency ω0. Here,
Ai quantifies the amount of inertia, and kl,i is a damping
constant due to generator damper windings or frequency-
dependent loads. Effectively, each area is modeled as an
aggregated synchronous machine [23]. The right-hand side
includes the balance of scheduled generation and load P0,i(t ),
the contribution of the load-frequency control system Pc,i(t ),
and the flow to other areas given by

Pi j (t ) = Ci j sin (θi(t ) − θ j (t )). (17)

The control system continuously monitors the grid and adapts
the power Pc,i(t ) to restore the desired grid operation. Here
we focus on primary control, also referred to as frequency
containment reserve (FCR), which is activated within sec-
onds [22]. Primary control can be described as a proportional
controller, adjusting the power proportional to frequency de-
viations. Both measurement and communication as well as the
activation of a reserve power plant require some time and are
thus delayed by a few seconds [21]. We thus model primary
control, following earlier work [15,24], as

Pc,i(t ) = −kP,i ωi(t − τ ) (18)

with the time delay τ > 0. In the following, systems with
homogeneous gains kP,i = kP and damping constants kl,i = kl

for all i = 1, . . . , N are considered. Further control layers
exist, which are activated on longer time scales and react to
more intricate measurements of the system’s state [22,25].
These will be neglected in this paper for the sake of clarity.

In summary, the dynamics is given by the delay differential
equation (DDE)

θ̇i(t ) = ωi(t ), (19)

A ω̇i(t ) + kl ωi(t ) = P0,i − kP ωi(t − τ )

−
∑

j

Ci j sin (θi(t ) − θ j (t )), (20)

where the control is delayed by the parameter τ > 0 and
works against a detected frequency deviation ωi proportion-
ally to the gain kP.

B. Fixed points and oscillations

Ideally, the power grid should be at a fixed point where
the power balances P0,i are fixed and all areas are perfectly
synchronized,

ωi(t ) = ω∗, (21)

θi(t ) = θ∗
i + ω∗t . (22)
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Recall that the variables θi and ωi are defined in a rotating
frame with reference frequency ω0. The fixed-point values are
determined by the algebraic equations

P0,i − (kl + kP )ω∗ =
∑

j

Ci j sin(θ∗
i − θ∗

j ). (23)

Summing over all areas i = 1, . . . , N , we further obtain

ω∗ =
∑

i P0,i∑
i(kl + kP )

.

Disturbances of the power balance can cause transient
deviations from this fixed point. Interarea oscillations are a
notable example of this behavior [26–28]; these are large-
scale oscillations of the phases θi(t ) and the power flows
in Eq. (17) of the entire grid, potentially over thousands of
kilometers. The eigenmodes are determined by the structure
of the grid, with typical frequencies in the range of 0.1 Hz.
Interarea oscillations are typically damped out in minutes.

In exceptional contingency situations, oscillations may
also grow leading to a loss of synchrony in the grid and even-
tually a blackout. For instance, such an instability may arise
after the loss of several transmission elements in a cascade of
failures; see Ref. [28] for an example.

C. Linear stability analysis

In this section, we discuss the linear stability of the desired
fixed point. To this end, we linearize the equations of motion
(20) as θi(t ) = θ∗

i + ω∗t + αi(t ). To simplify the analysis, we
assume that the grid is balanced in total such that

∑
i P0,i = 0

and ω∗ = 0.
We then obtain the linearized equations

α̇i = ωi, (24)

Aiω̇i = −klωi − kPωi,τ −
∑

j

Li jα j . (25)

Here, we have used the shorthand ωi,τ = ωi(t − τ ) and
dropped all time dependencies for the sake of brevity. The
coupling between the areas is described by the network Lapla-
cian L ∈ RN×N with elements

Li j =
{−Ci j cos(θ∗

i − θ∗
j ) if i 	= j∑

m 	=i Cim cos(θ∗
i − θ∗

m) if i = j.
(26)

For further analysis we define a state vector

�x = (α1, . . . , αN , ω1, . . . , ωN )


and rewrite the linearized equations in a matrix form

A�̇x(t ) = N�x(t ) + D�x(t − τ ). (27)

with the block matrices

A =
(

1l 0
0 Â

)
, N =

(
0 1l

−L −Kl

)
, D =

(
0 0
0 −KP

)
,

where Â = diag(A1, . . . , AN ), KP = kP1l , Kl = kl1l , and 1l
is the N-dimensional identity matrix. As Eq. (27) is a linear
DDE with constant coefficients, it has eigenmodes of the form
�x = �x(t0) 1

2 (eλt + eλ̄t ) [29]. The characteristic roots λ and their

complex conjugate λ̄ can be determined by using the exponen-
tial ansatz �x = �νeλt . The eigenvalues can thus be determined
from the characteristic equation

det (λA − (N + De−λτ )) = 0. (28)

As in the linear stability analysis of systems governed by
ordinary differential equations, the stability is encoded in the
signs of the eigenvalues λi, i.e., all solutions of Eq. (28). The
fixed point is linearly stable if the real part of all eigenvalues is
negative and unstable if the real part of at least one eigenvalue
is positive [30]. The characteristic equation (28) is a transcen-
dental equation with infinitely many solutions and is thus in
general more challenging to solve compared with the case of
ordinary differential equations. A reliable method to approxi-
mate the eigenvalue spectrum [i.e., the characteristic roots of
Eq. (28)] is to use the Chebyshev collocation method [31,32].
It describes the state of the linearized delay differential equa-
tion �x(θ ) in the time interval [t − τ, t] by discretizing at
the so-called Chebyshev points tk = cos ( k

NC
π ) ∈ [−1, 1] with

k = 0, . . . , NC and NC giving the number of Chebyshev points
and thus the resolution. The DDE is now approximated as
�y(t ) = [�x0(t ), . . . , �xNC (t )]T , where �xk (t ) = �x(t − τ

2 (tk + 1)).
One now has a K (NC + 1)-dimensional state vector �y(t ) in-
stead of the K-dimensional original state �x(t ) transforming
the linear delay differential equation to �̇y(t ) = MC�y(t ) with
MC given by

MC =
( − 2 CM

τ
⊗ IK

A−1D, 0 · · · 0, A−1N

)
,

where CM is the Chebyshev differentiation matrix with the last
row being deleted, IK is the K-dimensional identity matrix,
and ⊗ is the Kronecker product. Note that the last row in
MC is the original delay differential equation, while the others
represent a spectral approximate of the time derivative at the
Chebyshev nodes.

In addition to approximating the eigenvalue spectrum using
Chebyshev discretization, one can evaluate the points in pa-
rameter space, where an eigenvalue might pass the imaginary
axis and a bifurcation occurs. To this end, we have used the
software DDE-BIFTOOL [33] to identify bifurcation points and
continue these points to obtain curves on which a bifurca-
tion takes place. Furthermore, we employ DDE-BIFTOOL to
determine the type of bifurcation by calculating normal form
coefficients [34].

D. Global stability

The global stability of the power system model given in
Eq. (20) is quantified in terms of the basin of attraction of the
desired fixed point. However, measuring the size of the basin
becomes challenging for delayed differential equations. It is
not sufficient to choose a point in phase space to specify the
initial state of the system. Instead, the function �x0(t ′) must
be specified for t ′ ∈ [t0 − τ, t0]. While it might be useful to
tailor the specific initial function to the application at hand or
sampling from a reasonable set of initial functions [35], the
choice of initial functions is ultimately arbitrary, which makes
it hard to make a general statement on the global stability of
an attractor. To get around this problem, an efficient method to
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FIG. 6. Basin of the fixed point and surrounding limit cycles of the delayed differential equation describing power grid dynamics (20)
for different values of the delay τ . Simulations were performed by disturbing the stationary frequency deviation and power phase angles of
area 2 by ωd

2 and θd
2 , respectively. From left to right, the values for τ were chosen as 4.6, 7.95, 8.1, and 11 s. The basin of the fixed point

corresponding to operation at the reference frequency (i.e., ωi = 0 ∀i) is shown in green. The color scale describes the minimal 2-norm of the
distance of the limit-cycle dynamics to the fixed point ‖x‖min showing the coexistence of different limit cycles.

assess global stability in delayed systems has been proposed
in Refs. [36,37].

In principle, one chooses a suitable initial function segment
and solves the delay differential equation. We will choose
a constant past given by setting the state vector x0(t ′) to a
constant value for t ′ ∈ [t0 − τ, t0]. Keep in mind that a larger
delay with the same initial constant effectively represents a
larger disturbance. Thus it is useful to evaluate the L2-norm,
which can be seen as the energy of a specific disturbance, of
the initial function segment instead of the randomly chosen
value that gives the constant past. To quantify how stable a
fixed point is, the initial function with the smallest norm that
does not result in the dynamics relaxing to the considered
fixed points is of interest. This value gives the primary attrac-
tor radius, which is still a bad approximate for the size of the
basin of attraction since it only considers constant-function
segments. Subsequently, all simulations that did not return to
the considered fixed points are used to get a better estimate
for the size of the basin. By cutting them up into all possible
segments of length τ , measuring the L2-norm of the segments,
and keeping the minimum, the secondary attractor radius can
be calculated. Choosing the minimum of the primary and
secondary attractor radii results in the attractor radius Ra,
which gives a measure for the smallest possible disturbance
that results in the dynamics not relaxing to the considered
fixed point.

While measuring the basin has its limitations [38] and this
is even more true for systems that include delayed dynam-
ics [35], knowledge of the attractor radius Ra can be used
to examine how the approximate size of the basin changes
for different parameters or, more specifically, which smallest
disturbance leads to the attractor not being recovered.

E. Results

We now compute the local and global stability in a
power grid model consisting of two areas with homogeneous
parameters.

This model system captures essential physical processes,
in particular the interplay of interarea oscillations and con-
trol systems, but still allows for a comprehensive visual

analysis. Choosing kP = 0.0625, kl = 0.025, A = 1 s, C1,2 =
0.5, and P0,{1,2} = ±0.0625, we study the resulting dynamics
and stability as a function of the delay time τ . We initialize the
simulation by setting the initial function to the constant state
�x0 = [θ0

1 , θ0
2 , ω0

1, ω
0
2] = [θ∗

1 , θ∗
2 + θd

2 , 0, ωd
2 ] with ωd

2 and θd
2

being the difference with respect to the stationary values of the
frequency deviation and the power phase angle of the second
area, respectively.

Figure 6 provides a first visual overview of the global
stability for four different values of τ . In particular, Fig. 6
shows different attractors the system ends up in for different
constant values, which define the function segments that serve
as the initial state of the DDE given in Eq. (20).

The fixed point is linearly stable for τ = 4.6 s but has a
rather small basin of attraction. At the same time, we find
an unstable limit cycle of small radius. Increasing the delay
to τ = 7.95 s, both the limit cycle and the basin grow. A
further small increase in the delay to τ = 8.1 s makes the
desired fixed point unstable. For many initial function seg-
ments, the system now relaxes to a stable limit cycle with
small amplitude indicating that a supercritical Hopf bifurca-
tion took place. Finally, the fixed point regains its stability for
τ = 11 s, again with a comparatively small basin of attraction.
Outside of this basin, the system relaxes to two different limit
cycles for the chosen set of values defining the constant-
initial-function segments. This highlights a similar structure
of different attractors around the trivial fixed point as observed
for the kicked anharmonic oscillator in Sec. III.

To gain further insight into the interaction of limit cycles
and fixed points, we perform a bifurcation analysis using the
software DDE-BIFTOOL [33] to complement the linear stability
analysis of the fixed points described in Sec. IV C. The results
shown in Fig. 7 reveal a series of consecutive super- and
subcritical Hopf bifurcations, similar to the examples pre-
sented in Sec. III. Without delay, i.e., at τ = 0 s, the fixed
point is linearly stable. As τ increases, stability is lost in
a supercritical Hopf bifurcation, and a stable limit cycle
emerges. After a further increase in τ , stability is regained in
a subcritical Hopf bifurcation where an unstable limit cycle
emerges. This scenario repeats itself when the delay τ is
increased further, leading to a characteristic structure of stable
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FIG. 7. Bifurcation diagram of the delayed dynamical system
(20). Attractors for different values of the delay τ in the �ω-�θ

plane with the difference in frequency deviations �ω = ω2 − ω1 and
the difference in phase angles �θ = θ2 − θ1. The colors indicate the
linear stability, given by the number of eigenvalues λi with a real part
greater than zero, of the respective attractor. Here, green is encoding
linear stability, while red and orange show that there are one and
two unstable eigenvalues, respectively, such that the dynamics is
linearly unstable. A projection of the cut through the attractors at
�ω = 0 is shown below. We observe a set of consecutive super- and
subcritical Hopf bifurcations and the coexistence of different limit
cycles.

and unstable limit cycles in phase space. We recall that an
unstable limit cycle does not bound the basin of attraction
in dimensions higher than two. Nevertheless, we find a very
similar behavior to that in the prototypical system and the
anharmonic oscillator: The existence and location of stable
and unstable limit cycles predict the basin of the fixed point.

We can now provide a comprehensive analysis of the local
and global stability of the desired fixed point as a function
of the delay τ . Figure 8 compares the location of limit cycles,
the size of the basin of attraction, and the linear stability of the
fixed point. As the delay τ increases, the fixed point repeatedly
switches from stable to unstable and back. Mathematically,
this corresponds to a set of super- and subcritical Hopf bifur-
cations as explained above. Physically, the instability can be
explained as a resonance effect [24]. The delayed control am-
plifies the interarea eigenmode instead of damping it. Hence
regions of instability are found where the delay τ matches an
integer multiple of the period of the eigenmodes.

The limit cycles generally increase in size with the delay
τ . This leads to opposite behaviors of the linear and global
stability. Within the regions of stability, the basin typically
grows monotonically with τ . Hence basin stability is large at
the bifurcation, when the fixed point becomes unstable again.
Remarkably, we find the highest value of the basin size for
τ ≈ 20 s, at the edge of the fourth stability region.

Since the value of kP is a choice that is given by the
control design, it is important to understand how it affects
the stability of the desired fixed point. The stability chart in
Fig. 9 shows both the results of the linear stability analysis
and the results obtained by finding the attractor radius Ra. The
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FIG. 8. Global and local stability of the delayed dynamical sys-
tem (20) as a function of the delay τ . Top: Minimal 2-norm of the
distance of attractors to the fixed point ‖x‖min. The different colors
indicate the number of unstable eigenvalues with green, red, and
orange indicating zero, one, and two unstable roots, respectively.
Middle: Size of the basin of attraction of the fixed point SB (red stars)
and the attractor radius Ra (blue pluses). The relative basin size SB
and the attractor radius Ra were computed by sampling E = 2500
values, which define the constant initial functions, at random from
the square [−π, π ] × [−3, 3] s−1 for every delay τ . Bottom: The real
part of the dominant eigenvalue (i.e., the λi with the largest real part)
of the Jacobian evaluated at the fixed point is shown by the solid
blue line. The orange dashed lines show the real part of additional
eigenvalues Re(λi ). Green shaded areas in the middle and bottom
panels show τ regions where the fixed point is linearly stable.

results of the linear stability analysis are given by evaluating
the approximate eigenvalue spectrum using Chebyshev dis-
cretization. Furthermore, we determined the curves on which
a bifurcation occurs and classified the consecutive Hopf bi-
furcations by evaluating the first Lyapunov coefficients with
the help of DDE-BIFTOOL. The changes in stability are always
accompanied by a change (i.e., an increase or decrease) in two
unstable eigenvalues which is characteristic of Hopf bifurca-
tions. The dotted black lines in Fig. 9 show the parameter
value used in Figs. 6, 7, and 8, and the gray hatched area
in the bottom panel of Fig. 9 gives the region in parameter
space where the fixed point is not stable. Note that for larger
kP an additional critical curve exists that limits the maximal
delay that the system can tolerate. This mode, in addition
to the repeating critical curves that give rise to the changing
super- and subcritical Hopf bifurcations, shapes the stability
chart and determines regions with stable and unstable fixed
points. Notably, this mode corresponds to a mechanism of
instability other than the resonance effect and is discussed in
Ref. [24]. The attractor radius (see the bottom panel in Fig. 9)
shows a similar behavior to what we have seen previously.
It increases between two regions where no stable fixed point
can be found with increasing delay τ and reaches a maximum
slightly before stability is lost. Additionally, there are regions
in parameter space where the dynamics does not relax to any
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FIG. 9. Stability chart as function of kP and τ . The number of
unstable eigenvalues, i.e., eigenvalues λi with a real part bigger
than zero, obtained from the linear stability analysis via Chebyshev
discretization and the attractor radius Ra are shown in the top and
bottom panels, respectively. The attractor radius Ra was computed
by randomly sampling E = 1600 values, which define the constant
initial functions, in the square [−π, π ] × [−3, 3] s−1 for every com-
bination of the delay τ and the gain kP. Parameter combinations for
which all simulations with the chosen initial functions returned to the
fixed point are shown as green crosses in the bottom panel. Regions
in parameter space where no stable fixed point is found are indicated
by the gray hatched areas. Critical curves in parameter space on
which an eigenvalue has a zero real part were determined by using
the software DDE-BIFTOOL. The solid orange lines and the dashed
blue lines show consecutive super- and subcritical Hopf bifurcations,
respectively. The dashed-dotted pink lines show the location of an
additional bifurcation, which further limits the region with a stable
fixed point for large kP. The kP value used in Figs. 6, 7, and 8 is
indicated by the black dotted lines.

stable attractor other than the stable fixed point for the chosen
initial functions (see green crosses in Fig. 9). This can be
attributed to a bifurcation of the limit cycles, which highlights
again that the stability of a fixed point depends crucially on
how different attractors interact to shape the stability chart.

V. DISCUSSION AND CONCLUSION

Summarizing, we have demonstrated a case where local
and global stability analyses give contrarian results: Here,
large basin-of-attraction volumes coincide with vanishing lin-
ear stability at a supercritical Hopf bifurcation. Critically,
we have shown that this effect not only is found in basic
toy systems but also emerges in more complex anharmonic
oscillators and in (delayed) power grid dynamics.

With our work, we have substantially expanded upon
earlier advances, which noted the “perfect stability” in de-
layed power systems [15,24]. We have stressed the critical
role of Hopf bifurcations and the interplay between growing

limit-cycle orbits and the basin of attraction of a stable fixed
point. This correspondence is obvious for two-dimensional
systems where an unstable limit cycle strictly divides the
phase space. Nevertheless, we have shown that this correspon-
dence still holds for more complex dynamical systems.

To further solve the apparent paradox of two conflict-
ing stability statements, we might hypothesize an analogy to
phase transitions, also observed in bifurcations, the “critical
slowing down” [39]. When the dynamical system approaches
the bifurcation, all limit cycles are far away from the sta-
ble fixed point, and the size of the basin of the fixed point
is large. However, this convergence will be slower than for
smaller basins (as indicated by vanishing linear stability).
Hence we observe a transition from an initial steep (high
linear stability) but narrow (small global stability) basin to
a flat (low linear stability) and wide (high global stability)
basin.

Our results are interesting both from a dynamical system
perspective and from an application point of view: If system
parameters are well controlled and eventual convergence is the
main goal, operating a dynamical system close to the unstable
bifurcation point could be desirable, as many perturbations,
even large ones, will still converge eventually to the stable
state. Meanwhile, if a quick convergence is desired, e.g., in
power grid control, operation should be far away from the
bifurcation point, while keeping in mind that large deviations
in phase space are dangerous and could drive the system
away from its desired state; hence tight control of the system
to ensure its proximity to the fixed point is necessary at all
times.

With this contribution, we have shed some light on con-
flicting statements from linear and basin stability. Still, many
open questions remain. In the future, it would be interesting
to observe whether this contrarian effect of local and global
stability can also be shown for other bifurcations and basins of
limit cycles (in addition to basins of fixed points). Addition-
ally, future studies could include an extension of the power
grid model by adding more details of the currently used con-
trol mechanisms and more complex topologies to see how the
local stability and global stability behave. Here, larger systems
with heterogeneously distributed inertia are of special inter-
est, since future power systems need to deal with renewable
generation by solar and wind power being placed at locations
with the highest potential yield. Thus regions with a high
share of fluctuating renewables supply a considerably low
amount of inertia. Knowing how the local and global stability
is affected by these developments and how to choose control
parameters or delays that guarantee a stable system could play
a vital role in designing a robust future power system. Future
work will have to investigate in which other systems, e.g.,
without Hopf bifurcations, the contrarian stability assessment
emerges.
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