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Abstract

This bachelor’s thesis addresses the challenge of Information Flow Control (IFC) in software
engineering, with a focus on balancing expressiveness and usability. It identifies a common
compromise in current IFC methods between expressiveness and simplicity. Inspired by
an existing combined approach that leverages system-dependency-graphs and a theorem
solver, the thesis proposes a novel approach combining the simplicity of type systems
with the expressiveness of theorem provers. The combined system permits the direct
incorporation of information flow specifications, in the form of type annotations, into the
source code. Many of these can be automatically inferred, thereby lowering the annotation
overhead while harnessing the power of a deductive verification system when the type
system falls short. The mathematical soundness of this approach is demonstrated, and
a practical implementation, employing the SFLow type system and the KeY theorem
prover, is presented. A series of comprehensive unit tests, encompassing various types
of information flow and language elements, demonstrates that this method facilitates
efficient specification and comprehensive verification of information flow. This advocates
for further research into the practicality and potential implications of this method.
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Zusammenfassung

Diese Bachelorarbeit befasst sich mit der Herausforderung der Informationsflusskontrolle
(IFC) in der Softwareentwicklung, mit einem Fokus auf das Gleichgewicht zwischen Aus-
druckskraft und Benutzerfreundlichkeit. Sie identifiziert einen gängigen Kompromiss in
aktuellen IFC-Methoden zwischen Ausdruckskraft und Einfachheit. Inspiriert von einem
bestehenden kombinierten Ansatz, der Systemabhängigkeitsgraphen und einen Theorem-
löser nutzt, schlägt die Arbeit einen neuartigen Ansatz vor. Dieser Ansatz kombiniert
der die Einfachheit von Typsystemen mit der Ausdruckskraft von Theoremlösern. Das
kombinierte System ermöglicht die direkte Spezifikation des erlaubten Informationsflusses
in Form von Typannotationen im Quellcode. Viele davon können automatisch abgeleitet
werden, wodurch der Spezifikationsaufwand reduziert wird. Die Leistungsfähigkeit eines
deduktiven Verifikationssystems wird genutzt, wenn das Typsystem an seine Grenzen
stößt. Die mathematische Stichhaltigkeit dieses Ansatzes wird demonstriert und eine prak-
tische Implementierung, die das SFLow-Typsystem und den KeY-Theoremlöser verwendet,
wird vorgestellt. Eine Reihe von umfassenden Unit-Tests, die verschiedene Informations-
flussmechanismen und Sprachelemente umfassen, zeigt, dass diese Methode effiziente
Spezifikation und Verifikation von unerwünschten Informationsflüssen ermöglicht. Dies
spricht für weitere Forschungen zur Praktikabilität und zu den potenziellen Auswirkungen
dieser Methode.
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1 Introduction

Ensuring the secrecy of sensitive information and the integrity of important data has
become increasingly important in the field of software engineering. A primary objective, in
this context, is to prevent the flow of information from high-security data to low-security
outputs. The concept of Information Flow Control (IFC), which can be traced back to the
works of Denning (1976) and Bell (1973), is employed to achieve this goal.

In the domain of information flow control, individual program entities are assigned
labels. These labels allow for the specification of information flow policies, designed to
identify and restrict invalid information flows. Unauthorized flows can occur through
explicit assignments between variables of differing security levels, such as low-security
and high-security variables. However, unauthorized flows can also occur indirectly and
often through complex pathways, making the task of identifying such flows challenging
in real-world scenarios. To address this challenge, formal methods are employed. These
methods serve a dual purpose in this regard - they are not only capable of detecting
information flow but, perhaps more importantly, can also prove its absence.

The formal methods employed in this context can be primarily categorized into syntactic
and semantic approaches. Syntactic approaches focus on the structure of program code
and include system-dependency-graph (SDG) based techniques (refer to Graf, Hecker, and
Mohr (2013)), type systems (refer to Volpano, Smith, and Irvine (2000)), and methods based
on the decentralized label model (DLM) (refer to Myers and Liskov (2000)). Conversely,
semantic methodologies, which deal with the interpretation of programs, frequently utilize
logic-based approaches. One such logic is as dynamic logic for Java (JavaDL) (refer to
Beckert, Bruns, et al. (2014)), which can be automatically verified with theorem provers.

Syntactic approaches are inherently less precise than their semantic counterparts. For
instance, in the case of l = h; l = 0, there is no information flow from h to l, yet most
syntactic approaches would still flag this as a false positive. Moreover, there exists a
trade-off between the expressiveness of the information flow specification and the ease of
use of the validation tools. Kozyri, Chong, and Myers (2022), in a comprehensive review
of information flow research over the past three decades, observe the following:

The inherent tension between expressiveness and simplicity is apparent in the
literature of information flow policies. The more expressive the policies and
labels are, the more precise the specification of allowed or forbidden flows
becomes, enabling a more fine-grained control of information flow. However,
increasingly expressive policies and labels become less understandable and
possibly less usable. To widen the adoption of information flow policies by
programmers, a balance must be struck between expressiveness and usability.

One potential solution to balancing expressiveness and usability is to combine the
precision and expressiveness of deductive verification systems with the ease of use and
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1 Introduction

understandability of less complex systems. An example of such a combined approach
has been developed between SDG-based systems and logic-based systems, as presented
in Beckert, Bischof, et al. (2018). This thesis aims to fill the missing gap by developing a
similar combined approach, this time between secure-flow type systems and logic-based
systems. Type systems, being easy to use and widely familiar to programmers, serve as
an excellent introduction to formal verification. They also have a substantial theoretical
and practical foundation, making them a suitable basis for a combined approach. One
significant difference that enhances the practicality of the verification system, as com-
pared to previously proposed combined approaches, is the direct incorporation of type
annotations into the source code. This integration facilitates the parallel development
of the specification and the source code, utilizing many of the same tools such as Inte-
grated Development Environments (IDEs) and version control. Although a comprehensive
study of the practicality of such combined systems is beyond the scope of this thesis, the
implementation of such a system paves the way for potential future research in this area.

Structure of the Thesis This thesis begins by demonstrating the theoretical compatibility
of a type-system-based approach with a dynamic-logic-based approach to information
flow control. To facilitate this, basic concepts are recapitulated, ensuring that they are pre-
sented using common terminology, which necessitates a minor adaptation of the original
sources. The equivalence of the approaches is subsequently established by demonstrating
that they share the same notion of noninterference, a theoretical definition synonymous
with the absence of illicit information flows. Based on this equivalence, we show that a
combined system maintains its soundness, as evidenced by its continued guarantee of
noninterference.

Following this, a practical implementation based on the SFLow type system and the KeY
theorem prover is presented, demonstrating the feasibility of such a combined approach.
This implementation lays a solid foundation for further research into the practicality of
these combined systems. The thesis concludes with an evaluation of the combined system
and a discussion of the results.
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2 Theoretical Foundations

To ensure the accuracy of the combined verification system, we will establish its theoretical
correctness in Chapter 3. The proofs provided there will be grounded in the theory
presented in this chapter.

We will commence with an introduction to the concept of security lattices. First intro-
duced in Denning (1976), they are extensively utilized to precisely describe information
flow properties. Next, an informal introduction to type systems and logical inference
rules is provided. The notation introduced here is used to define the core language- a
compact imperative language that forms the foundation for the proofs presented in this
thesis, and the first of the two verification systems used - a type system, introduced in
Volpano, Smith, and Irvine (2000), that ensures noninterference for well-typed programs.
This is followed by an introduction to information flow verification using Java dynamic
language and its verification in the KeY theorem prover. Notably, a second definition of
noninterference is introduced at this point. These two noninterference guarantees, one
from the Volpano-Smith type system, and a second one from the KeY theorem prover, form
the basis for establishing the combined verification system.

2.1 Security Lattices

To facilitate the formal definition of information flow policies, we use the concept ofsecurity
lattices, as defined by Denning (1976) and Bell (1973). These lattices are composed of Labels
or Security Classes (SC) and a partial order on the classes, denoted as ≤. Every program
variable is assigned a security class, represented by sec(𝑥). The information flow from a
program variable 𝑥 to another variable 𝑦 is deemed permissible if 𝑥 ≤ 𝑦. Security classes
can be combined using the associative and commutative binary operator ⊕, which forms
the least upper bound, or by ⊗, which denotes the greatest lower bound. When security
classes are represented as sets of labels, the operators ⊕ and ⊗ function as the union and
intersection operators, respectively.

In the lattice model, secrecy might be defined by two security classes: low (𝐿) and high
(𝐻 ), with 𝐿 ≤ 𝐻 . Similarly, integrity could be defined by two security classes: trusted (𝑇 )
and untrusted (𝑈 ), with 𝑇 ≤ 𝑈 .

To facilitate the illustration of these concepts, we use 𝑥 → 𝑦 to denote 𝑥 ≤ 𝑦, meaning
that flow is allowed from 𝑥 to 𝑦. Figure 2.1 displays a simple security lattice that combines
both secrecy and integrity into a single lattice, using the labels 𝐿, 𝐻 ,𝑇 , and𝑈 . The security
classes are formed from possible combinations of these labels, with a security label 𝐴𝐵
representing the security class 𝐴 ⊕ 𝐵.

Figure 2.2 illustrates a reduced approach to integrating the concepts of secrecy and
integrity. In this model, we utilize only two labels: safe and tainted. These labels
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2 Theoretical Foundations

𝑈𝐻

𝑇𝐿

𝑈𝐿 𝑇𝐻

Figure 2.1: Security lattice combining secrecy and integrity

can be interpreted in two ways. For secrecy, safe = 𝑇 and tainted = 𝑈 , while for
integrity, safe = 𝐿 and tainted = 𝐻 . Critically, despite its simplicity, this model does not
compromise on theoretical expressiveness. It remains possible to examine a program for
both integrity and secrecy by deploying two distinct lattices: one for gauging secrecy, and
the other for assessing integrity. This approach, with its simplicity, is easier to manage and
will be employed in Section 3.1 as the foundation for the combined verification system.

tainted

safe

Figure 2.2: Simple security lattice combining secrecy and integrity

Explicit and Implicit Flows The most obvious way for an information flow property to be
violated is through assignment between variables. Consider the assignment 𝑡 = 𝑢, which
is deemed unsound if sec(𝑡) = 𝑇 and sec(𝑢) = 𝑈 since 𝑇 ≰ 𝑈 . This type of information
transfer, where data is directly passed from one variable to another, is referred to as explicit
information flow. However, there exist alternative mechanisms for information to flow
between variables. In the subsequent example, the information flow is not explicit but
implicit:

i f ( u == 0 ) {
t = 0 ;

}

In this scenario, the trusted value in 𝑡 is still reliant on the untrusted source 𝑢. Such
information flows can become rather intricate and thus challenging to identify. Initial
techniques for detecting such information flows were proposed by Denning (1976), and
later Volpano, Smith, and Irvine (2000) who introduced a refined method based on type
systems, accompanied by a proof of soundness.

Noninterference To encapsulate the concept of information flow in a mathematical frame-
work, we employ the principle of noninterference. At an intuitive level, noninterference

4



2.2 Type Systems

proposes that, in terms of secrecy, the public output of a program should be exclusively de-
termined by the public input to that program. This ensures that any private or confidential
information does not influence or alter the public output.

Similarly, in the context of integrity, noninterference stipulates that the trusted output
of a program should solely rely on the trusted input of that program. This prevents any
untrusted or potentially harmful input from affecting the trusted output.

In essence, noninterference captures the intuitive notion of disallowing insecure infor-
mation flows while being mathematically rigorous. This is achieved by disallowing any
dependencies of the trusted output on untrusted input or public output on private input,
thus maintaining the sanctity of the information flow within a program.

For an in-depth and formal definition of noninterference, please refer to the later sections:
Section 2.5 and Section 2.4.

Attacker Model Information can be compromised through a variety of methods. For
example, side-channel attacks infer information by observing power consumption, heat
generation or other indirect aspects of program execution. These observable characteristics
can inadvertently reveal sensitive information.

However, the lattice security model, which is the focus of this thesis, considers in-
formation flows that are inherent to the program itself. In this model, an attacker can
only observe or modify information that has been marked as having low secrecy or low
integrity according to the security labels assigned within the program. This implies that
the attacker has limited yet direct access, confined solely to information that has been
classified as less vital or sensitive. Information disclosed through indirect access, such as
side-channel attacks, is not taken into account within the security framework that serves
as the foundation for this thesis.

2.2 Type Systems

Type systems are formal systems that can be used to verify the absence of certain errors in
computer programs. Essentially, a type system is composed of inference rules and associates
types with program elements. The inference rules are employed to derive judgments in
the form:

Γ ⊢ 𝑝 : 𝜏
Such a judgment indicates that under certain assumptions Γ, the expression 𝑝 has a

valid type 𝜏 .
Inference rules dictate what judgments can be derived. They comprise two sections

divided by a horizontal line. The upper section contains a set of premises separated by
spaces, and the lower section contains a conclusion. Intuitively, an inference rule states
that the conclusion holds true if all the premises are true. In the context of type systems,
this means that the judgment in the conclusion can be derived if all the judgments in the
premise can be derived.

Take, for instance, the following example of a simple type system that deals with integers
and addition:
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2 Theoretical Foundations

Γ ⊢ 𝑒 : int Γ ⊢ 𝑒 : int(add)
Γ ⊢ 𝑒 + 𝑒′ : int

This rule states that the addition of two expressions can be typed as int if both expressions
are also typed as int.

To derive a type for the expression 1 + 2 using the rule above would not be sufficient. It
necessitates the addition of a rule for integer literals:

(int)
Γ ⊢ 𝑛 : int

This rule, having no premises, can always be derived. Such rules are referred to as
axioms. With the application of this rule, we can now conclude that the expression 1 + 2 is
of the type int:

(int)
Γ ⊢ 1 : int (int)

Γ ⊢ 2 : int(add)
Γ ⊢ 1 + 2 : int

Now that we can derive a type for the expression 1 + 2, we categorize it as well-typed.
The type system aids in ensuring program correctness by rejecting programs that are not
well-typed, thereby preventing certain types of errors. For instance, we could expand our
basic type system to accommodate floating point numbers, while rejecting expressions
that combine integers and floating point numbers:

(float)
Γ ⊢ 𝑓 : float Γ ⊢ 𝑒 : float Γ ⊢ 𝑒 : float(fadd)

Γ ⊢ 𝑒 + 𝑒′ : float

In this context, we interpret 𝑓 as a real number that is not an integer. By applying
the rules outlined above, we can determine that the expressions 1 + 2 and 1.2 + 2.2 are
well-typed, whereas the expression 1 + 2.2 is not. Requiring programs to be well-typed
would thereby exclude addition between floating point numbers and integers.

Definition 1. (Synatx-directed type system) A type system is considered syntax-directed if,
for every statement or expression in the language, there exists a unique inference rule that
can be applied at any given stage of the derivation.

Type Context Type judgments and inference rules are formulated with respect to a type
context Γ. This context comprises a set of assumptions, often used to store the types of
variables. The type context can be updated by inference rules, allowing the introduction
of new variables, as demonstrated in the example below:

Γ, 𝑒 : 𝜏 Γ [𝑥 : 𝜏] ⊢ 𝑠 : 𝜏′(letvar)
Γ ⊢ let 𝑥 := 𝑒 in 𝑠 : 𝜏′

This rule allows us to derive a type 𝜏′ for a statement 𝑠 under the additional assumption
that the variable 𝑥 holds the type 𝜏 of the expression assigned to it, denoted as Γ [𝑥 : 𝜏].

To utilize this rule in type derivations, we also need to introduce a rule to consume the
assumption that 𝑥 holds the type 𝑡𝑎𝑢:
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2.3 The Core Language

Γ(𝑥) = 𝜏(var)
Γ ⊢ 𝑥 : 𝜏

By applying these two rules, we can demonstrate that the program let x := 1 in x +

2 is well-typed:

(int)
Γ ⊢ 1 : int

(int)
Γ [𝑥 : int] ⊢ 2 : int

Γ [𝑥 : int] (𝑥) = int(var)
Γ [𝑥 : int] ⊢ 𝑥 : int(add)

Γ [𝑥 : int] ⊢ 𝑥 + 2 : int(letvar)
Γ ⊢ let 𝑥 := 1 in 𝑥 + 2 : int

2.3 The Core Language

To facilitate the theoretical exploration of the combined verification system, we will
introduce the core language, as defined by Volpano, Smith, and Irvine (2000) and Volpano
and Smith (1997). From this point forward, we will refer to it simply as the core language.
The core language is an imperative language that includes integers, variables, internal
memory, and procedures. One significant simplification, when compared to Java, is the
absence of an object model. The process of adapting the verification system from the core
language to Java is discussed in Chapter 4.

Syntax of the Core Language The syntax of the core language is delineated by the following
grammar:

(Phrase) 𝑝 ::= 𝑒 | 𝑐
(Expr) 𝑒 ::= 𝑥 | 𝑛 | 𝑙 | 𝑒 + 𝑒′ | 𝑒 − 𝑒′ | 𝑒 == 𝑒′ | 𝑒 < 𝑒′ | proc (in 𝑥1, intout 𝑥2)𝑐
(Stmt) 𝑐 ::= 𝑒 := 𝑒′ | 𝑐; 𝑐′ | 𝑒 (𝑒1, 𝑒2) | if 𝑒 then 𝑐 else 𝑐′ | while 𝑒 do 𝑐 |

letproc 𝑥 (in 𝑥1, inout 𝑥2)𝑐 in 𝑐′

In this syntax, we introduce the meta-variables 𝑥, 𝑛, 𝑙 , which range over (free) identifiers,
integers, and locations, respectively. Additionally, 𝑝, 𝑒, 𝑐 range over phrases, expressions,
and statements (called commands in the original sources), respectively. These variables
will act as placeholders for concrete instantiations in subsequent chapters.

Definition 2 (Program). A phrase is considered closed if it contains no free identifiers. A
closed phrase that also qualifies as a statement is referred to as a program.

Even though there is no special syntax for blocks, they are represented as a sequence of
statements. This sequence of statements is again called a statement in the core language.
This language may be misleading, but it is consistent with the original sources and allows
us to make general affirmations about the core language without having to distinguish
between blocks and statements.

Definition 3 (Substitution). The notation [𝑒/𝑥]𝑐 is used to denote the statement resulting
from the capture-avoiding substitution of an identifier 𝑥 with an expression 𝑒 in a statement
𝑐 .
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2 Theoretical Foundations

Semantic of the Core Language. The semantics of the core language are defined by the
derivation rules in Figure 2.3. Utilizing inference rules to describe the semantics of a pro-
gramming language provides the advantage of providing a precise and robust foundation
for formal proofs.

In the core language, integers are the sole data type and are used to represent boolean
values, with 1 interpreted as true and 0 as false. The core language also includes simple
procedures that require two parameters. The first parameter is input-only, or read-only,
denoted by in, and the second parameter can be both read and updated, denoted by inout.
Memory is accessed and modified through locations, which can be considered as memory
addresses. These locations are interpreted with respect to a memory 𝜇:

Definition 4 (Memory). A memory 𝜇 : dom(𝜇) → Z is a finite function that maps from a
finite domain dom(𝜇) of valid memory locations to integer values.

Definition 5 (Memory update). We denote 𝜇 [𝑙 := 𝑛] as the function that maps from
dom(𝜇) ∩ {𝑙} to Z, modifying the value for the location 𝑙 :

𝜇 [𝑙 := 𝑛] (𝑙′) =
{
𝑛 , if 𝑙′ = 𝑙
𝜇 (𝑙′) , if 𝑙′ ≠ 𝑙

Definition 6 (Memory deletion). We denote 𝜇′−𝑙 as the function that maps from dom(𝜇)\{𝑙}
to Z, effectively removing the location 𝑙 from the domain of 𝜇′.

Evaluation of Programs The semantics provided in Figure 2.3 allow us to derive judgments
in the form of 𝜇 ⊢ 𝑒 ⇒ 𝑛 for expressions and 𝜇 ⊢ 𝑐 ⇒ 𝜇′ for closed statements. In this
context, expressions are evaluated as integers, and statements are evaluated as modified
memory. We can use these evaluations to define the evaluation function eval𝜇 (𝑝), which
represents the evaluation of a closed phrase 𝑝 with respect to a specific memory 𝜇.

Definition 7 (Evaluation of expressions). For a closed expression 𝑒 , the evaluation is denoted
as eval𝜇 (𝑒) = 𝑛, where 𝜇 ⊢ 𝑒 ⇒ 𝑛.

Definition 8 (Evaluation of statements). For a closed statement 𝑐 , the evaluation is denoted
as eval𝜇 (𝑐) = 𝜇′, where 𝜇 ⊢ 𝑐 ⇒ 𝜇′.

Input and Output In this framework, the input of a program is considered to be the initial
memory configuration 𝜇, and the output of a program is the modified memory location 𝜇′
after the program has been executed.

2.4 Volpano Smith Secure Flow Type System

We will now introduce a type system for the core language, aimed at proving the absence
of insecure information flows. This type of system was initially proposed in Volpano,
Smith, and Irvine (2000), and later expanded to incorporate procedures in Volpano and
Smith (1997). We will use notation and terminology that aligns with the other systems
discussed in this thesis.
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2.4 Volpano Smith Secure Flow Type System

This type of system’s objective is not to identify typical program errors, such as assigning
floating point values to integer variables. Instead, it aims to verify that a program does not
violate a specified information flow policy. This policy is represented as a security lattice
(SC, ≤), comprising security classes SC and a partial order ≤ on the security classes.

Security Types There exists a one-to-one correspondence between the security classes
and the security types. Hereafter, these security types will be denoted as 𝜏 . The partial
order of the security classes translates into a subtyping relation on the security types. The
security type system uses three additional parameterized types. Variables can have the
type 𝜏 var, while statements can be classified as type 𝜏 cmd. Procedures, on the other
hand, can be designated as type 𝜏 proc(𝜏1, 𝜏2). In this context, 𝜏 signifies the overall type
of the procedure, while 𝜏1 and 𝜏2 represent the types of the in and inout parameters,
respectively.

In addition to 𝜏 , we introduce the meta-variables 𝜋 and 𝜌 . Here, 𝜌 represents any type,
and 𝜋 denotes any non-variable type.

Type Rules The type inference rules in the Volpano-Smith type system aim to eliminate
both explicit and implicit insecure information flows. To achieve this, the type system
is designed with a particular interpretation of the security types: For an expression to
have type 𝜏 , every value read in the expression must have a type 𝜏′ ≤ 𝜏 . When using
integrity types, where 𝑇 ≤ 𝑈 this implies that a trusted expression only contains trusted
values, whereas an untrusted expression may contain both trusted and untrusted values.
For statement and procedure types, the interpretation is that every variable updated in a
statement or procedure of type 𝜏 must have a type 𝜏 ≤ 𝜏′.

A straightforward rule for valid assignments would then be:

𝜆;𝛾 ⊢ 𝑒 : 𝜏 var 𝜆;𝛾 ⊢ 𝑒′ : 𝜏
𝜆;𝛾 ⊢ 𝑒 := 𝑒′ : 𝜏 cmd

This rule states that the value and the variable in an assignment must agree on their
security type 𝜏 . However, assignments between variables of different security levels can
still occur by coercing the type of the value using the subtyping relation. For instance, if 𝑒
is of type𝑈 var and 𝑒′ is of type 𝑇 , the type of 𝑒′ can be coerced to𝑈 , thereby facilitating
the assignment.

The syntax-directed type rules are depicted in Figure 2.4. Any rule that concludes with a
hyphen, such as ident′, incorporates a subtyping relationship. These rules were originally
derived from a set of rules that excluded subtyping relationships, in conjunction with a
set of explicit subtyping rules. The advantage of the syntax-directed set of typing rules is
that for every statement in the core language, only one rule is applicable. This aspect is
extensively utilized in the induction proofs provided later.

The original subtyping rules that were used to derive the syntax-directed set of rules
are provided in Figure 2.5 for reference. It’s important to note that the types of statements
are contravariant. Variables do not have any direct subtyping relationship since they can
be both read and updated.
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2 Theoretical Foundations

Type Context The type context consists of an identifier typing 𝛾 and a location typing 𝜆.

Definition 9. (Identifier typing) An identifier typing is a finite function that assigns types of
the form 𝜏 or 𝜏 var to identifiers.

Definition 10. (Location typing) A location typing is a finite function that assigns types of
the form 𝜏 or 𝜏 var to identifiers.

The notations 𝛾 [𝑥 : 𝜌] and 𝜆[𝑙 : 𝜌] represent a modified type context, where the type 𝜌
is assigned to the variable 𝑥 or the location 𝑙 , respectively. The detailed definition of these
notations aligns with Definition 5, and for the sake of brevity, it is not reiterated here.

Volpano Smith Noninterference We are now prepared to recapitulate the definition of
noninterference as presented by Volpano and Smith.

Definition 11. (Volpano-Smith noninterference) Let 𝑐 be a program and 𝜆 a location typing
with dom(𝜆) = 𝐷 for its locations. The program 𝑐 is noninterferent if and only if for
all memory configurations 𝜇, 𝜈, 𝜇′, 𝜈′ such that 𝑒𝑣𝑎𝑙𝜇 (𝑐) = {𝜇′} and 𝑒𝑣𝑎𝑙𝜈 (𝑐) = {𝜈′}, and
dom(𝜇) = dom(𝜈) = 𝐷 :

∀𝑙 𝜆(𝑙) ≤ 𝜏 : 𝜈 (𝑙) = 𝜇 (𝑙) =⇒ ∀𝑙 𝜆(𝑙) ≤ 𝜏 : 𝜈′(𝑙) = 𝜇′(𝑙) (2.1)

When interpreting Definition 11 in terms of integrity, it implies that the state of trusted
memory after a program’s execution is solely determined by the state of trusted memory
prior to the program’s execution. In other words, the trusted memory of a program,
post-execution, is not influenced by untrusted input.

Type Soundness To formalize the goal of excluding programs with insecure information
flow by application of the Volpano-Smith type system a type soundness theorem is proven
in Volpano, Smith, and Irvine (2000).

Theorem 1. (Type Soundness) Let 𝑐 be a program and 𝜆 a location typing for c.
If 𝜆 ⊢ 𝑐 : 𝜌 , then 𝑐 is noninterferent according to Definition 11.

Theorem 1 states that any program for which a typing can be derived in the Volpano-
Smith type system is noninterferent, thereby giving us a method to formally prove the
absence of insecure information flows for a given security lattice simply by providing a
valid typing for the program.

The proof of the type soundness theorem relies on structural induction and two lem-
mas, namely simple security and confinement. These lemmas reflect the earlier presented
intuition about the significance of expression and statement types respectively. As these
lemmas form the foundation for the combined verification system, they are reiterated
here:

Lemma 1 (Simple Security). If 𝜆;𝛾 ⊢ 𝑒 : 𝜏 , then for every 𝑙 in 𝑒 : 𝜆(𝑙) ≤ 𝜏 , and for every 𝑥
free in 𝑒 , 𝛾 (𝑥) ≤ 𝜏 .
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Lemma 2 (Confinement). If 𝜆 ⊢ 𝑐 : 𝜏 cmd, eval𝜇 (𝑐) = 𝜇′, dom(𝜆) = dom(𝜇), and 𝑙 is a
location updated in 𝑐 , then 𝜆(𝑙) ≥ 𝜏 .

Here, Lemma 1 specifies that expressions of type 𝜏 only read locations with a subtype
of 𝜏 , and Lemma 2 states that statements of type 𝜏 cmd only update locations with a
supertype of 𝜏 .

2.5 Information Flow Verification in KeY

KeY is a theorem prover that utilizes higher-order dynamic logic, specifically designed for
Java, known as JavaDL. It allows the formulation of a provable version of noninterference
using JavaDL. This version of noninterference, akin to the Volpano-Smith version of
noninterference, stipulates that two program executions, starting with the same low
secrecy input, yield the same high secrecy output.

This concept of noninterference, formulated in JavaDL, can be verified by the KeY solver
using symbolic execution. This method evaluates the given Java program’s representation
in JavaDL to formally prove the equivalence of the low secrecy output.

In this section, we recapitulate the fundamental definitions that shape the concept
of noninterference within the KeY system as presented in Ahrendt et al. (2016). This
exploration lays the groundwork for the combined system discussed in this thesis.

Please note that we will make minor modifications to the definitions presented in this
chapter to fit the core language.

Observation Expressions Observation expressions are used to define the attacker model
by accurately specifying the information an attacker can access. In the simplest form, an
observation expression is a sequence of program variables that an attacker can read or
modify. In Ahrendt et al. (2016), observation expressions can be composed of any JavaDL
terms, providing a more expressive representation of the disclosed information. However,
for the purpose of our work, we will be using a subset, focused on the memory locations
in our program, only:

Definition 12. (Observation expression) An observation expression𝑅 is a sequence of program
locations ⟨𝑙1, 𝑙2, . . . ⟩.

The evaluation of closed phrases can be extended to observation expressions, done in a
component-wise manner:

Definition 13. (Evaluation of an observation expression)

𝑒𝑣𝑎𝑙𝜇 (𝑅) = {⟨𝑒𝑣𝑎𝑙𝜇 (𝑙1), 𝑒𝑣𝑎𝑙𝜇 (𝑙2), . . . ⟩} = {⟨𝜇 (𝑙1), 𝜇 (𝑙2), . . . ⟩}

Definition 14. (Equality of observation expressions) Two observation expressions are equal if
and only if they consist of the same number of elements and their corresponding components
are equal.

To define KeY’s concept of noninterference , it is necessary to establish what it means
for two memory configurations to agree on an observation expression. This is defined in
the same way as it is in Ahrendt et al. (2016):
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Definition 15. (Agreement of States) Let 𝑅 be an observation expression. Two states 𝜇 and 𝜈
agree on 𝑅, abbreviated by agree(𝑅, 𝜇, 𝜈), if and only if 𝑒𝑣𝑎𝑙𝜇 (𝑅) = 𝑒𝑣𝑎𝑙𝜈 (𝑅).

KeY Unconditional Noninterference Using the previously outlined definitions, we can now
define KeY’s concept of unconditional noninterference for the core language:

Definition 16 (KeY Unconditional Noninterference). Let 𝑐 be a program and 𝑅1, 𝑅2 be
observation expression. A program 𝑐 is non-interferent if and only if for all states 𝜇, 𝜈, 𝜇′, 𝜈′

such that 𝑒𝑣𝑎𝑙𝜇 (𝑐) = {𝜇′} and 𝑒𝑣𝑎𝑙𝜈 (𝑐) = {𝜈′}, we have:

if agree(𝑅1, 𝜇, 𝜈) then agree(𝑅2, 𝜇′, 𝜈′)

In essence, this implies that if the public information in the prestate of an execution
remains unchanged, then the public information in the poststate will also remain un-
changed. Here, the public information in pre- and poststate is denoted by the observation
expressions 𝑅1 and 𝑅2 respectively.

Importantly, Definition 16 can be proven using the KeY theorem prover. The mechanisms
behind this proof are not within the scope of this thesis but are detailed in Section 13.5 of
Ahrendt et al. (2016).
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(val) 𝜇 ⊢ 𝑛 ⇒ 𝑛

(contents) 𝑙 ∈ dom(𝜇)
𝜇 ⊢ 𝑙 ⇒ 𝜇 (𝑙)

(add) 𝜇 ⊢ 𝑒 ⇒ 𝑛 𝜇 ⊢ 𝑒′ ⇒ 𝑛′

𝜇 ⊢ 𝑒 + 𝑒′ ⇒ 𝑛 + 𝑛′

(seqence) 𝜇 ⊢ 𝑐 ⇒ 𝜇′ 𝜇′ ⊢ 𝑐′ ⇒ 𝜇′′

𝜇 ⊢ 𝑐; 𝑐′ ⇒ 𝜇′′

(branch) 𝜇 ⊢ 𝑒 ⇒ 1 𝜇 ⊢ 𝑐 ⇒ 𝜇′

𝜇 ⊢ if 𝑒 then 𝑐 else 𝑐′ ⇒ 𝜇′

𝜇 ⊢ 𝑒 ⇒ 0 𝜇 ⊢ 𝑐′ ⇒ 𝜇′

𝜇 ⊢ if 𝑒 then 𝑐 else 𝑐′ ⇒ 𝜇′

(call) 𝜇 ⊢ 𝑒 ⇒ 𝑛 𝜇 ⊢ [𝑛, 𝑙, 𝑙′/𝑥1, 𝑥2, 𝑥3]𝑐 ⇒ 𝜇′

𝜇 ⊢ proc (in 𝑥1, inout 𝑥2) 𝑐) (𝑒, 𝑙, 𝑙′) ⇒ 𝜇′

(update) 𝜇 ⊢ 𝑒 ⇒ 𝑛 𝑙 ∈ dom(𝜇)
𝜇 ⊢ 𝑙 := 𝑒 ⇒ 𝜇′[𝑙 := 𝑛]

(bindvar) 𝜇 ⊢ 𝑒 ⇒ 𝑛 𝑙 ∉ dom(𝜇) 𝜇 [𝑙 := 𝑛] ⊢ [𝑙/𝑥]𝑐 ⇒ 𝜇′

𝜇 ⊢ letvar 𝑥 := 𝑒 in 𝑐 ⇒ 𝜇′ − 𝑙

(loop) 𝜇 ⊢ 𝑒 ⇒ 0
𝜇 ⊢ while 𝑒 do 𝑐 ⇒ 𝜇

𝜇 ⊢ 𝑒 ⇒ 1 𝜇 ⊢ 𝑐 ⇒ 𝜇′ 𝜇′ ⊢ while 𝑒 do 𝑐 ⇒ 𝜇′′

𝜇 ⊢ while 𝑒 do 𝑐 ⇒ 𝜇′′

(bindproc) 𝜇 ⊢ [proc (in 𝑥1, inout 𝑥2) 𝑐/𝑥]𝑐′ ⇒ 𝜇′

𝜇 ⊢ letproc 𝑥 (in 𝑥1, inout 𝑥2) 𝑐 in 𝑐′ ⇒ 𝜇′

Figure 2.3: Semantics of the core language
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(ident′) 𝛾 (𝑥) = 𝜏 𝜏 ≤ 𝜏′
𝜆;𝛾 ⊢ 𝑥 : 𝜏′

(var) 𝛾 (𝑥) = 𝜏 var
𝜆;𝛾 ⊢ 𝑥 : 𝜏 var

(varloc) 𝜆(𝑙) = 𝜏 var
𝜆;𝛾 ⊢ 𝑙 : 𝜏 var

(int) 𝜆;𝛾 ⊢ 𝑛 : 𝜏

(r-val′) 𝜆;𝛾 ⊢ 𝑒 : 𝜏 var 𝜏 ≤ 𝜏′
𝜆;𝛾 ⊢ 𝑒 : 𝜏′

(sum) 𝜆;𝛾 ⊢ 𝑒 : 𝜏 𝜆;𝛾 ⊢ 𝑒′ : 𝜏
𝜆;𝛾 ⊢ 𝑒 + 𝑒′ : 𝜏

(compose) 𝜆;𝛾 ⊢ 𝑐 : 𝜏 cmd 𝜆;𝛾 ⊢ 𝑐′ : 𝜏 cmd
𝜆;𝛾 ⊢ 𝑐; 𝑐′ : 𝜏 cmd

(letvar) 𝜆;𝛾 ⊢ 𝑒 : 𝜏 𝜆;𝛾 [𝑥 : 𝜏 var] ⊢ 𝑐 : 𝜏′ cmd
𝜆;𝛾 ⊢ letvar 𝑥 := 𝑒 in 𝑐 : 𝜏′ cmd

(assign′) 𝜆;𝛾 ⊢ 𝑒 : 𝜏 var 𝜆;𝛾 ⊢ 𝑒′ : 𝜏 𝜏′ ≤ 𝜏
𝜆;𝛾 ⊢ 𝑒 := 𝑒′ : 𝜏′ cmd

(if′) 𝜆;𝛾 ⊢ 𝑒 : 𝜏 𝜆;𝛾 ⊢ 𝑐 : 𝜏 cmd 𝜆;𝛾 ⊢ 𝑐′ : 𝜏 cmd 𝜏′ ≤ 𝜏
𝜆;𝛾 ⊢ if 𝑒 then 𝑐 else 𝑐′ : 𝜏′ cmd

(while′) 𝜆;𝛾 ⊢ 𝑒 : 𝜏 𝜆;𝛾 ⊢ 𝑐 : 𝜏 cmd 𝜏′ ≤ 𝜏
𝜆;𝛾 ⊢ while 𝑒 do 𝑐 : 𝜏′ cmd

(procedure) 𝜆;𝛾 [𝑥1 : 𝜏1, 𝑥2 : 𝜏2 var] ⊢ 𝑐 : 𝜏 cmd
𝜆;𝛾 ⊢ proc (in 𝑥1, inout 𝑥2) 𝑐 : 𝜏 proc(𝜏1, 𝜏2 var)

(apply) 𝜆;𝛾 ⊢ 𝑒 : 𝜏 proc(𝜏1, 𝜏2 var) 𝜆;𝛾 ⊢ 𝑒1 : 𝜏1 𝜆;𝛾 ⊢ 𝑒2 : 𝜏2 var
𝜆;𝛾 ⊢ 𝑒 (𝑒1, 𝑒2) : 𝜏1 cmd

(letproc)
𝜆;𝛾 ⊢ proc (in 𝑥1, inout 𝑥2)𝑐 : 𝜋,
𝜆;𝛾 ⊢ [proc (in 𝑥1, inout 𝑥2)𝑐/𝑥]𝑐′ : 𝑡𝑎𝑢 cmd
𝜆;𝛾 ⊢ letproc 𝑥 (in 𝑥1, inout 𝑥2)𝑐 in 𝑐′ : 𝜏 cmd

Figure 2.4: Syntax-directed typing rules for the core language
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(cmd−) ⊢ 𝜏 ≤ 𝜏′
𝜏 cmd ≤ 𝜏 cmd

(proc−) ⊢ 𝜏′ ≤ 𝜏 ⊢ 𝜏′1 ≤ 𝜏1
𝜏 proc(𝜏1, 𝜏2 var) ≤ 𝜏′ proc(𝜏′1, 𝜏2 var)

(subtype) 𝜆;𝛾 ⊢ 𝑝 : 𝜌 ⊢ 𝜌 ≤ 𝜌′

𝜆;𝛾 ⊢ 𝑝 : 𝜌′

Figure 2.5: Subtyping rules
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3 Mathematical Formulation of the
Translation Layer

This chapter lays the theoretical groundwork for the combined verification system. We
begin by presenting the security lattice that forms the foundation of this system. Subse-
quently, we adapt the noninterference definitions (Definition 11, Definition 16) specifically
to align with this security lattice. We then demonstrate that these adapted definitions are
equivalent. This equivalence establishes the theoretical underpinning for the combined
verification system.

3.1 The Basic Lattice

We proceed to define the security lattice (Figure 3.1) utilized in the translation layer. The
adoption of this concrete security lattice has two main benefits. Firstly, it enables succinct
theoretical discussions while maintaining practical translation. Secondly, it is in line with
the security lattices frequently used in real-world systems such as Huang, Dong, and
Milanova (2014).

Definition 17. (Basic lattice) The basic lattice is a security lattice (SC, ≤) with security
classes SC = {tainted, safe} and the partial order relation safe ≤ tainted.

tainted

safe

Figure 3.1: The basic lattice

This lattice is essentially the condensed security lattice discussed in Section 2.1. It
facilitates the checking of a program for either secrecy or integrity. A program can be
checked for both secrecy and integrity by requiring two validation passes.

• In the context of secrecy, tainted corresponds to 𝐻 while safe corresponds to 𝐿.

• In the context of secrecy, tainted corresponds to𝑈 while safe corresponds to 𝑇 .
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3.2 Noninterference in the Context of the Basic Lattice

We proceed to adapt the noninterference definitions from Volpano-Smith and the KeY
theorem prover to the basic lattice. These specialized definitions lay the groundwork for
the equivalence proof.

Secure Flow Types The secure flow types utilized in the simplified definition are derived
from the security classes of the basic lattice, as explicated in Section 2.4. Henceforth, 𝜏 will
represent these simplified security types, specifically: 𝜏 ∈ {safe, tainted}. The subtype
relationship is also derived from the lattice, defined as: safe ≤ tainted.

Volpano Smith Noninterference for the Basic Lattice Let 𝑐 be a program and 𝜆 a location
typing with dom(𝜆) = 𝐷 for its locations. Furthermore 𝜇, 𝜈, 𝜇′, 𝜈′ are arbitrary but fixed
memory locations such that 𝑒𝑣𝑎𝑙𝜇 (𝑐) = {𝜇′} and 𝑒𝑣𝑎𝑙𝜈 (𝑐) = {𝜈′}, and dom(𝜇) = dom(𝜈) =
𝐷 .

Theorem 2. The following definition is equivalent to Definition 11 when applied to the basic
lattice:

∀𝑙 𝜆(𝑙) = safe : 𝜈 (𝑙) = 𝜇 (𝑙) =⇒ ∀𝑙 𝜆(𝑙) = safe : 𝜈′(𝑙) = 𝜇′(𝑙) (3.1)

Proof. The Volpano Smith noninterference (Definition 11), when formulated for the basic
lattice, describes two cases 𝜏 ∈ {safe, tainted}.

The case where 𝜏 = tainted holds trivially true for a deterministic programming
language. Since all locations are either safe or tainted, it follows that all locations 𝑙 ∈ 𝐷
have a type ≤ tainted. Using this, one can restate Equation (2.1) as

∀𝑙 : 𝜈 (𝑙) = 𝜇 (𝑙) =⇒ ∀𝑙 ≤ 𝜏 : 𝜈′(𝑙) = 𝜇′(𝑙) (3.2)

□

This property affirms that the output of a program is solely dependent on its input,
which is a defining characteristic of a deterministic programming language. Consequently,
the core language, being deterministic, ensures noninterference for every program under
consideration in the case that 𝜏 = tainted.

Therefore, noninterference according to Volpano Smith can be simplified to the second
case only, where 𝜏 = safe, as stated in Equation (3.1).

KeY Unconditional Noninterference for the Basic Lattice To formulate KeY noninterference
in the context of the basic lattice, we will derive observation expressions from a security
class specification for a given program in the core language. The specification input is
simply a location typing 𝜆, with 𝜆(𝑙) ∈ {safe, tainted} for all locations in dom 𝜆 = 𝐷 .
This location typing assigns every location in the input of a program a security type, and
by extension, an equivalent security class.

By using a location typing as the specification of security classes for the initial memory
configuration, we simplify the composition of the two verification systems.
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Safe Observations We define the set of all safe locations as 𝐿𝑠 (𝜆) = {𝑙 ∈ dom(𝜆) | 𝜆(𝑙) =
safe}. With this, we introduce the concept of a safe observation, denoted as 𝑆𝜆:

Definition 18 (Safe observation). The safe observation 𝑆𝜆 for a given location typing 𝑙𝑎𝑚𝑏𝑑𝑎
is the ordered sequence of 𝐿𝑠 (𝜆), according to an arbitrary but fixed order.

With this definition, we can formulate KeY unconditional noninterference in the context
of the basic lattice and for location typings.

Definition 19 (KeY unconditional noninterference, with respect to location typings, in
the basic lattice). Let 𝑐 be a program and 𝜆 a location typing with 𝜆(𝑙) ∈ {safe, tainted}
for all locations 𝑙 ∈ dom(𝜆). The program 𝑐 is non-interferent if and only if for all states
𝜇, 𝜈, 𝜇′, 𝜈′ such that 𝑒𝑣𝑎𝑙𝜇 (𝑐) = {𝜇′} and 𝑒𝑣𝑎𝑙𝜈 (𝑐) = {𝜈′}, we have:

if agree(𝑆𝜆𝑐 , 𝜇, 𝜈) then agree(𝑆𝜆𝑐 , 𝜇′, 𝜈′) (3.3)

Definition 19 is a direct instantiation of Definition 16. As such, it can be proven by the
KeY theorem prover in JavaDL.

3.3 Equivalence of the Noninterference Formulations with
Respect to the Basic Lattice

Both noninterference definitions now depend on an initial specification of the security
labels given by a location typing 𝜆. We can now show that their notions of noninterference
are equivalent, with respect to this location typing.

Lemma 3. For a program 𝑐 and location typing 𝜆 with 𝜆(𝑙) ∈ {safe, tainted}, and states
𝜇, 𝜈 with 𝐷 := dom(𝜇) = dom(𝜈) = dom(𝜆) it holds that:

agree(𝑆𝜆, 𝜇, 𝜈) ⇐⇒ ∀𝑙 ∈ 𝐷 𝜆(𝑙) = 𝑠𝑎𝑓 𝑒 : 𝜇 (𝑙) = 𝜈 (𝑙) (3.4)

Proof.

agree(𝑆𝜆, 𝜇, 𝜈) ⇐⇒ 𝑒𝑣𝑎𝑙𝜇 (𝑆𝜆) = 𝑒𝑣𝑎𝑙𝜈 (𝑆𝜆)
⇐⇒ ∀𝑙 ∈ 𝑆𝜆 : 𝑒𝑣𝑎𝑙𝜇 (𝑙) = 𝑒𝑣𝑎𝑙𝜈 (𝑙)
⇐⇒ ∀𝑙 ∈ 𝐷 𝜆(𝑙) = safe : 𝑒𝑣𝑎𝑙𝜇 (𝑙) = 𝑒𝑣𝑎𝑙𝜈 (𝑙)
⇐⇒ ∀𝑙 ∈ 𝐷 𝜆(𝑙) = safe : 𝜇 (𝑙) = 𝜈 (𝑙) according to (contents)

□

Equivalence of Noninterference We are now ready to show the equivalence of the non-
interference formulations concerning the core language semantics and the basic lattice
information flow model. The equivalence follows almost directly from Lemma 3 and the
definitions made in Section 3.2.
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Theorem 3 (Equivalence of noninterference). For a program 𝑐 and location typing 𝜆
with 𝜆(𝑙) ∈ {safe, tainted}. The noninterference definitions of Volpano-Smith and the KeY
theorem solver are equivalent.

Proof. Let 𝑐 be a program and 𝜆 a location typing with 𝜆(𝑙) ∈ {safe, tainted} for all
locations 𝑙 ∈ dom(𝜆). Furthermore 𝜇, 𝜈, 𝜇′, 𝜈′ are arbitrary but fixed memory locations,
such that 𝑒𝑣𝑎𝑙𝜇 (𝑐) = {𝜇′} and 𝑒𝑣𝑎𝑙𝜈 (𝑐) = {𝜈′}.

By Theorem 2 Volpano-Smith noninterference is, under these conditions, equivalent to:

∀𝑙 𝜆(𝑙) = safe : 𝜈 (𝑙) = 𝜇 (𝑙) =⇒ ∀𝑙 𝜆(𝑙) = safe : 𝜈′(𝑙) = 𝜇′(𝑙)

By substituting the agree predicate according to Lemma 3 we get:

if agree(𝑆𝜆𝑐 , 𝜇, 𝜈) then agree(𝑆𝜆𝑐 , 𝜇′, 𝜈′)

Which is equal to Equation (3.3), thereby ending the proof. □

Due to Theorem 3 no more distinction shall be made between KeYs and Volpano-Smiths
notion of noninterference. We will define secflow𝜆 (𝑐) to be a predicate that is true if and
only if a program 𝑐 with location typing 𝜆 is noninterferent.

Corollary 3.1. If a valid typing 𝜌 exists such that 𝜆 ⊢ 𝑐 : 𝜌 then the program 𝑐 is non-
interferent with respect to a location typing 𝜆 with 𝜆(𝑙) ∈ {safe, tainted} according to
Volpano-Smith and the KeY theorem solver.

Corollary 3.1 directly follows from the equivalence of noninterference and Theo-
rem 1 (type soundness).

3.4 Combined Verification System

Leveraging the equivalence established in the previous section, we are now able to construct
a theoretical model for a combined verification system.

The security specification for both the Volpano-Smith type system and the KeY theorem
prover, within the context of the basic lattice, is predicated on a location typing 𝜆. This
location typing will also serve as the security specification for the combined system.
Verification is delegated either to the type system or to the KeY solver on a method-by-
method basis. In practical application, this is achieved by initially running the type-system
and, in the event of failure, resorting to the theorem prover. Theoretically, the sequence of
these operations is irrelevant, and either verification method would suffice.

To streamline the proof, we will introduce one additional predicate:

Definition 20. Let taintedassign𝜆 (𝑐) hold true if and only if, only locations of type 𝜏 =

tainted are updated when executing 𝑐 .

The validity of this predicate can be confirmed by the KeY solver utilizing JavaDL. For
further details, refer to Ahrendt et al. (2016) for more details.
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Extended Type System We will formulate the combined system as an extension to the
Volpano-Smith type system presented in Section 2.4. The extended system will incorporate
all inference rules of the original type system, albeit the security types 𝜏 are confined to
the security classes of the basic lattice 𝜏 ∈ {safe, tainted}.

Furthermore, we extend the Volpano-Smith type system with an additional inference
rule for procedure definitions:

secflow𝜆[𝑙1:𝜏1,𝑙2:𝜏2] (𝑐 [𝑙1, 𝑙2/𝑥1, 𝑥2]) taintedassign𝜆[𝑙1:𝜏1,𝑙2:𝜏2] (𝑐 [𝑙1, 𝑙2/𝑥1, 𝑥2])(KeY)
𝜆;𝛾 ⊢ proc (in 𝑥1, inout 𝑥2) 𝑐 : 𝜏 proc(𝜏1, 𝜏2 var)

This inference rule, as opposed to relying on the type system proof of noninterference,
accepts any proof of noninterference, including those delivered by the KeY theorem prover.
The taintedassign predicate is crucial to support the existing type soundness proofs as
outlined in Volpano and Smith (1997). Without this predicate, information flow could still
occur, even if the method is noninterferent. This could occur if the method, which updates
global variables with type safe, is executed conditionally within another method. In this
inference rule, 𝑙1 and 𝑙2 are arbitrary locations not included in 𝜆. They are utilized because
KeY noninterference has been defined in terms of locations rather than variables to align
more closely with the Volpano-Smith concept of noninterference.

Type Soundness for the Combined Volpano Smith Type System To demonstrate the ef-
ficacy of the combined verification system, we need to prove that it can indeed verify
noninterference. This is achieved by establishing the following theorem:

Theorem 4. (Extended type soundness) Let 𝑐 be a program and 𝜆 a location typing where
𝜆(𝑙) ∈ {safe, tainted}.

If 𝜆 ⊢ 𝑐 : 𝜌 in the combined verification system, then 𝑐 is noninterferent.

The proof of Theorem 4 extends the proofs of Theorem 1, Lemma 1, and Lemma 2 as
provided in Volpano, Smith, and Irvine (2000) and Volpano and Smith (1997). These proofs
are structural inductions over the syntax of the core language. Since the proofs by Volpano
and Smith are valid for any lattice, they also hold for the basic lattice exclusively. The only
significant difference in the extended system is the inclusion of the (KeY) inference rules.

As methods cannot be part of expressions (refer to Section 2.3), the proof for Lemma 1
remains valid and does not require modification.

The inclusion of the (𝐾𝑒𝑌 ) type rule means that the combined verification system is no
longer syntax-directed, necessitating slight modifications to the original proofs.

It is worth noting that it is not surprising how slight the required modifications are.
Essentially, they translate the remaining noninterference or confinement proof into a
format that KeY can verify using JavaDL.

Proof: Extended Confinement. During the induction step for method definitions for con-
finement, we now need to distinguish between two cases. In the first case, the method was
typed according to (procedure). The fact that confinement holds in this case has already
been proven by Volpano and Smith.

In the second case, the method declaration was typed by (𝐾𝑒𝑌 ). This implies that
taintedassign𝜆 (𝑐) holds, directly establishing confinement. □
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For type soundness, we only need to modify the part concerning procedure definitions.

Proof: Extended Type Soundness. If the type derivation, in the extended type system, con-
cludes with the typing rule (𝐾𝑒𝑌 ) we know that the program is noninterferent due to
secflow𝜆 (𝑐). All other cases have already been proven by Volpano and Smith. □

We have now established the mathematical foundations for a verification system that
integrates a type system akin to the Volpano-Smith type system for information security
and a theorem prover, like KeY, capable of demonstrating the absence of information flow.
The combined system is formulated as an extension of the Volpano-Smith type system.
If the combined system allows for a type judgment 𝜆 ⊢ 𝑐 : 𝜏 to be made, the program
is noninterferent according to Theorem 4. This noninterference complies with both the
Volpano-Smith and the KeY definitions of noninterference, as indicated by Theorem 3.

In this system, the noninterference checks for methods can be performed by both the
original type system and the KeY theorem solver.
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4 Implementation

This chapter provides a comprehensive overview of the combined verification system’s
implementation. The goal of this implementation is to create a verification system that
seamlessly integrates the ease of use of a pluggable type system with the expressive power
of a logic-based theorem prover, such as KeY. This combined system can be employed
to verify the absence of information flows in Java programs, requiring only a minimal
number of user-specified annotations, thereby providing a foundation for further research
into the practicality of information flow type systems.

Throughout the implementation process, special emphasis will be placed on preserving
the soundness of the underlying mathematical model. Considering that Java is a more
complex language than the core language used in the mathematical model, it necessitates
support for a wider array of language features. Consequently, any implementation of
information flow verification must accommodate fundamental Java features, including its
object model and inheritance.

4.1 Architecture

The complete verification system, as illustrated in Figure 4.1, takes in Java source files
annotated with security types. From this, it either generates a soundness proof, if possible
or aids the user in pinpointing potential information flow violations.

Type Checker Translation
Layer

Theorem
Prover
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s
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re
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re

Type Annotations Inferred Types,
Proof Obligations

JML Contracts,
Proof Obligations

¬User Interaction

Figure 4.1: Architecture of the complete verification system
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The verification system consists of three components. The first is a type checker, which
is utilized to infer types that lack annotations and to verify the absence of information flow
for the majority of methods. The second component is a translation layer that generates
JML-annotated source code based on the types provided. The third component is a theorem
prover that uses the generated source code to verify the remaining more complicated
methods.

The absence of information flow is established on a method-by-method basis. For most
methods, a proof is generated by the type system. However, methods with more complex
information flow require additional verification by the KeY theorem prover. These methods
are marked with special comments, known as proof obligations, in the generated source
code. It is important to note that JML annotations must be generated for all methods,
as these annotations serve as axioms for the theorem prover when analyzing method
invocations.

Generating the proof can involve user interaction at various stages of the verification
process. Most notably, the KeY deductive verification system is designed to be an interactive
system empowering the user to prove the absence of information flow even for complex
functions. This might require the user to interactively choose rules to apply to the proof or
add additional JML specifications, such as loop invariants, to facilitate the proof. Moreover,
both the original type annotations and the generated JML contracts can be modified by
the user. This provides the user with fine-grained control at every step, including multiple
options to declassify information at different levels of granularity. This topic will be
discussed in more detail in Section 4.7. Lastly, proofs can also fail due to bugs present
either in the source code or the type specification, necessitating user interaction to rectify
the issue.

4.2 Requirements

Given that the main goal of this thesis is to provide a platform for further academic
research an important requirement is that all components used should be freely available
and proven to be sound. Starting from the architecture outlined in Figure 4.1 we will now
derive additional requirements for the individual components of the verification system.

Requirements for the Type System The type system employed needs to meet several
key requirements to ensure its effectiveness and reliability. Primarily, it must be sound,
adhering to the same security notions as outlined in the model proposed by Volpano, Smith,
and Irvine (2000). The soundness of the system should be validated through peer-reviewed
publications, providing a solid foundation of credibility. Furthermore, the type system
should incorporate implicit flows, a feature that is crucial for a comprehensive security
model but often missing from practical type system implementations. Lastly, the system
should be capable of performing type inference, as the goal is to develop a practical system
that requires minimal annotations.

In the search for a suitable type system, two serious contenders emerge: SFlow, a secure
type system initially developed for android applications and Java information flow (Jif).
Both systems are proven to be sound and capable and appear in peer-reviewed academic
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publications. SFlow, while not incorporating implicit flows, is based on the widely used and
well-supported Checker Framework. On the other hand, Jif does not offer type inference.
After careful consideration, SFlow is chosen as the preferred system. The rationale behind
this decision is that extending SFlow to include implicit flows is a simpler task than
incorporating type inference into Jif. This choice balances the need for a robust, reliable
system with the practical considerations of system development and extension.

4.3 The Checker Framework

The Checker Framework has been utilized for a broad range of type systems and has been
featured in numerous publications (developers, 2023). It is implemented as an annotation
processor for Java, providing “pluggable types” (Bracha, 2004). A pluggable type systems
do not influence the run-time behavior of a program and they can be used with other
pluggable type systems without conflict. One consequence of these rules is the absence
of custom syntax. Types are implemented by relying on standard Java annotations. This
feature allows for easy incremental addition to existing projects. The framework integrates
well with tooling and can be optionally enabled or disabled according to the needs of
the project. Importantly, the use of the Checker Framework ensures that annotated code
remains compatible with existing tool chains and build systems. The Checker Framework
also offers type inference only within methods.

An example from the manual (developers, 2023) illustrates its functionality:
import org . checker f ramework . c h e c k e r . n u l l n e s s . q u a l . ∗ ;

public c l a s s G e t S t a r t e d {
void sample ( ) {

@NonNull O b j e c t r e f = new O b j e c t ( ) ;
}

}
The above code compiles without error. However, when an error is introduced:

@NonNull O b j e c t r e f = null ;
The framework produces the following error:

G e t S t a r t e d . j a v a : 5 : i n c o m p a t i b l e t y p e s .
found : @Nul lab le < n u l l t y p e >
r e q u i r e d : @NonNull O b j e c t

@NonNull O b j e c t r e f = n u l l ;
^

1 e r r o r
This demonstrates the Checker Framework’s robust error-reporting capabilities. It also

provides good defaults, such as the subtyping checker and other checkers, to start from.

Annotation Locations The Checker Framework allows you to add annotations to the
following locations:
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@Interned S t r i n g i n t e r n ( ) { . . . } / / r e t u r n v a l u e
in t compareTo ( @NonNull S t r i n g o t h e r ) { . . . } / / p a r ame t e r
S t r i n g t o S t r i n g ( @Tainted MyClass th i s ) { . . . } / / r e c e i v e r
@NonNull L i s t < @Interned S t r i n g > messages ; / / g e n e r i c s
@Interned S t r i n g @NonNull [ ] messages ; / / a r r a y s
myDate = ( @ I n i t i a l i z e d Date ) b e i n g C o n s t r u c t e d ; / / c a s t s

It’s crucial to note that annotations added to method declarations are interpreted as
type annotations for the method’s return value. This interpretation poses a significant
restriction as it inhibits the use of method annotations to specify the statement type of a
method. This issue will be addressed and resolved in Section 4.6.

In most cases, types within method bodies are inferred, eliminating the need for explicit
specification.

4.4 The SFlow Type System

SFlow is a context-sensitive type system that ensures secure information flow. This system
is detailed in the research paper “Type-based Taint Analysis for Java Web Applications”
by Huang, Dong, and Milanova (2014) and is built upon a type inference framework for
context-sensitive pluggable types, as referenced in (Milanova and Huang, 2012). SFlow and
SFlowInfer are implemented as checkers inside the Checker Framework and are written
in Java 6. In SFlow typing rules are implemented that closely resemble the rules of the
Volpano Smith Type system. However, a significant difference is the lack of typing rules
for implicit information flow, specifically (while′) and (if′). Most effective type systems
forgo implicit flows since these can only be disallowed by very restrictive typing rules
(Huang, Dong, and Milanova, 2014). It is important to note that noninterference cannot be
guaranteed in the absence of such rules. To use SFlow as a basis for the translation layer,
it must therefore be extended to include these.

Security Lattice In SFlow there are two basic type qualifiers tainted and safe with the
subtyping relation safe ≤ tainted.

Additionally, a polymorphic qualifier exists poly which allows for context-sensitive
typing. The poly qualifier can be interpreted either as tainted or as safe depending on
the invocation context. The final subtyping hierarchy therefore becomes:

safe ≤ poly ≤ tainted

Type Inference To complement SFlow, Huang, Dong, and Milanova (2014) also introduces
SFlowInfer, a worst-case cubic inference analysis for SFlow. If the inference succeeds,
a valid typing is derived according to SFlows typing rules. A valid typing guarantees
that there is no explicit flow from a source to a sink and gives types for all methods and
variables not explicitly specified.
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public s t a t i c void v a l i d a t e P a s s w o r d (
@Tainted S t r i n g pass , @Safe L i s t < S t r i n g > d a t a b a s e ) {

@SuppressWarnings ( " s f l o w " ) / / d e c l a s s i f y pa s sword
d a t a b a s e . add ( password ) ;

}

Figure 4.2: Selective declassification in SFlow

Declassification in SFlow Declassification in SFlow is achieved by utilizing the checker
framework’s capability to suppress warnings. As shown in Figure 4.2 annotations can be
added to statements to suppress checking for information flows and thereby selectively
declassifying variables in certain contexts.

It is important to note that declassification using this approach is coarse. Working
on a statement level does not allow us to further specify the extent of the information
declassified.

4.5 JML Information Flow Contracts in KeY

Information flow contracts for KeY are defined using the Java Modeling Language (JML).
In this context, two keywords are particularly relevant. The first is the assignable clause,
which outlines the variables that can be updated during the execution of a method. This
clause can be used to implement the confinement property. The second keyword is the
determines clause, which serves as the JML equivalent of an observation expression.
This clause comprises two JavaDL expressions: a precondition and a postcondition. The
precondition specifies the information that can be observed, by a potential attacker, before
the execution of a method and the postcondition the information that can be observed
after the method’s execution. It’s important to emphasize that the return value of a method
can only be referenced in the precondition, where it’s indicated by the \result keyword.
An example of a determines clause is provided in Figure 4.3.

/ /@ d e t e rm i n e s \ r e s u l t , l \ by l ;
in t m ( ) ;

Figure 4.3: Example of a determines clause

Declassification in KeY By using different observation expressions in the pre- and postcon-
dition of a method information can be precisely declassified. Figure 4.4 shows an example
from the Ahrendt et al. (2016) where only the sum of a list is declassified.
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c l a s s C {
pr ivate int [ ] v a l u e s ;

/ ∗@ de t e rm i n e s \ r e s u l t \ by
@ ( \ sum i n t i ; 0 <= i && i < v a l u e s . l e n g t h ; v a l u e s [ i ] ) ;
@∗ /

in t sum ( ) {
in t s = 0 ;
for ( in t v a l u e : v a l u e s ) {

s += v a l u e ;
}
return s ;

}
}

Figure 4.4: Program declassifying the sum of an array

4.6 Extending SFlow

The complete translation layer is implemented as a modification of the SFlow type system.
Before we can discuss the implementation of the actual translation layer we will first need
to discuss the modification made to adapt SFlow to our use case, especially the extension
of SFlow to include the type checking rules for implicit information flow.

Adapting SFlow To implement the translation layer as a modification of SFlow some
initial adaptations need to be made. Minor adjustments include the cleanup of the SFlow
compilation and execution process. This involves the modification of build files to utilize
the javac compiler from JAVA_HOME, eliminating the use of arbitrary personal paths.
Additionally, the installation of versions of Java 6 and an outdated Apache Ant version is
required.

One major modification involves the removal of polymorphism and the poly qualifier.
This step is crucial to align the implementation with the underlying mathematical theory,
which was formulated without polymorphism for simplicity.

Implicit Flow Typing Rules The second significant modification involves incorporating
typing rules for implicit information flow. These rules are analogous to (if′) and (while′)
for conditional statements and loops but also cover rules pertaining to statements that
alter control flow, such as break and return. It’s worth noting that the implicit flow in
ternary operators has already been addressed within the Checker Framework through
straightforward subtyping checks, thus eliminating the need for further attention.

Implementing these rules in the checker framework is however nontrivial. This is
mainly due to the lack of support for statement types such as 𝜏 cmd. Furthermore, these
types cannot be conveniently annotated on method declarations since annotations on
methods are interpreted as the type of the return value. A more comprehensive discussion
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of methods will be provided in a later section. The verification of implicit flows is therefore
conducted subsequent to the execution of the base SFlow checker. By this point, the most
general types for all expressions have been determined, and the absence of explicit flow,
that is, the absence of assignments of tainted values to safe variables, has been proven.
For notational convenience, we introduce the SFlow(𝜆,𝛾, 𝑒, 𝜏) predicate. This predicate
holds true when SFlow determines that an expression 𝑒 has a most general type 𝜏 given
the typing contexts 𝜆 and 𝛾 .

The next step is to demonstrate the absence of implicit flows. Intuitively this necessitates
proving that no safe variables are updated if the statement being executed is conditionally
dependent on a tainted expression. From a theoretical viewpoint, the goal is to find an
instantiation of the typing rules for a given method. If such an instantiation is possible it
proves the absence of implicit flows by Lemma 2 (Confinement).

In our implementation, called Extended-SFlow, we employ a top-down approach to
check types by recursively examining the nodes of the Abstract Syntax Tree (AST). At each
stage, we infer the types required by the child nodes assuming that the most general type
is known for all expressions. The logic behind this process is based on the instantiation of
the typing rule for a respective statement type. This close adherence to the typing rules
guarantees a correct implementation. We aim to demonstrate that this instantiation is
always deterministic, effectively eliminating the need for backtracking. Initially, we will
focus on the implementation without considering methods, which we will discuss later.
The actual implementation uses a visitor design pattern for traversing the AST, but for
clarity, we will illustrate a recursive implementation.

As an entry point to our verification system, we will try to prove that a program section
has type safe cmd. After introducing methods this type will depend on the statement type
of the method verified. Figure 4.5 provides a schematic representation of the recursive
type inference algorithm. Forthcoming examples will predominantly illustrate a single
case of the statement kind switch statement.

public Void v e r i f y N o I m p l i c i t F l o w ( S t a t e m e n t method ) {
return v i s i t S t a t e m e n t ( method , SmtType . SAFE ) ;

}

public Void v i s i t S t a t e m e n t ( S t a t e m e n t smt , SmtType smtType ) {
switch ( smt . ge tK ind ( ) ) {

. . .
}

}

Figure 4.5: Recursive type inference

Block Statements For a block to have type 𝜏 it simply means that every statement in
the block needs to have type 𝜏 by the transitivity of (compose). This can be checked by
recursively checking the statements in the block (Figure 4.6).
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case BLOCK :
for ( S t a t e m e n t s : smt . g e t B l o c k S t a t e m e n t s ( ) ) {

v i s i t S t a t e m e n t ( s , smtType ) ;
}
break ;

Figure 4.6: Recursion for blocks

Conditional Statements If the inference algorithm needs to prove that a conditional
statement has type tainted cmd, this corresponds to the following instantiation of the
(if′) typing rule:

tainted ≤ 𝜏 𝜆;𝛾 ⊢ 𝑒 : 𝜏 𝜆;𝛾 ⊢ 𝑐 : 𝜏 cmd 𝜆;𝛾 ⊢ 𝑐′ : 𝜏 cmd(if’)
𝜆;𝛾 ⊢ if 𝑒 then 𝑐 else 𝑐′ : tainted cmd

Since in the basic lattice only tainted ≤ tainted it follows that 𝜏 must be tainted. This
gives us a single deterministic way to instantiate the typing rule. The requirement for
𝑐 and 𝑐′ to be typed 𝑡𝑎𝑖𝑛𝑡𝑒𝑑 will be recursively checked when visiting the blocks of the
conditional branches.

Note that is does not matter if SFlow determines 𝑒 to have type tainted or safe since
we can derive 𝜆;𝛾 ⊢ 𝑒 : tainted even if 𝑒 has most general type safe by subtyping:

safe ≤ tainted
SFlow(𝜆,𝛾, 𝑒, safe)
𝜆;𝛾 ⊢ 𝑒 : safe(subtype)

𝜆;𝛾 ⊢ 𝑒 : tainted

This instantiation can only fail if SFlow finds no type derivation for 𝑒 . The error will be
reported by SFlow and does not need to be checked again here. The intuition behind this
rule is that the requirement to type the conditional as tainted cmd already specifies that
no safe variables may be updated. Since this is already maximally restrictive there is no
need to consider the type of the condition expression.

If the inference algorithm needs to prove that a conditional statement has type safe cmd,
this intuitively corresponds to no additional requirements from previous inference steps.
The types of the branches therefore only need to be restricted if the condition expression
reads a tainted variable i.e. if the expression has type tainted. We will now demonstrate
that this behavior follows from the typing rules.

Assuming that the conditional needs to have type safe cmd this corresponds to the
following instantiation of the typing rule for conditionals:

safe ≤ 𝜏 𝜆;𝛾 ⊢ 𝑒 : 𝜏 𝜆;𝛾 ⊢ 𝑐 : 𝜏 cmd 𝜆;𝛾 ⊢ 𝑐′ : 𝜏 cmd(if’)
𝜆;𝛾 ⊢ if 𝑒 then 𝑐 else 𝑐′ : safe cmd

Since in the basic lattice it holds that safe ≤ safe and safe ≤ tainted, it follows that
𝜏 ∈ {tainted, safe} giving us two options to instantiate the proof tree and therefore two
choices for the required type of the branches. If the most general type of 𝑒 is 𝑡𝑎𝑖𝑛𝑡𝑒𝑑
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then we need to choose 𝜏 = tainted, since there we cannot derive 𝜆;𝛾 ⊢ 𝑒 : safe from
SFlow(𝜆,𝛾, 𝑒, tainted). When however the most general type of 𝑒 is safe, we have two
possible instantiations:

safe ≤ safe
SFlow(𝜆,𝛾, 𝑒, safe)
𝜆;𝛾 ⊢ 𝑒 : safe 𝜆;𝛾 ⊢ 𝑐 : safe cmd . . .(if’)

𝜆;𝛾 ⊢ if 𝑒 then 𝑐 else 𝑐′ : safe cmd

or

safe ≤ tainted
safe ≤ tainted

SFlow(𝜆,𝛾, 𝑒, safe)
𝜆;𝛾 ⊢ 𝑒 : safe

𝜆;𝛾 ⊢ 𝑒 : tainted . . .(if’)
𝜆;𝛾 ⊢ if 𝑒 then 𝑐 else 𝑐′ : safe cmd

The first instantiation will be chosen in our implementation. This is because the second
instantiation is more restrictive than necessary. The second instantiation requires the
branches to be typed tainted cmd even if the condition expression does not read a tainted
variable. By inspecting the other syntax-directed typing rules it can be observed that any
rule that can be typed safe cmd can also be typed tainted cmd due to the contravariance
of the statement types.

This instantiation is therefore deterministic and requires both branches to have type
safe cmd. This is implemented by recursively checking the branches.

By combining the derivations described we can derive the algorithm shown in Figure 4.7
for inferring the types required by the branches of conditional statements.

case I F :
i f ( type == SmtType . TAINTED ) {

v i s i t S t a t e m e n t ( smt . ge tThenS ta tement ( ) ,
SmtType . TAINTED ) ;

v i s i t S t a t e m e n t ( smt . g e t E l s e S t a t e m e n t ( ) ,
SmtType . TAINTED ) ;

} e l se { / / t y p e == SmtType . SAFE
v i s i t S t a t e m e n t ( smt . ge tThenS ta tement ( ) ,

SmtType ( smt . c o n d i t i o n a l . type ) ) ;
v i s i t S t a t e m e n t ( smt . g e t E l s e S t a t e m e n t ( ) ,

SmtType ( smt . c o n d i t i o n a l . type ) ) ;
}
break ;

Figure 4.7: Recursion for conditionals
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Conditional Loops Conditional loops have similar typing rules to conditional statements:

𝜆;𝛾 ⊢ 𝑒 : 𝜏 𝜆;𝛾 ⊢ 𝑐 : 𝜏 cmd 𝜏′ ≤ 𝜏(while’)
𝜆;𝛾 ⊢ while 𝑒 do 𝑐 : 𝜏′ cmd

The inference step is therefore derived analogously to conditional statements. For a
loop to have type safe the body needs to have the same type as the condition. For a loop
to have type tainted cmd the body needs to have type tainted cmd and the condition can
have either type, which is guaranteed by SFlow and does not need to be checked. This is
again implemented recursively (Figure 4.8).

case WHILE_LOOP :
i f ( type == SmtType . SAFE ) {

v i s i t S t a t e m e n t ( smt . getBody ( ) ,
SmtType ( smt . c o n d i t i o n a l . type ) ) ;

} e l se {
v i s i t S t a t e m e n t ( smt . getBody ( ) ,

SmtType . TAINTED ) ;
}
break ;

Figure 4.8: Recursion for loops

Base Cases Finally, we need to check assignments. Note that the subtyping checks
required to show the absence of explicit information flow have already been performed by
SFlow. We now need to additionally check the part of the assignment rule concerned with
its statement type:

𝜏′ ≤ 𝜏 𝜆;𝛾 ⊢ 𝑒 : 𝜏 var 𝜆;𝛾 ⊢ 𝑒′ : 𝜏(assign’)
𝜆;𝛾 ⊢ 𝑒 := 𝑒′ : 𝜏′ cmd

If the statement needs to be typed as 𝜏′ = 𝑠𝑎𝑓 𝑒 cmd then 𝜏 can be both safe and tainted
and the check is the same as for explicit flow. If however, the statement needs to be typed
as 𝜏′ = tainted cmd then 𝜏 needs to be tainted and therefore the receiver and the value
need to be typed tainted var. The type of the right-hand side does not need to be checked
due to the covariant subtyping of expressions. However, the type of the left-hand side
must be tainted var. This determination can be made by simply examining the result of
the SFlow checker, as demonstrated in Figure 4.9.

Application to Java Most of the other language constructs that exist in Java but not in
the core language are implemented similarly. The implementations for do while loops, for
loops and enhanced for loops are analogous to the implementation of while loops combined
with checking for explicit information flow since those language features. This can easily
be seen since these language features can be reformulated into a program consisting only
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case ASSIGNMENT :
i f ( type == SmtType . TAINTED ) {

i f ( smt . g e t E x p r e s s i o n ( ) . type == VarType . SAFE ) {
c h e c k e r . r e p o r t ( R e s u l t . f a i l u r e ( " i m p l i c i t ␣ f low " ) ) ;

}
}
break ;

Figure 4.9: Assignment base case

of conditionals while loops and other unconditional syntax elements. Switch statements
are implemented analogously to conditionals for the same reason.

Special care needs to be taken however for statements that change control flow Fig-
ure 4.10 shows implicit flow due to early termination of a loop. This implicit flow is not
forbidden under the rules presented so far.

@Tainted in t x = 5 ;
@Safe in t y = 0 ;
for ( @Safe in t i = 0 ; i < 1 0 ; i ++) {

i f ( x >= 5 ) {
break ; / / c o n t i n u e , r e t u r n , throw

}
y = i ;

}

Figure 4.10: Example of implicit flow due to early termination of a loop

Code like this can be disallowed by simply assuming that every statement changing
control flow is typed akin to statements writing a safe variable. For the type system this
means that statements that modify control flow always have type safe cmd:

(break) ⊢ break : safe cmd

This can be implemented by simply checking the expected statement type (Figure 4.11).
Throwing exceptions continuing in loops and returning from methods are handled analo-
gously.

Implicit Flow with Methods In theory, we could infer a method’s most general statement
type if we had access to the source code. However, this inference is not as straightforward
as the previously described algorithms. The presence of cyclic calling graphs, as depicted
in Figure 4.12, complicates the inference process. This is because the interred type of one
method may be contingent on the type of another method. For instance, in the example
provided, foo might call bar if bar(x, y) ⊢ tainted cmd, but the type of bar is dependent
on the type of foo. Furthermore, inference becomes impossible when we lack access to
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case BREAK :
i f ( type == SmtType . TAINTED ) {

c h e c k e r . r e p o r t ( R e s u l t . f a i l u r e ( " i m p l i c i t ␣ f low " ) ) ;
}
break ;

Figure 4.11: Control flow base case

public s t a t i c void foo ( @Safe in t x , @Tainted in t y ) {
i f ( y == 1 ) {

bar ( x , y ) ;
}
x = 1 ;

}

public s t a t i c void bar ( @Safe in t x , @Tainted in t y ) {
foo ( x , y ) ;

}

Figure 4.12: Example of cyclic method calls

the source code. In the absence of explicit annotations, we will default to assuming the
method has the type safe cmd.

By requiring the method’s statement types to be specified we avoid having to infer types
across method boundaries. When typing a method call we will assume that a correct type
derivation exists for the annotated method type. The existence of such a derivation will
be shown by requiring the type checker to prove the specified method type rather than
safe cmd. See Figure 4.13 for an example implementation of this modified entry point.

public Void v e r i f y N o I m p l i c i t F l o w (
S t a t e m e n t method , SmtType annotatedMethodType ) {
return v i s i t S t a t e m e n t ( method , annotatedMethodType ) ;

}

Figure 4.13: Modified typecheking entry point

Method Annotations These annotated statement types cannot be the @Safe and @Tainted

annotations of the SFlow Checker. Annotations on methods are interpreted as return
type annotations by the Checker Framework. This interpretation can potentially result in
annotation conflicts, or in the worst-case scenario, unreported errors. Figure 4.14 illustrates
a scenario where the declared method type and the return type disagree. This leads to a
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specification exception within the Checker Framework. Conversely, Figure 4.15 presents a
case where the return type is accidentally specified as tainted, instead of being inferred.

@Tainted
public @Safe foo ( @Safe ) {
}

Figure 4.14: Example of a method declaration with conflicting annotations

@Tainted
public foo ( @Safe ) {
}

Figure 4.15: Example of a method with accidental return type declaration

We therefore introduce two additional annotations. @TaintedMethod corresponds ot the
statement type tainted cmd and specifies that only variables of type tainted are updated
during method execution. SafeMethod corresponds to the statement type safe cmd and
specifies that variables of type safe may be updated during method execution.

Method Subtyping Subtype checks for arguments and return types of overridden methods
are implemented by the Checker Framework. However, these subtype checks need to be
extended to include the new method types.

For static and private methods, no subtyping checks are required because they are bound
statically. All other methods are, by default, bound dynamically. Figure 4.16 illustrates an
example of a dynamic binding causing implicit flow. Class A is an implementation without
implicit flow. This is because method foo has type tainted cmd and therefore does not
update any safe variables. When A is type-checked, no errors are found. Class B extends
class A and overrides foo with type safe cmd. This is problematic because foo is called in
error which expects foo to have type tainted cmd. When class B is type-checked, this
implicit flow is not detected since the error is in class A.

Intuitively, this problem arises because class B violates the type contract of class A.
Subtypes need to have method types that are at least as restrictive as the method types of
their parent classes. In other words, the methods’ statement types need to be contravariant
under subtyping. This is implemented by simply checking the contravariance of the
method types when type-checking the method declarations of child classes.

Extended-SFlow, a fusion of the original SFlow and the additional typing rules outlined
in this section, now has the ability to ensure the absence of information flow in Java
programs. To be more precise, if Extended-SFlow can infer types for all methods in a
program, it proves that the program is noninterferent. To give these guarantees the
Extended-SFlow system is conservative, potentially overestimating information flow and
thus, it may be overly restrictive.
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public s t a t i c c l a s s A {
public @Safe in t s a f e ;
public @Tainted in t t a i n t e d ;

@TaintedMethod
public void foo ( ) { }

public void e r r o r ( ) {
i f ( t a i n t e d == 0 ) {

foo ( ) ; / / R e q u i r e s f o o t o be @TaintedMethod
}

}
}

public s t a t i c c l a s s B extends A {
@SafeMethod / / F o r b i d d e n by c o n t r a v a r i a n t s u b t y p i n g
public void foo ( ) {

s a f e = 0 ;
}

}

Figure 4.16: Example for dynamic dispatch causing implicit flow

4.7 Translation Layer

The translation layer is designed to perform three primary tasks: generating proof obli-
gations by tracking type system violations at a method level, translating method types
to JML contracts, and outputting source code that includes both JML contracts and proof
obligations. The methods in the generated source code that include proof obligations
can then be verified by the KeY solver to either prove the absence of information flow or
further pinpoint the location of information flow violations.

The most efficient strategy for implementing the translation layer is to further adapt
the Extended-SFlow system. This approach allows direct access to the inferred types and
makes it possible to inject code to track potential information flow violations robustly and
accurately.

The implementation of the translation layer is facilitated through three key components:
a method information repository, a modified SFlow checker, and a source code printer. The
method information repository serves as a storage for additional data related to method
AST nodes. It not only records type system violations but is also used to append JML
annotations to the AST. The modified SFlow checker is responsible for identifying and
recording type system violations at the method level. It stores these violations along with
the method types in the information repository. Lastly, the source code printer generates
the source code from the AST, incorporating the supplementary data from the method
information repository.
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Tracking Method Type System Violations To track type system violations the SFlow checker
is extended to store whenever type errors are logged during type checking. After visiting a
method and finishing the type checking, if this is the case the method might have insecure
information flow and the proof obligation is noted in the method information store. The
user is also notified of the error by the checker framework via console output.

Generating JML Method Contracts The process of generating JML contracts for method
types comprises two considerations. Firstly, we need to generate observation expressions
from the method types. Secondly, for methods characterized by the tainted cmd type, we
must ensure that no safe variables are updated. This safeguard is enacted by generating
assignable clauses for these specific methods.

The JML comments encapsulate two primary components. For all methods, a safe
observation expression is generated in the form of a JML determines clause. This involves
the collection of all safe variables that may be accessed by the method, which includes
return values, method arguments, and object fields. For Java, inherited fields must also be
included. It is important to note that while return values are treated as normal variables in
the underlying theory, they are managed via the JML \result keyword in practice. These
return values can only appear in the segment of the observation expression that describes
variables readable in the postcondition. Otherwise, the determines clause is symmetric as
described in the theory.

For methods with type tainted cmd, an additional measure must be taken to ensure that
no safe variables are written to. This is achieved by accumulating all tainted variables
that can be accessed by the method and incorporating them into an assignable clause.
This comprehensive approach to generating JML contracts provides a robust safeguard
against potential information flow violations.

Generating Annotated Source Code The KeY theorem prover imports JML annotated source
code, which must be complete and valid Java code. The source code is output on a file-by-
file basis, and the output directory structure mirrors the structure of the input sources. To
determine relative paths to be determined two command line arguments,-Abasepath and
-Atemppath, are necessary. These arguments define the base directory of the input sources
and the base directory of the generated sources, respectively. The code that generates
the output is invoked once type checking is completed and the required information has
been stored in the method information store. To integrate the output generation code
into SFLow, it was necessary to upgrade the main SourceChecker class of the checker
framework to a newer version, which includes a specific entry point method that is called
for each compilation unit.

To generate source code from the AST and method store the internal OpenJDK pretty
printer is extended. The pretty printer is already capable of outputting valid Java source
code from a given AST. When visiting a method that has additional information stored in
the method information store the extended pretty printer will output JML annotations
and proof obligations in the form of Java comments.
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Declassification in the Combined Verification System Information in SFlow can be declas-
sified in two ways: either within the type system or within the theorem prover. Please
refer to Section 4.4 and Section 4.5 for more details.

Declassification within the type system is accomplished by suppressing errors. As a
result, no proof obligations are recorded in the method information store, no user output
is produced, and no proof obligations are noted in the generated sources. In this scenario,
KeY assumes that the methods contain no information flow and verifies the contracts for
other methods under this assumption.

On the other hand, when declassifying information within KeY, the type system will
initially raise errors and generate proof obligations. The user can then modify the generated
observation expressions to declassify information precisely and continue with the proof
using KeY in the usual manner.

The choice of which declassification method to use is dependent on the level of expres-
siveness required. Declassification within the type system is more convenient but less
precise. However, with KeY, it is possible to specify precisely what information is to be
declassified.
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The Evaluation of the combined approach is divided into two parts. Initially, we will demon-
strate that the adaptations made to SFlow accurately prohibit implicit flows. Subsequently,
we will evaluate the combined verification system.

Evaluating Extended SFlow To ensure the accuracy of our implementation of the implicit
flow typing rules, we utilized a test-driven development approach. During the development
process, we created a comprehensive unit-test test suite that encompasses all the rules as
defined by the Volpano Smith type system, as well as additional rules required to handle
Java constructs not covered in the original type system. We initiated our testing with the
previously implemented SFlow rules, which are designed to check for explicit flows. As
we introduced new rules to the type system, we concurrently added corresponding test
cases. These test cases were constructed to cover all potential instantiations of the typing
rules. For instance, the rule for conditionals (if′) necessitated the creation of test cases for
the following scenarios:

• if′ needing to be typed safe cmd

– with a safe condition and safe branches

– with a safe condition and tainted branches

– with a tainted condition and safe branches

– with a tainted condition and tainted branches

• if′ needing to be typed tainted cmd

– with a safe condition and safe branches

– . . .

Figure 5.1 and Figure 5.2 illustrate the test cases for a conditional that requires a safe cmd
type with both a safe condition and safe branches, and a conditional that requires a
tainted cmd type with a safe condition and safe branches, respectively. It’s important to
note that, in Figure 5.2, the type system is anticipated to log an error. This expectation is
denoted by the _fail suffix in the test name.

A total of 34 unit tests were developed to validate the Extended-SFlow implementation.
Although these tests may not encompass every possible scenario, they do thoroughly cover
the type system rules and the most frequently used Java constructs. This comprehensive
coverage provides a robust indication of the implementation’s correctness.
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@SafeMethod
public void t e s t I f T y p e d T a i n t e d S a f e S a f e S a f e ( ) {

@Safe in t s a f e V a l u e = 0 ;
@Safe in t s a f e C o n d i t i o n = 0 ;

i f ( s a f e C o n d i t i o n == 0 ) {
s a f e V a l u e = 0 ;

}
}

Figure 5.1: Test case for if′ needing to be typed safe cmd with a safe condition and safe
branches

@TaintedMethod
public void t e s t I f T y p e d T a i n t e d S a f e S a f e _ f a i l ( ) {

@Safe in t s a f e V a l u e = 0 ;
@Safe in t s a f e C o n d i t i o n = 0 ;

i f ( s a f e C o n d i t i o n == 0 ) {
s a f e V a l u e = 0 ;

}
}

Figure 5.2: Test case for if′ needing to be typed tainted cmd with a safe condition and
safe branches
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c l a s s TestProgram {
public @Safe in t s a f e V a l u e ;
public @Tainted boolean l o g D e l e t i o n ;

@SafeMethod
public void n o I m p l i c i t F l o w ( ) {

try {
i f ( l o g D e l e t i o n ) {

s a f e V a l u e = s a f e V a l u e ∗ 1 0 0 ; / / we want t o l o g i n p e r c e n t
s a f e l y L o g ( ) ;

}
} f ina l l y {

s a f e V a l u e = 0 ; / / r e s e t t h e v a l u e
}

}

@TaintedMethod
public void s a f e l y L o g ( ) { }

}

Figure 5.3: False positive

The Combined Approach There is a variety of false positives that can be reduced by the
combined approach. In Figure 5.3 a simple example is shown. The method destruct

temporarily changes a safe variable conditioned on a tainted value. This is forbidden by
the type system but does not facilitate insecure information flow. The absence of such
flow can be proven with KeY in the combined verification system.

Besides testing examples where the combined system can demonstrate its ability to
validate a broader range of programs, numerous unit tests, initially developed for the
extended SFlow, were also employed to evaluate the combined system. The advantage of
using the combined system in scenarios where invalid information flow is present lies in
its capacity to identify errors that contribute to insecure information flow, even when the
proof in the KeY theorem prover is incomplete.

Applying the combined system to a range of simple test cases offers insight into its
efficacy. Crucially, the majority of these test cases necessitate minimal type annotations
or interactions with the theorem prover.
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6 Conclusion

The conclusion of this bachelor thesis marks the culmination of an extensive journey
exploring the intersection between type systems and theorem provers within the realm of
information flow control systems. The primary objective was to marry the user-friendliness
of a type system-based approach with the expressive power of a theorem prover such as
KeY. This goal was accomplished, both theoretically by developing a model for a combined
approach as an extension to the Volpano-Smith type system, grounded on mathematical
proofs of correctness and practically through an implementation, which was rigorously
validated using diverse test cases.

During the pursuit of this objective, a thorough investigation was conducted into the
disparities between information flow type systems, like SFlow, and other information flow
control methodologies. The implementation of the translation layer effectively capitalized
on the strengths and weaknesses of both the type-system and theorem prover approaches,
offering valuable insights for future research in this domain.

The performance and capabilities of the combined SFlow-KeY system were evaluated,
demonstrating its effectiveness in verifying simple but valuable information flow properties
across a range of use cases. Notably, the most significant advancement was enabling
the effective verification of the absence of implicit information flow using types as a
specification language. Earlier efficient type systems did not verify implicit information
flow to maintain practicality for large code bases (Huang, Dong, and Milanova, 2014).
However, the combined approach presented in this thesis can verify implicit information
flow without sacrificing practicality by delegating this verification to a theorem prover.

An intriguing aspect examined in this thesis was the impact of incorporating information
flow specifications directly into the source code, as seen in SFlow and JML, compared
to using external tools like JOANA. This direct integration into the source code already
proved beneficial during the development of the tests used to evaluate the combined
system. On one hand, it facilitated the use of version control, which proved invaluable
when developing an extensive test suite. On the other hand, it enabled the quick and
automatic execution of test cases. Furthermore, the author found that he frequently
resorted to using the type system to generate valid JML annotations in preparation for
using the KeY solver. This reliance on type inference to fill in the gaps underscored the
practicality of using the type system as a foundation for the information flow specification.

A more extensive case study comparing the effectiveness and annotation overhead
presents an interesting avenue for future work. The feasibility of such a case study has
been established by providing the implementation of the combined approach.

In conclusion, this thesis successfully met its initial objectives and tasks, offering valuable
insights and paving the way for future research. The challenges encountered along the way
not only enriched the learning experience but also provided direction for future studies in
this fascinating intersection of type systems and theorem provers.
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