

Cationic charge distribution in mixed actinide oxides at An $M_{4,5}$ edge by HR-XANES in mixed nanooxides

Natalie Mueller, ⁽¹⁾ Jean-François Vigier,⁽²⁾ Olaf Walter,⁽²⁾ Rudy J.M. Konings,^{(2),} Karin Popa⁽²⁾, Harry Ramanantoanina ⁽¹⁾, Tim Prüßmann ⁽¹⁾, Kathy Dardenne ⁽¹⁾ and Tonya Vitova.⁽¹⁾

Institute for Nuclear Waste Disposal (INE)

⁽¹⁾Institute for Nuclear Waste Disposal (INE), Karlsruhe Institute of Technology, P.O. 3640, D-76021 Karlsruhe, Germany ⁽²⁾European Commission, Joint Research Centre, Karlsruhe, Germany

XAFS2022

Sydney, Australia 10-15 July 2022

Contents

- Introduction and motivation
- Synthesis and sample preparation
 - $U_x Am_y O_{2+\delta}$ (y = 1-20%)
 - Experimental techniques at KIT synchrotron light source
- Results
 - $U_xAm_yO_{2+\delta}$ bulk vs nano-materials HR-XANES at An $M_{4,5}$ edges
 - DFT calculations
- Conclusions and future work
- Acknowledgements

of actinide oxide nanocrystals.

Mixed actinide oxides are of high interest for fundamental studies of structural properties in bulk and nanomaterials

and

- Aimed for reuse of fissile isotopes from nuclear waste in the form of mixed oxide fuel.
- With perspective to improve sustainable usage of nuclear material resources.
- Optimisation of fuel production or reprocessing of spent fuel.

Introduction and motivation

FX

Synthesis

- (U,Am)O₂ solid solutions were synthesized by the hydrothermal decomposition of mixed oxalates.
- U^N aq.solution was obtained by electroreduction of UO₂(NO₃)₂ solution in HNO₃ (4 mol/L) containing 0.5 mol/L of hydrazine.
- Am^{III} solution was obtained by dissolution of AmO₂ in HNO₃ (6 mol/L).
- The nitrate actinide solutions were mixed in the desired molar ratio.
- To ensure formation of high density materials heating 1h at 400 °C under Ar performed prior sintering 6 h at 1600 °C under an atmosphere of Ar/H2 (4%) and about 100 ppm of moisturizing water.

Flowcharts indicating the steps used for the production and conditioning of $(U,Am)O_2$ solid solutions (left) and SEM images of $nc-U_{0.80}Am_{0.20}O_2$ (ctr, top) and sintered $U_{0.80}Am_{0.20}O_2$ (ctr, bottom).

Sample preparation for SR-based investigation

- Nanopowderes are encapsulated in epoxy.
- The Kapton foil of 8 μ m and 13 μ m are used for 1st and 2nd containment respectively.
- Plexiglass holder designed to fit sample positioning stage, allowing for 45° and 90° geometries.

The snapshot of sampleholder at the sample positioning stage (left) and schematics of multiposition sampleholder for solid samples (right).

KIT Synchrotron Light Source

- **110-m 2.5-GeV** electron storage ring.
- Electron energy range: 0.5 2.5 GeV.
- Injector has a repetition rate of 1 Hz.
- Adjustable electron bunch lengths: 50 ps down to a few ps.
- Single- and multi-bunch operation modes.
- Insertion devices (ID): bending magnets (16), wigglers (2) and superconducting undulator (1).

https://www.ine.kit.edu/english/1303.php

INE-Beamline und CAT-ACT SR labs

- INE-BL fully operational since October 2005 - 2nd dedicated SR beamline for radioactive materials in Europe
- CAT-ACT fully operational since fall 2016
- Energy range 2.1 55 keV, bending magnet (INE-BL) or superconducting wiggler source (CAT-ACT)
- XAS detection limits (An) ~ 1.10⁻⁶ mol/l,
 < 5 ppm

Both stations licensed for working with 10⁶ times the exemption limit and up to 200 mg of fissile isotopes U-235 and Pu-239 within a double containment (sum rule applicable).

7

Experimental techniques: ACT & INE beamlines

- Energy range 2.1 keV 25 keV (P to Pd K-edge, actinides up to Cf L³ edge)
- Source 1.5 T Bending magnet (Ec=6keV)
- Optics water cooled DCM \ exchangeable crystal pairs Si(111), Si(220), Ge(422) \ collimating 1st & focuss. 2nd mirror \ Diagnostic modules
- Beam size at sample ~500µm × 500µm (standard beam size with mirror)
- Flux at sample position ~2×10¹⁰ photons/s at Zr K-/Pu L₃edges using Ge(422)
- Detectors Vortex ME4 4 Element SDD & 1 El. 60VX SDD
- Samples solid \ liquid (incl. in-situ)

8

Beam size at sample ~1mm × 1mm (standard beam size with

mirror) \ slits

above (~55 keV)

15mm vacuum gap)

Flux at sample position ~10¹¹ photons/s/100mA at 20keV, Si(111)

Optics fixed-exit DCM with LN2 cooled crystals \

& focuss. 2nd mirror (FMB Oxford, GB)

- **HR-XANES** 1 m Rowland circle Johann-type HRXES spectrometer (5 crystals: Si(111/ 311/ 220/ 331), Ge (111/ 220/ (An M-edges)
- **Detectors** Mirion (Canberra) 8 element LEGe, KETEK + Vortex SDD
- **Samples** solid \ liquid (incl. in-situ)

Experimental techniques: ACT & INE beamlines

Energy range operation with mirrors: 3.4 – 35 keV, mirror-less

Source 2.5 T superconducting multipole wiggler (Ec=10.2keV,

Analyzer crystals

550

Mechanism of High-Energy Resolution XANES

- The X-ray photon is absorbed by exciting a core 3d electron to an empty 5f valence state.
- The 3d core-hole is filled with 4f electrons via M5N7 fluorescence emission.
- As function of the photon energy, sharp fine structures are observed in the HR-spectra.

Schematic electron excitations and emission transitions for An $M_{4,5}$ edges (left). U M_4 conventional (black) and HR-XANES (red) spectra of UO₃·1-2H₂O (meta-schoepite).

10

Results: U M₄ HR-XANES*

11

HR-XANES U M_4 edge for as-synthesised nanoparticles (lilac) and sintered (magenta) $U_{0.80}Am_{0.20}O_2$ samples (left). The post-edge range along with the U^{IV}O₂ (orange) and the BiU^VO₄ (green) references (right).

*CrystEngComm. *Synthesis and characterization of homogeneous (U,Am)O₂ and (U,Pu,Am)O₂ nanopowders J-F. Vigier et.al. accepted

18.07.2022 Natalie MUELLER: Cationic charge distribution in mixed actinide oxides by An M4,5 HR-XANES

Results: U M₄ HR-XANES cont'd

- The U^V stabilizes on the surface of the nanocrystals (10-13 nm size) with cubic FCC structure and strongly reduces to U^{IV} upon sintering at 1600-1650 °C.
- The energy position of feature B in the BiU^VO_4 spectrum located at about 3727.3 eV is characteristic of the main absorption intensity of U^V .
- The energy position of feature A in the U^{IV}O² spectrum located at about 3725.5 eV is consistent with published data.
- This details can not be detected with conventional U L³ edge XANES.
- Presence of an intermediate state for U is not ruled out for nanoparticles. (Paola D'Angelo)

 $U M_4$ HR-XANES spectra for nc- $U_{0.80}Am_{0.20}O_2$ (lilac) and after sintering (magenta) along with $U^{IV}O_2$, Bi U^VO_4 , references.

Results: Am M₅ HR-XANES

- Am^{III} dominates in both samples (feature C @ 3888.8 eV).
- The shoulder (D) is at the energy position of the main spectral maximum of Am^{IV}O₂ also present in the in Am^{III}VO₄.
- After sintering the intensity of the shoulder decreases and this suggests reduction of Am^{IV} to Am^{III}.
- The presence of Am^{IV} (feature D @ 3890 eV) is a new finding since americium is found to be in its trivalent oxidation state in the U×AmyO_{2+δ} (y=0 to 0.5) bulk system in previous studies*, even after calcination under air.
- Am is likely to be partially oxidized on the surface of the nanoparticles.

* Epifano et al. J. Nucl. Mater., 2020, 531, 151986 &151991

Am M_5 HR-XANES spectra for nc- $U_{0.80}Am_{0.20}O_2$ (lilac) and after sintering (magenta) along with $Am^{III}VO_4$, $Am^{IV}O_2$ references.

Results: DFT Am M₅ XANES calculations w/o consideration of the final state

Computational Details

- DFT method (ADF program package). Open-shell electronic structures that correspond to the initial, intermediate and final states.
- Molecular cluster approach, i.e. Am^{IV}O₂ is modelled with the molecular (AmO₈)¹²⁻ cluster. Point charges are added to mimic the long range interaction of the crystal host.
- Based on the DFT output, multiplet energies are calculated by using the LFDFT module in the ADF program package.

Comparison with experimental data

The cyan bars are the calculated oscillator strengths of the 5fⁿ -> 3d⁹ 5fⁿ⁺¹ transitions, which are convoluted with a Lorentizan function giving rise to the blue curves.

Conclusions and future work

XAFS2022

Sydney, Australia 10-15 July 2022

- Oxidation state of advanced solid solution synthesis of $nc-U_{0.80}Am_{0.20}O_2$ and bulk (U, Am)O₂ had been studied by U M₄ and Am M₅ HR-XANES.
- Typical oxidation states detected are the majority of U^V and Am^{III} with minor amount of Am^{IV} stabilized in the as prepared nc-U_{0.80}Am_{0.20}O₂ crystals.
- The U^V stabilizes on the surface of the nanocrystals (10-13 nm size) with cubic FCC structure and strongly reduces to U^{IV} upon sintering at 1600-1650 °C.
- Minor contribution of Am^{IV} is present in the nanocrystals for Am content down to 5%, likely as a result of surface oxidation of the predominant Am^{III}.
- The effect of significant U reduction in (U, Am)O₂ upon sintering also observed for Am doping as low as 1% (5% 10%).
- Optimization of sample preparation. Epoxy resin has probably a protective effect against oxidation.

Conclusions and future work

- RIXS analysis for the quantitative evaluation of the multiple oxidation states for uranium and americium (LCF).
- **Soft X-ray** O K-edge XANES at the XSPEC beamline.
- DFT To develop a method that calculates atomic multiplet energies corresponding to the initial, intermediate and final states of the HR-XANES mechanism.
- Sample complexity investigation of tri-metallic system (U, Am\Pu)O_{2.}

Acknowledgements

ERC Consolidator Grant 2020 THE ACTINIDE BOND

Tonya Vitova Jean-François Vigier Harry Ramanantoanina Olaf Walter Rudy J.M. Konings Tim Prüßmann Kathy Dardenne Karin Popa

For more information <u>natalia.mueller@kit.edu</u> www.ine.kit.edu/945.php