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ABSTRACT

A method for the sensitivity analysis for wall bounded thermal flows including conjugate heat transfer based
on the adjoint method is proposed and implemented. In a periodic domain, the flow rate and temperature are
kept constant using a uniform source. The solid region is modeled using a volume penalization approach for
the velocity and by adapting the thermal diffusivity in the temperature equation. To account for an increased
transport due to flow instabilities, time averaging is applied and effective diffusivities are introduced to the
adjoint equations. Applied to a channel flow with rectangular obstacles, the sensitivity distribution on the wall
surface is computed, showing increased sensitivities especially in regions with high temperature gradients. The
obtained sensitivities allow to optimize an initial topology with respect to an objective function. Additionally,
the contribution to the sensitivities resulting from different expressions in the primal equations provide insights
about the transport mechanisms in the flow. The sensitivities suggest that the surface area should be increased
in the regions with high heat fluxes and tend to modify the geometry hindering the occurrence of the flow
separation.
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1. INTRODUCTION

Optimization of engineering systems can significantly improve their performance, functionality, and cost-
effectiveness, and also minimize their environmental impact, making it a crucial area of research. Optimizing
the shape of objects in the aerospace and automotive industries and the design of structures and manufacturing
processes are some of the most common optimization tasks. In the present work we consider an adjoint-based
sensitivity evaluation [1] for a generic fluidic system – a flow through a structured channel – with an aim to
improve thermohydraulic efficiency of the channel via adjustment of structuring shape. The adjoint method
constitutes a mathematical tool that can be used to efficiently compute the sensitivity of a quantity of in-
terest with respect to the design variables. The method presents several advantages over other optimization
methods, including its ability to efficiently handle large-scale design problems and complex constraints and
objectives [2].

We consider a generic heat exchanger – 2D periodic laminar flow of an incompressible fluid through a struc-
tured channel under constant flow rate condition as shown in Fig. 1. Similarly, the heat transfer is considered
by taking into account the temperature field treated as passive scalar with a uniform heat source to prescribe
a constant bulk temperature in the system. In such configuration the total drag (which is proportional to the
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Fig. 1 Velocity magnitude distribution and indicator function in the considered laminar structured channel.
Black iso-contours show the temperature distribution with a step of 0.15Tb.

energy needed to pump the fluid through the channel) is characterized using drag coefficient Cf and the heat
transfer performance is estimated using Stanton number St. The ultimate goal is, however, to achieve a higher
heat transfer rate (St) with the least total drag (Cf ) - also called dissimilar heat transfer enhancement [3, 4]. In
spite of the challenges due to the strong similarity between momentum and heat transfer, the concept of dissim-
ilar enhancement has been successfully implemented using fins [5, 6], dimples [7] and vortex generators [8].
In the context of heat exchangers the adjoint technique has been successfully applied for shape optimization of
fins in pin-fin-array heat exchangers yielding a significant increase in thermohydraulic efficiency accompanied
by a reduction in size and amount of material needed for manufacturing [9, 10]. Nonetheless, the optimization
is often seen as a result-oriented tool, so the physical explanation of the reasons for a better shape performance
remain out of the scope of the studies. In the present work we aim to shed light on the underlying mechanism
behind the adjoint-based sensitivity analysis in order to better understand the interaction between the shape or
shape adjustment and its effect on the physics of the fluid flow.

2. METHODOLODY

2.1 Heat transfer in structured channels

2.1.1 Governing equations The incompressible, laminar flow of a uniformly heated fluid through a structured
channel is numerically investigated in this study. Using the adjoint method [1], the sensitivities describing the
excepted change in an objective functional with respect to a change the design variable Ψ, i.e. in the channel’s
topology, are computed and discussed. The flow is driven by a pressure gradient which is adapted to maintain a
specified bulk velocity Vb. Analogously, the fluid is heated with a uniform heat source to sustain the prescribed
the bulk temperature Tb. The solid region is identified using an indicator function (see section 2.1.2). An
immersed boundary method (IBM) models the structures by using a momentum sink to prescribe the no-slip
boundary condition at the solid/fluid boundary and enforce zero velocity within the solid region. Conjugate
heat transfer is considered by adapting the thermal diffusivity utilizing the indicator function Φ. Depending on
the prescribed Reynolds number Re = Vbh/ν, with the channel height h and kinematic viscosity ν, transient
phenomena such as vortex shedding can occur, increasing the effective viscosity and heat flux locally.

The physical behavior of the flow is described by the conservation laws for mass (1), momentum (2) and energy
(3), which reduces to the passive scalar equation for temperature:

Rp = − ∂vj
∂xj

, (1)
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In Eqn. (1) − (3), p, vi and T denote the pressure, the velocity and the temperature, respectively. Φ = f(Ψ) is
the indicator function where Φ = 1 refers to the solid and Φ = 0 to the fluid region, while αs and αf are the
respective thermal diffusivities of the solid and fluid region. mv,i and qv are the driving sources applied to the
fluid domain to maintain the respective bulk values. Similarly to the method proposed by Goldstein, Handler
and Sirovich [11],η is a proportional coefficient for the volume penalization in the solid region. It is typically
a large, positive value that is chosen empirically, since overly large values can cause numerical instabilities.
The left hand side of Eqn. (1) - (3), Rp, Rv

i and RT are zero by definition.

In the 2D domain, periodic boundary conditions for the in- and outlet are used for vi, p and T . At the walls,
vi and T are set to zero. Hence, T is considered the temperature difference between the wall and the fluid. For
p, a zero gradient condition is applied. Additionally, the indicator function is chosen as Φ = 1 at the wall. In
the context of the adjoint method, Eqn. (1) - (3) induce constraints to the optimization problem: the respective
fields are required to fulfill the conservation laws. Hence, we take into account that a change in the topology
should not lead to unrealistic behavior of the thermofluid when determining sensitivities. Since constant Vb and
Tb are prescribed using the adaptive momentum and heat source, two additional constraints are required:

Rm
i =

∫
Ω

(1− Φ) (vi − ni Vb) dV, (4) Rh =

∫
Ω

(1− Φ) (T − Tb) dV. (5)

Eqn. (4) and (5) describe the above mentioned condition for vi and T in the fluid domain. The vector ni points
in the main direction of the flow. From a mathematical perspective, (vi, p, T,mv,i, qv,Ψ) are the variables of
the optimization problem the sensitivities are computed for. To fulfill the constraints (1) - (5), only the design
variable Ψ expressing the topology can be chosen independently. Consequently, (vi, p, T,mv,i, qv) are referred
to as the primal variables.

2.1.2 Smoothed-interface immersed boundary method In the previous section, the indicator function Φ is in-
troduced as a function of the design variable Φ = f(Ψ). Throughout this study, a level set function [12] is used
as the design variable. It is defined as the signed distance to the fluid-solid-interface. Hence, positive values
of Ψ refer to the solid region, the zero-level implicitly defines the wall and negative values refer to the fluid
region. Since f(Ψ) is required to be differentiable, the smoothing-parameter ∆ is introduced to compute Φ
using Eqn. (6) as depicted in Fig. 2.
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Fig. 2 The indicator function has a smooth transition area ∆ in the vicinity of the interface [10].



2.1.3 Effective diffusivities Depending on the Reynolds number Re and the shape of the solid structure, vortex
shedding can be observed in the considered flow, increasing the effective momentum- and heat fluxes in the
wake. To take this into account, Reynolds decomposition can be applied, so the instantaneous flow quantities
are split into mean values and fluctuations ϕ = ϕ+ ϕ′ and averaged in time during the numerical simulation.
Using Boussinesq hypothesis, the additional momentum fluxes from the transient behavior, i.e. the Reynolds
stresses, are approximated using the scalar eddy viscosity νb and the time averaged velocity gradients:
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Analogously, the thermal eddy diffusivity αb is introduced:
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. (8)

Since only νb and αb are unknown, Eqn. (7) and (8) are used to determine both quantities.

2.2 Objective functions

2.2.1 Stanton number With the aim to increase the efficiency of heat exchangers, choosing the maximization
of the Stanton number as the objective is straightforward. For the described configuration, the Stanton number
is defined as

St =
Nu

RePr
=
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Tb Vb

1
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∫
Ω

(1− Φ) qv dV, (9)

where Lx and Lz are the length and the height of the computational domain. Since the multiplication with
a constant value does not influence the optimal topology, Eqn. (9) shows that maximizing for the Stanton
number is equivalent to maximizing the primal variable qv and the objective function can be chosen as JSt =
−TbVbLxLzSt.

2.2.2 Skin friction Higher flow rates are associated with higher pumping power needed for fluid transport
through the channel. Hence, considering the skin friction coefficient Cf besides St might be also essential for
the design of an efficient heat exchanger. Cf is computed using the primal variable mv,i and the flow direction
ni associated with Vb:
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The Cf -based objective JCf
= V 2

b LxLz is formally identical to JSt except for the positive sign indicating the
minimization of Cf .

2.2.3 Reynolds analogy Combining St and Cf , an objective based on the Reynolds analogy factor Ra con-
siders both the gain with respect to heat transfer and the momentum loss. Starting from Ra, a generalized
objective can be derived as presented in the following section:
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2.3 Adjoint sensitivity analysis

2.3.1 Adjoint variables Since the adjoint method is based on the augmented Lagrangian method [13], each
constraint to the optimization problem introduces a Lagrangian multiplier in the Lagrangian function (see
section 2.3.2). Throughout the following procedure, these Lagrangian multipliers are referred to as the adjoint
variables. From the equality constraints (1) - (3) the adjoint pressure field q, the adjoint velocity field ui and
the adjoint temperature field Θ arise. As for the primal variables, the constraints (4) and (5) lead to a single
adjoint momentum source λm and a single adjoint heat source λh, which are no field quantities. In this context
we refer to (ui, q,Θ, λmi , λh) as adjoint variables.

2.3.2 Definition of the Lagrangian Following the procedure for the augmented lagrangian method, the la-
grangian function is introduced:
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In Eqn. (12), J is a generic objective function and Rv
i = Rh = Rp = RT = Rv

i = 0 are the time averaged
equality constraints. To avoid numerical issues due to different orders of magnitudes in the values of the flow
quantities, the constraints are scaled with either Vb or Tb.

2.3.3 Derivation of the adjoint equations The derivative of the lagrangian defined in Eqn. (12) depends on the
unknown partial derivatives of the primal variables with respect to the design variable. Using the chain and
product rules as well as partial integration, the derivative of Eqn. (12) can be expressed as a linear combination
of the partial derivatives, the partial derivative of Φ and surface integrals:
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All quantities in Eqn. (13) are time averaged. In Eqn. (13), cJ,P and cJ,q are constant coefficients arising
from the generalized objective presented in the next section. To compute the sensitivities independently of
the partial derivatives of the primal variables, the adjoint variables are determined from the condition that
Qv

i = Qh = Qp = QT = Qv
i = 0. The adjoint boundary conditions are obtained from the surface integral in

Eqn. (13). For the investigated setup, the adjoint boundary conditions coincide with the boundary conditions
for the primal field variables. If the adjoint equations are fulfilled, the sensitivities are computed as
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with ∆α = αs − αf . The expression for the sensitivities in Eqn. (14) is not independent of the objective func-
tion. According to Qm

i and Qh, the adjoint bulk velocity Ub and adjoint bulk temperature Θb are determined
from the objective. However, in the proposed framework the objective can be changed by updating Ub and Θb.



2.3.4 Generalized objective The differentiation of the objectives presented in section 2.2 can be generalized
as presented in Eqn. (15). The derivative for JSt is obtained by choosing cJ,q = 1 and cJ,P = 0 leading to
Θb = −Vb and Ub = 0. JCf

is obtained with cJ,q = 0 and cJ,P = 1, resulting in Θb = 0 and Ub = Vb:
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2.3.5 Frozen effective diffusivities The effective diffusivities arising from the time averaging procedure pre-
sented in section 2.1.3 depend on the distance to the wall i.e. the design variable. Similarly to the frozen
turbulence assumption [14], the partial derivatives of the effective diffusivities are neglected throughout this
study.

3. PROCEDURE

3.1 Computational domain and flow configuration

In the present study, a two-dimensional domain of the size Lx/h = 4 and Ly/h = 1.1 is considered. The
domain is discretized with a uniform cell size of ∆x/h = 0.0005. For the time integration, an adaptive time
step is used, ensuring a maximum cell based Courrant number of Co = vi∆t/∆x = 0.5. The shape of
the solid structure is shown in Fig. 1. The thin layer of solid at the top and bottom wall has a thickness of
0.05h. The spacing in between adjacent obstacles at the bottom and top wall is h, so four obstacles are placed
within the periodic domain. The height of an obstacle is 0.5h and the width is 0.25h. The radius of the rounded
corner at the centerline of the channel is robs = 0.0575h. For the smoothed solid-fluid-interface, the smoothing
parameter is set to ∆ = 3∆x. The fluid viscosity and thermal diffusivity are chosen as ν = αf = 10−5 m2/s,
while the solid thermal diffusivity is αs = 10αf . The flow is investigated at two different Reynolds numbers
Re = Vbh/ν = [40, 80]. At Re = 40 the flow converges to a steady state solution, whereas at Re = 80 vortex
shedding is expected to occur.

3.2 Solution algorithm

inner loop
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solve for T
outer loop
converged?

update time
averages

time
average

converged?

next time step
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Fig. 3 Flow diagram of the solution algorithm.



The framework for the computation of sensitivities using the adjoint method is implemented in an OpenFOAM-
based in-house solver utilizing the PIMPLE-algorithm for both the primal and the adjoint equations. The
flow diagram of solution algorithm is depicted in Fig. 3. The primal equations are solved until a convergence
criteria based on the time averaged flow quantities is met. Hence, the procedure is applicable to both steady
and unsteady flow problems. During the simulation, the heat and momentum source terms are adapted to
maintain the specified respective bulk value. While updating the time averaged quantities, the effective eddy
viscosity and thermal diffusivity are computed. For solving the adjoint equations, the negative mean velocity
is used in the adjoint convective term. Thus, the adjoint equation always describe a steady state. Analogously
to the primal equations, the adjoint heat and momentum source are updated depending on the chosen objective
function. The adjoint equations are solved until the sensitivities converge.

4. RESULTS

4.1 Effect of simulation domain length

As previously mentioned, the flow becomes non-stationary when Reynolds number is increased from Re = 40
to Re = 80 within the same periodic computational domain. At Re = 80, vortex shedding occurs at the
leading corner of the rectangular obstacles and the resultant vortices interact with the obstacles downstream
forming a more complex flow pattern. To compare the influence of the domain length on the results due to the
propagation of this effect, an additional simulation with Lx/h = 2 instead of Lx/h = 4 is carried out. The
frequency analysis of wall-normal velocity is presented in Fig. 4. On the channel centerline, at x = 0.125h
and x = 1.125h, the wall-normal velocity component v2 is investigated. A fast Fourier transformation of
the velocity shows twice as many frequency peaks for Lx = 4h then for Lx = 2h. This confirms, that the
length of the domain affects both the velocity and temperature fluctuations and thus the computed sensitivities.
Consequently, the sensitivities can differ at each obstacle in the resolved flow at Re = 80 in the longer domain.
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Fig. 4 Velocity v2(x, y = h/2) in time (left) and frequency (right) domain. x is the streamwise coordinate and
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4.2 Primal and adjoint variables

Fig. 5 shows the primal velocity magnitude and temperature in the shorter domain (Lx = 2h). At Re = 40,
the flow is steady state and does not depend on the domain size. Both fields differ qualitatively due to the
treatment of the IBM. In the case of the velocity field, the momentum sink reduces the velocity within the solid
region to approximately zero and the reduced cross-sectional area causes an acceleration of the flow between
the elements and the opposing wall. Consequently, the velocity gradients at the leading corner of the obstacles
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Fig. 5 Primal velocity (left) and temperature (right). White line marks the fluid/solid interface.

are very high. Behind the obstacles, a steady recirculation area forms. Due to the conjugate heat transfer, the
temperature gradients at the tips are comparably small. Since uniform heating is applied to the fluid region,
the temperature in the recirculation area is overestimated compared to configurations, where the heat would be
provided through either convection or e.g. chemical reactions. The high momentum streak is redirected from
the opposing wall towards the subsequent obstacle, so the velocity gradients in these areas are smaller than at
the tips. However, heat is convectively transported close to the wall, resulting in high temperature gradients.

Choosing the maximization of Stanton number as the objective, the adjoint bulk velocity is Ub = 0 and the
adjoint bulk temperature is Θb = −Vb. The transpose convective terms, especially the one resulting from the
temperature equation, in the adjoint velocity equation (see Eqn. (13)) acts as a driving source which is balanced
by the adjoint momentum source λm. Consequently, vortex-like closed structures emerge as shown in Fig. 6.
Since the adjoint momentum source enforces Ub = 0, the influence of the thermal transposed convective term
to the sensivitivies via the adjoint velocity ui is indicated by these vortices. The adjoint temperature is similar
to the primal temperature except for the negative bulk value and the negative convective term. As a result of
the latter, the magnitude of the adjoint temperature behind the obstacles is comparably large and the gradients
of the adjoint temperature field are larger than the gradients of the temperature field in this region.

4.3 Sensitivities

The sensitivities presented in this section are computed with the previously introduced primal and adjoint fields
for the Stanton number objective. The sensitivities are computed with Eqn. (14). The lower right plot in Fig. 7
shows the contribution from the change in diffusivity from the fluid to the solid region. It shows high values,
where both the primal and the adjoint temperature gradients are high and thus aims to increase the thermal
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Fig. 6 Adjoint velocity (left) and adjoint temperature (right). White line marks the fluid/solid interface.
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diffusivity in regions with high heat fluxes. As mentioned before, the adjoint temperature gradient is increased
directly behind the obstacle and decreased further downstream compared to the gradients of the temperature
field. This effect is enhanced by the circulation of the vortex. Since adding solid in the area of increased
adjoint temperature gradients would decrease the circulation, the respective sensitivities indicate the benefit
from removing the insulating vortex. As heat is transferred from the fluid to the wall only, the contribution
from those effects will only suggest increasing the solid volume. However, combined with a constant volume
constraint, the decrease in sensitivity downstream can result in the removal of solid. The lower left plot in
Fig. 7 shows the sensitivity expression resulting from the IBM. It exhibits both positive and negative values.
The positive value at the leading tip suggests a shape update to avoid the detachment of the flow, which would
drastically increase the temperature gradient at the top respective the bottom of the obstacles. With the same
reasoning, adding solid at the indicated regions at the channel’s wall increases the heat transfer due to heat
convection.

5. CONCLUSION

In the present study, an adjoint based method for the sensitivity analysis for thermal channel flows considering
conjugate heat transfer is presented, implemented in OpenFOAM and applied to a generic configuration with
rectangular obstacles. The method is derived for unsteady laminar flows and skin friction or heat transfer related
objective functions in periodic domains. To implicitly define solid structures, an IBM with volume penalization
based on a level set function is used. To deal with transient effects, the primal fields are time averaged and the
resulting adjoint equations are closed using Boussinesq approximation. The respective effective diffusivities
are computed from the known first and second moments of the primal fields. The procedure is formally identical
for laminar and turbulent flows, provided a direct numerical simulation of the turbulent flow is carried out.

A generalized objective function based on volume integrals and the constraint of constant bulk values is de-
rived for thermal wall bounded flows. However, the described approach can easily be extended, e.g. for reacting
flows. The developed method is applied to a channel flow configuration with rectangular obstacles consider-
ing different Reynolds numbers for steady and unsteady laminar flows. The transient behavior of the flow is
investigated depending on the domain size. The results show more complex flow patterns emerge for longer
domains. Since the computation of the effective diffusivities is not trivial for complex flows, the sensitivity



analysis is firstly carried out for a steady flow at Re = 40. The results for the primal, adjoint and sensitivity
fields are discussed and physical mechanisms that effect heat transfer are related to the results of the sensitivity
analysis. For the considered configuration, the sensitivities indicate topology changes due to convective and
diffusive effects. Convection is mainly relevant for the sensitivities behind the structure, where the heat transfer
is inhibited by the recirculation vortex. The suggested topology change suppresses this recirculation. Diffusion
plays an important role at the tips of the obstacles and at the opposing walls, where both the velocity and tem-
perature gradients are high. In summary, optimizing for higher St, the computed sensitivities for the currently
considered geometry suggest a topology update aiming at avoidance of flow separation and exposition of the
solid structure to high temperature gradients.

In future work, various methods for computing the sensitivities for transient flows will be compared, and
sensitivity analysis will be performed for flows with higher Reynolds numbers. Additionally, the impact of
domain length on the flow, effective diffusivities, and sensitivities will be further studied. Finally, the suggested
algorithm will be used to determine the optimal shape for different objective functions.
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