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Experimental catalyst optimization is plagued by slow and laborious efforts. Finding innovative materials is key to advancing 

research areas for sustainable energy conversion, such as electrocatalysis. Artificial intelligence (AI)-guided optimization 

bears great potential to autonomously learn from data and plan new experiments, identifying a global optimum significantly 

faster than traditional design of experiment approaches. Furthermore, it is vital to incorporate essential electrocatalyst 

features such as activity and stability into the optimization campaign to screen for a truly high-performing material. In this 

study, a multiobjective Bayesian optimization (MOBO) was used in conjunction with an experimental high-throughput (HT) 

pipeline to refine the composition of a non-noble Co-Mn-Sb-Sn-Ti oxide toward its activity and stability for the oxygen 

evolution reaction (OER) in acid. The viability of the MOBO algorithm was verified on a gathered data set, and an acceleration 

of 17x was achieved in subsequent experimental screening compared to a hypothetical grid search scenario. During the ML-

driven assessment, Mn-rich compositions were critical to designing high-performing OER catalysts, while Ti incorporation 

into MnOx triggered an improved activity after short accelerated stress tests. To examine this finding further, an operando 

mass spectrometry technique was used to probe the evolution of activity, metal dissolution, and surface area over 3 h of 

operation. This work demonstrates the importance of respecting the multiobjective nature in electrocatalyst performance 

during HT campaigns. AI-based decision-making helps to bridge the gap between fast HT screening (limited property 

extraction) and slow fundamental research (rich property extraction) by avoiding less informative experiments.

Introduction 

The task of optimization is prevalent in any scientific discipline. 

Material optimization and discovery, in particular, have 

propelled technological advancements, creating a materially 

different generation compared to previous ones. The current 

climate crisis poses a severe threat to the well-being of 

humanity, where innovation in energy materials is needed to 

tackle a monumental challenge of this scale. Establishing a 

renewable energy landscape is of utmost importance to secure 

a sustainable energy supply while maintaining current living 

standards in the near future. Electricity from wind and solar is 

intermittent, necessitating its storage into energy-dense 

molecules such as hydrogen to cover energy demands at any 

time, even during downtimes of renewable electricity 

production. 

Polymer electrolyte membrane water electrolysis (PEMWE) will 

be a cornerstone in the future energy transition, generating 

green hydrogen to end the reliance on current fossil-based 

energy carriers.1, 2 Here, the oxygen evolution reaction (OER) is 

profoundly more sluggish than the hydrogen evolution reaction 

(HER). Given that anodic and cathodic reactions proceed 

simultaneously, the slower reaction ultimately determines the 

total device efficiency, making the improvement of OER kinetics 

a main target of many research endeavors in the water splitting 

community. Electrocatalysts build the heart of electrochemical 

devices and act as reaction promoters. So far, IrOx has become 

the state-of-the-art OER catalyst for PEMWEs. Despite decades 

of research, no marketable alternative consisting of cheap 

earth-abundant elements has emerged to replace this scarce 

and expensive noble metal catalyst, necessitating impactful 

materials innovation. Catalysts in commercial PEMWEs 

applications must not only be active but also durable over an 

extended time. The particular challenge lies in overcoming the 

inherent instability of non-noble metals at lower pHs, which is 

the operating environment of PEMWEs. 

Recently, some promising demonstrations have proved the 

viability of Co- and Mn-based oxides. For instance, Mondschein 

et al. showed that Co3O4 can perform OER over several days in 

strongly acidic electrolytes, albeit at low current densities, using 

a three-electrode cell.3 In terms of practical applicability, γ-

MnO2 was used to operate a PEM setup for 400 h at 

10 mA cm-2.4 When 100 mA cm-2 was applied, the system shut 

down after 8 h, which was attributed to extensive Mn leaching 

and calls for the need to stabilize the noble metal-free OER 

catalyst further.  

One strategy to achieve higher stabilization is the expansion to 

multinary compositions. This method forms thermodynamically 

more stable alloys or bonds by adding elements that can alter 

electronic structures and act as stabilizing additives.5 The 

incorporation of Mn into the spinel lattice of Co3O4 can extend 

the catalyst lifetime by two orders of magnitude without 

compromising any activity during acidic OER. This effect was 

attributed to the formation of a stable Mn-O bond, suppressing 

dissolution.6 Chong et al. even demonstrated a La- and Mn-

doped cobalt spinel OER catalyst that was able to operate at 

current densities of 200 mA cm-2 within a PEM setup for 100 h.7 
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In fact, recent literature has shown that targeted 

alloying/doping of cobalt or manganese oxides with stabilizing 

elements such as Sb, Ti, or Sn can profoundly impact the overall 

catalyst stability, for instance through stabilization of a specific 

oxidation state or strengthening of the metal-oxygen bond.8-10 

So far, studies on multimetallic transition metal catalysts for 

acidic OER have primarily focused on binary oxide systems. A 

plethora of unexplored mixed metal systems still exist that need 

to be screened for their viability as non-noble alternatives to 

IrOx. Constructing multinary systems represents a combinatorial 

problem, scaling exponentially with a new parameter (e.g., 

elements) added to the mix. Traditional material optimization is 

laborious and slow, partly due to the commonly utilized one-

parameter-at-a-time approach, requiring many experiments to 

screen a grid of parameter combinations. Such grid search 

becomes time-intensive and thus infeasible when subjected to 

large search space. High-throughput (HT) methods have 

contributed greatly to this challenge, where individual 

laboratory tasks can be automated (e.g., synthesis, 

measurement, data analysis) to accelerate the testing of 

thousands of samples.11 Automation in HT methods not only 

expedites the workflow but introduces less human bias and 

error into the optimization campaign. Such approaches have 

already proven useful in screening non-noble multinary oxides 

toward acidic OER.12, 13 

The effectiveness of HT experiments in uncovering promising 

electrocatalysts lies in the proper definition of the main 

objective, i.e., which property to optimize. While many HT 

campaigns focus solely on the catalyst activity, screening the 

stability is crucial to adequately identify high-performing 

catalysts.14, 15 However, the evaluation becomes more time and 

resource-intensive with each additional property being 

assessed.16 Combining thorough testing of each sample with a 

grid-search-based strategy for vast search spaces prolongs the 

total measurement time, losing the essence of HT screening. 

Additionally, not all experiments are equally useful. Spending 

time-intensive measurements on unpromising candidates 

during grid search can be a waste of resources. 

As an alternative, iterative approaches are more favorable, 

where a small subset across the entire parameter space is 

explored in the first iteration. The obtained information serves 

as prior knowledge, informing which regions in the parameter 

space to investigate next and which ones to neglect in order to 

optimize the objective. In a way, this heuristic approach has 

been performed by human scientists for many centuries. 

However, with the recent emergence of predictive machine 

learning (ML) algorithms, such experimental planning can be 

performed autonomously without human intervention, 

excluding human bias from research.17 ML techniques have 

catapulted the scientific community into a new paradigm, 

whereas the implementation for energy material research has 

just started.18, 19 A ML algorithm is often discussed in 

conjunction with big data, with massive amounts of data 

providing the basis for training ML models. However, some ML 

approaches are specifically geared toward dealing with data-

poor optimization campaigns, which are often prevalent in 

experimental material science, let alone electrocatalysis.20 One 

active learning approach is Bayesian optimization (BO), an 

adaptive sampling strategy relying on an iterative optimization 

process to find the global optimum in a predefined parameter 

space.21 The BO algorithm consists of the following steps: (i) 

initialization, in which some observations are collected, building 

the starting point for the optimization process. (ii) machine 

learning, in which a surrogate model (typically a Gaussian 

process) is fitted on the given observations. (iii) optimization 

policy, in which an acquisition function decides which 

parameter combinations are most informative to reach the 

global optimum. (iv) experimental evaluation of the newly 

suggested candidates and starting over at (ii).  

The feasibility of BO for material science has been 

demonstrated for photovoltaics,22, 23 thin-films,24 

photocatalysts,25 or organic compounds,26 where it builds the 

heart of fully autonomous self-driving laboratories (SDL).27 SDLs 

are still very rarly applied to electrocatalytic applications. So far, 

only Black et al. have demonstrated a use-case in which they 

optimized a non-noble metal composition for acidic OER using 

an SDL.28 

Besides SDLs, BO can be implemented into workflows without 

any robotic orchestration, such as computational studies to 

identify new electrocatalysts.29-32 BO has also been used to 

guide traditional laboratory workflows with manual 

involvement in either the synthesis or characterization to refine 

catalysts for electrochemical reactions. Yamauchi et al. have 

demonstrated the viability of BO for effectively screening the 

Pt-Pd-Au composition space for methanol oxidation.33 It was 

concluded that only 1% of the entire search space was screened 

to find the optimum. In another report, Arenz et al. used BO to 

explore a multidimensional high-entropy alloy composition 

space comprised of Pt-Ru-Pd-Rh-Au for H2/CO 

electrooxidation.34 Zelenay et al. implemented adaptive 

learning into an automated synthesis workflow for 

electrocatalyst development, which guided the optimization of 

a Fe-N-C catalyst for the oxygen reduction reaction.35  

While these studies mostly focused on singly optimizing the 

catalyst activity, high-performing electrocatalysts must 

combine high activity and stability, as mentioned earlier, 

representing a multiobjective optimization task. Therefore, 

multiobjective BO (MOBO) is crucial, in which both objectives 

(activity and stability) are simultaneously optimized.16 In 

electrocatalysis, activity and stability tend to be inversely 

correlated, i.e., a catalyst with exceptionally high activity 

commonly shows poor stability and vice versa.36 Thus, MOBO 

aims to identify catalysts that possess the best compromise 

between these two properties. Our previous report 

demonstrated an HT workflow that allows rapid synthesis and 

testing of electrocatalysts for their OER activity and stability 

using single-task automation.37, 38 However, the underlying 

optimization strategy always relied on a grid search without any 

feedback loop driven by ML. 

In this work, MOBO was implemented into a previously 

established HT platform to adaptively screen a Co-Mn-Sb-Sn-Ti 

oxide space to simultaneously maximize the activity and 

stability toward acidic OER. To test the viability of ML-driven 

experiments for the present optimization task, a data set was 

curated from a grid search of the Co-Mn-Sb-Sn-Ti oxide space. 

Based on this data set, a simulated MOBO was performed to 

evaluate whether the algorithm can identify the global 

optimum faster than a random sampler. After this validation, 
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the algorithm was applied to suggest new compositions to be 

synthesized and screened in the laboratory to iteratively narrow 

down the optimal compositions. This strategy is illustrated in 

Figure 1. Once interesting compositions were identified, more 

detailed and time-consuming testing was carried out on 

selected candidates to study the observed behavior in greater 

depth, for example, by using operando mass spectrometry to 

probe the degradation behavior. 

Results and discussion 

Simulated optimization of composition through MOBO 

An initial proof of concept needs to validate the viability of 

MOBO for the OER activity-stability optimization of Co-Mn-Sb-

Sn-Ti oxides. To avoid resynthesis and testing in each new 

iteration, a complete data set was constructed first using in-

house HT capabilities. This step was taken as no open-source 

data sets exists that resembles this multiobjective optimization 

task with 5 elements as features and activity and stability as 

properties. A grid search approach was chosen, where 70 

samples (25 at.% difference between each composition) were 

synthesized using the pipetting robot with subsequent 

annealing. The samples were then assessed toward their 

activity and stability for acidic OER in 0.1 M HNO3 using the 

automated scanning flow cell (SFC) developed in an earlier 

study.37, 38 The testing protocol applied to each sample is shown 

in Figure S1. The activity was assessed through the OER 

overpotential (ηOER) reached during the first 1 mA cm-2 hold, 

whereas the stability is determined from the ηOER change 

(ΔηOER) after the accelerated stress test (AST). Characterizing 

stability via ΔηOER is a classical and relatively facile approach in 

electrocatalysis, which was the main reason for its adoption for 

the MOBO-driven screening. This method provides a 

comprehensive view of the performance deterioration over 

time. For deeper insights into material degradation, a more 

involved operando technique based on mass spectrometry was 

used in subsequent investigations within this study, offering a 

detailed understanding of the catalyst dissolution during 

electrochemical testing. 

To ensure an accurate interpretation of the composition-

performance results during this study, the discrepancy between 

the nominal and actual composition must be assessed. 

However, determining the actual composition of the samples 

on the FTO substrate with energy-dispersive X-ray (EDX) or X-

ray fluorescence (XRF) is challenging as Sn signals will be 

overshadowed by the Sn in the substrate and Sb signals overlap 

with those of Sn. Instead, the composition of the drop-casted 

solutions was evaluated using an inductively coupled plasma 

mass spectrometer (ICP-MS) as a proxy measurement. The final 

film composition should closely resemble the ink composition, 

as no metal evaporation is expected during the annealing step. 

Table S1 shows that the ink composition for four random 

mixtures is in close proximity to the nominal targeted 

composition, confirming the accuracy of the pipetting 

sequence. 

It is important to note that features such as morphology, 

phases, or surface facets undoubtedly influence the 

electrocatalytic performance.39, 40 However, such features often 

come as a result of compositional tuning and can turn out to be 

secondary information for material discovery campaigns. Such 

information becomes indispensable when focusing on revealing 

a detailed structure-property relation to, e.g., derive new 

descriptors. Implementing X-ray diffraction (XRD) or X-ray 

photoelectron spectroscopy (XPS) into SDLs to extract such 

supportive information adds more engineering complexity. 

Hence, recording the electrocatalytic performance as a function 

of the composition remains a popular route for automated HT 

workflows in electrocatalysis and represents an intuitive 

research question in material science. 

Figure 2a depicts the obtained ηOER and ΔηOER for each 

composition. The data set can be found in Table S2 in the 

Supporting Information. It is noticeable that the lack of Co or 

Mn manifests in a massive activity drop indicated by the 

increase in ηOER around experiment count 55. This result aligns 

with expectations, as Sb, Sn, and Ti oxides are known to be poor 

OER catalysts.2 An obvious trend in the stability results was not 

observed. Surprisingly, some ΔηOER are negative, indicating that 

the catalyst became more active after the AST. Overpotentials 

typically increase as a result of deactivation.41 A so-called 

Figure 1: Schematic workflow of the multiobjective Bayesian optimization for the experimental OER catalyst composition optimization. 
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activation step, as encountered for noble metals42, 43 or MEAs,44, 

45 was not observed in the majority of the tested samples. A 

follow-up investigation on this irregular phenomenon will be 

present towards the end of this study. For now, it seems that 

most samples exhibit a ΔηOER around 0 - 20 mV. 

The data shown in Figure 2a was used to simulate a MOBO 

process without running additional experiments to evaluate if 

the algorithm can quickly identify the most active and stable 

compositions within the data set. 

qNoisyExpectedHypervolumeImprovement (qNEHVI) was 

chosen as the acquisition function to identify the Pareto front 

as is can weigh trade-offs among multiple objectives. 

Additionally, it does not require a prior selection of a known 

trade-off between the objectives.46 A FixedNoiseMultiTaskGP 

surrogate model was used as ML model, which allows for the 

inclusion of experimental noise determined during the HT 

screening into the model. 

The algorithm was initialized with five random entries. Based on 

the results in Figure 2a, a ηOER of 550 mV and a ΔηOER of 10 mV 

were determined as suitable reference points for the 

optimization, presenting values that are both desirable and 

realistically achievable. After initialization, the MOBO algorithm 

picked one new candidate from the remaining data set per 

iteration, rearranging the data as shown in Figure 2b. By 

constructing a Pareto plot by mapping the activity over stability, 

it becomes clear that the algorithm rapidly selected points 

within the optimal quarter (left bottom corner) during the first 

20 iterations. Once no better compositions are left within the 

data set, the points scatter to less active and stable regions.  

To evaluate the speed of optimization, the 

FixedNoiseMultiTaskGP model was benchmarked against a 

random sampler that does not learn from previous iterations. 

For this comparison, the normalized hypervolume is plotted 

over each sampling iteration. The hypervolume is the area that 

spans between the Pareto optimal points and the reference 

point. When dealing with random sampling, multiple 

repetitions are required to probe the statistical significance. If 

the random sampler happens to sample the best compositions 

at the beginning, and this repitition is compared, it would 

insinuate MOBO to be inferior. Figure 2d shows the comparison 

of the FixedNoiseMultitaskGP surrogate model against a 

random sampler after 500 repetitions. The adaptive sampling 

strategy indeed outperforms an uninformed sampler and finds 

the optimum already after 20 iterations. The 

FixedNoiseMultiTaskGP model was also compared to a 

MultiTaskGP model that does not consider noise. The 

performance is just marginally worse (see Figure S2). However, 

as heteroscedasticity (different variance in each data point) is 

an important information during ML-guided HT screening, the 

FixedNoiseMultiTaskGP was chosen as the surrogate model for 

the subsequent MOBO-driven experimental optimization of the 

Co-Mn-Sb-Sn-Ti oxide space. 

 

Experimental optimization of composition through MOBO 

The previous results showed the validity of MOBO to optimize 

the OER catalyst activity and stability simultaneously in a 5-

dimensional space and laid the groundwork for the subsequent 

ML-driven experiments. The algorithm now suggests new 

compositions that a scientist would synthesize and screen in the 

laboratory, realizing a human-in-the-loop ML-driven catalyst 

optimization. The campaign begun with screening 15 

homogeneously distributed samples over the entire quinary 

search space (each composition differing 50 at.%, see Table S3). 

As a rule of thumb, BO campaigns should be initialized with 

around 2*(n+1) samples, where n is the dimensionality of the 

optimization campaign (5 in this case).46 The samples were 

screened using the same protocol shown in Figure S1. The 

observations serve as prior, whereupon the MOBO algorithm 

suggests 15 new candidates from a total composition space of 

1001 candidates (each composition differing 10 at.%) that will 
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Figure 2: Simulated MOBO on a data set from a grid search campaign. (a) Summary grid search data showing overpotential, overpotential change, and corresponding composition. 

Standard deviation calculated from two duplicates. (b) Rearrangement of data shown in (a) as a result of MOBO sampling. Color code indicating MOBO iterations. (c) Pareto plot of 

ΔηOER against ηOER for each composition with a color map indicating MOBO iterations. (d) Normalized hypervolume plotted against MOBO iterations. MOBO is benchmarked 

against random sampling.
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be synthesized and screened. This loop is continued until a 

convergence is reached (see Figure1). 

Figure 3a shows a summary of the recorded composition-

dependent ηOER and ΔηOER for each MOBO iteration. The data 

set can be found in Table S4 in the Supporting Information. After 

initialization, subsequent suggestions all focus on compositions 

yielding an ηOER below 550 mV and ΔηOER below 15 mV. 

Multidimensional scaling (MDS) of the quinary parameter space 

in Figure 3b (for activity) and Figure 3c (for stability) indicates 

that Mn seems to play an important role in achieving the global 

optimum. The gray points in the MDS plots represent the total 

search space. Figure S3 illustrates how, after initialization, the 

MOBO algorithm quickly focuses on sampling Mn-rich 

compositions. 

Similar to the previously simulated proof-of-concept, the MOBO 

algorithm improved the hypervolume significantly faster than 

random sampling (see Figure 4a). A summary of the random 

sampling can be found in Figure S4 and its corresponding data 

set in Table S5. The hypervolume increases sharply during the 

first iteration and plateaus during the third iteration, suggesting 

that most non-dominated compositions are found during the 

first two optimization cycles. From Table S6, one can observe 

that all suggested sampling points for a potential 4th MOBO 

iteration are very similar, implying that the algorithm is already 

trying to exploit a particular region. Figure 4b shows how almost 

every sampled candidate is better than the predefined 

reference point. Compared to the grid search performed earlier, 

the MOBO was able to significantly improve the hypervolume 

and explore more non-dominated compositions that reside on 

the Pareto front, as indicated by Figure S5.  

Inspecting the Pareto compositions in Figure 4c more closely 

reveals that Mn90Co10Ox achieves the highest activity while 

suffering from an ΔηOER of around 10 mV after the AST. It is 

important to note that this result is highly dependent on the 

testing protocol chosen and should not necessarily mean that 

Mn90Co10Ox is the universally highest active sample. Rather than 

finding the one and only optimal catalyst, it is equally intriguing 

to discover certain trends that MOBO was able to unravel. For 

instance, incorporating Ti into the catalyst triggers an activity 

improvement after AST, shown by the negative ΔηOER. The more 

Ti is incorporated, the more pronounced this effect, but at a 

sacrifice of activity. This trend prevailed throughout the 

sampled compositions, which is evident from the analysis of the 

2nd, 3rd, and 4th best Pareto front shown in Figure S6. To clarify, 

the 2nd best Pareto front is obtained when all points from the 

1st Pareto front are deleted. The 3rd is obtained by deleting the 

1st and 2nd, and so on. More elaborate follow-up investigations 

are needed to understand this behavior, which will be 

highlighted in the upcoming sections. 

Literature reports have demonstrated the beneficial role of Sb 

incorporation into mixed Mn oxides to improve electrocatalytic 
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stability during acidic OER.8, 47, 48 Slight improvements in the 

stability of Mn-oxides through the addition of Sb could also be 

observed in this study, indicated by a lowered ΔηOER for a 

Mn90Sb10Ox sample compared to bare MnOx in Figure S7. To 

compare the performance of the mixed metal oxides against a 

state-of-the-art catalyst, a IrOx sample was synthesiued with 

the same procedure used for the non-noble samples (see Figure 

S7). As expected, IrOx outperforms the Pareto compositions in 

terms of activity by 180 mV due to its superior OER kinetics. The 

ΔηOER after AST is near 0, demonstrating good stability. 

Overall, it seems that binary and ternary compositions are more 

frequently sampled during the MOBO campaign (see Figure S8). 

Figure S8 b illustrates once more how little samples were 

needed (6% of total space) to arrive at an optimum. Quinary 

compositions were not explored at all. Figure S9 depicts the 

predicted ηOER and ΔηOER values for the unexplored 

compositions after training the FixedNoiseMultiTaskGP model 

on the observations made during the MOBO campaign. Here, 

quinary catalysts are predicted to have no potential to come 

close to the Pareto front. However, making predictions into new 

composition spaces without being trained on them is not 

straightforward and requires more sophisticated transfer 

learning approaches.49 

 

Extended OER testing of selected compositions 

As outlined earlier, the addition of Ti into MnOx triggers an 

improvement in activity after ASTs, a recurring behavior 

observed across the entire optimization campaign. To 

investigate this particular behavior in more detail, the 

Mn70Ti30Ox composition, which showed this phenomenon the 

strongest within the Pareto compositions, was subjected to a 

more extensive electrochemical testing (see Figure S10). The 

objective was to conduct a Tafel analysis before and after the 

same AST applied during the MOBO-guided screening. The Tafel 

analysis was performed by recording the ηOER at 

chronopotentiometric (CP) holds of 0.1, 0.2, 0.5, 1, 2, and 

5 mA cm-2.50 A Mn90Co10Ox sample was also subjected to this 

testing to probe the behavior of a candidate at the opposite 

spectrum on the Pareto front (see Figure 5 a). 

As observed before, the overall activity is lower than a 

Mn90Co10Ox sample. The ηOER of both mixed metal oxides 

become similar as the current density approaches 5 mA cm-2, 

reasoned by the fact that Mn is the main constituent performing 

OER and both being Mn-rich.  

The AST once more causes the ηOER to decrease for the 

Mn70Ti30Ox composition. However, the Tafel slope increased 

(see Figure 5b). This outcome suggests that OER kinetics 

worsened after the AST, implying that the improvement in OER 

activity might stem from extrinsic factors, e.g., an increase in 

surface area. Surface roughening due to dissolution is one 

option that could cause an increase in the electrochemically 

active surface area, exposing more active sites to catalysis.51 On 

the other hand, the kinetics improved slightly for the 

Mn90Co10Ox sample. Pinning down the exact mechanism is 

complicated and requires more elaborate in-situ testing. 

However, attention was devoted to the increase in activity for 

Ti-incorporated MnOx samples due to its irregular behavior 

compared to all other samples.  

Hence, as a final follow-up, the Mn70Ti30Ox sample was 

subjected to an even more rigorous testing using in-situ ICP-

MS.52 The coupling of a mass spectrometer to the SFC allows for 

studying the real-time Mn and Ti dissolution during 

electrochemical operations with high sensitivities. This 

approach will help understand catalyst stability from the 

perspective of active site leaching, a key degradation pathway 

for electrocatalysis.53 

 

Operando dissolution study of Mn70Ti30Ox catalyst 

The protocol used for the follow-up measurement is shown in 

Figure 6a. The objective was to record the activity, dissolution 

behavior, and change in surface area over a prolonged time 

span. The protocol was applied in a loop up to 19 times, starting 

with with three cyclic voltammograms (CVs) between 1.1 and 

1.3 VRHE. Scan rates of 25, 50, 100, and 200 mV s-1 were chosen 

to extract the capacitance from the capacitive current, which 

was treated as a proxy metric for the electrochemical surface 

area.54 A final hold at 1 mA cm-2 and 80 AST cycles between 0 

and 1 mA cm-2 conclude the protocol. 

Figure 6b and c show the dissolution traces for Mn and Ti, 

respectively, for each iteration of the protocol. The traces were 

overlaid for Mn, which helps visualize the change in their shape 

over time. Interestingly, the initial Mn dissolution during the 

AST shows a transient behavior. However, the transience 

gradually disappears toward the end, where the dissolution rate 

remains constant throughout the AST until a complete 

deactivation is reached, which in this case occured around 

iteration 17. A tentative hypothesis includes the increasing 

upper potential limit for the ASTs towards the end, which would 

destabilize Mn more due to its transition to a soluble MnO4
- 

phase based on the Pourbaix diagram.55 Similar OER-triggered 

MnO2 dissolution was reported in alkaline media, where the 

main driver for destabilization was attributed to the 

MnO2/MnO4
- redox transition.56 It is worth noting that the 

highest Mn dissolution was actually recorded when changing 

the potentiostat from galvanostatic (CP hold) to potentiostatic 

Figure 5: Tafel analysis of Mn70Ti30Ox and Mn90Co10Ox. (a) Tafel plot for both samples 

before and after AST. Standard deviation calculated from duplicates. (b) Tafel slopes 

calculated from (a) before and after the AST.
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(CV) between each iteration, which resulted in a sharp potential 

drop from around 1.4 - 1.5 VRHE to 1.1 VRHE (see Figure S11). This 

pronounced Mn leaching could result from the redox transition 

from MnO2 to an aqueous Mn2+ phase, which would 

thermodynamically occur at these potentials.4, 55 Based on this 

argumentation, it is logical that the Mn dissolution observed 

when initiating the CP hold at 1 mA cm-2 is comparatively less, 

as the reverse redox transition is triggered, going from Mn2+ to 

the solid MnO2 phase.  

Due to the lower signal-to-noise ratio for Ti, a stacked 

representation was chosen. A slight peak is present during the 

hold for the first two to four iterations, after which no clear 

dissolution signal is recognizable. This behavior could imply that 

Ti stabilizes over time or dissolves at rates lower than the 

detection limit of the ICP-MS. Nevertheless, TiO2 is 

thermodynamically much more stable in acidic media compared 

to Mn and should be resistive to dissolution up until 2.1 V at 

pH 0.55 Hence, most of the Ti dissolution could be originating 

from a cooperative dissolution mechanism, in which 

predominant Mn leaching rips off Ti atoms from the surface. 

Similar behavior was observed for Fe-Ni oxide systems during 

neutral OER.37 

Figure 6d shows the total dissolved amount of Mn calculated as 

the integral of the dissolution rates for the hold and AST. 

Calculating the integral for the Ti signals was more challenging 

due to the noisy signal, which impeded the baselining. 

Superimposing the Mn dissolution with the activity (as η at 

1 mA cm-2) and electrochemical surface area proxy (as 

capacitance) shown in Figure 6e implies some intriguing trends. 

Initially, the η decreases with a concomitant increase in the 

surface area. Preferential leaching of unalloyed Mn species 

could trigger such behavior, which is reasoned by the increase 

in Mn dissolution during the hold until the 7th iteration. The 

initial leaching could cause an increase in surface roughness 

that would lead to more active sites exposed for catalytic 

processes. 

Interestingly, the peak of the Mn dissolution during the holds 

around iteration 7 coincides with the peak in the activity and 

surface area, implying that a transformation of the surface 

comes to a halt at this point. After the initial surface 

composition change, more stable MnxTiyOz alloys reside at the 

interface to the electrolyte. Subsequently, the Mn dissolution 

decreases between iterations 7 and 14, which could be 

attributed to the stabilizing effect of Ti toward Mn, as 

demonstrated in previous reports.9, 57 It would be expected that 

the dissolved amount of Mn during the ASTs shows the same 

trend. Instead, it keeps rising as the iteration progresses, 

ascribed to the harsher conditions applied during ASTs with 

longer exposure to fluctuating potentials. Past iteration 14, the 

sample deactivates fully, shown by the sudden drop in activity 

accompanied by a final rise in Mn dissolution caused by the high 

potentials before ceasing to near zero. This Mn dissolution 

increasing toward the end supports the hypothesis that the 

drop in Mn leaching during iterations 7 and 14 comes from the 

Ti-stabilized Mn rather than solely from a simple depletion of 

the sample. 

Conclusions 

Material optimization is needed to tackle highly relevant 

challenges of the 21st century. Electrocatalysis is not exempt 

from this urgency. Mixed metal oxides are a promising material 

class to be studied as an earth-abundant alternative for OER 

catalysis in PEMWEs. Screening the vast composition space 

efficiently is key to accelerating material optimization, where a 

brute-force approach (e.g., grid search) might be highly 

resource-intensive when subjected to millions of test samples. 

The typical countermeasure in HT studies is to reduce the 

testing time per candidate, compromising the amount of 

Figure 6: Operando ICP-MS measurement of Mn70Ti30Ox in 0.1 M HNO3. (a) Applied electrochemical protocol. The protocol was repeated 19 times. (b) Dissolution rate of Mn during 

CP hold and AST. Dotted line highlighting full deactivation of the catalyst. (c) Dissolution rate of Ti during CP hold and AST. (d) Amount of dissolved Mn during the CP hold and AST. 

(e) Measured overpotential at the first 1 mA cm-2 hold and the extracted capacitance from the initial CVs. Standard deviation calculated from duplicates. 
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information extractable during the measurement. OER stability, 

in particular, requires extended testing to accurately probe 

destabilization. Electrocatalytic performance is highly impacted 

by the choice of the electrochemical protocol due to the 

dynamic electrode|electrolyte interface. In other words, the 

chosen protocol will decide the final outcome of an 

optimization campaign and its translatability toward real 

applications. 

In an effort to implement these concepts into HT 

electrocatalysis research, we have relied on ML-driven decision-

making based on multiobjective Bayesian optimization to 

simultaneously optimize the activity and stability within a Co-

Mn-Sb-Sn-Ti oxide space for acidic OER using an in-house HT 

platform. The electrochemical testing took around 5 minutes 

per sample and is already longer than what would be 

encountered in common HT literature (usually a few seconds 

per sample) but was required to test stability. Adaptive 

sampling helped to bridge the gap between fast HT screening 

(limited property extraction) and slow fundamental research 

(rich property extraction) to identify the Pareto front in just 15 h 

of pure measurement time. Testing each possible triplicated 

composition (3003 samples) would have required 250 h, 

representing an acceleration of around 17x. 

The MOBO-assisted HT campaign revealed that Ti incorporation 

into a MnOx host triggers an activity improvement after ASTs. 

Follow-up studies using an operando ICP-MS technique were 

employed to promote the understanding of underlying 

processes during extended OER testing. It was concluded that 

initial Mn dissolution coming from unalloyed Mn induces 

surface roughness to increase the electrochemically active 

surface area. The remaining MnxTiyOz displays better 

electrochemical stability before complete deactivation. While 

Mn leaching was dominant, Ti mostly remained stable.  

None of the noble metal-free alternatives outperformed a self-

synthesized IrOx reference, which will remain a great challenge 

in the realm of PEMWEs. Nonetheless, we demonstrated the 

viability of MOBO guidance as a tool to experimentally optimize 

OER catalysts regarding two essential properties, namely 

activity and stability. Such tools can help to recognize 

interesting trends in a large parameter space significantly 

faster, where more fundamental approaches canfurther study 

certain aspects to foster scientific knowledge. The scanning flow 

cell setup allows for the coverage of the entire pipeline, going 

from fast high-level screening (5 min per sample) to slow but 

fundamental understanding (3 h per sample). 

Experimental methods 

Materials 

Co(NO3)2*6H2O (99.99%), Mn(NO3)2*4H2O (97%), SnCl4*5H2O 

(98%), Ti-butoxide (97%), H2Cl6Ir*xH2O (99.9%), glycerol 

(≥99.5%), isopropanol (≥99.5%), dichlorodimethylsilane 

(≥99.5%), hexane (≥99%), and 5x5 cm glass slides with an FTO 

coating (TEC 15) were purchased from Sigma-Aldrich. The Sb 

precursor was a 10 mg mL-1 stock solution in tartaric acid/HNO3 

(Specpure) and was purchased from Alfa Aesar. Concentrated 

HNO3 (65%) from VWR was used to prepare diluted electrolyte 

solutions. 

All chemicals were used as received without any further 

purification.  

 

Sample preparation 

The sample preparation using an automated pipetting robot is 

described in detail elsewhere.37 In short, 12 mM inks of Co, Mn, 

Sb, and Sn were prepared in a 2 mL solution containing 70% v/v 

1% HNO3 and 30% v/v glycerol. A 12 mM Ti ink was prepared 

similarly, except using 2 M instead of 1% HNO3 to retain the Ti 

in the solution. A 12 mM ink corresponds to 7 mg of 

Co(NO3)2*6H2O, 6 mg of Mn(NO3)2*4H2O, 0.292 mL of a 

10 mg mL-1 Sb stock solution in tartaric acid/HNO3, 8 mg of 

SnCl4*5H2O, and 8 μL of Ti-butoxide. An IrOx benchmark was 

prepared as well, for which 10 mg of H2Cl6Ir*xH2O was used to 

achieve a 12 mM ink. The FTO substrate was first cleaned by 

ultrasonicating 5 min each in a 2% Hellmanex III solution, water, 

and IPA. The FTO was then air-dried and subjected to a 

silanization step by immersing the substrate in a 6% v/v 

dichlorodimethylsilane solution in hexane for 5 min. This step 

was used to render the FTO surface hydrophobic, which helped 

locally contain the deposited droplet on the substrate.58 The 

FTO was subsequently rinsed with hexane to remove the 

residual silane solution and dried in air before final use.  

The drop-casting volume for the mixed inks was 0.3 μL. 

Subsequent annealing in air first at 300 °C for 10 min using a 

heating rate of 1 °C min-1 and then at 500 °C for 4 h using a 

heating rate of 2.5 °C min-1 using a box furnace (KLC 10/14, 

Thermconcept) converts the mixed transition metals into their 

oxide form. 

 

Physical characterization 

Electrochemical testing  

The development of automated SFC measurements is described 

in detail elsewhere.37, 38 In short, a laser microscope (VK-X250, 

Keyence) was used in conjunction with an image detection 

algorithm to extract spot coordinates and geometric surface 

areas. The coordinates were used for the xy translation of the 

SFC during HT measurements. The geometric surface area was 

used to normalize obtained currents.  

Electrochemical measurements were controlled with a Gamry 

REF 600 potentiostat. The reference electrode was a double-

junction Ag/AgCl electrode in 3 M KCl (Metrohm). The counter 

electrode was a glassy carbon rod (SIGRADUR G, HTW). Samples 

were typically contacted with copper tape at the FTO substrate. 

Measured potentials, EAg/AgCl, were all corrected to the 

reversible hydrogen electrode (RHE) scale. The electrolyte was 

constantly purged with 30 mL min-1 of Ar. The electrolyte flow 

was regulated using a peristaltic pump (Reglo ICC, Ismatec) set 

to 15 RPM. 

The protocol utilized for the initial grid search and MOBO-

guided experiments is shown in Figure S1. Each composition 

was subjected to a galvanostatic protocol starting with a 20 s 

hold at 1 mA cm-2, where the activity of the sample is extracted 

as OER overpotential (ηOER). After performing a short 

accelerated stress test (AST) of 120 cycles between 0 and 

1 mA cm-2 with a 1 s hold each, the activity is assessed again at 

1 mA cm-2. The change in ηOER before and after the AST serves 

as a proxy metric for stability. 
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The total protocol used for follow-up measurements on 

Mn70Ti30Ox and Mn90Co10Ox samples is shown in Figure S8. The 

activity is assessed through multiple 30-second 

chronopotentiometric (CP) steps at 0.1, 0.2, 0.5, 1, 2, 5 mA cm-2 

to allow a Tafel analysis. As higher currents are reached during 

this protocol, the potential was iR corrected using the resistance 

measured through electrochemical impedance spectroscopy 

(EIS) between 100 – 100,000 Hz at open circuit potential. The CP 

holds are followed by the same AST outlined earlier (120 cyles 

between 0 and 1 mA cm-2 for 1 s each) before concluding with 

another Tafel analysis with the same current steps.  

Finally, another electrochemical protocol is designed to study 

the operando dissolution behavior of Mn70Ti30Ox. The objective 

was to record the activity, dissolution behavior, and change in 

surface area over a prolonged time span, for which the protocol 

was applied in a loop up to 19 times. Each iteration starts with 

three cyclic voltammograms (CVs) between 1.1 and 1.3 VRHE. 

Scan rates of 25, 50, 100, and 200 mV s-1 were chosen to extract 

the capacitance from the capacitive current, which serves as a 

proxy for the electrochemical surface area.54 The obtained 

capacitance is purposely not converted to an area value as the 

specific capacitance for this system is unknown. However, as 

the change throughout the operation is more relevant, 

reporting the capacitance alone is thought to be sufficient.  

Afterward, a 30-second hold at 1 mA cm-2 and 80 AST cycles 

between 0 and 1 mA cm-2 are performed to roughly mimic 

testing conditions applied previously. 

 

Inductively coupled plasma mass spectrometry  

An inductively coupled plasma mass spectrometer (ICP-MS, 

Nexion 350X, Perkin Elmer) was used in two ways during this 

study. First, it was used to determine the elemental 

composition of the drop-casting ink. Later, it was used to record 

the operando dissolution of selected compositions identified 

during the MOBO-guided experiments. For the latter, the ICP-

MS was connected through Tygon tubings (Proliquid) with the 

outlet of the SFC. The ICP-MS was always calibrated before 

measurements by a four-point calibration (0, 1, 10, 50 μg L-1) 

using Merck Certipur ICP standards. 59Co, 55Mn, 121Sb, 120Sn, and 
47Ti were used as analyte. 48Ti, which would be the more 

abundant isotope for Ti, was deliberately not chosen as it had 

higher background counts, increasing the detection limit. The 

calibration matrix was 0.1 M HNO3 to mimic the supporting 

electrolyte for subsequent operando measurements. Internal 

standards were prepared in 1-2% HNO3 at 5 µg L-1, where 74Ge 

was the internal standard for Co and Mn, 138Ba for Sb, 103Rh for 

Sn, and 45Sc for Ti. Internal standards were used to ensure a 

stable and reliable system performance. A Y-connector was 

used to simultaneously ingest the analyte and internal standard 

during measurements. 

 

Computational methods 

Multidimensional scaling 

Multidimensional scaling (MDS) is another dimensionality 

reduction tool that can help to visualize high-dimensional data 

in 2D scatter plots. This technique can be employed when the 

property of interest is the similarity/dissimilarity of 

compositions, which can be readily visualized by the distance of 

a compositional data point from all others. MDS is performed 

using the Scikit-learn59 package in Python, employing two 

dimensions to represent the dissimilarities.  

 

Multiobjective Bayesian optimization 

BoTorch,60 an open-source framework built on PyTorch61 was 

used to implement the multiobjective Bayesian optimization in 

Python. A FixedNoiseMultiTaskGP was used as the surrogate 

model to fit the observed data points. This model also permits 

feeding in experimentally determined noise around each data 

point (error bar). As a comparison, a MultiTaskGP model 

without noise input was also tested during initial benchmarking 

using a data set. A qNoisyExpectedHypervolumeImprovement 

(qNEHVI) acquisition function was used as a decision-making 

policy with a reference point of 550 mV and 10 mV for activity 

(ηOER) and stability (ΔηOER), respectively. The reference point 

represents a compromise between being realistically attainable 

and not too far from the desired optimum. The qNEHVI 

acquisition function allows batched optimization in which 

multiple candidates can be suggested per iteration, which is 

needed to couple MOBO guidance with the developed HT 

pipeline most efficiently.  

All features (i.e., compositions) were normalized to 1. The ηOER, 

ΔηOER, and reference point had to be negated to depict a 

problem where higher values are more desired. This conversion 

is necessary, as the algorithm can only deal with maximization 

problems. Additionally, all values except the features were 

standardized using the StandardScaler from Scikit-learn, which 

removes the mean and scales the data to unit variance.  

During the initial benchmarking of MOBO using a data set, 5 

randomly sampled compositions depict the starting condition. 

Then, one new composition is sampled from the data set during 

each iteration with the objective to improve the hypervolume. 

The optimization finishes when all candidates within the data 

set have been sampled. To gain statistical significance, 500 

repetitions of such optimization runs have been performed. The 

seed for the random initialization went from 0 to 499. The 

FixedNoiseMultiTaskGP and MultiTaskGP models were 

compared against a random sampler with a random see 

concomitantly going from 0 to 499. The final performance was 

evaluated by calculating the average normalized hypervolume 

per iteration within an upper percentile of 75% and lower 

percentile of 25%.  

During MOBO-driven experiments, the acquisition function 

value is calculated for a constrained parameter space. The sum 

of all elements must be 1 (i.e., 100%), and each element must 

be within 0 and 1 (i.e., between 0 and 100%). The acquisition 

function then suggests 15 new candidates where each element 

is outputted with a value within the continuous 5-dimensional 

space (output value has many decimal places). Such elemental 

fractions are unfeasible to be synthesized using the pipetting 

robot. Thus, the most similar composition within the total 

search space of 1001 compositions (each differing in 10 at.%) is 

chosen based on the smallest Euclidean distance to the 

suggested candidate. Every evaluated candidate is eliminated 

from the total search space to avoid re-sampling.   
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Data and code availability 

Obtained data sets and Python codes used throughout this 

study are available under the following link. 

https://github.com/kjenewein/Multiobjective-Bayesian-

Optimization  
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1 Supplementary tables 

Table S 1: Composition of ink mixture of two randomly selected samples determined by ICP-MS. 

 
Actual composition 

[%] 
 

ICP-MS composition 
[%] 

 
Deviation 

[%] 
 Co Mn Sb Sn Ti  Co Mn Sb Sn Ti  Co Mn Sb Sn Ti 

# 1 10 40 30 10 10  10.1 39.2 28.3 12.4 10.0  0.1 0.8 1.7 2.4 0.0 

# 2 10 30 10 20 30  10.8 29.2 11.9 20.5 27.6  0.8 0.8 1.9 0.5 2.4 
# 3 50 20 10 0 20  51.6 19.5 10.6 0.0 18.3  1.6 0.5 0.6 0.0 1.7 
# 4 0 0 70 0 30  0.1 0.1 72.4 0.0 27.4  0.1 0.1 2.4 0.0 2.6 

 

Table S 2: Data set obtained during the grid search 

Co 

[%] 
Mn 

[%] 
Sb 

[%] 
Sn 

[%] 
Ti 

[%] 
ηOER 
[mV] 

ηOER error 
[mV] 

ΔηOER 
[mV] 

ΔηOER error 
[mV] 

100 0 0 0 0 456.209 3.977 11.240 0.613 

75 25 0 0 0 443.358 3.274 11.251 0.213 

75 0 25 0 0 530.347 1.735 4.242 0.527 

75 0 0 25 0 458.641 1.043 5.026 1.210 

75 0 0 0 25 533.032 1.418 4.105 0.138 

50 50 0 0 0 460.170 2.540 15.949 0.473 

50 25 25 0 0 475.823 9.541 6.291 0.316 

50 25 0 25 0 455.401 0.410 9.768 0.721 

50 25 0 0 25 547.177 1.800 8.941 0.743 

50 0 50 0 0 567.980 0.899 30.153 1.263 

50 0 25 25 0 527.766 0.505 8.230 0.016 

50 0 25 0 25 529.744 0.760 -0.832 1.146 

50 0 0 50 0 475.093 2.810 5.577 0.790 

50 0 0 25 25 568.080 5.140 3.655 0.240 

50 0 0 0 50 606.997 12.738 -10.675 0.611 

25 75 0 0 0 469.814 4.670 15.970 5.023 

25 50 25 0 0 470.396 1.214 5.077 0.283 

25 50 0 25 0 452.569 1.528 12.493 0.627 

25 50 0 0 25 512.769 10.379 11.799 0.151 

25 25 50 0 0 569.369 0.578 12.160 0.668 

25 25 25 25 0 495.395 12.054 9.288 1.707 

25 25 25 0 25 507.811 6.810 8.120 0.283 

25 25 0 50 0 492.000 7.545 12.051 0.210 

25 25 0 25 25 525.157 4.948 8.783 0.800 

25 25 0 0 50 565.489 14.665 5.834 6.803 

25 0 75 0 0 697.455 50.936 5.044 2.379 

25 0 50 25 0 733.190 6.359 12.723 5.731 

25 0 50 0 25 680.340 18.714 3.771 2.005 

25 0 25 50 0 607.517 41.655 28.012 8.789 

25 0 25 25 25 555.749 9.726 7.146 3.758 

25 0 25 0 50 575.420 6.165 10.791 0.867 

25 0 0 75 0 580.948 1.889 15.194 0.406 
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25 0 0 50 25 603.113 4.102 8.023 1.541 

25 0 0 25 50 604.615 9.106 4.497 1.512 

25 0 0 0 75 647.441 12.260 -5.500 5.099 

0 100 0 0 0 405.242 4.262 6.471 1.754 

0 75 25 0 0 502.157 18.636 1.317 1.922 

0 75 0 25 0 435.870 6.959 3.708 3.168 

0 75 0 0 25 483.360 7.596 -12.236 4.793 

0 50 50 0 0 555.390 3.570 11.103 2.091 

0 50 25 25 0 504.008 2.404 8.120 0.508 

0 50 25 0 25 523.778 23.249 7.459 0.668 

0 50 0 50 0 450.357 3.253 10.728 0.843 

0 50 0 25 25 470.248 4.143 8.793 1.328 

0 50 0 0 50 505.421 1.136 -4.436 0.807 

0 25 75 0 0 638.015 19.442 19.372 0.623 

0 25 50 25 0 627.782 10.469 8.705 1.342 

0 25 50 0 25 614.335 9.724 8.472 2.564 

0 25 25 50 0 521.545 3.160 8.938 2.808 

0 25 25 25 25 594.048 49.409 7.166 1.173 

0 25 25 0 50 572.365 0.239 2.804 0.152 

0 25 0 75 0 599.309 10.752 15.614 1.245 

0 25 0 50 25 614.736 12.311 23.164 0.835 

0 25 0 25 50 562.687 2.981 15.492 1.042 

0 25 0 0 75 540.599 3.195 13.830 3.073 

0 0 100 0 0 801.893 74.694 51.130 15.080 

0 0 75 25 0 1101.590 14.424 19.047 2.096 

0 0 75 0 25 1232.264 37.688 5.110 17.493 

0 0 50 50 0 1082.036 18.084 4.436 3.173 

0 0 50 25 25 1122.204 NaN 2.114 NaN 

0 0 50 0 50 1148.910 15.079 14.017 4.918 

0 0 25 75 0 992.219 3.479 1.404 0.079 

0 0 25 50 25 1110.231 20.287 3.610 2.960 

0 0 25 25 50 1145.513 27.319 4.535 5.080 

0 0 25 0 75 1166.734 7.285 6.113 7.199 

0 0 0 100 0 1027.614 2.541 9.865 0.401 

0 0 0 75 25 1125.502 13.783 24.574 7.403 

0 0 0 50 50 1124.540 28.188 18.617 0.618 

0 0 0 25 75 1114.512 19.639 28.332 23.392 

0 0 0 0 100 1000.987 NaN 59.728 NaN 

 

Table S 3: Starting compositions for MOBO-guided experiments 

Co [%] Mn [%] Sb [%] Sn [%] Ti [%] 

100 0 0 0 0 

50 50 0 0 0 

50 0 50 0 0 

50 0 0 50 0 

50 0 0 0 50 
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0 100 0 0 0 

0 50 50 0 0 

0 50 0 50 0 

0 50 0 0 50 

0 0 100 0 0 

0 0 50 50 0 

0 0 50 0 50 

0 0 0 100 0 

0 0 0 50 50 

0 0 0 0 100 

 

Table S 4: Data set obtained during the MOBO-guided experiments 

Co 
[%] 

Mn 
[%] 

Sb 
[%] 

Sn 
[%] 

Ti 
[%] 

ηOER 
[mV] 

ηOER error 
[mV] 

ΔηOER 
[mV] 

ΔηOER error 
[mV] 

Iteration 

100 0 0 0 0 442.763 10.365 12.561 0.668 0 

50 50 0 0 0 459.893 2.249 13.996 0.547 0 

50 0 50 0 0 522.937 7.525 35.350 5.677 0 

50 0 0 50 0 460.205 3.931 6.056 0.282 0 

50 0 0 0 50 617.530 4.589 -10.675 0.611 0 

0 100 0 0 0 398.892 2.984 8.500 0.232 0 

0 50 50 0 0 559.333 2.504 11.966 2.507 0 

0 50 0 50 0 486.794 40.769 10.416 3.550 0 

0 50 0 0 50 511.311 4.011 -5.244 1.045 0 

0 0 100 0 0 801.893 74.694 51.130 15.080 0 

0 0 50 50 0 1015.772 13.394 15.180 11.534 0 

0 0 50 0 50 1148.910 15.079 14.017 4.918 0 

0 0 0 100 0 920.984 121.612 12.237 9.294 0 

0 0 0 50 50 1054.791 28.788 22.373 3.205 0 

0 0 0 0 100 1052.567 34.401 36.801 19.073 0 

70 0 0 0 30 552.227 5.015 1.214 1.815 1 

0 70 0 0 30 499.671 2.929 -18.270 0.069 1 

20 50 0 0 30 524.865 2.296 12.679 0.959 1 

50 20 0 0 30 562.940 10.083 10.073 1.932 1 

10 80 0 0 10 444.736 12.917 -3.414 2.963 1 

70 0 0 20 10 470.313 4.820 5.137 0.330 1 

0 80 0 20 0 410.093 8.548 6.522 1.473 1 

40 30 0 0 30 543.902 15.718 11.441 2.503 1 

40 30 0 30 0 467.342 4.127 10.214 0.582 1 

0 80 20 0 0 471.795 16.176 1.642 6.664 1 

70 20 0 0 10 495.226 12.054 10.658 0.452 1 

30 70 0 0 0 485.977 1.960 16.718 0.373 1 

0 60 10 0 30 507.002 7.030 2.978 0.755 1 

60 0 0 0 40 602.570 6.241 -6.697 1.095 1 

0 80 0 0 20 475.080 2.274 -11.886 1.557 1 

80 0 20 0 0 508.855 2.053 7.228 0.859 2 
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0 90 0 0 10 450.363 1.695 -5.856 0.138 2 

0 70 0 10 20 473.830 4.611 -14.242 1.314 2 

0 70 10 0 20 470.449 9.331 -0.055 2.513 2 

0 70 0 20 10 437.126 1.921 5.167 0.891 2 

10 90 0 0 0 396.909 5.553 8.098 1.671 2 

10 70 0 0 20 461.256 6.357 -4.842 0.911 2 

0 80 10 0 10 445.368 4.520 5.983 2.212 2 

60 10 0 30 0 460.115 3.804 10.818 0.495 2 

0 70 0 30 0 423.548 0.875 8.297 0.495 2 

10 80 10 0 0 431.468 8.953 2.166 2.235 2 

60 10 10 20 0 496.763 0.870 6.395 0.183 2 

0 80 0 10 10 427.882 1.560 3.301 0.177 2 

0 60 0 0 40 494.574 6.712 -10.971 2.286 2 

10 70 0 10 10 428.535 13.341 4.811 0.665 2 

80 0 0 20 0 448.752 4.949 6.130 1.068 3 

0 90 10 0 0 437.210 4.647 1.157 0.700 3 

10 60 0 0 30 513.886 0.741 -3.197 2.339 3 

0 90 0 10 0 400.258 1.931 8.862 0.214 3 

0 90 10 0 0 437.407 0.998 1.443 0.389 3 

0 90 0 10 0 397.382 6.323 8.841 0.862 3 

10 70 10 0 10 462.414 6.148 4.096 1.772 3 

0 60 0 10 30 484.214 8.679 -9.623 2.122 3 

30 40 30 0 0 463.650 1.305 6.544 0.392 3 

0 60 0 10 30 490.366 3.385 -11.294 1.514 3 

20 50 0 30 0 446.705 7.161 13.177 0.460 3 

60 0 20 0 20 557.310 5.862 -1.679 2.338 3 

10 60 20 10 0 455.344 1.778 4.914 1.116 3 

0 50 20 30 0 451.557 6.341 7.935 1.035 3 

10 70 10 0 10 454.462 11.471 5.476 1.112 3 

 

Table S 5: Data set obtained during random selection of compositions during MOBO-driven 

experiments 

Co 
[%] 

Mn 
[%] 

Sb 
[%] 

Sn 
[%] 

Ti 
[%] 

ηOER 
[mV] 

ηOER error 

[mV] 

ΔηOER 

[mV] 

ΔηOER error 

[mV] 
Iteration 

100 0 0 0 0 442.763 10.365 12.561 0.668 0 

50 50 0 0 0 459.893 2.249 13.996 0.547 0 

50 0 50 0 0 522.937 7.525 35.350 5.677 0 

50 0 0 50 0 460.205 3.931 6.056 0.282 0 

50 0 0 0 50 617.530 4.589 -10.675 0.611 0 

0 100 0 0 0 398.892 2.984 8.500 0.232 0 

0 50 50 0 0 559.333 2.504 11.966 2.507 0 

0 50 0 50 0 486.794 40.769 10.416 3.550 0 

0 50 0 0 50 511.311 4.011 -5.244 1.045 0 

0 0 100 0 0 801.893 74.694 51.130 15.080 0 

0 0 50 50 0 1015.772 13.394 15.180 11.534 0 
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0 0 50 0 50 1148.910 15.079 14.017 4.918 0 

0 0 0 100 0 920.984 121.612 12.237 9.294 0 

0 0 0 50 50 1054.791 28.788 22.373 3.205 0 

0 0 0 0 100 1052.567 34.401 36.801 19.073 0 

80 10 0 10 0 441.784 2.666 13.693 0.286 1 

0 0 30 40 30 1134.016 2.445 11.449 0.209 1 

30 30 0 30 10 480.777 2.444 13.796 0.033 1 

20 0 0 50 30 603.399 16.415 0.691 9.187 1 

0 30 40 0 30 569.311 3.811 7.152 1.520 1 

0 70 10 10 10 440.098 3.774 6.712 1.462 1 

10 20 0 40 30 518.011 6.099 11.302 0.210 1 

20 40 0 40 0 461.883 4.464 15.614 0.649 1 

0 0 30 50 20 945.735 9.068 41.029 3.921 1 

10 30 20 0 40 528.913 12.787 6.819 3.116 1 

10 40 30 10 10 495.052 7.147 8.196 0.329 1 

30 40 0 10 20 511.729 4.655 14.547 0.460 1 

10 0 20 70 0 723.108 19.960 16.045 7.832 1 

20 0 0 30 50 631.591 4.933 -9.763 1.537 1 

10 0 30 0 60 822.641 13.922 4.265 3.261 1 

80 10 0 0 10 455.707 13.145 13.267 0.246 2 

10 50 0 10 30 486.388 2.742 10.249 1.555 2 

10 30 0 50 10 454.744 3.215 14.352 0.571 2 

30 60 10 0 0 462.512 6.320 6.497 0.548 2 

10 0 0 10 80 660.855 14.432 -2.564 1.900 2 

30 20 30 10 10 492.689 4.971 6.453 1.190 2 

0 0 60 20 20 936.604 155.824 13.841 16.025 2 

30 0 10 20 40 567.921 3.892 0.063 0.874 2 

20 60 0 20 0 470.491 16.059 17.130 2.300 2 

60 30 10 0 0 489.905 3.712 7.389 0.384 2 

40 30 10 20 0 487.354 6.293 10.385 0.968 2 

0 0 60 40 0 888.673 51.410 8.735 5.226 2 

40 0 10 20 30 581.287 8.709 -1.140 1.347 2 

10 20 0 0 70 549.946 4.247 12.978 0.567 2 

50 10 20 20 0 519.275 6.174 7.331 2.591 2 

60 20 20 0 0 511.866 0.967 4.707 0.623 3 

30 20 10 30 10 503.776 13.244 9.549 0.777 3 

0 0 10 0 90 1098.503 50.400 29.144 0.813 3 

20 0 60 10 10 720.762 39.437 -4.360 3.530 3 

20 20 10 20 30 515.579 4.732 9.861 0.868 3 

20 40 0 10 30 504.604 5.846 12.744 2.107 3 

30 0 0 20 50 607.552 6.324 -3.359 3.591 3 

0 10 30 20 40 760.621 13.503 19.932 1.230 3 

30 10 10 40 10 531.406 1.103 12.877 1.198 3 

50 20 10 20 0 496.748 3.894 6.934 0.421 3 

10 10 40 10 30 695.205 8.206 6.620 0.110 3 

20 30 50 0 0 566.373 3.505 11.458 0.239 3 
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40 0 10 0 50 590.724 5.566 3.833 0.961 3 

50 0 20 30 0 528.038 2.441 6.841 2.795 3 

0 10 30 10 50 759.255 12.803 15.614 1.089 3 

Table S 6: Raw selection of new candidates by MOBO algorithm for a potential 4th optimization 

iteration. 

Co [%] Mn [%] Sb [%] Sn [%] Ti [%] 

0 84.73078 0 0 15.269221 

0 75.291595 0 0 24.70841 

2.06E-12 94.09873 0 0 5.9012675 

0 86.76536 0 8.498056 4.7365913 

0 82.37807 0 0 17.621933 

2.33E-09 87.32271 3.72E-10 0 12.677291 

4.150255 91.620964 6.54E-12 0 4.228781 

0 83.24983 0 5.062797 11.687371 

0 72.32534 8.16E-12 4.0723734 23.602285 
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2 Supllementary figures 

 

Figure S1: Electrochemical protocol used for grid search study. 

 

 

Figure S2: MOBO performance of different models based on the grid search data set. 
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Figure S 3: Multidimensional scaling of total sampling space (grey), sampled points during MOBO 

with color coding indicating MOBO iteration. 

 

 

Figure S4: Random selection during MOBO-guided experiments.  
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Figure S 5: Resulting Pareto front of grid search and MOBO-driven experiments. 

 

 

Figure S 6: 1st, 2nd, 3rd, and 4th best Pareto front and their corresponding compositions. 
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Figure S 7: Comparison of Pareto composition to a synthesized IrOx sample. 

 

 

Figure S 8: Compositional type sampeld during MOBO-guided experiments. (a) Pareto plot plotting 

OER ηOER against ΔηOER. color mappign indicating type of sampled composition. (b) Amount of total 

available (grey) and sampled (red) compositions per composition type.  
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Figure S 9: Prediction of FixedNoiseMultitaskGP on remaining compositions after training on 

observations made during the MOBO experiments (grey). (a) Binary. (b) Ternary. (c) Quaternary. (d) 

Quinary.  

 

 

 

Figure S 10: Electrochemical protocol used for follow-up study on Mn70Ti30Ox and Mn90Co10Ox. 
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Figure S 11: Operando dissolution of Mn70Ti30Ox. (a) Current density and potential. (b) Dissolution 

rate of Mn and Ti. (c) Exploded view of highlighted area in (a). (d) Exploded view of highlighted area in 

(b). Green arrow indicating time where potentiostat switch from galvanostatic to potentiostatic mode. 
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