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Abstract
The design of molecules requires multi-objective optimizations in high-dimensional chemical
space with often conflicting target properties. To navigate this space, classical workflows rely
on the domain knowledge and creativity of human experts, which can be the bottleneck in
high-throughput approaches. Herein, we present an artificial molecular design workflow relying
on a genetic algorithm and a deep neural network to find a new family of organic emitters with
inverted singlet-triplet gaps and appreciable fluorescence rates. We combine high-throughput
virtual screening and inverse design infused with domain knowledge and artificial intelligence to
accelerate molecular generation significantly. This enabled us to explore more than 800,000
potential emitter molecules and find more than 10,000 candidates estimated to have inverted
singlet-triplet gaps (INVEST) and appreciable fluorescence rates, many of which likely emit blue
light. This class of molecules has the potential to realize a new generation of organic
light-emitting diodes.
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Introduction
The introduction of SELFIES as a strictly robust molecular string representation not only
allowed to enforce complete validity of every point in the latent space of deep generative
models,1 but also enabled molecular generation via random string operations.2 Accordingly, the
STONED algorithm allows for efficient and comprehensive navigation of the organic chemical
space via random string modification and string interpolation.2 These capabilities can be
leveraged in population-based metaheuristic optimization algorithms for inverse molecular
design such as genetic algorithms3–8 (GAs) without relying on domain-specific genetic
operators.9,10 Further enhancements of evolutionary algorithms via artificial neural networks
(ANNs) have recently been demonstrated to improve molecular space exploration significantly
leading to good performance in common artificial design benchmarks.9–11 Importantly, these
workflows can be applied to any molecular design task with well-defined target properties out
of the box even without prior knowledge of well-performing structural families.12,13

Organic molecules with first excited singlet states lower in energy than the first excited triplet
states are said to possess an inverted singlet-triplet gap (STG), which is referred to as
INVEST.14 These molecules have been assumed to be extremely rare,15,16 however, recent work
has uncovered a considerable number of structural families with that property,14 followed by
systematic computational studies of their excited state properties.17,18 The inverted energy
ordering between the first excited states stems from dynamic spin polarization stabilizing the
first excited singlet relative to the triplet and this spin polarization is largely localized on a core
structure.19 Hence, these core structures are responsible for the inverted energy gaps in all the
known INVEST molecules, and recent experimental demonstrations have confirmed some of
the predictions.20 Despite the promise of inverted STGs to increase device lifetimes in organic
light-emitting diodes, most of the INVEST core structures found to date correlate with
intrinsically low oscillator strengths (OSs) and, thus, slow fluorescence rates, which renders
them ineffective as emitters. Accordingly, the design of organic emitters with both inverted
STGs and appreciable OSs, resulting in high fluorescence rates, remains challenging and only a
few studies relying on virtual screening of systematic datasets21 or with structure suggestions
from human experts have been demonstrated.14,19

In this work, we implement an artificial molecular design workflow to find organic INVEST
emitters relying on a GA for efficient molecular generation making use of SELFIES and the
STONED algorithm in the genetic operators. The complete workflow consists of hit
identification via virtual screening, artificial molecular design and lead validation (Figure 1).
Sampling of the relevant molecular space is enhanced by a comprehensive set of filters based
on domain knowledge and a data-driven ANN classifier that learns the structures of the best
candidates encountered previously. This workflow relies on an efficient property simulation
workflow for the relevant excited state properties implementing double-hybrid time-dependent
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density functional approximation (DH-TD-DFA) calculations. Thus, it enables us to explore more
than 800,000 organic emitter candidates and uncover a new class of molecules with both
inverted STG and appreciable OS possessing azulene core structures. More than 13,000 of the
best candidates are evaluated with a reliable wavefunction-based excited state simulation
method confirming that at least more than one thousand promising structures were uncovered,
including potential blue emitters. Additionally, in the entire dataset, there are more than ten
thousand molecules likely to have inverted STGs and appreciable OSs. Hence, this work
expands the space of INVEST emitters dramatically and is the next step towards realizing the
fifth generation of organic light-emitting diode materials.

Figure 1. Accelerated molecular discovery workflow adopted in this work starting from
high-throughput virtual screening, proceeding to artificial molecular design via a genetic
algorithm enhanced by neural networks and filters based on domain knowledge, and finishing
with lead validation.

Results
Virtual Screening. We started this work by identifying promising new core structure families
that both allow for the design of INVEST emitters with appreciable OS and are likely realizable
in the laboratory. In a recent work, bottom-up construction rules for molecules with inverted
STGs were established that facilitated the identification of 15 new core structure families
predicted to have members being INVEST molecules.19 In addition to their excited state
properties, their synthesizability and stability were assessed and one of the most promising
core structures was proposed to be azulene.19 Azulenes are known to be very stable and are
already widely used organic electronic materials.22–26 Based on that work, azulene was selected
for further investigation.

However, we were still interested in identifying additional promising structures. Hence, by
developing a comprehensive set of filters (cf. Methods) we created a subset of GDB-13,27

originally comprising more than 970 million organic molecules, with over 400,000 structures
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possessing cycles and a high degree of conjugation. Subsequently, we performed
high-throughput virtual screening of the corresponding structures relying on a quantum
chemical DH-TD-DFA, namely ωB2PLYP’.28 This method has been benchmarked extensively
against various reference methods that are based on excited state wavefunction theory
approaches for simulating INVEST molecules.14 Among the 292 structures with small predicted
STGs below 0.25 eV, 61 structures (21%) were based on azulene, whereas 38 (13%) were
based on pentalene, recently identified as INVEST motif using bottom-up construction rules,19

and only 11 (4%) on phenalene, which was studied extensively as core structure for INVEST
emitters with appreciable fluorescence rates.14 Accordingly, azulene was again highlighted as
promising INVEST core structure and we decided to focus our molecular design on this family
for the rest of this work.

Thus, as established in a previous work on INVEST emitters based on phenalene cores,14 we
generated all 144 systematic permutations of core structure nitrogen substitutions of azulene
and simulated the corresponding excited state properties at the ωB2PLYP’,28 ADC(2),29–35

SOS-ADC(2)32,36–44 and EOM-CCSD45–49 levels of theory. The corresponding property maps at
the EOM-CCSD level of theory are depicted in Extended Data Figure 1. They reveal that only
one of the nitrogen-substituted core structures, namely 2,5,7-triazaazulene (molecule 1, cf.
Table 1), is predicted to have an inverted STG at that level of theory. Accordingly, we selected 1
as the starting point for our artificial design campaign described in the next section. Notably,
the simulation results for all 144 azulene cores were compared to EOM-CCSD as reference
method (cf. Supplementary Figure 1 and Supplementary Table 1). The methods employed,
while showing both deviations and uncertainties relative to EOM-CCSD, can reproduce trends
in the three properties of interest, namely, STGs, OSs and vertical excitation energies (VEEs),
and are, thus, appropriate for the subsequent artificial design workflow.50 Importantly,
SOS-ADC(2) showed the most reliable property predictions compared to EOM-CCSD at only a
fraction of the computational expense and, hence, it was decided to be used for the lead
validation (vide infra).
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Figure 2. Artificial design workflow with a genetic algorithm employed for the design of organic
INVEST emitters based on azulene enhanced by data-driven structure filters including an
artificial neural network.

Artificial Design. Having chosen the structural family to be investigated, next, we implemented
the artificial design workflow (Figure 2). We used a development version of JANUS,10 an
extension of a previously published GA for inverse molecular design,9 that relies on the
STONED algorithm2 for genetic operators but only propagates one generation of molecules. To
evaluate the fitness of the proposed molecules, the excited state properties were simulated at
the ωB2PLYP’ level of theory. The filters developed for the GDB-13 subset consisting of cyclic
π-systems were implemented as necessary requirements for every structure generated, leading
to increased sampling of the relevant structural space. Additionally, these filters were
continuously updated based on expert opinion to eliminate infeasible structures proposed by
our artificial design workflow. Furthermore, in each run, the first 11 generations were proposed
without the use of ANNs enhancing sampling. Subsequently, all molecules encountered until
generation 11 in each but the first experiment (vide infra) were used to train ANN classifiers
identifying high-performing candidates at low computational cost and with high classification
accuracy (cf. Extended Data Table 1). These classifiers were incorporated into the genetic
operators and used as additional filters. Hence, only molecules classified as good were passed
on to the fitness evaluation to reduce the number of costly DFT simulations for 4 subsequent
generations and improve the exploration of promising candidates even further. This is
demonstrated based on the success rates of generating molecules with low singlet-triplet gaps
(STGs) and non-zero OSs in each of the experiments which increased to 3-4 times the original
value when the classifier was incorporated (cf. Extended Data Table 1). Notably, as detailed
below, we also explored the use of a few alternative fitness evaluation procedures. In all runs,
structures with STGs above a certain threshold were assigned a very low fitness. Finally, to
avoid prohibitively expensive quantum chemistry simulations, we capped the size of the
molecules generated at 70 atoms, including hydrogens, and we only allowed previously unseen
structures.
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A. Experiment 1, Methane Seed, Optimize STG and OS. B. Experiment 2, Optimize STG and OS.

C. Experiment 3, Optimize OS. D. Experiment 4, Optimize STG, OS and VEE.

E. Experiment 5, Constraint 1, Optimize STG and OS. F. Experiment 6, Constraint 2, Optimize STG and OS.

G. Legend

Figure 3. Progress of the property distributions spanned by the 200 molecules with highest
fitness with respect to singlet-triplet gaps (STGs) and oscillator strengths (OSs) as a function of
the generation numbers in each of the six artificial design experiments carried out (A-F) and the
corresponding legend (G). The individual data points mark the properties of the molecules
encountered, the enclosed areas of each generation are the corresponding alpha shapes of the
point clouds. The dashed and dotted lines in each plot are at identical coordinates and are
visual anchors indicating the edge of the property distribution reached in experiment 6.
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As the first artificial design experiment, we used methane as seed molecule for the first
generation and used OS minus STG as a fitness function, with an upper STG threshold of 0.6
eV for high fitness (see Methods for details). We wanted to test our workflow for its ability to
discover potential INVEST core structures without bias from the seed. The corresponding
optimization progress is depicted in Figure 3A. After three generations that explore the property
space very extensively, the optimization trajectory focusses on promising candidates with low
STGs and non-negligible OSs (see inset of Figure 3A). Notably, in this run we did not train a
classifier after 11 generations of experiments but stopped the study, as the goal of the
experiment was to find potential interesting hits rather than perform comprehensive
optimization. Indeed, azulenes were already explored in the first generation suggesting that the
implemented filters strongly bias the molecular generation towards relevant cyclic π-systems.
Apart from azulenes, several other known INVEST core structures were identified as promising
candidates including cyclobuta-1,3-diene, cycloocta-1,3,5,7-tetraene, pentalene, bowtiene,
heptalene, zurlene and anthrazulene.19 Importantly, azulenes accounted for 6% of all the
structures explored and they were also most prevalent among the best candidates proposed in
our first experiment. This reaffirmed our decision to focus all subsequent artificial design efforts
on azulenes. Finally, while the best candidates possessed promising STGs, the OSs only
improved to a limited extent.

In the second, third and fourth artificial design experiments, we used molecule 1 as initial seed.
Additionally, only structures containing azulene-like π-systems were accepted in the molecular
generation to ensure extensive exploration of that structural family. Furthermore, the upper STG
threshold for high fitness values was 0.3 eV in all these runs. The only difference between these
three experiments was the fitness function employed. In experiment 2, as in experiment 1, a
linear combination of the additive inverse of the STG and OS was used. In experiment 3, only
the OS determined the fitness. In experiment 4, the fitness was a linear combination of the
additive inverse of the STG, the OS and the absolute difference to a VEE of 3.2 eV. The latter
value corresponds to the energy of blue light absorption, but only after correction for the
inherent systematic offset of ωB2PLYP’.14 Again, optimization progresses are depicted in Figure
3B-D. Most importantly, compared to the first run, both lower STGs and higher OSs are
attained in all three runs resulting in promising INVEST emitter candidates (cf. Figure 4A). When
comparing experiments 2 and 3, we were surprised to see that including the STG explicitly into
the fitness function does not seem to result in molecules with lower STGs. However, as we
expected, experiment 3 results in property distributions biased towards higher OS values.
Strikingly, experiment 4 resulted in candidates with both the highest OSs and the lowest STGs
among the three runs discussed in this paragraph. Notably, the corresponding optimization
progress with respect to the VEEs is depicted in Extended Data Figure 2 showing that the
optimization trajectory moved continuously towards higher VEEs.
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In order to test whether the OSs can be further increased without compromising the STGs, we
analyzed the high performing molecules and noticed that several promising candidates had
substituents both in the 1- and 6-positions of the azulene core (cf. Supplementary Figure 2).
Hence, to narrow down the space to be explored, focus on more promising structures and
increase synthesizability, we decided to not only constrain the molecules generated in
experiment 5 to possess an azulene-like π-system, but also enforce them to be identically
substituted at the 1- and 6-positions. This was achieved by first generating the structures of
the substituents which were subsequently attached to an azulene core structure only at the
respective positions. Additionally, we decided to again use a linear combination of the additive
inverse of the STG and the OS as fitness function. The corresponding optimization progress
and property distributions (cf. Figure 3E and Figure 4) confirmed that this design choice indeed
resulted in significantly better candidates as both STGs tended to be lower and OSs tended to
be higher.

Encouraged by the results of experiment 5, we wanted to increase the sampling of promising
molecules even further and decided to enforce the structures to have a plane of symmetry
through the azulene core. Additionally, we also kept the core nitrogen substitutions equivalent
to molecule 1 in all proposed structures. Furthermore, we decided to only allow substitutions at
the 4- and 8-positions as these would be preferred for the introduction of donor moieties based
on the bottom-up design principles for INVEST emitters established previously.19 As evident
from the results (cf. Figure 3F and Figure 4), this design space resulted in by far the best
organic emitter candidates among all the six artificial design experiments carried out. While the
STG distributions were essentially equivalent to experiment 5, the OSs made a significant leap,
reaching values far larger than 1. Importantly, these are better property trade-offs than have
been attained in previous expert-guided INVEST emitter designs.14 Additionally, even though
the VEEs were not explicitly optimized in this run, a significant fraction of the structures
generated in experiment 6 had VEEs in the blue light region. Furthermore, our artificial design
workflow incorporated intramolecular hydrogen-bonding to the core nitrogen atoms in the most
promising candidates, which has been proposed before as a very effective strategy to increase
OSs of INVEST emitters.14
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A. Singlet-triplet gap and oscillator strength.

B. Vertical excitation energy and singlet-triplet gap.

C. Vertical excitation energy and oscillator strength.

Figure 4. Comparison of the property distributions spanned by the 200 molecules with highest
fitness proposed in each of the six artificial design experiments conducted (A-C). The individual
data points mark the properties of the molecules encountered, the enclosed areas of each
generation are the corresponding alpha shapes of the point clouds.
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A comparison of the property distributions of the molecules with highest fitness in each
experiment is depicted in Figure 4. It suggests that, by altering the setups in each run, we
successfully directed our artificial design workflow to ever more promising organic INVEST
emitters. Additionally, in Table 1 we also compared some of the molecules with high fitness in
each of the runs and their properties as this comparison provides an overview of the structural
features characteristic of each artificial design experiment and of the diversity of structures
generated. Importantly, all the molecules shown are likely stable and, thus, should in principle
be realizable in the laboratory. A combined property distribution map of all the 869,365
molecules generated and simulated in the course of the artificial design experiments can be
found in Extended Data Figure 3A-C. Individual property distribution maps for each experiment
are depicted in Supplementary Figures 3-8.

Table 1. Comparison of the seed molecule 1 established in the virtual screening and some of
the most promising candidates that emerged from each of the six artificial design experiments
conducted. Excited state properties are at the ωB2PLYP’/def2-mSVP level of theory.

Experiment Molecule ΔE(S1-T1) [eV] f12 ΔE(S0-S1) [eV]

0 (Seed)

1

0.24 0.005 2.71

1

2

0.39 0.045 2.14

1

3

0.23 0.024 1.70

2

4

0.13 0.269 2.63

2

5

0.30 0.079 3.19
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3

6

0.08 0.087 1.71

3

7

0.25 0.083 2.65

4

8

0.30 0.048 3.23

4

9

0.29 0.073 2.94

5

10

0.16 0.548 1.80

5

11

0.01 0.111 2.34

6

12

0.30 1.356 3.10

6

13

-0.07 0.529 2.54
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Finally, we wanted to get insight into what the ANN classifiers, which were used as pre-filters
for DFT simulations, learned in each of the experiments they were trained and used. To do that,
we used the exmol package51 that implements the model agnostic counterfactual compounds
with STONED (MACCS) methodology, that was recently developed. We adapted the
corresponding workflow by implementing our filters for π-systems in the counterfactual
generation to mimic the genetic operators of our GA. Additionally, while in the field of
explainable artificial intelligence the generation of counterfactuals to understand decisions and
predictions is well established,52 we were also interested in generating profactuals, i.e.,
instances that are most similar to the reference and retain the same predictions. The idea is to
not only find the smallest feature changes altering predictions51,53 but also to explore equally
small feature changes not altering them. Accordingly, profactuals can be regarded as
counterfactuals to the counterfactuals themselves and provide additional insight into the
significance of counterfactual explanations. Hence, we extended the implementation of
MACCS to analyze both profactuals and counterfactuals in a consistent way. Subsequently, we
applied this extended workflow to explain the predictions of the ANN classifiers based on the
most promising candidates of each experiment listed in Table 1 except the first. The
corresponding results for molecules 4-13 are illustrated in Supplementary Figures 9-18. Based
on the structural comparison between the profactuals and counterfactuals, we find that
changes to the core ring system are always counterfactuals. Additionally, the classifiers are
sensitive to the nitrogen substitution pattern of the azulene π-system which is exemplified by
some being regarded as acceptable and others being discarded. Furthermore, they are also
sensitive to the type and position of substituents directly attached to the azulene core which is
consistent with the bottom-up construction of INVEST molecules established recently.
Moreover, some substituents, in particular when consisting of 4-membered and 8-membered
ring systems, are always discarded regardless of whether they are directly attached to the core
or further away. However, the classifiers are less sensitive to structural changes further away
from the core ring system which is particularly apparent from the results for larger candidates
where the introduction of additional substituents or the incorporation of heteroatoms is largely
accepted. It should also be noted that substituent changes not affecting the electronic
structure significantly are more likely to be accepted by the classifiers. Nevertheless, some
counterfactuals correspond to structural changes that should not affect the properties of
interest significantly. Similarly, some profactuals, in particular for the last two experiments with
fixed substituent positions, break the corresponding constraints and, thus, move away from the
structural space used for training.

Lead Validation. After having found a large number of INVEST emitter candidates through
artificial design, we proceeded to validate the best compounds across all runs using more
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reliable quantum chemistry simulations at the SOS-ADC(2) level of theory.32,36–44 Accordingly,
we combined the molecules from all experiments and applied Chimera54 to scalarize multiple
objectives and select the best-performing molecules based on the resulting rankings. Thus,
two independent rankings were established, one based on both STGs and OSs (Objective A),
the other based on STGs, OSs and VEEs (Objective B). In each of these rankings, the 7,500
best molecules were selected for further validation, resulting in a total set of 13,222 unique
compounds as some compounds appeared in both rankings. The corresponding property
distributions at the ωB2PLYP’ and SOS-ADC(2) levels are depicted in Extended Data Figure 4
and the property correlations between the two methods are shown in Supplementary Figure
19.

Using SOS-ADC(2), 1,310 (10%) of these compounds were predicted to have an inverted STG.
Importantly, the relatively low number of confirmed INVEST molecules in the validation set
mainly stems from the selection criteria and not from inaccuracies in the original predictions.
We wanted to give the OS a considerable weight and focus on promising emitters rather than
overemphasizing INVEST molecules with low oscillator strengths in the lead validation. This is
evident from the ωB2PLYP’ properties of the validation compounds as only 1,300 (10%)
molecules have an STG below 0.36 eV. 566 of these 1,300 compounds with lowest ωB2PLYP’
STGs are confirmed by SOS-ADC(2) to have an inverted STG, 1,045 are predicted to have an
STG lower than 0.10 eV based on SOS-ADC(2) results. This shows that ωB2PLYP’ simulations
are not perfect predictors of STGs for the molecules investigated but they are sufficiently good
in terms of accuracy to guide our artificial design workflow. Additionally, these results illustrate
again the systematic offset between ωB2PLYP’ and SOS-ADC(2) (cf. Supplementary Figure 1
and Supplementary Figure 19). Using an STG of 0.36 eV at the ωB2PLYP’ level as heuristic to
estimate the number of INVEST compounds in the entire set explored, we predict that there are
148311 (17%) structures with inverted STG (cf. Extended Data Table 1). The property
distributions of this set of INVEST candidates are depicted in Extended Data Figure 3D-F. By
requiring these INVEST candidates to have an OS of more than 0.05, there are in total likely
10,736 (1%) INVEST molecules with appreciable OS (cf. Extended Data Table 1).

Most importantly, the property distributions at the SOS-ADC(2) level confirm that we
successfully found organic molecules with both inverted STGs and OSs up to approximately
0.8 (cf. Extended Data Figure 4D). Additionally, we found INVEST molecules with VEEs
spanning the entire visible light energy range (cf. Extended Data Figure 4E), and we also found
emitters with appreciable OSs in that range (cf. Extended Data Figure 4F). Furthermore, the
property correlations in the validation set indicate that while VEEs show excellent agreement
between the two methods (cf. Supplementary Figure 19A-B), STGs and OSs of the validation
set of high-performing candidates only show a moderate correlation between ωB2PLYP’ and
SOS-ADC(2) (cf. Supplementary Figure 19C-F) indicating the optimization of these two

13

https://doi.org/10.26434/chemrxiv-2023-nrxtl ORCID: https://orcid.org/0000-0001-8836-6266 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://www.zotero.org/google-docs/?u7Xnqn
https://www.zotero.org/google-docs/?bNbdC5
https://doi.org/10.26434/chemrxiv-2023-nrxtl
https://orcid.org/0000-0001-8836-6266
https://creativecommons.org/licenses/by-nc-nd/4.0/


properties in our workflow to be most challenging and that fine-tuning of STG and OS is
difficult based on ωB2PLYP’ simulations.

We were also interested in the comparison of synthetic accessibility and complexity metrics
between the entire set of compounds investigated and the structures predicted to possess an
inverted STG. In particular, we used the synthetic accessibility score (SAscore),55 the synthetic
complexity score (SCScore),56 the synthetic Bayesian accessibility metric (SYBA)57 and the
retrosynthetic accessibility score (RAscore).58 In addition to providing an estimation as to how
likely these molecules can be synthesized at least some of them also incorporate an
assessment of stability. First, we compared histograms of these metrics between the entire set
of compounds generated during the artificial design stage and the subset of molecules
estimated to possess an inverted STG (cf. Supplementary Figure 20). They reveal that the
subset of INVEST compounds does not have a considerably different distribution of
synthesizability metrics. While the SAscore suggests them to be essentially identical, the
SCScore indicates that the structural complexity is somewhat higher in the INVEST candidates.
In contrast, using SYBA the candidates are predicted to be somewhat more likely to be
synthesizable. The RAscore also shows the differences not to be big. The corresponding
differences are not only a consequence of the molecular properties themselves but also of the
structural constraints employed in the artificial design experiments as demonstrated in
Supplementary Figure 21. The runs with the largest fraction of INVEST compounds, i.e.
experiments 5 and 6, have a large influence on the corresponding histograms. In contrast,
experiment 1 largely only contributes to the histogram of all compounds as it has the lowest
fraction of candidates estimated to have an inverted STG. Overall, we find that these four
metrics suggest the majority of the compounds investigated to be likely synthesizable. The
corresponding threshold values for the SAscore has been suggested to be 4.5 and, for SYBA,
-19.57 Additionally, the majority of compounds have an RAscore of 0.5 or higher, i.e., it is very
likely that AiZynthFinder59 will be able to propose a retrosynthetic route.

Finally, based on the properties at the SOS-ADC(2) level, six of the best candidates for each of
the two objectives were selected. Their structures and simulated properties are found in Table
2. Notably, all the compounds listed there emerged from experiment 6 and are likely stable.
Additionally, they all possess at least two hydrogen-bond donors allowing for intramolecular
interactions controlling their conformations. Importantly, for the tri-objective optimization of
STG, OS and VEE, the target VEE for blue emitters at the SOS-ADC(2) level is 2.83 eV due to
the systematic property differences relative to ωB2PLYP’ (cf. Supplementary Table 3).

Table 2. Promising candidates after lead validation with their simulated properties at the
SOS-ADC(2)/cc-pVDZ level of theory. Objective A refers to the optimization of singlet-triplet
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gap and oscillator strength, objective B refers to the optimization of singlet-triplet gap,
oscillator strength and vertical excitation energy.

Objective Molecule ΔE(S1-T1) [eV] f12 ΔE(S0-S1) [eV]

A

14

-0.01 0.401 2.26

A

15

-0.01 0.336 2.19

A

16

-0.02 0.298 2.38

A

17

-0.39 0.137 2.51

A

18

-0.11 0.169 2.50

A

19

-0.08 0.268 2.38
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B

20

-0.02 0.307 2.79

B

21

-0.01 0.305 2.86

B

22

-0.03 0.296 2.83

B

23

-0.11 0.121 2.79

B

24

-0.10 0.132 2.79

B

25

-0.08 0.111 2.84

Discussion
We set out this work by establishing a comprehensive three-stage workflow for the artificial
design of organic emitters relying on high-throughput virtual screening via quantum chemical
simulations for property evaluation and a GA based on a robust molecular string representation
enhanced by ANNs for efficient structure generation. After identifying promising core structures
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with inverted STGs via virtual screening, we explored the corresponding design space
extensively, resulting in the generation of more than 800,000 emitter candidates with the goal to
co-optimize STGs, OSs and VEEs. Overall, we found more than 10,000 candidates that likely
possess both inverted STGs and appreciable OSs, many of which with predicted VEEs in the
blue light energy range. In the following section, we will put our findings into perspective and
outline future improvements for artificial design workflows.

In the first phase of our workflow, we developed and tested the simulation methodology,
including the filters for π-systems, and defined the structural space to be explored. Our
simulation protocol relies on both efficient and reliable methods to account for double
excitations in the description of excited state, in particular double-hybrid time-dependent
density functional approximations (DH-TD-DFAs),28,60–63 equation-of-motion coupled-cluster
singles and doubles (EOM-CCSD),45–49 and second-order algebraic diagrammatic construction
methods (ADC(2), SOS-ADC(2)),29–44 which is essential to describe molecules with inverted
STGs appropriately.14–16,64–66

Based on a combination of the INVEST design principles established previously19 and our
virtual screening results, we selected azulenes as our core structures for further investigation.
Importantly, while azulenes are notorious for violating Kasha’s rule67,68 by emitting light mainly
from their second rather than from their first excited singlet state,69,70 substituted azulenes
emitting predominantly from their first excited electronic singlet states are known.71 As
discussed previously,19 azulenes are promising candidates to realize INVEST emitters as fifth
generation of organic light-emitting diode materials because they have intrinsically low STGs
that can be inverted with proper modification, because they are stable structures with already
several well-known synthetic pathways and because their excitation energies can be tuned
over the entire visible light spectrum. To achieve that, the almost negligible OSs of the first
electronically excited singlet states of azulene cores need to be enhanced with adequate
structural substitution, which is why we chose azulenes as our target in this work. Future work
will be necessary to understand the dominant excited state processes in substituted azulenes
and enable conical intersection design in some of the most promising candidates.

Next, we set up our artificial design workflow by implementing the virtual screening approach
into a development version of JANUS,10 a GA relying on SELFIES1 as representation and the
STONED algorithm2 for robust and efficient molecular structure generation. One of the
advantages of this approach is that it can be applied to any molecular design problem with a
well-defined fitness function without prior knowledge of the structural space to be investigated.
Additionally, it allows us to incorporate domain knowledge, which is what we did by enforcing
our filters for π-systems in the molecular generation. These filters are the main reason that, in
experiment 1, with methane as seed, azulene was rediscovered already in the first generation.
We rationalize this observation by azulene being a very simple π-system with only two
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annulated rings satisfying our filters. To the best of our knowledge, it is one of the simplest core
structures promoting inverted STGs.19 The filters were designed to avoid the exploration of
structures that are unlikely to lead to sizable property improvements but likely to distract our
artificial design workflow and make the property simulations more time-consuming.
Accordingly, we did not allow for the presence of alkyl groups in any of the molecules
generated. Importantly, we believe this to be one of the reasons for the high number of
hydrogen-bonding moieties in many of the best-performing molecules found. Our workflow
allows for amines, alcohols and thiols to be introduced as electron-donating groups but cannot
satisfy the corresponding valences with alkyl groups that would also make them more stable.

Furthermore, we found it to be crucial to narrow down the design space continuously as we
explored more structures. This is demonstrated by experiments 5 and 6 where we constrained
the substituent positions in the azulene cores and required the substituents to be identical. This
led to a dramatic improvement of the inverse design and molecules with superior properties.
We believe that this inability to narrow down the space to be investigated autonomously is still
one weakness of the JANUS version we employed in this work. It has been partially addressed
already in the published version of JANUS,10 and we aim to improve upon this issue in
upcoming work even further. Moreover, using the generation of both counterfactuals and
profactuals, we obtained insight into what the ANN classifiers learned. In that regard, it is
encouraging to observe that changes to the core structure are regarded as crucial whereas
modifications further away are more readily accepted which is essential to enhance the
sampling of promising candidates.

Finally, in the lead validation stage we confirmed the findings of the artificial design by
performing more reliable quantum chemistry simulations of the excited state properties. The
method we adopted for that purpose, SOS-ADC(2), is considered one of the state-of-the-art
approaches to simulate excited state properties for molecules of considerable size, especially
INVEST compounds. Altogether, we identified more than 1,000 candidates for INVEST emitters
with appreciable OS in the validation set, and estimate that there are more than 10,000 in the
full set of compounds explored in this work. Notably, this is more than one order of magnitude
larger than the number of INVEST emitters found in out previous high-throughput virtual
screening approach relying on expert design.14 This vast number of molecules with both
inverted STGs and considerable OSs shows that the INVEST compound space is much larger
than initially thought,15,16 and that artificial molecular design enables the comprehensive
exploration of extreme property spaces with unprecedented efficiency.

Ultimately, the findings in this work need to be verified in the laboratory. While many of the
molecules proposed are likely stable, due to the intrinsic stability of azulenes, most of the
azaazulene core structures explored have never been synthesized. In particular, to the best of
our knowledge, 2,5,7-triazaazulene (molecule 1) has not been reported before. This suggests
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that the results of the synthetic accessibility and complexity metrics should be interpreted with
care. They likely indicate that there is no obvious structural feature that makes the proposed
compounds hard to synthesize. However, the lack of literature precedence suggests that the
metrics are applied outside their original application domain and, hence, cannot be expected to
give a highly reliable estimation of whether these compounds can actually be synthesized. This
demonstrates that new synthetic approaches for these compounds need to be developed
before azulene-based INVEST emitters can unlock their full potential as organic electronic
materials. Accordingly, we hope that our findings will inspire other groups to explore the
synthesis of azaazulenes and their substituted derivatives, and realize some of the most
promising emitter candidates that were proposed in our workflow. Overall, our work showcases
the combination of state-of-the-art quantum chemistry simulations and artificial molecular
design infused with machine learning and domain knowledge to tackle real-world design
challenges in chemistry. Accordingly, we believe that the inverse molecular design workflow
implemented in this work can serve as a model for future studies defining a new standard for
accelerated inverse design campaigns.

Computational Methods
High-Throughput Virtual Screening. Ground state conformational ensembles were generated
using crest72 (version 2.10.1) with the iMTD-GC73,74 workflow (default option) using the
GFN2-xTB75,76//GFN-FF77–79 composite method. The lowest energy conformers were first
reoptimized using xtb80 (version 6.3.0) at the GFN2-xTB75,76 level of theory, followed by another
reoptimization using Orca81,82 (version 4.2.1) at the B97-3c83 level of theory. The corresponding
geometries were used for subsequent ground and excited state single-point calculations.
Single points at the RKS-ωB2PLYP’28/def2-mSVP84 level of theory were performed using
Orca81,82 (version 4.2.1), single points at the RI-ADC(2)29–35/cc-pVDZ85 and the
RI-EOM-CCSD45–49/cc-pVDZ85 levels of theory were performed using Q-Chem86 (version 5.2).
Single points at the RI-SOS-ADC(2)32,36–44/cc-pVDZ85 level of theory were performed using
MRCC87 (version 2020). Importantly, in the Orca version used (version 4.2.1), the perturbative
doubles correction is not applied to the excited triplet states when using restricted Kohn-Sham
(RKS) calculations.88 Hence, to indicate this explicitly in our results, we term the corresponding
method ωB2PLYP’ as opposed to ωB2PLYP. Unless noted otherwise, for all excited state single
point calculations, four roots were chosen each for both the singlet and the triplet manifold.
The filters used to create the π-systems subset of GDB-1327 were implemented using RDKit89

and are summarized in Extended Data Table 2. The source code of these filters can be found in
our GitHub repository.

Artificial Design. Simulations of excited state properties for fitness evaluation were carried out
as described in the previous section by generation of conformational ensembles using crest72,
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geometry optimizations at the GFN2-xTB75,76 and the B97-3c83 levels of theory and single
points at the RKS-ωB2PLYP’28/def2-mSVP84 level of theory.

Artificial design was performed using a development version of JANUS,10 a genetic algorithm
(GA) for molecular design. Every run was seeded with a single molecule (cf. Extended Data
Table 3). The first generation in each run was created from random mutations of the seed using
the STONED algorithm.2 All genetic operations with STONED were performed using version
1.0.1 of SELFIES.1 The fitness of each molecule was evaluated as a sum of three fitness
components (cf. Extended Data Table 3), one for each property of interest, namely,
singlet-triplet gap (STG, ΔE(S1-T1)), oscillator strength (OS, f12) and vertical excitation energy
(VEE, ΔE(S0-S1)). Additionally, for each of the fitness components, very low fitness values of
-106 were assigned when the properties did not fulfill minimum requirements. For the STG
component, the corresponding fitness value was required to be non-negative. For the OS
component, the corresponding fitness value was required to be non-negative. For the VEE
component, the property value was required to be non-negative. The molecules in each
generation were ranked based on the fitness from best, i.e., highest fitness value, to worst, i.e.,
lowest fitness value. The top 20% of each generation were propagated to the subsequent one.
The other molecules were replaced by structures generated by the genetic operators applied to
the top 20%. The molecules in each generation were required to be unique across all previous
generations during each experiment, which was checked explicitly in the genetic operators by
maintaining a dictionary of all previous structures. The number of atoms in each molecule was
capped at 70 throughout this work. Additionally, the filters developed in the virtual screening
were used in the genetic operators to only generate structures satisfying them. The source
code of these filters can be found in our GitHub repository. The number of molecules per
generation was capped at 10,000. All experiments except for the first were stopped after
generation 15, experiment 1 was stopped after generation 11 (cf. Extended Data Table 3).

Subsequently, for all runs except for the first, an artificial neural network (ANN) classifier was
incorporated into the GA after generation 11. For each experiment, the data from the first 11
generations were collected and used to train a fully-connected 2-layer ANN classifying
molecules as either good (i.e., output of 1) or bad (i.e., output of 0). As molecular features, we
used the binary representation of Morgan fingerprints90 consisting of 1024 bits. In the data from
previous generations, all structures with an STG below 0.6 and an OS larger than 0.0 were
classified as good, the others as bad. These data were split into three separate sets. First, 20%
of the data were used as a holdout set to test model performance. The remaining 80% was
split again into 48% of the total used for training and 32% of the total used as validation set.
The validation set was used to tune hyperparameters with the package Optuna.91 In that
regard, we decided to optimize the number of training epochs, the number of epochs to
continue training without validation loss improvement, the learning rate, the number of neurons
in each layer and the dropout rate. The final classification accuracy of the models was
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evaluated based on the holdout set (cf. Extended Data Table 1). Classification accuracy was
calculated as the percentage of molecules that was classified correctly as either good or bad.
Subsequently, the classifiers were incorporated into the genetic operators of each run and
combined with the other filters used therein (vide supra). Only molecules classified as good
were passed on to the fitness evaluation via property simulation, molecules classified as bad
were discarded. Our choice to incorporate a classifier was influenced by an early attempt to
use ANNs predictors of singlet-triplet gaps and oscillator strengths. However, we found direct
property prediction to be hard and only obtained poor correlations (Supplementary Table 2).

Finally, to get insight into what the ANN classifiers learned, we used the exmol package
(version 0.6.0).92 We modified the default workflow established in that package by
implementing the filters we developed in the virtual screening to only generate structures
satisfying them as potential counterfactuals. Additionally, we also added the generation of
profactuals, i.e., molecules in the structural vicinity of the reference that still retains the same
classification, to the workflow. For each baseline molecule, 9 profactuals and 9 counterfactuals
were generated. Sampling was performed via the STONED algorithm with version 1.0.4 of
SELFIES1 using the medium settings implemented in exmol but increasing the number of
samples to 15,000. The corresponding source code can be found in our GitHub repository.

Lead Validation. The best candidates generated throughout all the artificial design experiments
were selected using Chimera.54 Two separate rankings were performed, one based on a
bi-objective optimization of both STGs and OSs, another based on a tri-objective optimization
of STGs, OSs and VEEs. The corresponding parameters used in Chimera for these two
rankings are provided in Extended Data Table 4. The 7500 best candidates in each of these two
rankings were concatenated and the corresponding molecules were validated with a more
reliable computational method. To validate the properties of the selected candidates, the
geometries at the B97-3c83 level of theory obtained from the fitness evaluation were used for
subsequent single point calculations at the RI-SOS-ADC(2)32,36–44/cc-pVDZ85 level of theory.

Data Availability Statement
Detailed results are provided in our GitHub repository:
https://github.com/aspuru-guzik-group/Artificial-Design-of-Organic-Emitters.

Code Availability Statement
Code to run our experiments are provided in our GitHub repository:
https://github.com/aspuru-guzik-group/Artificial-Design-of-Organic-Emitters.
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A. Singlet-triplet gap and oscillator strength. B. Singlet-triplet gap and excitation energy.

Extended Data Figure 1. Property maps of all systematic permutations of nitrogen core
structure substitutions of azulene at the EOM-CCSD/cc-pVDZ level of theory. A. Singlet-triplet
gap plotted against oscillator strength. B. Singlet-triplet gap plotted against vertical excitation
energy. The red data point denotes the only structure predicted to have an inverted
singlet-triplet gap at this level of theory.
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A. VEE and STG B. VEE and OS

C. Legend

Extended Data Figure 2. Progress of the property distributions spanned by the 200 molecules
with highest fitness with respect to singlet-triplet gaps, oscillator strengths and vertical
excitation energies as a function of the generation numbers in artificial design experiment 4
(A-B) and the corresponding legend (C). The individual data points mark the properties of the
molecules encountered, the enclosed areas of each generation are the corresponding alpha
shapes of the point clouds. STG: singlet-triplet gap, OS: oscillator strength, VEE: vertical
excitation energy.
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A. All, STG and OS. D. INVEST, STG and OS.

B. All, VEE and STG. E. INVEST, VEE and STG.

C. All, VEE and OS. F. INVEST, VEE and OS.

Extended Data Figure 3. Property distributions of all the compounds generated during the
artificial design stage (A-C) and the subset that is estimated to consist of INVEST compounds
(D-F) at the ωB2PLYP’ level of theory colored by the number of molecules in the respective
property windows. STG: singlet-triplet gap, OS: oscillator strength, VEE: vertical excitation
energy.
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A. ωB2PLYP’, STG and OS. D. SOS-ADC(2), STG and OS.

B. ωB2PLYP’, VEE and STG. E. SOS-ADC(2), VEE and STG

C. ωB2PLYP’, VEE and OS. F. SOS-ADC(2), VEE and OS.

Extended Data Figure 4. Property distributions of the validation set compounds at the
ωB2PLYP’ (A-C) and the SOS-ADC(2) (D-E) levels of theory colored by the number of
molecules in the respective property windows. STG: singlet-triplet gap, OS: oscillator strength,
VEE: vertical excitation energy.
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Extended Data Table 1. Summary of the artificial design workflow results. Classification
accuracy of the artificial neural network classifiers on both the validation and the holdout sets.
Success rates of generating structures in the genetic operators with simulated singlet-triplet
gaps below 0.6 and oscillator strength above 0.0 at the ωB2PLYP’ level of theory, both without
and with the incorporation of the artificial neural network classifiers, in each experiment.
Number of candidates generated in each run with predicted singlet-triplet gaps below 0.36 at
the ωB2PLYP’ level of theory, which likely possess an inverted singlet-triplet gap, and number
of candidates that additionally have a predicted oscillator strength above 0.05 at the ωB2PLYP’
level of theory. G: generation, STG: singlet-triplet gap, OS: oscillator strength, VEE: vertical
excitation energy.

Run

Classification Accuracy Success Rate Candidates

Validation Holdout
G 11, without
classifier

G 12, with
classifier

STG < 0.36 eV
STG < 0.36 eV,
OS > 0.05

1 - - - - 809 2

2 92.0% 91.0% 7.8% 31.3% 25,503 312

3 98.0% 98.0% 7.0% 23.3% 24,142 293

4 91.0% 90.0% 7.5% 24.8% 27,867 334

5 89.0% 89.0% 6.6% 28.9% 34,235 6811

6 90.0% 89.0% 6.9% 27.1% 50,266 3074

All - - - - 148,311 10,736
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Extended Data Table 2. List of filters employed to create the π-systems subset of GDB-13.

Number Feature Definition Value

1. Charge Charge of the molecule. x = 0

2. Radicals Number of radical electrons. x = 0

3. Bridgehead Atoms Number of bridgehead atoms. x = 0

4. Spiro Atoms Number of spiro atoms. x = 0

5. Aromaticity Degree Percentage of aromatic non-hydrogen atoms. x ≥ 0.5

6. Conjugation Degree Percentage of conjugated bonds between
non-hydrogen atoms.

x ≥ 0.7

7. Maximum Ring Size Size of the largest ring. 4 ≤ x ≤ 8

8. Minimum Ring Size Size of the smallest ring. 4 ≤ x ≤ 8

9. Substructures List of forbidden substructures. The code can
be found in the GitHub repository.

False
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Extended Data Table 3. Setup details of the genetic algorithm with respect to seed molecule,
fitness function and the number of generations for each artificial design run. STG: singlet-triplet
gap, OS: oscillator strength, VEE: vertical excitation energy.

Run Seed Molecule STG Fitness OS Fitness VEE Fitness Generations

1 Methane 0.6 - ΔE(S1-T1) f12 0 11

2 2,5,7-triazaazulene 0.3 - ΔE(S1-T1) f12 0 15

3 2,5,7-triazaazulene 0 f12 0 15

4 2,5,7-triazaazulene 0.3 - ΔE(S1-T1) f12 - |ΔE(S0-S1) - 3.2| 15

5 2,5,7-triazaazulene 0.3 - ΔE(S1-T1) f12 0 15

6 2,5,7-triazaazulene 0.3 - ΔE(S1-T1) f12 0 15
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Extended Data Table 4. Chimera parameters to perform A) bi-objective optimization of
singlet-triplet gap and oscillator strength and B) tri-objective optimization of singlet-triplet gap,
oscillator strength and excitation energy.

A. Bi-Objective Optimization

Objectives Tolerances Absolutes Goals

1. Singlet-Triplet Gap 5.00 True Minimize

2. Oscillator Strength 0.35 True Maximize

B. Tri-Objective Optimization

Objectives Tolerances Absolutes Goals

1. Singlet-Triplet Gap 3.000 True Minimize

2. Oscillator Strength 0.175 True Maximize

3. Absolute Difference of Excitation Energy to 3.2 eV 0.350 True Minimize
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