
Journal Name

Predicting reaction barriers of hydrogen atom transfer in
proteins†

Kai Riedmillera, Patrick Reiserb,c, Elizaveta Bobkovaa, Kiril Maltseva, Ganna Gryn’ovaa,
Pascal Friederichb,c,∗, Frauke Grätera,d,∗

Hydrogen atom transfer (HAT) reactions are important in many bi-
ological systems. As these reactions are hard to observe experimen-
tally, it is of high interest to shed light on them using simulations.
Here, we present a machine learning model based on graph neural
networks for the prediction of activation energies of HAT reactions
in proteins. It is trained on more than 17,000 energy barriers calcu-
lated using hybrid density functional theory. We built and evaluated
the model in the context of HAT in collagen, but the same work-
flow can easily be applied to HAT reactions in other biological or
synthetic polymers. We obtain for relevant reactions (small reac-
tion distances) a model with good predictive power (R2 ∼ 0.9 and
mean absolute error of < 3 kcal/mol). As the inference speed is
high, this model enables evaluations of many chemical situations
in rapid succession. When combined with molecular dynamics in
a kinetic Monte-Carlo scheme, the model paves the way toward
reactive simulations.

1 Introduction
Free radicals critically impact and can be deleterious for biolog-
ical systems.1 2 They are highly reactive and lead to unspecific
damage of proteins, DNA, and lipids, causing various diseases
and aging.3 Radical formation is followed by a plethora of sub-
sequent reactions, most importantly radical propagation through
hydrogen atom transfer (HAT).4 Radical formation and propaga-
tion are not only at play in biomolecules but very analogously
occur in synthetic polymers, and similarly lead to damage and
material aging.5 6 Due to the high reactivity of radicals, interme-
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diate products of radical reactions can be very short-lived and
therefore hard to capture experimentally. Predicting the fate of
radicals in proteins or other (bio)polymers is thus of utmost rele-
vance to better understand and combat radical-induced damage.

A major challenge in predicting chemical reactivity in proteins,
such as unspecific radical transfer reactions, is the molecular en-
vironment of the reaction: it decides on the reactivity but is both
chemically very diverse and highly dynamic. This leads to a vir-
tually infinite number of possible reaction scenarios, in which re-
actants represent instances within a vast chemical and conforma-
tional space. As a consequence, directly computing this amount
of radical reactions by ab initio calculations is computationally
not feasible. Instead, machine learning can leverage quantum
chemical calculations by predicting reactivity based on an initial
quantum chemical data set. We here set out to predict the en-
ergy barriers of hydrogen atom transfer reactions in proteins us-
ing Graph Neural Networks that are trained on computed energy
barriers.

Machine learning has come of age to predict structures, en-
ergies, and properties of molecules, while predicting kinetics by
machine learning is a relatively new field. In a recent review by
Lewis-Atwell, Townsend, and Grayson, various methods for the
prediction of activation energies are summarized.7 The used tech-
niques range from kernel ridge regression over gradient-boosted
decision trees to neural networks and Gaussian processes. No sin-
gle method performs best on all kinds of data sets, data set sizes,
and reaction types. Reaction representations are key to faithful
predictions, and can be built from established molecular ones, as
shown by van Gerwen et al.8 They also discovered that repre-
sentations for reactions should incorporate information from the
educt and product, something we also found important in this
work.

Also for the prediction of HAT energy barriers in this work,
we evaluated different regression techniques. Based on perfor-
mance measures, we settled on graph neural networks, which
is representative of the overall development in representations
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Fig. 1 Schematic of the workflow. The system of interest here is a collagen fibril under tension, containing radicals (red). A cutout of the fibril is
presented to the neural network, which predicts the energy of activation Ea for every possible reaction, one at a time. This information can be used
to decide which reaction is likely to occur and continue the simulation after the reaction.

of chemical systems for machine learning. Representations such
as the Coulomb Matrix9 perform well on simpler tasks, but are
typically outperformed by more expressive representations, e.g.,
atom-centered symmetry functions,10 smooth overlap of atomic
orbitals (SOAP),11 and, in the last years, graph neural networks
(GNNs).12 13 The latest accuracy increases can be partially at-
tributed to moving from invariant to equivariant models, where
we arrive at the GNN used in this work, namely PaiNN.14 15

In this work, we focus on predicting HAT reaction barriers
within one particular protein system, collagen (Figure 1). The
model is also applicable to proteins of similar composition, and
the developed workflow can be used for other, not necessar-
ily biological, polymers. As shown earlier by some authors of
this article, stretching collagen generates mechanoradicals within
the protein.16 These radicals rapidly localize on specific protein
residues, dihydroxyphenylalanine (DOPA), plausibly through a
sequence of HAT reactions. However, intermediates of the mi-
gration and stabilization process are challenging to identify. This
renders collagen an ideal model system, yet allows transferability
of our approach to any other protein or chemically similar poly-
mer.

We built thousands of molecular fragments as they occur in
collagen and calculated HAT energy barriers on the level of hy-
brid density functional theory (DFT). The computed reaction bar-
riers range between 0 kcal/mol and 175 kcal/mol and are highly
dependent on the local environment, rationalizing the machine

learning approach. We used our quantum chemical data to train
the GNN, which is able to predict barriers approaching chemical
accuracy.

Our machine learning model predicts the energy of activation
for one selected reaction at a time while taking the chemical en-
vironment around the radical as input.(Figure 1) It thus can be
used as a surrogate model of hydrogen atom transfer within clas-
sical molecular dynamics (MD) simulations to model radical prop-
agation within collagen or other (bio)materials on the fly, e.g.,
by using hybrid kinetic Monte-Carlo and MD simulations.17 Our
GNN-based approach tackles the challenge of predicting reaction
barriers in a heterogeneous and dynamic chemical setting, and
will likely prove useful for other complex soft matter systems.

2 Methods

2.1 Data generation

The geometries to learn HAT activation energies were generated
in two ways: in a bottom-up approach from single amino acids,
and in a top-down approach by extracting reactive systems from
a larger atomistic model. In the following, the structures from the
bottom-up and top-down approaches will be called synthetic sys-
tems and trajectory systems, respectively. Synthetic systems are
pairs of amino acids arranged in a way that two hydrogen atoms
are in a defined position to one another. As shown in Figure 2
A, the translation distance between the hydrogens, the rotation,
and the tilt angle are varied. The positions of these two central
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Fig. 2 (A) Build process of reactive HAT systems for the synthetic data set. The HAT reaction between two example molecules is shown. The distance
between the start and end position of the transferring hydrogen (translation), the angle formed by the transferring hydrogen with the donating and
accepting heavy atoms (tilt), and the dihedral angle around the hydrogen atom transfer axis (rotation) were varied to construct the synthetic systems.
(B) Data set of optimized structures, built from synthetic and trajectory systems. The optimized transition state is shown, alongside the interpolated
reaction path of the hydrogen in green and the start position in orange. The non-optimized structure is shown translucently. (C) A trajectory system
with its environment shown translucently. The radical heavy atom is highlighted in green and the reacting hydrogen in yellow. The solid-drawn atoms
at the border to the translucent environment are used in the construction of the capping groups, the translucent atoms are discarded. (D) Data
distribution of the synthetic and trajectory data sets. (E) Architecture of the used graph neural network, based on the PaiNN architecture.15 (F) The
calculated energy barriers of HAT reactions in the data set vs the distance the hydrogen has to move during the reaction.

hydrogen atoms represent the start and end positions of a sin-
gle hydrogen atom undergoing the HAT reaction. Furthermore,
intramolecular reactions are generated from within single amino
acids. Combinations of hydrogen atoms with less than 4 Å dis-
tance are considered. Systems with atoms close to or in the way
of the transition path are removed.

The generation of reactive systems from molecular dynamics
(MD) trajectories starts from a collagen model obtained from Col-
builder.18 The model is simulated using GROMACS 2020. In the
resulting trajectory, possible reaction sites are identified by mon-
itoring H-H distances. As activation energy, Ea, heavily depends
on the translation distance, an emphasis is put on smaller trans-
lations when sampling. The HAT candidates are cut out together
with their close surrounding from the bigger system. To gener-
ate chemically meaningful systems and to allow reference com-

putations, the cut-out sections of the protein are capped using N-
methyl and acetyl groups. In Figure 2 C, the capping procedure
is visualized.(Also See Figure SI.2 B) For a given set of selected
atoms in a trajectory, only the system with the smallest translation
distance is kept, as otherwise a large amount of highly correlated
systems would be generated.

At this point, the reactive systems have been defined. Further
preparation steps are applied to synthetic as well as trajectory
systems. One of the two central hydrogen atoms is removed and
therefore acts as the starting location of the radical. Then, the
reaction path is estimated by interpolating the position of the
remaining hydrogen atom from its starting position to the posi-
tion of the removed hydrogen atom. Along the reaction path,
the energy of the system is calculated using the hybrid functional
BMK19 together with the 6–31+G(2df,p) basis set in seven in-
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crements, using Gaussian 09 (rev D.01).20 We originally used 11
equally spaced increments, but in the first data set of 1600 HAT
reactions, all barriers were found to be located within steps 4-8,
1 or 11, so steps 2, 3, 9, and 10 are omitted in the data used here.
More details on the building of the systems and the calculations
are given in the ESI†.

In many cases, the guess of the transition path by interpolating
between the start and end position of the hydrogen whilst keep-
ing the rest of the system frozen is reasonable, however, it in-
troduces a significant error in conformationally flexible systems.
(Figure SI.3) To address this, a subset of the data set described
above is optimized at the same QM level as used for the energy
calculations. During optimization, we constrain all atom positions
except the donor and acceptor atoms and directly bonded hydro-
gens, to reflect the embedding of the reactants into the structure
of the material, here the protein backbone, and to prevent contri-
butions to the calculated energy barrier from rearrangements in
the reactants unrelated to the HAT.

In this work, 4393 structures are created using the bottom-
up approach, and 5261 from trajectories. From these structures,
10% are set aside randomly for testing. 803 structures are opti-
mized, most of them (725) originate from the trajectory data set,
78 are synthetic systems. Figure 2 D shows the distribution be-
tween the data sets. Note, that each structure has two associated
energy barriers, resulting in twice the amount of data points for
training/testing.

2.2 Graph Neural Network

To predict the activation energy for a given structure, the graph
neural network PaiNN is used.15 Figure 2 E shows our workflow:
the inputs for the model are the atom positions and elements in
the educt configuration. The start and end positions of the trans-
ferred hydrogen atom are encoded as two unique elements to de-
fine the reaction direction. After two message passing iterations,
the invariant node features of the hydrogen and the pseudo-atom
are concatenated and fed into a dense neural network, consist-
ing of two layers with 128 nodes each, using the swish activation
function,21 followed by one output node with linear activation.
The GNN is trained to minimize the mean absolute error using
the Adam optimizer22 with learning rate decay and early stop-
ping. Hyperparameters are optimized using a Bayesian optimizer
as implemented in the Keras Tuner package.23 To increase ac-
curacy and obtain a measure of uncertainty, an ensemble of ten
models with random initializations is trained. The models are val-
idated using 10% of the training data, each model using a random
training/validation split.

2.3 Dense Neural Network

As an alternative to the graph neural network, a simple feed-
forward dense neural network is tested together with the local
many-body tensor representation (L-MBTR).24 This descriptor is
based on histograms of distances and angles between one cen-
tral atom and its surrounding. It is calculated on the position
of the missing hydrogen atom, next to the radical-carrying atom.
This position is encoded as a special element ’X’, and the react-

ing hydrogen as ’Y’ to present a well-defined task to the network.
The L-MBTR descriptor is generated using the DScribe library.25.
Parts of the descriptor, which correspond to interactions between
multiple elements ’X’ or ’Y’, are always zero and therefore re-
moved to improve efficiency. Three hidden layers of shrinking
size (1000, 500, and 100 neurons) are used in the network, uti-
lizing the ReLU activation function, followed by a single output
node with linear activation. The hyperparameters were deter-
mined by a non-exhaustive manual grid search. Similar to the
graph neural network, an ensemble of ten models is trained.

3 Results and Discussion
As a starting point of the training, we generated a data set of
structures where HAT reactions can occur, along with the associ-
ated energy barriers. The dataset spans the relevant conforma-
tional and chemical space and provides valuable insight into the
behavior of HAT reactions in collagen, on top of enabling the cre-
ation of predictive models.

Unsurprisingly, the calculated barriers show a strong depen-
dence on the distance the hydrogen atom has to travel during the
reaction, as can be seen in Figure 2 F. However, variations in barri-
ers for a given translation are significant, substantiating the need
to use more complex models for predicting barriers across differ-
ent amino acids, orientations, and local environments. The syn-
thetic data, by construction, includes data at translations down
to 0.3 Å and with barriers smaller than 20 kcal/mol, cases not
covered in the trajectories, where small interatomic distances are
disfavored and thus rare. Translations found in trajectories start
from 0.7 Å, but the vast majority is larger than 1.2 Å. (Figure SI.1
B)

The correlation of barriers with translation allows the intro-
duction of a cutoff after a certain translation, rather than one
dependent on the energy barrier, which would be unknown be-
forehand. Here, we chose a translation cutoff of 2 Å or 3 Å to fo-
cus on thermochemically probable HAT reactions, i.e., those with
barriers mostly lower than 100 kcal/mol and to thereby consider
HAT reactions most relevant in an actual protein material. In the
following, performance metrics for both cutoffs are presented.

To assess the quality of the method, an ensemble of models was
trained on all available training data, and evaluated on the whole
test data or only on the trajectory systems of the test data. We
chose to evaluate on the trajectory data as a major application of
the energy prediction is the prediction of HAT for conformations
of proteins (here collagen) encountered during MD simulations.

Performance metrics are summarized in Figure 3. Panels A and
B show the performance for trajectory systems with translations
below 2 Å, i.e., focus on the most feasible HAT reactions, while
panels D to F show measurements using all available trajectory
data. As can be seen from Figure 3 A and B, we achieve MAEs
of 2.4 kcal/mol for the model ensemble and 2.7 kcal/mol for in-
dividual models on the trajectory data with the translation cut-
off in place. The accuracy improved significantly when including
more quantum chemical data into the training, all the way up to
∼90 % of the training data, which corresponds to 12662 individ-
ual barriers (Figure 3 C). The amount of training data generated
at the BMK/6–31+G(2df,p) level thus is approximately required
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Fig. 3 Model performance predicting HAT barriers on test data. (A) Predicted energy barriers vs. ground truth using the PaiNN ensemble model on
trajectory test data with translation < 2Å. (B) Histogram of the prediction errors of individual PaiNN models and the ensemble model. The mean
of both distributions is shown as a vertical line. (C) Performance of three individual models trained on fractions of the complete training set. 100%
corresponds to 15633 training points. (D) Predicted energy barriers vs. ground truth using the PaiNN ensemble model on all trajectory test data. (E)
Predicted energy barriers vs. ground truth using ten PaiNN models on all trajectory test data. (F) The absolute error of the PaiNN ensemble model
on all trajectory data versus the standard deviation of the predictions of individual models within the ensemble. In red, the mean cumulative sum is
plotted, and in the background a frequency plot of occurring errors.

to reach this accuracy, but also appears to suffice, as the learn-
ing curve flattens towards the end. The accuracy decreases for
systems with bigger translations and energy barriers, as shown
in Figure 3 D and E: The removal of the translation cutoff intro-
duces more high-barrier systems to the test set, which seem to
be harder to predict exactly. For the prediction of the propaga-
tion pathway of a radical in a complex environment, this might
be acceptable though, as reactions with high energy barriers are
unlikely to occur under ambient conditions. As mentioned, the
use of an ensemble model also brings the advantage of an un-
certainty measure: the standard deviation between the models.
In Figure 3 F, the absolute ensemble error is plotted against the
ensemble standard deviation together with a rolling average. For
a low standard deviation (smaller than 1.7 kcal/mol), one can
assume a low prediction error (< 3 kcal/mol) quite confidently.
On the other hand, higher standard deviations no longer scale
reliably with the error.

To understand to what degree a given part of the data improves
the model, multiple models were trained on different parts of the
training data and evaluated on a subset of the test data. The mod-
els were trained on trajectory and synthetic data, or on trajectory

data only. Additionally, several translation cutoffs were used, ei-
ther at 2 or 3 Å or without a cutoff. In all cases, the models were
evaluated on trajectory data below 2 or 3 Å. This setup shows
that the model benefits from being trained on synthetic systems
alongside trajectory systems, even if it is evaluated only on tra-
jectory systems. (Figure 4 A) Similarly, the model performance
for systems with translations smaller than 2 Å improves when it is
trained on larger translations. Overall, data that is rather distant
from the target prediction with regard to its chemistry and geom-
etry still significantly adds to the predictive power of the model.

So far, we showed that the model can well reproduce activa-
tion energies close to DFT accuracy on structures from MD tra-
jectories and synthetic ones. However, as mentioned previously,
realistic energy barriers are expected to be closer to those com-
puted for at least partially optimized systems. But, since opti-
mizations at the DFT level of theory for the entire data set are
prohibitively expensive, only a subset of reaction paths were op-
timized BMK/6–31+G(2df,p) method. The mean absolute de-
viation between the barriers computed for frozen geometries
and barriers of optimized reaction paths is 13.6 kcal/mol (Fig-
ure SI.3). Notably, the activation energies of synthetic systems
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change less when optimized compared to barriers from trajectory
systems. This is likely due to higher atom density in trajectory
systems: it is more likely in trajectory systems that atoms inter-
fere with the transition path. In other words, the lowest energy
reaction path changes more in trajectory systems relative to the
interpolated path. This analysis also serves as a validation for
the bottom-up structure building process. If the built structures
were unreasonable, they would change more drastically during
optimization compared to the structures produced by MD simu-
lation. At a given translation, the optimized reactions generally
show lower barriers (see also Figure 2 F).

To correct for the deviation between the barriers computed
for non-optimized and optimized reaction paths, models already
trained on non-optimized systems were retrained in a transfer
learning scheme to be as data-efficient as possible. When using
transfer learning, one often freezes most of the network and re-
trains only parts of it. Here, however, we found the best results
when not freezing any part of the model. Still, models trained
with transfer learning substantially outperform models trained on
optimized data alone. (Figure 4 B) Note that only the training tar-
get, i.e., the barrier, was changed for transfer learning, and not
the input to the model. The same non-optimized structures are
fed into the model, as it is intended to be used on non-optimized
structures from MD simulations. In other words, the model learns
a mapping between non-optimized MD structures and DFT barri-
ers of the optimized reaction paths.

The ensemble model for predicting barriers after transi-
tion state optimization achieves an MAE of 3.6 kcal/mol when
trained on trajectory data with translations of less than 2 Å and
4.9 kcal/mol when trained on all trajectory data (Figure 5 A and
B, respectively). The learning curve of the transfer learning pro-
cedure in Figure 5 C suggests that the model is data limited, as
the accuracy increases in particular from 90% over 95% to 100%
of the optimized test data.

While the model does not reproduce the DFT results per-
fectly, its error is approaching the accuracy of the underlying
target method. The authors of the functional of our choice,
BMK, targeted an accuracy of 2 kcal/mol on energy barriers,19

and, depending on the benchmarks, BMK achieves an MAE of
0.8 kcal/mol to 5 kcal/mol relative to CCSD(T) calculations.26 27

To justify the use of an arguably complex graph neural network,
we compared it to two simpler methods, a densely connected
feed-forward neural network and a random forest model (as im-
plemented in scikit-learn28). For both methods, we used the L-
MBTR24 descriptor as input and the barriers computed for non-
optimized reactions as targets. Details on the network architec-
ture and input generation are given in the Methods section. Using
an ensemble of ten models, the feed-forward neural network ac-
complishes an MAE of 4.8 kcal/mol, and single models achieve
5.1 kcal/mol on average over all trajectory data (see Figure SI.4).
The random forest model achieved an MAE of 6.6 kcal/mol (Fig-
ure SI.5). Taken together, these results highlight the need for
more sophisticated representations and models to capture subtle
structural differences.

Our ultimate aim is to model the chemistry of radical-induced
damage to collagen whilst simultaneously capturing the dynamic

A

B

Fig. 4 Differently trained models evaluated on comparable subsets of
the test data. (A) Comparison between models trained on different data
sets as indicated on the y-axis. 2A, 3A, and aA correspond to data with
translations below 2A, 3A, or all translations, respectively. ’traj’ refers
to data only from trajectories, ’both’ includes in addition the synthetic
data. Four models were trained per data set.
(B) Comparison between transfer learning and training directly on the
optimized data only. Again, both models were evaluated on trajectory
data <3 Å and <2Å. All ten original models are used in transfer learning,
ten new models were trained for the direct learning approach.

nature of this system. Kinetic Monte-Carlo (KMC) method en-
ables incorporating reactions into MD on timescales beyond those
covered by conventional MD simulations. A hybrid KMC-MD ap-
proach models reactions in a Markov-process, allowing arbitrarily
big time jumps between reaction steps.29 Previously, we coupled
KMC with MD to simulate homolytic bond rupture in stretched
collagen fibrils in a method called KIMMDY.17 Our GNN-based
model for predicting reaction barriers allows applying the KIM-
MDY approach to radical transfer reactions. Inferring an energy
barrier of a reaction from a trained neural network within a re-
active MD simulation substitutes the otherwise computationally
costly quantum chemical calculation, and only marginally com-
promises the efficiency of standard MD simulations.

In the past, several methodologies were developed to achieve
reactive MD, including reactive force fields, such as ReaxFF30

and AIREBO31, hybrid quantum mechanical / molecular me-
chanical (QM/MM) simulations, and, more recently, molecular
dynamics simulations paired with machine-learned force fields
(MLFF).32 33 However, all these methods are slower compared
to regular MD34 and are by default restricted to reactions on the
timescale of the simulation. KIMMDY overcomes these drawbacks
but relies on the availability of reaction rates, which can now be
provided with the model introduced here.

While the model extends the applicability of KIMMDY, one
should keep the underlying limitations in mind. The type of re-
actions one can predict is predefined. The model predicts hydro-
gen atom transfer only, while we can not rule out proton coupled
electron transfer to play a role in this system. Further, tunneling
effects are ignored, and all QM calculations are performed in the
gas phase. The advantage of our approach is that it can be im-
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Fig. 5 Performance of the transfer-learned ensemble model on (A) trajectory test data < 2Å and on (B) all trajectory test data. (C) Learning curve
of the transfer learning process. The test MAE of the individual models is shown.

proved and adopted straightforwardly, e.g. by transfer learning.

4 Conclusion

In this work, we introduced a workflow to train machine learn-
ing models for fast predictions of activation energies of hydrogen
atom transfer reactions. Our model was trained and evaluated
in the context of radical migration in collagen fibrils, but can be
transferred to other chemical systems subject to HAT reactions.
Since the predicted reaction barriers are based on 3D structures of
molecules, the model can be used in direct conjunction with MD
simulations. For example, utilizing predicted barriers in a kinetic
Monte-Carlo scheme, one can extend MD simulation to allow HAT
reactions to take place in a dynamically evolving molecular sys-
tem. Our study emphasizes the strength of graph neural networks
for predicting chemical reactivity – even in such challenging cases
as dynamic biopolymers.
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