KIT | KIT-Bibliothek | Impressum | Datenschutz

Connectivity Optimized Nested Graph Networks for Crystal Structures

Ruff, Robin; Reiser, Patrick; Stühmer, Jan; Friederich, Pascal ORCID iD icon 1
1 Institut für Theoretische Informatik (ITI), Karlsruher Institut für Technologie (KIT)

Abstract:

Graph neural networks (GNNs) have been applied to a large variety of applications in materials science and chemistry. Here, we recapitulate the graph construction for crystalline (periodic) materials and investigate its impact on the GNNs model performance. We suggest the asymmetric unit cell as a representation to reduce the number of atoms by using all symmetries of the system. This substantially reduced the computational cost and thus time needed to train large graph neural networks without any loss in accuracy. Furthermore, with a simple but systematically built GNN architecture based on message passing and line graph templates, we introduce a general architecture (Nested Graph Network, NGN) that is applicable to a wide range of tasks. We show that our suggested models systematically improve state-of-the-art results across all tasks within the MatBench benchmark. Further analysis shows that optimized connectivity and deeper message functions are responsible for the improvement. Asymmetric unit cells and connectivity optimization can be generally applied to (crystal) graph networks, while our suggested nested graph framework will open new ways of systematic comparison of GNN architectures.


Volltext §
DOI: 10.5445/IR/1000165107
Veröffentlicht am 30.11.2023
Originalveröffentlichung
DOI: 10.48550/arXiv.2302.14102
Dimensions
Zitationen: 1
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Anthropomatik und Robotik (IAR)
Institut für Nanotechnologie (INT)
Institut für Theoretische Informatik (ITI)
Publikationstyp Forschungsbericht/Preprint
Publikationsjahr 2023
Sprache Englisch
Identifikator KITopen-ID: 1000165107
HGF-Programm 43.31.01 (POF IV, LK 01) Multifunctionality Molecular Design & Material Architecture
Umfang 19 S.
Vorab online veröffentlicht am 09.08.2023
Schlagwörter Machine Learning (cs.LG), Materials Science (cond-mat.mtrl-sci), Chemical Physics (physics.chem-ph), J.2
Nachgewiesen in arXiv
Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page