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ABSTRACT: Chemical and molecular-based computers may be
promising alternatives to modern silicon-based computers. In
particular, hybrid systems, where tasks are split between a chemical
medium and traditional silicon components, may provide access
and demonstration of chemical advantages such as scalability, low
power dissipation, and genuine randomness. This work describes
the development of a hybrid classical-molecular computer
(HCMC) featuring an electrochemical reaction on top of an
array of discrete electrodes with a fluorescent readout. The
chemical medium, optical readout, and electrode interface
combined with a classical computer generate a feedback loop to
solve several canonical optimization problems in computer science
such as number partitioning and prime factorization. Importantly,
the HCMC makes constructive use of experimental noise in the optical readout, a milestone for molecular systems, to solve these
optimization problems, as opposed to in silico random number generation. Specifically, we show calculations stranded in local
minima can consistently converge on a global minimum in the presence of experimental noise. Scalability of the hybrid computer is
demonstrated by expanding the number of variables from 4 to 7, increasing the number of possible solutions by 1 order of
magnitude. This work provides a stepping stone to fully molecular approaches to solving complex computational problems using
chemistry.

■ INTRODUCTION
The approaching limits of modern silicon computing motivate
research into alternative computing paradigms. Silicon-based
computers following a von Neumann architecture can be
inefficient for some processes due to a limit on data throughput
caused by the inherent separation of the memory and processing
units. The number of transistors within a device has greatly
increased, allowing for the execution of more complex tasks.
However, high heat dissipation and power constraints,1−3 along
with increasing costs and complexity in manufacturing, limit
further increases of transistor density.4 Molecular or chemical-
based computers may be one attractive family of alternative
computing systems. Chemical computers have been developed
based on reaction-diffusion systems and oscillating chemical
reactions such as the Belousov−Zhabotinsky (BZ) reaction,5−12
while molecular computers have historically utilized DNA or
other biological molecules to assist in computations.13−17 More
broadly, molecular approaches to a variety of critical computa-
tional subsystems, including memory,6,18−23 image processing
and recognition,24,25 digital circuits,26 and logic gates,27−31 are
being pursued to investigate the nature of any perceived
molecular advantage.

A hybrid classical-molecular computer (HCMC)32 couples
chemical and digital analogues of a set of state variables. Having
some tasks performed within a chemical medium and other tasks
performed by traditional silicon components can allow certain
advantages of molecular information processing to be accessed
such as scalability, low power dissipation, and genuine
randomness. Hybrid computing frameworks are designed with
the intent to go beyond their individual computing compo-
nents.33−35 For example, our HCMC can allow for programm-
ability, which is a current limitation of purely chemical
computing systems. Taken together, a demonstrative HCMC
can provide substantial value as a stepping stone to evaluate
molecular approaches to key computing subsystems, even
though the approach is not fully molecular. Here, we present the
implementation of an HCMC that consists of spatially distinct
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sites (we will refer to these “sites” throughout this paper) in an
aqueous gel containing a payload of chemical reagents on top of
a two-dimensional (2D) lattice of electrodes. To design and
evaluate the HCMC, we have tested the hybrid computer on
several well-studied problems in computer science, including
problems that are representative of a nondeterministic
polynomial time (NP)-complete class such as Boolean
satisfiability problems, specifically 3-satisfiability (3-SAT), and
number partitioning, as well as non-NP problems such as 2-
satisfiability (2-SAT) and factorization. Importantly, we show
that this architecture allows the chemical and electronic noise
based in the physical infrastructure to directly and constructively
influence complex algorithms in well-defined ways that may
otherwise be expensive or suboptimal to achieve using a digital
computer alone.
The generalized HCMC architecture is shown in Figure 1 and

consists of a simple feedback loop that couples information
processing from a classical computer with a chemical system.
This autonomous feedback loop forces the chemical and digital
versions of a given variable to stay synchronous, enabling either
physicochemical or digital events to dynamically update the
information stored in both the digital and chemical registers,
which are copies of each other. The chemical matrix, a gel, sits on
top of a printed circuit board (PCB) chip with individually
addressable electrodes that define the chemically active sites,
Figure 1a. Importantly, the chemical variables encode
information among the ensemble of molecules at the site
proximal to each electrode. The chemical information
comprising the states of the molecules over the working
electrode sites is passed to the classical computer to manipulate
the digital variables for processing, leading to output as
potentials applied at the electrodes coupled to the chemical
components, Figure 1b. In combination, the chemical and digital
variables work together to solve computational problems, using
properties unique to the digital and chemical environments to
aid in processing.
For the chemical variables to be computationally useful, the

chemical properties must be tunable in a manner that is
reversible and responsive to electrochemical input signals and
must themselves be capable of providing a robust signal that can
be measured during readout. For this demonstrative HCMC, a
simple redox reaction capable of bringing about reversible pH
changes is employed, with a pH sensitive fluorophore, carboxy-

SNARF-1, added to allow optical readout of the system states.
The fluorescence readout is captured by cameras and is then
processed by a classical computer, which converts the
fluorescence reading into a digital state variable. The chemical
and digital manifestations of each variable are interchangeable
with a full two-way commuting relationship. Information is
transferred from the chemical to the classical computer by
fluorescence detection and from the classical computer to the
chemical system by electrochemical control.
To use the chemical variables for problem solving, the HCMC

must construct a many-to-one mapping between the microstates
of the chemical system and an abstract mathematical formal-
ism.36 For this purpose, we define the pH of the site to be
analogous to the two spin states of an idealized Ising model37 or,
equivalently, quadratic (two-local) unconstrained Boolean
optimization (QUBO). The Ising model is a paradigm that
can be used to solve hard combinatorial optimization problems,
with a wide range of applications including logistical operation,
biomolecule structural optimization,38−40 circuit design,39,41

and machine learning.42,43 Simulated annealing processors have
previously been shown to be able to solve NP-Hard
combinatorial optimization problems. Various types of digital
and simulated annealers and Ising solvers have been
developed,44−51 but our system uniquely utilizes a molecular
fluorescent response both as an input to couple to the digital
representation and as a readout of the final or interim states.
A given combinatorial optimization problem can be

represented as a problem Hamiltonian, which then can be
mapped onto the Ising Hamiltonian. A general Ising
Hamiltonian for a two-state system of binary variables is defined
as

H s s sg
i

N

i i
i j

N

ij i j
1

= +
= < (1)

where si and sj represent spins (+1 or −1) for variables i and j,
while α and β are problem specific coupling coefficients. The
problem of choice is encoded into these coefficients, with αi
representing the local field for an individual variable as a vector
and βij denoting the interaction energy or coupling between two
variables as a matrix. To find the solution, one must find the
optimal spin configuration such that the overall scalar value ofHg
reaches a minimum given specific α and β.

Figure 1. (a) Electronic schematic diagram of printed circuit board (PCB) chip featuring four individually addressable working electrodes (E1−4), and
three counter electrodes (CE) connected to a programmable power supply. (b) General concept of hybrid classical-molecular computer (HCMC),
electrode chip with electrochemical redox reaction of benzoquinone and hydroquinone resulting in changes to [H+] concentration. The pH changes
are then measured optically using the fluorescence emission from a pH sensitive dye, which is spectrally separated to collect the ratio of the two
emission peaks. The intensity ratio is then used in a classical computer to calculate the computational states of each variable and apply potentials at the
electrode surface. This feedback loop is repeated until the computation converges.
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The HCMC has two distinct overall inputs: the problem
Hamiltonian that defines the external relationships between the
sites as a function of the state that each site maintains and the
initial values of the states, which can be any value between (−1,
+1). The Hamiltonian matrix defines the sign and strength with
which a pair of sites interact, represented by the β coupling
coefficient. The interactions between the states along with the
local field for the individual state, represented by the α term, are
used in combination to yield a continuous scalar field over the
space spanned by the state vectors. These couplings are a direct
analogy to the mechanical linkages in a historical differential
analyzer,52,53 which constrain the relationships between the
variables of the mechanical analogue computer. The classical
computer part of the HCMC also generates outputs used to
induce couplings between the individual variables by actuating
the electrodes. Specifically, the classical computer controls a
potentiostat to apply voltages at the electrodes, inducing an
electrochemical reaction and thereby changing the local pH. As
the system evolves, the pH is measured and read out using a
ratiometric fluorescent dye. The dye, carboxy-SNARF-1, allows
for the ratio of its two fluorescence emission peaks to be linearly
converted to pH, and in turn, converted to a numerical state
value ranging from +1 to −1. By using a classical computer to
host the information about site interactions virtually, inter-
actions are not limited to nearest neighbors linked by diffusion
and electrokinetic transport. Instead, the information contained
in the sites can simply be linked by a classical computer, and the
difficult engineering problem of creating tunable physical
interconnects between sites is sidestepped. This compromise
allows the HCMC to go beyond 2-body couplings, as defined by
eq 1, and instead allows for high-order interactions based on the
number of sites used. The Ising Model can then be redefined to
describe interactions between higher-order terms with eq 2,
where problems using n sites are defined by h(n) tensors
containing the n-site coupling terms.32

H h h s h s s h s s s
i

N

i i
i j

N

ij i j
i j k

N

ijk i j k
(0)

1

(1) (2) (3)= + + + + ···
= < < <

(2)

This version allows for full connectivity between all of the
variables encoded in the problem Hamiltonian, making higher-
order coupling or interactions between sites possible. This
arrangement expands the types of computational problems
which can be tackled by this demonstrative HCMC.32

A gradient descent algorithm is applied in the classical
computer to the computational representation of the state at
each site so that the entire systemmoves toward a minimum or a
solution to the computational problem. Gradient descent
algorithms find minima by taking steps based on the steepness
of the gradient with each step’s direction being dependent on the
current state and the value of the function’s instantaneous
gradient at that point. The step size is a scaling factor for how far
the algorithm can move down the gradient at each step and is
tuned by the user to optimize performance. For the HCMC, the
position or gradient at each step uses the state value derived
from the fluorescent output. The algorithm uses the slope of the
scalar cost function for each problem, rather than calculating
absolute values, which allows us to solve problems whose global
minima have a nonzero absolute value. However, this approach
is susceptible to converging to local minima.
The cost function for a problem can be rugged, with multiple,

sometimes nearly degenerate, low energy local minima. For the
HCMC to successfully solve the problem, it must identify and
converge (halt) on the configuration corresponding to the
lowest scalar value, the global minimum. Importantly, the
HCMC can get trapped in local minima during the gradient
descent and converge on the wrong solution. One common way
to combat this process is to perform multiple initializations at
different starting states to obtain a distribution of all converged
states thereby increasing the probability of convergence toward
the global minimum. Additionally, it has been shown that
stochastic noise or random perturbations added to the
optimizer, resulting in a stochastic gradient descent, can speed
up the calculation by reducing the probability of being trapped in
local minima.51,54−56 However, the way noise is generated is not
always ideal. For example, all digital number generators are
pseudorandom, meaning they can be predicted. An alternative
can be found in the experimental measurements themselves.
Intrinsic hardware noise has been reported as beneficial in
solving combinatorial optimization problems using a memristor-
based neural network system.57 Additionally, sensor noise in an
optical cavity has also been theorized as a resource to increase
sensitivity in low-power or noisy conditions.58 This phenomen-
on is true both for classical and quantum systems,59 but has not
been explored in chemical systems.
By the design of computational paradigms that take advantage

of the inherent experimental noise instead of deterring it, new
chemical processes and designs can be used for chemical and
molecular computing. The effect of noise on the computational

Figure 2. (a) Experimental optical setup for monitoring pH changes in chemical reaction gel on the 2D electrode array. (b) Fluorescence images of
reaction gel used to calculate an intensity ratio (IR) which is used as an experimental input to the (c) classical computer to use in the gradient descent
along with (d) the in silico inputs, such as the Ising Hamiltonian for the problem as well as the initial states for the sites at the first step of the
computation. The classical computer outputs a potential at the electrode chip via a multiplexed potentiostat to induce pH changes monitored via the
experimental readout, IR. (2mm scale bar,WF−Widefield lens, DC-1-505 nm dichroicmirror, DC-2-610 nmdichroic mirror, 1×Objective, LP− 532
nm and 540 nm long pass filters).
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efficacy inspired questions about how inherent experimental
noise could aid or limit the annealing process in a HCMC.

■ RESULTS AND DISCUSSION
Optical Experimental Setup. The HCMC includes a

purpose-built microscope, Figure 2a, with wide-field illumina-
tion provided by a 488 nm laser. Fluorescence is collected using
a 1X air objective and directed toward cameras, passing through
a 505 nm long pass dichroic mirror, a 532 nm long pass filter, and
a 540 nm long pass filter to remove excitation light. The
fluorescence is spectrally resolved into two color channels using
a 610 nm long pass dichroic mirror and focused onto two
separate cameras which capture the emission from the two
fluorescence peaks of the pH indicator.
Electrode Array Design.We use a simple and cost-effective

custom-made electrode array with an electrode size of 1 mm

placed in a hexagonal grid to maximize the connectivity of
multiple working electrodes with counter electrodes. All
electrodes were gold-plated by the PCB manufacturer. The
electrode arrays were fabricated using standard PCB manu-
facturing; see Supporting Information (SI) for details.
Chemical Encoding, Input, and Readout. The chemical

system for encoding information in the HCMC is a hydro-
quinone/benzoquinone redox couple dissolved in an aqueous
buffered F-127 Pluronic gel containing a fluorescent reporter.
The gel is pipetted onto a PCB-based electrode chip.60 The
Pluronic gel allows for a solidlike matrix reducing diffusion
across the electrode chip, which keeps the chemical changes
localized over the specific electrode surface but does not hinder
electrophoretic motion. The quinone redox couple allows for a
reversible way to manipulate pH when it is paired with applied
potential from the electrodes. There is around a 1 pH difference

Figure 3. Progression of the hybrid classical-chemical computer solving a Number Partitioning problem using Mode 3 (see the text for details). (a)
Evolution of states throughout the computation, where S1−S4 represent the four sites, and the value of the problem Hamiltonian (H) at each step of
the computation. (b) Fluorescence images of the reaction gel on the electrode chip with artificially colored circles depicting the state value at various
steps, scale bar is 2 mm. (c) The value of the intensity ratios over time during the computation, where vertical lines represent each step of the
computation.
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between the −1 state and the +1 state for each site participating
in the computation. The formulations and specific pH values for
each site corresponding to the computational states are
described in the SI.
Readout is provided by fluorescence, which optically assesses

the pH of the gel region over each electrode and thereby conveys
the computational state of each variable. These fluorescent
measurements allow for a real-time, in situ readout.61 To
optically monitor pH, we used a ratiometric pH-sensitive
fluorophore with a pH-dependent emission spectrum,62,63

Carboxy-SNARF-1, which has previously been used to
measured intracellular pH.64−68 The fluorescence emission has
two peaks at 580 and 640 nm, and the ratio between these two
peaks can be calibrated to read out pH. The use of a ratiometric
pH sensor is critical, as a pure intensity readout can be changed
by interference from electric field-induced concentration
fluctuations, aggregation, and photobleaching. The intensity
ratio (IR) between these two channels, which is proportional to
pH, is passed to the classical computer and converted into a state
value, Figure 2b,c. The fluorescence signal is therefore used not
only as a readout of the chemical information but also as an input
to the classical computer.
Classical Processing and Output. To process the

ratiometric responses from these images, the coarse location
and approximate size of electrodes participating in the
computation are initially determined manually and refined
using image segmentation that employs a watershed algorithm69

to identify the electrode region, Figure 3b, all before the
computation begins. The state values, converted from the
experimental IRs, are used as the input in the gradient descent
calculation performed by the classical computer, Figure 3. As
previously mentioned, the gradient descent algorithm uses the
state values along with the user-determined step size to
determine the target state values for the next step. Alternatively,
a stochastic gradient descent algorithm can be utilized through
the addition of random computer-generated noise to the target
states. This noise will be termed in silico noise and can be
optionally added. To achieve the determined target state, a
potential is applied at the electrodes via a multiplexed
potentiostat, which allows independent iterative control of up
to 7 electrodes, Figure 2b. A proportional-integral-derivative
(PID) algorithm is used to reach the target IR corresponding to
the target state with the PID gains tuned to avoid overshooting
by the potentiostat. The PID loop consists of the potentiostat
manipulating the potentials over the electrodes while the
changing IRs are monitored using the optical setup, Figure 3c.
Once the IR values at all participating sites are within a set
threshold of the target, the PID loop for that step in the gradient
descent is finished, and the next step can be taken. This is
illustrated by the vertical lines shown in Figure 3c. The user-set
threshold determines how close the experimental IR needs to be
to the targeted set point before proceeding to the next step. This
PID loop is performed for each step of the gradient until the
minimum is found. A movie of the fluorescence response is
provided in the SI, showing the HCMC using 7 sites (working
electrodes) where the PID gains were set to induce an
exaggerated fluorescence response. Combining all of these
parts, the HCMC can be successfully run starting at either
random or specific initial states and converging on the global
minima, thus solving various optimization problems, including
number partitioning, Figure 3, and 2-SAT, Figure S7.
An accompanying numerical simulation engine was devel-

oped describing the various physical phenomena that occur

during the computation when using the HCMC. The simulation
engine creates a generalized electrode array network by
combining Kirchhoff’s equations coupled with a Secondary
current distribution model. The calculated time-dependent
current profiles are then combined with a buffer dynamics model
to describe localized pH changes over the electrodes (see SI).
Combined with a dynamic pH control algorithm using
proportional logic, this supporting simulation demonstrates
good experimental resemblance, as well as explains the hallmarks
of experimental non-idealities, such as ringing in the
experimental PID loops, and can aid in parameter optimization
as well as instantiating a large-scale problem on an electronic
chip.
Evaluating the Role of Experimental Noise.TheHCMC

is designed to solve quadratic combinatorial optimization
problems using a gradient descent algorithm with a fluorescent
molecular signal as the input and readout. As previously
mentioned, added stochastic noise aids convergence to a global
minimum by preventing the possibility of getting stuck in local
minima, saddle points, or plateaus. Importantly, we examined
the impact of HCMC’s intrinsic noise when solving
computations.
Three operational modes of the HCMC were investigated:

Mode 1 uses what have been termed “idealized states”, where the
states in each step of the gradient are identical with the set points
determined by the classical computer; Mode 2 uses “in silico
states”, which are idealized states but with an added stochastic in
silico noise component, resulting in a stochastic gradient
descent; Mode 3 uses “measured states”, which convert the
experimentally achieved IR signal into the state for the
computation with no added in silico noise. As Mode 1 does
not include any noise component, the HCMC is expected to
either not be able to progress through the computation, in
contrast to the run displayed in Figure 3, or be more likely to get
trapped in local minima, resulting in convergence on incorrect
answers. Mode 3 also does not include an in silico noise
component; however, the experimental noise within the
measurement is expected to be a beneficial source of
stochasticity with potentially large enough fluctuations to
avoid repeating the failed trajectories observed in Mode 1.
To investigate the role of experimental noise, multiple

complementary experiments involving number partitioning
problems were performed. Number partitioning is a NP-
complete problem, which asks: for a given set of numbers,
how can they be divided into disjointed subsets with equal sums?
Number partitioning has been called the “easiest hard
problem”70 in terms of its complexity. For the purpose of
investigating the role of noise, we have selected a simple problem
consisting of a small number of variables that still produced a
nontrivial cost function with multiple solutions. The number set
{1,2,3,1,3} was selected, and an Ising Hamiltonian for the
problem was generated, Figure 2d; see SI for details regarding
Hamiltonian generation. The Hamiltonian corresponding to
this problem is non-negative and minimized at H = 0, when the
sums of the two sets are equal. This five-number set was
expressed using four variables with the first number {1}
automatically assigned to a +1 state (s0) without a loss of
generality. The other four numbers are assigned to the spatially
distinct gel areas over individual electrodes, referred to as sites.
The state values (si) for the remaining numbers {2,3,1,3}
describe to which subset each number belongs and will be
defined by the fluorescence IR values at Sites 1, 2, 3, and 4. A
depiction of this problem can be seen in Figure 4. The correct

ACS Central Science http://pubs.acs.org/journal/acscii Article

https://doi.org/10.1021/acscentsci.3c00515
ACS Cent. Sci. 2023, 9, 1453−1465

1457

https://pubs.acs.org/doi/suppl/10.1021/acscentsci.3c00515/suppl_file/oc3c00515_si_002.avi
http://pubs.acs.org/journal/acscii?ref=pdf
https://doi.org/10.1021/acscentsci.3c00515?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


partition solution (H = 0) for this problem is {1,1,3} and {2,3}.
However, as the number three is repeated twice in the set for our
problem, there are two different ways this partition can be
expressed using our sites. One solution, Solution A, is where the
number two associated with Site 1 would be paired with the
number three associated with Site 2, Figure 4a− Solution A. The
second solution, Solution B, has the number two associated with
Site 1 paired with the number three on Site 4 instead, Figure 4a
− Solution B. To express that these numbers are grouped
together, the state values of these sites must be the same, Figure
4b.
Starting with Solution A, the state values for Sites 1 and 2

should be the same, meaning that both sites should either be +1

or −1. However, there is an additional constraint: the first
number in the number set is already assigned a +1 state.
Consequently, Sites 1 and 2 are unable to take the +1 state, as
this would result in the partitioning of {1,2,3} and {1,3}, which is
incorrect. Therefore, Site 1 and Site 2 must take a −1 state,
which gives Solution A [−1,−1,1,1], visually depicted in Figure
4− Solution A. For the second solution, Site 1 is paired with Site
4, both will take the −1 state, resulting in Solution B [−1,1,1,−
1], Figure 4 − Solution B.
Interestingly, Solutions A and B differ by two variables, the

second and fourth, both of which have oppositely signed values
of 1. When plotting the cost function for this problem with
respect to Sites 2 and 4, and with Sites 1 and 3 at constant
solution state values (−1 and +1 respectively), a symmetric
saddle shape emerges, Figure 5. The flat saddle point is located
at [−1,0,1,0], Figure 5-I. The value 0 here represents the
midpoint state value between the two extreme state values, −1
and +1. There are two maxima located in Figure 5-II at states
[−1,1,1,1], and in Figure 5-III at states [−1,−1,1,−1], with
equal values for the problem Hamiltonian. The landscape also
shows the two solutions, Figure 5-A [−1,−1,1,1] and Figure 5-B
[−1,1,1,−1], both with the problem Hamiltonian equal to 0.
Based on this function, three separate initial states were selected
as starting points to explore how noise affects system evolution:
[−1,0,1,0] (Initial State I, Figure 5-I), [−1,1,1,1] (Initial State
II, Figure 5-II), and [−1,−1,1,−1] (Initial State III, Figure 5-
III).
For these experiments, the HCMCwas run using each of the 3

operational modes described above, Mode 1 using idealized
states, Mode 2 using in silico states, and Mode 3 using measured
states. Twenty repeats were performed for each mode at each of
the three initial states, resulting in a data set of 180 runs; see
Table 1. The distribution of the converged states is shown in
Figure 6.
When starting at the saddle point (Figure 5-I) and using

Mode 1, the idealized states, the computation immediately and
erroneously converges on the initial states [−1,0,1,0] for all the

Figure 4. Visual depiction of the number partitioning problem and two
correct solutions. The three columns correspond to the numbers in the
problem (left), the grouping for solution A (center), and solution B
(right). (a) The problem represented by the numbers in the problem,
(b) the state values at Sites S1−S4, and (c) depiction of changes
observed on the electrode chip via fluorescence.

Figure 5. Scalar value cost function for theNumber PartitionHamiltonian when Sites 1 and 3 are kept constant (at−1 and +1, respectively) and Sites 2
and 4 are varied from −1 to +1 states. Labeled states correspond to (I) Saddle point [−1,0,1,0], (II) first maximum point [−1,1,1,1], (III) second
maximum point [−1,−1,1,−1], and Solution (A) [−1,−1,1,1] and Solution (B) [−1,1,1,−1].
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runs carried out in this mode (100%), Figure 6. Here, with the
starting point at the saddle and without the addition of any
stochastic in silico noise, the gradient experiences a flat slope and
incorrectly determines this scenario to be a minimum, as
expected. When repeating the computation starting from the
same initial state but with Mode 2, in silico states with noise, the
computation was always able to converge on one of the two
correct solutions, with a 40:60 split between Solutions A and B.
Excitingly, with Mode 3, which uses the experimentally
determined measured states, the computation is once again
able to run smoothly and converge to both global solutions,
resulting in a 25:75 split between Solution A and B across all
runs, a similar distribution of converged states as when using
Mode 2. This result is important, as it clearly shows that the
experimental noise inherent to the empirical measurement in the
chemical system is significant enough to allow the HCMC to
leave this flat portion of the energy landscape while not
impeding convergence.
We then switched to an alternate starting point: one of the

maxima on the cost function Figure 5-II. Without any additional
noise at Mode 1, the HCMC is only able to find one of the two
correct solutions (100%). In contrast, runs at both Modes 2 and

3 were able to converge on both solutions with similar
distributions; see Table 1.
Finally, when starting at the second maximum, Figure 5-III,

runs at Mode 1 all converged on states [1,−1,1,−1] (100%),
which does not match either of the two solutions or the initial
state. For this set of converged states, the state value for the first
site has flipped, from −1 to +1. When plotting the cost function
for this case, it is illustrative to switch to Site 1 and Site 2 as the
independent variables, Figure 7. We see another saddle, but this
time it is asymmetric, with the global minimum at one of the
correct solutions, Solution B, Figure 7-B and a new local
minimum (LM) at states [1,−1,1,−1], Figure 7-LM. When
using Mode 2 we see a split of 40:40:20 between solutions A, B,
and the LM. Excitingly, runs at Mode 3 also demonstrate a
distribution of the converged states, with a 55:40:5 split between
Solutions A, B, and LM. This again supports that the intrinsic
experimental noise is beneficial to the HCMC to solve
computations, seen previously with experiments starting at
Initial State I. Additionally, the magnitude of the noise present
also shows a benefit in reducing convergence at local minima,
with similar statistical results compared to Mode 2, using the in
silico states. Therefore, it is reasonable to run the HCMC using
the measured states with experimental noise in lieu of in silico
noise.
Sources and Magnitude of Experimental Noise. While

the above results show how experimental noise benefits the
function of HCMC, there are still unanswered questions about
the origins and magnitude of the experimental noise. As the
complexity of computational problems changes, the amount of
noise that is beneficial vs inhibitive changes as well. By
identifying the sources of experimental noise within the
HCMC, it becomes possible to program or tune the noise,
depending on the complexity of the problem. As mentioned
earlier, the optimal noise to carry out a stochastic process has
been heavily studied in the context of classical and quantum
dynamics.59

For the experimental noise to impact the computational
ability of the computer, it must be present in the experimental

Table 1. Distribution of HCMC-Found Solutions of Number
Partitioning Computations

Mode 1 −
Idealized States

Mode 2 −
In Silico States

Mode 3 −
Measured States

Initial
State I

A: 0/20 A: 8/20 A: 5/20

B: 0/20 B: 12/20 B: 15/20
Initial State I:
20/20

Initial
State II

A: 0/20 A: 9/20 A: 8/20

B: 20/20 B: 11/20 B: 12/20
Initial
State III

A: 0/20 A: 8/20 A: 11/20

B: 0/20 B: 8/20 B: 8/20
LM: 20/20 LM: 4/20 LM: 1/20

Figure 6. Bar graphs showing the distribution of answers, where each graph corresponds to a separate initial state, with Initial State I (left), Initial State
II (center), and Initial State III (right). The states converged by our system correspond to the Initial State I, the two solutions, A and B, and a local
minimum (LM). Colors correspond to the three different operational modes for the HCMC.
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input used in gradient descent. The experimental input
originates from the measured fluorescence-detected IRs, which
are based on the electrochemically generated pH changes.
Therefore, the magnitude of fluctuations in the optical
measurements of fluorescence or the electrochemical compo-
nents responsible for the change in pH must be determined. As
these fluctuations will be quantified in terms of intensity ratios, it
is possible to convert the noise to state variables and obtain the
relative scale of the noise in state space. In other words, the
conversion allows us to compare the experimental noise to the in
silico noise added in the previous section when running the
HCMC at Mode 2.
Before investigating the experimental noise, it is necessary to

discuss what exactly qualifies as in silico noise. The in silico noise
in the HCMC is a randomly selected number from a normal
Gaussian distribution generated via Python. The Gaussian
distribution is centered over the integer zero with the standard
deviation or width of the distribution specified by the user. The
randomly selected number is applied to the state value after the
next step in the gradient is calculated but before it is executed. As
the offset applied at each step changes, the standard deviation
selected by the user is what will be broadly referred to as the in
silico noise. For the experiments above, runs at Mode 1 had a
standard deviation of 0 selected, while at Mode 2 a standard
deviation of 0.1 was selected.
Runs at Mode 3, using measured states, had a standard

deviation of 0, meaning no in silico noise was added. Importantly,
however, there is experimental noise present that allows the
HCMC to perform successfully. To determine the magnitude of
experimental noise, the noise in the optical measurements was
first quantified. A reaction gel containing SNARF-1 dye was
examined under the same conditions used in the computational
runs. The reaction gel was imaged for 5 min without an applied
potential, and the standard deviation in the average fluorescence
IR signal over the electrodes was quantified. This measurement
includes noise from the imaging setup, such as the read noise of
the cameras and the noise in the intensity of the laser, as well as

any background fluorescence from the electrode chip. The
standard deviation was converted into an effective in silico noise
value by using the linear relationship between the IR and state.
The percent standard deviation along with the calculated
equivalent in silico noise value are shown in Table 2. The
equivalent in silico noise value calculated is an order of
magnitude smaller than what was used in Mode 2.

For the electrochemical apparatus, the noise in the current at
each electrode was measured under a variety of conditions. This
measurement includes noise in the potential applied on the
electrode surface, fluctuations in current caused by interactions
at the electrode surface, and noise in the measurement of the
current itself. The current was measured by the potentiostat
while performing a controlled potential chronoamperometry
experiment. A gel was placed onto the electrode chip and imaged
in the same way as described above but with various constant
applied potentials. The potential in each case was held constant
for 5 min while the current was measured. The noise in applied
potential alone was also measured independently but was found
to be insignificant; see SI. The measured current traces were
converted to charge traces, which were used to determine the
gain or loss of protons over time due to the oxidation or
reduction of the quinone couple. By assuming 100% Faradaic
efficiency, a maximum possible contribution from current noise
can be determined as each fluctuation in the measured current is
assumed to reflect changes in the production or loss of protons

Figure 7. Scalar cost function for Number Partitioning Hamiltonian where Sites 3 and 4 are kept constant at +1 and−1, respectively, and Sites 1 and 2
are varied from +1 to−1. Two minima are observed, (B) a global minimum at state values [−1,1,1,−1] corresponding to Solution B, and (LM) a local
minimum at state values [1,−1,1,−1].

Table 2. Quantified Experimental Noise

Description
Percent Standard
Deviation (%)

Calculated Relative
In Silico Noise

Noise from Optical
Measurement

0.22 (±0.05) 0.02

Noise from Electrochemical
Measurement

0.0010 (±0.0002) 0.0001

Noise from Complete
Experimental Measurement

0.25 (±0.05) 0.02
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in solution at the electrode. After accounting for buffering, these
fluctuations in proton concentration (and thus pH) can be
equated to a change in the IR over time. As shown in Table 2, the
maximum contribution to the experimental noise from the
electrochemical apparatus is significantly less than the
contribution from the optical measurement.
Finally, to investigate how the optical and electrochemical

components of the noise collectively contribute to the noise in
the IR, a gel was imaged while maintaining a set IR over many
minutes. The gel was initiated at pH 7 and then potentials were
applied using the PID loop to bring all the active electrodes to
approximately pH 7.5 (state = −1, IR = 0.85). This experiment
combines the noise contributions from the two previous
experiments discussed above. The noise calculated from these
experiments was comparable to the optical noise measurements,
Table 2.
From these experiments, the noise in the optical measure-

ments appears to be the biggest contributor to the overall
experimental noise with the largest standard deviations. To
understand what effect this magnitude of noise has on the
computational solving ability of the HCMC, we return to the
previous number partitioning problem. When starting at Initial
State III, convergence at a local minimum was observed. At
Mode 1 with no in silico noise, the HCMC always converged on
the local minimum. Switching to Mode 2, with an in silico noise
value of 0.1, the frequency of local minimum convergence drops
to only 20%. The computation was repeated at Mode 2 starting
at Initial State III at varying in silico noise values (see SI). The
HCMC needed at least an in silico noise value of 0.01 to find the
global minima; however, the success rate was fairly low, with
only 26% of runs converging correctly on global minima and
74% converging on the local minimum. Increasing the in silico

noise to 0.02, a magnitude similar to the experimental noise, the
HCMC performance improves to 54% convergence at global
minima. This supports that the experimental noise derived from
the optical measurement is significant enough to benefit the
HCMC’s performance.
To establish the contribution from fluctuations in the

molecular population above the electrode surfaces, the Poisson
noise in the SNARF-1 population was estimated.71 The number
of SNARF-1 molecules present in the gel over a single electrode
surface in the implemented HCMC is around 5 × 1013
molecules. With this number of molecules, the relative
fluctuation in the number of SNARF-1 molecules in a particular
protonation state would be around 1 × 10−7, which is too low to
impact the trajectory of the HCMCwhen starting at Initial State
III. This estimation further supports that the major contributor
to the experimental noise in this implementation of the HCMC
is from the optical measurement itself.
Seven Electrode Computations and Beyond. A benefit

of the HCMC platform is the ability to increase the number of
variables inexpensively. Scaling up the number of electrodes
used allows the HCMC to tackle higher variable counts and
more difficult computational problems. To explore this ability,
we increased the number of working electrodes to seven to
access new computational capabilities. For this implementation
of the HCMC, there was a limit of seven working electrodes
based on the specificmultiplexed potentiostat used. TheHCMC
atMode 3, that is, usingmeasured states as the input, was used to
solve 3-SAT problems with 7 variables with 28 clauses (shown in
Figure S8). The 3-SAT problem is an NP-complete problem
that asks whether a set of clauses in propositional logic is
satisfiable. 3-SAT specifies that there are at most 3 variables
within each clause. The HCMC has also successfully solved

Figure 8. Progression of a computation by the hybrid classical-chemical computer solving a prime factorization problemwith sevenworking electrodes.
(a) Evolution of states throughout the computation, where S1−S7 represent the seven sites, and the value of the problem Hamiltonian (H) at each
step. (b) Fluorescence images of the reaction gel on the electrode chip with artificially colored circles depicting the state value at various steps; scale bar
is 2 mm. (c) The value of the intensity ratios over time during the computation, where vertical lines represent each step in the computation.
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number factorization problems, as demonstrated by the
decomposition of 91 into prime factors 7 and 13 (Figure 8).
Details about the generation of the problemHamiltonian can be
found in SI. Prime factorization is a problem in the computa-
tional class NP, where given an integer (N) the goal is to find the
two prime numbers whose product is N. This problem has two
solutions, 7 × 13 and 13 × 7, which are expressed in binary
numbers by the states. We ran this factorization problem to the
point of convergence on the HCMC 10 times, with 8 of the 10
runs resulting in convergence on the correct solution.
To continue to solve more complex and higher value

problems consisting of more variables, more sites, and therefore,
electrodes, will be needed, and a discussion of the scaling of
variables and need for distinct sites can be found in the
theoretical simulations performed by Guo et al.32 Scaling up to
increased variable counts beyond those in the current work
could be achieved straightforwardly by using larger numbers of
electrodes addressed within a larger optical field of view. The use
of microelectrode arrays would allow for hundreds or thousands
of electrodes to fit in an area even smaller than the active area in
this work,72 while increased magnification and camera pixel
arrays would enable the corresponding increase in readout,
allowing for increased complexity and computational power in
the same form factor through miniaturization. While physically
increasing the number of electrodes would be relatively simple
through alternative chip design, the actual implementation of
accessing hundreds (or thousands) of individually addressable
electrodes, along with maintaining and changing the pH over
those sites, would be nontrivial. The ability to control via a
potentiostat each electrode could be challenging to scale, while
adjustments to the experimental PID controls would be required
to ensure stable pH changes and minimize electrochemical side
reactions at each site. One way to handle this scaling is to use
microdroplets with programmable payloads to optimize the
behavior of the electrode−microdroplet pair, where compart-
mentalization can enable enhanced local programmability and,
consequently, performance.32 Finally, fine-tuning the computa-
tional parameters would be required to access the full scalability
benefits of the HCMC. Still, none of these problems are
intractable, and there are additional benefits that could be
achieved through miniaturization, as discussed below. One
hundred electrodes would be sufficient to capture a Traveling
Salesperson optimization with ten variables.32

In the limit of very small microdroplets of solution on these
arrays, the HCMC could even retain high readout signal-to-
noise while benefiting from Poisson noise among the now small
molecular population as a new source of stochasticity, as
discussed above. In this regime, the Poisson noise, which is white
and truly random, could be easily controlled by modulating the
size and concentration of the microdroplets.73 To achieve an
HCMC state standard deviation of at least 0.02 from Poisson
fluctuations of emissive molecules, a population of at most 2500
molecules would be needed, easily achievable, and visible within
microdroplets.
This stepping stone has also identified a number of challenges

of this specific approach as well as chemical approaches in
general to achieve a fully chemical computer that can compete
with classical and even quantum implementations. Issues with
clock speed will be ever present in systems requiring significant
mass transport, though miniaturization can help to reduce this
gap. Solution-phase molecules, with chemically identical
environments, should allow for reproducible dynamics, but
this reproducibility has not yet been demonstrated in chemical

computing and should not be taken for granted, particularly in
mesoscale implementations. Stability in certain chemical
systems has been demonstrated to be extremely high,19,22 but
the need for optical readout and electrochemical cycling in our
system, and the degradation processes that result, will certainly
require additional optimization and may constitute important
technology hurdles. Still, in some cases the need for inexpensive
implementations may allow some degree of toleration of slower
speeds or decrease component lifetime.32

■ CONCLUSION
We have designed a programmable hybrid classical−molecular
computer that maintains a set of state variables encoded both
digitally and chemically. Digital information is stored conven-
tionally in silico, while the chemical information is encoded in a
pH-sensitive gel on top of an electrode array. Changes to the
state variables can be communicated via a feedback loop
between the digital and the chemical variables. Spectroscopic
monitoring of pH using a ratiometric dye transfers information
from the chemical domain to the digital domain. Information
then transfers from the digital to the chemical domain via
electrochemical potentials applied by an electrode array. Such an
architecture enables chemical and digital operations in either
domain to concurrently modify the state variables, enabling the
execution of a single algorithm distributed across the two
physical domains. The role of the intrinsic experimental noise
within the HCMC was investigated and shown to be beneficial
to solve classic NP-hard problems, without the need for in silico
noise (pseudo random numbers) which is often used in
combinatorial optimization problems. More generally, this
investigation is the first to explore the role of experimental
noise in chemical computing. The modality of the HCMC
system allows for inherent inexpensive scaling, increasing the
number of variables and complexity of the possible problems by
simply increasing the number of working electrodes via the use
of microelectrode arrays. Additionally, our experiments
demonstrate that the experimental noise within the measure-
ment is sufficient to solve not only 4-variable number
partitioning problems but also 7-variable problems, such as
prime factorization and 3-SAT. Thus, this work demonstrates
the use of key molecular subsystems as part of a functional
HCMC. This demonstrative HCMC opens the way to more
complex computational problems that take advantage of
chemical behavior and development of more fully molecular
implementations.
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