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Abstract

The demand for precise, data-efficient, and cost-effective exploration of chemical1

space has ignited growing interest in machine learning (ML), which exhibits re-2

markable capabilities in accelerating atomistic simulations of large systems over3

long time scales. Active learning is a technique widely used to reduce the cost of4

acquiring relevant ML training data. Here we present a modular, transferrable, and5

broadly applicable, parallel active learning orchestrator. Our workflow enables6

data and task parallelism for data generation, model training, and ML-enhanced7

simulations. We demonstrate its use in efficiently exploring multiple excited state8

potential energy surfaces and possible degradation pathways of an organic semi-9

conductor used in organic light-emitting diodes. With our modular and adaptable10

workflow architecture, we expect our parallel active learning approach to be readily11

extended to explore other materials using state-of-the-art ML models, opening12

ways to AI-guided design and a better understanding of molecules and materials13

relevant to various applications, such as organic semiconductors or photocatalysts.14

1 Introduction15

Data science and machine learning have been brought into the spotlight of education, research, and16

industry of chemistry and material science [1]. Applications such as the generation and selection17

of molecule candidates [2], molecular property prediction [3, 4, 5, 6], reaction condition screening18

[7, 8] and product prediction[9, 10] have shown superior capacity of ML on accuracy and efficiency19

over conventional methods that are based on human intuition or quantum calculations.20

To tackle the challenge related to the (computational) cost of data acquisition, active learning (AL)21

has become increasingly popular. Active learning allows the targeted identification of informative22

but unlabeled instances by querying information sources with a variety of strategies (e.g. query-by-23

committee [11]) and aims to reduce the amount of data needed to train highly accurate ML models,24

thereby minimizing the labeling cost [12] and maximizing data efficiency. Active learning has been25

applied successfully in fields such as molecular dynamics simulation [3, 13, 14, 15, 16] and reaction26

property prediction [17, 18].27

Despite the improved performance, most current active learning algorithms still suffer from the28

overhead of serial execution of different tasks. For example, the model training process may halt and29

wait for new data while the information querying process is running. This serial workflow usually30

fails to take full advantage of modern computational resources. To address this issue, we design a31

parallel active learning orchestrator that enables both data and task parallelism on computer clusters32

(Figure 1). The Message Passing Interface (MPI) [19] based workflow includes parallel execution of33

multiple learning, prediction, exploration, and data generation processes.34
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Figure 1: The computational architecture of the parallel active learning orchestration workflow.

Figure 2: Molecule 1.

We demonstrate the capabilities of our approach by the application to dynamics simulations of35

molecule 1 (Figure 2) with 6 excited electronic states to explore its potential energy surface (PES)36

and investigate its degradation pathways. We deployed our active learning orchestrator on a hybrid37

CPU-GPU system parallelized across two nodes, with 4 ML training and 4 ML prediction processes38

on GPU coupled in parallel with 89 molecular dynamics (MD) simulations processes, and 30 quantum39

calculation (QC) processes based on CPU hardware. We achieve accurate predictions matching40

low-statistics reference calculations. Due to the speedup gained through the use of fully trained neural41

network (NN) potentials, we are able to explore possible degradation pathways of 1, including C-S42

bond and C-H bond cleavage reactions.43

2 Parallel active learning orchestrator44

The active learning workflow we propose in this study consists of five kernels working in parallel:45

1. prediction kernel, 2. generator kernel, 3. oracle kernel, 4. training kernel, and 5. controller46

kernel (see Figure 1). Prediction kernel: The NN models in the prediction kernel perform energy47

and force predictions for the same set of inputs. The average predictions are distributed to each48

simulation in the generator kernel. The model weights are updated by copying weights from the49

corresponding models in the training kernel after a given number of training epochs, to keep the50

prediction models as updated as possible. Generator kernel: An arbitrary number of simulations are51

running in the generator kernel, taking energy and force predictions to propagate MD trajectories52

which explore the input space to find unseen molecular geometries. Oracle kernel: To evaluate the53

prediction uncertainty, the standard deviation of energy predictions of NNs in the prediction kernel is54

evaluated in each step. Predictions with a standard deviation above a given threshold are distributed55

to quantum chemistry calculations in the oracle kernel, to generate new labels for retraining. This56

strategy is known as query-by-committee [11] and is widely used for active learning. Training57

kernel: Quantum chemistry results are collected to enlarge the training set of the NN models in58

the training kernel (in our case 50 new data points per active learning iteration), which undergo59

continual training until new data points are added or early stopping is triggered to prevent overfitting.60

The weights of training kernel models are regularly copied to the prediction kernel, and training is61

restarted, in our case without resetting model weights or the learning rate scheduler. Controller62

kernel: Data communication as well as standard deviation calculation, and metadata storage (oracle63

input buffer and training data buffer) in the workflow are managed by a controller kernel. However,64

to ensure highly efficient and uninterrupted communication between the prediction and generator65
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kernel, updated model weights are transferred directly from the training kernel to the prediction66

kernel. For the purpose of executing the parallel active learning workflow on distributed- and hybrid67

systems, data communication processes were implemented with the Message Passing Interface (MPI)68

based on the Python package mpi4py [20] to leverage parallel computing resources across multiple69

computational nodes. Further details on ensuring that the labeling of redundant data points during70

parallel execution is avoided can be found in the appendix.71

In the specific active learning application presented in this work, active learning assisted molecular72

dynamics (ALMD) based surface hopping simulations with Zhu–Nakamura theory of surface hopping73

(ZNSH) [21] were used in the generator kernel to explore the excited state dynamics and degradation74

pathways of molecule 1. Training data, i.e. electronic properties of the respective molecular75

geometries, is generated in the oracle kernel using time-dependent DFT (TD-DFT) calculations76

(B3-LYP functional and def2-SV(P) basis set). We used the NewtonX (v2.2) [22] and PyRAI2MD77

[3] packages for MD simulations in the generator kernel, respectively, and Turbomole (v7.7) [23] for78

QC calculations in the oracle kernel.79

ALMD is initialized by sampling geometries from non-adiabatic molecular dynamics simulations80

(NAMD) trajectories from an initial data set. The fewest Switches Surface Hopping (FSSH) method81

was used for initial NAMD calculations that resulted in 29 trajectories and 94,419 data points with82

geometries, energies, and forces for 6 excited states (see appendix for more details).83

As our use case aims at high accuracy and speed, rather than generalizability to other molecules,84

we use a fully connected neural network (NN) with an inverse distance representation inspired by85

prior work[14, 3]. The NN is trained to predict energies using a combined energy and force mean86

squared error loss function, with forces trained as derivatives of energies. The NN models consist of87

6 softplus activated hidden layers, trained using the Adam optimizer.88

3 Results and discussion89

3.1 Accuracy and speed of the trained ML potential90

To test and benchmark the accuracy and speed of ML potentials trained on initial and AL-generated91

data, we trained two times four neural in a bootstrapping manner, with 5,000 and 10,000 neurons92

per layer, respectively (see Table 1). For both NN sizes, training with the initial data and additional93

data from active learning results in R2 > 0.99 for energy predictions, suggesting an almost linear94

correlation between NN predictions and QC ground truth labels. Due to memory limitations on the95

GPUs used here, we restricted the parallel active learning workflow to the NNs with 5,000 neurons96

per layer. Larger and potentially even more accurate models would be possible with appropriate data97

loaders, but the use of (equivariant) graph neural networks is a more promising alternative for further98

development.99

The forward pass of a single molecular geometry of a single NN with 5,000 (10,000) neurons per100

layer to predict energies and forces takes 178.7 ms (461.2 ms) on a single CPU. As a comparison,101

a TD-DFT calculation requires on average 754 seconds for a single molecular geometry, which102

indicates a 4.2× 103 (1.6× 103) acceleration of using a NN to propagate MD compared to a DFT103

calculation. A further speedup can be obtained when using GPUs and parallelizing over many104

molecular geometries in a batch-wise way. A forward pass of 89 geometries in parallel with the 5,000105

neurons per layer model on a GPU takes on average 51.4 ms (37.4 ms for a single geometry).106

3.2 Convergence analysis of the parallel active learning workflow107

As the initial training data set was constructed from only a few ab initio MD trajectories, it is to be108

expected that it does not cover the relevant input space sufficiently well. To investigate the capacity109

of active learning to explore the conformational space outside of the initial training set distribution,110

we analyzed different events that led to terminations of MD trajectories in the generator kernel. As111

shown in Figure 3, initially only half of the trajectories terminated normally after reaching 2,000 steps112

at the beginning stage of active learning. This drastically changed as more of the input space was113

explored and most trajectories terminated early with standard deviations of the energy predictions114

exceeding the threshold. We then observed that the number of normally terminated trajectories slowly115

increased again and converged to almost 100% as the active learning process converged. This implies116

a strong change in the parameter distribution and thus robustness of the NNs due to a more general117
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Table 1: NN sizes (neurons per layer) and MAE with R2 of predicted energies (eV) and forces
(eV Å−1). The initial data set consists of 53,112 data points, and the size of the training set is 71,524
after the AL workflow with an additional 18,412 data points generated during active learning.

With initial data With AL data

NN size 5,000 10,000 5,000 10,000 (on CPU)

Energy MAE (R2) 0.0385 (0.9986) 0.0328 (0.9988) 0.1059(0.9907) 0.0356(0.9986)

Force MAE (R2) 0.0507 (0.9979) 0.0515 (0.9978) 0.1443 (0.9839) 0.0483 (0.9981)

Figure 3: The time development of the trajectory termination reasons as a function of the progression
of the active learning workflow. The termination events are counted for 3,345 trajectories for each of
the 89 MD generators (297,705 trajectories in total).

data distribution in the training set, even though only approximately 18,000 data points were added to118

the initial 53,000 data points. We refer to Section 5.8 of the appendix for additional analysis of the119

development of the NNs during active learning iterations. AL runs with smaller initial datasets are120

currently under investigation.121

3.3 PES exploration of aryl sulfone oxide122

In order to validate the trained ML models, the electronic state distribution of trajectories resulting123

from ALMD and NAMD simulation were compared (see Figure 4 and the appendix). In Figure 4,124

the trajectories were initialized from the first excited state. Due to the larger amount of trajectories125

explored, ALMD trajectories show a smooth change of state population compared the the 29 available126

NAMD trajectories. The agreement between ML-predicted and QC-calculated state populations,127

especially after convergence at approximately 500 fs suggests sufficiently accurate energy and force128

predictions by the ML model. The remaining differences might be attributed to the difference between129

the ZNSH and the FSSH method.130

Due to its speed, the ALMD method is able to uncover possible degradation pathways of 1 by tracking131

bond lengths of thousands of trajectories, potentially also over longer time scales. As shown in132

Figure 5a, trajectories with cleavage of C-S bonds were observed by ALMD, matching the results133

of previous studies in literature [24, 25]. In contrast to that, NAMD only captured the cleavage of134

one C-S bond (Figure 5a, orange trajectories). A further, unexpected reaction was detected with two135

hydrogens detached from the methyl group, forming a hydrogen molecule (Figure 5b). No correlation136

between C-S and C-H bond cleavage reactions was observed (see appendix).137
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(a) ALMD trajectories (ours). (b) NAMD trajectories (reference).

Figure 4: State populations for trajectories initialized at S1. Populations average 25,810 ALMD
trajectories and 29 NAMD trajectories.

(a) C-S bond length. (b) C-H bond lengths (methyl group).

Figure 5: Abnormal bond lengths detected with ALMD.

4 Conclusion, limitation and ongoing work138

In summary, we introduced a modular parallel active learning orchestrator that achieves independent139

execution of high-throughput MD simulations, QC calculations, and ML model training. The140

workflow efficiently generates training data to obtain ML models with high accuracy for energy141

and force prediction and rapidly explores the PES of a 38-atom organic molecule 1 with 6 excited142

electronic states. We were able to detect rare cleavage reactions of C-S bonds and C-H bonds, which143

potentially lead to the degradation of 1. With the adaptable architecture, we expect this parallel144

active learning workflow to be readily extended to other application scenarios, including atomistic145

simulations and beyond.146

One limitation of the current work includes the use of fully connected NN, which brings challenges147

when applied to other molecular systems. Furthermore, in this work, we consider the standard148

deviation of multiple neural networks as the only criterion for data selection, while the performance149

of the workflow could benefit from other heuristics such as molecular or geometrical similarity.150

Besides, in this work, the generators were then restarted by sampling geometries from the initial151

NAMD data set. To enhance exploration, failed geometries could be buffered and revisited later152

by generators to explore spaces more frequently that are unfamiliar to the ML models. To test the153

limits of our workflow, we are currently running ALMD simulations of up to 10 ns (which takes154

approximately 2 weeks). For degradation reactions found by the workflow, we plan to investigate155

the relationship between the bond lengths and energies to identify, better understand, and potentially156

manipulate transition states by changing the molecular structure.157

The active learning orchestrator is written in a modular and non-application-specific way. The kernels158

(oracle, training, prediction, generator) can be easily replaced and adapted for other scenarios and159

applications, within but also outside of atomistic simulations. Further use cases are being developed160

currently and will be published in the form of a customizable parallel active learning library.161
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5 Appendix258

5.1 Distribution of energy and force data in the initial data set259

As described in Section 5.3, in this work, the initial data set was generated with non-adiabatic260

molecular dynamics simulations (NAMD) that were started from S1, S5 and S6 respectively. This261

led to an unbalanced distribution of energy (Table 2) and force (Table 3) data for different electronic262

states. As summarized in Table 2, the number of quantum calculation (QC) energy data of S0 to S3263

was significantly larger than S0 to S5 and S0 to S6, as the number of corresponding trajectories was264
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much larger in the initial data set. Besides, the number of force data of S1 also greatly outperformed265

other states while there was no force data for S0 (see Table 3) due to the NAMD setting that left out266

the coupling between S0 and other states thus no relaxation to S0. To address this issue, we employed267

a masking mechanism for the loss function explained in Section 5.5.268

Table 2: Distribution of quantum calculated energies for different states in the initial data set.

States S0 - S3 S0 - S5 S0 - S6

Energy data amount 43,598 10,837 16,380

Table 3: Distribution of quantum calculated forces for different states in the initial data set.

State S0 S1 S2 S3 S4 S5 S6

Force data amount 0 56,211 9,297 3,827 1,273 984 367

5.2 Oracle buffer updates to avoid redundancies in data269

To ensure the efficiency of the workflow and to avoid labeling redundant data points, input candidates270

in the oracle buffer are evaluated by retrained NNs in the training kernel every time training is271

interrupted by the arrival of new data. The standard deviation of energy predictions is calculated272

and coordinates with standard deviation below the threshold are discarded from the oracle input273

buffer. The remaining atom coordinates are sorted according to prediction standard deviation with274

the most uncertain geometries being sent to oracle first in order to minimize the amount of costly275

DFT calculations. An MD trajectory propagated in the generator kernel is terminated if it runs into a276

molecular geometry with abnormal bond length or the standard deviation of the energy predictions277

exceeds the threshold.278

5.3 Generator and oracle kernels279

For active learning assisted molecular dynamics (ALMD) calculations incorporated in the generator280

kernel of our parallel active learning workflow, we applied Zhu–Nakamura theory of surface hopping281

(ZNSH) [21] instead of the more widely used Fewest Switches Surface Hopping (FSSH) method[26,282

27], as the non-adiabatic couplings are challenging for ML prediction [3, 28]. ZNSH estimates283

the probability of surface hopping based on energies only and has been successfully applied to284

excited-state dynamics studies.285

5.4 Initial training data and reference calculations286

ALMD is initialized by sampling geometries from NAMD trajectories of the initial data set. FSSH287

was used for initial NAMD calculations that resulted in 29 trajectories initialized in the first excited288

state (S1), 11 trajectories initialize in the fifth excited state and 8 trajectories initialized in the sixth289

excited state. Each trajectory was simulated for a duration of 1 picosecond, employing a time-step290

of 0.5 femtoseconds. 94,419 data points were collected from all trajectories with atom coordinates,291

forces for corresponding states, i.e. S0 to S3, S0 to S5, and S0 to S6.292

5.5 Training and prediction kernels293

As our use case aims at high accuracy and speed, rather than generalizability to other molecules,294

we use a fully connected neural network (NN) inspired by prior work[14, 3]. The NN is trained to295

predict energies using a combined energy and force mean squared error loss function, with forces296

trained as derivatives of energies. To handle the incomplete energy and force data for some electronic297

states in the initial training set, we incorporate a masking mechanism in the loss function to leave298
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Figure 6: Standard deviation vs. mean absolute error of energy predictions. Results are shown for
23,605 data points that were drawn out of the initial data set, separated from the initial training set,
and used as the test set.

out missing labels during the training process. The NN takes as the input an inverse distance-based299

feature representation of 1, which consists of 703 features resulting from N = 38 atoms. There300

are 7 electronic states (ground state and 6 excited states; k = 6) that lead to 7 energy values and301

k × 3N = 798 force components. The NN models consist of 6 layers with e.g. 5,000 neurons per302

layer and a softplus activation function. The training process is carried out with the Adam optimizer.303

For initial training, we adopted an exponential decrease of learning rate from 10−6 over 1000 epochs,304

while the learning rate was fixed to 10−7 during the active learning iterations. The NN models were305

implemented using TensorFlow/Keras (v2.10).306

5.6 MD step timing and communication overhead307

The most time-critical element of the active learning approach is the generator kernel, which is closely308

linked with the prediction kernel, with communications happening multiple times per second. We309

recorded the time required by different components of the ALMD simulation and found the bottleneck310

being the energy and force predictions in the prediction kernel, which took on average 51.4 ms per311

prediction and thus per MD step, in comparison with the MPI communications and trajectory312

propagation that required 9.1 ms. The total time to propagate one MD step for 89 trajectories adds313

up to 60.5 ms. Removal of the oracle- and training kernels did not affect this result, indicating that314

additional communication and data processing does not reduce the performance of the rate-limiting315

step.316

5.7 Standard deviation vs. model error317

The standard deviation vs. corresponding mean absolute error (MAE) of energy predictions on the test318

set of the initial distribution is plotted in Figure 6, indicating a positive correlation between the two319

metrics. This finding matches both the results from previous studies [29] as well as the hypothesis of320

query-by-committee strategy [12] to estimate model errors through prediction uncertainty evaluations.321

We also observed that states with less amount of energy training data tend to have lower gradients of322

standard deviation over MAE, suggesting a more rapid growth of prediction errors due to the lack of323

training data (e.g. S6 v.s. S3).324

5.8 History of the initial training and testing results of NNs during active learning325

Training and validation mean absolute error metrics for energy and force are summarized in Figure 7,326

which demonstrate the capacity of NNs with 5,000 neurons to fit the energy and force data without327

overfitting.328
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Figure 7: Energy and force training curve for NN model with 5,000 neurons.

Figure 8: Energy prediction MAE of NNs with 5,000 neurons on a fixed test set after each retrain
iteration. The test set with a size of 23,605 was drawn from the initial dataset and separated from the
initial training.

Figure 8 displays testing results of NNs with 5,000 neurons after each training iteration on the energy329

test set from the initial data set (separated from the initial training set). The noteworthy change in the330

MAE, especially the increase in the beginning of the active learning iterations, suggests a shift in331

data distribution during the active learning workflow. After a sufficient amount of new training data332

is accumulated, the trained neural networks seem to substantially change their parameter distribution,333

leading again to much lower mean absolute errors. As the training dataset distribution puts more334

emphasis on newly explored parts of the conformational space, the mean absolute error on a fixed335

test set from the initial distribution then slightly increases over time.336

5.9 ALMD for aryl sulfone oxide337

Figure 9 serves as a supplement of Section 3.3. The results of trajectories initialized from S6 displayed338

good agreement between ML predictions and QC calculations, as discussed in this work.339
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(a) ALMD trajectories. (b) NAMD trajectories.

Figure 9: State populations for trajectories initialized at S6. Populations average 153,220 ALMD
trajectories and 8 NAMD trajectories.
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