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Abstract—As an important part of automated vehicle de-
velopment and testing, simulation makes heavy use of driver
models to reproduce the behavior of traffic participants. Due to
their simplicity, most models fail to capture driver behavior in
interactive situations like lane changes or merging, where drivers
need to consider multiple vehicles simultaneously and smoothly
approach gaps. We propose the Gap APproaching Intelligent
Driver Model (GAP-IDM), an extension of IDM that takes an
arbitrary number of target vehicles into account and produces
realistic behavior for approaching traffic gaps, even when the
ego vehicle has to overtake or fall behind target vehicles. To this
end, we use a target distance rectification to produce smooth
behaviors even for small or negative distances, and to enforce
time or distance limits on the maneuver. We evaluate the proposed
model in an optional and a necessary lane change scenario and
demonstrate that it generates realistic driving behavior. Possible
applications of our model include simulations of interactive
scenarios, development of complex driver models with multiple
target vehicles, or the use as a low-level policy in a high-level
behavior planning module.

Index Terms—Intelligent Driver Model, Interactive, Merging,
Traffic Gap, Multi-Lane, High-Level Action

I. INTRODUCTION AND RELATED WORK

The development of automated vehicles is an important
step towards safer and more efficient traffic [1]. Automated
vehicles enable novel parking and ride-sharing concepts that
can help reduce the total number of vehicles. In addition, they
offer the potential to make traffic more efficient by integrating
information about other vehicles and their predicted motion,
leading to reduced energy consumption [1].

A major part of the development of automated vehicles
relies on simulation. For example, planning algorithms are
thoroughly tested in closed-loop simulation before being de-
ployed in actual road traffic. This requires realistic models of
other traffic participants and their interactions with the ego
vehicle.

Simulation of other vehicles can also be part of the planning
algorithm itself. For instance, training a reinforcement learning
policy or using a Monte Carlo Tree Search-based planning
algorithm requires simulating other traffic participants as re-
alistically as possible.

One possibility to simulate the behavior of other traffic
participants is to use driver models such as the Intelligent

(a) Optional lane change due to slower vehicle.

(b) Necessary lane change due to lane ending.

Figure 1: Different situations where the blue ego vehicle
approaches the gap between red and green vehicle.

Driver Model (IDM) [2]. Their simplicity and ease of use
make them a natural choice for applications that require fast
and realistic simulation of driver behavior. Their computational
efficiency also makes them interesting for online tree search
algorithms or reinforcement learning applications that require
large amounts of simulation during training.

The IDM is a widely used longitudinal car following model
that balances driving at a desired speed with maintaining a
safe distance to a front vehicle [2]. The model has a small set
of interpretable parameters that can express different driving
characteristics. For this reason, the IDM has served as a
foundation for the development of a multitude of longitudinal
driver models, and has been extended by lane change decisions
[3], acceleration heuristics [4], risk measures [5], cooperative
behavior decisions [6], and multiple targets [7]–[9].

For reasons of interpretability, most driver models are
restricted to simple driving situations and are not able to model
complex interactions between traffic participants. In particular,
we note that currently available, interpretable models fail to
capture the behavior of a driver that is approaching a traffic
gap to merge into. The ability to approach gaps is an important
component of realistic driving behavior, especially in interac-
tive or dense traffic situations that require lane changes, such
as highway on-ramps or merging traffic. Furthermore, it forms
a basis for interactive, more complex behavior models such as
the cooperative IDM [6]. Finally, gaps can be used as high-
level action choices for behavior planning [10] and a driver
model is a computationally cheap way to simulate the resulting
low-level behavior. More generally, the computational cost of
low-level rollouts is important for online tree search algorithms
or reinforcement learning applications.



To approach a traffic gap successfully, multiple vehicles
need to be considered which might not yet be in the right
configuration with respect to the ego vehicle. For example,
the vehicle at the front end of the gap might not be in front
of the ego vehicle at the beginning of the scene, as illustrated
in Fig. 1a.

Buyer et al. consider a linear combination of target vehicles
to determine the ego acceleration [7], [8]. However, this can
result in an unsafe driver model: While the original IDM is
guaranteed to brake when approaching another vehicle, the
linear combination of target vehicles can result in a behavior
that collides with a leading vehicle on the ego lane if the target
vehicle on a neighboring lane is further away.

This issue can be addressed by considering the maximum
over all target vehicles instead of a linear combination [9].
However, none of the models that consider multiple target
vehicles [7]–[9] are able to smoothly approach a traffic gap
which the ego vehicle is not yet well aligned with, i.e., to
which the distance is small or negative. For a small or negative
distance, they instead produce a harsh braking maneuver until
the ego vehicle is aligned with the gap.

An alternative way to merge into gaps consists of planning
the future trajectory to the center of the gap [11]. The
disadvantage of this approach is that the behavior cannot be
tuned as easily as IDM to reflect different driving styles.

This work proposes the Gap AProaching Intelligent Driver
Model (GAP-IDM) which is able to take an arbitrary number
of front and rear target vehicles into account, and realistically
models driver behavior in cases where the distance to the
targets is negative, resulting in smooth gap approaches without
harsh braking maneuvers.

We achieve this by introducing a novel rectification tech-
nique to handle small or negative distances in IDM. In case
of small or negative distances, a rectified value is used in
the GAP-IDM formula, which is computed either by a non-
negative rectifier function or as the distance to a virtual
target vehicle that merges with the real vehicle. This approach
enables us to retain a concise parameter set, only adding
a comfortable acceleration to the standard IDM parameters,
while gaining the ability to smoothly approach traffic gaps.

The presented GAP-IDM can be used in a variety of
applications:
• Producing interactive lane changing and merging behav-

ior for traffic simulations.
• Developing more complex cooperative and interactive

driver models with multiple relevant vehicles.
• Usage as a high-level action representation for behavior

planning with online tree search algorithms or reinforce-
ment learning.

Compared to interactive motion planners [12], [13], GAP-
IDM has the advantage of being very fast to evaluate. Further-
more, being based on IDM, it is simple to implement and use
and retains the same intuitive parameter set, easily capturing
a multitude of driving styles.

Our primary use case in this work is to model the approach
towards a traffic gap on a neighboring lane, with which the

vehicle is not yet aligned, while maintaining a safe distance
to a leading vehicle on the ego lane. While the decision for
a gap to be approached is out of the scope of this work, this
question can be addressed by a high-level planner that uses
the GAP-IDM to simulate the low-level behavior.

We focus on modelling the longitudinal motion for ap-
proaching a traffic gap. The lateral motion for merging into
the gap is not directly addressed in this work, but GAP-IDM
can be easily complemented by lateral motion models such as
MOBIL [3].

II. STEADY STATE OF THE INTELLIGENT DRIVER MODEL

The Intelligent Driver Model (IDM) [2] is a microscopic
traffic flow model that has gained considerable popularity as
a model of longitudinal car following behavior. It satisfies the
equation

aIDM(v, sf , vf ) = a ·

(
1−

(
v

v0

)δ
−
(
s∗(v, vf )

sf

)2
)

where v is the current velocity, sf is the distance to the
front vehicle, vf is the velocity of the front vehicle, and
the parameter vector (v0, s0, T, a, b, δ) comprises the desired
velocity v0, the minimum distance s0 to the front vehicle, the
desired time headway T , the maximum acceleration a, the
comfortable deceleration b, and the exponent δ.

The dynamic desired distance is given by s∗(v, vf ) =

s0 + max
(
0, vT +

v(v−vf )
2
√
ab

)
. On the one hand, this desired

distance maintains the desired time headway in the case of
stationary driving (v = vf ). On the other hand, the velocity
difference term captures an intelligent braking strategy that
tries to limit braking to the comfortable deceleration [2].

The IDM transitions smoothly between free flow and car
following behavior. This leads to the desired velocity also
influencing the driving behavior when following a slower
vehicle: When following a target vehicle that has a constant
velocity vf , the original IDM converges to the steady state
v = vf and distance

sf =
s0 + vfT√
1− (vf/v0)

δ
.

This is problematic if the desired velocity is close to the target
velocity v0 ≈ vf and can lead to unrealistically large distances
in urban driving scenarios [2].

This issue was addressed by separating the free flow and
car following regimes in the IDM+ [14], resulting in

aIDM+(v, s, vf ) = a ·min

(
1−

(
v

v0

)δ
, 1−

(
s∗(v, vf )

s

)2
)
.

Since the IDM+ has two separate regimes for free flow and car
following dynamics, it has a steady state distance of s0+vfT
independent of the desired velocity v0 ≥ vf .



III. GAP APPROACHING INTELLIGENT DRIVER MODEL

The proposed GAP-IDM is an extension of IDM that is
capable of considering multiple front and rear targets on dif-
ferent lanes. It is able to smoothly approach gaps in the traffic
flow that the ego vehicle is not aligned with at the beginning
of the maneuver, as in the case of a front target starting out
behind the ego vehicle. Thus, the model realistically captures
lane-changing and merging situations where the vehicle has to
align itself next to the traffic gap before performing the merge.

This is achieved by first incorporating an interaction term
for rear targets in the acceleration equation, similar to the
car following term. Next, the equations are generalized to an
arbitrary number of target vehicles by considering the vehicle
with the maximal interaction term. To address the case where
the merging vehicle is misaligned with the gap, we rectify
small or negative distances either by using a rectifying function
or by introducing a virtual target vehicle.

In the following, we present extensions of both IDM and
IDM+ to multiple targets and to approaching misaligned gaps,
eventually resulting in the formulation of GAP-IDM.

We denote the free flow term as Ffree(v) = 1 − (v/v0)
δ

and abbreviate the desired distance to the front target as s∗f =
s∗(v, vf ). The original IDM can then be stated as

aIDM(v, sf , vf ) = a ·

(
Ffree(v)−

(
s∗f
sf

)2
)

while IDM+ is given by

aIDM+(v, sf , vf ) = a ·min

(
Ffree(v), 1−

(
s∗f
sf

)2
)
.

We begin the discussion by extending IDM and IDM+
with the possibility to consider rear targets. We proceed by
describing how multiple front and rear targets can be taken into
account. Finally, we present different methods for dealing with
negative target distances, as can occur when merging behind
a target vehicle that is not yet in front of the ego vehicle.

A. The Intelligent Driver Model with Rear Targets

The IDM car following behavior is realized by the interac-
tion term (s

∗
f/sf)

2 which, due to the negative sign, acts as a
repulsive force from the front target vehicle on the ego vehicle.
We add a similar term for the rear target vehicle that pushes
the ego vehicle forward if a rear target approaches.

Let sr denote the signed distance to the rear target. The
sign is chosen such that sr > 0 implies that the rear target is
behind the ego vehicle. The desired distance to the rear target
is given by s∗r = s∗(vr, v). Note that in contrast to s∗f , the first
argument of s∗ is the velocity of the target vehicle, thus using
the time gap and approaching rate of the rear target vehicle
correctly.

As proposed by [9], the IDM can be extended with a rear
target by adding the rear interaction term to the equation.

aGAP-IDM(v, sf , vf , sr, vr) =

a ·

(
Ffree(v)−

(
s∗f
sf

)2

+

(
s∗r
sr

)2
)

Note that this can lead to the ego vehicle driving faster than
its desired velocity. This is in accordance with the behavior
of human drivers who also occasionally drive faster than their
desired velocity to merge into a faster gap.

Adapting the IDM+ for rear target vehicles requires a
slightly different approach. In IDM+ the free flow term is
upper bounded by the interaction term 1−(s∗f/sf)2. To include
the possibility for rear target vehicles, we lower bound the free
flow term by a corresponding interaction term with respect
to the rear target (s

∗
r/sr)

2 − 1. However, this only works if
the rear target interaction term is smaller than the front target
interaction term, i.e., if the rear and front target are sufficient
far apart. In case they are not, we average the front and rear
interaction terms to obtain a continuous acceleration function.
This results in collision free behavior with respect to both, the
front and rear vehicle, in stationary traffic since an impending
collision would lead to sf → 0 or sr → 0, resulting in
maximum deceleration or acceleration, respectively.

To summarize, the GAP-IDM+ acceleration is given by

aGAP-IDM+(v, sf , vf , sr, vr) =
a ·max

(
min

(
Ffree(v), 1−

(
s∗f
sf

)2)
,
(
s∗r
sr

)2
− 1

)
,

if
(
s∗r
sr

)2
− 1 ≤ 1−

(
s∗f
sf

)2
,

a
2 ·
((

s∗r
sr

)2
−
(
s∗f
sf

)2)
, else.

We now show that GAP-IDM+ is continuous in all arguments.

Proof. We only need to consider the boundary of the case dis-
tinction since both defining functions are continuous. To this
end, let (v, sf , vf , sr, vr) satisfy (s

∗
r/sr)

2 − 1 = 1 − (s
∗
f/sf)

2.
Then we have

aGAP-IDM+(v, sf , vf , sr, vr) = a ·

(
1−

(
s∗f
sf

)2
)

=
a

2

(
1−

(
s∗f
sf

)2

+

(
s∗r
sr

)2

− 1

)
=
a

2

((
s∗r
sr

)2

−
(
s∗f
sf

)2
)

In particular, both, GAP-IDM and GAP-IDM+, are able to
approach gaps that are smaller than required by the desired
time gap, which enables to merge into dense traffic.

B. Considering Multiple Front and Rear Targets

In this section, we extend the IDM and IDM+ to take
multiple front and rear targets into account. The targets can
be on the ego lane as well as other lanes the ego vehicle
might change to. For all targets, we consider only longitudinal
distances and velocities, independently of the lane.



A very frequent use case is the approach of a traffic gap on
a neighboring lane, with which the vehicle is not yet aligned,
while maintaining a safe distance to a leading vehicle on the
ego lane. In this case, two front targets and one rear target
need to be considered.

Wang et al. consider multiple front targets by taking the
maximum of the interaction terms over all front targets [9].
We use the same idea to also consider multiple rear targets,
resulting in the equation

aGAP-IDM(v, sf , vf , sr, vr) =

a ·

(
Ffree(v)−max

Vf

(
s∗f
sf

)2

+max
Vr

(
s∗r
sr

)2
)

where Vf and Vr denote the sets of front and rear targets,
respectively.

The GAP-IDM+ acceleration can be adapted in the same
way by taking the maximum interaction maxV (s

∗
/s)

2 over all
front and rear targets, respectively, in the equation.

In case the set of front or rear targets is empty, the maximum
is defined as zero for GAP-IDM and as −∞ for GAP-
IDM+, essentially removing the corresponding term from the
equation.

Due to the maximum operator, at most one front and one
rear target have an effect on the resulting acceleration at each
point in time. For this reason, we will formulate all equations
for a single front and rear target in the remainder of this work.
Nevertheless, those equations are to be understood to be valid
in the general case of multiple targets as well, by means of
the maximum operator, as described above.

C. Approaching Behavior for Negative Distances

A key property of our model is that it produces realistic
behavior even when approaching gaps the ego vehicle is not
aligned with at the beginning of the maneuver, for instance
when a front target starts out behind the ego vehicle. This
capability is necessary for being able to approach traffic gaps.
Mathematically, such situations are characterized by negative
distances to the front or rear targets. In this section, we will
show how the proposed model handles these cases.

The issue is addressed by rectifying the distances with a
function g such that all interaction terms (s

∗
/s)

2 are replaced
by (s

∗
/g(s))

2. The rectifier g must satisfy the following prop-
erties:
• g(s) ≈ s for all s > 0,
• g(s) > 0 for all s ≤ 0,
• g is monotonically increasing.

This ensures firstly that the interaction term does not change
for positive distances, and secondly that it is well-defined for
negative distances.

We note that introducing such a monotonic rectifier also
solves the problem that IDM harshly brakes when the target
vehicle changes due to a lane change and the distance to the
new target is very small, a problem that was addressed by [15]
by introducing a constant acceleration heuristic.

IV. DISTANCE RECTIFIERS

Wang et al. use a rectifier g(s) = max(s, ε) with 0 < ε� 1
[9]. This rectifier has the desired properties, but leads to harsh
braking with the maximum deceleration as long as the distance
to the target vehicle is negative.

We conclude that the properties listed above are only
necessary but not sufficient for reasonable driving behavior.
Indeed, a more realistic behavior would be for the ego vehicle
to smoothly approach the gap within a reasonable time horizon
τ > 0. To achieve this, we need to ensure that g(s) > 0 is not
too small for s ≤ 0, depending on the desired time horizon
τ . In the following, we show different ways of smoothly
rectifying target distances in the GAP-IDM and GAP-IDM+
models.

Figure 1 illustrates two types of gap approaches that we
distinguish: The first type is an optional lane change or merge,
with no restriction on the distance at which the lane change
has to be completed. In this case, the only requirement is that
the gap approach is completed within a reasonable time τ . To
fall back behind another vehicle with similar velocity, human
drivers will typically not brake, but step off the accelerator,
using the engine drag torque to decelerate.

The second type is a necessary lane change or merge,
which has to be completed within a certain distance due, for
instance, to an ending merging lane or an upcoming highway
exit. In such situations, human drivers might occasionally
exceed the desired velocity to merge into a certain gap in
time. Our proposed methods can recover both described human
behaviors.

A. Shifted Softplus Rectification

Our first approach is based on the softplus function
softplus(x) = log(1 + exp(x)), a smooth approximation of
max(x, 0). We introduce a sharpness parameter β > 0 and
shift the argument of the logarithm by α ≥ 0, such that the
rectifier is defined as gα,β(s) = 1

β log(1+α+exp(βs)). This
ensures gα,β(s) > 1

β log(1 + α) ≥ 0 for all s and allows
to tune the resulting behavior by means of the sharpness and
shift parameters. Figure 2 shows gα,β(s) and its inverse for
different values of α and β.

This rectifier results in smooth driving behavior. However, it
is not obvious how to influence the maneuver duration using
the parameters α and β. In particular, it is not possible to
specify that a gap should be reached after a certain distance.
This issue is addressed in the following.

B. Virtual Target Rectification

Our second approach is based on the idea of introducing a
virtual target that merges with the actual target vehicle over
time. A virtual target is introduced if a new target vehicle is
selected on another lane and this new target would lead to a
harsh reaction.

More precisely, whenever a new front target vehicle on
another lane would lead to an IDM deceleration larger than



Figure 2: Shifted softplus rectifier gα,β and its inverse for
different values of α and β.

the comfortable deceleration b, a virtual target is created, i.e.,
if a ·

(
1− (s

∗
f/max(sf , 0))

2
)
≤ −b, or, equivalently, if

s∗f ≥ max(sf , 0)

√
1 +

b

a
.

Likewise, a virtual rear target is spawned if a new rear target
vehicle satisfies s∗r ≥ max(sr, 0)

√
1 + c/a where c is the

comfortable acceleration.
The GAP-IDM acceleration is then computed by replacing

the distance s to the real target vehicle with the distance s̃
to the virtual target vehicle. Thus, the rectifier g(s) = s̃ is
defined implicitly as the distance s̃ to the virtual target.

Initially, the virtual target should not have an effect on the
ego vehicle. Therefore, it is spawned in a steady driving state
with respect to the ego vehicle. As discussed in Section II,
the steady state of the regular IDM has issues close to the
desired velocity. For this reason, we only apply the virtual
target rectifier to the GAP-IDM+ model. The virtual target is
initialized with the same velocity ṽ = v as the ego vehicle
and a steady state distance of s̃ = s0 + ṽT .

We generate the motion of the virtual target using one of the
procedures described below. At each time step or whenever
an acceleration is queried from the GAP-IDM+ model, the
motion of the virtual target is recomputed from its planned
position, given the new environment configuration. To this
end, the planned motion of the virtual target has to be stored
between time steps, leading to a stateful rectifier. This allows
planning the virtual target motion so as to reach a certain
distance after a certain time, by making the maneuver end
time part of the stored state and shrinking the horizon τ at
each time step accordingly.

To determine the virtual target motion, the real target vehicle
is predicted over the time horizon τ using any prediction
module. We denote the predicted position and velocity of the
real target vehicle with p(t) and ṗ(t), respectively. In this
work, we use a simple constant velocity prediction. We denote

p̃(0) p(τ)

Figure 3: The ego vehicle (blue) wants to merge between the
red vehicle and the green vehicle. A virtual target (yellow) is
spawned for the front target (red). The virtual target motion
(yellow, dashed) is generated from its initial position to the
predicted position (orange) of the front target. Until the virtual
target merges with the real target, GAP-IDM drives according
to the virtual target and the rear target (green), as indicated by
the red and green arrows.

Figure 4: Development of the scene from Fig. 1a at t =
0 s, 4 s, 6 s, 8 s using a linear virtual target motion. At t = 0 s
the virtual target is created until it merges with the real target
at t = 8 s.

the initial position of the virtual target vehicle by p̃(0). The
procedure is visualized in Fig. 3.

The time horizon τ is an important parameter for adjusting
the resulting behavior. In contrast to the stateless rectifier
method, we can limit the ego acceleration more precisely and
make sure that the gap is reached before the merging lane
ends, as described in the following.

In an optional lane change or merge, the time horizon τ
can be used to tune the maximum deceleration or acceleration,
respectively. In the case of a necessary lane change or merge,
the maximum distance until which the lane change has to
be completed is given, e.g., by the end of the merging lane.
Using the prediction for the target vehicle, this distance can be
converted to a time horizon and used for τ . Since the virtual
target merges with the real target at the time horizon τ , this
parameter can also be used to guarantee that the gap is reached
at a desired distance.

1) Linear Virtual Target Motion: One way to generate the
motion of the virtual target is to use a linear model. To
this end, the future position of the virtual target is linearly
interpolated between the initial position p̃(0) and the predicted
target position p(τ) over the time inverval [0, τ ]. At the same
time, the velocity of the virtual target is linearly interpolated
between the initial velocity ṽ and the predicted target velocity
ṗ(τ). An exemplary scene development using the linear virtual
target motion is shown in Fig. 4.

2) Jerk-Optimal Virtual Target Motion: An alternative
method is to use jerk-optimal trajectories for the virtual target
motion. Trajectories given as quintic polynomials are known
to minimize the squared jerk [16], resulting in smooth driving
behavior of the ego vehicle.

We compute a virtual target motion that interpolates from



the initial virtual target position p̃(0) and velocity ṽ to the
predicted target position p(τ) and velocity ṗ(τ). We fix the
initial acceleration to q̈0 = −b for front targets and q̈0 = c for
rear targets and the terminal acceleration to zero.

That is, we compute a quintic polynomial q(t) with initial
conditions q(0) = p̃(0), q̇(0) = ṽ, q̈(0) = q̈0, and terminal
conditions q(τ) = p(τ), q̇(τ) = ṗ(τ), q̈(τ) = 0.

To meet a maximum acceleration constraint in an optional
lane change, polynomial trajectories are computed for a range
of τ values. Then their maximum absolute acceleration is
computed analytically and the trajectory with the shortest time
horizon that satisfies the acceleration constraint is chosen,
similarly to [11].

3) Computational Complexity: The addition of virtual tar-
gets is not computationally expensive. They are spawned at
a fixed position and collision checks are not necessary. Both,
the linear and the jerk-optimal virtual target motion, can be
computed efficiently [11].

V. EXPERIMENTS AND EVALUATION

We evaluate the proposed methods in the AutomotiveSimu-
lator.jl1 simulation environment. The methods we evaluate are
the proposed GAP-IDM approach with the softplus rectifier,
the GAP-IDM+ approach with linear and minimum jerk virtual
target, and the baseline method of Wang et al. [9]. We do not
use [7], [8] as baselines since these works are not designed
to account for rear target vehicles and are also not safe by
design, as illustrated in Section I.

All experiments were carried out using α = 5, β = 0.3 as
parameters of the softplus rectifier, which were tuned empir-
ically. Accelerations are clipped to the interval [amin, amax] =
[−9m/s2, 3m/s2].

A. Optional lane change scenario

We first investigate the GAP-IDM behavior for a randomly
created optional lane change scenario in an urban setting, as
illustrated in Fig. 1a. To this end, two vehicles are placed on
the left lane of a two-lane road and the vehicle that wants to
merge into the gap between them is placed on the right lane.
We split the evaluation into two settings; the first with the ego
vehicle initially placed in the vicinity of the front target, the
second with the ego vehicle initially placed in the vicinity of
the rear target.

The initial gap between the vehicles on the left lane is
sampled from a Gaussian distribution with mean 30m and
standard deviation 5m. For the first evaluation, the initial
longitudinal position of the merging vehicle is sampled from
a Gaussian centered around the longitudinal position of the
front target vehicle with a standard deviation of 5m, such that
it can initially be in front of or behind the front target vehicle.
For the second evaluation, the position of the merging vehicle
is sampled in the same way, but with the Gaussian centered
around the rear target vehicle.

1https://github.com/sisl/AutomotiveSimulator.jl

The initial velocities of all three vehicles are sampled from a
Gaussian distribution with mean 15m/s and standard deviation
2m/s, resembling typical velocities in urban driving.

The two vehicles on the left lane behave according to IDM
with the parameters s0 = 2m, T = 1 s, a = 3m/s2, b =
2m/s2, δ = 4. The desired velocity of the front target vehicle
is sampled from a Gaussian distribution centered around its
initial velocity with standard deviation 2m/s. The desired
velocity of the rear target vehicle is set to v0 = 18m/s, to
make sure it keeps up with the front target. This results in a
nonzero acceleration of the target vehicles and thus in more
difficult traffic situations, especially under the constant veloc-
ity prediction used in this work. Additionally, the accelerations
of the two target vehicles have additive Gaussian noise with
standard deviation 0.2m/s2. The GAP-IDM vehicle uses the
same parameters as the rear target vehicle and c = 2m/s2. The
time horizon for the virtual target methods was set to τ = 8 s.

We simulate the scene for 20 s and measure the performance
by the mean squared acceleration over the whole trajectory,
the total time it takes until the ego vehicle has converged to a
steady driving state (defined by |a|max ≤ 0.15m/s2), and the
time until the ego vehicle reaches the gap, which is defined as
having a minimum positive distance of s0 to both, front and
rear target vehicle.

For each evaluation, we conducted 1000 simulations and re-
port the mean of the performance metrics over all simulations.
All four methods were evaluated in the same random initial
situations. Exemplary trajectories where all sampled values
are set to their mean values, the merging vehicle is next to the
front target, and the target vehicles have a constant velocity
of 15m/s are shown in Fig. 5.

Figure 6 shows the results for the first evaluation, where the
merging vehicle is initially placed randomly close to the front
target. The baseline method [9] has the highest mean squared
acceleration but the lowest time to reach the gap, which is
expected since it executes a full braking maneuver whenever
it is in front of the front target vehicle. Our proposed methods
all have a mean squared acceleration an order of magnitude
lower than the baseline method, and still relatively low times
to reach the gap. The linear virtual target motion achieves the
lowest mean squared acceleration and the softplus rectification
has the lowest time to reach the gap. The total time until the
merging vehicle has converged to a steady driving state is
similar for all methods.

The results for the second evaluation, where the merging
vehicle is initially placed randomly close to the rear target,
are presented in Fig. 7. Generally, the results are similar to the
first evaluation. Due to the acceleration limit of amax = 3m/s2,
the mean squared acceleration of the baseline method is not
as high as in the first evaluation, but still highest among all
evaluated methods. Of our methods, the linear and minimum
jerk virtual targets have the lowest mean squared acceleration,
but a longer time to reach the gap.

https://github.com/sisl/AutomotiveSimulator.jl


(a) Velocities of the different methods.

(b) Accelerations of the different methods.

Figure 5: Velocity and acceleration trajectories for the situation
in Fig. 1a.
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Figure 6: Performance metrics for the optional lane change
scenario, where the merging vehicle started close to the front
target.

B. Necessary lane change scenario

We evaluate our model in a necessary lane change scenario
as typically arises when two lanes merge, such as in Fig. 1b.
We randomly sample the distance of the front target to the
end of the merging lane from a Gaussian with mean 80m
and standard deviation 10m. The remaining parameters (initial
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Figure 7: Performance metrics for the optional lane change
scenario, where the merging vehicle started close to the rear
target.
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Figure 8: Performance metrics for the necessary lane change
scenario.

velocities, distance of the rear target to the front target, position
of the merging vehicle, etc.) are sampled as in Section V-A.

We again conduct 1000 simulations with the merging vehi-
cle initially placed near the front target, and 1000 simulations
with the merging vehicle initially placed near the rear target. In
this scenario we report the failure rate, which is the percentage
of simulations where the merging vehicle did not reach the gap
before the end of the merging lane.

Figure 8 shows the combined results of all simulations
for the necessary lane change scenario. As in the previous
experiment, the mean squared acceleration of our methods is
significantly lower than in the baseline, with the linear virtual
target having the lowest acceleration. The softplus rectification
is the only method with a nonzero failure rate of around 2%.

VI. CONCLUSIONS AND FUTURE WORK

This work introduces GAP-IDM, a simple and computation-
ally cheap driver model for highly interactive traffic situations
like lane changes or merging. We extend IDM to handle
multiple front and rear targets, taking situations into account
where those need to be passed first. This is achieved by
rectifying the target distance to a positive value, resulting in
smooth driving behavior. Our model can be used to model the
gap approaching and merging behavior of a vehicle, even when
it is initially misaligned with respect to the targeted traffic gap.



Being based on IDM, our model is collision-free with respect
to the front and rear vehicles in stationary traffic.

Our evaluation shows that GAP-IDM is able to approach
traffic gaps with a much lower acceleration than the baseline
method, resulting in smooth driving behavior that still retains
the benefits of IDM. Furthermore, the scenario with a nec-
essary lane change shows that the virtual target rectification
approach is able to reach a gap within a certain distance,
e.g., when approaching the end of a merging lane. The linear
virtual target exhibits lower acceleration values compared to
the minimum jerk virtual target, because it moves the target
closer to the actual target at a constant rate. In contrast,
the minimum jerk virtual target produces a motion with
accelerations of larger magnitude in the middle of the time
horizon, which in turn requires a stronger reaction of the
merging vehicle to stay clear from the virtual target. The
stateless softplus rectifier sometimes fails to reach the gap in
time, because it is not straightforward to tune its parameters to
meet distance constraints. A potential drawback of the virtual
target rectification approach is that it requires maintaining an
internal state of the virtual target, which we will address in
upcoming work.

Another promising future research avenue is to investigate
the degree to which GAP-IDM can describe human merging
behavior using real driving datasets. In combination with
physics-informed neural networks, this allows to learn a policy
from real driving data that is regularized with GAP-IDM [17].
Furthermore, the presented model can be used to develop more
complex interactive driver models that require to consider
multiple vehicles, e.g., to improve the Cooperative IDM [6].
Another exciting future direction is to use GAP-IDM as a low-
level policy for behavior planning approaches that use gaps or
target vehicles as high-level actions [10].
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