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Abstract—Model predictive control (MPC) is widely used for
motion planning, particularly in autonomous driving. Real-time
capability of the planner requires utilizing convex approximation
of optimal control problems (OCPs) for the planner. However,
such approximations confine the solution to a subspace, which
might not contain the global optimum. To address this, we
propose using safe reinforcement learning (SRL) to obtain a
new and safe reference trajectory within MPC. By employing
a learning-based approach, the MPC can explore solutions
beyond the close neighborhood of the previous one, potentially
finding global optima. We incorporate constrained reinforcement
learning (CRL) to ensure safety in automated driving, using a
handcrafted energy function-based safety index as the constraint
objective to model safe and unsafe regions. Our approach utilizes
a state-dependent Lagrangian multiplier, learned concurrently
with the safe policy, to solve the CRL problem. Through experi-
mentation in a highway scenario, we demonstrate the superiority
of our approach over both MPC and SRL in terms of safety and
performance measures.

I. INTRODUCTION

Autonomous vehicles have the potential to fundamentally
change traffic by reducing risky driving behavior, congestion,
carbon dioxide emissions, and transportation costs, as well
as improving road safety [1]. An important area in the field
of autonomous driving is motion planning, which aims to
generate optimal trajectories in a given state that at the same
time do not pose a threat to road traffic. Motion planning is
often performed by model predictive control (MPC) [2]–[6].
For real-time applications, linear time-varying MPC (LTV-
MPC) is often preferred because of the ability to faster solution
calculation [7], [8]. Though, LTV-MPC only performs a local
optimization which leads to the fact that only a locally optimal
solution can be found.

Recent studies also focus on motion planning and control
with reinforcement learning (RL). In RL applications it is a
huge challenge to address constraint satisfaction, especially in
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safety critical applications like autonomous driving. There is a
lot of research trying to achieve safety in RL, which is called
safe RL (SRL) [9]–[16]. Most of the latest approaches are
not tested on driving tasks yet, and they often require further
research. However, full autonomous driving is still confronted
with the task to make feasible and especially safe decisions and
planning in complex and uncertain dynamic traffic scenarios.

In order to address the existing issues, we present a novel
approach which combines both methods, MPC and RL, to im-
prove the motion planning in terms of safety and performance.
This leads to a novel method that combines the mathematical
optimization approach with a learning-based approach. Our
main contributions are:
• The application of a SRL approach with state dependent

Lagrange multiplier and safety index for autonomous
driving tasks.

• Utilization of SRL for switching between local optima
and ideally finding the global optimum, which serves as
the reference for the locally optimizing MPC.

• Experimental results on a highway scenario, demonstrat-
ing that the proposed method achieves better results in
terms of safety and performance than SRL and LTV-
MPC.

II. RELATED WORK

To the best of our knowledge there are no other approaches,
which use RL to improve the motion planning of an MPC
controller by generating a reference trajectory. There are
several approaches of so called learning-based MPC, which
use machine learning to learn dynamic models or parameters
of the MPC controller [17]–[21]. RL in combination with
MPC is often used to imitate the control strategy of the MPC
by end-to-end learning [22]–[24]. However, approaches where
the MPC benefits from the learned value function of the RL
algorithm can rarely be found in the literature. The authors in
[25] integrate the RL value function into the objective function
of the MPC. But they solved the optimal control problem
(OCP) in a combinatorial way and not analytically. This makes
the proposed approach only applicable for problems with a
small and discrete action space. Another approach which is



closely related to ours is presented in [26]. In this paper the
authors use RL to define a terminal area for the MPC, so
that the controlled vehicle can be guided through an unknown
environment. In contrast to [26], we do not define a terminal
area but use RL to generate a whole trajectory as a reference
respectively initial solution for the OCP. Furthermore, the
learned trajectory in our work is not forced to be tracked by the
MPC but can shift the optimization problem from one locally
optimal solution to another.

III. FUNDAMENTALS

In this section, we formalize the definition of the MPC and
of the RL problem as a constrained Markov decision process
(CMDP) and present the algorithms that are used to solve it.

A. MPC and Linear Time-Varying MPC

MPC is a control strategy that predicts future system be-
havior and determines optimal control actions u based on the
modeled system dynamics. It computes control actions for a
finite time horizon by solving an OCP, but only applying the
first action to the system. The process is repeated at every
time step, taking into account new measurements and updated
predictions for the state x. Due to often nonlinear constraints
in the OCP within an autonomous driving task, a nonlinear
MPC (NMPC) for the control of such a system is required.
The NMPC solves an optimization problem

min
u1:N ,x1:N+1

J(u1:N ,x1:N+1) (1a)

s.t. xk+1 = f(xk,uk), k = 1, . . . , N, (1b)
x1 = x̂, (1c)
gcol ≤ gcol(xk,uk) ≤ gcol,

k = 2, . . . , N+1, (1d)
u ≤ uk ≤ u, k = 1, . . . , N, (1e)
x ≤ xk ≤ x, k = 1, . . . , N+1, (1f)

in every time step specified by the objective function (1a), the
system dynamics (1b), the initial state condition (1c), colli-
sion avoidance constraints (1d) denoted by general collision
functions gcol and box constraints for the control and state
variables (1e)–(1f). In the OCP (1) the variable N represents
the prediction horizon length.

Applying NMPC to an on-board system is challenging due
to real-time constraints and the computational complexity of
the optimization problem. LTV-MPC addresses this challenge
by incorporating time-varying dynamics through the lineariza-
tion of the optimization problem constraints at every time step.
Together with a quadratic objective function to optimize, the
problem becomes convex and a quadratic programming (QP)
solver can be applied to solve it. However, this leads to the
fact that only a locally optimal solution is calculated which
depends on the trajectory used for linearization.

B. Constrained Markov Decision Process

Analogous to a Markov decision process (MDP) [27], a
CMDP [28] is a model that describes a problem of sequential

decision-making between an agent and its environment. The
difference is that the CMDP allows a clear separation of
reward and safety signals. A CMDP can be defined as a tuple
(S,A,P0, r, c, d, γ), where S is the state space, A is the action
space, P0 : S×A×S→ [0, 1] is the transition probability kernel
indicating the probability of state s′ after taking action a in
state s, r : S ×A → R is the reward function, c : S ×A → R
is the cost function, d is the safety threshold and γ is the
discount factor.

The goal in a CMDP is to find a policy π that maximizes
the accumulated discounted reward

max
π

Jr(π) = E
τ∼π

[ ∞∑
t=0

γtr(st, at)

]
(2)

while keeping the accumulated discounted cost

Jc(π) = E
τ∼π

[ ∞∑
t=0

γtcc(st, at)

]
≤ d (3)

bounded to d [29]. Here τ denotes a trajectory
τ = (s0, a0, s1, . . .) distributed according to the policy
π. Equation (3) represents the constraint of the optimization
problem. It is possible for the cost function to represent either
a physically based function or an indicator function with
discrete values for safety. In this context costs occur when
the constraint is violated.

The set of feasible stationary policies that satisfy the con-
straint of the defined CMDP is then given by

Πc
.
= {π ∈ Π: Jc(π) ≤ d} . (4)

C. Constrained Reinforcement Learning

Constrained RL (CRL) is a variant of classic RL which
considers constraints in the MDP and can be classified as
an approach for safe RL (SRL). The most commonly used
CRL algorithm is the Lagrangian approach where the op-
timization criterion (2) is extended by the cost constraint
(3) [30]. Examples for baseline CRL Lagrangian algorithms
are PPO-Lagrangian and TRPO-Lagrangian [10]. For detailed
information about the classification of SRL approaches we
refer the reader to [9].

The goal of CRL is to learn a feasible optimal policy π∗

regarding (4) that maximizes the objective Jr:

π∗ = arg max
π∈Πc

Jr(π). (5)

Within the Lagrangian approach for solving CMDPs, the
objective function becomes a min-max optimization problem

min
π

max
λ≥0

L(π, λ) = −Jr(π) + λ(Jc(π)− d) (6)

to balance between reward and cost. The optimal solution to
(6) is given by its saddle point.



D. Energy Function based Safety

In control theory a control strategy is considered as safe
when unsafe regions of the state space are avoided and at the
same time the safe region is forward invariant. The safety of
a control can be evaluated by a safety certificate in form of
a scalar energy function φ : Rn → R. A function like this is
also called safety index (SI). In general those functions take
on positive values to indicate unsafe states (φ > 0) and take
on negative values to indicate safe states (φ ≤ 0) [31].

To achieve safety, energy dissipation is required so that φ̇ <
0 holds if the state is unsafe. According to this assumption a
safe control follows the condition

φ(s′) < max{φ(s)− η, 0} (7)

on the energy of the SI. In this context η is a small slack
variable to force the energy to decrease if the current state s
is unsafe. As soon as the state s gets safe the next state s′ has
to be safe, too. Safe states can be represented as a subset of
all system states S by a closed, connected safe set Ss. The SI
must be designed such that the set Ss is a zero-sublevel set of
φ : S → R: Ss = {s |φ(s) ≤ 0} [13].

Further, the following restrictions for the design of a feasible
SI must hold:

1) The time derivative of the SI can be influenced by the
control variables u of the system: ∂φ̇

∂u 6= 0
2) and the reachable set under φ is a subset of the safe set:

X(φ) ⊆ XS [32].

IV. METHOD

In this section, we formulate the used MPC and RL methods
independently to combine them afterwards into the proposed
SRMPC approach.

A. MPC for Automated Driving

Subsequently, we define the relevant terms of the OCP (1).
The used MPC scheme is state of the art, hence we only give
a brief overview.

1) Objective Function: We use quadratic forms to define
the objective function (1a) to be optimized. In this way, we
obtain a convex function, which is a central property regarding
the choice of the solution method. The objective function is
defined such that a reference trajectory xref is tracked and the
control variables and their derivations are minimized:

J =
N+1∑
k=1

∥∥xk − xref
k

∥∥2

Q
+

N∑
k=1

∥∥uk∥∥2

R

+
∥∥u1 − û

∥∥2

S
+

N∑
k=2

∥∥uk − uk−1

∥∥2

S
+ Jslack, (8)

where û denotes the previously applied control. The term
Jslack in equation (8) penalizes the solver when using slack
variables. Slack variables are applied to the collision con-
straints (1d) to guarantee feasibility of the problem by relaxing
the whole constraint. Additional slack variables are used to
define a safety region around the vehicles which is only
entered by the ego-vehicle if necessary [8].

2) Vehicle Model: For the system dynamics (1b) the kine-
matic bicycle model [33] is used, see Fig. 1. The purely kine-

v

ϕ
β

lr

lf

δ

x

y

FxrFyr

Fyf

αr

αf
vf

vr

COG

Figure 1: Bicycle model: The forces (red arrows) are not considered
in the kinematic bicycle model and the sideslip angles are assumed
to be αf,r = 0.

matic consideration of the vehicle dynamics can be expressed
by equation (9):

ẋ
ẏ
ϕ̇
v̇

 =


v cos(ϕ+ β)
v sin(ϕ+ β)
v
l tan(δ) cos(β)

a

 (9)

with the slip angle β

β = arctan

(
lr
l

tan(δ)

)
. (10)

Thereupon, the state variables x are the global x- and y-
coordinates, the heading angle ϕ and the velocity v. Concur-
rently the steering angle δ and the acceleration a function are
the control variables u.

3) Collision constraints: The collision constraints (1d) are
the crucial part in the OCP concerning the safety. It turned
out that over-approximating the ego-vehicle by a set of circles
and other traffic participants by superellipses, leads to an easy
to handle mathematical form as well as good results. The
resulting collision constraint between the ego-vehicle and the
j-th vehicle can be expressed by equation (11).[

∆xj
∆yj

]T
R(ϕj)T

[
1
a 0
0 1

b

]2

R(ϕj)

[
∆xj
∆yj

]
> 1 (11)

where R is the rotation matrix in R2, a and b are the sum of
the semi-major respectively semi-minor axis and the radius of
the circle [34].

4) Approximate the nonlinear OCP: We approximate the
original OCP by a QP in every time step to make it applicable
within the LTV-MPC method. Therefore, we use a second
order Taylor series expansion to reformulate the objective
function (1a) and a first order Taylor series expansion to
linearize the constraints (1b)–(1f). The resulting QP has the
form

min
z

1

2
zTHz + gT z

s.t. l ≤ Az ≤ u
(12)



with the new optimization variable z. Assuming the weight
matrices Q, R and S are positive semidefinite and diagonal,
the QP (12) is convex. The Taylor expansion requires a
reference trajectory zr = [xr1:N+1;ur1:N ]. To obtain such a
reference, trajectory shifting [35] is applied to the previous
solution. To clarify, this reference trajectory differs from xref

in equation (8). The QP is solved using the OSQP-Solver [36].

B. Defining the CMDP

In this section we define the elements of the constraint
optimization task, the CMDP.

1) Observation: : The observation approximates the state,
and functions as the input of the policy and value functions.
Fig. 2 shows an exemplary scene with multiple vehicles to
explain which ones are considered in the observation.

ego

1 2

3 4

5 6

y

x

Figure 2: CMDP observation of the ego-vehicle (red): The ego-
vehicle observes the vehicle in front of and the one behind itself
on each lane (represented in blue). The vehicles shown in gray are
not considered.

The matrices in (13) present all considered quantities within
the observation.∆x1 ∆y1 ∆v1

x ∆v1
y

...
...

...
...

∆x6 ∆y6 ∆v6
x ∆v6

y

 (13a)

[
vego
x vego

y ϕego ∆yrs,r ∆yrs,l ∆ytarget
]

(13b)

Matrix (13a) poses the quantities for the six surrounded
vehicles (see Fig. 2). The ∆ expresses that the specific quantity
is measured relative to the ego-vehicle. Information about the
ego-vehicle state and relative coordinates to the left and right
roadsides (rs) and the target lane can be found in Matrix (13b).

2) Reward: In our case the reward function r is based on
the deviation from a longitudinal reference velocity vref

x and
a reference lane yref . We define an auxiliary reward

r′(s, a) = −g(vref
x − vego

x )2 − (1− g)(yref − yego)2 (14)

In this equation g is a hyperparameter that balances the
relation between speed reward and reward for driving on a
specific lane. To achieve a better and more stable performance
in training, the reward r is obtained by exponentiating the
function r′ and normalizing it to the interval [0, 1].

3) Actions: The same control variables as in the MPC are
used as actions to control the agent (see section IV-A2). But
in contrast to the MPC, the RL algorithm outputs continuous
actions due to the utilization of a stochastic policy.

C. Safety Index for Highway Driving

In this section we develop the cost function defining the
CMDP. Therefore, we define SI based on the formulation from
[11], [13], [31], [37]:

φ(s) = (σ + dmin)n − dn − kḋ (15)

with the tunable parameters σ, n and k, the minimum distance
to the other vehicle dmin, the actual distance d and the velocity
towards the other vehicle ḋ. We defined ḋ dependent to the
lateral distance from the agent to another vehicle. When both
are not on the same lane, the longitudinal velocity part of ḋ
is set to zero to make the SI (15) applicable to the highway
driving.

The time derivative of the chosen SI contains both action
dimensions δ and a, so that the relative degree of the system
is r = 1. Under the assumption that the parameters of the
SI are chosen according to the safe set Ss, the SI fulfills both
requirements for a feasible SI (see section III-D). In this paper
we do not formally proof the latter condition.

The cost function results from the condition for safe control
(7):

c(s, a) = max
{
φ(s′)−max{φ(s)− η, 0},−0.1

}
(16)

where cost occurs if the condition is not fulfilled. The outer
max-function serves the purpose to prevent the algorithm from
learning to become highly conservative.

D. State dependent Lagrangian Multiplier

As proposed in [38], we use a state dependent Lagrangian
multiplier λ(s) to handle the state dependent constraint arising
from the SI. The value of the Lagrangian multiplier indicates
the safety of the agent to be in a specific state. It gets ap-
proximated by a state value function which is learned through
SI transitions by considering the complementary slackness
condition. The condition comes from the Karush-Kuhn-Tucker
(KKT) necessary conditions of optimality. Table I shows what

Table I: Relation between optimal multipliers λ∗ and safety

λ∗(s) Safety

Zero Safe (inactive constraint)
Finite On boundary (active constraint)

Infinite Unsafe (infeasible constraint)

the value of the optimal multiplier implies for the safety. Nu-
merically, the multiplier is considered infinite when exceeding
a threshold we defined.

E. SRL Approach to Automated Driving

We use a state value function vπ(s) to approximate the
objective Jr(π) (2) and another state value function vcπ(s) (re-
ferred to as cost value function) to approximate the associated
constraint Jc(π) − d (3). Together with the state dependent
Lagrangian multiplier λ(s) the loss function to be optimized
can be rewritten as

L(π, λ) = Es [−vπ(s) + λ(s)vcπ(s)] . (17)



To learn a policy that solves the optimization problem, the
on-policy proximal policy optimization (PPO) [39] baseline
algorithm is adapted by the new objective (17) and extended
by the cost value function vcπ(s) and the state value function
λ(s) for the Lagrangian multiplier. We call the safe version of
the PPO algorithm PPO-Lagrangian-Safety Index (PPO-L-SI).

F. Combining LTV-MPC and SRL

The limitation of LTV-MPC can be attributed to the ap-
proximating aspect of the solution computation [40]. Due
to local optimization, LTV-MPC only identifies the optimal
solution within the linearization range, thereby overlooking
other locally optimal solutions. The linearization in LTV-
MPC is based on the shifted solution from the previous
time step, resulting in the dependency of subsequent time
step solutions on the previous one. Although this approach
is computationally efficient, it neglects other local optima
and possibly the global optimum of the original optimization
problem.

To address this limitation, an RL policy can be employed in
LTV-MPC to generate a trajectory to be used for linearization.
For the optimal use of the learned trajectories, it is crucial
that the RL algorithm receives the same or a very similar
optimization problem as the MPC for policy learning. Fur-
thermore, both control algorithms should have access to the
same control variables.

The trajectory generated by the policy for the planning
horizon can be used to approximate the NLP as a QP.
This provides an alternative reference trajectory compared to
the shifted solution trajectory from the previous MPC step,
allowing the LTV-MPC to discover a new local and potentially
the global optimum. This approach also bypasses the need for
a handcrafted initial trajectory for the first time step, t = 0,
of the MPC. For example, a trajectory following the lane
with constant velocity or a braking trajectory can be used
as the initial trajectory. The proposed SRMPC approach is
summarized in algorithm 1.

Fig. 3 shows an example of an RL trajectory based solution
calculated by the LTV-MPC. The figure illustrates the state
trajectories as well as the control trajectories.

V. RESULTS AND EVALUATION

A. Experimental Set-Up

For our evaluations we use the highway-env [41] framework,
which provides environments for tactical decision-making in
different automated driving tasks. Within this framework, the
agent controls the ego vehicle, while the other vehicles follow
the Intelligent Driver Model (IDM) and only react to the ego
vehicle once it enters their lane. We focus on a three lane
highway driving scenario as illustrated in Fig. 2. At the start
of each episode, the agent and the other traffic participants are
generated randomly on one of the lanes with a random velocity
within a defined range. The lane changes of the IDM vehicles
are disabled. Furthermore, we initialize the MPC controller
with a trajectory with constant velocity.

Algorithm 1: Pseudocode for SRMPC
Input: policy π, prediction horizon length N

1 k 0;
2 while goal is not reached do
3 xk ← measure current state;
4 try calculate trajectory with π for linearization:
5 xr

k : k+N+1,u
r
k : k+N ← use π to simulate

environment state forward and save state and
control values;

6 catch error occurred:
7 xr

k : k+N+1,u
r
k : k+N ← use shifted trajectory

from previous solution
8 end
9 NLP define and discretize the time-dependent

OCP (1);
10 H,g,A, l,u calculate QP matrices and vectors

(see equation (12)) from NLP with xk,
xr
k : k+N+1, ur

k : k+N and xref
k : k+N+1;

11 uk+1 solve QP to get the optimal control
value;

Output: uk+1

12 k k + 1;
13 end
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Figure 3: SRL trajectory (dashed lines) used for linearization within
the LTV-MPC and the locally optimal solution (continuous lines) of
the MPC based on the SRL trajectory.



0 2 4 6 8 10 12
1e6

100

150

200

250

300

350
n
st
ep
s

PPO-L-SI PPO

0 2 4 6 8 10 12
1e6

0

100

200

300

J
r

0 2 4 6 8 10 12
nEnvInteracts 1e6

0.2

0.3

0.4

0.5

0.6

0.7

0.8

J
c

0 2 4 6 8 10 12
nEnvInteracts 1e6

0.002

0.004

0.006

0.008

0.010

0.012

½
c

Figure 4: Training results for the baseline RL algorithm PPO and the SRL algorithm PPO-L-SI.

In both, MPC and RL, the middle of the rightmost lane is
defined as optimal by means of the objective function and the
reward function, respectively (yref = middle of right lane).
Therefore, the agent will tend to drive on the right lane.
Furthermore, the longitudinal velocity goal is defined as
vref
x = 25m

s .

B. Metrics

To evaluate and compare the described control methods
with the proposed SRMPC, this section outlines the metrics.
Regarding safety and performance, the following metrics are
considered:
• Episodic return Jr: This metric uses the unprocessed

reward function r′ (14) to describe the performance of
the agents.

• Episodic cost return Jc: For better comparability this
metric considers only actual collisions and road exits as
a cost (Jc = 1). This metric can only assume the values
Jc ∈ {0, 1}, since the episode terminates when costs
occur.

• Cost rate ρc: This metric describes the relationship be-
tween the total accumulated costs and the accumulated
number of environment steps over all simulations.

• Episodic steps nsteps: The metric describes the number of
steps taken by the agent without the occurrence of costs.
nsteps can take on values in the interval nsteps ∈ [0, 400]
due to the maximum episode length.

• Average longitudinal velocity vx: A performance measure
for comparison with the longitudinal reference velocity
vref
x .

The episodic return Jr and average velocity vx are referred
to as performance metrics and the episodic cost return Jc, the
cost rate ρc and the episodic steps nsteps are referred to as
safety metrics.

C. Results

First we evaluate the PPO-L-SI against the baseline PPO
algorithm in training to demonstrate the effectiveness regard-
ing safety. The training is shown in Fig. 4. Here, the values
of the cost rate Jc are modified by a running mean filter to
see a clearer trend of collisions respectively road exits. The
filtered metric can be interpreted as the failure rate of the
agent. It can be seen that the safety metrics of the PPO-L-SI
take better values than those of the PPO algorithm almost over
the entire training. Especially at the end of training the cost
return Jc and cost rate ρc from PPO-L-SI are more than twice



as good as those from PPO. Also, the performance metric
episodic return Jr of the PPO-L-SI lies above that of PPO
almost during the entire training. Accordingly, the PPO-L-SI
achieves much better results as the baseline PPO algorithm.
In particular when looking at the safety metrics.

In the next step we evaluate the learning based PPO-L-SI
and the optimization based LTV-MPC against the combined
approach SRMPC. Therefore, we simulate all algorithms over
1000 episodes and track all described metrics from section
V-B. In contrast to the RL training evaluation (see Fig. 4)
we now use mean values for the comparison. The cost rate
ρc already is a metric tracking a running mean. The metrics
for each control method are reported from table II. All three
methods are compared in a scenario with light and dense traffic
volume. In light traffic the vehicles are randomly generated in
one of the three lanes at a distance of around 25m from each
other whereas in dense traffic the distance reduces to roughly
15m.

Table II: Evaluation results: Comparison between the SRL algorithm
PPO-L-SI, LTV-MPC and SRMPC based on a highway driving
scenario with light and dense traffic.

Algorithm Jr (per step) Jc ρc nsteps vx

lig
ht

PPO-L-SI -4669 (-13.4) 0.308 0.0009 348 23.11
LTV-MPC -1241 (-5.1) 0.625 0.0026 244 24.38
SRMPC -1108 (-3.1) 0.215 0.0006 357 24.63

de
ns

e PPO-L-SI -4499 (-16.4) 0.540 0.002 274 22.47
LTV-MPC -334 (-2.4) 0.788 0.0057 139 24.79
SRMPC -1211 (-4.0) 0.353 0.0012 305 24.47

When evaluating the light traffic case, the SRMPC outper-
forms both methods, the PPO-L-SI and the LTV-MPC in terms
of safety and performance. The proposed SRMPC reaches a
higher return and a higher average velocity compared to PPO-
L-SI and LTV-MPC. Regarding the cost return and cost rate,
the SRMPC achieves more than 30% better results compared
to PPO-L-SI and more than 65% better results than LTV-MPC.

The evaluation results at dense traffic differ a little from
those at light traffic. Nevertheless, the SRMPC outperforms
the two methods on which it is based in terms of safety.
But the LTV-MPC achieves slightly better results in terms of
performance. However, the better results are not decisive so
that the performance with respect to the return per step and
average velocity is comparable to that of the SRMPC.

D. Computation Time

The computation time of the SRMPC increases compared to
the LTV-MPC due to the calculation of the reference trajectory
using the SRL algorithm. This step requires the evaluation of
the policy and the forward simulation of the environment by
the chosen horizon length. Since the used simulation envi-
ronment was not optimized for simulation performance, the
computation time of the forward simulation is relatively high.
Hence, we did not run quantitative experiments to compare
the computation time of the SRMPC with the LTV-MPC. To

achieve real-time capability, we propose using a small policy
network architecture and an efficient prediction framework for
the forward simulation.

VI. CONCLUSIONS AND FUTURE WORK

We have demonstrated the effective use of RL to enhance
the local optimization of LTV-MPC. The resulting control
method outperforms the underlying RL and LTV-MPC meth-
ods in terms of safety and performance for the highway driving
task in light traffic. In dense traffic, the developed method
achieves superior results with regard to safety and shows
roughly similar results in the performance compared to the
LTV-MPC.

The utilization of an energy-based function for expressing
and learning safety has shown promising results, suggesting
that further research should be done on the CRL approach with
SI and a state dependent Lagrangian multiplier. However, a
possible reformulation of the SI is worth considering, aligning
it with the mathematical formulation of e.g. Responsibility-
Sensitive Safety (RSS) [42] for autonomous vehicles. Fur-
thermore, it is conceivable to extend the proposed method to
NMPC by utilizing an RL trajectory as the initial solution of
an NLP solver to shorten the computation time.
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