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Abstract: Decision-making in interactive tra�c situations is a challenging task for automated

vehicles. Reinforcement learning (RL) is a promising approach to learn a driving policy from

interactions with a simulator or from real driving data. However, reinforcement learning often

requires many interactions with the environment and can have di�culties with generalization to

unseen situations. To resolve these problems, we propose to use physics-informed deep learning

to regularize the RL algorithm with a driver model. In our evaluation we show that this approach

leads to improved sample e�ciency and better generalization to more challenging scenarios.
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1 Introduction

In highly complex and interactive tra�c situations it is di�cult for automated vehicles to
make optimal decisions. Previous work has used Reinforcement Learning (RL) to learn
a cooperative policy for navigating interactive tra�c situations [1]�[4]. Other works have
used imitation learning to learn human-like driving behavior [5], [6].

A well-known problem with reinforcement learning is that it requires many interactions
with the environment to learn a policy. Moreover, it can exhibit bad generalization when
used in domains that are di�erent from the training domain. At last, it can also be
di�cult for the RL algorithm to converge to the optimal policy.

In this work, we introduce a new approach to improve the sample e�ciency and gen-
eralization of RL algorithms. Based on the principles of Physics-Informed Deep Learning
(PIDL), we regularize a policy gradient algorithm with a physics model that approxi-
mately follows the desired behavior. PIDL is known to improve sample e�ciency and
generalization [7]. Furthermore, it can also help guide the policy towards the desired
behavior. [8] has used PIDL with behavior cloning for automated driving.

We apply the resulting algorithm to an interactive merging scenario. For this reason,
we use the Gap Approaching Intelligent Driver Model (GAP-IDM) [9] as the physical
model. The GAP-IDM is a driver model designed to smoothly approach tra�c gaps while
considering distances to multiple vehicles. In our evaluation, we consider di�erent tra�c
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conditions on the target lane. In particular, the policy has to navigate environments with
more challenging tra�c densities than the training environment.

2 Technical background

In this section, we will give a brief introduction to the reinforcement learning problem in
fully and partially observable environments, the physics-informed deep learning approach
and the Gap Approaching Intelligent Driver Model.

2.1 Reinforcement Learning

Sequential decision-making problems can be described as Markov Decision Processes
(MDPs), where the environment's state st can be in�uenced by actions at at discrete
time steps t. The decision-making agent follows a policy, which is a mapping from states
to a probability distribution over actions. After each step, the agent receives a reward
R(st, at) and the environment stochastically transitions to a new state st+1 depending on
the current state and the action. The goal is to �nd the policy π that maximizes the sum
of cumulative discounted rewards

∑∞
t=0 γ

tR(st, at) [10].
Reinforcement Learning (RL) tackles this problem by learning a policy π through

interactions with the environment. Proximal Policy Optimization (PPO) is an online
policy gradient method that strikes a balance between exploration and exploitation while
e�ectively constraining policy updates to become more sample-e�cient [11].

2.2 Partially Observable Environments

In a Partially Observable Markov Decision Process (POMDP), the agent does
not have access to the environment's state st but only to noisy observations ot. To make
optimal decisions, the agent has to infer a probability distribution over the environment's
state p(st|a0:t−1, o1:t) given the history of previous actions and observations. This distri-
bution is called the belief bt and is the input for a policy in a POMDP. Every POMDP
can be interpreted as an MDP with beliefs b as states [12]. This so-called belief MDP
can also be solved using RL algorithms [1].

2.3 Physics-informed Deep Learning

At the intersection between data-driven methods and model-based methods, Physics-
Informed Deep Learning (PIDL) emerges as an approach that integrates physical
knowledge into the training process of neural networks. To this end, the loss function is
augmented with a term that enforces physical constraints [7].

In a standard supervised deep learning task a neural network φθ is regressed on labelled
data (xi, yi) with the mean squared error loss L(θ) =

∑
i(φθ(xi)− yi)2.

If the data is known to satisfy a functional relation f(x, y) = 0, PIDL can be used to en-
force this relation by augmenting the loss function with a term that penalizes the violation
of this relation. The loss function is then given by L(θ) =

∑
i [(φθ(xi)− yi)2 + λf(xi, yi)

2],
where λ is a hyperparameter to weigh the regularization with the physical relation.



2.4 Gap Approaching Intelligent Driver Model

Simple car-following driver models like the Intelligent Driver Model (IDM) [13] face chal-
lenges in interactive scenarios like lane changes or merging [9]. To address these issues,
the GAP-IDM extends the IDM by considering multiple front and rear target vehicles and
enabling smoothly approaching tra�c gaps even when the vehicle is not initially aligned
with the gap [9]. The acceleration of the GAP-IDM is given by

aGAP-IDM(v, sf , vf , sr, vr) = amax ·

(
1−

(
v

vdes

)4

−
(
s∗(v, vf )

g(sf )

)2

+

(
s∗(vr, v)

g(sr)

)2
)

(1)

with the desired distance

s∗(v, vf ) = sdes + max

(
0, vT +

v(v − vf )
2
√
amax · dcmf

)
where v is the ego velocity, sf , vf , sr, vr are the signed distance and velocity of the most
relevant front and rear target vehicles, respectively, g is a distance recti�er and the pa-
rameters (amax, dcmf , vdes, sdes, T ) are the maximum acceleration, comfortable deceleration,
desired velocity, minimum desired distance, and time headway. For this work, we use the
shifted softplus recti�er gα,β(s) = 1

β
log(1+α+exp(βs)) with a sharpness parameter β > 0

and a shifting parameter α ≥ 0.

3 Autonomous Merging Problem

In this section we describe the merging scenario that is used for evaluating our automated
merging approach. It represents a highway on-ramp situation with dense tra�c on the
main roadway, where the merging vehicle has to �nd a suitable gap and assess the coop-
eration of other drivers [1]. While human drivers can assess and manage such a situation
through experience and their individual driving style, it is extremely challenging for an
automated system to learn intelligent behavior in this scenario. In this section, we provide
an overview on how the merging scenario is modeled. A more detailed description can be
found in prior work [1], [4].

3.1 Environment Description

The environment, as visualized in Fig. 1, consists of a merge lane where the agent is placed,
and a main lane with dense tra�c where each vehicle has a varying level of cooperativeness,
which impacts their behavior. The behavior of the vehicles on the main lane is modeled by
the cooperative IDM (C-IDM) [1]. This means, they will generally follow IDM behavior
with respect to the vehicle in front. Additionally, they will yield to the merging vehicle
based on the time to reach the merge point (TTM) if TTMmerge < c · TTMmain, where
c ∈ [0, 1] is their cooperation parameter. That is, if the merging vehicle is expected to
reach the merge point before the main lane vehicle reaches the merge point, weighted by a
factor of c. As a consequence, the agent has to show its merging intent for other vehicles
to react and yield.



Ego vehicle projection

Observed vehicles

Figure 1: The ego vehicle (cyan) has to merge onto the main road where cooperative
vehicles (green) might yield while non-cooperative vehicles (red) ignore it. The ego vehicle
observes the vehicles most relevant for merging.

3.2 Agent Modeling

The agent observes its own physical state and the physical state of the four most relevant
vehicles within its �eld of view. These vehicles are the vehicles before and after the
merge point and before and after the projection of the ego vehicle onto the main lane, as
illustrated in Fig. 1. The cooperation levels of the vehicles are not observable. Therefore,
the agent must infer a belief over the cooperation to perform the merging maneuver. In
this work, we use the Bayesian �lter for inferring the belief that was introduced in prior
work [1]. This modeling approximates the cooperation belief as a Bernoulli distribution
for each vehicle, resulting in a low-dimensional belief state.

At each discrete time step of ∆t = 1 s, the agent can choose between three jerk levels
{1 m/s3, 0 m/s3,−1 m/s3}. At each time step the agent is rewarded a positive reward of +100
if reaching the goal behind the merge point, a negative reward of −100 if colliding with
another vehicle, and a negative reward of −0.1 · (a2t + j2t ) for making use of acceleration
at or jerk jt. An episode terminates after reaching the goal, after a collision or after 100
time steps.

4 Physics-informed Reinforcement Learning

In our approach, we use a driver model as a physical equation to regularize a reinforcement
learning policy. We begin with describing how the GAP-IDM is used as a physical equation
in the merging scenario and then illustrate how this equation is used in the reinforcement
learning algorithm.

4.1 GAP-IDM as Regularization

To use the GAP-IDM in a PIDL architecture, it needs to be reformulated as a function
that maps the agent's observation to an acceleration. GAP-IDM is designed to output
accelerations to approach a target gap, but does not decide on which gap to target. Hence,
the target gap needs to be determined from the observation beforehand.

To this end, we use a neural network to predict the target gap from the observation.
We formulate this problem as a classi�cation task, where the model decides between four
possible target gaps. The �rst gap is always the one behind the vehicle directly in front
of the merging point. The other three gaps are the subsequent gaps on the main lane, as
illustrated in Fig. 2.



Figure 2: The four gaps considered by the ego vehicle (orange, cyan, magenta and green).

To produce human-like behavior, the classi�er should be �t to human driving data.
In this work, we use driving data generated with a trained PPO policy as a surrogate for
human driving data. To ensure that this results in a good policy, we explicitly provide the
cooperation levels of observed vehicles as an additional input to the agent. The generated
data is used to train the gap classi�er based on the gap chosen by the PPO policy.

4.2 Physics-informed Proximal Policy Optimization

The idea is to use the trained gap classi�er to select the target vehicles for the GAP-IDM
and use the GAP-IDM to regularize the reinforcement learning algorithm to produce
actions that result in a behavior closer to the GAP-IDM. In this work, we will use the
PPO algorithm, but the idea can be used with other policy gradient algorithms in the
same way.

We incorporate the physics model f(s, a) = 0 into the PPO loss by an additional
loss term with a regularization weight λ. For a mini-batch of states B and the problem's
action space A, the loss term is de�ned as

Lphy =
1

|B|
∑
s∈B

(
1

|A|
∑
a∈A

π(a|s)f(s, a)2

)
. (2)

This residual loss term is minimized by increasing the probability π(a|s) of selecting
actions with a low mean squared model error and decreasing the probability of selecting
actions with a high mean squared model error. The weight λ can be decreased during
training to initially use the physics model as guidance but gradually recover the original
PPO objective. We refer to the resulting algorithm as Physics-Informed Proximal Policy
Optimization (PI-PPO).

4.3 PI-PPO in the Merging Scenario

To apply PI-PPO to the merging scenario, we use the error between the acceleration
resulting from the chosen jerk action and the predicted acceleration of the GAP-IDM
as the physics model. Furthermore, the environment is only partially observable. For
this reason, we use the belief b as input to the policy, which contains the physical state
observations and the inferred cooperation beliefs. Therefore, the GAP-IDM loss for the
partially observable merging environment is given as

Lphy =
1

|B|
∑
b∈B

(
1

|A|
∑
j∈A

π(j|b)
(
acce +j ·∆t− accphy(b)

)2)
(3)



Tra�c condition

Parameter Moderate Dense

Nmin 4 8
Nmax 8 12
pspawn 1.0 0.3
vdes,min 4 m/s 4 m/s
vdes,max 6 m/s 6 m/s

Table 1: Scenario-speci�c parameters.

where A is the action space of available jerk levels j, B is a mini-batch of beliefs b, acce is
the current ego acceleration, ∆t is the time step, and accphy(b) is the predicted acceleration
of the GAP-IDM.

5 Experiments and Evaluation

We evaluate our approach on the merging scenario described in Section 3. To assess how
well our algorithm generalizes to unseen situations, we consider di�erent tra�c conditions
on the target lane. The tra�c scenarios vary in the uniformly sampled number of vehicles
on the main lane N , the probability that vehicles re-enter the main-lane after reaching
its end pspawn, and their uniformly sampled desired speed vdes according to Table 1. The
vehicles on the main lane are simulated according to C-IDM with parameters amax =
2 m/s2, dcmf = 2 m/s2, sdes = 2 m, T = 1.5 s. All agents are trained in the moderate tra�c
scenario and evaluated on more dense tra�c compared to the training environment.

To train the gap classi�er, an oracle agent with full knowledge of the latent cooperation
levels of other vehicles is trained in the moderate tra�c scenario. This is done to ensure
that the data used to train the gap classi�er is of high quality. The gap classi�er is also
only trained on data collected in moderate tra�c.

The training parameters for PPO and PI-PPO were separately optimized using random
search and are provided in Table 2. The parameters for the GAP-IDM used in PI-PPO are
the same as the C-IDM parameters, except for the desired speed: We choose vdes = 15 m/s
larger than the desired speed of the vehicles on the main lane to ensure that the agent
is not incentivized to slow down before merging. The parameter values of the shifted
softplus recti�er g are chosen as α = 5 and β = 0.3.

The training progress in the moderate tra�c scenario is depicted in Fig. 3. The
physics-informed algorithm can be seen to converge faster compared to the uninformed
PPO algorithm since the GAP-IDM loss term is able to guide the policy towards rea-
sonable behavior. This illustrates the improved sample e�ciency of the physics-informed
algorithm.

To minimize deviation due to the random initialization of the tra�c scene, each al-
gorithm is evaluated on 1000 episodes in the test settings. Table 3 shows the results of
the evaluation in moderate and dense tra�c, measured by the average episode return, the
success rate and the average episode length. Unsuccessful episodes are those that result
in a collision. The performance of PI-PPO and PPO is similar on the training environ-



Parameter Value

Neural network architecture 3 dense layers, (128, 128, 64) nodes
Activation function ELU (except for output layer)
Epochs per batch 8
Optimizer Adam [14]
Learning rate 8 · 10−4

Batch size 800
Training steps 1 · 106

Discount factor γ 0.95
Clip ratio 0.15
Critic loss weight 0.5
Entropy regularization weight 1 · 10−3 (PI-PPO), 8 · 10−3 (PPO)
Physics loss weight λ 0.2
Scheduling for λ Linear to zero in the �rst 30% training steps

Table 2: Parameters used for training the PPO and PI-PPO agents.

Tra�c condition Algorithm Episode return Success rate [%] Episode length

Moderate PI-PPO 88.7 95.8 16.0
PPO 87.2 95.3 16.1

Dense PI-PPO 85.4 94.5 18.5
PPO 69.0 86.4 17.6

Table 3: Evaluation results on moderate and dense tra�c scenarios.

ment with moderate tra�c density. However, on the more challenging test environments,
PI-PPO outperforms PPO in terms of average return and success rate.

6 Conclusions and Future Work

In this work, we present a framework for physics-informed reinforcement learning in an
automated merging scenario. We use the GAP-IDM as a driver model to regularize the
policy gradient algorithm PPO with a policy loss term that penalizes deviations from the
driver model. As our evaluation shows this leads to improved convergence properties,
higher sample e�ciency, and better generalization abilities to unseen tra�c conditions
compared to the physics-uninformed algorithm.

In our future research we want to investigate to which extent physics-informed deep
learning can be used in the context of imitation learning. Since algorithms like Adversarial
Inverse Reinforcement Learning employ a policy as the generator [15], PI-PPO could be
used as a drop-in replacement. This could lead to faster and more stable training. Another
interesting possibility is to test the algorithm on real driving data. This includes �tting
the gap classi�er and the driver model to real driving data and then training PI-PPO on
this data.



Figure 3: Moving average of the reward per episode during training with a sliding window
size of w = 250 episodes for the PPO and PI-PPO algorithms. The darker line represents
the moving average and the lighter line the moving standard deviation. Only the �rst
5000 episodes of training are shown.
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