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A B S T R A C T   

This research investigates the flight behavior of refuse-derived fuel (RDF) in a drop shaft using Computer Vision 
to obtain statistical data on the aerodynamic properties of the particles. 

Methods to determine 3D geometry models of complex-shaped particles by photogrammetry and to obtain 
time resolved particle positions and velocities are described. Furthermore, an approach to obtain the frequency 
distribution of drag and lift coefficients from photogrammetric analysis and drop shaft experiments is presented. 
The image evaluation is based on algorithms of the open-source libraries OpenCV, COLMAP as well as MeshLab 
and Open3D. The precision of the system is validated employing model particles with known geometry. The 3D 
particle models overestimate the particle surface area by 4.58 %, the position detection works with a mean 
deviation of 2.73 %. The average sink rate is calculated with an accuracy of 4.87 % and the drag coefficient with 
an accuracy of 2.08 %. Finally, the frequency distribution of four RDF fractions, namely, textiles, cardboard, 3D 
plastic particles and 2D plastic foils are presented.   

1. Introduction 

Cement production is an energy-intensive process and is responsible 
for 6 – 8 % of global anthropogenic CO2 emissions [1]. Two-thirds are 
due to the release of CO2 from calcination and one-third stems from 
combustion of fuels to provide the heat for the endothermic calcination 
and the clinker burning process. Fuels like coal, heating oil and refuse- 
derived fuels are used. Since the latter contains biogenic components, 
the fuel-related CO2 emissions can be reduced with increasing substi
tution by refuse-derived fuels (RDF) [2]. The light fraction of pre- 
processed solid waste, so-called FLUFF, is used as RDF in cement ro
tary kilns, because it can be pneumatically conveyed into the combus
tion chamber similar as pulverized coal [3]. Compared to the current 
standard fuel, pulverized coal, the composition of FLUFF is heteroge
neous as it contains different waste fractions like plastic foils, cardboard 
and paper. In addition, the FLUFF particles are of complex shape and 
have dimensions in the centimetre range, whereas pulverized coal shows 
particle sizes in the 100 µm range, i.e. the assumption of nearly spherical 
particles can be made for coal. For pulverized coal, the point mass 

assumption often used in CFD simulations is justified, this is not the case 
for FLUFF. FLUFF particles are not symmetrical and their geometric 
center can differ from the center of mass. Because of this and its irregular 
shape, rotation is initiated, which leads to complex trajectories [4,5]. In 
CFD codes, drag and lift coefficients and the relative velocity are used to 
calculate the fluid forces acting on a particle. For RDF, these coefficients 
are not single values, instead a frequency distribution of the coefficients 
will be present due to the heterogeneity of the particle properties. A 
method how these frequency distributions can be incorporated in CFD 
codes to predict the flight behaviour of RDF can be found, for example, 
in Liedmann et al. [3] and Pieper et al. [6]. To derive the respective drag 
and lift coefficients, the relative position, velocity, particle shape and 
projected area with respect to the velocity vector (hereafter referred to 
as flow area) of the particles are needed. The various steps for obtaining 
these parameters are described in this paper. 

The literature concerning the flight behaviour of RDF is scarce. 
However, there are several studies dealing with the investigation of 
aerodynamic properties of non-spherical particles [7–9] using the 
sphericity as a simplified parameter to describe the influence of particle 
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shape. Song et al. [10] developed a correlation for the drag coefficient of 
spherical and non-spherical particles (cubes and cylinders) including the 
effect of the particle sphericity and the particle settling orientation. 
Nakhaei et al. [11] proposed a method using the terminal velocity to 
estimate the mass distribution of RDF samples from a wind sieve. The 
terminal velocity was calculated using a 2D imaging setup to derive the 
maximum flow area. In [4], our group investigated the flight behavior of 
RDF particles with a camera based approach in a drop shaft. The particle 
geometry was estimated from two orthogonal projections of the parti
cles, thus, overestimating the surface area and, hence, the flow area. 
Along the recorded particle tracks, the sequence of orientations was 
obtained in a simplified manner, employing intersecting lines. As both, 
geometry and change of orientation enter the calculation of lift and drag 
coefficients, this approach tends to predict too small values [12]. In 
addition, Krueger et al. [4] used a camera system with a frame rate of 
just 50 frames per second, which limits the temporal resolution of par
ticle orientation. 

This article is an extension and improvement of the work of Krueger 
et al. [4]. In the current article, an approach is presented which im
proves the determination of drag and lift coefficients by enhancing the 
time resolution of particle detection by a factor of 10 and applying a new 
computer vision based method to determine correct shape and 

orientation of the particles. For this purpose, photogrammetric in
vestigations are combined with drop shaft experiments in order to 
properly determine the current flow area (which cannot be seen with a 
normal camera setup) along the trajectory. 

2. Determination of the particle geometry and flight behavior 

Detailed knowledge of the particle shape is essential to define the 
flow area. Flow area and relative velocity determine drag and lift co
efficient, which govern the flight track evolution. The following sections 
provide an overview of the methods and the experimental setup to 
determine the flight characteristics of RDF. 

2.1. Determination of the geometry of RDF particles 

The “Structure from Motion” method is used to determine the par
ticle geometry. It is a procedure, which uses characteristic points from 
several images taken by one camera from different viewpoints to create 
a 3D model of an object. It does not matter whether the camera moves 
around a fixed object or whether the object moves in front of a fixed 
camera [13]. Fig. 1a shows the principal procedure applied for a cube. 

While the cube rotates around its own axis, a fixed camera captures 
images from different directions. Features (symbolized as red dots) are 
detected using the SIFT algorithm by David Lowe [14] to identify so- 
called keypoints. These keypoints arise from textures or edges of the 
object. By taking into account the pixels surrounding a keypoint, a nu
merical descriptor can be obtained to refer to the same keypoint in 
different images. A keypoint position in conjunction with its descriptor 
is denoted as a “feature”. The process requires an initial calibration of 
the camera using a checkerboard and Zhanǵs method to get the intrinsic 
parameters and distortion coefficients to subsequently undistort the 
captured images [15]. Then, the images obtained are converted into 
binary images utilizing a threshold operation to create a mask around 
the illuminated particle to detach it from the background. Features are 
only searched and detected inside this mask to not accidentally identify 
features from the field of view behind the particle. 

Afterwards, features identified on different images are matched. 
Image pairs and their corresponding valid matches are then used for the 
following 3D reconstruction. This is performed as a sparse reconstruc
tion in the first place, which uses the information obtained in the feature 
matching to determine the camera positions relative to the object for 
each image [16]. From this, the rotation and translation vectors are 
computed for each camera position. Subsequently, this information is 
used to convert the sparse point set into a dense point cloud. The latter, 
in contrast to the sparse reconstruction, uses depth maps from the stereo 

Fig. 1. Procedure to obtain a 3D model of an object. (a) Structure from Motion 
method. (b) raw point cloud. (c) revised point cloud: removal of black pixels 
and statistical outliers as well as reducing the number of voxels. (d) 3D model. 

Fig. 2. Procedure to render images of the 3D model. (a) Sphere Creation. (b) Scene Positioning: Possible points to place a virtual camera pointing towards the center 
of the particle for recording images. 
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correspondences of the calculated camera positions to determine the 
surface texture of the object by computing the corresponding point 
normals and refining the surface points [13,16]. 

After the dense point cloud is created, some editing is necessary as 
not only features of the particle but also features of the particle 
mounting are localized. These undesired features and artefacts on the 
edges of the particle caused by the black background are removed as 
well as statistical outliers (see Fig. 1b and c). Moreover, a voxel mesh is 
used to uniformly resample the point cloud to create a new set with 
equally distributed points. The new point cloud preserves the original 
geometry, while the number of points is reduced, which accelerates 
surface reconstruction. 

The latter is carried out either as a “Poisson Surface Reconstruction” 
for volumetric (3D objects) or as a “Ball Pivoting Algorithm” for flat 
objects like foils to generate a surface mesh connecting the features from 
the point cloud [17,18], as illustrated in Fig. 1d, producing a digital 
model of the original object. 

To scale the mesh obtained to the actual size of the object, it is 
adjusted by a scaling factor. This value is obtained from the ratio be
tween the length of a known reference polyhedron and the corre
sponding actual length of the reference object [13]. As a result, the 
geometrical model is stored, for instance in *.ply data format. Various 
geometric parameters (i.e. volume or inertia tensor) are calculated by 
integration over the polyhedron forming the object [19]. 

The algorithms used to obtain the 3D model are provided by OpenCV 
(camera calibration and threshold operation), COLMAP (point cloud 
creation), Open3D (editing of the dense point cloud) and MeshLab 
(mesh creation). 

The digital model of the particle is required to define its geometry in 
a reference orientation. During flight tracking, the current orientation of 
the particle on each frame set must be determined. For this purpose, a 

Fibonacci sphere is created around the particle to obtain different 
discrete orientations of the previously created 3D model. The Fibonacci 
sphere provides a predefined number of almost equally distributed 
points on the surface. At these positions, a “virtual camera”, pointing 
towards the center of the sphere, renders and records scenes of the 
particle model using Open3D (see Fig. 2 and [20,21] for more infor
mation; the red and green dots in Fig. 2b are additional points sym
bolizing virtual camera positions and visualized only around the equator 
for clarity). The rendered images are converted into binary images and 
stored for later comparison with the images of the actual particle along 
its track in the drop shaft, to obtain the particle orientation. 

2.2. Photogrammetry Station 

The visual appearance and shape of particles as well as their geo
metric properties are obtained with a photogrammetry station using the 
“Structure from Motion” method described above. The particle is fixed 
on a mounting, which is driven by a stepper motor to rotate around its 
own axis. The stepper motor, seen in Fig. 3, is installed on a bracket 
made of acrylic glass to improve the illumination inside the box. Another 
stepper motor outside the interior (not depicted in Fig. 3) drives the 
bracket additionally on another axis. This is done to capture many ori
entations of the particle for accurate 3D reconstruction. Capturing these 
images with a polarization camera (baumer VCXU-50 MP, 2448 × 2048 
px) reduces reflections on the particle surface. The camera is equipped 
with a lens with a focal length of 35 mm. The distance from the camera 
to the particle can be flexibly adjusted depending on the particle size. 
The maximum particle size with the current system is 10 × 10 cm. 

To create proper illumination, LED stripes (1,200 lm/m) are placed 
at the walls around the camera and on the wall to the right-hand side of 
it. Moreover, the inside walls are painted white to diffusively spread the 

Fig. 3. Photogrammetry Station.  
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light emitted by the LED modules to ensure a homogenous lighting. Only 
the wall opposite to the camera is painted black to achieve maximum 
contrast between the background and the illuminated particle. 
Approximately 180 images are needed to create a 3D model. The 
number of images taken by the camera can be set. Note that challenging 
particles (smooth surface, few features) need more images than struc
tured particles (rough surface, many features). If more images are taken 
than necessary, it does not influence the final result, as only pairs of 
images with the most matching features are used to create the 3D model. 

As long as more than 500 features are detected per image, which is the 
case for the current study, the algorithm works reliably. More features 
can be made visible by adjusting the camera’s exposure time or the 
colour of the emitted light (red, green, blue, white). 

2.3. Determination of the flight behavior 

Stereo vision is applied to determine flight behaviour. Stereo vision 
requires two cameras to determine depth (see Fig. 4) from differences in 

Fig. 4. Stereo Vision. (a) 2D view. (b) 3D view.  

Fig. 5. Drop Shaft. (a) Dimensions and parts. (b) Camera setup and coordinate system.  
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the images. The general principle for a stereo pair within the x- and y- 
plane is depicted in Fig. 4a. The origin of the coordinate system has been 
placed in the optical center of camera 1. To calculate the distances xp 
and yp of the cameras to the object, the distance b between the cameras 
and the focal length f of the cameras have to be known [22]. The object 
is represented by a corresponding pixel on the sensor planes (symbolized 
in red) of the cameras. The light rays hitting the sensor create an 
inverted image of the object. The camera converts the images and dis
plays them correctly in the image plane (symbolized in blue) [23]. 

The distance between the corresponding pixel and the optical center 
of the camera is given by pl and pr, which can be calculated by Equations 
(1) and (2) according to the theorem of intersecting lines. Note that the 
sign of the value of pl and pr depends on the position on the sensor with 
respect to the local camera coordinate system (see the axes yl / xl and yr / 
xr respectively). 

pl =
xp

yp
⋅f (1)  

pr =
b − xp

yp
⋅f (2) 

The disparity d is defined in Equation (3). 

d = pl − pr (3) 

The distance yp, which provides information about the depth, is 
obtained from Equation (4) using Equation (1) and (2). 

yp =
b⋅f
d

(4) 

By knowing the depth, the distance xp as well as zp (see Fig. 4a and b; 
for clarity, zp is not shown in Fig. 4b) are calculated using Equations (5) 
and (6). Here, zp is calculated in the same manner as xp by forming the 
ratio between the object coordinate (xp respectively zp) and the pixel 
coordinate (pl respectively ul) and equating it with the ratio between the 
depth yp and the focal length f. 

xp =
yp

f
⋅pl (5)  

zp =
yp

f
⋅ul (6) 

The position of the object within successive frames, derived from 
Equations (4) to (6), is used to calculate the velocity in the spatial 

Fig. 6. Procedure for determining the aerodynamic properties.  

Fig. 7. Shape Matching. (a) Cropped image from the Drop Shaft (b) Cropped image from Scene Positioning.  
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directions. For this purpose, the positional data of the current frame is 
compared with the next frame and multiplied by the frame rate of the 
cameras to calculate the velocity of the object by detecting the difference 
in particle position in subsequent images (Particle Tracking Velocim
etry, PTV). The letter n denotes the current frame index and c stands for 
the framerate (fps, see Equation (7)) [24]. 

v→=

⎛

⎝
yp

n+1 − yp
n

xp
n+1 − xp

n

zp
n+1 − zp

n

⎞

⎠⋅c (7) 

Each camera is calibrated with a checkerboard image [15] before a 
measurement series. Moreover, a stereo calibration and stereo rectifi
cation based on epipolar geometries (see [25,26] for more information) 
is performed, which mathematically aligns the images captured by both 
cameras to provide accurate depth measurement. The images captured 

by the two cameras are converted into binary images to calculate the 
geometric center of the particle (see [27] for more information). 

2.4. Drop Shaft 

A drop shaft is used to analyze the statistics of the aerodynamic 
properties of an ensemble of RDF particles (in this case FLUFF). For this 
purpose, single particles (after their characterization in the photo
grammetric station and weighing) are transported to the upper part of 
the drop shaft via a conveyor belt (not shown in Fig. 5a) and then fall 
through a tube into the interior of the drop shaft. Here, the trajectories of 
the particles are captured, as explained above, by two stereoscopically 
arranged cameras. The air in the drop shaft is quiescent. 

The extra distance provided by the tube allows for acceleration of the 
particles to their terminal velocity before they are recorded by the 
cameras. The walls of the drop shaft are painted black to obtain a high 
contrast between the illuminated particle and the background. The 
lighting system consist of 18 LED modules providing a total luminous 
flux of 104,400 lm and is located at the top inlet of the drop shaft. 
Furthermore, a drawer with tilted panels is installed at the bottom of the 
drop shaft. When a particle hits the drawer, it is guided along the panels 
into the inside of the drawer and is afterwards no longer visible for the 
cameras. This is important to ensure that only one particle at a time is 
captured by the cameras as it passes through the drop shaft. The total 
distance between the top edge of the drawer and the location of the 
cameras is 4.8 m, the cross-sectional area inside the drop shaft is 0.83 m 
× 0.83 m. 

The two high-speed cameras (baumer VLXT-28 M.I, 500 fps and 
1920 × 1080 px) are used for image recording. Both cameras are aligned 
using overlapping x-axes and have the same position with respect to 
their z-axis and y-axis. The latter is aligned in such a way that the 
location of the entrance pupil of the two identical lenses (f = 4.8 mm) 
lies within the plane spanned by the upper edges of the drop shaft frame 
(see Fig. 5b). The entrance pupil is used as a reference for distance 
measurements for lenses with an aperture (see the pinhole model illus
trated in Fig. 4 and [28] for further information). For typical RDF par
ticles in the cm range and corresponding terminal velocities, no 
limitation concerning velocity are given due to the small exposure time 
of the cameras (1 ms). Only highly transparent (not coloured or not 
polluted foils) or extremely dark particles are challenging, because the 
reflection is partly missing, which leads to inaccuracies in the detection 
of the particles. 

Fig. 8. Force equilibrium.  

Fig. 9. 3D models of FLUFF particles. (a) plastics: 3D plastic particle (b) foils: 2D plastic foil.  
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3. Procedure for determining the aerodynamic properties 

After entering the drop shaft, the particle trajectory is recorded. 
Depending on mass and geometry of the particles, these tracks can vary 
considerably. Even a repetition of an experiment with the same particle 
will show a natural stochastic variation. To obtain the frequency dis
tribution of the drag and lift coefficients along the tracks, the positions, 
orientations, velocities and the associated flow areas must be derived 
from the stereoscopic image sequences. An outline of the procedure is 
given in Fig. 6. 

The output data of the photogrammetric investigations and drop 
shaft experiments are combined in a Shape Matching step. For this 
purpose, the binarized images are cropped and compared with the im
ages rendered from the 3D model utilizing OpenCV. 

Before the Shape Matching starts, the images rendered during Scene 
Positioning are cropped to the same ratio (size of the particle compared 
to size of the background) as the drop shaft images. The cropped images 
from Scene Positioning are additionally blurred. This procedure ensures 
nearly the same quality of the images to support Shape Matching. The 
latter is performed using the Hu moments (see [29] for more informa
tion). However, since the orientation obtained from the Hu moments is 
not always unique (if you for instance consider a cubicle or other sym
metric objects), the algorithm is extended by an additional verification 
step, in which the orientation of the particles in one of the stereo images 
is compared to the orientation in the rendered images from Scene 
Positioning. In this verification, two piece of information are deter
mined. The first is obtained by forming an aligned rectangle around the 
particle (see Fig. 7). Then, a horizontal line is created between the 
lowest and leftmost pixel (when the object is tilted to the left side) or the 
lowest and rightmost pixel (when the object is tilted to right side) of the 
rectangle. The angle spanned between this line and the rectangle char
acterises the particle orientation. The information whether the angle is 
spanned by the short or long side of the rectangle is the second piece of 
information employed. For example, the angle of the object in the drop 
shaft image may be the same as in the rendered image, but the object in 
the rendered image can be oriented vertically, while the object in the 
drop shaft image has a horizontal orientation. If the distance obtained 
from the Hu moment comparison multiplied by the difference of the 
calculated angles (requiring the same edges for the angle determination 
- “short” or “long” edge of the rectangle) is as small as possible and not 
negative, the shape and orientation are considered matched. Note that 
only drop shaft images with one outer contour (more can occur due to 
shading) are selected to avoid incorrect matching. Knowing the orien
tation of the rendered images from Scene Positioning, the flow area is 
determined. This is done by projecting the direction of the velocity 
vector (derived from the drop shaft experiments) onto the current 
orientation of the particle within the Scene Positioning. The value of the 
flow area Aflow is calculated in the following manner: the white counted 
pixels of the flow area nflow are put into the ratio of a known reference 
number of white pixels nwhite, ref derived from the photogrammetric 
analysis and multiplied by the corresponding known area Aref of a 
reference object [30] (see Equation (8)). With this method, the flow 

area, which basically is not visible with the drop shaft cameras from 
above, is obtained. 

Aflow =
Aref

nwhite,ref
⋅nwhite,flow (8) 

Because of the high temporal resolution of the camera system, the 
velocity between two consecutive points (1 → 2) is assumed to stay 
constant (see Fig. 8). Therefore a balance of forces applies between the 
drag force FD, the lift force FL and the gravity force FG, assuming that FL 
lies in the same plane as FD. 

Knowing the velocity components vy, vx, vz from the drop shaft 
investigation, the angle of attack α is calculated using Equation (9) to 
discriminate between the drag and lift forces (see Equations (10) and 
(11)). 

α = arcsin

⎛

⎜
⎜
⎝

⃒
⃒
⃒
⃒ v→y

⃒
⃒
⃒
⃒

| v→|

⎞

⎟
⎟
⎠ (9)  

⃒
⃒
⃒F→D

⃒
⃒
⃒ = mparticle⋅g⋅sin(α) (10)  

⃒
⃒
⃒F→L

⃒
⃒
⃒ = mparticle⋅g⋅cos(α) (11) 

From the velocity and flow area, the coefficients of drag and lift can 
be calculated according to [5] (see Equations (12) and (13)). Note that 
statistical outliers are removed using the quartile method [31]. 

cD =
2⋅
⃒
⃒
⃒F→D

⃒
⃒
⃒

ρair⋅| v→|
2⋅Aflow

(12)  

cL =
2⋅
⃒
⃒
⃒F→L

⃒
⃒
⃒

ρair⋅| v→|
̅→2

⋅Aflow

(13)  

4. Results 

4.1. Assessment of the accuracy of the system 

Fig. 9 show examples of the 3D models derived from two of the 
FLUFF particles. Photos of these particles are shown in Fig. 13. Obvi
ously, particle shape is represented with high spatial resolution. 

Based on these 3D models, the surface area and the inertial tensor are 
determined. Table 1 serves as an example to show the mentioned pa
rameters using a 3D model of a cube. By comparing geometric properties 
of the cube (side length of 20 mm and mass of 0.245 g) with the ones 
derived from the 3D model, the accuracy of the system is evaluated. The 
deviation of the surface area of the 3D model from the real geometry is 
less than 5 %. 

For a proper estimation of the drag and lift coefficient, an accurate 
measurement of particle position is required. To verify this, a white 
Styrofoam ball is attached to a thread of varying length. Then the Sty
rofoam ball is placed at different distances from the cameras. Table 2 
shows the camera-measured position of the non-moving Styrofoam ball, 
with a diameter of 30 mm, in y-direction. Note that the intersection of 
the field of view of the two cameras is at about 500 mm, so the position 
measurement starts at 600 mm and above. The position is determined up 
to a distance of 4.0 m with an average deviation of 2.73 %. As expected, 
particle detection deteriorates with increasing distance from the 
cameras. 

In a next step, the results for the vertical velocitiy vy are discussed 
(styrofoam ball). Depending on the shape and mass, some particles are 
not completely accelerated to their terminal velocity when entering the 
drop shaft. In case of the styrofoam ball, the ball enters the drop shaft 
nearly with its terminal velocity (see the increase in the velocity around 

Table 1 
Accuracy of the computed geometric properties.   

3D Model Actual Cube Deviation 
[%] 

Surface 
Area 
[10-6 

m2] 

2290. 09 2400 4.58 

Inertia 
tensor 
[10-9 

kg ⋅ 
m2] 

⎛

⎝
16.84 0 0

0 17.12 0
0 0 17.12

⎞

⎠

⎛

⎝
16.33 0 0

0 16.33 0
0 0 16.33

⎞

⎠
3.03 – 
4.61  
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0.5 m in Fig. 10). For the further trajectory, neglecting effects of vortex 
shedding, the assumption of a constant vertical velocity in the drop shaft 
is valid. However, Fig. 10 shows a fluctuation in velocity that becomes 
more pronounced when the distance to the cameras increases. This is 
due to the fact that position measurement gets worse with larger dis
tances to the camera as discussed above. Since two particle positions 
enter the calculation of the particle velocity (see Equation (7), the un
certainty in determination of the particle velocity is larger compared to 
the position measurement. However, the range up to approximately 2 m 
shows the smallest fluctuations respectively uncertainties in the velocity 
measurement (see Fig. 10). Therefore, the velocity up to a distance of 2 
m from the cameras is used for the evaluation to ensure a reliable 
determination of the drag and lift coefficients. 

The accuracy of the velocity measurement is checked by averaging 
the velocity values shown in Fig. 10 and comparing them to the theo
retical terminal velocity of the Styrofoam ball. As already said, it is 
assumed that the Styrofoam ball enters the drop shaft with its terminal 
velocity (thus eliminating the inertial force from the consideration). Due 
to the assumption of uniform flow around it, there is no dynamic lift 
force and the static lift force is neglected. Therefore, just the balance 
between the drag force and gravitational force of the Styrofoam ball 
remains. The calculated velocity of the ball is compared with the actu
ally measured average velocity (see Table 3). The parameters used for 
the calculation can be found in Table 3 (where m stands for mass, d for 
diameter, ρ for density and cD for the drag coefficient). 

4.2. Drag coefficient for model particles 

Spheres, cylinders and cubes have been selected as model particles 
and are used to compare the drag coefficients with literature data. For 

brevity, we concentrate on the drag coefficients, although lift co
efficients have been determined as well. For example, the evaluated lift 
coefficient for spheres is zero, as expected. 

As a first example of the results, Fig. 11 shows the evolution of the 
measured drag coefficient of a sphere along the particle trajectory in the 
drop shaft. The averaged value of the drag coefficient is 0.48 resulting in 
a deviation of 2.08 % from the literature value of 0.47 [32]. 

Fig. 12 gives an overview of the drag coefficients determined and 
their statistical deviation around the mean value in a box plot for 
spheres, cylinders and cubes. The boxes are spanned between the upper 
and lower quartiles of the data, with the median being the horizontal 
line in the middle of the box. The reliable data are within the range 
covered by the whiskers, anything outside this range is considered an 
outlier. For each particle geometry, 10 repetitions of the measurement 
including all datapoints during the flight sequence (greater than 100 
datapoints for one model particle, Re > 104) have been performed. For 
spheres, the scatter around the mean value is small, as expected. The 
scatter for cylinders and cubes becomes naturally larger, as the orien
tation of these particles changes along their trajectory (they rotate). 

Nevertheless, the mean values of the drag coefficient are in reason
able agreement with literature. For cubes, values of cD = 0.80 (104 < Re 
< 106) for diagonal flow and cD = 1.05 (for 104 < Re < 106) for trans
verse flow are given in the literature [32]. For cylinders, the literature 
values are cD = 0.82 for a longitudinal flow and cD = 1.2 for transverse 
flow (Re ≈ 104) [33,34]. Note that the literature values were measured, 
as mentioned, just for two particle-velocity orientations and do not take 
into account the influence of orientation and rotation in three di
mensions on the drag coefficient [35]. In addition, the scatter is affected 
by the uncertainties in the determination of the velocity and flow area. 

4.3. Drag and lift coefficients for RDF particles 

As examples for FLUFF fractions textiles, cardboard, 3D plastic par
ticles (denoted as plastics) and 2D plastic foils (denoted as foils) are 
considered. These are also the main fractions occurring in industrial 
FLUFF [12]. The particles stem from a sorting analysis of real FLUFF. 
Fig. 13 shows the typical appearance and dimensions of the particles 
with their average mass. The following results are based on a sample of 
50 particles per fraction. 

The averaged vertical velocity of the different FLUFF fractions is 
depicted in Fig. 14. 3D plastic and cardboard particles have the highest 
velocity because their mass is comparably large but with drag co
efficients in the same order of magnitude as the other FLUFF fractions 

Table 2 
Accuracy of the particle detection.  

Thread length with Styrofoam ball 
[mm] 

Drop Shaft Detection 
[mm] 

Deviation 
[%] 

600  595.065  0.82 
900  883.04  1.88 
1200  1170.51  2.46 
1500  1459.13  2.72 
1800  1746.17  2.99 
2100  2048.4  2.46 
3000  2878.83  4.04 
4000  3821.27  4.47 
Mean Deviation    2.73  

Fig. 10. Vertical velocity of a Styrofoam ball.  
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(see Fig. 15). 
Note that plastic particles tend to rotate because they are usually 

asymmetrical and have an irregular mass distribution over the particle. 
In the case of foils, the influence of rotation is not as dramatic, the 
flexibility of the particle results in a more “swinging motion” along their 
trajectory. The influence can be seen in the averaged drag and lift co
efficients (see Figs. 15 and 16) and in the frequency distribution derived 

from all datapoints for the particles within the corresponding fraction 
(see Fig. 17), where plastic particles have the largest and foils the 
smallest drag coefficient. Vice versa, foils exhibit the highest lift coef
ficient and 3D plastics the smallest of all FLUFF fractions considered. 

5. Conclusion and outlook 

The current paper presents an improved method to study the flight 
characteristics of RDF particles to derive the frequency distribution of 
drag and lift coefficients of representative RDF fractions. 

The measurement method is based on a detailed 3D geometry 
detection of the complex-shaped particles by photogrammetry as the 
geometry is the basic information to calculate the reference areas for the 
determination of drag and lift coefficients. The drag and lift coefficients 
are determined in a drop shaft, where the trajectories of individual 
particles are recorded by a stereoscopic high-speed (500 fps) camera 
system. The stereoscopic approach allows for the detection of particle 
position (and velocity by Particle Tracking Velocimetry) and 

Table 3 
Accuracy of the velocity measurement.  

Case Velocities [m/s] Used Parameters 

Theoretically calculated  3.84 msphere = 0.3 g 
dsphere = 30 mm 

Measured 
mean value  

4.02 ρair (20 ◦C, 101,3 kPa) 
= 1.204 kg/m3 

cD, sphere (103 < Re < 2105) 
= 0.47 [32] 

Mean Deviation [%]  4.78   

Fig. 11. Calculated drag coefficient for a sphere using the measured velocities and the Shape Matching approach.  

Fig. 12. Accuracy of calculated drag coefficients for model particles and the corresponding literature values represented as dashed lines.  
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Fig. 13. Typical appearance of FLUFF particles with their average mass.  

Fig. 14. Averaged vertical velocity and its standard deviation for the FLUFF fractions considered.  

Fig. 15. Averaged drag coefficients and its standard deviation for the FLUFF fractions considered.  
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orientation. This information together with the knowledge of particle 
shape is used in an evaluation algorithm, described in detail, to derive 
drag and lift coefficients. By the measurement of multiple particles, the 
frequency distribution of the drag and lift coefficients for individual RDF 
fractions can be determined. 

The accuracy of the system is checked using model particles (cubes, 
spheres, cylinders). In a first step, the accuracy of 3D shape recon
struction by photogrammetry is assed, showing that the surface area of a 
cube is adequately reproduced with a deviation below 5 %. Also the 
tensor of inertia is reproduced with good accuracy. As second step, a 
spherical particle is used to check the accuracy of the detection of par
ticle position and velocity. The particle detection is reproduced with an 
average deviation of less than 3 %. The accuracy deteriorates with 
increasing distance of the particle from the cameras used for particle 
detection. This is mainly because the calculation of the geometric center 
becomes more inaccurate due to the smaller particle image on the 
camera sensor. This is also valid for the predicted sphere velocity, but 
deviation is less than 5 % compared to the calculated terminal velocity 
based on a simplified force balance. Third, the drag and lift coefficients 
of cubes, spheres, cylinders were determined. The drag coefficient of a 
sphere is calculated with a deviation less than 3 % from the literature 
value, which shows the reliability of the system. The values for the drag 
and lift coefficients lie well in the parameter range given by literature. 

Finally, the averaged terminal velocity and frequency distributions 
of drag and lift coefficients for four different RDF fractions (textiles, 
plastic particles with 3D geometry, cardboards and 2D plastic foils) were 
measured. For each fraction, 50 individual particles were examined. 

The averaged terminal velocities of Krueger et al. [5] agree well with 
the data obtained, as the terminal velocity for 3D plastic particles is also 
in the range of 4 m/s, for foils around 1.5 m/s and for cardboards around 
3 m/s. This also matches the results of Nkhaei et al. [11] who observed 
that the average terminal velocity is larger than 3 m/s for plastics and 
cardboards and lower for foils. 

For all fractions, the drag coefficients are significantly larger than lift 
coefficients. The maximum drag coefficient occurs for the 3D plastic 
particles. The mean value of the drag coefficients for the fractions spans 
from 1.4 to 1.7. The flat plastic foils show the largest average lift coef
ficient with a value of 0.6, whereas the 3D plastic particles exhibit the 
smallest value of around 0.2. The determined drag coefficients are larger 
than those derived by Krueger. This is in good agreement with the 
measurements carried out by Liedmann [12], who compared the particle 

geometry derived by the Krueger method with manual measurements. It 
was found that the Krueger method leads to an overestimation of the 
dimensions of the particle, resulting in too low values for the drag and 
lift coefficient. Larger drag coefficients as determined in the current 
study will have an influence of particle trajectories in corresponding 
CFD simulations. For the main application considered here, rotary 
cement kilns, the main parameter of interest is the axial penetration 
depth of the particles which is mainly influenced by the drag coefficient. 
Larger drag coefficient will reduce the penetration depth and may lead 
to an earlier impact of unburnt RDF particle onto the clinker bed, which 
can harm clinker quality due to locally reducing conditions in the clinker 
bed (oxygen for the conversion of RDF can be extracted from the 
mineralogical matrix). 

In summary, the results obtained (frequency distribution of drag and 
lift coefficients as well as the inertia tensors) can be used to model the 
flight behavior of RDF particles in CFD simulations. In future work, we 
will extend an already existing approach of our group for the modelling 
of the flight and combustion behavior of RDF [3] with these information. 
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Fig. 17. Frequency distribution of drag and lift coefficients for the FLUFF fractions considered.  
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