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Abstract— Designing a safe and human-like decision-making
system for an autonomous vehicle is a challenging task. Genera-
tive imitation learning is one possible approach for automating
policy-building by leveraging both real-world and simulated
decisions. Previous work that applies generative imitation
learning to autonomous driving policies focuses on learning
a low-level controller for simple settings. However, to scale to
complex settings, many autonomous driving systems combine
fixed, safe, optimization-based low-level controllers with high-
level decision-making logic that selects the appropriate task
and associated controller. In this paper, we attempt to bridge
this gap in complexity by employing Safety-Aware Hierarchical
Adversarial Imitation Learning (SHAIL), a method for learning
a high-level policy that selects from a set of low-level controller
instances in a way that imitates low-level driving data on-policy.
We introduce an urban roundabout simulator that controls non-
ego vehicles using real data from the Interaction dataset. We
then demonstrate empirically that even with simple controller
options, our approach can produce better behavior than previ-
ous approaches in driver imitation that have difficulty scaling
to complex environments. Our implementation is available at
https://github.com/sisl/InteractionImitation.

I. INTRODUCTION

The development of autonomous vehicles will greatly
impact urban traffic. Of particular importance is the safety
and predictability of autonomous vehicles when interacting
with complex environments. Achieving safe and human-like
behavior will require a) multiple levels of safety redundancy,
b) large amounts of real, “expert” driving data, and c)
advanced simulators to test behavior before deploying.

Recent reinforcement learning approaches add levels of
redundancy to policies learned in simulation by allowing
for a hierarchy of control that passes between high-level
action selectors and safe low-level optimization-based driv-
ing controllers [1], [2]. Though the addition of hierarchical
safety layers is intuitive and adds levels of redundancy, the
success of any reinforcement learning-based approach hinges
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Fig. 1: With SHAIL, the ego vehicle learns to choose from a
set of safe high-level options to navigate a complex driving
environment derived from the Interaction dataset [7]. The
learner requires only low-level expert states and actions as
opposed to high-level actions or a reward function.

on the design of the reward function. A misspecified reward
function can be catastrophic.

To resolve the issue of reward misspecification, imitation
learning approaches instead rely on demonstrations from
an expert in the environment. Data availability invites the
use of imitation learning methods that do not interact with
the environment (i.e. off-policy methods, such as behavior
cloning) [3]. However, these methods suffer from cascading
errors when vehicles encounter out-of-distribution states [4].
Some on-policy approaches will query an expert to help
guide the learning process safely [4], but querying an expert
can be costly or impractical. Adversarial imitation learning
approaches have been applied with simulators on-policy to
circumvent the need for a queryable driving expert [5], [6],
but these approaches have mostly been tested in simple
driving settings and are still not collision-free.

We approach the safety and environment simplicity lim-
itations of these prior applications of adversarial imitation
learning to autonomous driving by taking a hierarchical
approach. We note that many autonomous driving systems
combine fast, safe, optimization-based controllers for low-
level control with high-level logic to select appropriate tasks,
controllers, and controller parameters. High-level logic might
choose between different options (e.g. LaneChangeLeft,
Accelerate, TurnRight, EasyBrake, HardBrake),
then pass control to an instance of a low-level controller with
the appropriate task and parameters for the chosen option.
However, labels for these high-level choices are typically
inaccessible in expert trajectories, making direct learning
difficult.
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A large body of work exists around hierarchical imitation
learning formulations for different robotics problems [8]–
[13]. In this paper, we employ a method for learning a
high-level controller-selection policy that imitates low-level
driving data on-policy given a set of known low-level con-
troller instances, as is appropriate for autonomous driving.
A depiction of our problem setting is shown in Figure 1. We
introduce Safety-Aware Hierarchical Adversarial Imitation
Learning (SHAIL), which maintains the same low-level oc-
cupancy measure-matching objective of previous adversarial
imitation learning approaches applied to driving [5], [14], but
assumes that low-level data is generated within the options
framework [15] and reformulates the objective accordingly.
Additionally, SHAIL implements a safety awareness layer
to adjust the high-level controller selection policy based on
active reasoning about the safety or feasibility of different
options.

To demonstrate the effectiveness of SHAIL, we develop
a simulator based on real driving data from complex urban
driving scenarios in the Interaction dataset [7]. Our simulator
allows us to adjust the acceleration of an ego vehicle along
its real path while other agents in a scene behave according
to data. We test a basic implementation of SHAIL in round-
abouts, a dynamic driving scenario that is typically difficult
for an autonomous vehicle to safely navigate. We compare
SHAIL against an IDM adaptation, behavior cloning (BC),
non-hierarchical generative adversarial imitation learning
(GAIL), and an ablation of SHAIL without the safety layer
(HAIL), observing that SHAIL indeed yields safer and more
realistic driving behavior.

In summary, the main contributions of this paper are to:
• Introduce SHAIL, a methodology for learning a safe

high-level action-selection policy that imitates low-level
observations and actions,

• Introduce a simulator for complex driving scenarios
based on real data, and,

• Empirically demonstrate the efficacy of SHAIL com-
pared to IDM, behavior cloning, and non-hierarchical
imitation learning.

The remainder of this paper is organized as follows:
Section II outlines background and related work, Section III
describes the methodology for hierarchical adversarial imi-
tation learning with safety constraints, Section IV presents
experiments and results, and Section V concludes our re-
search.

II. BACKGROUND

This section provides necessary background on reinforce-
ment learning, imitation learning, and hierarchical planning.

A. Reinforcement and Imitation Learning

Optimal decision-making is often framed in the context of
Markov Decision Processes (MDPs). An MDP can be defined
as a tuple ⟨S,A, T,R, b0, γ⟩ and includes a finite state space
S, the action space A, a stochastic transition function T :
S × A × S → [0, 1], a reward function R : S × A → R,
an initial state distribution b0 : S → [0, 1], and a positive

discount factor γ < 1. An MDP policy maps states to a
distribution over actions to take π : S × A → [0, 1]. An
optimal policy maximizes expected cumulative discounted
reward, π∗ ∈ argmaxπ∈Π Eπ[

∑∞
t=0 γ

tR(st, at) | s0 ∼
b0(·)].

In the reinforcement learning setting, the exact transition
and reward functions T and R are unknown, but we can inter-
act with an environment to receive generated samples of next
state and reward s′, r ∼ G(s, a). There is a body of work
in which reinforcement learning is used to generate policies
for different autonomous driving scenarios [16]–[18]. These
works requires the use of a driving simulator to produce
realistic transitions, as well as the manual specification of a
reward function. Designing a reward function to capture all
desired behavior is extremely difficult, and it is common for
learning agents to exploit misspecified reward functions [19].

In the imitation learning setting, instead of receiving a
reward signal, we rely on data in the form of trajectory
rollouts from an expert who interacts with the environment.
The imitation learning problem can be viewed as a problem
of moment-matching between the expert and learner distribu-
tions, and methods can broadly be characterized as seeking
to match Q-value moments off-policy, Q-value moments on-
policy, or reward moments on-policy [20]. In off-policy Q-
value moment matching, the learned imitating policy cannot
interact with the environment until execution time [21]. The
most straightforward approach to learn a policy in this setting
is through behavior cloning (BC), in which a supervised
learner regresses states to actions. This approach has a long
history in autonomous driving systems [3], [22].

Behavior cloning suffers from an accumulation of errors
during testing as an agent ends up in states it has not seen
during training, a phenomenon often referred to as covariate
shift [4]. In the on-policy Q-value-matching setting, this
accumulation of errors is reduced by introducing a query-
able expert who can correct deviating trajectories during
training [4]. However, training with a query-able expert can
be costly, timely, and impractical. In contrast, on-policy
reward moment-matching algorithms assume no access to
a query-able expert, but still assume interactions with the
environment during training (e.g. using a simulator).

The state-action occupancy measure under a policy π
is the (unnormalized) γ-discounted stationary distribution
of states and actions visited under that policy, ρπ(s, a) =
π(a | s)ρπ(s), where ρπ(s) =

∑∞
t=0 γ

tP (st = s |
π). We can similarly define the state-action occupancy
measure of the expert policy, ρexp(s, a). One perspective
formulates imitation learning as moment-matching between
expert and learned occupancy measures, done by minimiz-
ing some f -divergence between the associated distributions
minπDf ((1 − γ)ρexp(·, ·)∥(1 − γ)ρπ(·, ·)) [14]. In the on-
policy reward matching setting, this objective can be written
as a two-player game between a policy generator πθ and an



observation-action discriminator Dϕ:

min
πθ

max
Dϕ

E(s,a)∼ρexp(·,·)[Dϕ(s, a)]

− E(s,a)∼ρπθ (·,·)[f
∗(Dϕ(s, a))], (1)

where f∗ denotes the convex conjugate of f . This objective
can be optimized by alternating between discriminator gra-
dient ascent steps to optimize the discriminator parameters ϕ
and policy gradient ascent steps to optimize the parameters
θ of a stochastic policy. This latter step can be viewed
as reinforcement learning with an ‘imagined’ reward signal
of r(s, a) = f∗(Dϕ(s, a)). These steps use Monte Carlo
methods (and a replay buffer) to estimate the expectations
[23], [24].

These generative methods have been used to imitate high-
way driving behavior [5]. Later work improves upon this by
augmenting the learned reward model with soft constraints to
avoid bad states and actions [6]. Two shortcomings of these
works are that they a) mostly consider highway driving, a
relatively simple driving scenario, and b) only learn low-level
controllers, for which safety is more difficult to guarantee in
comparison to traditional optimization-based controllers.

B. Hierarchical Planning

Human driving in complex environments is naturally hi-
erarchical. One can model hierarchical planning through
the context of options [15], in which a low-level con-
troller o is chosen from a finite set of options O and
executed until termination, upon which a new valid option
is chosen. An options model can be defined with the tuple
⟨S,A, {Io, πL

o , βo}o∈O, T,R, bo, γ⟩. In addition to the com-
ponents of an MDP, an options model defines K options
(indexed by o) which each define a set of states from which
they can be initialized I ⊆ S , a low-level control policy
πL : S × A → [0, 1], and the probability that the option
will be terminated from any given next state β : S → [0, 1].
A high-level policy over options denotes the probability of
choosing from the valid set of options in any given state
πH(o | s), where s ∈ S and o ∈ O such that s ∈ Io.

Recent work considers hierarchical reinforcement learning
for planning in driving scenarios [1], [2], [25]. While still
suffering from the pitfalls of a manually specified reward
function, these approaches have the benefit that a high-
level action-selector can hand over control to safe, low-
level, optimization-based planners. Mirchevska et al. use this
approach to learn a high-level controller that can choose safe
gaps in highway traffic for an optimization-based low-level
controller to navigate to [1]. In their approach, the high-level
controller only targets reachable gaps, while if a targeted gap
no longer is reachable during low-level execution, control is
passed back to the high-level controller.

Additional work considers hierarchical approaches to im-
itation learning. For example, Henderson et al. perform
imitation learning hierarchically (as opposed to hierarchical
imitation learning) by learning multiple generators and dis-
criminators to match low-level data, and learning a mixture-
of-experts policy over those generators to follow [26]. Le

et al. describes a formulation to perform hierarchically-
guided behavior cloning and dataset aggregation, however,
this assumes labeling of the high-level option, which we do
not [9].

Jing et al. perform hierarchical on-policy reward moment-
matching by framing an objective to match the moments
over states, actions, and options and alternating between
expert option label inference and joint policy training. In
this work, we keep low-level options fixed, as is more
appropriate for driving. As a result, our work is in line with
moment-matching objectives over state and action [14] as
opposed to those additionally over options [13]. This can be
viewed as a subclass of Jing et al. [13] where there is no
need to infer latent options in the data, or as an extension
of Ghasemipour et al. [14] in which the state-action pairs
are drawn hierarchically.

Much of recent work that performs vehicle behavior
prediction hierarchically (e.g. [27]) can be easily extended
to off-policy hierarchical imitation learning, as many policies
learned to predict vehicle behavior when conditioned on
a goal could be extended to control an ego vehicle. A
flavor of on-policy hierarchical imitation learning has been
applied to driving policies, in which long-horizon planning
learned to mimic a query-able expert is interleaved with fast,
short-horizon, low-level optimal control [28]. In contrast,
we propose learning a high-level controller on-policy that
imitates low-level data without a query-able expert, and
characterize a broader class of high-level control options.

III. METHODOLOGIES

This section formulates SHAIL, first by reformulating
the occupancy measure-matching objective for a policy that
generates low-level data hierarchically, and then by designing
a safety-aware high-level controller.

A. Hierarchical Adversarial Imitation Learning

We first formulate the occupancy measure-matching ob-
jective in Equation (1) for a policy that is generating states
and actions hierarchically. We do this by expanding the
occupancy measure over options that would lead to state s
and action a during their execution, and states in which the
options begin executing. We expand over the initiation states
sτ = h that begin executing the options o at time τ under
which low-level states and actions s and a can be observed
at time t:

ρπ(s, a) =

∞∑
t=0

γtP (st = s, at = a) (2)

=
∑
h,o

∞∑
t=0

t∑
τ=0

γτP (sτ = h, oτ = o)

· γt−τP (st = s, at = a | sτ = h, oτ = o) (3)

=
∑
h,o

∞∑
τ=0

γτP (sτ = h, oτ = o)

·
∞∑
t=τ

γt−τP (st = s, at = a | sτ = h, oτ = o) (4)



=
∑
h,o

∞∑
τ=0

γτP (sτ = h, oτ = o)

·
∞∑
t=0

γtP (st = s, at = a | s0 = h, o0 = o) (5)

=
∑
h,o

ρπ
H

(h, o)ρπ
L

(s, a | h, o), (6)

where ρπ
H

(h, o) = πH(o | h)
∑∞

τ=0 γ
τP (sτ = h) is the

discounted occupancy measure for ending up in a high-level
state h and initiating option o, and ρπ

L

(s, a | h, o) = πL
o (a |

s)
∑∞

t=0 γ
tP (st = s | s0 = h, o0 = o) is the discounted

occupancy measure of states and actions under an option o
which was initialized in state h at time 0.

We apply this hierarchical representation of occupancy
measure ρπ(s, a) to reformulate the measure-matching ob-
jective in Equation (1) for policy data that is generated
hierarchically:

min
π

max
Dϕ

E(s,a)∼ρexp(·,·)[Dϕ(s, a)]−
∑
s,a

ρπ(s, a)r(s, a)

(7)
min
πH
θ

max
Dϕ

E(s,a)∼ρexp(·,·)[Dϕ(s, a)]

−
∑
h,o

ρπ
H
θ (h, o)

∑
s,a

ρπ
L

(s, a | h, o)r(s, a) (8)

min
πH
θ

max
Dϕ

E(s,a)∼ρexp(·,·)[Dϕ(s, a)]− E
(h,o)∼ρπH

θ (·,·)
[r̃(h, o)],

(9)

where r̃(h, o) = E(s,a)∼ρπL (·,·|h,o)[f
∗(Dϕ(s, a))].

Optimizing this objective can be done in a fashion similar
to optimizing the objective in Eq. (1). Discriminator updates
remain identical, while generator updates require performing
policy gradients on πH

θ (o | h) where the new ‘imagined’
high-level reward r̃(h, o) accumulates the discounted low-
level ‘imagined’ discrimination rewards from the execution
of the chosen option. That is, r̃(h, o) can be estimated as∑To

t=0 γ
tr(st, at), where s0 = h, at ∼ πL

o (·|st), and To is
the duration of the option.

B. Safety-Aware Hierarchical Adversarial Imitation Learn-
ing

Many practical implementations of policy gradients rely
on a fixed-size action space [29], [30]. Because of this
restriction, we are limited to an option set where any option
can be initialized from every state, i.e. Io = S for all
o ∈ O. This assumption can be very limiting in terms of
safety. Often times, we have information about restricted
options from different states (e.g. an Accelerate option
should not be taken from a red light). Additionally, we might
be able to make predictions about the safety of different
controllers. For example, this can be done strictly with
formulations of reachability of a controller, or more loosely
through notions of scene understanding (e.g. ‘it is probably
unsafe to make a turn since there are vehicles crossing
the intersection’). SHAIL improves upon the formulation of
hierarchical adversarial imitation learning presented in the

previous section by designing a high-level option-selection
policy that incorporates sensitivity to option safety.

Safety awareness is incorporated by assuming that the
agent can reason about the safety or availability of different
options from different states. We introduce a binary random
variable z which predicts safety or availability of a low-level
controller, denoting the probability that an option o is safe
when executed from a high-level state s as psafe(z

1 | s, o).
This allows us to design the options such that control is
passed back to the high-level option selector according to
this safety prediction, i.e. βo(s) = 1 − psafe(z

1 | s, o).
This option termination formulation expands on the one
used by Mirchevska et al. in the hierarchical reinforcement
learning setting [1] to admit probabilistic controller safety
predictions rather than binary controller availability.

With this formulation, we additionally design a high-level
controller that conditions on controller safety:

πH
θ (o | s, z1) ∝ p(o, z1 | s) = psafe(z

1 | s, o)ψH
θ (o | s),

(10)
where ψH

θ is a learnable controller selector. This high-level
controller reweights options based on predictions of their
safety or availability. It can be easily shown that learning
with this substituted policy is equivalent to minimizing the
divergence to an agent occupancy measure conditioned on
safety, ρπ(s, a | z1). This scheme requires at least one option
with nonzero safety probability (e.g. a permanent ‘safe’
controller), otherwise the high-level policy will not represent
a valid distribution over controllers. Additionally, to learn a
useful option selector, the options should have some semantic
meaning that holds across different initialization states.

Learning ψH
θ with policy gradients on this policy formu-

lation requires storing the safety probabilities seen during
option initiation in the replay buffer. That is, for each option
o initiated from a state h, the replay buffer consists of
samples of the form (h, o, psafe(z

1 | h, ·), r̃(h, o)).

IV. EXPERIMENTS

Our experiments demonstrate the effective use of SHAIL
in a driving simulator. We introduce our own simulator based
on real data in urban driving environments, and demonstrate
the improvements regarding safety that can be achieved in
comparison with baseline models, even by a simple SHAIL
implementation.

A. Setup

1) Simulator: To test this approach in a more complicated
driving environment, we introduce the Interaction simulator.1

The Interaction simulator is an OpenAI Gym [31] simulator
that uses underlying data from the Interaction dataset of
complex urban driving scenes [7]. The dataset consists of
recorded track files from driving scenarios in different urban
driving situations like roundabouts or intersections.

The simulator itself fixes vehicle paths and spawn times
based on the recorded data in the Interaction dataset, and
admits control of vehicle accelerations along the path. This

1https://github.com/sisl/InteractionSimulator

https://github.com/sisl/InteractionSimulator


is a reasonable navigation strategy, as it may be common
for a separate module to determine the path of a vehicle
navigating a complex scene.

In our experiments2, we focus on controlling a single
vehicle that is modeled with double integrator dynamics and
moves along its recorded path while non-ego vehicles follow
their recorded trajectories. Simulations are terminated when
the vehicle leaves the scene.

2) Features: We assume that the ego vehicle encodes
its absolute velocity, yaw rate, and lidar-like measurements
of the relative position and velocity of the closest vehicle
in each 72◦ sector of its surroundings. We use this very
simple subset of autonomous vehicle features in order to
avoid overfitting to our small dataset.

3) Models: We evaluate the following baseline models in
our experiments:

Expert: The expert model uses the default accelerations
from the Interaction dataset.

IDM: The Intelligent Driver Model (IDM) models vehicle
accelerations in fixed-lane driving when following a vehi-
cle [32]. This model is problematic for uncontrolled driving,
where it is not clear which vehicle the ego should ‘follow’.
We choose the follow vehicle as the closest vehicle that lies
within two meters of the ego’s planned path and has less
than a 30◦ difference in heading. We target a desired speed
of 8.94 m/s (20 mph), a minimum spacing of 3 m, a desired
time headway of 0.5 s, a nominal acceleration of 3 m/s2, and
a comfortable braking deceleration of 2.5 m/s2.

BC: We implement a behavior cloning agent that directly
regresses features to a mean and standard deviation param-
eterizing a normal distribution for ego vehicle acceleration.
Our model is a feedforward neural network with layers of
fixed hidden size. We train our model by minimizing the
negative log-likelihood of expert actions under the action
distribution predicted from their preceding states.

GAIL: We compare against a model learned through
Generative Adversarial Imitation Learning (GAIL) [5], [23].
Both discriminator and policy models are feedforward neural
networks, the latter again outputting parameters for a normal
distribution over next action. We use the same optimization
objective as Ho and Ermon, as well as proximal policy
optimization (PPO) [29] to learn a policy. We do not compare
recurrent policies, as our episodes are too short to compare
against recurrent hierarchical policies.

SHAIL: To demonstrate the effectiveness of SHAIL, we
formulate a very simple hierarchical policy. Our high level
controller chooses from a set of options which target a
particular velocity at a particular future time, O = {(v, t) |
v ∈ V, t ∈ T }, where V and T are discrete velocity and
time sets. The low-level controller for each option commands
a fixed acceleration to bring the vehicle to the desired
velocity at the desired time. The safety predictor returns
a binary indicator for whether the option is scheduled to
collide with other vehicles if they maintain their velocity.
Additionally, we overwrite the largest deceleration option to

2https://github.com/sisl/InteractionImitation

always be valid, thereby rendering it a default ‘safe’ option
HardBrake. Again, we use the objective from Ho and
Ermon, and PPO for policy gradients. We also learn a version
of SHAIL without the safety layer or early option termination
for ablation (HAIL).

4) Training and Metrics: Our experiments focus on model
performance in roundabouts, a customarily tricky scenario
for an autonomous system to navigate. Specifically, we look
at the DR USA Roundabout FT scene, which includes
five recordings consisting of over 750 ego vehicle tracks.
We believe it to be the most difficult roundabout scene
in the dataset. Upon collision of a controlled vehicle, the
environment is reset with a new random vehicle.

We perform two experiments. In our first experiment (in-
distribution), we train and test models in the same environ-
ment, which selects vehicles only from the first track file. The
purpose of this experiment is to compare absolute potential
model performance. This in-distribution testing corresponds
with what was done by Kuefler et al. [5].

In our second experiment (out-of-distribution), we train
and validate in an environment that randomly selects vehicles
from scene recordings 1–4, and we report metrics on scene
5. This out-of-distribution testing evaluates how the models
perform on unseen vehicle data, though we acknowledge
that we are still operating in the same driving setting. In
both experiments, hyperparameters (e.g. model architecture,
options sets, etc.) are optimized by choosing the ones which
yield the highest success rate in the training environment.
Please refer to our code for all parameters.

To avoid collisions caused by non-ego vehicles following
their recorded trajectories, our test environment overrides
non-ego accelerations with the IDM policy in case of an
impending not-at-fault collision. For each model, we report
success rate (the rate at which an episode does not terminate
in collision), the average travelled distance (m), the root
mean square error in position to the expert measured at
10 seconds into the trajectory (m), the average absolute
difference between average speed of each vehicle under
expert and modelled control (m/s), and the Jensen-Shannon
divergence between the distributions over all accelerations.
The divergence is estimated by fitting a histogram distribu-
tion to the two sets of samples.

B. Results and Discussion

Our simulation environment is visualized in Figure 2,
while results from multiple runs of both in- and out-of-
distribution roundabout experiments are shown in Table I.
From the success rate and average distance traveled metrics,
we can see that the simple IDM rule-following policy,
behavior cloning, and GAIL all have trouble successfully
navigating through the roundabout. From the in-distribution
experiment, we see that incorporating safe options, even
those as simple as the ones we suggest, can yield better
performance when driving in complex environments. We
see improvements in the success rate and travel distance
metrics. We see that metrics that judge similarity to expert

https://github.com/sisl/InteractionImitation


Fig. 2: A single time-step of a policy learned by SHAIL in-
teracting with the environment. The ego vehicle has available
to it its own motion state and lidar-like measurements cap-
turing relative state information about up to five surrounding
vehicles.

TABLE I: A comparison of performance between expert,
IDM, BC, GAIL, HAIL (ablation), and SHAIL policies in
both in-distribution (above) and out-of-distribution (below)
roundabout experiments. We report metric means and two
standard deviations after training each model five times.

Model Success % Travel Dist. RMSE10s |∆Vavg| Accel. JSD

Expert 100 82.1 — — —
IDM 66.2 67.5 19.2 1.52 0.050

BC 45.3±3.0 49.8±1.4 22.0±1.9 1.88±0.11 0.275±0.017

GAIL 68.3±4.8 65.3±3.9 14.9±1.1 1.08±0.14 0.016±0.021

HAIL (ab) 53.0±24.1 54.5±15.3 18.3±4.8 1.87±0.86 0.333±0.008

SHAIL 77.7±3.1 70.6±2.3 14.7±2.1 1.27±0.23 0.312±0.012

Expert 100 81.9 — — —
IDM 56.3 59.9 21.0 1.45 0.061

BC 40.4±3.1 48.8±1.3 22.5±0.5 1.92±0.05 0.290±0.018

GAIL 51.6±6.8 54.5±4.7 14.7±1.6 1.41±0.21 0.031±0.018

HAIL (ab) 39.9±8.6 46.3±6.5 21.1±5.0 2.10±0.55 0.328±0.016

SHAIL 64.4±6.8 61.6±3.6 18.1±1.8 1.37±0.34 0.300±0.027

position and speed perform comparably well in both GAIL
and SHAIL, indicating some human-like behavior in both.

We note that the distribution over SHAIL accelerations
is quite far from the expert distribution, especially when
compared to GAIL. This disparity can be attributed to
our overly simple option design. Our controllers attempt
to target different velocities at different points by holding
fixed accelerations, ultimately resulting in jerky behavior. We
could bridge this gap by implementing more comfortable,
human-like controller options.

In our ablation study, implementing the same options
without any safety layering (HAIL) results in a severe drop in
performance. Intuitively, when implementing options without
safety or termination criteria, we are reducing the space of
immediate actions available to the agent. Even if we could
learn a good imitating controller that predicts which options
might be safe from a particular state, we have no method for
terminating if the options become unsafe. In our experiments,
this is made even worse by our simple controllers, which
stick to the action plan that was initiated during option
selection and do not adjust their plan based on environment

feedback.
We see similar results in our out-of-distribution experi-

ment, noting that the performance gap between SHAIL and
other models is even greater. Though none of the learning
methods perform as well as they would in-distribution, this
performance gap suggests that SHAIL could be a good
approach for navigating new situations. We note though
that our out-of-distribution experiment tested in the same
roundabout setting as training, just with new vehicle data.
Though we believe this to be the hardest setting, it would be
interesting to train our approach over different settings and
test on a fully unseen one to see how well the learned safe
option selector could generalize.

V. CONCLUSION

Previous work applying adversarial imitation learning to
autonomous driving focuses on learning low-level control
policies. However, since many autonomous driving systems
rely on optimization-based control to provide safe low-level
policies, it may be more prudent to rely on data-driven
tools to learn high-level control policies. In this work, we
introduced Safety-Aware Hierarchical Adversarial Imitation
Learning (SHAIL), a methodology for learning high-level
control policies in a simulator such that low-level expert
trajectories are imitated. SHAIL incorporates an additional
layer to reason over option safety and availability, allowing to
guarantee that only safe and feasible actions are executed. To
demonstrate our approach, we developed a simulator based
on the Interaction dataset of real complex urban driving sce-
narios. Finally, we compared SHAIL to previous approaches
to empirically demonstrate the safety improvements that it
affords when navigating a roundabout.

SHAIL inherits all of the limitations from generative ad-
versarial networks, policy optimization, and simulation-based
approaches to policy learning. Additionally, SHAIL limits
high-level options to a fixed set of predetermined low-level
control policy instances. These options must hold seman-
tic meaning in different initialization states for meaningful
learning to occur. One limitation of our experiments is the
simplicity of the low-level controllers used, which are meant
only to demonstrate the potential of our proposed method.
More advanced low-level controllers, safety predictors, and
termination criteria can easily be substituted into our method.
SHAIL can be extended to perform reward augmentation to
design policies that avoid known unfavorable behavior. It
can also potentially be applied across settings to learn more
generalizable option-selection.

ACKNOWLEDGMENT

The authors acknowledge Kunal Menda for early work on
the Interaction simulator.

REFERENCES
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