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ABSTRACT

Interpretable policy learning seeks to estimate intelligible decision policies from
observed actions; however, existing models fall short by forcing a tradeoff between
accuracy and interpretability. This tradeoff limits data-driven interpretations of
human decision-making process. e.g. to audit medical decisions for biases and
suboptimal practices, we require models of decision processes which provide
concise descriptions of complex behaviors. Fundamentally, existing approaches are
burdened by this tradeoff because they represent the underlying decision process
as a universal policy, when in fact human decisions are dynamic and can change
drastically with contextual information. Thus, we propose Contextualized Policy
Recovery (CPR), which re-frames the problem of modeling complex decision
processes as a multi-task learning problem in which complex decision policies are
comprised of context-specific policies. CPR models each context-specific policy
as a linear observation-to-action mapping, and generates new decision models
on-demand as contexts are updated with new observations. CPR is compatible with
fully offline and partially observable decision environments, and can be tailored to
incorporate any recurrent black-box model or interpretable decision model. We
assess CPR through studies on simulated and real data, achieving state-of-the-art
performance on the canonical tasks of predicting antibiotic prescription in intensive
care units (+22% AUROC vs. previous SOTA) and predicting MRI prescription for
Alzheimer’s patients (+7.7% AUROC vs. previous SOTA). With this improvement
in predictive performance, CPR closes the accuracy gap between interpretable and
black-box methods for policy learning, allowing high-resolution exploration and
analysis of context-specific decision models.

1 INTRODUCTION

Interpretable policy learning (Hüyük et al., 2022) seeks to recover an underlying decision-making
process from a dataset of demonstrated behavior, and represent this process as an interpretable model
∗Equal contribution
†Corresponding author
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that can be quantified, audited, and intuitively understood. This approach has gained considerable
attention in the medical informatics community as a promising approach for improving standards of
care by detecting bias, explaining sub-optimal outcomes (Lengerich et al., 2022), and quantifying
regional (McKinlay et al., 2007) and institutional (Westert et al., 2018) differences. Classic machine
learning algorithms for policy inference are based on inverse reinforcement learning (Ng & Russell,
2000) or imitation learning (Bain & Sammut, 1999; Piot et al., 2014; Ho & Ermon, 2016), and use
black-box architectures such as recurrent neural networks. These approaches have been applied in
various medical domains, most prominently oncology prognosis (Beck et al., 2011; Esteva et al.,
2017). However, black-box methods have been met with skepticism from the medical community
based on a lack of interpretability as well as an inability to identify catastrophic failure modes and
generalization issues (Laï et al., 2020; Royal Society (Great Britain) and Royal Society (Great Britain)
Staff, 2017).

To achieve this desire for interpretable policies, there has been a recent surge in transparent policy
parametrizations for imitation learning. Recent approaches include recurrent decision trees (Pace
et al., 2022), visual decision boundaries (Hüyük et al., 2022), high-level programming syntax (Verma
et al., 2018) or outcome preferences (Yau et al., 2020). While these approaches are generally
more trustworthy to clinicians, their interpretability stems from restrictive modeling architectures,
sacrificing action-matching performance or imposing obscure constraints that make real-world
applications challenging. Succinctly, models must be both accurate and interpretable to effectively
support clinical decisions.

The primary challenge is that human decisions are informed by a variety of factors including patient
background, medical history, lab tests, and more, and true human decision processes are complex.
Thus, compressing the decision policy into a single universal observation-to-action mapping necessi-
tates the use of large nonparametric models (e.g. neural nets) that preclude direct interpretability, or
produce a model which fails to capture the complexities of human decision-making.

In this paper, we propose Contextual Policy Recovery (CPR). Instead of seeking a universal policy
that necessitates trading off accuracy against interpretability, CPR embraces the wealth of contextual
information that guides human decision-making and reframes the problem of policy learning as multi-
task learning of interpretable context-specific policies. CPR learns a black-box generator function
that encodes contextual information (e.g. the history of observed symptoms and actions which have

Figure 1: CPR uses patient-specific treatment contexts to estimate the agent’s decision model at each
timestep. Because the decision models are context-specific, each model can be an interpretable linear
combination of observed features. In this way, CPR achieves exact model-based interpretability
without sacrificing representational capacity.
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previously occurred in the decision process) and generates linear observation-to-action mappings.
With this combination of black-box and glass-box components, CPR provides interpretable context-
specific decision functions at sample-specific resolution. CPR does not sacrifice representational
capacity and achieves state-of-the-art performance in policy recovery. Finally, CPR is a modular
framework: both the model family of the context encoder and the interpretable observation-to-action
mapping model can be chosen according to the given task at hand.

Contributions: Our work makes the following contributions to the personalized modeling and
medical machine learning communities:

• We propose CPR, a framework for estimating time-varying and context-dependent policies
as linear observation-to-action mappings, operating in a fully offline and partially observable
environment. CPR enables interpretable and personalized imitation learning, dynamically
incorporating new information to model decisions over the entire course of treatment.

• We apply CPR to two canonical behavior cloning tasks: predicting antibiotic prescription in
intensive care units and predicting MRI prescription for Alzheimer’s patients. CPR matches
the performance of black-box models, generating decision models that recover best-practice
treatment policies under a continuum of patient contexts.

• We simulate a heterogeneous Markov decision process and who that CPR empiriclaly
converges to the true decision model parameters, improving representation, performance,
and interpretability over black-box-only models.

2 RELATED WORK

Policy class Contextualized Global Tree Global Aggregate
Representative model CPR POETREE INTERPOLE

P(at∣x0∶t, a0∶t−1) fh(x0∶t−1,a0∶t−1)(xt) fθ(xt, h(x0∶t−1)) fθ(h(x0∶t, a0∶t−1))

Adapts to observed actions ✓ ✗ ✓
xt → at glass-box ✓ ✓ ✗

Table 1: Comparison of different policy learning algorithms. All listed model classes are designed
to provide interpretability beyond what a black-box recurrent model would provide: CPR provides
contextualized parametric policies, POETREE (Pace et al., 2022) provides a global tree-based policy,
and INTERPOLE (Hüyük et al., 2022) provides interpretations of belief states in h as a summary of
patient history.

We seek to learn, at each timestep, an interpretable parametrization of observed behavior to understand
how an agent’s action was taken in a partially observable, offline environment expanding on the
objective of classical imitation learning, that solely seeks to replicate demonstrated behavior. CPR
combines the strengths of previous work (Table 1) by keeping the observation-to-action mapping
at each timestep interpretable while being able to adapt to the full observed past, aligning learned
policies closer with demonstrated behavior. While POETREE (Pace et al., 2022) is able to carry
over a hidden state through time, this hidden state acts as an additive bias at each timestep instead of
adapting the underlying model parameters θ, which are static throughout time.

Imitation Learning The classical approach for learning sequential decision-making processes
involves reinforcement learning, optimizing an agent’s reward signal R in an online environment.
However, in some applications, such as clinical decision-making, experiments with online policies
would be both unethical and impractical so only observational data is available. In this setting we
do not have access to the reward signal R and instead focus on the inverse task of replicating the
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observed behavior of an agent, known as imitation learning. There are several approaches to tackle
such problems, including simple behavioral cloning, without taking interpretability into account, in
which the task is reduced to supervised learning mapping observations to actions (Bain & Sammut,
1999; Piot et al., 2014). Other approaches are based on distribution matching where adversarial
training is used to match the state-action distributions between demonstrator and learned policies (Ho
& Ermon, 2016; Jeon et al., 2018; Kostrikov et al., 2020). A closely related task is apprenticeship
learning - aiming to reach or surpass expert performance on a given task, which is usually achieved
by inverse reinforcement learning to recover the reward signal R from demonstrated trajectories (Ng
& Russell, 2000; Abbeel & Ng, 2004; Ziebart et al., 2008).

Black-box solutions for both imitation learning and apprenticeship learning in partially observable,
fully offline environments have been developed in the past. An example of the former is by Sun
et al. (2017), using LSTMs, to model the agent’s belief space. Adaptations of inverse reinforcement
learning for partial observability (Choi & Kim, 2011) and offline learning (Makino & Takeuchi,
2012) exist as well. These approaches solely utilize black-box models to maximize action-matching
performance, making it challenging to distill a transparent and tractable description of the learned
policies.

Interpretable Policy Learning Recurrent neural networks depend on latent hidden representations
for each feed-forward pass in a time series, obfuscating popular post-hoc explanation methods like
LIME (Ribeiro et al., 2016) and SHAP (Lundberg & Lee, 2017). Instead, recent interpretable policy
learning methods have focused on adding limiting assumptions, although this also limits real world
applicability. INTERPOLE (Hüyük et al., 2022) is a notable example, which parameterizes a latent
belief space that relates to decisions, but falls short of explaining how this belief relates to prior
observed information. Another notable method is POETREE (Pace et al., 2022), which parameterizes
policies as a recurrent soft decision trees (Frosst & Hinton, 2017). While this approach results in
a human-interpretable model which maps between timeseries observations and actions, POETREE
requires significant post-processing to remove uninterpretable components critical to training. This
post-processing step sacrifices performance, especially if the observation space is high-dimensional.
Further, these methods are often less accurate at decision modeling than workhorse models like
logistic regression (Table 1).

3 METHODS

3.1 PRELIMINARIES: CONTEXTUALIZED MODELING

Given a dataset consisting of targets y ∈ Y , observations x ∈ X and context c ∈ C, with the
corresponding random variables denoted as Y, X and C, we want to learn the parameters w of a
model Pw(Y∣x, c) predicting y from x and c. With this, the probabilistic model is defined as follows:

y ∼ P(Y∣x, θ), θ ∼ Pw(θ∣c), Pw(Y∣x, c) ∼ ∫ P(Y∣x, θ)Pv(θ∣c)dθ

as described by Al-Shedivat et al. (2020). This formulation allows us, to model Pv(θ∣c) by any
black-box model while keeping P(Y∣x, θ) in a simple model class parametrized by θ.

Due to an increase in dataset complexity and size, sample-specific inference has driven interest in
many application areas (Ageenko et al., 2010; Buettner et al., 2015; Fisher et al., 2018; Hart, 2016;
Ng et al., 2015). Contextualized modeling has been used in several different frameworks to estimate
the parameters θ of meta-models based on contextual information C. In general, the context-specific
parameters θ are estimated as θ = ZTQ, where Z = gϕ(C), with some well-known contextualized
models fitting this framework: in varying coefficient models (Hastie & Tibshirani, 1993), g is a linear
model and Q is the identity matrix, in contextualized explanation networks (Al-Shedivat et al., 2020),
g is a deep neural network, and ∥Z∥ = 1. In CPR, g is a differentiable, recurrent history encoder, and
Q is the identity matrix.

3.2 CONTEXTUALIZED POLICY RECOVERY

CPR builds on recent developments (Pace et al., 2022) in interpretable, offline policy learning. Let
dataset D = {(xi

1, a
i
1), ..., (xi

Ti
, aiTi
)}Ni=1 consist of N treatment trajectories, where each patient i
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is observed over Ti discrete timesteps for symptoms x ∈ X and physician actions a ∈ A. The data
is generated by an unknown policy of the physician agent P(at∣x1, a1, ..., xt−1, at−1, xt) where the
action probability at time t is a function of the agent’s current state, which is defined by the current
and past patient symptoms, as well as past actions.

To recover a policy that is both tractable and interpretable, CPR assumes that a physician places
the highest importance on the most current patient information when deciding an action. While
treatment history is important, this history is primarily useful for placing the patient’s current disease
presentation within a context of disease progression and past treatment attempts. To represent this
information hierarchy, CPR leverages contextual and historical features to generate context-specific
policy models.

P (at∣x1, a1, ..., xt−1, at−1, xt) ∶= fθt(at∣xt)
θt ∶= g(x1, a1, ..., xt−1, at−1)

Where f is an interpretable model class, e.g. logistic regression, parameterized by a context-specific
θ, and θ is generated via a historical context encoder g. The effects of current observation xt on action
probabilities at are directly explained through the simple context-specific model fθ. Furthermore,
g can take any functional form without precluding the interpretability of f . The context-specific
policy models fθi

t
are generated for each patient i at each timepoint t, allowing us to investigate how

previous actions, previous symptoms, patient covariates, and treatment time influence the policy. CPR
flexibly allows the context encoder g and the observation-to-action function f to be freely chosen,
although they must be differentiable to allow for joint optimization under an appropriate loss ℓ.

min
g

1

N
∑
i

1

Ti
∑
t

1

∣A∣ ∑â∈A
ℓ(ait, fg(xi

1,a
i
1,...,x

i
t−1,a

i
t−1)
(â, xi

t))

In our experiments, g is parametrized by either a vanilla RNN or LSTM (Hochreiter & Schmidhuber,
1997), f is a logistic function, actions A ∶= {0,1} are binary, and ℓ is binary cross-entropy loss.
Finally, CPR applies a lasso regularizer to θ to learn robust policy parameters.

4 EXPERIMENTS

We apply CPR to recover time-varying, context-specific decision models within complex decision-
making processes. First, we evaluate CPR on real MRI prescription data for dementia patients and
antibiotic prescription data in intensive care units. Follow-up analysis of the contextualized models
reveals best-practice treatment plans for both common and outlier patients, while also recovering
unexpected and meaningful heterogeneity in physician policies. We further ensure CPR’s ability to
recover true policy models through a simulated heterogeneous Markov decision process.

4.1 MEDICAL DATASETS

We apply CPR to two medical datasets for canonical behavior cloning tasks, ADNI and MIMIC-III.
These datasets are a prime example of partially-observable decision environments in which we are

ADNI MRI scans MIMIC Antibiotics

Algorithm AUROC AUPRC Brier ↓ AUROC AUPRC Brier ↓

◻ Logistic regression 0.66 ± 0.03 0.86 ± 0.01 0.16 ± 0.01 0.57 ± 0.03 0.80 ± 0.03 0.20 ± 0.01
◻ INTERPOLE † 0.60 ± 0.04 0.81 ± 0.08 0.17 ± 0.05 NR NR NR
◻ INTERPOLE ‡ 0.44 ± 0.04 0.75 ± 0.09 0.19 ± 0.07 0.65 NR 0.21
◻ POETREE ‡ 0.62 ± 0.01 0.82 ± 0.01 0.18 ± 0.01 0.68 NR 0.19

◻ CPR-RNN (ours) 0.72 ± 0.02 0.88 ± 0.02 0.15 ± 0.01 0.82 ± 0.01 0.90 ± 0.01 0.14 ± 0.01
◻ CPR-LSTM (ours) 0.72 ± 0.02 0.88 ± 0.02 0.15 ± 0.01 0.82 ± 0.01 0.90 ± 0.01 0.14 ± 0.00

∎ RNN 0.72 ± 0.02 0.88 ± 0.02 0.15 ± 0.01 0.83 ± 0.01 0.90 ± 0.01 0.13 ± 0.01
∎ LSTM 0.71 ± 0.02 0.88 ± 0.02 0.15 ± 0.01 0.84 ± 0.01 0.91 ± 0.01 0.13 ± 0.00

Table 2: Action-matching performance of imitation learning algorithms. Bolded values denote the
best performance of interpretable models. Open source task-agnostic models are reported as mean ±
std for 10 bootstrap runs. INTERPOLE and POETREE, which are task-specific or closed-source, are
based on prior reports: † reported by Hüyük et al. (2022), ‡ reported by Pace et al. (2022). NR: No
values reported. ◻: interpretable method. ∎: black-box method.
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forced to learn from demonstrated behavior, and where learned policies have the potential to improve
clinical operations.

Empirical results show that CPR not only beats the action-matching performance of the interpretable
baseline models but is able to perform on par with fully black-box models for both the MIMIC and
ADNI datasets. Low brier scores indicate that the model is well calibrated while achieving SOTA
AUROC and AUPRC. It is noteworthy that previous approaches to interpretable policy learning fail
to achieve the action-matching performance of black-box models, while CPR matches or exceeds the
performance of black-box models.

4.1.1 MIMIC ANTIBIOTICS

We look at 4195 patients in the intensive care unit over up to 6 timesteps extracted from the Medical
Information Mart for Intensive Care III (Johnson et al., 2016) dataset and predict antibiotic prescription
based on 7 observations - temperature, hematocrit, potassium, white blood cell count (WBC), blood
pressure, heart rate, and creatinine. We removed the hemoglobin feature used in previous work by
Pace et al. (2022) since it is highly correlated (>0.95) with the hematocrit feature.

Figure 2: Exploration of contextualized policies generated by CPR for predicting antibiotic prescrip-
tion. (a) Contextualized policies identify prior antibiotic prescription and (b) treatment time as drivers
of treatment heterogeneity. (c) CPR generates policies that evolve with time and treatment history,
revealing the context-specific importance of patient symptoms toward future treatments.
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Contextualized policies reveal and explain heterogeneity in medical decision processes To see
how decision functions change under different contexts, we compare them in model space. UMAP
embeddings of the coefficient vectors (Figure 2b) reveal three distinct clusters of decision functions.
The rightmost cluster contains the initial model parameters θ0 for each trajectory. Since there is no
context that could differentiate the agent’s behavior at the initial visit, these parameters are the same
for all patients, and the contextualized models recover the population estimator. Subsequent to this
initial homogeneity, heterogeneity in decision policies arises. The larger driver of this heterogeneity
is prior antibiotic prescription – patients that previously got antibiotics are more likely to continue
to receive antibiotics, while patients that did not receive antibiotics are likely to continue to not
receive antibiotics. The lower cluster contains mostly (99.8%) models in which the patient did get
antibiotics in the previous state t − 1, while the upper cluster contains patients (99.3%) that did not
get antibiotics in t − 1. This strong split is only recovered by contextualized policies; global policies
that ignore context fail to identify this heterogeneity (Figure 2a). We train two models conditioned
on their respective contexts, removing even more variability by limiting observations to the second
day in the ICU. The global model only represents a small part of the population. Conditioning
on the main driver of model heterogeneity (whether or not a patient got antibiotics in the previous
visit) and training individual models for each case yields models that look like an average over the
contextualized models of the respective clusters.

To uncover typical treatment regimes, we cluster patients into 5 subgroups over the first 4 days of
the ICU stay using hierarchical clustering (Fig. 12). To identify the drivers of this heterogeneity
in decision policies, we examine the parameters of the decision function as a function of context
(Figure 2c). The most notable difference in parameters is the intercept value which is positive for
the group of patients that get treated with antibiotics and negative for patients that did not receive
antibiotic treatment. This is consistent across timesteps, and it is likely that a patient is prescribed
antibiotics if they got it the day before. This aligns with medical protocols that rarely suggest
antibiotic treatments briefer 5 days (Guleria et al., 2019).

Previous work by Pace et al. (2022) and Bica et al. (2021) described a patient’s temperature and white
blood cell count (WBC) as the main drivers of antibiotic treatment decisions since these are known
medical criteria to counter infections (Masterton et al., 2008). Our results paint a more nuanced
picture, in which heterogeneous coefficients reflect heterogeneous priorities when designing treatment
plans. CPR identifies that the influence of temperature changes based on prior antibiotic prescription.
For patients who have already been prescribed antibiotics, an infection has already been detected and
the doctor’s decision model shifts towards mitigating the risk of possible side effects of the antibiotics
treatment rather than strictly considering the benefits of the new treatment. This shift in priorities is
supported by the change in the creatinine coefficient (Figure 2c). High serum creatinine can be an
indicator of impaired kidney function (Gounden et al., 2023), a possible adverse effect of antibiotics
(Khalili et al., 2013); as such, a high creatinine level decreases the probability of continuing antibiotic
treatment.

Finally, we see that increased potassium is associated with the decision to begin antibiotics (Figure 2c).
Electrolyte balance (in which potassium plays a vital role) is an important factor in infectious diseases,
and reduced sodium (a 1+ ion competitor with potassium) in particular is known as a marker of viral
and bacterial infections (Królicka et al., 2020).

Contextualized Policies Reveal Outlier Patients By relating modeling tasks through task-specific
contexts, CPR learns to generate context-specific models even when the number of samples per context
is as small as one, and similarly generalizes to generate models for unseen contexts. Previously, we
assessed these models in aggregate to reveal common treatment trajectories and best practices (Figures
2b, 9). Here, we demonstrate how personalized models also reveal small subgroups of patients or even
individuals with outlier policies. In particular, some patient populations have higher dose tolerances
and are amenable to more aggressive treatment, while others display rare comorbidities and risk
factors prohibit common treatment options. Personalized treatment options are critical, especially
when more common treatment plans need to be avoided.

CPR identifies several of these outlier patients when in the MIMIC antibiotic prescription dataset
(Fig. 3). First, younger patients often have fewer comorbidities and more robust immune systems,
and physicians can be more confident that antibiotics will not impose any adverse side effects if
an infection is suspected. We observe that contextualized policies recover this case, and represent
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Figure 3: CPR generates decision models for marginal groups with high accuracy. Left: Using
only a small subgroup of patients making up 7 observations in the training set, CPR identifies
elevated creatinine as a severe risk factor for kidney failure and reassigns patients to a non-antibiotics
treatment plan, while these patients would otherwise be likely to receive treatment. Right: For the
small subgroup of patients below 20 years of age (with only 9 observations in the held-out set and
44/12 in the train/validation set), CPR improves drastically in terms of cross-entropy loss.

treatment for the under 20 age group much more accurately when antibiotics are prescribed. Second,
elevated creatinine is a rare side-effect of antibiotics but a likely indicator of suboptimal Kidney
function and possible Kidney failure (Gounden et al., 2023). CPR identifies that patients with elevated
creatinine are immediately removed from antibiotics following an initial prescription, placing them
in a treatment cluster characterized by a lack of antibiotics prescription that would otherwise be
unlikely for these patients. The patient-specific policies produced by CPR provide a novel view
of the treatment process, allowing us to easily identify these rare and outlier effects in terms of
context-specific policy parameters and errors, revealing nuances in treatment decisions that were
missed by prior works.

4.1.2 ADNI MRI SCANS

Following prior works by Hüyük et al. (2022) and Pace et al. (2022), we apply CPR to 1605 patients
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). The canonical task is to predict
at each visit whether a Magnetic Resonance Image (MRI) scan is ordered for cognitive disorder
diagnosis (noa, 2018). Patient observations consist of the Clinical Dementia Rating (CDR-SB) on a
severity scale (normal; questionable impairment; severe dementia) (O’Bryant et al., 2008) and the
MRI outcome of the previous visit falling into 4 categories: No MRI scan, below average, average
and above average hippocampal volume.

The small number of discrete context features and the checklist-like time-independent diagnostic
criteria for Alzheimer’s (O’Bryant et al., 2008) seem to indicate that this view of the ADNI data
is unlikely to explain any heterogeneity in clinical decisions. This is reinforced by the fact that a
single logistic regression outperforms all interpretable policy baselines (Table 2). We introduce a
new condition-specific logistic regression baseline, where we learn a decision model for every set of
unique context features at each timestep. Indeed, this condition-specific model performs nearly as
well as CPR and black-box models, with an AUROC of 0.71. While CPR and the black-box baselines
can still capture dependencies on past actions and observations (Fig. 8, 9), this seems to confer only
marginal modeling improvements for the canonical ADNI task.

Instead, we reformulate this canonical task to include a new source of heterogeneity with clinical
significance: patient age and gender (Castro-Aldrete et al.). Condition-specific logistic regression and
both interpretable baselines (Hüyük et al., 2022; Pace et al., 2022) are unable to model changes in
patient-specific policies over continuous static contexts like age, but CPR is able to easily incorporate
static as well as dynamic contexts by encoding static contexts into the initial hidden state of the
context encoder g.
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Figure 4: Comparison of patient-specific model parameter distributions by age and gender in visit
t = 0 after incorporating static contexts. Static contexts help to personalize initial models when no
history is available.

Figure 4 shows how the estimated policies at t = 0 differ between four patient subgroups. We find
meaningful heterogeneity in the models generated by CPR, where age dominates CDRSB coefficients
and overall intercept, while gender dominates hippocampal volume coefficients. Additionally, static
contexts substantially increase the action-matching performance of CPR to 0.763 AUROC.

4.2 SIMULATIONS

CPR incorporates both a deep learning component and a statistical modeling component to introduce
a novel mechanism of interpretability, the context-specific linear policy. Our approach differs
substantially from prior interpretable methods by including a deep learning component. Naturally,
we wonder if CPR’s explicit linear policy representation is key to its performance and interpretability,
or if accurate and robust context-specific linear policies can also be recovered from black-box policy
models using post-hoc interpretation methods. To test this, we simulate a heterogeneous, action-
dependent Markov decision process (MDP) and evaluate CPR versus black-box baselines on their
recovery of true simulation parameters: the true action probability and the true coefficients of a
context-specific linear policy (Fig. 5). While CPR explicitly generates these context-specific linear
coefficients, black-box models implicitly model these coefficients as feature gradients (i.e. linear
coefficients in a first-order Taylor expansion). Akin to popular post-hoc interpretability methods like
LIME (Ribeiro et al., 2016), we leverage the differentiability of RNNs Φ(xt, h)→ at to recover the
implicit context-specific linear policies θ.

θ̂ = ∂

∂xt
Φ(xt, h)

We generate data with a known heterogeneous MDP governed by a true context-specific policy

P (at = 1∣xt, xt−τ , at−τ , t) = 1/(1 + exp(−θ ⋅ xt + ϵ))

θ = xt−τ ⋅ (2at−τ − 1) +
t

T

where T is the sequence length or maximum timestep, and τ is a time lag between the current
policy and a dependence on past observations xt−τ and actions at−τ . We simulate N total sequences,
drawing observations xt ∼ Unif[−2,2] and noise ϵ ∼ N(0, σ2) at each timestep. On a known
heterogeneous and action-dependent MDP, CPR’s explicit policy representation not only improves its
representation of MDP parameters but increases overall performance versus a black-box model with
an unstructured policy representation (Fig. 5).
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Figure 5: Comparing policy models learned by CPR and RNN in terms of the Pearson’s correlation
between estimated and true action probabilities and context-specific policy coefficients. We choose
a default simulation configuration of N = 200, σ = 0, T = 15, and τ = 4, varying each parameter
individually. We hold out 15% of trajectories at random for evaluation. Results are the mean and
95% confidence interval from three randomly initialized and independently simulated data sets.

5 DISCUSSION

In this study, we propose contextualized policies as dynamic, interpretable, and personalized linear
decision models, each representing a single step in a complex treatment process. By relating individual
modeling tasks through patient-specific histories and contexts we avoid the pitfalls of common
personalization methods that reduce statistical power (e.g. sample splitting and subpopulation
grouping). As a result, CPR matches the performance of black-box models while retaining the
interpretability of linear models. Post-hoc analysis of patient-specifc models generated by CPR reveal
rare covariates with outsize effects on treatment decisions, as well as extremely subtle effects in the
general population. While we apply CPR in offline and partially observable environments, CPR is
directly portable to online policy inference with only subtle training modifications. CPR is a step
toward reinforcement learning agents that explain as they think, and promises a general purpose
platform for supporting and improving complex human decisions across disparate domains.
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A APPENDIX

Code is available on https://github.com/contextpr/contextualized_policy_
replication. All model embeddings are done with UMAP (McInnes et al.).

A.1 DATA

Each dataset is split up into a training set (70% of patients), validation set (15% of patients) for
hyperparameter tuning, and test set (15% of patients) to report model performance.

A.1.1 ADNI

We follow the task described by Pace et al. (2022) and Hüyük et al. (2022), taking the preprocessing
code from Hüyük et al. (2022). Overall, the dataset contains patients with at least two and a median
of three visits. We exclude patients without CDRSB measurements in one of their visits.

A.1.2 MIMIC

We follow the task of predicting antibiotic prescription in the intensive care unit over up to 6
timesteps as described by Pace et al. (2022) adapting the preprocessing code provided by Jarrett et al.
(2021). Patient trajectories with missing values in one of the observed features or non-consecutive
measurements, patients above 100 years or below 1 year of age, and short stays below 3 days were
eliminated. We end up with 4195 patients in our dataset. Input features were standardized and
the hemoglobin feature used in previous work was removed since it is highly correlated with the
hematocrit feature (> 0.95). See Table 3 for the results using all 8 input features. Since measurements
are taken as averages over each day in the ICU, we use the measurements of the previous day as
observations xt to predict at ensuring that we don’t predict actions from measurements taken after
the patient was treated with antibiotics earlier in the day.

MIMIC Antibiotics

Class Algorithm AUROC AUPRC Brier ↓

Interpretable

Logistic regression 0.60 0.79 0.20
INTERPOLE Hüyük et al. (2022) † NR NR NR
INTERPOLE Hüyük et al. (2022) ‡ 0.65 NR 0.21
POETREE Pace et al. (2022) ‡ 0.68 NR 0.19

CPR-RNN (ours) 0.79 0.88 0.15
CPR-LSTM (ours) 0.80 0.88 0.15

Black-Box RNN 0.81 0.89 0.14
LSTM 0.82 0.89 0.14

Table 3: Action-matching performance of different policy learning algorithms on the MIMIC antibi-
otics task using all 8 input features. Listed performance of INTERPOLE and POETREE are from
prior reports of state-of-the-art performance on these canonical datasets: † reported in Hüyük et al.
(2022), ‡ reported in Pace et al. (2022). NR: No values reported.

A.2 IMPLEMENTATION

CPR implements g as a recurrent neural network (either vanilla RNN or LSTM) with a hidden state
of dimension k and h as a neural network with one hidden layer, again of size k, mapping to the
output parameters θ. The initial context c0 at timestep t = 0 is set to all zeros.

Black-Box RNN and LSTM are implemented similarly, with k being the dimensionality of the hidden
state and one hidden layer of size k directly mapping to the predicted actions at. The black-box
model predicts P (at∣xt, ht) by taking [xt, at−1] as input at each timestep and is optimized using the
binary cross entropy loss.
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A.3 TRAINING

We train all models using the Adam optimizer Kingma & Ba (2014) and early stopping on the
validation set. The initial learning rate chosen for CPR is 5e-4 and 1e-4 for the baseline RNNs. We
select the dimensions of the hidden state for both CPR and the baseline RNNs from [16,32,64]. For
CPR, λ is chosen from [0.0001,0.001,0.01,0.1]. The batch size is selected as 64 for all models.
Table 4 shows the optimal hyperparameters chosen based on the validation set performance.

ADNI MRI scans MIMIC Antibiotics

Class Algorithm λ k λ k

Interpretable CPR-RNN (ours) 0.0001 32 0.0001 32
CPR-LSTM (ours) 0.001 64 0.0001 32

Black-Box RNN - 64 - 32
LSTM - 64 - 64

Table 4: Hyperparameters chosen for different models.

A.4 ADDITIONAL EXPERIMENTS

A.4.1 SIMULATIONS

Figure 6 shows that CPR is able to recover context-dependent threshold decision boundaries where an
agent takes an action if the observed value is above or below a certain threshold. Here xt is sampled
as xt ∼ Unif[0,1].

0.0 0.2 0.4 0.6 0.8 1.0
xt
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Figure 6: CPR recovers hard decision boundaries, generated by rule-based decision making over time.
Here, when the previous observation xt−1 < 0.5, the current action is taken if xt < 0.5. If xt−1 ≥ 0.5,
the current action is reversed. The probabilistic models of these boundaries align closely with the
true step function.

We further simulate dynamic, history-dependent decision policies in a homogeneous MDP and
evaluate CPR based it’s recovery of true simulated true parameters in these policies. We generate
n = 2000 patient trajectories of length T = 9 time steps. At each time step, we sample a random
observation variable xt ∼ Unif[−1,1] and an agent which takes an action at ∈ [0,1]. This action is
determined by a true observation-to-action mapping function which depends on the observed history
and total treatment time.

P (at∣xt, xt−1) = σ(wt(xt−1) ∗ xt + bt(t)), (1)

where wt(xt−1) = 4xt−1 and bt(t) = t−5
4

. We simulate a true contextual policy and assess recovery
of simulation parameters with CPR and a RNN. The probability of taking an action at each time
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t depends on both the absolute point in the time series, as well as the history of observations
immediately preceding any time point. We design this simulation as a succinct way to demonstrate
how simple decision models which depend on both absolute and relative effects over a time series
often combine to create a universal policy that is exceptionally complex and difficult to capture in a
single model that is invariant to time or context. We evaluate CPR based on it’s ability to imitate the
observed time-dependent and context-dependent actions and recover the simulated true parameters.
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Figure 7: CPR recovers true policy coefficients in a homogeneous MDP

Our method is able to recover the true model parameters (marked in red) as shown in Figure 7 with a
slight bias in the upper and lower value range.

A.4.2 ADNI MRI SCANS

Bootstrapped Results We run 10 bootstrap runs to get confidence estimates for model performance
on the ADNI (Table 5) dataset. Each bootstrap sample is randomly split into a training, validation
and test set.

ADNI MRI scans

Class Algorithm AUROC AUPRC Brier ↓

Interpretable

Logistic regression 0.66 ± 0.03 0.86 ± 0.01 0.16 ± 0.01
INTERPOLE † 0.60 ± 0.04 0.81 ± 0.08 0.17 ± 0.05
INTERPOLE ‡ 0.44 ± 0.04 0.75 ± 0.09 0.19 ± 0.07
POETREE ‡ 0.62 ± 0.01 0.82 ± 0.01 0.18 ± 0.01
CPR-RNN (ours) 0.72 ± 0.02 0.88 ± 0.02 0.15 ± 0.01
CPR-LSTM (ours) 0.72 ± 0.02 0.88 ± 0.02 0.15 ± 0.01

Black-Box RNN 0.72 ± 0.02 0.88 ± 0.02 0.15 ± 0.01
LSTM 0.71 ± 0.02 0.88 ± 0.02 0.15 ± 0.01

Table 5: Action-matching performance of different policy learning algorithms on the ADNI MRI scans
task. Bolded values in each column denote the best performance of any interpretable model. Listed
performance of INTERPOLE and POETREE are from prior reports of state-of-the-art performance
on these canonical datasets: † reported by Hüyük et al. (2022), ‡ reported by Pace et al. (2022).

Figure 8 shows how different contexts influence the agents decision function over time. Most notably,
a high CDRSB value during the first two visits decreases the probability of ordering an MRI since
this can be already seen as a strong indicator of dementia, making a scan less informative noa (2018).
Patients A and B share the same decision model in t = 1 since they both show medium CDRSB
and avg hippocampal volume in t = 0. Afterward, their decision function differs in t = 2. Patient
A’s hippocampal volume was measured as "low" in t = 1 leading to a lower overall probability of
ordering an MRI in t = 2 indicated by a lower intercept and CDRSB coefficients. In contrast, Patient
B was again diagnosed with an "avg" hippocampal volume in visit t = 1. A low hippocampal volume
can again be seen as a strong indicator of dementia making a scan less informative. Patient C, in
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Figure 8: Estimated decision model coefficients over 3 timesteps for 3 patients with representative
ADNI contexts. No confidence intervals are available, as the discrete diagnostic features in ADNI
produce only a discrete number of possible trajectories.

contrast, is diagnosed with medium CDRSB and high hippocampal volume throughout all visits. This
increases the probability of ordering an MRI (higher intercept) since there is no clear indication that
would make an MRI obsolete.

Figure 9: Average estimated coefficients for different ADNI contexts, patients over 70 vs patients
under 70. Patient A and B from Figure 8 above. Older patients are less likely to receive MRIs for
both patient groups. Static context is age and gender.

Static Contexts unrolled trough time Static Contexts such as age and gender do not only influence
the observation-to-action mapping at timestep t = 0 but uncover heterogeneity across subgroups
throughout time. Figure 9 shows that the difference in the intercept coefficient between patients below
70 and above 70 years of age widens over time for both patients A and B indicating that ordering
an MRI is less likely for older patients. We can also see a slight difference in the CDRSB_med
coefficient with it being slightly negative for old patients, reducing the probability of getting ordering
an MRI if an old patient in this patient group scored a medium result, compared to young patients.

A.4.3 MIMIC ANTIBIOTICS

Bootstrapped Results We run 10 bootstrap runs to get confidence estimates for model performance
on the MIMIC (Table 6) dataset. Each bootstrap sample is randomly split into a training, validation
and test set.

MIMIC Antibiotics

Class Algorithm AUROC AUPRC Brier ↓

Interpretable

Logistic regression 0.57 ± 0.03 0.80 ± 0.03 0.20 ± 0.01
INTERPOLE † NR NR NR
INTERPOLE ‡ 0.65 NR 0.21
POETREE ‡ 0.68 NR 0.19

CPR-RNN (ours) 0.82 ± 0.01 0.90 ± 0.01 0.14 ± 0.01
CPR-LSTM (ours) 0.82 ± 0.01 0.90 ± 0.01 0.14 ± 0.00

Black-Box RNN 0.83 ± 0.01 0.90 ± 0.01 0.13 ± 0.01
LSTM 0.84 ± 0.01 0.91 ± 0.01 0.13 ± 0.00

Table 6: Action-matching performance of different policy learning algorithms on the MIMIC antibi-
otics task. Bolded values in each column denote the best performance of any interpretable model.
Listed performance of INTERPOLE and POETREE are from prior reports of state-of-the-art per-
formance on these canonical datasets: † reported by Hüyük et al. (2022), ‡ reported by Pace et al.
(2022). NR: No values reported.
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Figure 10: Model coefficient embeddings for MIMIC policy models.
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Figure 11: Estimated model parameters for three remaining model trajectories (first two in Fig. 2c).
Error bars are coefficient standard deviations across patients in each trajectory group and time point.

Model Coefficients Figure 10 shows the heterogeneity in estimated model coefficients. The main
drivers of heterogeneity are the intercept, potassium and creatinine coefficients.

Treatment Trajectories To uncover typical treatment trajectories, we look at clusters of coefficients
over 4 timesteps. We cluster patients into 5 subgroups using hierarchical clustering based on silhouette
score (0.566) as seen in Figure 12. Figure ?? shows the two largest clusters containing patients that
get antibiotics throughout their stay (cluster 1, 1707 patients) and patients that never get antibiotics
(cluster 5, 384 patients). The remaining three groups are plotted in Figure 11. Patients that get
treatment for the first two days fall into cluster 3 (232 patients). We can see that their treatment
parametrization changes significantly after treatment is stopped. Cluster 4 contains patients that get
treated for the first day only (240 patients). Both patients in cluster 3 and 4 share similar decision
models in t = 1 since both were treated in t = 0, it diverges in t = 2 after treatment is stopped for one
group and share the decision parametrization in t = 3 after both groups were not treated in t = 2. The
remaining patients fall into cluster 4 (375 patients).
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Figure 12: MIMIC patient trajectory clusters, produced by concatenating decision models over 4
consecutive time points into a trajectory matrix and embedding them with UMAP.
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Figure 13: Coefficient values of antibiotic prescription models (MIMIC) parametrized by context vs
parameters of global model (dashed red line)
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