

Karlsruhe Institute of Technology

Institute of Applied Geosciences (AGW) Geothermal Energy and Reservoir Technology

Validation of thermodynamic databases for hydrogeochemical modeling in geothermal environments

Hydrogeochemical modeling approach to identify the bubbling point in geothermal brines Michael Trumpp, Lars Yström, Thomas Kohl, Fabian Nitschke

Background

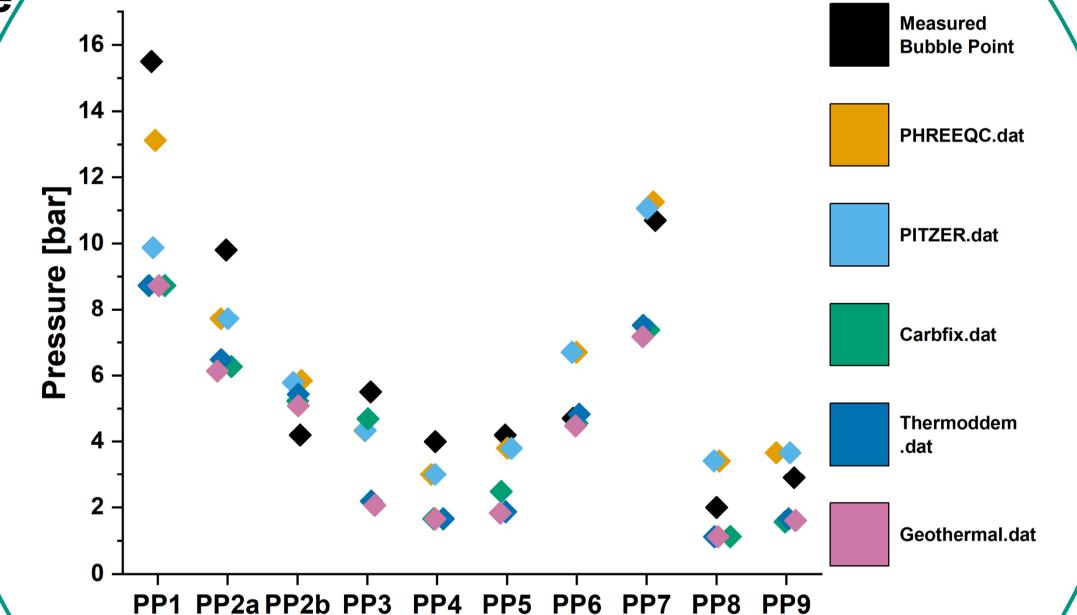
- Brine is in equilibrium with reservoir
- Pressure reduction in the water column
- Potential formation of free gas phase
- **PH** shift due to H_2S and CO_2 degassing
- Carbonate precipitation
- Corrosion caused by acids

Change of temperature

Reduced solubility for most mineral phases

- Danger due to the occurrence of scaling
- Scaling reduces efficiency & productivity Loss of revenue
- Increase in calcite solubility could lead to reservoir dissolution

Motivation

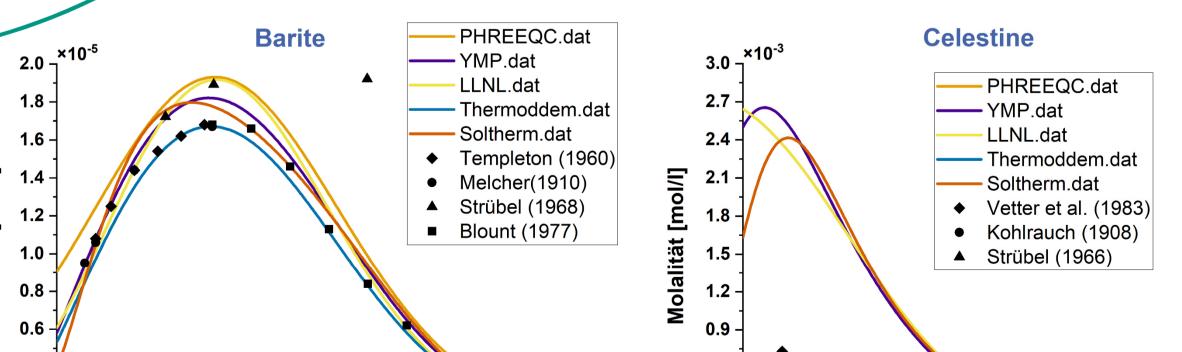

- Prediction of degassing and scaling issues through hydrogeochemical modeling – PHREEQC v3.7
- The program uses thermodynamic databases (TDB) for liquid, solid and gas phases
- Different TDBs use different thermodynamic data, equations of state (EOS) and models
- Not all relevant minerals included in one TDB
- Limitations on the valid temperature/ and **pressure** range apply to each individual TDB and should be extended to the full chemical setting in terms of pH, salinity and redox

Bubble	point	mode	ling
			···· J

Databases		Origin	Gas EOS	P / T ranges	Unique features
No published bubble point	Pitzer.dat Phreeqc.dat	Default TDBs for PHREEQC	Peng- Robinson	Up to 200 °C 1 to 1000 atm	Pitzer-Ion- Activity-Model Redox inactive gas species
comparison yetUnique set of	LLNL.dat	Converted from Geochemist's Workbench	ldeal gas law	Range varies per mineral between 0 – 300 °C	Large number of species
TDBs	Carbfix.dat	Result of the Carbfix2 project in Iceland	Peng- Robinson	Range varies per mineral between 0 – 350 °C	An advanced version of LLNL.dat
odeling	geothermal .dat	Special TDB for elevated temperatures	ldeal gas law	0 – 300 °C	Specialized for geothermal environments
Measured Bubble Point PHREEQC.dat	Thermod dem.dat	From the BRGM for low temperature water-rock interactions	ldeal gas law	Individual for each mineral, mostly up to 300 °C	
PITZER.dat	YMP.dat soltherm.dat	Converted TDBs from THOUGH- REACT	ldeal gas law	Individual for each mineral, mostly 0 – 300 °C	Does not include methane
Carbfix.dat					

Modeling approach

- Phreeqc.dat & Pitzer.dat use special approach to exclude N_2 , CH_4 and H₂S from redox reactions
- Dissolve the measured gas phase in the brine and gradually reduce the pressure until the bubble point is reached and a free gas phase is formed
- To determine the accuracy of the solubility constants, a low saline brine was in equilibrium with the mineral phase under study
- Experimental data closest to the hydrochemistry of the


Comparison of the measured bubble point in several power plants (PP) with the predicted bubble point from different PHREEQC TDBs

0.4

0.2

Solubility modeling

- Experimental data is used as a reference to evaluate the accuracy of the modeling
- The evaluation depends on the quality of the available experimental data

Bavarian Molasse Basin have been selected

Solubility validation performed for 22 scaling forming minerals

- Active redox reactions of the gasforming species reduce the bubble point
- Results are highly dependent on location and gas phase composition
- Tendency to underestimate the
 - bubble point in the model
- High uncertainties in the measured data, especially the bubble point
- Merge the best fit to experimental data for each mineral into a new database

Temperatur [°C]

150

Temperatur [°C]

0721 608-45049

Adenauerring 20b, bldg. 50.40 in 76131 Karlsruhe

200

250

KIT – The Research University in the Helmholtz Association