KIT | KIT-Bibliothek | Impressum | Datenschutz

MALEG – Machine Learning for Enhancing Geothermal Energy

Yström, Lars ORCID iD icon 1; Trumpp, Michael 1; Goldberg, Valentin ORCID iD icon 1; Eichinger, Florian ; Amtmann, Johannes ; Winter, Daniel ; Koschikowski, Joachim ; Kohl, Thomas 1; Nitschke, Fabian 1
1 Institut für Angewandte Geowissenschaften (AGW), Karlsruher Institut für Technologie (KIT)

Abstract:

To improve the efficiency of geothermal energy production the reinjection temperature has to be reduced. Yet in most cases, the geothermal fluid composition is counteracting this temperature reduction. Whilst pressure relief or cooling, highly mineralised geothermal fluids tend to rise uncontrolled mineral precipitation (scaling). This is a strict limiting factor for the efficient and continuous operation of geothermal power plants. The complex and site-specific hydrochemistry of the fluids complicates the prediction and quantification of scalings using deterministic geochemical models. In the MALEG project, geochemical models are complemented by artificial intelligence, which is trained with hydrochemical data provided by on-site experiments.

For this purpose, a demonstrator is built resembling a hardware twin of the geothermal power plant, which is capable of representing the thermodynamic processes in the system. The demonstrator will be connected to the power plant via a bypass to conduct hydrochemical precipitation experiments. Continuous monitoring of fluid and solid samples accompanies the experiments to evaluate potential mineral precipitation. ... mehr


Volltext §
DOI: 10.5445/IR/1000165148
Veröffentlicht am 04.12.2023
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte Geowissenschaften (AGW)
Publikationstyp Vortrag
Publikationsdatum 09.11.2023
Sprache Englisch
Identifikator KITopen-ID: 1000165148
HGF-Programm 38.04.04 (POF IV, LK 01) Geoenergy
Veranstaltung European Geothermal Workshop (EGW 2023), Utrecht, Niederlande, 08.11.2023 – 09.11.2023
Projektinformation MALEG (BMWK, 03EE4041B)
Schlagwörter Geothermal Energy, Machine Learning, Scaling, Artifical Intelligence, Geothermica, MALEG
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page