KIT | KIT-Bibliothek | Impressum | Datenschutz

Secure short-term load forecasting for smart grids with transformer-based federated learning

Sievers, J. 1; Blank, T. ORCID iD icon 1
1 Institut für Prozessdatenverarbeitung und Elektronik (IPE), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

Electricity load forecasting is an essential task within smart grids to assist demand and supply balance. While advanced deep learning models require large amounts of high-resolution data for accurate short-term load predictions, fine-grained load profiles can expose users' electricity consumption behaviors, which raises privacy and security concerns. One solution to improve data privacy is federated learning, where models are trained locally on private data, and only the trained model parameters are merged and updated on a global server. Therefore, this paper presents a novel transformer-based deep learning approach with federated learning for short-term electricity load prediction. To evaluate our results, we benchmark our federated learning architecture against central and local learning and compare the performance of our model to long short-term memory models and convolutional neural networks. Our simulations are based on a dataset from a German university campus and show that transformer-based forecasting is a promising alternative to state-of-the-art models within federated learning.


Postprint §
DOI: 10.5445/IR/1000165176
Veröffentlicht am 07.12.2023
Originalveröffentlichung
DOI: 10.1109/ICCEP57914.2023.10247363
Scopus
Zitationen: 1
Dimensions
Zitationen: 1
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Prozessdatenverarbeitung und Elektronik (IPE)
Publikationstyp Proceedingsbeitrag
Publikationsdatum 27.06.2023
Sprache Englisch
Identifikator ISBN: 979-8-3503-4837-8
KITopen-ID: 1000165176
HGF-Programm 38.02.03 (POF IV, LK 01) Batteries in Application
Erschienen in 2023 International Conference on Clean Electrical Power (ICCEP)
Veranstaltung 8th International Conference on Clean Electrical Power (ICCEP 2023), Terrasini, Italien, 27.06.2023 – 29.06.2023
Verlag Institute of Electrical and Electronics Engineers (IEEE)
Seiten 229–236
Nachgewiesen in Dimensions
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page