
Master thesis

Improving Vehicle Detour in Dynamic
Ridesharing using Transfer Stops

Max Willich

Date: 2. Oktober 2023

Supervisors: Prof. Dr. Peter Sanders
M.Sc. Moritz Laupichler

Institute of Theoretical Informatics, Algorithm Engineering
Department of Informatics

Karlsruhe Institute of Technology

ii

Abstract
Ridesharing companies like Uber or Lyft provide an alternative to classic public transport,
in which you can order a ride from anywhere to anywhere within the service area via an
app. A vehicle will be assigned to you, pick you up and drive you to your destination. In
services like UberXShare or LyftShared, other passengers might also be picked up on the
way, causing a small detour. The process of matching your ridesharing request to some
vehicle in the set of available vehicles is resolved using a dispatching algorithm.
Buchhold et al. in [3] developed the dispatching algorithm LOUD for the dynamic rideshar-
ing scenario. It is able to find the optimal solution to a ridesharing request (based on a given
cost function) in only a few milliseconds on realistically sized scenarios. In this thesis, we
aim to add transfer stops to ridesharing by extending the LOUD-algorithm. We present
multiple transfer-dispatching algorithms and implement and evaluate each of these algo-
rithms thoroughly, analyzing their runtime performance and dispatching quality on various
different scenarios.
Our best algorithm, where transfer vertices are sampled by betweenness, is able to find
a better solution to a ridesharing request than LOUD in up to 20% of all requests, while
only increasing the required runtime by about one order of magnitude. Furthermore, we
are able to show that multi-transfer routes can bring substantial improvements over no-
or one-transfer-routes on long-distance requests, and we show that runtime performance
scales well with the number of requested transfer stops.

iii

iv

Eigenständigkeitserklärung
Hiermit versichere ich, dass ich diese Arbeit selbständig verfasst und keine anderen, als die
angegebenen Quellen und Hilfsmittel benutzt, die wörtlich oder inhaltlich übernommenen
Stellen als solche kenntlich gemacht und die Satzung des Karlsruher Instituts für Technolo-
gie zur Sicherung guter wissenschaftlicher Praxis in der jeweils gültigen Fassung beachtet
habe.

Karlsruhe, den 29. September 2023

v

vi

Contents

Abstract iii

1 Introduction 1

2 Related Work 3

3 Preliminaries 5
3.1 Dynamic Ridesharing Problem . 5
3.2 Dijkstra’s Algorithm . 7
3.3 Contraction Hierarchies . 9
3.4 Bucket-CHs . 10
3.5 LOUD . 11

4 Ridesharing with Transfers 15
4.1 Changes to the ridesharing problem . 15
4.2 Transfer-At-Stop Algorithm . 16
4.3 Sampled-Transfer Algorithm . 17
4.4 Multi-Transfer Dispatching . 20

5 Evaluation 27
5.1 Setup . 27
5.2 Analysis of No-Transfer-Routes . 28
5.3 Analysis of the test scenarios . 30
5.4 Runtime Performance of single-transfer dispatching 33
5.5 Dispatch Quality . 34
5.6 Algorithm-Specific Evaluation . 36
5.7 Vehicle Utilization . 44
5.8 Varying vehicle capacities . 46
5.9 Two-Transfer Dispatching . 49
5.10 Running on a larger scenario . 52
5.11 Combined single- and two-transfer dispatching 55
5.12 More than two transfer stops . 57

6 Conclusion 63

vii

Contents

7 Appendix 65

Bibliography 69

viii

1 Introduction

Ridesharing services like Uber or Lyft serve as a cheaper and modern alternative to tra-
ditional taxis. Instead of having to call the taxi company to order a ride, you can order
your ride via an app by simply entering your desired pickup- and dropoff-location. When
ordering a ride, you will then be assigned a vehicle/driver that will pick you up at your
requested pickup-location and drive you to your destination. Furthermore, with some ser-
vices like UberXShare or LyftShared, as the name ridesharing suggests, it is possible that
while en-route to your destination, your vehicle may pick up a second set of passengers on
the way. This way, the fleet of vehicles is used more efficiently, reducing wait times and
costs for passengers.
When a passenger request is made, a dispatching algorithm determines which vehicle picks
up a passenger and drives them to their destination. It runs on a server owned by the
ridesharing company and has to answer many requests each second. One recently devel-
oped dispatching algorithm is called LOUD (short for Local Buckets Dispatching) and can
answer a ridesharing request on a road network the size of Berlin and a fleet of a thousand
vehicles within only about two milliseconds on average on consumer hardware. It mini-
mizes the detour required by all vehicles to serve the requests while keeping constraints on
the passenger’s wait- and travel-time.
Up until now, LOUD and many other dispatching algorithms are only able to resolve re-
quests using direct trips. Transfer stops however could potentially reduce the total detour
required to resolve a ridesharing request significantly. For example, if a vehicle exists that
passes very close to the requests’ pickup location on its route already, but doesn’t get close
to the requested dropoff location, the vehicle may not be viable for serving the passenger’s
request, as the detour needed to drive to the dropoff location would be too high. But with
transfer stops, that vehicle could at least pick the passenger up and drive them half-way
to a transfer location, where a second vehicle, which passes closely by the transfer and
dropoff location, then drives the passenger to their destination. Increasing the utilization of
the available vehicles means that fewer vehicles are needed to serve all customers, which
reduces costs for the ridesharing provider and for the passengers.
In chapter chapter 4 we present three different dispatching algorithms for resolving rideshar-
ing requests using a single transfer stop: One algorithm that builds directly up on LOUD

and uses its internal data to quickly find viable transfer trips, and two algorithms that sam-
ple good transfer stops using some heuristic. The first sampling algorithm uses a geometric
heuristic while the second one uses a heuristic based on vertex betweenness. We then ex-
pand each of these algorithms for multi-transfer dispatching to allow for more than one

1

CHAPTER 1. INTRODUCTION

transfer stop.
In chapter 5, we comprehensively evaluate each of the presented single- and multi-transfer
algorithms for dispatching quality and runtime performance. For the evaluation we use
realistic ridesharing scenarios based on road networks of Berlin and the German Ruhr-
area. Our evaluation shows that our algorithms can find lower-cost solutions to ridesharing
requests than LOUD for up to 20% of all requests while still maintaining viable runtime
performance. We are also able to show that multi-transfer routes can bring a significant
improvement to larger ride-sharing scenarios, and that our algorithms scale well with the
number of requested transfer stops per route.

2

2 Related Work

City-wide shared taxis: a simulation study in Berlin [2]
Bischoff et al. present a simple dispatching algorithm, which resolves ridesharing requests
using a brute-force approach: When a ridesharing request is made, the algorithm first it-
erates over all possible resolutions to that request and estimates the increase in vehicle
operation time using a geometric heuristic. It then filters all solutions that are not deemed
feasible based on that geometric estimate. For all remaining solutions, exact detours are
calculated using Dijkstra’s algorithm and the best solution is selected. The authors provide
a comprehensive evaluation of ridesharing services as an alternative to taxis by integrating
their algorithm into the transport simulation software MATSim and running it on the road
network of Berlin. The evaluation encompasses, among other things, the potential detour
decrease through sharing rides in comparison to traditional taxi-services, the average oc-
cupancy of vehicles depending on location (e.g. the average occupancy is highest near
Berlin’s largest airport) and the amount of idle vehicles at any point in time throughout the
simulation.

Fast, Exact and Scalable Dynamic Ridesharing [3]
In [3], Valentin Buchhold, Peter Sanders and Dorothea Wagner present the LOUD-Algorithm,
an algorithm that finds the optimal solution the dynamic ridesharing problem. It improves
on the algorithm presented in [2], offering faster runtime performance and removing the
need for the inaccurate geometric heuristic. The algorithm is faster than comparable al-
gorithms for the dynamic ridesharing problem by at least one order of magnitude. The
key to this speedup is the use of bucket-based contraction hierarchies (BCH), a routing
technique that extends the point-to-point routing technique contraction hierarchies (CH)
to allow for very fast many-to-one queries. Furthermore, Buchhold et al. use a pruning
technique called elliptic pruning to greatly reduce the search space required to find the
optimal solution without affecting optimality. This allows for much faster distance calcu-
lations than competing algorithms, which mainly use Dijkstra’s algorithm for many-to-one
queries. The LOUD-Algorithm is described in detail in chapter 3 and serves as the basis for
our work.

Real-time Transfers for Improving Efficiency of Ridesharing Services in the
Environment with Connected and Self-driving Vehicles [4]
Chen et al. also investigate the possible benefits of transfer-routes for the ridesharing sce-
nario. In their algorithm, a passenger is first assigned a route using a conventional no-

3

CHAPTER 2. RELATED WORK

transfer algorithm. Every time the vehicle passes along an edge (i.e. road) that could serve
as a potential transfer stop, a new no-transfer ridesharing request is made from the current
location to the requested dropoff location. Based on some heuristics described in the pa-
per, the passenger will then either transfer at that location or continue along the original
route. Chen et al. only evaluate single-transfer routes by only allowing a single transfer
in the heuristic, but multi-transfer routes are trivial to implement using their technique as
well. Unlike our scenario, the objective function given in [4] optimizes for passenger travel
time. The authors have found a significant decrease in passenger travel time by introducing
single-transfer routes. Note that all passenger wait times are included in this travel time.
The authors do not evaluate the runtime performance of their algorithm. However, since a
ridesharing request has to be made on every edge along the route of a vehicle, we conjecture
that the performance of their algorithm is too restrictive for our use-case. Chen et al.
evaluate their algorithm on a small road network graph of Manhattan, containing only
about 1600 edges and 800 vertices, whereas our test road network contains more than
100000 vertices and edges.

Dynamic Carpooling
Dynamic Carpooling is a closely related problem to the dynamic ridesharing problem.
Here, vehicles have a fixed source and destination that they drive from/to. Along the way,
the vehicle might make a detour to pick up additional passengers, a sort of on-demand
hitchhiking. While dynamic ridesharing is used mostly within the confines of one urban
area, dynamic carpooling, while still viable for urban scenarios, is especially useful for
long distance inter-city travel. Again, a dispatching algorithm is needed to find a vehicle to
pick passengers up and take them along for the ride.
In [12], Pelzer et al. present an algorithm for resolving various different types of rideshar-
ing optimization problems, and evaluate their algorithm by resolving carpooling requests in
a transport simulation on the road network of Singapore. Their algorithm uses a partition-
ing algorithm to create partitions of the road network that match its topology, and matches
passengers to potential rides that lie in the same partition.

4

3 Preliminaries

3.1 Dynamic Ridesharing Problem
To begin, we formulate the problem statement of the dynamic ridesharing problem, de-
scribing all the data that makes up the ridesharing scenario as well as the optimization
problem that is to be solved.

Road Network:
The road network, on which requests are made and rides are shared, is modeled as a directed
graph G = (V,E) with non-negative integer edge weights. Each vertex represents an
intersection and each edge a road between two intersections. The edge weight w(e) of an
edge describes the travel time from one intersection to the next.

Ridesharing Request:
A ridesharing request is a 3-tuple r = (rt, rp, rd).

• rt ∈ N is the point in time at which the request is made.
• rp ∈ V is the pickup location of this request.
• rd ∈ V is the dropoff location of this request.

We call rp and rd the pickup- and dropoff-vertex. Prebooking is not allowed. A passenger
is available for pickup the moment they make a request.

Request Constraints:
Each request r comes with two time constraints: tmax

wait and tmax
trip , describing the maxi-

mum wait- and trip-time of a passenger. tmax
wait is simply a constant. tmax

trip is equal to
α · dist(rp, rd) + β, where α ∈ R and β ∈ N are constant parameters and dist(rp, rd)
is the direct distance from the pickup location to the dropoff location on the graph G.

Vehicle:
A vehicle is a 4-tuple v = (vl, vc, v

∗
t , v

†
t).

• vl is the initial start location of the vehicle.
• vc is the maximum passenger capacity of the vehicle, excluding the driver.
• v∗t is the point in time at which the vehicle starts its service.

5

CHAPTER 3. PRELIMINARIES

• v†t is the point in time at which the vehicle ends its service.
The time between v∗t and v†t is called the vehicle service time. No passenger can be picked
up or dropped off outside of this time range. Outside of a vehicles’ service range, the
vehicle can be assumed to simply not exist at all. The set of all vehicles available to the
ridesharing provider is called the fleet.

Vehicle Route:
A vehicle stop is a 4-tuple s = (smin

dep , s
max
arr , soccup, sloc).

• smin
dep is the current departure time of the vehicle at that stop.

• smax
arr is the latest possible arrival time without violating any request constraints by

arriving too late at either this or any succeeding stop.
• soccup ∈ N is the occupancy of the vehicle at that stop.
• sloc ∈ V is the location of the stop.

Each vehicle has a route, which is a list of vehicle stops. Each stop takes a constant time
tstop. Therefore, the arrival time at a stop can be calculated directly from the departure time
by simply subtracting this constant stop duration. The first stop in a route is either the stop
that the vehicle is currently stopping on or the last visited stop. Once a vehicle visits the
second stop in a route, the first stop gets removed, making the old second stop the new first
stop. Initially, every route has length 1 and matches the initial location and startup-time of
the vehicle. Each vehicle starts with no passengers.

Insertion:
An insertion is the result of resolving a ridesharing request and is described by a 3-tuple
i = (iv, ip, id).

• iv is the vehicle in which the passenger gets taken from the pickup to the dropoff.
• ip is the index (zero-indexed) of the stop in the route of iv after which the new pickup

stop gets inserted.
• id is the index (zero-indexed) of the stop in the route of iv after which the new dropoff

stop gets inserted.
For example, if ip = 1, then after the second stop of vehicle iv, a new stop gets inserted
into the route to pick up the new passenger at the pickup-location. If the location of the
second stop is already equal to the pickup-location, no new stop is inserted since the new
passenger can be picked up at the existing stop.
When an insertion into a route is performed, a detour is caused by the newly created stops.
The detour gets propagated through the route, updating the stops minimum departure times
accordingly. Furthermore, since each request comes with its own set of time constraints,
these new constraints get propagated through the route as well, updating the maximum
arrival times of each stop. Finally, the occupancy of a stop also gets increased by one for

6

3.2. DIJKSTRA’S ALGORITHM

all stops between the new pickup stop and the dropoff stop. To perform an insertion, the
request and its time constraints are required in addition to the actual insertion.

Insertion Cost Function:
A cost function assigns each insertion a cost. It is defined as:

c(i) = δ + cwait ·max(0, twait − tmax
wait) + ctrip ·max(0, ttrip − tmax

trip)

in [3], with
• δ being the caused detour in the route (i.e. the difference in arrival time at the routes

last stop before and after insertion).
• twait being the time the passenger has to wait until the vehicle arrives.
• ttrip being the difference between the vehicles’ arrival at the dropoff location and the

departure time at the pickup.
• cwait, ctrip being model parameters for the cost of violating the request constraints.

This insertion cost function optimized both for passenger comfort (wait- and trip-time) as
well as total travel time of all vehicles (detour). It models the requirements on ridesharing
in real-life scenarios. While other cost functions are also feasible, we continue using the
presented cost function from [3] in order to maintain comparability to existing results.
Note that while the request constraints are soft for a new insertion, they are hard-constraints
for any already-resolved request in the route. If the new insertion causes a constraint of any
other already-matched request to be violated (enforced with the maximum arrival times of
each stop), the cost of the insertion is∞. Similarly, the cost is∞ if the vehicle would be
overfull or would have to drive outside its service time.

3.2 Dijkstra’s Algorithm

Djkstra’s algorithm [6] is an algorithm to find the shortest path from a single source vertex
to all other vertices in a Graph G = (V,E) with a non-negative edge weight function
w : E → N. Pseudocode for dijkstra’s algorithm is given in algorithm 1
Q is an initially-empty priority queue. d and par are arrays that map vertices to their best-
found distance and parent vertex. While Dijkstra’s Algorithm is running, note that the key
of a vertex v in Q is always set to d(v).
Initially, all vertices have infinite distance to the source vertex s, except for the source ver-
tex itself, which has the distance 0. Starting from line 10 of the pseudocode, the vertex u
with the smallest best found distance from the source gets popped from the queue. For ev-
ery neighbour v of u, the algorithm tries to improve the shortest distance to v by comparing
the length of the path to v via u to the currently best found path (Line 16). If the new path

7

CHAPTER 3. PRELIMINARIES

Algorithm 1 Dijkstra’s Algorithm
Input: G = (V,E), s ∈ V

1: for v ∈ V do ▷ Initialize priority queue and arrays
2: d(v)←∞
3: par(v)← ⊥
4: Q.insert(v,∞)
5: end for
6: d(s)← 0 ▷ Set s as source vertex
7: Q.decreaseKey(s, 0)
8: while |Q| ≥ 0 do ▷ Run until priority queue is empty
9: u = Q.pop()

10:
11: for e = (u, v) ∈ E do ▷ Update neighbours of u
12: d′ ← d(u) + w(e)
13:
14: if d′ ≥ d(v) then
15: continue
16: end if
17:
18: d(v)← d′ ▷ New shortest path to v via u found
19: par(v)← u
20: Q.decreaseKey(v, d′)
21: end for
22: end while

is better, the distance, parent and key in the queue of v gets updated accordingly (Line 20
and beyond).

Note that Dijkstra’s Algorithm is label-setting, which means that once a vertex gets popped
from the queue, it is guaranteed that the shortest path to that vertex was found. Therefore,
once the queue is empty, all shortest paths to all popped vertices have been found. Nodes
that were not visited are not reachable from the source vertex and have a shortest distance
of∞.

A popular extension to Dijkstra’s Algorithm is to introduce a target vertex t. After the Node
u gets popped in line 11, if u = t the algorithm can stop since the shortest path to the target
vertex t was found. This is an example of a stopping criterion. Other stopping criterions
for Dijkstra’s algorithm are feasible and will be used throughout this work.

8

3.3. CONTRACTION HIERARCHIES

3.3 Contraction Hierarchies

Contraction Hierarchies is a two-phase routing technique first presented in [8] by Geis-
berger et. al. that answers point-to-point shortest path queries on road networks many
orders of magnitude faster than a simple dijkstra query would. The first phase is a pre-
processing phase that might take up to an hour, but only has to be run once for any given
graph. The results of the preprocessing phase can then be stored on disk. The second
phase is the query phase, in which point-to-point shortest-path queries are performed on
the preprocessed graph.

The foundation for the preprocessing phase is the vertex contraction, hence the name Con-
traction Hierarchies. The goal of a vertex contraction is to remove a vertex from the graph
while maintaining the shortest paths/distances between all other vertices. To achieve this,
a shortcut edge has to be inserted into the graph for every pair of incoming and outgoing
edges of the contracted vertex. For example: Suppose n ∈ V is the vertex to be contracted,
and imagine there’s an incoming edge ein = (u, n) and an outgoing edge eout = (n, v)
adjacent to n. In this case, a shortcut edge (u, v) is created with weight w(ein) + w(eout).
This way, any shortest path that previously contained the sequence (. . . , u, n, v, . . .) can
now "skip" over n without changing the length of that shortest path. If such a shortcut
is inserted for every pair of incoming and outgoing edges, all shortest path distances are
maintained.
A key insight here is that a shortcut does not need to be created for ein and eout if there
is a shorter path from u to v than (u, n, v). In that case, there is no shortest path of the
form (. . . , u, n, v, . . .), since the path could be shortened by using the shorter path from u
to v. Therefore, when contracting a vertex n, for every pair ein = (u, n) and eout = (n, v),
Dijkstra’s algorithm is run, starting from u and with target v to check if there’s a shorter
path from u to v than (u, n, v). A shortcut (u, v) gets created only when (u, n, v) is the
shortest path from u to v.

For preprocessing a graph G, the graph first gets copied twice, we call these copies the
contracted graph G′ and the augmented graph G∗. On the contracted graph G′, all vertices
are contracted sequentially in an order that tries to minimize the amount of shortcuts cre-
ated. Determining this order is NP-Hard (proven in [5]), therefore heuristics for this order
are used. Every time a vertex gets contracted in G′, all created shortcuts are added to G∗.
This is done until all vertices in G′ were contracted and the graph is empty. The order of
contraction now forms a hierarchy on the vertices: A vertex is higher up in the hierarchy
the later it was contracted. We say that if n ∈ V was the i-th vertex contracted, then n has
the rank i.

The preprocessing phase is now done. To figure out the shortest-path distance between
two vertices s ∈ V and t ∈ V in the graph G, two Dijkstra queries are started: The
forward query has the source vertex s and searches along the augmented graph G∗. And the
backward query, which has the source vertex t and searches along the reverse augmented
graph G∗

R. Furthermore, both queries only explore edges that go up in the hierarchy, i.e.

9

CHAPTER 3. PRELIMINARIES

an edge (u, v) is only explored if u has a smaller rank than v. The queries are run in an
alternating manner, first doing a step of the forward query, then the reverse query, then the
forward query again etc. As the queries are running, the best found distance µ is stored.
When one query explores an edge (u, v) and v has already been settled by the other query,
a new path from s to t has been found, its length being df (v) + dr(v), with df and dr
being the tentative distance functions of the forward and reverse queries. If this new path
is shorter, then µ is set to the length of the found path. The queries can be stopped once
one of the minimum keys of both priority queues exceed µ, since it can be guranteed that
no shorter path will be found.

This query works for finding the point-to-point shortest path distances between two ver-
tices. If the actual shortest path along G is required, first the contracted path needs to be
extracted. Let n be the vertex where the forward and reverse queries intersected and found
the shortest path from s to t. To extract the full contracted path from s to t, simply extract
the path from s to n of the forward query and concatenate it with the reverse of the path
from t to n of the reverse query. Next, the path needs to be recursively unpacked by replac-
ing every contained shortcut edge with the two edges that this shortcut replaced. Note that
these two edges might be shortcut edges again, therefore recursive unpacking is necessary.
To achieve this, in the preprocessing phase, this information needs to be stored for every
created shortcut edge. The fully unpacked path is then the shortest path from s to t on the
graph G.

3.4 Bucket-CHs

In [11], Knopp et. al present an approach to extend any hierarchy-based routing technique
for many-to-one queries. Applying this to CHs results in Bucket Contraction Hierarchies
(abbreviated BCH). BCHs are a routing technique to answer one-to-many shortest distance
queries, i.e. from any given source vertex s to a set of target vertices T = {t1, t2, . . .}.
In Bucket-CHs, a bucket is stored on every vertex of the reverse graph of a contraction
hierarchy. A bucket is simply a list of tuples (t, dt) ∈ T × N, with each being initially
empty. For every target vertex t ∈ T , a Dijkstra query is started on the reverse graph GR

of the contraction hierarchy and is run until its queue is empty, exploring the entire search
space. For every settled vertex n, an entry (t, dt) is inserted into the bucket of the settled
vertex, where dt is the distance from n to t found by the reverse Dijkstra query.

To query the distances from any source vertex s ∈ V to all vertices in T , run a Dijkstra
query on the forward graph GF of the contraction hierarchy. Maintain a tentative distance
µt for each target vertex in T . For every settled vertex u, scan the entries in the bucket
of that vertex. For any entry (t, dt) in that bucket, d(s, u) + dt is a new possible shortest
distance from s to t. Update the tentative distance µt accordingly. The bucket entries
essentially serve as a replacement for the reverse query that would be required in ordinary
CH-Queries, since the distances to the target vertices are precomputed and stored in the

10

3.5. LOUD

buckets. The search can be stopped once the queue’s minimum key is larger than the largest
current tentative distance of any target vertex, since no better path will ever be found.
If a new target vertex gets added to T , simply generate bucket entries for that target vertex
as described before. If a target vertex gets removed from T , run a reverse dijkstra query
along the reverse graph GR again. For every settled vertex, scan the bucket and remove any
entry that matches the removed target vertex.
Many-to-one queries that compute the distances from a set of source vertices S = {s1, s2, . . .}
to a single target vertex t are possible with virtually the same algorithm: This time, buckets
are generated not along the reverse graph, but the forward graph. To then query the short-
est distances, simply run a Dijkstra query on the reverse graph with source t and scan the
bucket entries of the forward graph.

3.5 LOUD
LOUD, presented in [3], is a dispatching algorithm that finds the optimal insertion (with re-
gards to the cost function described in section 2.1) i = (iv, ip, id) for any given ridesharing
request r = (rt, rp, rd) in only a few milliseconds.
LOUD uses BCH-Queries to determine distances required for calculating the cost of an
insertion (see below). To that end, bucket entries are generated along both the upward and
downward graph of the contraction hierarchy for each stop of each vehicle. In addition to
the vertex- and distance-data, each bucket entry contains the vehicle id as well as the stop
index for the stop that the entry was generated for. LOUD uses a technique called elliptic
pruning which works as follows:
Note that a maximum allowed detour results out of the minimum departure time and the
maximum arrival time of each stop and its successor. This maximum detour is called
leeway. A detour over a vertex that is too far away from those two stops would violate one
of the hard-constraints in the insertion cost function immediately. Therefore bucket entries
for a stop are only generated on vertices where a detour via that vertex does not necessarily
violate hard-constraints. This set of viable vertices forms an ellipsis around the two stops
in question, hence the name. When generating bucket entries along the up-graph of the CH
from a stop s, the leeway is calculated from the departure time of s’s predecessor and the
maximum arrival time of s instead. The leeway value of each stop is stored in each of its
bucket entries.
Elliptic pruning greatly reduces the number of bucket entries in each bucket and strongly
contributes to the good performance of LOUD. Note that since the last stop in a route has no
successor, no leeway can be calculated for the buckets along the down-graph. Therefore, no
buckets are generated and the required distances are calculated with a Dijkstra query instead
(see below). The same is true for the first stop in each route and the buckets generated along
the up-graph.
We are now ready to present how LOUD resolves a single ridesharing request: To begin

11

CHAPTER 3. PRELIMINARIES

with, LOUD runs four BCH-Queries: One upward and one downward BCH-query running
from the pickup and the dropoff stop. For each scanned bucket entry, if the distance to the
currently settled vertex exceeds the leeway value stored in the bucket entry, the bucket entry
gets ignored, since the resulting insertion would immediately violate some hard-constraint.
The BCH-Queries each keep a list of all the vehicle-ids that were seen in some scanned
and not ignored bucket entry. All vehicles that are not in the intersection of these four
sets are guranteed to not be able to serve the ridesharing request without violating some
hard-constraint somewhere.
Now, LOUD begins to simply iterate over all left-over feasible insertions, calculates the
cost for each of them, and remembers the insertion with minimum cost. Note that the cost
of an insertion can be calculated in O(1) if the following four distances are given:

• Distance from stop before pickup to pickup (distance to pickup)
• Distance from pickup to stop after pickup (distance from pickup)
• Distance from stop before dropoff to dropoff (distance to dropoff)
• Distance from dropoff to stop after dropoff (distance from dropoff)

Each of these distances were already calulated from the BCH-queries that were executed
earlier. In the special case that the inserted dropoff would come right after the pickup, the
distance from pickup is set to 0 and the distance to dropoff is set to the direct distance
between pickup and dropoff, which has already been calculated in order to determine the
maximum trip time of the request.
With these distances, arrival times at pickup and dropoff as well as the stops after them
can be calculated in constant time, which is enough information to determine total detour,
wait- and trip-time and therefore the cost of the insertion.
All possible insertions can now be categorized as follows:

(i) Insertions where the pickup (and dropoff) is inserted after the end of the route
(ii) Insertions where the pickup (but not necessarily the dropoff) is inserted "somewhere

in the middle"
Insertions of type 2 are called ordinary insertions and are iterated over by LOUD first, but
skipping over all ordinary insertions where the dropoff would be inserted at the end of the
route. For those insertions, the four previously mentioned distances can be determined
using the results of the BCH-Queries alone. Note that if the pickup stop index of the
insertion is 0, the vehicle is diverted while driving, therefore the vehicle route gets updated
first by calculating the path between the vehicle’s first and second stop and following it
until the time of request is reached. After this update, the first stop of the vehicle then
points to the exact vehicle location. LOUD optimizes performance here by first calculating
the insertion cost with the old vehicle location first, which is a lower bound to the real cost.
If that lower bound exceeds the cost of an insertion that was already found, the vehicle
location does not get updated, saving a CH-Query.
If the dropoff insertion index points to the last stop in the vehicles’ route, the distance to
the dropoff cannot be determined by the BCH-Queries, since no bucket entries for that last

12

3.5. LOUD

stop exist along the downward-graph. To resolve this, after all other ordinary insertions of
all vehicles have been tested, a Dijkstra query is run from the dropoff location along the
reverse graph. This Dijkstra query stops when the distance to the dropoff (aka the minimum
queue key) alone gurantees that any resulting insertion would have a cost higher than the
best currently found insertion cost. This keeps the Dijkstra query limited to only a small
section of the graph, minimizing the impact on performance. All distances from the last
stops of all vehicles reached by the Dijkstra query to the dropoff are now determined and
the final few ordinary insertions get iterated over.
Next, LOUD checks all insertions where the pickup is inserted after the last stop of a route.
The idea is the same as before: Run a Dijkstra query, limited by the resulting minimum
insertion cost, and figure out all distances to the pickup from that Dijkstra query. Since the
dropoff has to come right after the pickup and also marks the end of the route, all other
distances are trivial: The distance from the pickup is 0, distance to dropoff is the direct
distance and distance from dropoff is 0 as well.
At this point, LOUD has found the minimum cost insertion for the request. The insertion
is performed, adding stops and propagating the delay as well as the new maximum arrival
times caused by the hard-constraints of the new passenger up and down the route. Finally,
bucket entries are generated for the inserted stops.

13

CHAPTER 3. PRELIMINARIES

14

4 Ridesharing with Transfers

We present and evaluate two ways to expand the LOUD-Algorithm for transfer stops, i.e. a
request might be resolved using not just one, but multiple vehicles. This has the potential
to decrease the detour required for resolving a request while still staying inside the bounds
of the soft-constraints for the wait- and trip-time of the cost function, leading to a decrease
in total insertion cost.

4.1 Changes to the ridesharing problem
First we adapt the mathematical model of the ridesharing problem to be able to account for
insertions with transfer stops. To begin with, a request is now a 4-tuple r = (rreqt , rdept , rp, rd),
with rp and rd being as before, rreqt is the time at which the request was made, and rdept be-
ing the earliest possible departure time of the passenger at the pickup. We will see why this
change is necessary below.
Let r = (rreqt , rdept , rp, rd) be the original ridesharing request to be dispatched. The result of
the dispatching algorithm is now not just a simple insertion, but a list of insertion-request-
constraint-tuples ((i1, r1, c1), (i2, r2, c2), . . .), with each insertion-request-constraint-tuple
corresponding to one single-vehicle trip of the whole transfer trip. We call such a list of
tuples a solution.
Each request contains information on the location of the pickup / dropoff / transfer-stops,
e.g. for r1 = (rreqt1 , rdept1 , rp1, rd1), rp1 is the pickup-location of the original request while rd1
is the location of the first transfer stop. Furthermore, the requests contain information of
the departure time at those stops. The minimum departure time rdept2 of the second request
r2 is the arrival time of the passenger at the first transfer stop rd1 plus the constant minimum
stop time tstop.
Finally, the constraint information is set so that the maximum wait time at a stop is the total
maximum wait time tmax

wait minus the wait time of the passenger at the pickup location, and
the maximum trip time starting from one stop is the total maximum trip time tmax

trip minus
the trip time already spent. Wait times on transfer stops count towards the trip time of the
passenger, not the wait time. Note that the departure times of the requests r2, r3, . . . are
now different from the time the request was made. The original time of request is still
needed to determine the current location of a vehicle though.
Furthermore, it needs to be ensured that the passenger does not "miss" a transfer due to the

15

CHAPTER 4. RIDESHARING WITH TRANSFERS

delay caused by an insertion that resolved a later request. There are two ways to achieve
this:

• After inserting a transfer trip, set the maximum arrival time at a transfer stop to the
arrival time of the transfer-pickup-vehicle at that stop. The hard-constraints now
guarantee that the passenger will always arrive before the pickup-vehicle.

• For each stop s where a passenger is dropped off for a transfer, there is a corre-
sponding stop t, belonging to another vehicles’ route, that is responsible for picking
up that passenger at the same location. Maintain a list of these corresponding stops
(t1, t2, . . .) for every stop s. After performing an insertion i = (iv, ip, id) into a route,
scan every stop s in the route of iv. For each stop ti in the list of corresponding
stops of s, check if the delayed arrival time at s causes the passenger to miss their
connection at ti. If that is the case, delay the departure time at ti and propagate that
delay through the entire route of the vehicle corresponding to ti. Do this recursively
for all affected vehicle routes until each delay has been resolved.

We choose the first method for our implementation for two reasons: First, if an insertion
can affect more than one vehicle route, that significantly complicates the cost of calculating
an insertion, which is an operation that is performed very often. The cost of calculating an
insertion would still technically be inO(1), but with a much higher constant factor. Second,
the first method guarantees that transfer stops are never delayed (except for traffic or other
complications, which we don’t simulate), which improves the ridesharing experience for
the passenger.
Finally, because the minimum time of departure can now come after the time of request,
stop times are now no longer constant. For example, a vehicle might drive and arrive at a
stop location, but still has to wait for the passenger since the stop is a transfer stop and the
other vehicle hasn’t arrived yet. Because of that, we need to store the arrival time tmin

arr for
each stop in addition to the already-stored departure time tmin

dep . The stop time tstop is now a
lower bound of the stop time: A stop requires at least tstop amount of time, but might take
longer if the vehicle has to wait. Note that our changes essentially added prebooking to the
ridesharing scenario.

4.2 Transfer-At-Stop Algorithm
Our first algorithm finds only a specific type of single-transfer-routes: The first vehicle of
the route picks up the passenger at the pickup-location and drops them off at an already-
existing stop, which serves as a transfer stop. The second vehicle then picks up the passen-
ger from that stop and drives the passenger to the dropoff point. The first vehicle needs to
have at least two stops in its route, since otherwise there would be no eligible transfer stops
for the passenger. The algorithm is as follows:

(i) Run BCH-Queries from the pickup vertex in forward- and reverse-direction to deter-
mine the set of eligible vehicles like in LOUD.

16

4.3. SAMPLED-TRANSFER ALGORITHM

(ii) For each eligible vehicle v, iterate over all viable first-trip-insertions i1 = (iv, ip, id).
The id-th stop of vehicle v will be the passengers’ transfer stop. Build a request tuple
r1 = (rreqt1 , rdept1 , rp1, rd1) that matches this first trip: rreqt1 , rdept1 and rp1 are as in the
original request. rd1 is the location of the transfer stop. Calculate the arrival time at
the transfer stop inO(∞) just like when calculating an insertion cost. Save all found
first-trip insertions in a list.

(iii) For each of these first trips, run a LOUD-Request r2 = (rreqt2 , rdept2 , rp2, rd2), where
rp2 is the location of the transfer stop, rdept2 is the arrival time at the transfer stop
and rd2, r

req
t2 are the same as in the original request. The time constraints c2 for this

request are as described before: The wait/trip-time constraint is the wait/trip-time
constraint of the original request minus the already spent wait/trip-time in the first
trip. Finally, build time constraints c1 for the first trip so that the transfer stops gets
reached in time and the constraints from the original request are fulfilled.

(iv) Calculate the cost of the entire trip by summing the detours and calculating the pas-
senger wait- and trip-time like in LOUD. As before, we can compute this combined
cost in O(1).

(v) Remember the solution ((i1, r1, c1), (i2, r2, c2)) with minimum cost.
Note that for the LOUD-Requests in step 3, we don’t want the vehicle of the resulting inser-
tion to be the same vehicle as the one from the first trip. In order to achieve that, we extend
LOUD slightly to allow for blacklisting vehicles: For a LOUD-Request, you can now spec-
ify a set of blacklisted vehicles. When iterating over the possible insertions, LOUD skips
all insertions whose vehicles are blacklisted. This gurantees that the resulting best insertion
is served by a non-blacklisted vehicle. In theory you could also skip over all bucket entries
that match a blacklisted vehicle during the BCH-Queries, but the performance difference
is neglegible.
The set of eligible vehicles for the first trip is small in practice as seen in [3], and not many
stops can serve as transfer stops. Therefore the performance of this algorithm is good, as
we will see in the section 5.4. However, due to the fact that the transfer stop has to be at an
existing stop, the algorithm might miss good transfer routes with transfer locations that are
not already on existing stops. Therefore, we now present a second algorithm that can find
a larger variety of transfer routes.

4.3 Sampled-Transfer Algorithm
In theory, to find the optimal single-transfer-route between the pickup and dropoff, simply
iterate over all vertices in the graph (except the pickup- and dropoff-location) and run two
LOUD-Requests to find the optimal route for each transfer stop. (the vehicle found by
the first request is blacklisted for the second LOUD-Request). Since urban road networks
usually consist of hundreds of thousands of vertices, and two LOUD-Requests certainly
take more than one millisecond even on modern hardware, this approach is not feasible in

17

CHAPTER 4. RIDESHARING WITH TRANSFERS

practice.

The approach of the sampled-transfer algorithm is simple: First, we sample a small set of
"sensible" transfer stop vertices using some heuristic. Then we run the two LOUD-Requests
described above for each of these sampled vertices, remembering only the solution with
the smallest cost. Since the set of sampled vertices has to be very small for adequate
performance, the challenge in this approach is finding a good heuristic for good transfer
stops. In the following section, we show two possible ways to sample transfer vertices.
Starting from now, let N ∈ N+ be the number of sampled transfer vertices.

Geometric Sampling:
For this approach, the latitude- and longitude-coordinates (which we simply call coordi-
nates from now on) of each vertex need to be available. The idea of this approach is that
transfer stops intuitively should be "somewhere in the middle" between the pickup and
dropoff. First, sample N random LatLng-Coords along a 2D-Normal-Distribution with its
mean µ being the mean of the coordinates of the pickup and dropoff, and the standard de-
viation σ being some value smaller than half of the straight-line distance between those
two coordinates. Then, iterate over every vertex v ∈ V of the graph and for every vertex,
calculate the distance to all sampled coordinates. Maintain an array of vertices of size N ,
one for each sampled coordinate, that contains the vertex with the smallest distance to the
corresponding coordinate. This process of matching the vertices to the coordinates takes
time in O(N · |V |), which seems restrictive. In practice, while there is a measurable im-
pact by this linear sweep, the total runtime is dominated by the LOUD-Requests that come
after the sampling of the vertices. However, to improve performance in this step, some
spatial index like a quad-tree [13] or kd-tree [7] could be used to reduce the required time
to O(N · log(|V |).
There’s a good chance that two sampled coordinates are very close to each other and match
to the same vertex. This could be resolved in multiple ways:

• Remove all duplicates from the list of sampled vertices. This causes the list of sam-
pled vertices to potentially be smaller than N , which is not desirable.

• When sampling a coordinate, check the distance to any other already sampled coor-
dinate. If the distance is smaller than some lower bound, discard the sample and try
again.

• Do not sample randomly, but rather using some quasi-random set of numbers like
a Halton Sequence [9]. This assures that the uniformly randomly generated num-
bers that are then redistributed to align with a normal distribution do not form any
"clusters" by themselves.

In our implementation, if either the pickup/dropoff-location or an already sampled location
is sampled again, we redo the sample to avoid duplicates and malformed requests. For
the standard deviation of the normal distribution, we choose a quarter of the straight-line
distance from the pickup- to the dropoff-coordinate by default. In section 5.6, we vary this
tuning parameter to evaluate its impact on dispatching quality and runtime performance.

18

4.3. SAMPLED-TRANSFER ALGORITHM

Betweenness Sampling:
A concern with the previously presented sampling strategy is that geometric approaches
usually don’t work well on road networks. For example, the geometric distance between
two vertices is usually a bad heuristic for the shortest distance between those vertices in the
graph, whose weights are based on travel time. This is quite intuitive: Driving from one
end of a city to another by driving through the city might take half an hour. At the same
time, driving from one city to another using a highway might also only take half an hour,
but the distance traveled is much higher.
The following sampling strategy follows the intuition that good transfer stops should opti-
mally be on as many shortest-paths on the graph as possible, since the chance that a vehicle
(which always follows the shortest path between two stops) passes one of these stops is
very high. The number of times a vertex v is contained in a shortest path between any two
vertices s, t ∈ V is called the betweenness of v. The betweenness of v is at least 2 · |V |
since a vertex certainly lies on all shortest paths with itself as either the source or target.
We calculate the betweenness of each vertex in the graph as follows: We maintain an array
of size |V | of betweenness values, one entry for each vertex s ∈ V . The array is initialized
with zeroes.

(i) Run a full Dijkstra-query with source vertex s.
(ii) Build the shortest-path-tree using the parent-array calculated by the Dijkstra-query.

(iii) Calculate the sizes of all subtrees of the shortest-path-tree
(iv) Add the size of the subtree rooted at v to the entry for v in the betweenness-array.

The resulting betweenness is correct since the size of the shortest-path-subtree rooted at v
is exactly the number of shortest paths from s to some target that contain v. To calculate the
subtree-sizes, maintain yet another array of size |V |. We call this array A in the following
pseudocode. Then, run this recursive function with input s:

Algorithm 2 SUBTREESIZE

Input: T = (V,ET), p ∈ V

1: A[n]← 1
2: for (p, c) ∈ ET do
3: SUBTREESIZE(T , c)
4: A[n]← A[n] + A[c]
5: end for

ET are the edges of the shortest-path tree that was calculated from the parent-array of the
Dijkstra-query. The runtime of this algorithm is in O(n), since the function gets called
exactly once per vertex and each call incurs only a constant time cost.
The total calculating runtime is in O(|V | · ((|V |log|V | + |E|) + |V |)) = O(|V |2log|V | +
|V ||E|). An alternative method of calculating the betweenness of each vertex efficiently
is Johnson’s Algorithm [10], which has the same asymptotic runtime. The calculation of

19

CHAPTER 4. RIDESHARING WITH TRANSFERS

the betweenness is quite cost-intensive in practice, however it only needs to be done once
per graph. Therefore you can simply save the betweenness of each vertex to disk. The
calculation has to be redone every time the graph or its metric changes, e.g. because of
traffic or construction sites.
Next, we sort the list of all vertices by betweenness, in descending order. We then iterate
over the vertices in that order and create a list of chosen vertices in the following way:
For each vertex v:

(i) Run Dijkstra’s algorithm starting from v and terminate after the minimum queue
key exceeds dmin, where dmin is a tuning parameter that determines the minimum
distance between each possible transfer location.

(ii) If the Dijkstra-query has not visited any vertex already in the list of chosen vertices,
add v to the list of chosen vertices.

(iii) Otherwise, do nothing and continue with the next vertex.
In our implementation, we initially set dmin to five minutes. The resulting list of vertices is
called the set of eligible transfer vertices T . The travel-time distance between each vertex
in T is guranteed to be at least dmin. The vertices of T therefore are high-betweenness
vertices that cover the entire graph, with an even distance between each of the vertices. In
section 5.6, we evaluate the impact that different values of dmin make on the dispatching
quality and runtime performance.
Calculating this list of chosen vertices takes a few seconds, but also only needs to be done
once per graph, so the list of potential transfer spots can be saved to disk as well.

4.4 Multi-Transfer Dispatching
We now expand the presented single-transfer dispatching algorithms to resolve ridesharing
requests with an arbitrary amount of transfers. From now on, M denotes the intended
number of transfer stops in the route. We begin with the transfer-at-stop algorithm:

Multi-Transfer at Stop:
A simplistic representation of the multi-transfer-at-stop algorithm can be seen in algo-
rithm 3. The algorithm searches for the set of viable first trips just like in the single-transfer
version. Now, lets say we have found a single viable first trip from the pickup vertex p to
some transfer vertex t1. We now resolve the rest of the request from t1 to d recursively by
building a new ridesharing request and calling the multi-transfer-at-stop again, but with one
less transfer stop requested. The maximum trip time for that request is the original maxi-
mum trip time minus the already spent trip time in the first-trip. If M = 0 for the recursive
call, LOUD is executed to find the final trip from tM to d. As before, LOUD is now config-
ured to count any wait time as trip time. For each recursive call, the vehicle corresponding
to the first-trip gets blacklisted and will not be used in LOUD and FINDALLFIRSTTRIPS.

20

4.4. MULTI-TRANSFER DISPATCHING

Algorithm 3 An simplified pseudocode of the multi-transfer-at-stop algorithm. Data like
the road network graph or the vehicle routes are globally available for this pseudocode.
Input: M∗, N ∈ N, p∗, d ∈ V

1: procedure MULTI-XFERATSTOP(M , p, d)
2: if M = 0 then
3: return LOUD(p, d)
4: end if
5: T ← FINDALLFIRSTTRIPS(p)
6: B ← MIN⌈ M√N⌉(T , t→ KEY(t))
7: for t ∈ B do
8: t← t join with MULTI-XFERATSTOP(M − 1, t, d)
9: end for

10: return MIN(B, t→ COST(t))
11: end procedure
12: MULTI-XFERATSTOP(M∗, p∗, d∗) ▷ Initial call

Every first-trip found in a call of MULTI-XFERATSTOP comes with a lower bound on the
final insertion cost of the multi-trip route: The final vehicle detour is at least the detour
made by the vehicle of the first-trip to drive to the pickup location. The final wait time is
actually exactly the wait time of the passenger for first trip in the original call of MULTI-
XFERATSTOP, since each wait-time at a transfer stop counts as trip-time instead. The final
trip time is at least the trip time from the pickup location to the first transfer stop plus the
direct distance from the transfer spot to the dropoff. We calculate this direct distance using
a CH-query. We use this lower bound as a "cost" of the first trip, and only recurse on the best
⌈ M
√
N⌉ found first-trips When multiple first-trips for a pickup were found, we only recurse

on the ⌈ M
√
N⌉ found first-trips, where N ∈ N is a tuning parameter that determines a lower

bound on how many complete M -transfer-routes get evaluated by the algorithm, provided
the algorithm finds enough first-trips. The route found by each recursion is appended to the
corresponding first-trip, and the overall best found route is returned.

Sampling Algorithms:
We now expand the transfer vertex sampling algorithms for multi-transfer dispatching. In-
stead of sampling just one transfer stop, we now sample a list of transfer stops (t1, t2, . . . , tM).
Such a list is called transfer vertex tuple. We then call the process of resolving a request
with a route that contains M transfer stops M -Transfer Dispatching. N ∈ N now is the
number of M -tuples that are supposed to be sampled. The main difficulty of Sampled-M -
Transfer Dispatching is the sampling of the transfer vertex tuples. After the tuples have
been sampled, LOUD has to be run M+1 times, from each vertex to the next and each time
blacklisting all vehicles that were already previously used. This is analogous to sampled
single-transfer dispatching.

21

CHAPTER 4. RIDESHARING WITH TRANSFERS

Figure 4.1: An example of a simple binomial geometric sampling and a slightly more intri-
cate sampling along an ellipsis for 2-transfer dispatching. The circles represent
the two-dimensional binomial distribution after which is sampled and roughly
sketch out all points which lie within one standard deviation of the mean.

We now present how to modify both the geometric- and betweenness-sampling algorithm
to find tuples of viable transfer stops.

Geometric:
In the single-transfer dispatching algorithm, the intuition for the sampling was to find ver-
tices that are "somewhere in the middle of the pickup and dropoff". This intuition can
seamlessly be extended to multi-transfer dispatching. For example, in 2-transfer dispatch-
ing, the first transfer stop should have a distance ratio from pickup and dropoff of roughly
1:2, and the second transfer stop a distance ratio of roughly 2:1, such that the resulting
route is roughly divided into even thirds.

In fig. 4.1, on the left side, you can see an example of using a simple normal distribution

22

4.4. MULTI-TRANSFER DISPATCHING

centered around the thirds of the direct line between pickup and dropoff, for use in 2-
transfer sampling. You can see that in this example, the resulting transfer vertices do not
evenly divide the route in thirds: The middle segment is much shorter. If you simply
reduce the deviation of the normal distribution, it is easy to see that the sampling space
would become very small, especially since you would need a smaller and smaller variance
for higher M . This would lead to transfer vertices that are very close to each other, so not
many truly different routes are found. To resolve this problem, we propose a new sampling
approach: Instead of simply sampling along a two-dimensional normal distribution, which
would result in a "circular" distribution of points around the mean, we try to sample points
inside the ellipsis whose focal points are determined by the intersection of circles around
the pickup- and dropoff-coordinates. This is better explained by example: In the case of
2-transfer-dispatching, like in fig. 4.1, to find the sampling space ellipsis focal points, draw
a circle with a radius of a little more than the one-third of the straight-line distance from
pickup to dropoff around the pickup, and another circle with a radius of a little more than
two-thirds of the straight-line distance around the dropoff. Each point inbetween the two
intersection points is roughly twice as far away from the dropoff as it is from the pickup
(again, see fig. 4.1).

We now describe exactly how this sampling is done: From now on, we call the latitu-
dinal component of a coordinate the x-coordinate and the longitudinal component the y-
coordinate. For any point p, x(p) is the x-coordinate of that point and y(p) the y-coordinate.
Let distgeom be the geometric straight-line distance between the pickup-coordinate pp and
dropoff-coordinate pd. Let γ > 1 ∈ R. We describe this algorithm for general M -transfer
sampling. Let r1 = γ · distgeom · i

M+1
and r2 = γ · distgeom · M−i

M+1
be the radii of the

circles, where i ∈ {1, . . . ,M} is the index of the transfer stop vertex ti to be sampled.
t1 is the transfer stop vertex closest to the pickup, tM is the transfer stop vertex closest
to the dropoff. The height h of the intersection area of the two circles described above is
h = r1 + r2 − distgeom = distgeom · (γ − 1). The width w of this area is the height of
the triangle spanned by the pickup-coordinate, the dropoff-coordinate and any intersection
point. A sketch of all relevant line lengths is given in fig. 4.2.

To calculate w, we use Heron’s formula [1] to calculate the area of the triangle with side-
lengths r1, r2 and distgeom and divide by distgeom

2
to get the height of that triangle, which

is the width w we were looking for. The center point pc of this area is on the straight-line
between the pickup-coordinate and dropoff-coordinate with a distance of i

M+1
· distgeom

from the pickup. Calculate the two-dimensional rotation matrix MR ∈ R2×2 that rotates
the coordinates so that the coordinate of the pickup and the coordinate of the dropoff have
the same y-coordinate. Sample an x-coordinate using a 1D normal distribution with mean
x(MR · pc) and deviation η · w, and a y-coordinate in the same way with mean y(MR · pc)
and deviation η ·h. Let this sampled point be called p′i. Calculate the corresponding point pi
in the original coordinate system with pi = MT

R · p′i. The sampled point pi will be sampled
roughly around the intersection area of the two circles (depending on the chosen η, points
may stray further from the intersection). For N requested transfer vertex tuples, sample

23

CHAPTER 4. RIDESHARING WITH TRANSFERS

Figure 4.2: Geometric sketch for the calculation of the width of the area between the inter-
section points of the two circles around pickup and dropoff.

⌈
M√
N⌉ points for each i ∈ {1, . . . ,M}. Finally, match the sampled points to vertices in

the graph and choose the transfer vertex combinations at random, avoiding duplicates.

Note that while this sampling algorithm seems more complicated, each additional step over
the single-transfer coordinate sampling can be computed in O(1) and the rotation matrix
MR only has to be calculated once per request. Therefore the new sampling algorithm will
most likely not have a strong impact on the performance.

Betweenness:
In the single-transfer betweenness-sampling algorithm, transfer-vertices were chosen so
that the path from pickup p to dropoff d via the chosen transfer vertex is still short. We
now expand that concept to M -transfer dispatching. The set of all eligible transfer vertices
T ⊆ V is computed just like in the single-transfer algorithm.

24

4.4. MULTI-TRANSFER DISPATCHING

Algorithm 4 Pseudocode for the M-transfer dispatch betweenness-sampling algorithm.
Global: G = (V,E), T ⊆ V , A ∈ (TM × N)N

1: procedure BTWN(M , r, lr, p, d)
2: SORT(T , t ∈ T → lr + dist(p, t) + dist(t, d))
3: for t ∈ T do
4: if lr + dist(p, t) + dist(t, d) ≥ A[N − 1] then
5: break
6: end if
7: APPEND(r, t)
8: lr ← lr + dist(t, d)
9: if M = 1 then

10: SORTEDINSERT(A, (r, lr))
11: else
12: BTWN(M − 1, r, lr, t, d)
13: end if
14: end for
15: end procedure
16: BTWN(M , {−1, . . . ,−1}, 0, p, d ▷ Initial call

Maintain an array A of size N which contains the best found transfer vertex tuples as well
as the distances of the route p → t1 → . . . → tM → d for each tuple. Initially, this array
is filled with invalid tuples and all distances are set to ∞. Now, sort all eligible transfer
vertices T by their distance to the pickup in ascending order. Iterate over each transfer
vertex t in that order and recursively find the best M − 1 transfer stops for a trip from t
to the dropoff. For each recursion, the current route gets passed as a function parameter.
When the recursion gets down to M = 1, complete routes from p to d are found. Perform
a sorted insertion of any found route into A if the found route is shorter than any route
contained in A. Keep only the N shortest routes in A. Every time the recursive function
is called, the function can return immediately if the distance of the current route plus the
direct distance to the dropoff exceeds the length of the longest path in A. After the initial
function call is done, A is filled with the N shortest routes from p to d via M transfer stops.
Pseudocode for this algorithm can be seen in algorithm 4. It remains to be seen whether the
performance of this algorithm is adequate. On one hand, the break condition should apply
fairly quickly, since the best paths are found very quickly, thanks to the vertex ordering.
On the other hand, especially for larger M , a fair amount of recursive calls, and therefore
sorting needs to be done. Performance can be improved by customizing the sort function,
for example using a custom quicksort: In quicksort, if the break condition seen in line 19
would apply to the pivot, the partition with keys larger than the pivot key does not need to
be sorted. This reduces the amount of vertices to be sorted significantly. Furthermore there
might be a problem with the variety of routes found, again especially for larger M : It is

25

CHAPTER 4. RIDESHARING WITH TRANSFERS

possible that all N different found routes have the same M − 1 first transfer stops and the
only difference in the routes is in the last transfer stop of the tuples. Therefore we present
a second, much simpler algorithm for sampling M -transfer routes from the betweenness-
sampled transfer vertices:

First, sample ⌈
M√
N⌉ transfer stops for each i-th component (i ∈ {1, . . . ,M}) in a transfer

vertex tuple by sorting all transfer stops by the key dist(p, t) · (M − i+ 1) + dist(t, d) · i
and choosing the best ones. Sorting by this key causes the sampled transfer stops to be
closer or futher away from the pickup/dropoff, depending on component. For example,
when M = 3, for the key of the transfer stops sampled for the first component weighs the
distance to the pickup three times more than the distance to the dropoff, causing transfer
stops to be chosen rather close to the pickup. After a set of potential transfer vertices has
been chosen for each component, choose combinations of these vertices at random to get a
list of potential routes.

26

5 Evaluation

5.1 Setup

We extended the codebase written by Buchhold et. al for [3] with our presented algorithms.
As in [3], all code was written in C++17, compiled using the GNU C++ Compiler with
optimization level -O3 and makes extensive use of modern C++ features to ensure optimal
performance. Two computers were available for our experiments:

• PC1: 1x Intel i7 1170 processor, maximum clock @ 4.9GHz, 64GB DDR4-RAM,
16MB Cache.

• PC2: 2x 16-Core Intel Xeon E5-2683 v4 processors, clocked at 2.1 GHz, 512GiB of
DDR4-RAM, 40MB Cache.

PC1 is over twice as fast as PC2 for our purposes. Unless stated otherwise, experiments are
run on PC2. All simulations run only use a single CPU core, since none of the presented
algorithms are parallel. All used default parameters can be seen in table 5.2.

The road network, vehicle fleet and list of requests is the same as in [3]: A road network of
Berlin, which was extracted from OpenStreetMap and reduced to only the data required for
routing, is used as the underlying graph. The vehicle and request data was generated using
the transport simulation MATSim. Two sets of vehicle- and request-lists were generated:
One for only one percent of the adult population of Berlin and Brandenburg, called the
one-percent-scenario (abbreviated 1pct), and one for ten percent of the population (ten-
percent-scenario, abbreviated 10pct). The 1pct-scenario contains 1000 Vehicles and 16569
Requests, whereas the 10pct-Scanario contains 10000 Vehicles and 149185 Requests. In
section 5.10, we evaluate the presented algorithms on a similar, but larger scenario where
the underlying road network represents the west German Ruhr area. As before, a one- and
ten-percent scenario is available. We call these scenarios ruhr-1pct and ruhr-10pct. ruhr-
1pct contains about 50000 requests and exactly 3000 vehicles, while ruhr-10pct contains
just under 450000 requests and a fleet of 30000 vehicles. You can see a summary of these
numbers in table 5.1.

The simulation runs over the course of one entire day, from early morning until late evening.
The requests are realistically distributed in time and space, i.e. few requests are made in
the early morning and most requests are made in the middle of the day. All vehicles serve
requests the entire day and have a seating capacity of 4. Each request only contains a single
passenger.

27

CHAPTER 5. EVALUATION

|V | |E| #veh #req
(berlin-)1pct 80922 169935 1000 16569
(berlin-)10pct 80922 169935 10000 149185
ruhr-1pct 420700 887790 3000 49708
ruhr-10pct 420700 887790 30000 447556

Table 5.1: Summary of the four different scenarios that we used as test data. The Berlin-
scenarios are used for all evaluations except the ones in section 5.10.

variable value explanation
α 1.7 Parameter for tmax

trip

β 2m Parameter for tmax
trip

tmax
wait 5m Maximum passenger wait time for request constraints
tstop 1m Minimum stop time for picking up or dropping off passenger
N 8 Number of samples drawn for single/multi-transfer algorithms
dmin 5m Min. distance between transfer vertices in betweenness-algorithms.
η(1) 0.5 Standard deviation factor for single-transfer geometric algorithm.
η(2) 0.25 Standard deviation factor for multi-transfer geometric algorithm.

Table 5.2: Default parameters used in evaluation. These are used unless stated otherwise.

5.2 Analysis of No-Transfer-Routes

To gain a better understanding of the ridesharing scenario, and to put the upcoming ex-
perimental results into context, we first present some stats about how unmodified LOUD

resolves ridesharing-requests.
In table 5.3, basic data regarding the quality of the routes found by LOUD is presented. On
average, a passenger that makes a ridesharing request embarks on a trip that takes a little
over fifteen minutes in both scenarios. In the 1pct-scenario, the passenger has to wait about
four minutes on average until the vehicle arrives, while in the 10pct-scenario the passenger
only has to wait a little over two minutes for the vehicle. This is most likely because the
increased amount of vehicles provide a better coverage of the road network, therefore the
chance of a car being close to a pickup spot is higher. Two interesting properties about the
ridesharing scenario emerge from this data: First, on average, both the constraint for the
passenger wait-time and the passenger trip-time gets undershot significantly: The average
passenger in the 1pct-scenario could wait for over a minute more and have a five minute
longer trip without any increase in the cost of the corresponding insertion. In the 10pct-
scenario, this is even more drastic, with the wait-time-constraint being undershot by over
two minutes and the trip-time-constraint again by over five minutes. From this we can
expect that eventual transfer-routes will probably show an increase in passenger wait- and
trip-time (which will not increase the cost of the insertion, since the soft-constraints remain

28

5.2. ANALYSIS OF NO-TRANSFER-ROUTES

Scenario tdetour twait ttrip tmax
wait tmax

trip

1pct 967s 233s 1070s 300s 1374s
10pct 758s 141s 948s 300s 1276s

Table 5.3: Average actual and maximum wait- and trip-time for resolving a ridesharing-
request using unmodified LOUD, as well as the detour (i.e. increase in vehicle
operation time) caused by serving a new request.

fulfilled) but improve the detour of the individual vehicles, ultimately reducing the cost of
the insertion.
Second, note that the average required detour for serving a request is very close to the total
trip time for that request, suggesting that when a request is dispatched, the vehicle spends
the majority of time driving passengers exclusively to their destination, with no actual
ridesharing taking place. We take a closer look on just how close the current ridesharing
scenario is to simple taxi calls:

Scenario #pickup at end #dropoff at end #ordinary avg. route len
1pct 80.23% 90.97% 9.03% 1.33
10pct 65.55% 85.89% 14.11% 1.56

Table 5.4: Data showing how often a certain type of insertion is performed by LOUD rel-
ative to the total number of requests, as well as the average route length of the
vehicle before the insertion is performed.

In table 5.4 we show how often LOUD performs a certain type of insertion: A "pickup
at end"-insertion is an insertion where the new passenger gets picked up after the vehicle
has completed its current route. A "dropoff-at-end"-insertion is an insertion where the
passenger gets driven to their destination after the vehicle has completed all other stops
in its route. An ordinary insertion is an insertion where both the pickup and dropoff are
inserted somewhere in the middle of the route, i.e. where the insertion is neither a "pickup-
at-end"-insertion nor a "dropoff-at-end"-insertion. We also display the length of the vehicle
route corresponding to the best found insertion before the insertion is performed. Note that
each "pickup-at-end"-insertion" is automatically a "dropoff-at-end"-insertion as well, and
therefore an insertion is either "dropoff-at-end" or ordinary, making the two percentages
add up to 100%.
From the data in table 5.4, we can see that ordinary insertions are not all that ordinary: For
the 1pct-scenario, over 80% of all insertions are appended to the end of the route, in the
10pct-scenario, this number is still over 65%. Furthermore the average route length of a
vehicle before insertion is quite small at only 1.33 for the 1pct-scenario and 1.56 for the
10pct-scenario.
This means that for the majority of requests, the vehicle that gets matched to the passenger
has already completed all previous stops and now sits idle somewhere on the road network.

29

CHAPTER 5. EVALUATION

When the request gets dispatched, that vehicle drives to the pickup location immediately,
picks up the passenger and drives them directly to their destination, operating like a taxi.
On the 10pct-scenario, more "real" ridesharing is performed than on the 1pct-scenario.
This is most likely because the increased amount of vehicles driving along the road network
increase the chance of finding a vehicle that is already passing close to the requested pickup
location. We expect transfer dispatching to work better on the 10pct-scenario for the same
reason: More vehicles on the road network means a higher likelyhood that a vehicle can
serve a transfer stop without having to make a big detour.
For the passenger, this taxi-like type of insertion is ideal: The wait time is short, as shown
in table 5.3 and the trip time is optimal since the direct path is taken. Detour-wise though
these types of insertions are not optimal: The entire trip of the passenger as well as the
trip to the pickup gets added to the vehicle operation time. For a better detour it would
be more desireable to utilize vehicles that are already carrying some passengers and are
driving roughly in the direction the new passenger wants.
This also sheds some light on the very good performance of LOUD: As we’ve seen in
table 5.3, most vehicle routes contain very few stops on average. Few vehicle stops lead
to few bucket entries in each of the buckets, leading to fast BCH-queries, and furthermore
the search space of all viable insertions is kept small, with only one possible insertion (the
pickup-at-end insertion) existing for most vehicles.
This data has some consequences for transfer routes: Transfer routes will probably im-
prove the vehicle utilization by reducing the detour required to resolve a single ridesharing
request. This is an advantage for the ridesharing provider, since fewer vehicles are neces-
sary to handle the request volume, saving money. For passengers however, the introduction
of transfer routes will very likely be a downgrade: In addition to the stress caused by
transfer stops, passenger wait- and trip-times will probably increase significantly. Further-
more the amount of taxi-like "pickup-at-end"-insertions, which are very comfortable for
the passengers since no ridesharing actually takes place, will probably be replaced by more
detour-optimal transfer routes.
To avoid this downgrade in ride quality, the cost function for the ridesharing problem could
be modified. For example, a penalty for transfer stops could be introduced to take the stress
of transfers into account, or a cost for wait- and trip-times could be introduced even when
those values are under their respective constraints. We do not modify the cost function in
any way, so that we can maintain comparability with [3]. Note though that the cost function
can easily be modified in any arbitrary way, as long as it still contains the hard-constraints
for wait- and trip-time, since those are required for elliptic pruning.

5.3 Analysis of the test scenarios

We look a little further into the scenarios that we are running on. As stated before, our
underlying graph is an accurate representation of Berlin and its surrounding area. On this

30

5.3. ANALYSIS OF THE TEST SCENARIOS

(a) 1pct-scenario (b) 10pct-scenario

Figure 5.1: Distribution of direct distances between pickup and dropoff for each ridesharing
request on the 1pct- and 10pct-scenario. Each bar portrays how many requests
have a direct distance from pickup to dropoff that are at least as long as the time
given on the corresponding x-tick.

graph, the longest distances from one vertex to another are a little over an hour long. An
example, routed by Google Maps, can be seen in fig. 5.2. Note that although the path
through Berlin is much shorter geometrically speaking, the route around Berlin is actually
the shortest path from source to destination. In the ridesharing scenario, this would mean
that if this request were resolved using a taxi-like trip, the vehicle would drive around
Berlin and therefore wouldn’t be able to efficiently serve additional requests that are made
inside Berlin.

We evaluated the direct distances of each request made by the transport simulation. The
results can be seen in fig. 5.1. As you can see, half of all requests on both scenarios have
a direct distance of less than ten minutes between pickup and dropoff. Only about 10% of
all requests have a minimum driving time of over thirty minutes.

For ridesharing with transfer stops, this poses a problem: In practice, transfer stops for
rides that are shorter than ten minutes are undesirable from a passengers’ perspective. Fur-
thermore, every extra transfer stop incurs more detour and trip time, as more vehicles are
affected by the request and the wait time of the passenger at that transfer counts into the to-
tal trip time. Based on this data we predict that single-transfer dispatching might improve
some of the longer distance queries, especially requests with a direct distance of >20m,
since one transfer stop for ten minutes of travel time in a vehicle seems reasonable from an
intuitive standpoint. We however also predict that multi-transfer dispatching, particularly
with higher values of M , will most likely not improve very many requests, since the travel
time between pickup and dropoff is simply too short to justify multiple transfer stops.

Finally, in fig. 5.3 you can see the distribution of the requests over the course of a day.
You can see that most requests are, unsurprisingly, made during daytime. The graph shows

31

CHAPTER 5. EVALUATION

Figure 5.2: An example of what could be considered a "long distance" route through our
road network, represented on Google Maps. Note that the direct route through
Berlin is over ten minutes longer than the route around Berlin that uses the
faster federal highways.

a steep increase in request density starting at around 7:00AM and a sharp dropoff again
at roughly 7PM. We expect transfer dispatching to be most effective in this high-transfer-
volume time period, as the chance of finding a viable second vehicle to make a transfer to
is highest.

32

5.4. RUNTIME PERFORMANCE OF SINGLE-TRANSFER DISPATCHING

(a) 1pct-scenario (b) 10pct-scenario

Figure 5.3: Distribution of ridesharing requests on both scenarios across time

5.4 Runtime Performance of single-transfer
dispatching

(a) 1pct-scenario (b) 10pct-scenario

Figure 5.4: Comparison of runtime for dispatching a single request between ordinary
LOUD and each of the presented transfer dispatch algorithms on each scenario.

In fig. 5.4, we compare the required runtime to answer a single ridesharing request of each
of the presented transfer dispatching algorithms to each other and also against the runtime
of the original LOUD algorithm. The algorithms are evaluated on both the 1pct- and 10pct-
scenario. Note the log scale on the y-axis. On our test computer, LOUD only requires a
little over a millisecond on average to answer a ridesharing request, however the deviation
is fairly high. LOUD takes slightly more time on the 10pct-scenario than the 1pct-scneario,
since the longer vehicle routes lead to larger BCH-buckets and a larger search space.

33

CHAPTER 5. EVALUATION

The transfer-at-stop algorithm takes about 23ms on average, the geometric sampling algo-
rithm 28ms and the betweenness-sampled algorithm 16ms. The deviation of the runtime
of the transfer-at-stop algorithm is much higher than the runtime deviation of the sampling
algorithms though. This is because while both sampling algorithms do exactly 2 ·N = 16
LOUD-Requests each time, the transfer-at-stop algorithm performs one LOUD-Request per
potential first trip that was found and not pruned. This number might be anywhere from
0 to a couple dozen requests. We evalute the number of LOUD-Requests made by the
transfer-at-stop algorithm more extensively in section 5.6.
Furthermore, the runtime required by the transfer-at-stop algorithm is significantly higher
on the 10pct-scenario than on the 1pct-scenario for the same reason: On the 10pct-scenario,
vehicle routes are longer on average, resulting in more potential first trips. Therefore, while
the transfer-at-stop algorithm is faster than the geometrically-sampled algorithm on the
1pct-scenario, this is no longer the case for the 10pct-scenario. The betweenness-sampled
algortihm is the fastest on both scenarios.
Note that the difference in performance between the geometrically-sampled algorithm and
the betweenness-sampled algorithm is caused by the linear search that maps sampled co-
ordinates to edges in the graph, which takes far longer than the BCH-Queries that the
betweenness-sampled algorithm has to execute. Since the runtime of both algorithms is
dominated by the 16 performed LOUD-requests, the difference in runtime between the two
algorithms is a constant summand.
In all the algorithms, the average required runtime is significantly higher than the median
time, showing that the runtime is dominated by some requests where many different inser-
tions are viable. This is especially noticeable for the transfer-at-stop algorithm, where the
slowest requests take up to 500ms on the 1pct-scenario and even up to two seconds on the
10pct-scenario.
We can conclude that in regards to performance, the transfer-sampling algorithms are more
viable for practical real-world use than the transfer-at-stop algorithm because the average
runtime of the transfer-at-stop algorithm is going to increase further when switching to the
full "100-percent"-scenario, while the runtime of the sampling algorithms remains almost
the same. Even on the 10pct-scenario, the transfer-at-stop algorithm is the slowest of the
three presented algorithms. Furthermore, the runtime of the sampling algorithms deviates
much less, making performance more predictable.

5.5 Dispatch Quality

We now evaluate our main point of interest, the quality of the transfer routes found by the
individual algorithms compared to the respective non-transfer route. We check how many
of the approx. 16000 requests of the 1pct-scenario and the 150000 requests of the 10pct-
scenario were improved by using a single-transfer-route. To that end, we run the transport
simulation and answer each incoming request both with ordinary LOUD and with a single-

34

5.5. DISPATCH QUALITY

transfer dispatching algorithm. The insertion that has the lower cost gets inserted into the
route. For every request where the single-transfer-route was better, we determine how the
wait-time, trip-time and detour of it compares to the route that would have resulted from
the insertion found by LOUD.

xfer-at-stop geometric sampled betweenness sampled
1pct hit-rate 7.65% 2.74% 8.87%

∆cost -4740 -3076 -3286
∆detour -219s -236s -316s
∆wait +1s -98s -74s
∆trip +203s +483s +435s

10pct hit-rate 15.04% 6.94% 18.92%
∆cost -3177 -2285 -3148
∆detour -354s -227s -335s
∆wait +36s -59s -46s
∆trip +339s +483s +457s

Table 5.5: Comparison of dispatching quality between transfer algorithms and no-transfer
routes on both scenarios. All ∆-values are averages and compare improving
transfer-routes to the corresponding normal routes.

The results of our experiments can be seen in table 5.5. The hit-rate is the amount of times
the single-transfer route was an improvement over the no-transfer-route, relative to the total
number of requests. The wait time of a passenger is the duration between the time of request
and the arrival of the first vehicle at the pickup location. The trip time is the difference
between the arrival time of the passenger at the dropoff location and the departure time of
the first vehicle from the pickup point. Note that all "wait times" at transfer stops count
into the trip time, not into the wait time. The detour of a single-transfer-route is the sum of
all the detours required by all affected vehicles.
For all transfer-dispatch-algorithms, the transfer route improves the detour on average by
somewhere between three and five minutes, depending on the algorithm. Contrary to our
expectations in section 5.2, while the trip time of a single-transfer trip increases signifi-
cantly compared to the no-transfer trip, the wait time decreases. We assume that this is
because for transfer-trips, more vehicles are viable for pickup since a pickup vehicle does
not necessarily also have to pass close by the dropoff location to serve the request effi-
ciently. Note that every vehicle that can serve the request efficiently with a no-transfer
route is also a viable pickup vehicle for a single-transfer trip, since the wait time would be
the same.
As we expected, transfer routes perform better on the 10pct-scenario than the 1pct-scenario:
On the 10pct scenario, more than twice as many requests are resolved using transfer routes
compared to the 1pct-scenario for all used algorithms. Each algorithm improves the cost

35

CHAPTER 5. EVALUATION

of the dispatching result by around 2000 to 4000 points. Note that each second of detour
increases the cost by ten points. Each second of wait-time past the constraint increases
the cost by ten points as well, while each second of excess trip-time increases the cost by
100 points. The greatest average improvement in insertion cost is made by the transfer-
at-stop algorithm, which improves the dispatch result cost by almost 5000 points on the
1pct-scenario. The geometric sampling algorithm performs the worst in both scenarios,
both in regard to hit-rate and to average insertion cost improvement.
Overall, the results seen in table 5.5 are promising. Even though insertion costs of no-
transfer routes were already low because most requests were originally resolved using trip-
time optimal "taxi-like" trips with very good wait times (as seen in section 5.2), two of
the three presented algorithms manage to improve the cost of insertions for over 15% of
all requests made on the 10pct-scenario. We expect this hit-rate to be even higher for a
realistic 100pct-scenario.

5.6 Algorithm-Specific Evaluation
We now evaluate each of the presented transfer dispatch algorithms for interesting algorithm-
specific data. We analyse the performance of the individual algorithms in detail, play with
the various tuning parameters, etc.

Transfer-at-stop algorithm:

(a) 1pct-scenario (b) 10pct-scenario

Figure 5.5: Number of first trips found by the transfer-at-stop algorithm and number of
actually performed LOUD-Requests on both scenarios.

We begin with the transfer-at-stop algorithm. The biggest point of interest for this algorithm
is how many first trips are found, and how many of them are pruned. The number of non-

36

5.6. ALGORITHM-SPECIFIC EVALUATION

pruned first trips is the number of LOUD-requests made by the algorithm. We present the
number of total and pruned first trips as boxplots in fig. 5.5. On the 1pct-scenario, about 12
first trips are found by the algorithm on average, with the median being slightly lower. Just
under seven LOUD requests are executed on average, meaning that around five of the first
trips are pruned on average for each request. To be more exact, 45% of all first-trips are
pruned. We can also see that for some requests, up to 60 first trips are found, which then
result in similarily many LOUD-requests.

When looking at the 10pct-scenario, the number of found first trips has increased drasti-
cally, with now almost 35 first trips being found on average, and more than 200 first trips
being found on the largest outlier requests. This was to be expected though: In previous
data we have already seen that since the road network is better covered with vehicles, more
vehicles are able to pick up the passengers with low wait time and detour. Furthermore, as
seen in table 5.3, vehicle routes tend to be longer on average on the 10pct-scenario, because
the increased number of requests increases vehicle utilization. Since one of the conditions
for finding a first trip is that a vehicle needs to have at least two stops, this leads to more
viable first trips than in the 1pct-scenario, where many vehicles just sit idly on a completed
stop. What we can also see though is that a larger proportion of first trips gets pruned: Out
of the average 35 first trips, only 12 of them lead to a LOUD-Request, which evaluates to a
pruning ratio of 64%. Comparing this data to the performance data in section 5.4, we can
calculate that each LOUD-Request takes a bit over one millisecond, which is right in line
with our previous findings.

Overall, while the performance of the algorithm is adequate for the tested scenarios, we
can assume that it doesn’t scale well for scenarios with even more vehicles and higher
request density, because many more first trips would be found. The pruning criterion works
reasonably well, but its efficiency is dependent on some of the best first trips being present
in the beginning of the list of all first trips, which is random. A possible optimization is to
define some cost heuristic that estimates the total cost of the single-transfer trip based on
only the first trip, and sort the list of first trips by that heuristic in ascending order.

We also evaluated how much the gathering of all first trips impacts the performance of the
algorithm. However, the time it takes to create the list of all potential first trips consistently
is in the single-digit microsecond range (excluding the BCH-Queries, but these need to be
run anyway for LOUD) and therefore not worth a plot. The entire runtime of the algorithm
is dominated by the LOUD-Requests.

Geometrically-sampled single-transfer dispatching:
We vary the tuning parameters N and σ for the geometrically-sampled single-transfer dis-
patch algorithm independently of each other and evaluate the impact on performance and
dispatch quality on both scenarios.

37

CHAPTER 5. EVALUATION

N = 2 N = 4 N = 8 N = 16 N = 32
1pct hit-rate 0.84% 1.65% 2.74% 4.07% 5.59%

∆cost -3220 -3157 -3076 -3086 -3077
∆detour -178s -206s -236s -241s -248s
∆wait -113s -111s -98s -82s -85s
∆trip 437s 462s 483s 476s 479s

10pct hit-rate 2.66% 4.34% 6.94% 10.06% 13.60%
∆cost -2187 -2291 -2285 -2356 -2373
∆detour -198s -219s -227s -234s -240s
∆wait -78s -72s -59s -56s -50s
∆trip +463s +473s +483s +480s +475s

Table 5.6: Quality values for the geometrically-sampled single-transfer dispatch algorithm
for varying values of N (i.e. number of sampled transfer stops) on both scenar-
ios.

(a) 1pct-scenario (b) 10pct-scenario

Figure 5.6: Runtime required to resolve a single ridesharing request with the geometrically-
sampled single-transfer dispatch algorithm for varying values of N on each
scenario.

Our qualitative results are presented in table 5.6, while the runtime performance results are
presented in fig. 5.6. The results are not surprising: A higher N results in a higher hit rate.
For low N , doubling N results in a doubling of the transfer route hit rate. As N gets higher
though, the curve flattens: Doubling N from 16 to 32 only shows a 37% increase in hit rate.
This was to be expected, since most good routes inside the sampling radii will have been
found when N is high enough. The runtime performance is also not surprising: When N
is doubled, the required runtime is almost exactly doubled every single time since twice as
many vertices have to be matched in the linear search and twice as many LOUD-Requests

38

5.6. ALGORITHM-SPECIFIC EVALUATION

have to be made.
Next, we vary the standard deviation σ in which the transfer coordinates are sampled. We
set σ = η · distgeom(p,d)

2
, where distgeom(p, d) is the geometric straight-line distance from the

pickup to the dropoff, and η ∈ (0, 1] is a tuning parameter. As stated earlier, our baseline
value for η is 1

2
. We run all experiments with our earlier default value of N = 8.

η = 0.125 η = 0.25 η = 0.5 η = 0.75 η = 1.0
1pct hit-rate 2.40% 2.90% 2.74% 2.28% 1.68%

∆cost -3023 -2962 -3076 -2773 -2681
∆detour -222s -226s -236s -197s -177s
∆wait -88s -83s -98s -119s -129s
∆trip +428s +440s +483s +445s +445s

10pct hit-rate 6.61% 7.37% 6.94% 5.60% 4.35%
∆cost -2289 -2259 -2285 -2288 -2243
∆detour -237s -233s -227s -217s -209s
∆wait -37s -43s -59s -74s -84s
∆trip +464s +464s +483s +483s +478s

Table 5.7: Quality values for the geometrically-sampled single-transfer dispatch algorithm
for varying values of η (standard deviation factor) on both scenarios.

(a) 1pct-scenario (b) 10pct-scenario

Figure 5.7: Runtime required to resolve a single ridesharing request on the 1pct-scenario
with the geometrically-sampled single-transfer dispatch algorithm for varying
values of η.

We present our results for the varying η in table 5.7 and fig. 5.7. When looking at the
qualitative data, η = 0.25 seems to be a sweet spot, achieving the highest hit-rate on both
scenarios. We already expected that a sweet spot has to exist: Choose η too small, and

39

CHAPTER 5. EVALUATION

the sampled points barely deviate, which causes good transfer spots that are further from
the geometric center to be missed. Choose η too high and the transfer spots stray too far,
causing long detours and trip times. The performance of the algorithm seems to be mostly
unaffected by η. Larger values of η cause a very slight increase in runtime, most likely
because the larger distances increase runtime of Dijkstra-, CH- and BCH-queries.

Comparing the hit rate of the geometric algorithm to the betweenness-sampled algorithm,
the geometric algorithm seems to miss out on many good transfer spots that the betweenness-
sampled algorithm finds. This shows that good transfer spots are not necessarily around
the geometric center between the pickup- and dropoff-location. For high values of η, the
sampled points move further away from the geometric center and the area in which ver-
tices are sampled gets larger. However, since N does not increase with increasing values
of η, the chance of finding some good transfer spot at all decreases, which can be seen in
the decrease of the hit rate. As η gets larger and larger, the geometric sampling algorithm
approaches a uniformly distributed random transfer vertex selection.

Wrapping up the single-transfer geometrically-sampled algorithm, we’ve shown that no
combination of parameters matches the hit rate seen in the betweenness-sampled algo-
rithm while still maintaining adequate runtime performance. Therefore we recommend the
betweenness-sampled algorithm over the geometrically-sampled algorithm as long as the
edge weights of the underlying graph do not follow geometric distances. The geometrically-
sampled algorithm could be more interesting on road networks with similar vehicle speeds
along every road, e.g. road networks of only inner cities with a constant speed limit. In
those types of graphs, the geometric distance between two vertices is a better approxima-
tion of the actual travel time, since the weight of an edge is roughly the geometric distance
between the vertices divided by that speed limit, assuming a mostly straight road, which is
realistic in larger cities.

Betweenness-sampled single transfer dispatching:
We again evaluate the performance of the betweenness-sampled single-transfer dispatching
algorithm for varying values of N . We furthermore vary the minimum required distance
between potential transfer vertices dmin. Lower values of dmin lead to more potential trans-
fer stops, increasing transfer vertex density, while higher values of dmin cause the potential
transfer vertices to be more spread out. Therefore we expect a higher required runtime for
lower values of dmin, since the BCH-buckets are larger.

40

5.6. ALGORITHM-SPECIFIC EVALUATION

N = 2 N = 4 N = 8 N = 16 N = 32
1pct hit-rate 5.23% 7.26% 8.87% 9.80% 10.04%

∆cost -2930 -3110 -3286 -3429 -3474
∆detour -264s -292s -316s -325s -336s
∆wait -89s -80s -74s -77s -72s
∆trip +376s +417s +435s +464s +485s

10pct hit-rate 13.74% 17.15% 18.92% 19.47% 19.66%
∆cost -2799 -2981 -3148 -3260 -3343
∆detour -297s -321s -335s -345s -349s
∆wait -48s -45s -46s -46s -46s
∆trip +418s +441s +457s +480s +487s

Table 5.8: Quality values for the betweenness-sampled single-transfer dispatch algorithm
for varying values of N (i.e. number of sampled transfer stops) on both scenar-
ios.

(a) 1pct-scenario (b) 10pct-scenario

Figure 5.8: Runtime required to resolve a single ridesharing request with the betweenness-
sampled single-transfer dispatch algorithm for varying values of N on each
scenario.

Again, we present our results in table 5.8 and fig. 5.8. Performance data is as expected:
Doubling N roughly doubles the required runtime. The increase in runtime is slightly su-
perlinear, probably since the transfer spots sampled for higher N have a higher distance to
the pickup and dropoff, leading to slightly longer LOUD-Requests. The change in hit-rate
as N gets larger is a little surprising: Increasing N past 8 shows no significant increase in
hit-rate compared to the effect that N had on the geometrically-sampled algorithm. This
is especially apparent on the 10pct-scenario. Even for N = 4, the hit rate on the 1pct-
scenario is over 7% whereas for N = 32 it just barely manages to reach 10%, and on

41

CHAPTER 5. EVALUATION

the 10pct scenario the difference is even smaller. Considering the impact that N has on
the runtime performance, N = 4 or N = 8 can be considered a sweetspot. The fact that
the betweenness-sampled algorithm finds most good transfer vertices even with only four
samples, and barely improves for higher values of N , means that the heuristic "High be-
tweenness + Low via-distance" is really good at finding the best possible transfer locations
very quickly.

We now vary the tuning parameter dmin which, as explained above, increases or decreases
the total amount of potential transfer vertices. N is set back to the default value of N = 8.

1min 2min 3.5min 5min 10min
1pct |T | 19508 10066 5325 3389 1249

hit-rate 9.01% 9.34% 9.42% 8.87% 6.26%
∆cost -3030 -3056 -3077 -3286 -3590
∆detour -272s -299s -299s -316s -355s
∆wait -87s -69s -75s -74s -82s
∆trip +383s +414s +414s +435s +517s

10pct |T | 19508 10066 5325 3389 1249
hit-rate 20.84% 21.10% 20.50% 18.92% 12.88%
∆cost -2674 -2795 -2953 -3148 -3550
∆detour -281s -295s -314s -335s -383s
∆wait -53s -49s -45s -46s -42s
∆trip +418s +424s +439s +457s +529s

Table 5.9: Quality values for the betweenness-sampled single-transfer dispatch algorithm
for varying values of dmin (i.e. minimum distance between potential transfer
vertices) on each scenario. Each value of dmin is given in minutes.

42

5.6. ALGORITHM-SPECIFIC EVALUATION

(a) 1pct-scenario (b) 10pct-scenario

Figure 5.9: Runtime required to resolve a single ridesharing request with the betweenness-
sampled single-transfer dispatch algorithm for varying values of dmin on each
scenario.

We present our results in table 5.9 and fig. 5.9. In addition to the usual quality attributes,
we also present how many vertices were chosen as possible transfer vertices.
Higher values of dmin increase the distance between each potential transfer stop, spreading
them out further across the graph. On the one hand, this might lead to the algorithm find-
ing good transfer spots that are a bit further away from pickup and dropoff. On the other
hand, large values of dmin might cause the algorithm to miss some good transfer spots
that are close to the pickup- and dropoff. The number of possible transfer vertices initially
decreases linearly for small values of dmin as dmin increases, but slightly superlinearly for
larger values of dmin. dmin = 3.5m achieves the highest hit-rate on the 1pct-scenario, while
dmin = 2m achieves the highest hit-rate on the 10pct-scenario. Good values for dmin are
dependent on the average distance between pickup and dropoff locations of each request:
Since in our scenario, most requests do not exceed 15min of direct distance, dmin = 10m
would mean that there’s only one or two potential transfer stops that actually lie inbetween
the pickup and dropoff, explaining the sharp drop in hit-rate. Higher values of dmin would
be more applicable in scenarios where requests have a higher average direct distance be-
tween pickup and dropoff.
On both scenarios, dmin = 5m requires the lowest amount of runtime, although just barely
beating dmin = 3.5m. The increase in runtime for low values of dmin is due to the large
amount of potential transfer stops filling up the BCH-Buckets, as well as increasing the
cost of the required linear sweep to find the N best transfer vertices. The increase in
runtime for large values of dmin can be explained the same way as in the sections about
the geometric algorithm: Since the transfer vertices are further spread out, distances from
pickup to transfer and from transfer to dropoff become longer, increasing the runtime of
each individual LOUD-Request. Overall, for our scenario, we propose dmin = 3.5m as a
sweetspot, however this might very well be different for different road networks.

43

CHAPTER 5. EVALUATION

5.7 Vehicle Utilization

We evaluate how strongly the fleet is utilized when using various algorithms. To that end,
we evaluate the average number of passengers (occupancy) that are inside each vehicle
when driving. This average is weighted by the time driven: If a vehicle spends one hour
driving with one passenger, and two hours with two, then its average occupancy is 1·1+2·2

1+2
=

5
3
= 1.666 Idle time, where the vehicle is empty, does not count into the average

occupancy. We do log the total driving- and idling-time as well though. We also present
how well the requests are distributed across the fleet by plotting the number of requests
resolved by each vehicle. A perfect request distribution would result in a constant, flat
plot, whereas a heavily skewed plot would mean that most requests are resolved by only a
couple few central vehicles.

occup first dep last arr travel time stops
1pct LOUD 0.94 6:03AM 8:26PM 14:22 34.11

XAS 1.13 6:03AM 8:18PM 14:14 35.27
GEOM 0.96 6:01AM 8:24PM 14:23 35.01
BTWN 0.97 5:59AM 7:40PM 13:41 36.63

10pct LOUD 1.23 6:42AM 7:12PM 12:30 30.72
XAS 2.03 6:42AM 7:01PM 12:19 32.78
GEOM 1.25 6:40AM 7:06PM 12:26 32.75
BTWN 1.28 6:30AM 5:36PM 11:06 34.58

Table 5.10: Evaluation results for the vehicle utilization in the two scenarios using vari-
ous dispatching algorithms. As usual, LOUD is always used in parallel to the
single-transfer dispatching algorithm and the best result of the two is used. The
average occupancy of a vehicle is weighted by the time traveled with a certain
occupancy. The "first dep"-column is the average of the time when a vehicle
receives its first request, for each vehicle. Similarily, the "last arr" column is
the average of the time when a vehicle resolves its last request, again for all
vehicles. The "travel time" column is simply the average time of last arrival
minus the average first departure time. The "stops"-column contains the avg.
number of stops a vehicle route will have for the entirety of the simulation.

You can see the results of this evaluation in table 5.10. It is clear to see that the vehicle
utilization is a little higher in the 10pct scenario than in the 1pct-scenario, averaging an
occupancy of just over 1.2 in comparison to just under 1.0 for the 1pct-scenario for almost
all algorithms. The only outlier is the transfer-at-stop-algorithm, which results in a signifi-
cantly higher average vehicle occupancy than all other algorithms on both scenarios. To a
degree, this was to be expected: The first trip of the transfer-at-stop algorithm always ends
in an already existing stop, which means the vehicle doesn’t have to do an almost-empty

44

5.7. VEHICLE UTILIZATION

(a) 1pct-scenario (b) 10pct-scenario

Figure 5.10: Distribution of stops among the various vehicle routes. Vehicle-IDs are sorted
by final number of stops in route, i.e. vehicle 1 is the vehicle with the lowest
number of stops in its route after simulation completion.

ride to the dropoff destination. Furthermore the pickup detour will be very short since that
is the main concern for the first trip.
For all other algorithms, the values do not change much compared to original LOUD. As
expected, the number of average stops for each vehicle increases, and is highest for the
betweenness-sampled algorithm, since its hit rate is the highest. Each hit of the single-
transfer algorithm results in the potential creation of four new stops, instead of only two.
Compared to LOUD-only, the use of single-transfer dispatching reduces the time it takes
to resolve all incoming ridesharing requests. With our best algorithm, the betweenness-
sampled algorithm, this time gets reduced by 41 minutes on the 1pct-scenario and by over
an hour on the 10pct-scenario. On average, using the transfer algorithms, vehicles depart
a little earlier than without transfers, and also finish their service in less total time. This
means that in addition to using the fleet of vehicles more efficiently to resolve the requests,
dispatching with transfer routes causes vehicles in the fleet to be utilized earlier on average.
Last, we present the distribution of stops across the vehicle routes in fig. 5.10. As you can
see, the distribution of stops is not flat, but rather follows a smooth s-curve. We can see
that each vehicle makes around 35 stops on average, which fits the data seen in table 5.10.
Some few vehicles get up to 70 or 80 stops into their route, while some other few vehicles
are barely used at all. Most vehicles (the middle 60%) however fall neatly in the middle
and get about 20 to 40 stops throughout their service time.
We can see that the curve is flattest for the LOUD-only dispatching, and steepest for dis-
patching with the betweenness-sampled algorithm. This means that while transfer routes
might not distribute the requests as equally across the fleet as simple LOUD does, it shows
that dispatching with transfer routes might require less total vehicles in the fleet than dis-
patching with only no-transfer routes to achieve similar dispatching quality. This could

45

CHAPTER 5. EVALUATION

be evaluated in more detail in future work by varying the number of available vehicles
and comparing dispatch quality with and without single-transfer routes. We expect there
to be some lower bound in the number of vehicles below which dispatch quality greatly
decreases, since the capacity of the fleet is fully utilized, and we expect this bound to be
lower when utilizing transfer routes in addition to no-transfer routes.
The transfer routes can make better use of already driving vehicles than no-transfer routes,
since a driving vehicle only needs to pass close by either the pickup or dropoff point to be
eligible for a good transfer route, as opposed to having to pass close to both. The curve
is slightly steeper for the 10pct-scenario than for the 1pct-scenario, although not by much,
especially when comparing the blue LOUD-only curves.
To summarize, the main benefit of transfer routes in ridesharing is that they manage to
complete requests faster (i.e. with less extra driving time) on average than no-transfer
routes for some requests. They do not increase the vehicle utilization significantly (except
with the transfer-at-stop algorithm) and they cause a less even distribution of the requests on
the fleet. For our best algorithm, the betweenness-sampled algorithm, on the best and most
realistic available scenario, the 10pct-scenario, a vehicle with single-transfer dispatching
manages to, on average, complete its requests 11% faster even though it has 13% more
stops, on average, in total. From this we can conclude that a vehicle can, on average, in this
scenario, complete requests around 25% faster than without single-transfer dispatching.

5.8 Varying vehicle capacities

Finally, we evaluate a slightly different ridesharing scenario: In this scenario, there are
fixed transfer locations distributed across the road network. Large busses with high pas-
senger capacities traverse between these locations, picking up passengers nearby that want
to be picked up. After a passenger arrives at such a transfer spot, they get taken to their des-
tination by a smaller vehicle with a lower passenger capacity. We call these small vehicles
that drive passengers to the requested dropoff spot "smarts".
We modify the vehicle capacities of our previous scenarios to match the new scenario. We
use the betweenness-sampled single-transfer algorithm with dmin = 10m to create a list
of these fixed transfer locations automatically. We then simply use the same algorithm to
dispatch any ridesharing requests. Of course, for this new scenario, it would be best to
design a new, specialized algorithm that only considers bus-vehicles for the first trip and
only small vehicles for the second, to keep performance costs low and assert that each
request is resolved by such a bus-smart-route. Our main interest is to see if this bus-smart
behaviour occurs naturally even when not using a specialized algorithm.
In our new scenario, each bus has a capacity of 8 and each smart has a capacity of only
1. This might seem a little unrealistic, but remember that each ridesharing request also
contains only a single passenger. Therefore the low smart capacity is still enough to serve
a full request. For each of the previously seen scenarios, we create two new scenarios: One

46

5.8. VARYING VEHICLE CAPACITIES

1pct-10% 1pct-25% 10pct-10% 10pct-25%
bus-only 11.76% 27.36% 14.37% 37.92%
smart-only 85.98% 67.69% 75.56% 46.52%
bus-bus 0.14% 1.47% 1.89% 7.98%
bus-smart 0.24% 0.30% 0.67% 0.64%
smart-bus 1.87% 3.19% 7.51% 6.94%
smart-smart 0.00% 0.00% 0.00% 0.00%

Table 5.11: Relative quantity of the types of routes dispatched by the betweenness-sampled
single transfer dispatch algorithm on the various bus-smart-scenarios described
in section 5.8. The algorithm was run with the parameters N = 8 and
dmin = 10m. LOUD ran concurrently, the best of the two (no-transfer vs single-
transfer) dispatching solutions was inserted.

where 25% of all vehicles are busses, and one where only 10% of all vehicles are busses.
This results in four scenarios: 1pct-25%, 1pct-10%, 10pct-25% and 10pct-10%. For each
transfer-route, we evaluate how often it falls into one of the categories bus-bus, bus-smart,
smart-bus or smart-smart. We also log the average occupancy of the busses and compare
against the values seen in section 5.7.

You can see the dispatching results of the various bus-smart-scenarios in table 5.11. As
expected, most of the requests were answered using no-transfer routes. Because the fleet
consists of many more smarts than busses in both the 10%- and 25%-scenarios, most no-
transfer routes utilize a smart. However, on the 10pct-25% scenario, while smarts are
still used more than busses for no-transfer routes, the gap isn’t that large. This can easily
be explained: On the 10pct-scenarios, as seen before, vehicle utilization is higher. Since
smarts only have a capacity of 1, no ridesharing can take place and busses have to be used
to cope with the larger number of requests.

When looking at the single-transfer routes, we can see that almost all of them are either bus-
bus-routes or smart-bus routes. Only rarely are bus-smart-routes used. Smart-smart routes
are not used at all, which makes sense: Resolving a request using a smart results in a taxi-
style ride, since the smart can only pick up the passenger after dropping off any previous
passengers and can’t pick anyone up while driving the passenger to their destination. Using
two smarts with a transfer strictly increases the wait- and trip-time of the passenger as well
as the total detour of both vehicles, since the route via the transfer vertex is longer than
the direct route taken by the no-transfer route and no ridesharing takes place. Therefore
smart-smart routes always have a strictly higher insertion cost than if the first smart of that
route would simply drive the passenger all the way to the dropoff.

Another interesting scenario would be a "smart-bus-smart"-scenario, where passengers first
get driven to some transfer stop by a smart. A bus then rides from one transfer stop to
another. A second smart-ride then takes the passenger from the transfer stop to their desti-

47

CHAPTER 5. EVALUATION

nation.

Designing and evaluating algorithms for these scenarios is out of the scope of this the-
sis. However, we present a couple of general ideas and thoughts on such algorithms and
scenarios, which then might be fleshed out in future work.

We see two practical applications of the smart-bus-smart-scenario, which mostly differ in
the behaviour of the busses:

(i) On-Demand line busses: The busses behave similarly to classic line busses, traveling
from one transfer stop to the next within a single city. However unlike line busses,
the route is not fixed but rather dynamically determined by the incoming requests.
The bus makes its way to transfer stops on-demand.

(ii) On-demand inter-city busses: A bus picks up a large number of passengers within
one city (or district) and then takes them to a different city (or district) that is far
away. The source and target cities are determined on demand by the requests.

The first scenario can simply be solved by running three LOUD-requests: One for the first
smart-route, one for finding a bus to get the passenger from transfer stop to transfer stop,
and one for the final smart-route. Since the arrival time at the destination transfer stop is
not known in advance, the final LOUD-request has to be made after the passenger arrives
at the transfer stop. Alternatively, the last LOUD-request could be made with the minimum
departure time simply set to the arrival time at the last transfer stop if no further requests
are served by the bus. The smart that picks up the passenger might have to wait if the bus
serves another request, however the maximum arrival time of the bus at that stop acts as an
upper bound on the smarts wait time.

The second scenario is a little more challenging: The goal of a bus is to carry as many
passengers as possible when making the trip from one city to the next, to save costs. If
simple LOUD-requests were used, like in the first scenario, to determine the route of the
bus, the bus would leave the city very quickly and wouldn’t pick up many passengers at all.

One option would be to make prebooking of inter-city travel mandatory. Passengers would
have to book their trip a day or a couple of hours in advance to have a gurantee of getting
a good trip. An ideal bus route could then be calculated that picks up all passengers with
the same source and destination cities from the transfer stops closest to the passengers
pickup points. This method poses two issues though: First, while we think that for long
distance travel mandatory prebooking would be acceptable, being able to book trips just-
in-time is one of the major advantages of dynamic ridesharing; it would be better to find
a non-prebooking solution. And second, it raises the question why transfer stops are even
necessary and the why busses don’t just pick up the passengers at their doorstep.

Therefore we present a second idea: In this scenario, only few or even just one transfer stop
is available per district or city (depending on size of that district/city). At every transfer
stop, busses stand ready, initially empty and without any assigned destination. When a
passenger makes a request with pickup spot p ∈ V and dropoff spot d ∈ V , the closest
transfer spots t1 and t2 to p and d respectively will be determined (e.g. using a BCH-

48

5.9. TWO-TRANSFER DISPATCHING

query). If there is no bus at t1 that is assigned the destination of t2 yet, some bus will be
assigned with that destination. After this assignment, any other request with source transfer
stop t1 and target transfer stop t2 will be assigned to that bus. The bus departs either when
it is full or a certain time t after the first passenger entered the bus. We call this time t the
departure delay, and propose it to be a linear function in the direct distance between t1 and
t2: t = αdist(t1, t2) + β, with α, β being some constant parameters. A request can only
be matched to that bus at t1 if the passengers arrival time at t1 is earlier than the departure
time of the bus. LOUD-requests for getting the passengers from t2 to their dropoff can be
made as soon as the bus departs from t1, as the bus will now drive the direct path from t1
to t2. After dropping of passengers at t2, the bus has no assigned destination again and is
ready to serve different requests.

This algorithm makes on-demand long-distance trips possible with a high probability that
those long-distance trips are made with a high bus occupancy. Future work here includes
implementing the algorithm, fleshing out the details, generating realistic test data and eval-
uating the algorithm on that data. It would be interesting to see just how many transfer
stops and busses per district/city are needed. If too few busses are available, it might not
be possible to serve all requests or lead to very long trip times. If too many busses are
available however, this could either cause a lot of busses to just idle at the transfer stops or,
if the departure delay t is set very low, it would cause low occupancies on the long-distance
trips. It would also be interesting to see how these dynamic long-distance busses compare
against traditional long-distance line-busses in terms of passenger wait- and trip-times as
well as bus occupancy.

5.9 Two-Transfer Dispatching

We now evaluate the four presented multi-transfer dispatching algorithms for their dis-
patching quality and runtime performance. The four algorithms are the multi-transfer-
at-stop algorithm (abbreviated xfer-at-stop or XAS), the geometrically sampled algorithm
(now abbreviated GEOM), the betweenness-sampled algorithm that only uses the best via-
routes (abbreviated LOVAR-BTWN) and the betweenness-sampled algorithm with random
transfer spot combinations (abbreviated HIVAR-BTWN). Each of the resulting routes gets
compared with the no-transfer route found by LOUD, just like in previous quality evalu-
ations. We evaluate each of these algorithms with parameters N = 8 and M = 2, i.e.
each algorithm samples eight different transfer spot combinations and the resulting route
will have two transfer spots. We do not expect higher M to achieve better results. In fact,
because the distances of the ridesharing requests are small, only rarely exceeding half an
hour of travel time, we expect the multi-transfer dispatching algorithms to perform worse
than their single-transfer alternatives.

49

CHAPTER 5. EVALUATION

XAS GEOM HIVAR-BTWN LOVAR-BTWN

1pct hit-rate 0.13% 0.16% 2.50% 3.75%
∆cost -8482 -1923 -3329 -3086
∆detour -1166s -135s -264s -253s
∆wait +390s -51s -59s -51s
∆trip +983s +1246s +789s +788s

10pct hit-rate 0.39% 0.45% 5.99% 9.00%
∆cost -9694 -2532 -3530 -3513
∆detour -1042s -174s -289s -306s
∆wait +81s -89s -77s -59s
∆trip +597s +922s +651s +672s

Table 5.12: Comparison of quality values between the different multi-transfer dispatching
algorithms on both scenarios, with N = 8 and M = 2.

(a) 1pct-scenario (b) 10pct-scenario

Figure 5.11: Runtime required to resolve a single ridesharing request with each of the pre-
sented multi-transfer dispatching algorithms on each scenario, using N = 8
and M = 2.

The results of the evaluation can be seen in table 5.12 and fig. 5.11. In both scenarios, the
multi-transfer algorithms perform significantly worse than their respective single-transfer
counterpart in regards to hit-rate. Furthermore, multi-transfer trips increase the passen-
ger trip time much more than single-transfer trips do: While single-transfer trips required
around five to seven minutes of extra trip time on average compared to the no-transfer route,
the multi-transfer trips increase the passenger trip time by over ten minutes on average for
each algorithm. Considering the soft-constraint tmax

trip on the trip time, this explains the low
hit-rate: Only on few requests can you "afford" the extra trip time without the cost function
blowing up. As before, while the hit-rate is still bad, multi-transfer routes perform better

50

5.9. TWO-TRANSFER DISPATCHING

on the 10pct-scenario than on the 1pct-scenario.
The runtime performance of each of the three algorithms is not affected much by the
increase in number of vehicles and request density. This was to be expected, since the
same was observable for the single-transfer sampling algorithms. Very surprisingly, while
the runtime required by the geometrically sampled multi-transfer algorithm is about three
to four times the runtime of the corresponding single-transfer algorithm, the runtime of
the multi-transfer hivar-betweenness algorithm matches the runtime of the correspond-
ing single-transfer algorithm, despite having to make 24 instead of 16 LOUD-Requests.
Since the code for actually making the LOUD-Requests is the same for all three algorithms,
and we have checked manually that the correct number of samples are drawn, this must
mean that each individual LOUD-Request requires significantly less time on average for the
betweenness-sampled algorithm, probably because distances between pickup and dropoff
of each LOUD-Request are very small.
The performance of the low variance betweenness-sampled algorithm is bad, taking around
700ms per request on average. In fact, out of all presented algorithms in this thesis, this is
the only algorithm that took longer than 24 hours to dispatch all requests in the ridesharing-
simulation for the 10pct-scenario, meaning that this algorithm is not able to cope with that
kind of request frequency. While the hit-rate of lowvar-btwn is best, it is not practical for
real-life use.
Finally, the qualitative values for the multi-transfer transfer-at-stop algorithm seem out
of place and much worse than all other algorithms. It achieves the lowest hit-rate of all
algorithms, but when it hits, it reduces the insertion cost and vehicle detour drastically, at
the expense of strongly increased wait- and trip-times. It is the only algorithm that shows
an increase in wait time. We have thoroughly debugged the algorithm and can safely say
that this is not an implementation error. We will explain the reason for the weird values: Let
st be the stop of the vehicle that picks up the passenger from the first transfer stop, and st+1

be the stop that comes after the transfer stop. The request to get the passenger from the first
to the second transfer stop is a prebooking-request: rdept > rreqt , since the vehicle can only
depart after the passenger has arrived. Therefore, after inserting the multi-transfer route
calculated by the transfer-at-stop algorithm, st+1 can only be reached after the timepoint
rdept . There are only two scenarios where this does not immediately violate the maximum
arrival time of st+1:

(i) The departure time st is in the future, roughly around rdept .
(ii) The distance traveled between st and st+1 is very large.

The first case basically never happens, since routes are very short. All requests that are
resolved using the transfer-at-stop algorithm fall into the second type of scenario. There-
fore, the trip time increases drastically because the passenger has to ride along the full
route from st to st+1, and then still has to get taken from the location of st+1 to the dropoff
location. Because excess trip-time is weighted ten times higher than excess wait time, the
entire insertion cost is strongly dominated by the trip time and detour, making the cost for
the excess wait time comparatively insignificant. This causes the drastic increase in wait

51

CHAPTER 5. EVALUATION

time. Only the cost of very few long distance requests which LOUD serves with taxi-like
routes (i.e. very high detour) can be improved through the algorithm, since the algorithm is
able to strongly improve the detour. For short- and medium-distance requests, most vehi-
cles that could pick up the passenger with a low wait time go in a wrong direction, causing
a big increase in trip time. The viable pickup vehicles that might be going in the right
direction are far away, and the excess wait time cost alone is often larger than the total cost
of the insertion found by LOUD. The sampled algorithms generally do a better job since
they make sure that the passenger is traveling in "roughly the right direction" as they make
their way from one transfer stop to the next. This is not guaranteed by the transfer-at-stop
algorithm. The multi transfer-at-stop algorithm requires very little runtime, but this is be-
cause in almost all cases no viable trips are found from the first to the second transfer stop,
resulting in no LOUD-requests being executed.
You can see an example of routes found by the high- and low-variance betweenness-
sampled and geometrically-sampled algorithm in the Appendix (chapter 7). The transfer-
at-stop-algorithm was not able to find a solution to that request. In these images, you can
clearly see the difference in the routes found by each of the three algorithms: The high vari-
ance betweenness algorithm finds many different routes and deviates quite strongly from
the geometric straight-line route in order to make its way to faster roads (e.g. highways).
The low-variance betweenness algorithm, as predicted, does not find a large variety of
routes; the only difference in the routes is in the very last stretch. The geometrically-
sampled algorithm finds routes that follow the straight-line route between pickup and
dropoff closely, with transfer vertices lying on the geometric thirds between pickup and
dropoff. Sadly, this leads the vehicle right through the slow roads of the inner city.
Overall, we can say that multi-transfer routes are not practical for our scenarios, i.e. urban
inner-city ridesharing, since the requests simply do not cover a large enough distance to
warrant multiple transfers. In more rural ridesharing scenarios, where longer distances are
covered, multi-transfer dispatching might be more sensible. Sadly, we lack the data for
running such a scenario.
For all upcoming evaluations, we will only evaluate the multi-transfer dispatching algo-
rithms GEOM and hivar-btwn (which we now just call BTWN), since the other two algo-
rithms are not practical for real-life use.

5.10 Running on a larger scenario

Note: Due to time constraints, experiments in this section were run on PC1 to retrieve performance-
and quality-data. In order to achieve comparability with performance data in other sections (e.g.
section 5.4), we also ran the ruhr-1pct, but not ruhr-10pct, scenario on PC2. Running the 10pct-
scenario on PC2 would have exceeded our deadline.

We will now run all presented single-transfer algorithms and the two previously mentioned
multi-transfer algorithms on a similar, but larger set of test data based on the Rhein-Ruhr

52

5.10. RUNNING ON A LARGER SCENARIO

(a) ruhr-1pct (b) ruhr-10pct

Figure 5.12: Distribution of direct distances between pickup and dropoff for each rideshar-
ing request on the ruhr-1pct- and ruhr-10pct-scenario. Each bar portrays how
many requests have a direct distance from pickup to dropoff that are at least
as long as the time given on the corresponding x-tick.

metropolitan region in western Germany. As stated before, the ruhr-1pct-scenario contains
around 50000 requests and 3000 vehicles, and the ruhr-10pct-scenario around 450000 re-
quests and 30000 vehicles.

As you can see in fig. 5.12, even though the road network is bigger than the Berlin road
network used in all other sections, the direct distances of requests are still short with more
than half of all requests having a direct distance of less than ten minutes. Therefore, even
though this scenario is larger, we don’t expect our multi-transfer algorithms to perform
much better than in the Berlin-scenario.

You can see the results in fig. 5.13 and table 5.13. We can see that the performance of
the algorithms shows similarities to what we have seen before: XAS has a high variance
in its runtime, because of the variable number of LOUD-requests, the sampling algorithms
scale very well with the increase in scenario size, and BTWN has the best average runtime
of all algorithms. It’s noteworthy that the required runtime for the sampling algorithms
actually decrease when switching from the 1pct- to the 10pct-scenario, suggesting that
LOUD-requests on the larger scenario are slightly quicker. This could be due to shorter
average request distances or due to lower costs for ordinary insertions, which tighten the
bound on the dropoff-after-stop Dijkstra query.

Comparing the performance data of the PC2-run on the 1pct-scenario to the data seen in
section 5.4 and section 5.9, we can see that the increase in graph- and scenario size comes
with an increase in required runtime by a factor of about four. This matches with the data
seen in [3], where the authors have evaluated LOUD on both the Berlin- and Ruhr-scenarios
and also found a roughly four-times increase in runtime per LOUD-request. Therefore,
while we sadly didn’t have the time to run the 10pct-scenario on PC2, we expect roughly

53

CHAPTER 5. EVALUATION

1-XAS 1-GEOM 1-BTWN 2-GEOM 2-BTWN

ruhr-1pct hit-rate 4.54% 1.00% 4.65% 0.01% 2.31%
∆cost -7639 -4721 -3432 -4350 -3432
∆detour +69s -59s -325s -84s -295s
∆wait +42s -145s -65s -380s -37s
∆trip +107s +353s +562s +695s +1000s

ruhr-10pct hit-rate 8.51% 2.74% 10.98% 0.08% 7.49%
∆cost -3435 -2107 -2941 -1869 -3713
∆detour -221s -189s -324s -157s -340s
∆wait +12s -38s -26s -29s -31s
∆trip +378s +476s +558s +801s +794s

Table 5.13: Qualitative evaluation of single- and multi-transfer algorithms on the larger
ruhr-1pct- and ruhr-10pct-scenarios. The single-transfer-algorithms are pre-
fixed with "1-", multi-transfer algorithms with "2-" and M = 2 as well as all
default values in table 5.2 are used.

the same slowdown factor for our algorithms on the ruhr-10pct scenario compared to the
berlin-10pct scenario as the slowdown seen in [3], which is a little under four.
When looking at the qualitative values in table 5.13, as we expected, multi-transfer routes
do not perform significantly better on the Ruhr-scenarios; in fact, they perform slightly
worse than on the Berlin-scenarios. In general, the hit rate of each algorithm is roughly
half of what we have seen on the Berlin-scenarios. We speculate that this decrease in
hit-rate is due to the lower vehicle density on the Ruhr scenarios, since the graph is five
times bigger while there are only three times more vehicles than on the Berlin scenarios.
Still, a hit rate of almost 11% by the single-transfer betweenness algorithm on the 10pct-
scenario, and likely a higher hitrate on a theoretical 100pct-scenario, is still a significant
improvement to the dispatching of ridesharing requests.

54

5.11. COMBINED SINGLE- AND TWO-TRANSFER DISPATCHING

(a) ruhr-1pct on PC1 (b) ruhr-10pct on PC1

(c) ruhr-1pct on PC2

Figure 5.13: Runtime required to resolve a single ridesharing request with single- and
multi-transfer dispatching algorithms on the two large ruhr-scenarios ruhr-
1pct and ruhr-10pct. The single-transfer-algorithms are prefixed with "1-",
multi-transfer algorithms with "2-" and M = 2 as well as all default values in
table 5.2 are used.

5.11 Combined single- and two-transfer dispatching

Up until now, we have only evaluated single-, two-, and multi-transfer dispatching algo-
rithms by running one of them together with LOUD and always inserting the better of the
two routes. We will now run LOUD, a single-transfer and a double-transfer dispatching
algorithm concurrently, only ever inserting the best of the three results. We evaluate how
often each algorithm supplied the best solution. All combinations of algorithms in {single-
xfer-at-stop, single-geom, single-btwn} × {multi-geom, multi-hivar-btwn} will be tested
on both scenarios.

Our results are presented in table 5.14. For each combination, it contains the hit-rate, i.e.
how often the cost of the insertion produced by one algorithm beats the cost of the other

55

CHAPTER 5. EVALUATION

AlgComb min = c0 min = c1 min = c2 c0 < c1 < c2 c1 < c2 < c0 c0 < c2 < c1
1pct XAS/GEOM 92.26% 7.64% 0.07% 75.16% 0.04% 17.00%

GEOM/GEOM 97.06% 2.77% 0.16% 95.21% 0.02% 1.85%
BTWN/GEOM 91.22% 8.70% 0.07% 90.27% 0.04% 0.95%
XAS/BTWN 89.78% 7.88% 2.31% 70.72% 0.54% 19.07%
GEOM/BTWN 94.66% 2.35% 2.99% 83.69% 0.22% 10.97%
BTWN/BTWN 89.77% 7.79% 2.40% 85.31% 1.03% 4.46%

10pct XAS/GEOM 84.85% 14.89% 0.19% 70.59% 0.15% 14.25%
GEOM/GEOM 92.36% 7.35% 0.27% 89.44% 0.13% 2.92%
BTWN/GEOM 80.96% 18.78% 0.09% 74.40% 0.19% 6.56%
XAS/BTWN 80.31% 14.94% 4.66% 71.95% 2.08% 8.35%
GEOM/BTWN 87.96% 5.34% 6.67% 79.18% 0.75% 8.78%
BTWN/BTWN 78.74% 15.97% 5.08% 76.52% 3.72% 2.22%

Table 5.14: Comparison of hit-rates of no-, single- and multi-transfer routes when compet-
ing against each other. c0 stands for the cost of the no-transfer-route, c1 for
the cost of the one-transfer-route and c2 for the cost of the two-transfer-route.
The first three columns state how often out of all requests a certain cost was
the lowest. The last two rows give the relative quantities for the cost constel-
lation in the label. The fourth column contains the number of occurrences of
the "expected" request resolution, i.e. no-transfer is better than single-transfer
is better than multi-transfer. The second-to-last column contains how often a
two-transfer-route is better than the no-transfer-route, but worse than the single-
transfer-route. The last column contains how often a two-transfer route was
better than the one-transfer route, but not better than the no-transfer route, es-
sentially "shadowing" the two-transfers-success to be registered in column 3.

56

5.12. MORE THAN TWO TRANSFER STOPS

algorithms. Furthermore, we are also interested in how often the multi-transfer-route is
better than the no-transfer route, but worse than the single-transfer-route. Our initial as-
sumption when designing the multi-transfer algorithms was that almost all requests where
the multi-transfer route brings an improvement over LOUD would be better solved by the
single-transfer algorithms anyway, due to the limited size of the road network and the low
average distance between pickup and dropoff. We also check how often the multi-transfer-
route is better than the single-transfer route, but worse than the no-transfer-route, which
essentially "shadows" the achievement of the two-transfer-route.

The main conclusion to draw from the table is that both the single-transfer and multi-
transfer betweenness-sampled algorithm always outperform the other transfer algorithms:
First, unlike the geometric algorithm, the multi-transfer betweenness algorithm achieves
the minimum insertion cost for a significant amount of requests. Second, when looking
at the last column of the table, we can see that the multi-transfer betweenness algorithm
regularly beats the insertion cost of the single-transfer algorithms GEOM and XAS, even
when not achieving the minimum insertion cost due to LOUD finding a better no-transfer
route. We can determine the total number of times where the two-transfer-route beat the
one-transfer-route by adding the values from column 3 and 6. For example, we can see
from the row 1pct-xas-btwn that the two-transfer betweenness-algorithm achieves a better
cost than the transfer-at-stop algorithm for 21.38% of request.

A major drawback of the transfer-at-stop algorithm is that it cannot make use of any idle
vehicles for pickup, since a pickup-vehicle has to have at least one planned stop, which
then serves as the transfer stop. The sampling algorithms on the other hand can make use
of idle vehicles for each trip between pickup/transfer/dropoff-locations. In cases where this
is useful, the transfer-at-stop algorithm gets beaten by the multi-transfer-stops, explaining
the high values in the last column for the transfer-at-stop algorithm.

Lastly, the data shows that although multi-transfer routes don’t seem particularly suited
to our scenario, the single-transfer routes do not always improve on routes where the
two-transfer-algorithm beats LOUD, contrary to our expectations. Even when running
the betweenness-sampled multi-transfer algorithm against its single-transfer counterpart,
which is the best transfer algorithm presented by us, it still finds a better route than the
single-transfer route on 5% of all requests on the 10pct-scenario. An improvement of over
5% of all requests is equivalent to over 9000 total improved requests, which is far from
negligible. This furthermore reinforces our belief that multi-transfer routes can bring sub-
stantial improvements to ridesharing routes on larger scenarios and road networks.

5.12 More than two transfer stops

Note: All experiments in this section were run on PC1, since even on that machine, they took over
a week to complete. While this means that the performance data in this section is not comparable
to other sections, our main interest is the change of runtime performance for growing values of M .

57

CHAPTER 5. EVALUATION

This relative data is mostly unaffected by the choice of machine.

Last but not least, we evaluate the impact of higher values for M (number of transfer stops)
on the runtime performance and dispatching quality of our multi-transfer dispatching al-
gorithms. As before, we will only evaluate the geometric and high-variance betweenness
sampled algorithm, as the other two presented algorithms are not practical for real-life use.
There is one problem though: Our multi-transfer algorithms perform very badly on on
our scenarios and often do not work properly, even for just M = 2, on small- to medium
distance requests. As we have seen in section 5.3, the average ridesharing request has a
direct distance from pickup to dropoff of about ten minutes. For the betweenness-sampled
algorithm, since there is a minimum distance dmin between possible transfer vertices, it is
impossible for more than two or three transfer vertices to lie neatly "between" the pickup-
and dropoff-vertex. This causes the transfer route to either sample the same transfer vertex
for two consecutive stops, which is invalid, or make the passenger travel back and forth be-
tween the transfer vertices before driving to the dropoff point. For the geometric algorithm,
the deviation of the normal distribution becomes very small, causing the same locations to
be sampled over and over again. This triggers rejection sampling, requiring most vertices
to be resampled over and over again, which drastically increases the runtime.

To resolve these issues, we modify the 1pct and 10pct scenario slightly. For each request in
the scenarios, we modify the location of the dropoff vertex to be far away from the pickup
vertex by choosing a new dropoff vertex with Dijkstra-rank of at least |V |

2
with respect to

the pickup vertex. A vertex v has a Dijkstra-rank d ∈ N with respect to a source vertex s if
it is the d-th vertex popped from the priority queue in a Dijkstra-query with source s. The
vertex with Dijkstra-rank 1 is the source vertex s, and the vertex with Dijkstra-rank |V | is
the last vertex popped and thus the vertex furthest away from s. The dropoff vertex is a
random vertex of all vertices with Dijkstra-rank ≥ |V |

2
.

All results of these experiments are presented in fig. 5.14 and table 5.15. We take a look
at the performance data first: First, note that even though these experiments are run on a
much more powerful machine, it still takes over 150ms on average to resolve a request with
M = 1, much longer than in previous experiments. This is of course because the distances
between pickup and dropoff are strongly increased, leading to many long-distance LOUD-
queries. It shows that the performance of a single LOUD-request is strongly affected by the
distance between pickup and dropoff. Second, as we can see from the long whiskers going
down from the boxes into the single-millisecond range, some requests can still be answered
very quickly. These requests are actually just the very last requests coming in: Since we
didn’t alter the vehicle service times, the final hundred-or-so requests can’t be answered
by any algorithm since the minimum arrival time at the dropoff (minimum pickup time +
direct distance) exceeds the service time of all vehicles. Therefore vehicles get filtered out
quickly, and these requests can be answered quickly (with a cost of∞).

Next, lets take a look at how the runtime changes as M increases: While we can see,
as expected, that the required runtime increases as M goes up, the increase is not linear.
For example, for the 1pct-geometric experiment, increasing M from 1 to 3, which leads

58

5.12. MORE THAN TWO TRANSFER STOPS

(a) 1pct-geom (b) 10pct-geom

(c) 1pct-btwn (d) 10pct-btwn

Figure 5.14: Runtime required to resolve ridesharing requests on the modified long-
distance scenarios using the and geometric- and betweenness-sampled multi-
transfer dispatching algorithm with various values of M ∈ {1, . . . , 5}. All
other parameters are set to their default values N = 8, η = 0.25 and
dmin = 5m.

to double the executed LOUD-Requests, "only" increases the runtime by about 70% on
average, instead of doubling it. However, as noted in the last paragraph, the performance
of LOUD-Requests is strongly affected by the distance between pickup and dropoff. The
individual LOUD-Requests for higher values of M are naturally much shorter, since the
total distance is effectively divided by M . As seen before in previous experiments, the
betweenness-sampled algorithm shows the same behaviour in runtime, but is a little faster
than the geometrically-sampled algorithm by a constant amount of time, since the BCH-
queries are quicker than the linear search required for mapping the geometric coordinates
to graph vertices. The runtime on the 10pct-scenario shows the same rate of increase as on
the 1pct-scenario, each request just requires roughly a constant factor more time than in the
smaller scenario, same as in previous evaluations.

59

CHAPTER 5. EVALUATION

M = 1 M = 2 M = 3 M = 4 M = 5
1pct-geom hit-rate 3.82% 0.36% 0.00% 0.00% 0.00%

∆cost -13887 -5220 N/A N/A N/A
∆detour -1221s -363s N/A N/A N/A
∆wait -111s -195s N/A N/A N/A
∆trip +1348s +1769s N/A N/A N/A

10pct-geom hit-rate 5.60% 1.00% 0.09% 0.00%* 0.00%
∆cost -13338 -9822 -6824 -3518 N/A
∆detour -1131s -679s -395s -49s N/A
∆wait -139s -230s -327s -359s N/A
∆trip +1261s +1541s +1664s +1417s N/A

1pct-btwn hit-rate 9.91% 4.83% 2.45% 0.39% 0.03%
∆cost -16901 -16883 -14597 -15709 -13501
∆detour -1381s -1286s -991s -1109s -1460s
∆wait -174s -336s -449s -564s +54s
∆trip +1235s +1512s +1569s +1767s +3160s

10pct-btwn hit-rate 13.36% 7.63% 4.57% 2.33% 1.14%
∆cost -15825 -16950 -16037 -16451 -16391
∆detour -1363s -1351s -1262s -1186s -1054s
∆wait -239s -391s -475s -569s -645s
∆trip +1219s +1380s +1479s +1516s +1564s

Table 5.15: Comparison of quality values of the geometric- and betweenness-sampled
multi-transfer dispatching algorithm running on the modified long-distance
scenarios with various values of M ∈ {1, . . . , 5}. All other parameters are
set to their default values N = 8, η = 0.25 and dmin = 5m.
*Not actually zero, but so small that it gets rounded to zero.

Next, we take a look at the quality evaluation. We can see that the geometric algorithm
fails to answer any request better than LOUD can on the 1pct-scenario starting from M = 3
upwards. The betweenness-sampled algorithm fares a little better and is actually able to
improve the cost of 0.03% (which is around 5 out of over 16000 requests) for M = 5, and
more for smaller values of M . We can see that for each additional transfer stop, the trip time
increases drastically compared to the no-transfer route found by LOUD. To compensate for
this massive increase in trip-time, the multi-transfer-route has to show a dramatic improve-
ment in vehicle detour, which the geometric algorithm simply fails to achieve. One reason
why the geometric algorithm doesn’t fare well at all is because especially on long-distance
requests, the shortest route from pickup to dropoff does not follow the geometric straight-
line between pickup and dropoff at all, as seen in fig. 5.2 earlier. Furthermore, when com-
paring table 5.15 to table 5.12, we can see that both multi-transfer algorithms work better
on the modified long-distance scenario than on the original 1pct/10pct-scenarios, as ex-

60

5.12. MORE THAN TWO TRANSFER STOPS

pected. As seen in previous experiments, the transfer algorithms perform better on the
10pct scenario, achieving a higher hit rate than on the 1pct scenario and better passenger
wait times while maintaining roughly the same trip time and detour.
Concluding, we find the results in this section promising. While our scenario clearly isn’t
well suited for multi-transfer dispatching, we have shown that the two presented algo-
rithms scale well with an increase in the number of transfer stops. Furthermore, while the
required runtime of over 150ms per request is restrictive for interactive applications, it is an
acceptable runtime to provide potential end-users a pleasant experience, especially when
considering that multi-transfer routes are only used for very long-distance requests. We
have also shown that despite the bad match between our data and multi-transfer dispatch-
ing, we can still improve on some long-distance requests with up to M = 4 transfer stops
using our high variance betweenness-sampled algorithm. On datasets that are better suited
for multi-transfer ridesharing, e.g. with ridesharing between multiple cities, we expect the
algorithms to perform even better.

61

CHAPTER 5. EVALUATION

62

6 Conclusion

In this work, we have designed and implemented multiple single- and multi-transfer dis-
patching algorithms for dynamic ridesharing on the basis of the no-transfer dispatching
algorithm LOUD and evaluated these on a transport simulation with a realistic set of re-
quests and vehicles on the road network of Berlin and the German Ruhr-area. We were
able to show that single- and multi-transfer dispatching is able to significantly improve the
dispatch quality of ridesharing requests with regards to detour and wait time, while only
increasing the required runtime by about one order of magnitude compared to LOUD. Out
of the three presented single-transfer dispatch algorithms, the betweenness-sampled algo-
rithm shows the most promising results, achieving the highest hit-rate of all the algorithms
while simultaneously having the lowest required runtime when run on the 10pct-scenario.
We expect the sampling algorithms to even more strongly outperform the transfer-at-stop
algorithm in the real-life "100pct"-scenario.

We have also shown four algorithms for multi-transfer routes, expanding on the single-
transfer algorithms. Again, the multi-transfer algorithm based on betweenness sampling
shows the most promising results. It is regularly able to find better solutions to long-
distance requests than the no- and single-transfer alternatives, while still maintaining a
reasonable runtime performance. We were furthermore able to show that the required run-
time of multi-transfer dispatching scales well with the number of requested transfer stops,
opening up possibilities for very long distance "cross-country" requests.

Future Work
There is some more work to be done with regards multi-transfer dispatching. Most im-
portantly, it would be interesting to see multi-transfer ridesharing evaluated on a larger,
realistic inter-city scenario with more long-distance requests. We have already shown that
even on our intra-city scenario, long distance requests can be improved on significantly by
utilizing multi-transfer routes. On an inter-city scenario, transfer stops might occur in each
of the source and destination cities, with only few vehicles driving between cities but many
vehicles serving request within the confines of a single city.

The smart-bus-smart scenario described in section 5.8 is of special interest as this mode of
operation may provide a modern and more dynamic alternative to line-busses and trains for
long-distance inter-city travel. Future work includes implementing the described algorithm
or designing a new one, generating and collecting data for this scenario and evaluating the
runtime performance and dispatching quality. It would be especially interesting to see how

63

CHAPTER 6. CONCLUSION

the ride quality on such a scenario compares to traditional line-busses or trains in regards
to trip-time and probability of missing a connection.
Furthermore, some improvements could be made to the presented algorithms: The per-
formance of every presented algorithm could be improved by running all of the required
LOUD-requests in parallel. Since no insertions take place while making these requests,
synchronization overhead should be minimal. In the sampled-transfer algorithms, it might
be possible to improve dispatching quality by doing some local optimization around the
sampled vertices: After performing the LOUD-requests, iterate through vertices v in the
neighbourhood of the sampled transfer vertex t and calculate the cost of a potential inser-
tion with the vehicles and the stop indices found by the LOUD-requests, but with transfer
location v instead. The runtime required to calculate this cost is very low, and it might be
possible to find a transfer location that is slightly better than what was sampled previously.
Lastly, the test scenarios could be modified to represent transfer-dispatching more realis-
tically. We believe that each transfer should incur a penalty in the insertion cost function,
as transfers decrease customer satisfaction. Furthermore, while our algorithms can use any
vertex on the road network as transfer stops, most vertices are unsuited for transfers in
real life. For example, our algorithms might sample a transfer vertex somewhere in the
middle of a federal highway where it is illegal to stop. To resolve this, the road network
would need to be manually curated, labeling each vertex as transfer-viable or not-transfer-
viable, or even giving a rating of each vertex between 0 and 1, where 0 means "not eligible
for transfer" and 1 means "perfect for transfer". One interesting topic of research would
be to automate this curation on the basis of OpenStreetMap-Data, perhaps using machine
learning.

64

7 Appendix

All routes in the following images were found for the same request. The pickup location is
on the top left of the image, the dropoff on the bottom right.

65

CHAPTER 7. APPENDIX

Figure 7.1: Example of multi-transfer routes found by the algorithm hivar-btwn.

66

Figure 7.2: Example of multi-transfer routes found by the algorithm lovar-btwn.

67

CHAPTER 7. APPENDIX

Figure 7.3: Example of multi-transfer routes found by the algorithm geom.

68

Bibliography

[1] Heron of Alexandria. Metrica. 60.

[2] Joschka Bischoff, Michal Maciejewski, and Kai Nagel. „City-wide shared taxis: A
simulation study in Berlin“. In: 2017 IEEE 20th International Conference on Intel-
ligent Transportation Systems (ITSC). 2017, pp. 275–280. DOI: 10.1109/ITSC.
2017.8317926.

[3] Valentin Buchhold, Peter Sanders, and Dorothea Wagner. „Fast, Exact and Scalable
Dynamic Ridesharing“. In: (2021). arXiv: 2011.02601 [cs.DS].

[4] Yen-Long Chen, Kuo-Feng Ssu, and Yu-Jung Chang. „Real-time Transfers for Im-
proving Efficiency of Ridesharing Services in the Environment with Connected and
Self-driving Vehicles“. In: 2020 International Computer Symposium (ICS). 2020,
pp. 165–170. DOI: 10.1109/ICS51289.2020.00041.

[5] Tobias Columbus and Reinhard Bauer. „On the Complexity of Contraction Hierar-
chies“. In: 2009. URL: https://api.semanticscholar.org/CorpusID:
14809386.

[6] Edsger W. Dijkstra. „A note on two problems in connexion with graphs“. In: Nu-
merische Mathematik 1 (1959), pp. 269–271.

[7] Jerome H. Friedman, Jon Louis Bentley, and Raphael Ari Finkel. „An Algorithm for
Finding Best Matches in Logarithmic Expected Time“. In: ACM Trans. Math. Softw.
3.3 (1977), pp. 209–226. ISSN: 0098-3500. DOI: 10.1145/355744.355745.
URL: https://doi.org/10.1145/355744.355745.

[8] Robert Geisberger et al. „Contraction Hierarchies: Faster and Simpler Hierarchical
Routing in Road Networks“. In: Experimental Algorithms. Ed. by Catherine C. Mc-
Geoch. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 319–333. ISBN:
978-3-540-68552-4.

[9] J. H. Halton. „Algorithm 247: Radical-Inverse Quasi-Random Point Sequence“. In:
Commun. ACM 7.12 (1964), pp. 701–702. ISSN: 0001-0782. DOI: 10 . 1145 /
355588.365104. URL: https://doi.org/10.1145/355588.365104.

[10] Donald B. Johnson. „Efficient Algorithms for Shortest Paths in Sparse Networks“.
In: J. ACM 24.1 (1977), pp. 1–13. ISSN: 0004-5411. DOI: 10.1145/321992.
321993. URL: https://doi.org/10.1145/321992.321993.

69

https://doi.org/10.1109/ITSC.2017.8317926
https://doi.org/10.1109/ITSC.2017.8317926
https://arxiv.org/abs/2011.02601
https://doi.org/10.1109/ICS51289.2020.00041
https://api.semanticscholar.org/CorpusID:14809386
https://api.semanticscholar.org/CorpusID:14809386
https://doi.org/10.1145/355744.355745
https://doi.org/10.1145/355744.355745
https://doi.org/10.1145/355588.365104
https://doi.org/10.1145/355588.365104
https://doi.org/10.1145/355588.365104
https://doi.org/10.1145/321992.321993
https://doi.org/10.1145/321992.321993
https://doi.org/10.1145/321992.321993

Bibliography

[11] Sebastian Knopp et al. „Computing Many-to-Many Shortest Paths Using Highway
Hierarchies“. In: Jan. 2007. ISBN: 978-1-61197-287-0. DOI: 10.1137/1.9781611972870.
4.

[12] Dominik Pelzer et al. „A Partition-Based Match Making Algorithm for Dynamic
Ridesharing“. In: IEEE Transactions on Intelligent Transportation Systems 16.5
(2015), pp. 2587–2598. DOI: 10.1109/TITS.2015.2413453.

[13] Hanan Samet. „The Quadtree and Related Hierarchical Data Structures“. In: ACM
Comput. Surv. 16.2 (1984), pp. 187–260. ISSN: 0360-0300. DOI: 10.1145/356924.
356930. URL: https://doi.org/10.1145/356924.356930.

70

https://doi.org/10.1137/1.9781611972870.4
https://doi.org/10.1137/1.9781611972870.4
https://doi.org/10.1109/TITS.2015.2413453
https://doi.org/10.1145/356924.356930
https://doi.org/10.1145/356924.356930
https://doi.org/10.1145/356924.356930

	Abstract
	Introduction
	Related Work
	Preliminaries
	Dynamic Ridesharing Problem
	Dijkstra's Algorithm
	Contraction Hierarchies
	Bucket-CHs
	LOUD

	Ridesharing with Transfers
	Changes to the ridesharing problem
	Transfer-At-Stop Algorithm
	Sampled-Transfer Algorithm
	Multi-Transfer Dispatching

	Evaluation
	Setup
	Analysis of No-Transfer-Routes
	Analysis of the test scenarios
	Runtime Performance of single-transfer dispatching
	Dispatch Quality
	Algorithm-Specific Evaluation
	Vehicle Utilization
	Varying vehicle capacities
	Two-Transfer Dispatching
	Running on a larger scenario
	Combined single- and two-transfer dispatching
	More than two transfer stops

	Conclusion
	Appendix
	Bibliography

