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The International Tables Symmetry Database (https://symmdb.iucr.org/), which

is part of International Tables for Crystallography, is a collection of individual

databases of crystallographic space-group and point-group information with

associated programs. The programs let the user access and in some cases

interactively visualize the data, and some also allow new data to be calculated

‘on the fly’. Together these databases and programs expand upon and

complement the symmetry information provided in International Tables for

Crystallography Volume A, Space-Group Symmetry, and Volume A1, Symmetry

Relations between Space Groups. The Symmetry Database allows users to learn

about and explore the space and point groups, and facilitates the study of group–

subgroup relations between space groups, with applications in determining

crystal-structure relationships, in studying phase transitions and in domain-

structure analysis. The use of the International Tables Symmetry Database in all

these areas is demonstrated using several examples.

1. Introduction

The International Tables Symmetry Database (https://symmdb.

iucr.org/), which we will refer to as the Symmetry Database

from here on, provides access to databases of information on

the crystallographic point and space groups, including infor-

mation on the symmetry relations between space groups

(Kroumova et al., 2021). These component databases expand

upon and complement the symmetry information provided in

International Tables for Crystallography Volume A, Space-

Group Symmetry (abbreviated as ITA, 2016), and Volume A1,

Symmetry Relations between Space Groups (abbreviated as

ITA1, 2010). The information stored in the databases can be

either retrieved directly or generated ‘on the fly’ using a range

of auxiliary programs. Some programs facilitate the analysis of

group–subgroup relations between space groups and three

provide different kinds of interactive visualizations. All these

web applications (referred to as programs or visualizers from

here on) have user-friendly menus and help pages with brief

explanations of the crystallographic information that is

displayed and of the functionality of the programs, with links

to more details as provided in the relevant volumes of Inter-

national Tables for Crystallography. The Symmetry Database

has been developed specifically for the International Union of

Crystallography and access is via a subscription to the online

version of International Tables for Crystallography (https://

it.iucr.org/).

An important advantage of the Symmetry Database is that

the different programs can communicate with each other, so

that the output of some programs is used directly as the input

for others. In this way, the Symmetry Database becomes a

working environment with, for example, the appropriate
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programs for addressing crystallographic problems related to

the study of group–subgroup relations between space groups.

The aim of this contribution is to present the programs and

visualizers of the Symmetry Database and to provide examples

showing how they can be used. Basic definitions and expla-

nations of the notation used in the description of symmetry

operations, coordinate transformations, and subgroups and

supergroups of space groups can be found in Appendix A.

The programs, visualizers and component databases of the

Symmetry Database use the standard or default settings of the

space groups. These are specific settings of the space groups

that coincide with the conventional space-group descriptions

found in ITA. For space groups with more than one descrip-

tion in ITA, the following settings are chosen as standard:

unique axis b setting, cell choice 1 for monoclinic groups,

hexagonal axes setting for rhombohedral groups, and the

origin choice 2 description (i.e. with the origin at a centre of

inversion) for those centrosymmetric groups that are listed

with respect to two origins in ITA.

The Symmetry Database is arranged into three parts (see

Fig. 1). The first part provides access to the crystallographic

space-group database, which includes the generators, general

and special Wyckoff positions, and affine, Euclidean and

chirality-preserving Euclidean normalizers. This part also

includes an interactive visualizer allowing the user to explore

the general-position diagrams and symmetry elements of the

space groups. The data that are provided in this part are in fact

valid for all space groups that belong to the same space-group

type. (For the definition and a detailed discussion of the term

space-group type, see Section 1.3.4.1 of ITA.) The second part

of the Symmetry Database provides access to a database of the

maximal subgroups and the minimal supergroups of the space

groups together with an interactive visualizer allowing the

study of the group–subgroup relations between space groups.

The third part focuses on the three-dimensional crystal-

lographic point groups, providing access to databases of

generators, general positions and Wyckoff positions. This part

also includes interactive visualization of point-group

symmetry elements. These three parts are described in detail

in Sections 2, 3 and 4, respectively.

The Symmetry Database provides 14 server-side crystal-

lographic programs and three interactive visualizers. There are

12 main programs and two auxiliary programs. The main

programs, which carry out a variety of calculations based on

the input submitted by the user, include six programs for

space groups and point groups (Generators, General
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Figure 1
The main page of the International Tables Symmetry Database (https://symmdb.iucr.org/) is arranged in three parts. The first part (the left-hand column)
provides access to the programs and visualizer associated with space-group symmetry: Generators (see Section 2.1), General position (see
Section 2.1), Wyckoff positions (see Section 2.2), Normalizers (see Section 2.3) and Interactive 3D visualization (see Section 2.4). The
second part (the middle column) provides access to databases, programs and a visualizer related to symmetry relations between space groups: Maximal
subgroups (see Section 3.1), Series of isomorphic subgroups (see Section 3.2), Minimal supergroups (see Section 3.3), Group–
subgroup relations (see Section 3.4), Graph of maximal subgroups (see Section 3.5) and Supergroups (see Section 3.6). The third part (the
right-hand column) provides access to programs and a visualizer related to the database of three-dimensional crystallographic point groups:
Generators, General position and Wyckoff positions (see Section 4.1), and Interactive 3D visualization (see Section 4.2).



position and Wyckoff positions) and six programs for

space groups only (Normalizers, Maximal subgroups,

Series of isomorphic subgroups, Minimal super-

groups, Group–subgroup relations and Super-

groups). In addition, two auxiliary programs, coset

decomposition and Wyckoff-position splittings,

are used to perform some calculations using the data stored in

the databases as input. The three interactive visualization

programs include a 3D space-group general position and

symmetry element visualizer that uses JSmol (Interactive

3D general-position visualizer), a JavaScript-based

3D crystallographic point-group symmetry visualizer

(Interactive visualization), and a graph-based

application for exploring the group–subgroup relationships

between space groups (Graph of maximal subgroups).

2. Space-group symmetry

This part of the Symmetry Database hosts the data for all 230

space groups in their conventional settings. In addition, crys-

tallographic data for the 530 settings for the monoclinic and

orthorhombic space groups listed in Table 1.5.4.4 of ITA (‘the

ITA settings’) are also available. The data for the generators,

general and special Wyckoff positions, and affine, Euclidean

and chirality-preserving Euclidean normalizers can be

explored here. A 3D interactive visualizer of the points of the

general position and the symmetry elements that relate them

completes this part. The input for the programs in this part is

the space-group numbers according to ITA, which can be

selected directly from a table that lists them along with their

associated Hermann–Mauguin symbols.

2.1. Generators and general position

The generators and general position of a space group are

shown by the programs Generators and General posi-

tion, respectively. The generators and the general-position

entries are given as coordinate triplets, as matrix–column

representations of the corresponding symmetry operations

and as geometric interpretations (see Appendix A1).

(i) The list of coordinate triplets (x, y, z) reproduces the

data from the General position blocks of the space-group

tables found in ITA. The coordinate triplets may also be

interpreted as shorthand descriptions of the matrix forms of

the corresponding symmetry operations [see (ii) below].

(ii) For the matrix–column representations, the symmetry

operations of the space groups are described by (3 � 4)

matrix–column pairs (W, w) with reference to a coordinate

system consisting of an origin O and a basis (a1, a2, a3).

(iii) The geometric interpretation of the symmetry opera-

tions is given (a) following the conventions in ITA [including

the symbol of the symmetry operation, its glide or screw

component (if relevant), and the location of the related

geometric element] and (b) using Seitz notation [see Glazer et

al. (2014)].

Fig. 2 shows the general position for the space group Pba2

(No. 32) in the standard setting.

The programs Generators and General position list

the generators and general-position entries of the space

groups in the standard setting as well as in any of the ITA

settings. Clicking on ‘Change settings’ gives a list of the ITA

settings of the space group; the corresponding data can be

calculated with respect to one of these settings by choosing it

directly from this list. If a particular setting is not in this list

(i.e. it is not one of the ITA settings), it can be obtained by

clicking on ‘Change basis’ and specifying the coordinate

transformation that relates the basis of the non-conventional

setting (a, b, c)non-conv to that of the standard setting

(a, b, c)stand (for details on coordinate transformations, see

Appendix A2). The coordinate transformation is described by

a matrix–column pair (P, p) and consists of two parts: a linear

part P given by a (3 � 3) matrix, which describes the change of

direction and/or length of the basis vectors, (a, b, c)non-conv =

(a, b, c)standP, and an origin shift p = (p1, p2, p3) given by a

(3 � 1) column, whose coefficients describe the position of the

non-conventional origin with respect to the standard one. A

matrix–column pair

ðP; pÞ ¼
P11 P12 P13

P21 P22 P23

P31 P32 P33

0
@

1
A;

p1

p2

p3

0
@

1
A

2
4

3
5

is often written in the following concise form:

P11aþ P21bþ P31c;P12aþ P22bþ P32c;P13aþ P23bþ P33c;

p1; p2; p3:

2.2. Wyckoff positions

The program Wyckoff positions lists the Wyckoff

positions for a designated space group. The listing follows that

of ITA (see Fig. 3): the Wyckoff-position block starts with the

general position at the top, followed downwards by the various

special Wyckoff positions with decreasing multiplicity and

increasing site symmetry. The data for each Wyckoff position

include (i) the multiplicity, i.e. the number of equivalent

positions in the conventional unit cell; (ii) the Wyckoff letter,

which is an alphabetical label; (iii) the site symmetry described

by the point group isomorphic to the site-symmetry group; and

(iv) a set of coordinate triplets of the equivalent Wyckoff-

teaching and education
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Figure 2
The general position of the space group Pba2 (No. 32) given by the
program General position (see Section 2.1).



position points in the unit cell, shown under ‘Coordinates’. For

centred space groups, the centring translations are listed

above the coordinate triplets. The point groups isomorphic to

the site-symmetry groups (see the third column in Fig. 3) are

described using oriented symbols: these are modified

Hermann–Mauguin point-group symbols that show how the

symmetry elements of a site are related to the symmetry

elements of the crystal lattice (for more details, see Section

2.1.3.12 of ITA). An explicit listing of the symmetry opera-

tions of the site-symmetry group of a point is obtained by

clicking directly on its coordinate triplet. The symmetry

operations of the site-symmetry group of an arbitrary point

(specified by its coordinates but not necessarily within the unit

cell) can be also be calculated using the option ‘Specific orbit’.

Fig. 4 shows the list of the symmetry operations of the site-

symmetry group for the point 2, 5/4, 1/2 of the space group

Pmma (No. 51). This point belongs to the Wyckoff position 4h

and its site-symmetry group is ‘.2.’.

The program Wyckoff positions provides a list of the

Wyckoff positions in different space-group settings, either by

specifying the coordinate transformation (P, p) to a new basis

(‘Change basis’), or by selecting one of the ITA settings of the

corresponding space group directly, using (‘Change setting’).

2.3. Normalizers

The normalizers of space groups play an important role in a

number of applications (see Chapter 3.5 of ITA). For example,

the number of different but equivalent structure descriptions

(even after fixing the space-group setting and origin choice) is

determined by the Euclidean normalizer of the corresponding

space group. For more details see Section 5.1. Following ITA,

the program Normalizers shows the Euclidean, chirality-

preserving Euclidean and affine normalizers of the space

groups (see Appendix A4). The normalizers are described

with respect to the standard space-group settings. For triclinic

and monoclinic groups (whose affine normalizers are not

isomorphic to groups of motions), parametric representations

of the matrix–column pairs of the mappings of the affine

normalizers are shown together with the appropriate restric-

tions on the coefficients. Fig. 5 shows the output of the

program Normalizers for the Euclidean normalizer of the

space group F432 (No. 209). (Note that the type of normalizer

can be selected by clicking on the tabs near the top of the page,

below the space-group symbol.) The output of the program is

organized into three blocks. In the first block of the output,

general information about the normalizer is displayed: the

Hermann–Mauguin symbol of the normalizer, the basis of the

normalizer described in terms of the basis of the space group G

and the index of G in the normalizer. The second block shows

the additional generators, i.e. the additional symmetry opera-

tions that can generate the normalizer successively from the

space group G (see ITA, Tables 3.5.2.3, 3.5.2.4 and 3.5.2.5).

These additional symmetry operations are represented by

their coordinate triplets, their matrix–column representations

and their corresponding geometric interpretations. For

example, the Euclidean normalizer N "ðGÞ of the space group

F432(a, b, c) is Pm�33m with basis vectors (1/2a, 1/2b, 1/2c) and

teaching and education
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Figure 5
Output of the program Normalizers (see Section 2.3) for the
Euclidean normalizer of the space group F432 (No. 209). Note that the
affine normalizer of the group F432 coincides with the Euclidean one.

Figure 4
The site-symmetry group for the point with coordinates 2, 5/4, 1/2 in the
space group Pmma (No. 51), calculated using the option ‘Specific orbit’ of
the program Wyckoff positions (see Section 2.2).

Figure 3
A screenshot of the output of the program Wyckoff positions (see
Section 2.2) showing the Wyckoff positions for the space group Pmma
(No. 51).



index 4 (see Fig. 5). There are two additional generators that

can be used to generate Pm�33m(1/2a, 1/2b, 1/2c) from F432: a

translation t(1/2, 1/2, 1/2) and an inversion through the point

0, 0, 0. The coset representatives of the decomposition of the

normalizer with respect to the space group are listed in the last

block of the output. Each coset representative is specified by

its coordinate triplet, matrix–column representation and

geometrical interpretation (see Fig. 5). The affine normalizer

NAðGÞ of the space group F432 coincides with the Euclidean

one, so the output of the program for the space group F432 is

the same for the Euclidean and affine normalizers.

2.4. Interactive 3D visualization

The visualizer in this section allows the user to explore the

symmetry operations that relate the various coordinate

triplets of the general position of a space group. It uses JSmol,

the JavaScript implementation of Jmol (Hanson, 2013). The

starting point for interaction is a table showing the general

position of the space group along with an interactive panel

where the three-dimensional general-position diagram is

displayed (see Fig. 6; the video in the supporting information

also gives a detailed explanation of how to use this visualizer).

The table of the general-position triplets and their inter-

pretation as symmetry operations is interactive: clicking on a

specific symmetry operation shows its action on the initial

general-position point depicted within the yellow ring on the

general-position diagram. If the image point is outside the unit

cell, its equivalent point in the unit cell (as reached by a lattice

translation) is also indicated. Points in red rings are obtained

by symmetry operations of the second kind, i.e. those that

would change the handedness of a chiral object, such as

inversion. The colours of the points distinguish their heights

along the b axis for triclinic and monoclinic space groups, and

along the c axis for the other space groups. The action of the

symmetry operation can be visualized by clicking on the

‘animate’ button.

The general-position diagram is also interactive: the unit

cell can be dragged with the mouse in order to see it from

different perspectives. Clicking on a general-position point

shows the operation that transforms the initial general-posi-

tion point x, y, z to that position. The geometric description of

the symmetry operation (type, orientation, screw or glide

component, location) is displayed at the top of the diagram.

The corresponding symmetry-equivalent position and the

related symmetry operation (modulo lattice translation) is

highlighted in the general-position table. The option ‘animate’

can be used to visualize its action.

Fig. 6 shows a screenshot of the output of Interactive

3D general-position visualizer for the space group

P42nm (No. 102). Clicking on the sixth coordinate triplet

�x + 1/2, y + 1/2, z + 1/2 in the general-position table shows

the user the corresponding n-glide reflection with glide vector

0, 1/2, 1/2, located at 1/4, y, z (the blue plane in the diagram).

The animation shows the action of the selected symmetry

operation on the initial general-position point to a symmetry-

equivalent point inside the unit cell.

The potential for Interactive 3D general-position

visualizer in teaching crystallography is enhanced by the

ability to animate the action of the different symmetry

operations, in particular those with an intrinsic translation part

different from zero, such as screw rotations or glide reflections.

3. Symmetry relations between space groups

This part of the Symmetry Database focuses on the study of

group–subgroup relations between space groups. The data in

Volume A1 of International Tables for Crystallography on

maximal subgroups of space groups of indices 2, 3 and 4 are

extended to include the series of all isomorphic subgroups for

indices up to 27 (125 for some cubic groups). In contrast to

ITA1, where only space-group types of supergroups are

indicated, our database contains individual information for

each minimal supergroup, including the transformation matrix

that relates the conventional bases of the group and the

supergroup. Additional programs in this part allow a detailed

study of supergroups of space groups of any index (not just

minimal supergroups) and the generation of interactive graphs

of chains of maximal subgroups.

3.1. Maximal subgroups

All maximal non-isomorphic and maximal isomorphic

subgroups H of a space group G of indices 2, 3 and 4 can be

retrieved from the Symmetry Database using the program

Maximal subgroups. The maximal-subgroup information is

presented in blocks of translationengleiche and klassengleiche

subgroups (Hermann, 1929) as defined in Appendix A3.2 (see

Section 2.2.4 of ITA1, and Fig. 7). The maximal subgroups are

distributed into classes of conjugate subgroups and the classes

are distinguished by different background colours. Each

subgroup H<G is specified by (i) the index of H in G; (ii) the

Hermann–Mauguin symbol of H, referred to the coordinate

system of G (this symbol is a link to the class of conjugate

subgroups); (iii) the conventional short Hermann–Mauguin

symbol and the space-group number of H (the space-group

teaching and education
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Figure 6
A screenshot of Interactive 3D general-position visualizer
(see Section 2.4) for the space group P42nm (No. 102).



number is a link to a list of maximal subgroups of H); (iv) the

coordinate triplets of the symmetry operations of G that are

used as generators for the subgroup H; and (v) the transfor-

mation matrix–column pair (P, p) that relates the standard

bases of H and G (see Appendix A3.2). For certain applica-

tions it is necessary to represent the subgroupsH as subsets of

elements of G. This is achieved by clicking on the transfor-

mation matrix, which is a link to an auxiliary tool that trans-

forms the general-position representatives of H to the

coordinate system of G. In addition, for each subgroup the

splittings of all Wyckoff positions of G to that of H and the

coset decomposition of G with respect to H can be calculated

by the auxiliary programs Wyckoff-position split-

tings and coset decomposition.

3.1.1. Wyckoff-position splittings. The relations between

the Wyckoff positions of a space group and those of its

subgroups can involve splittings of the Wyckoff positions,

reduction of the site symmetries or both. The auxiliary

program Wyckoff-position splittings, used by many

of the programs of this part, calculates the splitting of the

Wyckoff positions for a given group–subgroup pair G>H and

the transformation matrix–column pair (P, p) that relates the

standard bases of H and G. The splitting of the Wyckoff

positions of G into the Wyckoff positions of H is specified by

their multiplicities and Wyckoff letters. This program provides

further information on Wyckoff-position splittings that is not

listed in ITA1, namely the relations between the unit-cell

representatives of the orbit of G and the corresponding

representatives of the suborbits of H. For example, Fig. 8

shows the Wyckoff-position splitting schemes for the group–

maximal-subgroup pair I23 (No. 197) > P23 (No. 195),

ðP; pÞ ¼ ðI; oÞ [here I is the three-dimensional unit matrix and

o is the (3 � 1) column matrix containing zeros as coeffi-

cients]. The Wyckoff position 2a of I23 splits into two inde-

pendent positions of P23 with no site-symmetry reduction:

2a 23: ð0; 0; 0Þ�!1a 23: ð0; 0; 0Þ [ 1b 23: ð1=2; 1=2; 1=2Þ:

The relations between the coordinate triplets of the Wyckoff

positions are displayed under the link ‘show relations’. These

relations are presented in a table form showing the Wyckoff-

position coordinate triplets with respect to the standard group

basis and the corresponding triplets referred to the basis of the

subgroup. Each of these triplets is further interpreted as a

coordinate triplet of a subgroup Wyckoff position. As an

example, see the yellow table shown at the bottom of Fig. 8.

The link ‘Splitting for a specific orbit’ permits the calcula-

tion of the Wyckoff-position splitting schemes for an arbitrary

orbit of G specified by the coordinate triplet of any point of the

orbit.

3.1.2. Coset decomposition. The auxiliary program coset

decomposition performs the left or right coset decom-

position of a group G with respect to a subgroup H<G (see

Appendix A3.1):

G ¼ Hþ ðW 2;w2ÞH þ . . .þ ðW n;wnÞH; ð1Þ

where n is the index ofH in G and (Wi, wi) with i = 1, . . . , n are

the coset representatives. The coset representative (W1, w1) is

assumed to be the identity element (I, o) of G. By default, the

program calculates the right coset decomposition of the group

with respect to the subgroup, and the coset representatives

that are shown are described in the basis of the subgroup. To

calculate the left coset decomposition, one has to click on the

option ‘Left cosets’. Clicking on ‘show complete cosets’ lists

the members of the coset ðW i;wiÞH, where H is decomposed

with respect to its translational subgroup T H.

As an example, Fig. 9 shows the output of coset

decomposition for the right coset decomposition of

the space group I23 (No. 197) with respect to one of its

maximal subgroups, R3 (No. 146), ðP; pÞ = a� b, bþ c,

�1=2a� 1=2bþ 1=2c; 0, 0, 0.
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Figure 8
The Wyckoff-position splitting scheme between the space group I23 (No.
197) and its maximal subgroup P23 (No. 195) calculated by the auxiliary
program Wyckoff-position splittings (see Section 3.1.1).

Figure 7
The maximal subgroups of the space group I23 (No. 197) shown by the
program Maximal subgroups (see Section 3.1).



3.2. Series of isomorphic subgroups

The maximal subgroups of index higher than 4 with indices

p, p2 and p3, where p is a prime number, are isomorphic

subgroups and infinite in number. In ITA1 the isomorphic

subgroups of indices higher than four, [i] > 4, are listed not

individually but as members of series under the heading Series

of maximal isomorphic subgroups. The program Series of

isomorphic subgroups provides access to the database of

maximal isomorphic subgroups. Apart from the parametric

descriptions of the series, the program provides an individual

listing of all maximal isomorphic subgroups of indices as high

as 27 for all space groups, except for the cubic ones, where for

some groups the isomorphic subgroups of indices up to 125 are

shown. For each series, the Hermann–Mauguin symbol of the

subgroup, the selected generators, the restrictions on the

parameters describing the series, and the transformation

matrix relating G and H are listed [see Fig 10(a)]. The option

‘show series’ generates maximal isomorphic subgroups of any

allowed index ‘on the fly’. The format and content of the

subgroup data are similar to those of the program Maximal

subgroups (see Section 3.1). Fig. 10(b) shows the maximal

isomorphic subgroups of index 3 of the space group P6322

(No. 182) generated using this option. For each of the indices,

a list of the maximal subgroups is presented together with

links to the auxiliary programs Wyckoff-position

splittings (see Section 3.1.1) and coset decomposi-

tion (see Section 3.1.2).

3.3. Minimal supergroups

The program Minimal supergroups lists the isomorphic

and non-isomorphic minimal supergroups of indices 2, 3 and 4

(see Appendix A3.3) for any space group. For triclinic and

monoclinic space groups, this list includes minimal isomorphic

supergroups of indices up to 7. The minimal-supergroup

information is presented in blocks of translationengleiche and

non-isomorphic klassengleiche supergroups, as defined in

Appendix A3.3 (see also Section 2.1.6 of ITA1). For each

minimal supergroup, the index, the Hermann–Mauguin

symbol, the space-group number and the transformation

matrix (P, p) relating the standard bases of the supergroup

and the group are specified (see Fig. 11). As in other programs

of the Symmetry Database, the transformation matrix is a link

to an auxiliary tool that calculates the general position of the

supergroup with respect to the basis of the group. For each

group–supergroup relation, links to the auxiliary programs

Wyckoff-position splittings (see Section 3.1.1) and

coset decomposition (see Section 3.1.2) are also

provided.

3.4. Group–subgroup relations

A group–subgroup pair G>H is specified by the group G,

subgroup H and transformation matrix–column pair (P, p)

relating the standard basis of the group to that of the

subgroup. For a given group–subgroup pair, the program

Group–subgroup relations calculates (i) the Wyckoff-

position splitting scheme of the group G with respect to the

subgroup H, (ii) the left and right coset decomposition of G

teaching and education
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Figure 11
The minimal supergroups of the space group P�33c1 (No. 165) obtained
using the program Minimal supergroups (see Section 3.3).

Figure 10
(a) The series of maximal isomorphic subgroups and (b) the maximal
isomorphic subgroup of index 3 of the space group P6322 (No. 182)
calculated by the program Series of isomorphic subgroups (see
Section 3.2).

Figure 9
Coset decomposition of the space group I23 (No. 197) with respect to the
maximal subgroup R3 (No. 146) for the transformation matrix a � b,
b + c, �1/2a � 1/2b + 1/2c; 0, 0, 0 calculated by the auxiliary program
coset decomposition (see Section 3.1.2).



with respect to H, and (iii) the transformation of the general

position of G with respect to the basis of H. As input, the

group, the subgroup and the transformation matrix relating

the standard basis of the group to that of the subgroup have to

be specified. The group and the subgroup can be specified by

typing in either the space-group number or the Hermann–

Mauguin symbol. Before performing any calculation, the

program checks the matrix–column pair (P, p) and if it is not

valid an error message is displayed. When the transformation

matrix for the group–subgroup pair is not known, the auxiliary

program Step-by-step calculation of the program

Group–subgroup relations can be used to find it.

3.5. Graph of maximal subgroups

Group–subgroup symmetry relations can be visualized

as graphs of chains of maximal subgroups using Graph

of maximal subgroups. For a given group–subgroup

pair G>H, the program calculates all possible group–

subgroup chains of intermediate maximal subgroups Zk:

G>Z1 > . . . >Zn = H and displays the results in an inter-

active graph. The auxiliary program Step-by-step

calculation can be used to find the transformation matrix–

column pairs (P, p) defining the group–subgroup relations

when the correct transformation matrices are not known. This

can also be used to calculate the shortest maximal-subgroup

path between the group and the subgroup (Aljazzar & Leue,

2011). The input to Graph of maximal subgroups is the

group G and the subgroupH; the index ofH in G is optional. If

the index of the subgroup H in G is specified, the group–

subgroup relations are shown in a contracted graph (see

Fig. 12); if not, the group–subgroup relations are represented

by a general contracted graph (see Fig. 13). The general

contracted graph contains all possible groups Zk that appear

as intermediate maximal subgroups between G and H. It is

important to note that in both the contracted and general

contracted graphs a node specified by a space-group symbol

indicates a space-group type, i.e. a node might represent

different space groups belonging to the same space-group

type.

As one can see in Fig. 12, the output of Graph of maximal

subgroups is divided into three main sections. The first

section hosts the auxiliary programs Change index and

Classify. While with Change index one can repeat the

calculations with a different index, Classify is used to

display the conjugacy classes of maximal subgroups for the

given type and index. For each of the conjugacy classes of

subgroups, the program indicates the corresponding Hermann

group and the factorization of the index [i] = [it] � [ik], where

the index [it] indicates the reduction of point-group symmetry

½it� ¼ jPGj=jPHj while [ik] reflects the loss of translation

symmetry ½ik� ¼ jT Gj=jT Hj (see Appendix A3.2; for more

details, see Section 1.2.7 of ITA1). For example, in the case of

the group–subgroup relation I �442d (No. 122) > C2 (No. 5) of

index 4, there are three different subgroups C2 distributed

between two classes of conjugate subgroups. The three

different subgroups correspond to the three sets of twofold

rotation axes in I �442d: those pointing along [100] and [010] of

the tetragonal cell give rise to the two conjugate subgroups,
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Figure 13
The general contracted graph for I �442d (No. 122) > C2 (No. 5), as shown
by Graph of maximal subgroups (see Section 3.5).

Figure 12
A screenshot of Graph of maximal subgroups (see Section 3.5),
where the contracted graph for the pair of space groups I �442d (No. 122) >
C2 (No. 5) with index 4 is shown.



and the twofold axes of the third one (which forms a class of

conjugate subgroups by itself) are along the tetragonal axis.

The three subgroups C2 are translationengleiche subgroups of

I �442d, i.e. the Hermann group for the pair I �442d>C2 of index 4

coincides with the subgroup C2 with [i] = [it] = 4 and [ik] = 1.

The transformation matrices for the different chains of

maximal subgroups for the selected group–subgroup pair are

listed on the right-hand side of the second section of the

output, entitled ‘Chains of maximal subgroups’. On the left-

hand side, the interactive group–subgroup graph is displayed.

When hovering over any graph node, the corresponding space

group with its maximal subgroups and minimal supergroups is

shown. When clicking on any node, the chains that go through

this node are highlighted on the right-hand side. In the last

section of the output there are three tabs with more detailed

information regarding the graph and the chains of the maximal

subgroups. All the chains are listed under the tab ‘Chains of

maximal subgroups’. For each chain, the space groups

involved are shown and all transformations that correspond to

the chain are displayed. The transformation matrices are links

and calculate the general position of the subgroup H in the

basis of the group G. The tab ‘Group–maximal subgroup pairs’

contains all the transformation matrix–column pairs for each

group–maximal subgroup pair in the graph. The other tab

shows all subgroups of G involved in the graph.

3.6. Supergroups

The last program available in this part of the Symmetry

Database is the program Supergroups, which calculates all

supergroups of a specific space-group type and index (see

Appendix A3.3). In contrast to ITA1, where only the space-

group types of supergroups are indicated, in the Symmetry

Database each supergroup is listed individually and specified

by the transformation matrix that relates the conventional

bases of the group and the supergroup. As input, the group,

supergroup and index have to be specified. The program lists

all the transformation matrices that specify different super-

groups, and it is possible to calculate the general position of

the group in the basis of each supergroup. The coset decom-

position and Wyckoff-position splittings of each group–

supergroup relation can also be calculated.

4. 3D crystallographic point groups

For those interested in molecular symmetry and in the physical

properties of materials, the generators, general positions and

Wyckoff positions of the three-dimensional crystallographic

point groups are available in the third part of the Symmetry

Database. These data can be transformed to different settings,

enhancing and extending the data presented in Chapter 3.2 of

ITA. Moreover, simple, clear and instructive interactive

visualization of the symmetry elements and the stereographic

projections of the three-dimensional crystallographic point

groups is also available. The input for the programs in this part

is the point group, which can be selected directly from a table

that lists the Hermann–Mauguin and Schönflies symbols for all

32 three-dimensional crystallographic point groups.

4.1. Data for the crystallographic point groups

In this section of the Symmetry Database, there are three

programs called Generators, General position and

Wyckoff positions (analogous to the programs for the

space groups) that list the generators, general positions and

Wyckoff positions for the 32 three-dimensional crystal-

lographic point groups, respectively. The crystallographic data

retrieved by these programs can be transformed to different

settings by clicking on the options ‘Change basis’ or ‘Change

setting’. The output of these three programs is similar to the

output of the programs Generators, General position

and Wyckoff positions for the space groups (see Sections

2.1 and 2.2 for more details).

4.2. Interactive 3D visualization

The program Interactive visualization for point

groups (Arribas et al., 2014), which was inspired by classical

wooden crystallographic models, is an interactive visualizer of

the symmetry elements and their stereographic projections for

the crystallographic point groups. Interactive three-dimen-

sional polyhedra are used to represent idealized crystals and

their corresponding symmetry elements (see Fig. 14). The user

can explore different shapes of polyhedra compatible with the

selected point group and view them from different angles, and

can also selectively enable or disable the visualization of the

symmetry elements. It is an excellent program for learning

about essential symmetry concepts and the international

Hermann–Mauguin notation of point-symmetry groups.

5. Applications

Besides providing access to the crystallographic databases for

the point and space groups, the programs and visualizers of the

Symmetry Database are very useful in the study of symmetry

relations between space groups. Information about symmetry
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Figure 14
The output of Interactive visualization (see Section 4.2) for the
point group 312.



relations is essential for the resolution of a number of crys-

tallographic problems, such as the analysis of domain struc-

tures, the study of phase transitions and the prediction of new

crystal structures. The use of some of these programs and

visualizers is demonstrated in this section with several illus-

trative examples.

5.1. Equivalent crystal-structure descriptions

In general, crystal structures are described through their

space-group symmetry, the unit-cell parameters and the

atomic positions in the asymmetric unit. The description of a

structure is not unique and depends on the coordinate systems,

i.e. on the chosen setting of the space group. Even after fixing

the setting of the space group, in most cases there are several

equivalent possible but different descriptions of the same

crystal structure (Koch & Fischer, 2006).

Consider, for example, the simple and well known structure

of caesium chloride (CsCl), which crystallizes in the cubic

space group Pm�33m (No. 221). The origin can be chosen to be

at the centre of a Cs or a Cl atom, which results in two

different sets of coordinates (see Fig. 15):

Structure No: 1

Cs 1a 0; 0; 0

Cl 1b 1
2 ;

1
2 ;

1
2

Structure No: 2

Cs 1b 1
2 ;

1
2 ;

1
2

Cl 1a 0; 0; 0

The equivalence of the two descriptions is easy to recognize

[see Fig. 15: they are related by a translation of the type

t(1/2, 1/2, 1/2)]. But how many equivalent descriptions of the

CsCl structure exist? How can we calculate all possible

symmetry-equivalent descriptions of a given crystal structure?

The Euclidean normalizer N "ðGÞ plays an important role in

the determination of all symmetry-equivalent descriptions of a

given structure with space group G. The number of different

equivalent coordinate descriptions of a crystal structure is

equal to the index [i] of the group G in its Euclidean

normalizer N "ðGÞ:

½i� ¼
jN "ðGÞj

jGj
: ð2Þ

There are only two space groups, Im�33m (No. 229) and Ia�33d

(No. 230), that give rise to only one description of a crystal

structure. This is due to the fact that the Euclidean normalizer

N "ðGÞ coincides with the space group G. For all other space

groups, there exist at least two equivalent descriptions.

The transformations generating the set of symmetry-

equivalent descriptions of a given crystal structure can be

calculated easily by the coset decomposition of N "ðGÞ with

respect to G:

N "ðGÞ ¼ G þ ðW 2;w2ÞG þ . . .þ ðW n;wnÞG; ð3Þ

where n is the index of G in N "ðGÞ, (Wi, wi) with i = 1, . . . , n

represents the coset representatives and (W1, w1) is assumed

to be the identity element (I, o). The transformation of the

initial structure by the coset representatives in equation (3)

yields all symmetry-equivalent descriptions:

X 0 ¼ ðW i;wiÞX; ð4Þ

where X represents the coordinates of the atoms in the initial

structure, X0 corresponds to the coordinates of the atoms of

the equivalent descriptions and (W i, wi) acts as the transfor-

mation matrix.

The symmetry-equivalent descriptions of a given structure

and their generation can be easily obtained using the program

Normalizers (see Section 2.3). In the case of CsCl, the

Euclidean normalizer of the space group Pm�33m(a, b, c) is

Im�33m with basis vectors (1/2a, 1/2b, 1/2c). The index of Pm�33m

in Im�33m is two; this means that there are only two different

symmetry-equivalent descriptions for the structure of CsCl.

The coset decomposition of the Euclidean normalizer with

respect to the space group,

Im�33m ¼ Pm�33mþ tð1=2; 1=2; 1=2ÞPm�33m; ð5Þ

shows that the second equivalent description of CsCl is

generated from the initial description by a translation of the

type t(1/2, 1/2, 1/2).

Crystal structures with space groups that are polar have

infinitely many symmetry-equivalent descriptions, since they

are not fixed by symmetry (for more details, see Appendix A4

and Chapter 3.5 of ITA). This is the case for the co-crystal-

lization of caffeine and 4-chloro-3-nitrobenzoic acid (Ghosh &

Reddy, 2012), which gives a structure with a polar space group

Fdd2 (No. 43). This structure is available from the Cambridge

Crystallographic Data Centre as CCDC reference 88530

(BEDYIU). The Euclidean normalizer of Fdd2(a, b, c) is

P1ban(1/2a, 1/2b, �c), a normalizer that contains continuous

translations in one direction. This is indicated by �c for the

third basis vector of the normalizer and by the superscript 1 to

the Bravais letter (see Chapter 3.5 of ITA). The index of

P1ban in Fdd2 is 2 � 1; this means that there are two

symmetry-equivalent descriptions, and for each one, infinitely

many symmetry-equivalent descriptions exist. The translations

of the type t(0, 0, t) give rise to infinite equivalent descriptions

that differ only in their z coordinates.

5.2. Symmetry relations between space groups

5.2.1. Phase transitions. Consider two phases of the same

compound whose symmetries are described by the space

group G (parent structure) and H (derivative structure), such

that G>H. The relationship between these two structures can

be characterized by a global distortion that is decomposed into

a strain, describing the global distortion of the lattice of the
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Figure 15
The structure of CsCl described with respect to the cubic space group
Pm�33m (No. 221) with the origin at (a) Cs and (b) Cl.



derivative structure relative to the parent structure, and an

atomic displacement field, representing the displacements of

the atoms of the low-symmetry phase from their positions in

the high-symmetry phase. The global distortion can be char-

acterized if the description of the parent structure is trans-

formed by an appropriate transformation (P, p) to an

equivalent description that is most similar to that of the

derivative structure. This new description of the parent

structure is usually called the reference description of the

parent structure relative to the derivative structure. The

metric deformation accompanying the phase transition can be

determined by the comparison of the bases of the derivative

and the reference structures. Similarly, the difference between

the atomic positions of the reference and the derivative

structure provides information related to the atomic displa-

cements occurring during the phase transition.

As an illustrative example consider the structural phase

transition of CaCl2. At room temperature CaCl2 crystallizes in

the orthorhombic space group Pnnm (No. 58). At about 235�C

a structural phase transition takes place to a high-symmetry

tetragonal phase of the rutile type. The following descriptions

of the two phases of CaCl2 (Howard et al., 2005) are taken

from the Inorganic Crystal Structure Database (Fachinfor-

mationszentrum Karlsruhe and National Institute of Stan-

dards and Technology, https://www.fiz-karlsruhe.de/icsd.html,

abbreviated as ICSD):

(a) ICSD No. 246417. The symmetry of the high-tempera-

ture phase is described by the tetragonal space group

P42/mnm (No. 136) with cell parameters at = 6.38310 (10) Å

and ct = 4.20409 (7) Å. The coordinates of the atoms in the

asymmetric unit are given as

Ca: 2a 0, 0, 0,

Cl: 4f 0.3047, 0.3047, 0.

(b) ICSD No. 246416. The low-symmetry structure is

described by the orthorhombic space group Pnnm with cell

parameters aorth = 6.43763 (5) Å, borth = 6.28765 (5) Å and

corth = 4.17823 (1) Å. The coordinates of the atoms in the

asymmetric unit are given as

Ca: 2a 0, 0, 0,

Cl: 4g 0.3249, 0.2822, 0.

The subgroup Pnnm is a maximal subgroup of index 2 of the

group P42/mnm. The transformation matrix relating the group

with the subgroup, determined by the program Maximal

subgroups (see Section 3.1), is the identity matrix, i.e.

(P, p) = (a, b, c; 0, 0, 0). This means that the lattice parameters

of the reference and parent structures are equal (for details of

the unit-cell lattice transformation see Appendix A2). From

the comparison of the lattice parameters of the reference and

the derivative structures, the lattice deformation accom-

panying the phase transition can be determined.

The coordinates of the representative Ca atom occupying

the position 2a 0, 0, 0 in P42/mnm are transformed to 2a 0, 0, 0,

while those of Cl are transformed from 4f 0.3047, 0.3047, 0 in

P42/mnm to 4g 0.3047, 0.3047, 0 (results provided by the

auxiliary program Wyckoff-position splittings, see

Section 3.1.1). A comparison between the transformed atomic

coordinates and the atomic coordinates of the low-symmetry

phase, Ca 0, 0, 0 and Cl 0.3249, 0.2822, 0, reveals the corre-

sponding atomic displacements associated with the phase

transition, which, in this case, are related to the displacements

of the Cl atoms.

5.2.2. Domain structure analysis. A displacive or order–

disorder phase transition often results in the formation of

domain structures. A homogeneous single phase with space

group G, known as the parent or prototypic phase, is trans-

formed to a crystalline phase, known as the daughter or

distorted phase, with space group H such that H<G. The

distorted phase is usually inhomogeneous, and consists of an

infinite number of homogeneous regions called domains. Note

that domains differ in their location in space, in their size and/

or orientation, and potentially in their space groups Hi <G,
which, however, belong to the same space-group type H.

The domains in the distorted phase can be classified into a

finite and small number of domain states. Two domains belong

to the same domain state if their crystal patterns are identical,

i.e. if they occupy regions of space that are part of the same

crystal pattern. The number and types of domain states that

might form during the phase transition can be predicted by the

analysis of the group–subgroup relation G>H between the

prototype and the distorted phases. The domain states can be

classified into two types:

(i) Twin domain states are formed if the point group PH of

the distorted phase is a subgroup of the point group PG of the

parent phase, PH<PG. For example, twin domain states occur

if H is a translationengleiche (equi-translational) subgroup of

the space group G (see Appendix A3.2) of the prototype

phase.

(ii) Antiphase domain states are formed if the translation

subgroup T H of the distorted phase is a subgroup of the

translation subgroup T G of the parent phase, T H< T G. For

example, antiphase domain states occur if the space group H

of the distorted phase is a klassengleiche (equi-class) subgroup

of G (see Appendix A3.2).

Twin and antiphase domain states can also be simulta-

neously observed if H is a general subgroup of G (see

Appendix A3.2).

The number of single domain states (Si) can be determined

by the index [i] of H in G. Following Hermann’s theorem, the

index [i] can also be factorized as

½i� ¼ ½ik� � ½it�; ð6Þ

where [it] is the t-index, the translationengleich index, and [ik]

is the k-index, the klassengleich index (see Appendix A3.2);

these represent the number of different twin and antiphase

domain states that might be formed during the phase transi-

tion, respectively.

Let us consider BaTiO3, which exhibits a ferroelectric phase

transition from a prototype (non-polar) phase with cubic

space group Pm�33m (No. 221) to a distorted polar phase with

tetragonal space group of the type P4mm (No. 99). The type

and number of domain states that might occur in the low-

symmetry phase can be calculated using Group–subgroup

relations (see Section 3.4) or Graph of maximal

subgroups (see Section 3.5). The Hermann group in this

teaching and education

1834 Gemma de la Flor et al. � The International Tables Symmetry Database J. Appl. Cryst. (2023). 56, 1824–1840



example is P4mm (No. 99) with it = 6 and ik = 1. Since P4mm is

a translationengleiche subgroup of Pm�33m of index 6, six

different twin domain states are expected to be formed

during the phase transition. For the space group Pm�33m

there are three different (but conjugate in P4mm, see

Appendix A3.1) subgroupsHi isomorphic to P4mm of index 6

[with their fourfold axes directed along the a, b and c direc-

tions, i.e. H1 ¼ P4amm with (P, p) = (b, c, a), often written

as H1 ¼ P4mm(b, c, a), H2 ¼ P4bmm ¼ P4mm(c, a, b) and

H3 ¼ P4cmm ¼ P4mm(a, b, c)].

Different domain states can exhibit different tensor prop-

erties and different diffraction patterns and can differ in other

physical properties. The tensor properties of the crystal can be

used to distinguish the different domain states if the relation

between the domain states is known, i.e. if the twinning

operation is known. This can be obtained from the coset

decomposition of the space group G of the prototype phase

with respect to Hi, where each of the coset representatives

might act as a twinning operation. In this example, the coset

decomposition of G ¼ Pm�33m with respect to H3 ¼ P4cmm is

calculated using the auxiliary program coset decomposi-

tion (see Section 3.1.2) within Group–subgroup pair or

Graph of maximal subgroups (see Table 1).

Let us analyse the polarization P, a tensor of rank one, in the

low-symmetry phase of BaTiO3. The polarization in each

domain state Si can be determined by

Pi ¼ giP; ð7Þ

where i = 1, . . . , 6 represents the number of domain states Si

and gi are the corresponding twinning operations. The polar-

ization vector P compatible with H3 ¼ P4cmm is of the type

P ¼

0

0

V

0
@

1
A:

Table 1 shows the polarization Pi in the different domain states

calculated by equation (7).

5.2.3. Hierarchical trees. The structural relationships

between group–subgroup-related crystal structures can be

presented in a concise and comprehensive form using

Bärnighausen trees (Bärnighausen, 1980). Starting from a

high-symmetry structure type (aristotype) and reducing the

symmetry, by distortions or substitutions of atoms, lower-

symmetry structure types (hettotypes) are derived. Detailed

information on how to construct Bärnighausen trees is avail-

able in Chapter 1.6 of ITA1 and in the book by Müller (2013).1

The programs Maximal subgroups (see Section 3.1),

Graph of maximal subgroups (see Section 3.5) and

Wyckoff-position splittings (see Section 3.1.1) are

very useful for obtaining the information needed to construct

Bärnighausen trees.

Such hierarchical trees can also be constructed by searching

in the opposite direction (Kitaev et al., 2015), i.e. the highest

possible structure types (archetypes) are reached by starting

from a hettotype or root structure. In an ascending group–

supergroup tree the space group G of the high-symmetry

structure is a supergroup of the space group H of the root

structure. Taking into account that any group–supergroup

relation H<G can be represented by a chain of minimal

supergroups, H<Z1 <Z2 < . . . <G, the search for possible

aristotypes can be performed as a stepwise procedure over a

chain of minimal supergroups of the space group of the root

structure. Starting form the space group H of the root struc-

ture, a list of the minimal supergroups Gi >H can be fetched,

along with the transformation matrices (P, p) relating the

supergroup with the group, via the program Minimal

supergroups (see Section 3.3). The validity of each (P, p)

has to be evaluated with respect to the splitting of the

supergroup’s Wyckoff positions into the starting space group

H. For each transformation matrix, the splitting of the

Wyckoff positions is directly calculated by the auxiliary

program Wyckoff-position splittings within the

program Minimal supergroups, and those supergroups

that split their Wyckoff positions into the occupied positions

of the root structure are selected. Note that the calculated

splitting of the Wyckoff positions has to be checked against

the occupied positions in the root structure along with all its
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Table 1
The twinning operation gi and polarization vector Pi for each of the
domain states Si for the phase transition Pm�33m (No. 221)�! P4mm (No.
99) of BaTiO3.

Twinning operation (gi)

Domain state Coordinate triplets Seitz symbols Polarization

S1 (x, y, z) {1 j 0}
0

0

V

0
@

1
A

S2 (�xx, �yy, �zz) f�11 j 0g
0

0

�V

0
@

1
A

S3 (z, x y) {3+
j 0}

V

0

0

0
@

1
A

S4 (�zz, �xx, �yy) f�33þ j 0g
�V

0

0

0
@

1
A

S5 (y, z, x) {3� j 0}
0

V

0

0
@

1
A

S6 (�yy, �zz, �xx) f�33� j 0g

0

�V

0

0
@

1
A

1 The book by Müller is also available in German (Symmetriebeziehungen
zwischen verwandten Kristallstrukturen; Vieweg+Teubner, 2012) and in
Spanish (Relaciones de simetrı́a entre estructuras cristalinas; Sı́ntesis, 2013).



symmetry-equivalent structures as calculated by applying the

Euclidean normalizer, using the program Normalizers (see

Section 2.3). The search then continues upward until the

highest possible structure type whose space groups do not

have any supergroups fulfilling the conditions for the splitting

of the Wyckoff positions is reached. In addition to these

symmetry conditions, one has to take into account that a

higher-symmetry phase can only be reached if the strain and

the atomic displacement relating the two structures are small

enough [see Capillas et al. (2007)]. More detailed information

about the procedure for deriving and constructing group–

supergroup trees is provided by Kitaev et al. (2015).

Let us construct the group–supergroup tree ascending from

a root structure of KCuF3 belonging to the space group

I4/mcm (No. 140) with the atoms occupying the 4a, 4d, 4b and

8h Wyckoff positions. The space group I4/mcm has three

minimal supergroups: Fm�33c (No. 226), P4/mmm (No. 123) and

I4/mcm (No. 140). I4/mcm does not satisfy the Wyckoff-posi-

tion splitting conditions, and thus the upward transition into a

structure type with space group I4/mcm is forbidden, as shown

in Fig. 16. Upward in this tree, there is only one supergroup for

the space group Fm�33c and three for P4/mmm. Among these

four supergroups only Pm�33m (No. 221) meets the splitting

conditions of the Wyckoff positions for both Fm�33c and P4/

mmm. In the next step, the two supergroups of the group

Pm�33m do not satisfy the splitting conditions of the Wyckoff

positions. Therefore the Pm�33m: 1a, 1b, 1c structure type

should be considered as the archetype for the I4/mcm: 4a, 4d,

4b, 8h structure type.

Note that there are cases in which the use of non-standard

settings is more convenient for describing the symmetry

relationships between crystal structures clearly. The results of

the programs of the Symmetry Database should be used with

care, as the programs used the standard setting as a default.

6. Conclusions

The Symmetry Database forms part of International Tables for

Crystallography and hosts (i) crystallographic databases and

visualizers for the point and space groups and (ii) programs

and an interactive visualizer for studying the symmetry rela-

tions between space groups. These programs do not need local

installation; the only requirement is to be subscribed to the

online version of International Tables for Crystallography.

The Symmetry Database provides access to the generators,

general positions and Wyckoff positions for the point and

space groups, and enables transformation of this information

to different settings. Databases of the affine, Euclidean and

chirality-preserving Euclidean normalizers of the space groups

and of the maximal subgroups and minimal supergroups of the

space groups are included. There are programs for calculating

the supergroups of space groups of any index and for gener-

ating interactive graphs of maximal subgroups. Programs for

visualizing the symmetry elements and the stereographic

projections of the point groups and the general-position

diagrams of the space groups are also provided and may be

useful for teaching.

APPENDIX A
Some definitions and information on notation

This appendix is based on Chapters 1.3, 1.5 of 1.7 of the

Teaching Edition of International Tables for Crystallography

(2021) and Chapter 3.5 of ITA (see also Chapters 8.1, 8.2 and

8.3 of the 5th edition of International Tables for Crystal-

lography Volume A, 2006).

A1. Crystallographic symmetry operations

The notation for the space-group symmetry operations in

the Symmetry Database closely follows the conventions

adopted in ITA.

In order to describe the symmetry operations analytically,

one introduces a coordinate system fO; a; b; cg consisting of a

set of basis vectors a; b; c and an origin O. A symmetry

operation can be regarded as an instruction for how to

calculate the coordinates ~xx; ~yy; ~zz of the image point ~XX from the

coordinates x, y, z of the original point X.

The equations are

~xx ¼ W11 xþW12 yþW13 zþ w1;
~yy ¼ W21 xþW22 yþW23 zþ w2;
~zz ¼ W31 xþW32 yþW33 zþ w3:

ð8Þ

These equations can be written using the matrix formalism:

~xx ¼ Wx þ w ¼ ðW ;wÞx:

Here, the symmetry operations (W, w) are given in a matrix–

column form consisting of a (3 � 3) matrix (linear) part W and

a (3 � 1) column (translation) part w:
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Figure 16
The ascending group–subgroup tree for the I4/mcm: 4a, 4d, 4b, 8h root
structure constructed with the help of Minimal supergroups (see
Section 3.3) and Wyckoff-position splittings (see Section 3.1.1).
The archetype is shaded in grey, and dashed lines outline the structure
types into which transitions are forbidden.



ðW ; wÞ ¼

W11 W12 W13 w1

W21 W22 W23 w2

W31 W32 W33 w3

0
B@

1
CA: ð9Þ

The vertical line in equation (9) is to guide the eye and has no

mathematical meaning.

Apart from the matrix–column pair representation of

(W, w), a shorthand notation for the symmetry operations is

often used. It is obtained from the left-hand side of equation

(8) by omitting the terms with coefficients 0 and writing the

three different rows of equation (8) in one line, separated by

commas. For example, consider the last symmetry operation in

the general position list obtained by General position for

the space group P41 (No. 76):

~xx ¼ ðW ; wÞx ¼

0 1 0

�1 0 0

0 0 1

0
@

1
A

x

y

z

0
@

1
Aþ

0

0

3=4

0
@

1
A

would be ~xx = 0xþ 1yþ 0z, ~yy = �1xþ 0yþ 0z, ~zz =

0xþ 0yþ 1zþ 3=4. The shorthand notation for (W, w) thus

reads: y; x; zþ 3=4.

A2. Coordinate transformations: basic results

Let a coordinate system be given with a basis (a1, a2, a3) and

an origin O. The general (affine) transformation between two

coordinate systems consists of two parts, a linear part and a

shift of the origin.

(1) The linear part is described by a (3 � 3) matrix

P ¼

P11 P12 P13

P21 P22 P23

P31 P32 P33

0
@

1
A

that relates the primed (‘new’) basis ða01; a02; a03Þ to the

unprimed (‘old’) basis (a1, a2, a3) according to

a01; a02; a03ð Þ ¼ a1; a2; a3ð ÞP

¼ a1; a2; a3ð Þ

P11 P12 P13

P21 P22 P23

P31 P32 P33

0
B@

1
CA: ð10Þ

(2) A shift of the origin is defined by the shift vector

p ¼

p1

p2

p3

0
@

1
A:

The basis vectors a1, a2, a3 are fixed at the origin O while the

new basis vectors ða01; a02; a03Þ are fixed at the new origin O0. The

new origin has the coordinates (p1, p2, p3) in the old coordi-

nate system.

The general affine transformation of the coordinates of a

point X in direct space, given by the column

x ¼

x1

x2

x3

0
@

1
A;

is given by the following formula:

x 0 ¼ ðP; pÞ�1
x ¼ P�1x � P�1p ¼ P�1

ðx � pÞ: ð11Þ

The metric tensor G of the unit cell of the crystal lattice is

transformed by the matrix P as follows:

G 0 ¼ PtGP; ð12Þ

where G 0 represents the metric tensor of the new unit cell and

Pt is the transposed matrix of P.

The volume of the unit cell V changes with the transfor-

mation. The volume of the new unit cell V0 is obtained by

V 0 ¼ detðPÞV; ð13Þ

with det(P) being the determinant of the matrix P.

The matrix–column pairs of the symmetry operations are

also changed by a change of the coordinate system. If a

symmetry operation is described in the ‘old’ (unprimed)

coordinate system by the matrix–column pair (W, w) and in

the ‘new’(primed) coordinate system by the pair ðW 0;w 0Þ,
then the relation between the pairs (W, w) and ðW 0; w 0Þ is

given by

ðW 0; w 0Þ ¼ ðP; pÞ�1
ðW ;wÞðP; pÞ: ð14aÞ

This equation may be written more explicitly as follows:

ðW 0; w 0Þ ¼ ðP�1WP;P�1
ðwþ ðW � IÞpÞÞ: ð14bÞ

A3. Group–subgroup relations of space groups

A3.1. Basic definitions. A subsetH of elements of a group G

is called a subgroup of G (G>H) if it fulfils the group

postulates with respect to the law of composition of G. In

general, the group G itself is included among the set of

subgroups of G, i.e. G � H. If G>H is fulfilled, then the

subgroup H is called a proper subgroup of G.

Let H<G be a subgroup of G of order jHj. Because H is a

proper subgroup of G there must be elements gq 2 G that are

not elements of H. Let g2 2 G be one of them. Then the set of

elements g2H ¼ f g2hj j hj 2 H g
2 is a subset of the elements of

G with the property that all its elements are different, and that

the setsH and g2H have no element in common. Thus, the set

g2H also contains jHj elements of G. If there is another

element g3 2 G that belongs neither to H nor to g2H, one can

form another set g3H ¼ f g3hj j hj 2 ½H g. All elements of g3H

are different and none occurs already in H or in g2H. This

procedure can be continued until each element of G belongs to

one of these sets. In this way the group G can be partitioned

into sets (called cosets) such that each element g 2 G belongs

to exactly one of these cosets.

The partition just described is called a decomposition

(G : H) into left cosets of the group G relative to the group H.

G ¼ H [ g2H [ . . . [ giH: ð15Þ

The sets gpH, p ¼ 1; . . . ; i are called left cosets because the

elements hj 2 H are multiplied with the new elements from

the left-hand side. The procedure is called a decomposition
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2 The formulation g2H ¼ f g2hj j hj 2 H g means g2H is the set of the products
g2hj of g2 with all elements hj 2 H.



into right cosetsHgs if the elements hj 2 H are multiplied with

the new elements gs from the right-hand side.

G ¼ H [Hg2 [ . . . [Hgi: ð16Þ

The elements gp or gs are called the coset representatives. The

number of cosets is called the index ½i� ¼ jG : Hj of H in G.

The coset representative g1 is always taken as the identity

element g1 ¼ ðI; oÞ.
Two subgroupsHj;Hk <G are called conjugate if there is an

element gq 2 G such that g�1
q Hj gq ¼ Hk holds. In this way, the

subgroups of G of the same space-group type and index are

distributed into classes of conjugate subgroups that are also

called conjugacy classes of subgroups. Different conjugacy

classes of subgroups may contain different numbers of

subgroups, i.e. have different lengths.

A subgroupH of a group G is a normal (invariant) subgroup

H / G if it is identical to all of its conjugates, g�1
q Hgq, for all

gq 2 G, i.e. if its conjugacy class consists of the one subgroupH

only (sometimes called also a self-conjugated subgroup).

A3.2. Type of subgroups of space groups. The following

types of subgroups of space groups are to be distinguished

(Hermann, 1929):

(i) A subgroup H of a space group G is called a

translationengleiche (equi-translational) subgroup or a t-

subgroup of G if the set T (G) of translations is retained, i.e.

T ðHÞ ¼ T ðGÞ, but the number of cosets of the decomposition

[G : T ðGÞ], i.e. the order of the point group PG, is reduced.

(ii) A subgroup H<G of a space group G is called a

klassengleiche (equi-class) subgroup or a k-subgroup if the set

T ðGÞ of all translations of G is reduced to T ðHÞ< T ðGÞ but all

linear parts of G are retained. Then the number of cosets of the

decompositions (H : T ðHÞ) and (G : T ðGÞ) is the same, i.e. the

order of the point group PH is the same as that of PG.

(iii) A klassengleiche or k-subgroup H<G is called

isomorphic or an isomorphic subgroup if it belongs to the

same affine space-group type (isomorphism type) as G.

(iv) A subgroup of a space group H<G is called general or

a general subgroup if it is neither a translationengleiche nor a

klassengleiche subgroup. It has lost translations as well as

linear parts, i.e. T ðHÞ< T ðGÞ and PðHÞ<PðGÞ.
Any subgroup H of a group G is related to a specific subset

of elements of G and this subset defines the subgroup

uniquely: different subgroups of G, even those isomorphic to

H, correspond to different subsets of the elements of G.

In the Symmetry Database any subgroupH of a space group

G is specified by its space-group number in ITA, the index in

the group G and the transformation matrix–column pair (P, p)

that relates the standard bases ða; b; cÞH of H and ða; b; cÞG of

G:

ða; b; cÞH ¼ ða; b; cÞGP: ð17Þ

The column p = (p1, p2, p3) of coordinates of the origin OH of

H is referred to the coordinate system of G.

The subgroup data listed in the Symmetry Database, i.e. the

space-group type of H and the transformation matrix (P, p),

are completely sufficient to define the subgroup uniquely: the

transformation of the coordinate triplets of the general posi-

tion ofH (in the standard setting) to the coordinate system of

G by (P, p)�1 yields exactly the subset of elements of G

corresponding to H.

A very important result on group–subgroup relations

between space groups is given by Hermann’s theorem: For any

group–subgroup chain G>H between space groups there

exists a uniquely defined space groupM, called the Hermann

group, with G �M � H, where M is a translationengleiche

subgroup of G and H is a klassengleiche subgroup ofM. The

decisive point is that any group–subgroup relation between

space groups G>H of index [i] can be split into a translatio-

nengleiche subgroup chain between the space groups G andM

and a klassengleiche subgroup chain between the space groups

M and H. This implies that the index [i] can be expressed as

[i] = [ik] � [it], where [ik] and [it] are the indices characterizing

the klassengleiche and translationengleiche subgroup chains,

respectively.

It may happen that either G ¼M or H ¼M holds. In

particular, one of these equations must hold if H<G is a

maximal subgroup of G. In other words, a maximal subgroup of

a space group is either a translationengleiche subgroup or a

klassengleiche subgroup, never a general subgroup.

If the maximal subgroups are known for each space group,

then in principle each non-maximal subgroup of a space group

G with finite index can be obtained from the data for the

maximal subgroups. A non-maximal subgroup H<G of finite

index [i] is related to the original group G through a chain of

maximal subgroups Z1, Z2, Z3; . . . ;Zk�1, Zk such that

H ¼ Zk <Zk�1 < . . . <Z1 <Z0 ¼ G, where Zj is a maximal

subgroup ofZ j�1 of index [ij] with j = 1, . . . , k. The number k is

finite and the relation ½i� ¼
Qk

j¼1½ij� holds, i.e. the total index [i]

is the product of the indices [ij]. [In general, several chains of

maximal subgroups relating the group G and its subgroup H

could exist. However, the total indices of H in G calculated

over the different chains should coincide with the index of H

in G. The transformation matrices (P, p) for the symmetry

reduction G>H calculated over the different chains could

differ up to a matrix belonging to the normalizer of H.]

In a similar way, one can express the transformation matrix

(P, p) for the symmetry reduction G�!H as a product of the

transformation matrices ðP; pÞj characterizing each of the

intermediate steps Zj�1 >Z j: ðP; pÞ = ðP; pÞ1ðP; pÞ2 � � � ðP; pÞk
[here the matrices ðP; pÞj relate the bases of Z j�1 and Zj, i.e.

ða; b; cÞj ¼ ða; b; cÞj�1Pj].

A3.3. Supergroups of space groups. In the previous section,

the relationH<G was seen from the viewpoint of the group G.

In this case H was a subgroup of G. However, the same rela-

tion may be viewed from the group H. In that case G>H is a

supergroup ofH. As for the subgroups of G, different kinds of

supergroups of H may be distinguished. The following defi-

nitions are obvious:

(i) Let H<G be a maximal subgroup of G. Then G>H is

called a minimal supergroup of H.

(ii) If H is a translationengleiche subgroup of G, then G is a

translationengleiche supergroup (t-supergroup) of H.

(iii) If H is a klassengleiche subgroup of G, then G is a

klassengleiche supergroup (k-supergroup) of H.
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(iv) If H is an isomorphic subgroup of G, then G is an

isomorphic supergroup of H.

(v) If H is a general subgroup of G, then G is a general

supergroup of H.

Following Hermann’s theorem, a minimal supergroup of a

space group is either a translationengleiche (t-supergroup) or a

klassengleiche supergroup (k-supergroup).

In general, the search for supergroups of space groups is

much more difficult than the search for subgroups. One of the

reasons for this is that the search for subgroups H<G is

restricted to the elements of the space group G itself, whereas

the search for supergroups G>H has to take into account the

whole (continuous) group of all isometries. For example, there

are only a finite number of subgroups H of any space group G

for any given index [i]. On the other hand, there may be not

only an infinite number of supergroups G of a space group H

for a finite index [i] but even an uncountably infinite number

of supergroups of H. As an example, consider the group

H ¼ P1. Then there is an infinite number of t-supergroups P�11
of index 2 because there is no restriction for the sites of the

centres of inversion and thus of the conventional origin of P�11.

A4. Normalizers of space groups

For any group–subgroup pair G<S it is possible to define

an intermediate group NSðGÞ, called the normalizer of G with

respect to S, as the set of all elements s 2 S that map G onto

itself by conjugation:

NSðGÞ ¼ fs 2 Sjs
�1
Gs ¼ Gg: ð18Þ

The normalizer NSðGÞ is an intermediate group between G

and S. It is the largest intermediate group that contains G as a

normal subgroup. The normalizer may coincide either with G

or with S.

For most crystallographic applications it is enough to

consider the normalizers with respect to three supergroups of

the space groups: the Euclidean group E is the set of all

transformations that preserve the distances and angles, which

are also known as isometries; the group Eþ is the set of all

chirality-preserving Euclidean mappings, i.e. the isometries of

the first kind (all translations and proper rotations, including

screw rotations); and the affine group A is the set of all affine

transformations – transformations that preserve angles but not

distances.

A4.1. Euclidean normalizer. The Euclidean normalizer of a

space group G is defined as the set of symmetry operations of

the Euclidean group E that leave the space group G invariant

by conjugation:

NEðGÞ ¼ fe 2 Eje
�1Ge ¼ Gg: ð19Þ

Each element of the Euclidean normalizer of a space group

maps the space group onto itself (as a set) by conjugation.

For most space groups, the Euclidean normalizers NEðGÞ

are also space groups and can be designated by Hermann–

Mauguin symbols. In the case of polar groups their normal-

izers contain continuous translations due to the fact that their

origins cannot be fixed by symmetry. The additional contin-

uous translations can be in one, two or three independent

lattice directions and they are used for the designation of the

normalizers of polar groups by modified Hermann–Mauguin

symbols. These symbols contain a superscript to the lattice

symbol (e.g. P1mmm), which indicates the number of inde-

pendent directions of continuous translations.

A4.2. Chirality-preserving Euclidean normalizer. The group

E
þ is the group of all chirality-preserving Euclidean mappings

and a subgroup of the Euclidean group E, i.e. the chirality-

preserving Euclidean normalizer NEþðGÞ is a subgroup of the

Euclidean normalizer NEðGÞ.

NEþðGÞ ¼ fe
0 2 E

þ
je0
�1
Ge0 ¼ Gg: ð20Þ

This normalizer is defined if G is a Sohncke space group, in

other words if G only contains symmetry operations of the first

kind (Flack, 2003).

Among the 230 space-group types there are 65 that belong

to a Sohncke space-group type. The Sohncke space-group

types are composed of 11 pairs of enantiomorphic or chiral

space-group types and the other 43 space-group types are

known as achiral. A space group is defined as chiral if its

Euclidean normalizer does not have any symmetry operation

of the second kind. The chirality-preserving Euclidean

normalizer NEþðGÞ coincides with the Euclidean normalizer

NEðGÞ for the 11 pairs of enantiomorphic space-group types.

This means that their normalizers only contain operations of

the first kind. For the rest of the space-group typesNEþðGÞ is a

non-centrosymmetric subgroup of index 2 of the Euclidean

normalizer.

A4.3. Affine normalizer. The affine group A is the group of

all affine mappings, a supergroup of the Euclidean group

E<A and of all space groups. The affine normalizer NAðGÞ is

constructed for each space group G in the following way:

NAðGÞ ¼ fa 2 Aja
�1
Ga ¼ Gg: ð21Þ

Either the affine normalizer of a group is a supergroup of the

Euclidean normalizer or they coincide, i.e. NAðGÞ � N EðGÞ.

For cubic, hexagonal, trigonal, tetragonal and some

orthorhombic space groups the Euclidean and affine normal-

izers coincide. For the remaining 38 orthorhombic space

groups the affine normalizer is isomorphic to the Euclidean

normalizer of highest possible symmetry. The affine normal-

izers of monoclinic and triclinic space groups are not

isomorphic to any space group and cannot be characterized by

a modified Hermann–Mauguin symbol. In these cases, the

affine normalizers are listed in parametric form (see Table

3.5.2.6 of ITA).
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