
Scalable SAT Solving and its Application

Zur Erlangung des akademischen Grades eines

Dr. rer. nat.

von der KIT-Fakultät für Informatik des

Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation

von

Dominik Pascal Schreiber
M.Sc., geb. 31. Juli 1994 in Stuttgart

Gemäß der Promotionsordnung vom 12. Januar 2017

Tag der mündlichen Prüfung: 17. November 2023

1. Referent: Prof. Dr. Peter Sanders

Karlsruher Institut für Technologie

Deutschland

2. Referent: Prof. Dr. Armin Biere

Albert-Ludwigs-Universität Freiburg

Deutschland

To my family

Abstract

The problem of propositional satisfiability (SAT) is to find a variable assignment
for a given propositional formula such that the formula evaluates to true or, if no such
assignment exists, to report that the formula is unsatisfiable. SAT solving has attracted
a great deal of attention due to its theoretical significance, its generic nature, and its
broad applicability to a wide range of problems. In this work, we target a number of
scalability challenges in the realm of applied SAT solving, guided by three research
questions: How can we efficiently exploit modern distributed computing environments
for SAT solving? How can we render SAT solving systems in such environments
trustworthy for critical applications? And: How can complex applications make
more efficient use of SAT solvers in order to handle previously infeasible inputs? We
present contributions which address these questions with the methodology of algorithm
engineering, combining theoretic considerations with practical engineering.

First, we investigate the efficient scheduling of SAT tasks and other tasks with
unknown execution time in large distributed environments. Especially in on-demand
computing such as high performance computing (HPC) or cloud services, low scheduling
latencies and response times are desirable as well as resource efficiency and fairness.
We derive a decentralized scheduling approach which exploits malleability, i.e., the
ability of a task to handle a fluctuating amount of computational resources during its
execution. We derive fully scalable algorithms for our scheduling model and implement
practically efficient variations of them. In experiments on up to 6144 cores, our
approach results in scheduling latencies in the range of milliseconds and achieves
near-optimal system utilization.

Secondly, we explore the efficient parallelization of SAT solving itself. In particular,
we design a compact all-to-all clause sharing scheme which scales to thousands of
solvers. In experiments on up to 3072 cores, our approach combined with state-of-the-
art solver backends more than doubles the previously highest reported speedups in
general-purpose distributed SAT solving. Our approach has dominated the cloud track
(1600 hardware threads) of the renowned International SAT Competition four years in
a row while also proving highly competitive on a moderately parallel scale (64 hardware
threads). Within our job scheduling framework, we show that the combination of
parallel job processing and malleable SAT solving can achieve appealing speedups
while retaining good resource efficiency.

Thirdly, we address a major shortcoming of most parallel and distributed solvers,
namely their inability to produce certificates of unsatisfiability which limits their
trustworthiness. We propose the first feasible and scalable approach to generating proof

v

Abstract

certificates in massively parallel SAT solving. Our distributed algorithm essentially
rewinds the solving procedure and tracks the origin of all relevant shared clauses. With
reasonable overhead compared to our non proof producing solver, this approach is
able to efficiently generate proofs holding many gigabytes of compressed information.

Last but not least, we conduct a major case study on applied SAT solving. Specifi-
cally, we present a SAT-based approach to Totally Ordered Hierarchical Task Network
(TOHTN) planning—a popular branch of automated planning which provides a rich
framework to model complex hierarchical tasks. We present the first SAT encoding of
TOHTN problems which preserves a lifted, i.e., parametrized, problem description
and therefore avoids the combinatorial blowup which other SAT-based approaches
introduce. With an integrated approach that alternates between encoding and incre-
mental SAT solving, our approach generates formulas which are oftentimes smaller
by one to two orders of magnitude compared to prior SAT-based approaches. We
also present a way to process hierarchical planning problems on parallel hardware
using our job scheduling and malleable SAT solving framework. For this means, we
enable our system to support incremental SAT solving, rendering it the first large-scale
incremental SAT solver.

Put together, our work has led to substantial advances in scalable SAT solving and
its efficient application. We thus push the frontier of automated reasoning problems
that are feasible to solve in modern computing environments.

vi

Deutsche Zusammenfassung

Das Problem der aussagenlogischen Erfüllbarkeit (Propositional Satisfiability, SAT)
besteht darin, eine Variablenbelegung für eine gegebene aussagenlogische Formel zu
finden, sodass die Formel “wahr” ergibt, oder, wenn keine solche Belegung existiert, die
Unerfüllbarkeit der Formel zu attestieren. Das Lösen derartiger Probleme, genannt SAT
Solving, hat aufgrund seiner theoretischen Bedeutung, seiner generischen Natur und
seiner breiten Anwendbarkeit auf eine Vielzahl von Problemen viel Beachtung erlangt.
In dieser Arbeit widmen wir uns einer Reihe von Herausforderungen zur Skalierbarkeit
von angewandtem SAT Solving, geleitet von drei zentralen Forschungsfragen: Wie
können wir moderne verteilte Rechenumgebungen effizient für SAT Solving nutzen?
Wie können wir Systeme für SAT Solving in derartigen Umgebungen vollständig ver-
trauenswürdig machen, um deren Einsatz für kritische Anwendungen zu ermöglichen?
Und: Wie können komplexe Anwendungen effizienteren Gebrauch von SAT-Solvern
machen, damit zuvor unlösbare Probleme bewältigt werden können? Wir präsentieren
Beiträge, die diese Fragen mit der Methodik des Algorithm Engineering angehen und
dabei theoretische Überlegungen mit praktischer Entwicklungsarbeit verbinden.

Zunächst untersuchen wir die effiziente Verteilung von SAT-Problemen und von
ähnlichen Aufgaben mit unbekannter Ausführungszeit auf große verteilte Umgebungen.
Insbesondere bei On-Demand-Computing wie High Performance Computing (HPC)
oder Cloud-Diensten sind niedrige Latenzen und Reaktionszeiten ebenso erwünscht
wie Ressourceneffizienz und Fairness. Wir stellen einen dezentralen Scheduling-Ansatz
vor, der Verformbarkeit (malleability) ausnutzt, d.h. die Fähigkeit einer Berechnung,
während ihrer Ausführung mit einer fluktuierenden Anzahl von Rechenressourcen
umzugehen. Wir präsentieren vollständig skalierbare Algorithmen für unser Scheduling-
Modell und implementieren praktisch effiziente Varianten dieser Algorithmen. In
Experimenten mit bis zu 6144 Rechenkernen führt unser Ansatz zu Scheduling-Latenzen
im Bereich von Millisekunden und erreicht eine nahezu optimale Systemauslastung.

Zweitens untersuchen wir die effiziente Parallelisierung von SAT Solving selbst.
Insbesondere entwerfen wir einen kompakten Ansatz für globalen Klauselaustausch,
der für Tausende von Solvern geeignet ist. In Experimenten mit bis zu 3072 Kernen
hat unser Ansatz in Kombination mit modernen sequentiellen Solvern die bisher
höchsten berichteten Speedups von verteiltem anwendungsunabhängigem SAT Solving
mehr als verdoppelt. Unser Ansatz hat die Cloud-Kategorie (1600 logische Kerne) der
renommierten International SAT Competition vier Jahre in Folge dominiert und sich
auch auf moderat paralleler Hardware (64 logische Kerne) als äußerst konkurrenzfähig
erwiesen. Innerhalb unseres Scheduling-Systems zeigen wir, dass die Kombination aus

vii

Deutsche Zusammenfassung

paralleler Jobverarbeitung und verformbarem SAT Solving ansprechende Speedups
bei gleichzeitig guter Ressourceneffizienz erzielen kann.

Drittens befassen wir uns mit einer großen Einschränkung der meisten parallelen
und verteilten SAT-Solver, nämlich ihrer Unfähigkeit, Beweise für Unerfüllbarkeit zu er-
zeugen, was ihre Vertrauenswürdigkeit einschränkt. Wir stellen den ersten praktikablen
und skalierbaren Ansatz zur Erzeugung solcher Zertifikate bei massiv parallelem SAT
Solving vor. Gewissermaßen spult unser verteilter Algorithmus den Lösungsvorgang in
der Zeit zurück und verfolgt den Ursprung aller relevanten geteilten Klauseln. Mit einem
vertretbaren Zusatzaufwand im Vergleich zu unserem Solver ohne Beweis-Erzeugung
ist dieser Ansatz in der Lage, effizient Beweise auszugeben, die viele Gigabytes an
komprimierter Information enthalten.

Zu guter Letzt berichten wir von einer umfangreichen Fallstudie zu angewand-
tem SAT Solving. Konkret stellen wir einen SAT-basierten Ansatz für die Planung
von hierarchischen Aufgabennetzwerken mit totaler Ordnung (Totally Ordered Hier-
archical Task Networks, TOHTN) vor — ein beliebter Zweig der automatisierten
Planung, der reichhaltige Möglichkeiten für die Modellierung komplexer hierarchi-
scher Planungsaufgaben bereit hält. Wir präsentieren die erste SAT-Kodierung von
TOHTN-Problemen, die eine geliftete, d.h. parametrisierte Problembeschreibung bei-
behält und daher die kombinatorische Vergrößerung der Eingabe vermeidet, die andere
SAT-basierte Ansätze mit sich bringen. Mit einem integrierten Ansatz, der zwischen
Kodierung und inkrementellem SAT Solving alterniert, erzeugt unser Ansatz For-
meln, die im Vergleich zu vorherigen SAT-basierten Ansätzen oft um ein bis zwei
Größenordnungen kleiner sind. Wir stellen auch eine Möglichkeit vor, hierarchische
Planungsprobleme auf paralleler Hardware zu verarbeiten, indem wir unser Scheduling-
und SAT-Solving-System verwenden. Im Rahmen dieser Bemühung haben wir unser
System um die Unterstützung von inkrementellem SAT Solving erweitert, was es zum
ersten inkrementellen SAT-Solver für große Systeme macht.

Insgesamt hat unsere Arbeit zu erheblichen Fortschritten bei skalierbarem SAT
Solving und dessen effizienter Anwendung geführt. Damit erweitern wir den Horizont
der logischen Probleme, die in modernen Rechenumgebungen praktikabel lösbar sind.

viii

Acknowledgments

After five years of work,1 I am thrilled to release this dissertation. I sincerely hope
that its readers will find its contents satisfying. With this project coming to an end,
quite a few acknowledgments are in order.

First of all, I wish to thank the many people on whose shoulders I’ve been able to
stand, in particular the authors of all the great, openly available SAT solving systems
from the past and the present. Many thanks to Markus Iser for providing GBD—a
benchmark database which makes instance-specific analyses in SAT research possible
for a newcomer without despairing—and many thanks to all the organizers of the past
years’ SAT Competition, who helped my research and its visibility tremendously by
providing a public platform for distributed SAT solver performance. In particular, I
wish to thank Markus Iser and Tomáš Balyo for encouraging and motivating me to
submit my very preliminary HordeSat rework to the 2020 Competition.

During my research, I have been able to get in touch with several different (although
related) scientific communities, which I am very grateful for. Many thanks to my
dear co-authors Tomáš Balyo, Damien Pellier, Humbert Fiorino, Michael W. Whalen,
Marijn Heule, Benjamin Kiesl-Reiter, Dawn Michaelson, and of course Peter Sanders
for the pleasant cooperation. Among many other people I’ve been connecting with, I
would especially like to thank Gregor Behnke, Pascal Bercher, Martina Seidl, Max
Heisinger, and Armin Biere for fruitful and helpful exchanges.

I want to thank Peter Sanders for the great discussions, his ideas and encourage-
ments, and for the great freedom he entrusted me with to pursue not only our shared
research interests but also the ones I came up with myself. It is in large parts due to
him that I experienced my doctoral research not at all as a burdensome struggle—which,
unfortunately, is the case for way too many PhD students in Germany and around
the globe—but as a pleasant and fulfilling time. I also want to thank Armin Biere for
agreeing to be the second reviewer of my dissertation and for joining us in Karlsruhe
the day of my defense.

I wish to thank the many people who have kindly read and examined drafts of this
thesis and provided very helpful feedback: Lukas Hübner, Nikolai Mass, Tim Niklas Uhl,
Tobias Heuer, Tomáš Balyo, Matthias Schimek, Moritz Laupichler, Marvin Williams,
Markus Iser, Niko Wilhelm, as well as my dad Ekkehard, my mom Karin, my sister
Franziska, and my wife Isabel.

Many thanks to all of my colleagues, past and present, for their help and support,
many fruitful discussions, and for all the fun we had over the past years.

1
Three years, if subtracting the customary two years due to distributed programming.

ix

Acknowledgments

I also wish to thank all of my students—participants of the lectures Automated
Planning & Scheduling and Practical SAT Solving as well as participants of our SAT
solving seminars and the students who I supervised in the context of a qualification
thesis, research project or programming project. All of them have put in hard work for
our common projects, and it showed!

Many thanks to my friends in Karlsruhe, Backnang, and in the DMZ for always
having such a good time together and for a very enjoyable balance between earnest
discussions and utter nonsense.

Last but certainly not least, I wish to thank all of my family for their love and
incredible support. You are phenomenal! My final expression of thanks goes to my wife
Isabel, who went above and beyond to support me on the home stretch to finish this
thesis. Thank you so much!

This project has received funding from the European
Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (grant
agreement No. 882500).

Some of this work was performed on the supercomputer ForHLR funded by the
Ministry of Science, Research and the Arts Baden-Württemberg and by the Federal
Ministry of Education and Research.

Some of this work was performed on the HoreKa supercomputer funded by the Ministry
of Science, Research and the Arts Baden-Württemberg and by the Federal Ministry of
Education and Research.

The author gratefully acknowledges the Gauss Centre for Supercomputing e.V.
(www.gauss-centre.eu) for funding this project by providing computing time on the
GCS Supercomputer SuperMUC-NG at Leibniz Supercomputing Centre (www.lrz.de).

x

www.gauss-centre.eu
www.lrz.de

Table of Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 4
1.3 Methodology . 4
1.4 Contributions . 5
1.5 Chapter Overview . 7
1.6 Reading This Thesis . 7

2 Preliminaries and Related Work 9
2.1 Parallel Processing . 9

2.1.1 Parallel Hardware . 9
2.1.2 Distributed Computing . 10
2.1.3 Assessing Parallel Algorithms . 11

2.2 SAT Fundamentals . 12
2.2.1 The SAT Problem . 12
2.2.2 Complexity . 13
2.2.3 Sequential Algorithms . 13
2.2.4 Certified Unsatisfiability . 20
2.2.5 Applications . 21
2.2.6 Extensions . 22

2.3 Parallel SAT Solving . 24
2.3.1 Explicit Search Space Partitioning 24
2.3.2 Solver Portfolios . 26
2.3.3 SAT Solving in Distributed Systems 31
2.3.4 Parallel Certified SAT Solving 33

2.4 Pragmatics of SAT Solving . 33
2.4.1 File Formats and Standards . 34
2.4.2 Evaluating SAT Solving Performance 34
2.4.3 International SAT Competition 37

3 Decentralized Scheduling of Malleable NP-hard Tasks 41
3.1 Introduction . 41
3.2 Foundations . 43
3.3 Problem Statement . 44
3.4 Approach . 45

3.4.1 Calculation of Fair Volumes . 45

xi

Table of Contents

3.4.2 Assignment of Jobs to Processes 47
3.4.3 Reuse of Suspended Workers . 51

3.5 The Mallob System . 52
3.5.1 Overview . 52
3.5.2 Communication . 54
3.5.3 Applications . 55

3.6 Evaluation . 57
3.6.1 Setup . 57
3.6.2 Uniform Jobs . 58
3.6.3 Impact of Priorities . 59
3.6.4 Realistic Job Arrivals . 60

3.7 Conclusion . 63

4 Scalable Distributed SAT Solving 65
4.1 Introduction . 65
4.2 Overview . 67
4.3 Clause Sharing . 68

4.3.1 Design Decisions . 68
4.3.2 Clause Exchange Operation . 69
4.3.3 Clause Buffering . 73
4.3.4 Clause Filtering . 74
4.3.5 Compensating for Unused Sharing Volume 77
4.3.6 Handling LBD Values . 78

4.4 Achieving Diversity . 79
4.4.1 Solver Portfolio . 79
4.4.2 Diversification Techniques . 80

4.5 Technical Improvements . 82
4.5.1 Memory Awareness . 82
4.5.2 Preemption of Solvers . 82

4.6 Evaluation . 83
4.6.1 Experimental Setup . 83
4.6.2 SAT Solving Configuration . 84
4.6.3 Scaling and Speedups . 90
4.6.4 Performance Insights . 94
4.6.5 Malleable SAT Solving . 97
4.6.6 Massively Parallel Processing of SAT Jobs 98

4.7 MallobSat in the International SAT Competition 100
4.7.1 Setup . 101
4.7.2 By-year Discussion . 101

4.8 Conclusion . 105

5 Unsatisfiability Proofs for Distributed SAT Solving 107
5.1 Introduction . 107
5.2 Proof Formats . 109

xii

Table of Contents

5.3 Basic Proof Production . 110
5.3.1 Partial Proof Production . 111
5.3.2 Partial Proof Combination . 111
5.3.3 Proof Pruning . 112

5.4 Distributed Proof Production . 112
5.4.1 Overview . 113
5.4.2 Clause ID Alignment . 113
5.4.3 Rewind Algorithm . 114
5.4.4 Correctness . 115
5.4.5 Analysis . 117
5.4.6 Merging Step . 117

5.5 Implementation . 118
5.6 Evaluation . 119

5.6.1 Experimental Setup . 119
5.6.2 Results . 120

5.7 Conclusion . 125

6 Lifted Hierarchical Planning: A Case Study in Applied SAT 127
6.1 Introduction . 127
6.2 Preliminaries . 129

6.2.1 TOHTN Planning . 129
6.2.2 Grounding . 133
6.2.3 SAT-Based Planning . 134
6.2.4 Lifted Encodings . 135

6.3 Planning Approach . 136
6.3.1 Instantiation . 136
6.3.2 Reachability Analysis for Facts and Operations 141
6.3.3 Shared Pseudo-Constants and Dominated Operations 144

6.4 Encoding . 145
6.4.1 Base Encoding . 145
6.4.2 Optimizations . 150
6.4.3 Decoding a Plan . 151
6.4.4 Correctness . 152
6.4.5 Complexity . 152

6.5 Plan Improvement . 154
6.6 Evaluation . 155

6.6.1 Implementation . 155
6.6.2 Lilotane as a SAT-Based HTN Planner 155
6.6.3 International Planning Competition 2020 159
6.6.4 Follow-Up Evaluation . 161

6.7 Conclusion . 163

7 Distributed Incremental SAT Solving for Hierarchical Planning 165
7.1 Introduction . 165
7.2 Requirement Analysis . 166

xiii

Table of Contents

7.3 Approach . 167
7.3.1 Incremental Jobs in Mallob . 167
7.3.2 Incremental SAT Solving Engine 169
7.3.3 Reducing Revision Turnaround Times 169

7.4 Evaluation . 169
7.4.1 Results . 170

7.5 Conclusion . 174

8 Conclusion 177
8.1 Conclusion . 177
8.2 Impact . 178
8.3 Future Work . 179

9 Appendix 185
A Online Repository: Software and Experimental Data 185
B Scalable SAT Solving: Supplementary Material 185
C Distributed UNSAT Proofs: Supplementary Material 188
D Lilotane: Formal Definitions and Proofs 188

D.1 Hierarchical Solutions . 188
D.2 Reachability Analysis . 189
D.3 Correctness of Encoding . 189

E Lilotane: Derivation of Complexity Results 195
E.1 Number of Variables . 195
E.2 Number of Clauses . 196

F Lilotane: Supplementary Figures . 198

List of Acronyms 201

Publications and Supervised Theses 203

Bibliography 207

xiv

1
Chapter 1

Introduction

The thesis at hand addresses a number of scalability challenges in the
realm of propositional satisfiability (SAT) solving and its application. This
chapter serves as an introduction to this thesis. We explain the context
of our research, its motivation, and its necessity. We outline our general
methodology and provide a problem statement in the shape of three research
questions. We then provide a brief overview of each subsequent chapter,
describing our approaches and mentioning central results obtained. Lastly,
we give some advice for how to read and traverse this thesis.

1.1 Motivation

For over two millennia, philosophers and mathematicians have been concerned with
how to formalize and analyze logical reasoning [Smi22]. To arrive in today’s age of
ubiquitous computing, a fundamental cornerstone of this journey was George Boole’s
Mathematical Analysis of Logic, which introduced a formalization that we know today
as Boolean algebra [Boo47]. Variables in this algebra may only take one of two values,
true or false. Junctors such as NOT (¬), AND (∧), and OR (∨) allow to build
compound expressions. For example, the statement “If it does not rain and my bike is
intact, I will go swimming.” can be written as the following Boolean expression:

Rain ∨ ¬BikeIntact ∨ Swim

We call such a disjunction (∨) of Boolean variables or their negation a clause. The
above clause is always true except for a single case: It does not rain, the person’s
bike is intact and yet they do not go swimming.

Boolean algebra has become an essential tool in modern sciences, in particular
as a crucial foundation for the inner workings, design, and programming of comput-
ers [ORe21]. Likewise, the problem of trying to satisfy a given Boolean expression,
i.e., to assign a value to each variable such that the expression evaluates to true, has
become a fundamental problem of computer science. This Propositional Satisfiability
problem, abbreviated SAT, has attracted a great amount of attention not only due
to its theoretical significance [Coo71], being the “canonical” NP-complete problem
and therefore playing a central role in the famous P vs. NP problem [Coo00]. SAT
solving also means to reason over one of the most fundamental and generic forms of
knowledge representation and, therefore, can be applied to a wide range of problems.

1

1 Introduction

Circuit A

Circuit B

6=

∨
output

x1

xn

... (truth value)

6=

6=

6=

Figure 1.1: Encoding the (in-)equivalence of two circuits A and B as a SAT
instance [MG99]. The input bits x1 to xn (n = 4 in this example) are the Boolean
variables relative to which the circuits A and B are encoded. Further constraints
enforce that the entire expression is true if and only if the circuits’ outputs differ
in some bit. With some additional variables, all circuits and constraints can be
expressed as a conjunction (∧) of disjunctions (∨), i.e., clauses.

Over the last decades, increasingly efficient SAT solving approaches [SLM92; MS99;
Mos+01; ES04; AS09; Lia+16a; Cai+22] have enabled applications to use SAT as
a blackbox engine for disciplines as diverse as domain-independent automated plan-
ning [KS92] and scheduling [Gro+12], electronic design [MS00], verification [Cla+01],
cryptography [SNC09], theorem proving [HKM16], as well as knowledge compilation
and explainable AI [Dar20]. These applications, in turn, boosted attention and research
towards more efficient SAT solvers [Fro+21; Fic+23]. This positive feedback loop has
culminated in highly efficient and openly available software solutions (e.g., [Bie+20a])
which are capable of solving many challenging problems almost interactively.

Let us consider this year’s International SAT Competition (ISC) [Bal+23a] as
an example. One of the submitted solvers, Kissat MAB prop-no sym [Gao23],
was able to solve 84 out of 400 diverse benchmark problems in under ten seconds
each. 21 of these problems feature more than 100 000 clauses. One such problem’s
purpose is to check the logical equivalence of two arithmetic circuits [Bie16a]—a
natural application of SAT solving and an important building block for electronic
design automation [MG99]. Fig. 1.1 illustrates how such a problem can be encoded as
a SAT instance. The concerned instance1 has over 260 000 variables and over 845 000
clauses and is represented by 15.7MB of ASCII data. Kissat MAB prop-no sym

solved this instance in 1.33 s, reporting that it is satisfiable. Specifically, the solver
found a combination of input bits for which the compared circuits result in different
outputs, implying that they are not equivalent.

The above example illustrates the impressive best-case performance of today’s
sequential SAT solvers. In some other cases, however, the exponential complexity
of SAT solving algorithms becomes apparent. Continuing our example, the ISC
2023 also featured some logical equivalence checking problems which none of the 42
submitted sequential solvers was able to solve within 5000 s. One of these problems2

1g2-ak128astepbg2asisc.cnf
2multiplier 14bits miter 14.cnf

2

1.1 Motivation

Figure 1.2: Simplified visualization of
multiplier 14bits miter 14.cnf via
3dVis [Sin07]. Each vertex corresponds
to a variable. Two vertices are connected
whenever the two variables occur together
in some clause.

only features 4376 variables and 13 018 clauses. Fig. 1.2 shows a simplified visualization
of this problem. Since the encoded circuits are in fact equivalent, this problem is
unsatisfiable: The solver’s task is to construct a proof expressing that there is not a
single combination of input bits for which the circuits result in different outputs. This
task proves to be substantially more difficult than finding a single input with different
outputs in the earlier, much larger instance.

As it seems, no matter how efficient SAT solvers have become, there are always
relevant and reasonable problems which are infeasible to solve with the current state
of the art. One way to approach this gap is to consider an application’s perspective.
Orthogonal to advancing SAT solving itself, an equally active research topic in many
disciplines is to pursue new and innovative ways to encode application instances into
SAT problems—aiming to make optimal use of solvers and to push the frontier of
problems that are feasible to solve [TM12; ZK17; Gan+19; Sur+22; HB22].

Another way to render SAT solving more powerful is to exploit the increasing parallel
processing capabilities of modern computing environments [Lei+20]. First approaches
to parallel SAT solving emerged more than 20 years ago, explicitly subdividing the
work at hand by partitioning the search space of variable assignments [ZBH96; CW03;
LSB07]. While today’s successors to this parallelization paradigm have achieved
some famous results, such as solving some long-standing open problems of mathemat-
ics [HKM16; Heu18; SH23], they do not perform convincingly on other important
application problems [BS18]. We want to consider parallel SAT solving that is gen-
eral purpose, i.e., suitable for diverse and previously unseen application instances.
Today’s best approaches for general-purpose parallel SAT solving are clause-sharing
portfolios [HJS10; Bie10], where a diverse set of sequential solvers process the entire
problem in parallel and frequently exchange useful insights to the problem. Some
of these approaches show good practical performance for modest degrees of paral-
lelism, e.g., a few dozen cores [Bie16b; BF22b]. By contrast, modern computing
environments increasingly feature distributed computing with thousands of cores.

3

1 Introduction

Two important examples for this are High-Performance Computing (HPC) clusters, of-
ten referred to as supercomputers [SBA18], and cloud computing environments [Fos+08].
Prior SAT solving systems designed for such environments [ENS14; BSS15; EN19;
NCT19; HFB20] are quite limited in terms of scalability and for the most part cannot
make efficient use of a few hundred cores or more for average inputs.

In addition, it is still largely unclear how clause-sharing portfolios can be made
fully trustworthy. Modern sequential solvers are trustworthy in the sense that they
not only claim that a problem is unsatisfiable but provide an actual proof that can
be verified independently [Heu16]. Efficient parallel SAT solvers are still missing this
crucial feature (cf. [HMP14]), which impacts their viability for critical applications.
For these reasons put together, the prior state of the art in parallel and distributed
SAT solving is unsatisfactory in terms of its suitability for real-world applications.

1.2 Problem Statement

In this work, we target a number of scalability challenges in the realm of applied
SAT solving. We understand scalability as the degree to which an approach remains
effective and efficient when increasing the amount of computational resources and/or
the input size. In the context of our research, input size can also refer to the difficulty
of the problem we attempt to solve.

Specifically, our work is guided by the following three research questions:

(i) How can we efficiently exploit modern distributed computing environments for
SAT solving?

(ii) How can we render SAT solving systems in such environments trustworthy for
critical applications?

(iii) How can complex applications make more efficient use of SAT solvers in order
to handle previously infeasible inputs?

1.3 Methodology

Our approaches throughout this thesis are aligned with the methodology of Algorithm
Engineering (AE) [San09]. As Fig. 1.3 illustrates, AE can be seen as a cyclic process
which features the stages of modeling and design, theoretical analysis, implementation,
and experiments. From an epistemological point of view, AE is closely related to
Popper’s Scientific method [Pop34]: Traversing the AE cycle means to propose and
test falsifiable hypotheses, which can be disproven or supported (but not proven) by
empirical means—implementation and experiments. A central aspect of AE is that
applications of the researched algorithms are, quite literally, in the loop. Applications
should be considered for finding realistic models and can provide real-world inputs
for experiments. In turn, an algorithm’s implementation should yield practical and
reusable software modules (e.g., software libraries) whereas its theoretical analysis

4

1.4 Contributions

Design

Analysis

Implementation

Experiments
A

p
p
lic

a
tio

n
s

Realistic models

Real inputs

Performance
guarantees

Libraries

Falsifiable
hypotheses

Figure 1.3: The methodology of Algorithm Engineering—adapted and simplified
from Sanders [San09].

yields performance guarantees. With these principles, AE aims to bridge the gap
between classical algorithm theory and pragmatic engineering [San09].

1.4 Contributions

We now outline our contributions throughout this thesis.

Our first line of work is motivated by a simple insight: Scheduling and processing
many independent tasks in parallel can be much more efficient than using the same
resources to process a single task at a time, especially in cases where the used
parallelization does not scale linearly. Consequently, we investigate the efficient online
scheduling of SAT tasks and similar kinds of tasks with unknown execution time in
large distributed environments. Especially in on-demand computing such as HPC or
cloud services, low scheduling latencies and response times are as crucial as resource
efficiency and fairness [Fos+08]. We derive a scheduling approach which exploits
malleability, i.e., the ability of a task to support a fluctuating amount of processing
units during its execution. Each job in the system is represented as a binary tree
of processing units which can grow and shrink whenever necessary. Our approach is
fully decentralized: All processing units participate in a two-stage scheduling protocol
whenever the system state changes. First, the fair amount of resources for each job
is negotiated. Secondly, a mapping between jobs and processing units is found. We
show how this protocol can be realized with fully scalable algorithms and implement
practically efficient variations of these algorithms. In experiments on up to 6144 cores,
our approach results in scheduling latencies in the range of milliseconds and achieves
near-optimal system utilization whenever sufficient demand is present.

Secondly, we explore the efficient parallelization of SAT solving itself. As a point
of departure, we consider the massively parallel solver HordeSat [BSS15] which
executes hundreds of sequential SAT solvers and enables clause sharing among them.

5

1 Introduction

We propose a compact approach to clause sharing which maximizes the density and
utility of information that is exchanged across all solvers. We also present an exact
filtering approach for clauses shared repeatedly, take measures to reduce the memory
requirements of our system, and integrate state-of-the-art sequential solvers in our
portfolio. In experiments on up to 3072 cores (64 machines) our approach consistently
doubles the speedups which were previously the highest reported speedups for general-
purpose SAT solving [BSS15]. The implementation of our approach has been awarded a
total of 18 medals in four iterations of the International SAT Competition—dominating
the massively parallel (“cloud”) track on 1600 hardware threads and also proving
highly competitive on a moderately parallel scale (64 hardware threads). Within our
decentralized scheduling framework, we show in an experiment on 6400 cores that
malleable scheduling of SAT tasks can result in an appealing combination of significant
speedups, great resource efficiency, and full utilization of resources.

Thirdly, we address the question of trust in large-scale SAT solving. Whereas
sequential SAT solvers have been able for years to generate verifiable proofs for a
formula’s unsatisfiability [Heu21b], the most scalable parallel and distributed solvers
are still missing this crucial feature. This presents a pressing problem which reduces
the trustworthiness of modern distributed solvers. We propose the first feasible and
scalable approach to generating proof certificates in massively parallel SAT solving. We
introduce a distributed algorithm which essentially rewinds the solving procedure and
tracks the origin of each required clause with external-memory data structures. Our
implementation, based on our award-winning SAT solving engine, takes on average five
times its own solving time to assemble and check a proof for a formula’s unsatisfiability.

Fourthly, we present a major case study on applied SAT solving. Specifically, we in-
vestigate the SAT-based resolution of hierarchical planning problems. Totally Ordered
Hierarchical Task Network (TOHTN) planning is a popular branch of automated
planning which provides a rich framework to model complex hierarchical tasks [BAH19].
We are the first to propose a SAT encoding for TOHTN problems which keeps a lifted,
i.e., parametrized, problem description and therefore avoids the combinatorial blowup
that is usually introduced by generating a ground representation of the problem. With
an integrated approach of instantiating, encoding, and solving the problem hierarchy
layer by layer, our approach generates formulas which are oftentimes smaller by one to
two orders of magnitude compared to prior SAT-based approaches. Our implementa-
tion Lilotane scored the second place in the Total Order track of the International
Planning Competition (IPC) 2020. As such, we demonstrate how applications of SAT
can be made more scalable by considering radical new encodings and by carefully
engineering the encoding and solving approach as a whole.

Lastly, we present a way to process hierarchical planning problems on parallel
hardware with a combination of our contributions on job scheduling, SAT solving,
and SAT-based TOHTN planning. For this means, we enable our system to sup-
port incremental SAT solving, rendering it the (to our knowledge) first distributed
incremental SAT solver. In an experiment on 2348 cores, we connect hundreds of
concurrent planner processes to our scheduling and SAT solving platform, achieving
significant (albeit highly domain-dependent) speedups.

6

1.5 Chapter Overview

Put together, our contributions have substantially advanced the state of the art
in distributed SAT solving and its efficient application. As such, our work pushes
the frontier of automated reasoning problems that are feasible to solve in modern
computing environments. In turn, we also anticipate our work to enable advances in
fields which build upon SAT—such as Satisfiability Modulo Theories (SMT) solving,
Quantified Boolean Formula (QBF) solving, model checking, or automated planning.

1.5 Chapter Overview

The thesis at hand is structured as follows. Chapter 2 provides the necessary founda-
tions for our research, most notably parallel processing and SAT solving, and features
a unified discussion of related work. In Chapter 3, based on a Euro-Par conference
publication [SS22a] with added content, we present our work on decentralized schedul-
ing of malleable unpredictable jobs such as SAT tasks. Chapter 4 features our work
on rendering distributed SAT solving itself more scalable. This chapter is partly based
on a SAT conference publication [SS21b] and on technical reports to the International
SAT Competition 2020–2023 [Sch20; Sch21e; Sch22; Sch23]. It also features a sig-
nificant amount of original content. In Chapter 5, based on a TACAS conference
publication [Mic+23], we describe our efforts on producing proofs of unsatisfiability
with our solving system. In Chapter 6, based on a JAIR article [Sch21d], we present
a case study on efficient applied SAT solving in the context of hierarchical planning.
Chapter 7 extends this case study by connecting our planning approach with our job
scheduling and SAT solving system. In Chapter 8 we conclude the thesis, estimate
the impact of our work, and discuss directions for future work.

1.6 Reading This Thesis

We give some brief advice for how to read and traverse the thesis at hand.
The chapters are ordered in a way to minimize forward dependencies. For non-

chronological reading, individual chapters are as self-contained as possible but do
contain back references in particular to Chapter 2.

Names of major (software) systems are written in small capitals (e.g., HordeSat

or HyperTensioN) whereas smaller software tools are written in monotype format
(e.g., drat-trim). In the digital version of this document, relevant acronyms and
abbreviations (e.g., SAT or TOHTN) can be clicked and refer the reader to a glossary.
Similarly, citations link to the corresponding bibliography entry. In both the glossary
and the bibliography, each entry lists all pages where this entry was referenced, which
allows to backtrack to the prior position of reading.

Author’s Notes. At the beginning of most chapters, I include a small section providing
some context from my personal perspective. For the sake of transparency and good
scientific practice, I describe which parts of the respective chapter, if any, do not
originate solely from myself.

7

2
Chapter 2

Preliminaries and Related Work

This chapter establishes important foundations for the subsequent chapters.
First, we provide a brief overview of parallel and distributed processing
in the scope of this work. We then discuss foundations of (sequential)
SAT solving and outline some important applications and extensions before
proceeding with a discussion of parallel and distributed SAT solving. We
close with discussing some pragmatics of SAT solving research and practice.

2.1 Parallel Processing

In this section, we provide an introduction to parallel hardware and to distributed
computing. We also describe important notions to assess parallel algorithms.

2.1.1 Parallel Hardware

We now outline a model for the hardware which we consider throughout this work.

A single machine can feature multiple hardware threads which run in parallel.
These hardware threads are distributed over one or several sockets. Each socket can
feature several cores, which commonly feature one or two hardware threads each.
Exploiting two hardware threads of a single core at the same time can achieve some
concurrency, e.g., by hiding I/O latencies, but generally does not yield the same degree
of parallelization as using two distinct cores [Tau+02]. Fig. 2.1 (left) shows a schematic
example for such a machine with two sockets and two hardware threads per core.

Machines feature a memory hierarchy, where the time required to access memory
increases by several orders of magnitude for each further level in the hierarchy [San+19,
Sect. 2.2]. First of all, each core has exclusive access to a small amount of fast cache
memory. Secondly, all hardware threads have shared access to a larger amount of main
memory (or RAM). Multiple threads may read a location of main memory concurrently
but only a single thread may write to a certain location of main memory at a time.
Main memory can be used to synchronize and cooperate, e.g., using semaphores or
special fields which can be queried and modified atomically. Thirdly, all threads may
access disk memory—for our purposes an unlimited amount of persistent storage. On
machines with several sockets, regions of main memory may be associated with certain
sockets in a way that accessing another socket’s memory region incurs additional
latencies. This intricacy is known as Non Uniform Memory Access (NUMA) [Li+13].

9

2 Preliminaries and Related Work

Core

HT

HT

Core

HT

HT

Core

HT

HT

. . .

Socket

Random Access Memory (RAM)

Machine

Core

HT

HT

Core

HT

HT

Core

HT

HT

. . .

Socket

Machine

Process

Process

Process

.

.

.

Network

Machine

Process

Process

Process

.

.

.

Machine

Process

Process

Process

.

.

.

Figure 2.1: Example schematics for a single machine (left) and for distributed
machines (right). Cache memory is omitted for the sake of simplicity.

2.1.2 Distributed Computing

In addition to the described model for a single machine, we utilize multiple machines
in parallel. These machines do not share any memory.1 We logically subdivide each
machine into a number of processes, which are mapped in some way to the machine’s
cores. In particular, each process can be multi-threaded itself.

The processes communicate with each another with so-called message passing.
Specifically, we design our algorithms on top of the standardized Message Passing
Interface (MPI) of which several independent implementations exist (e.g., Open-
MPI [Gra+06], MPICH [GL96], and Intel MPI [Int23]). A message in the context of
this standard is a bundle of data addressed to a specific process and sent over a network.
Depending on the used computing environment, message passing may take place via
differing network interfaces, from ultra-rapid interconnects such as InfiniBand [Pfi01]
or OmniPath [Bir+15] with microsecond latencies to TCP/IP connections with larger
latencies by an order of magnitude [Lar+09]. Fig. 2.1 (right) provides a schematic
illustration of our communication model.

2.1.2.a Distributed Programming

For consistent exchange of messages, we address processes with unique ranks 0, . . . ,m−1
where m is the number of processes. Note that we occasionally use the term rank as a
synonym for the process with this rank. Message passing applications are commonly
implemented using the concept of Single Instruction, Multiple Data (SIMD): Each
process runs the same binary program but with different input data. In particular,
the processes’ ranks are used to diversify the program’s execution.

The concept of point-to-point message passing is commonly extended by ab-
stractions named collective operations [San+19]. A collective operation is a dis-
tributed computation enabled by message passing across a certain subset of processes.

1In some distributed systems, one or multiple shared (network) file systems are present which
can be used to exchange or accumulate data but are not suited for low-level communication or
synchronization across machines. Moreover, there are distributed computation models with shared
main memory on an abstract level (e.g., [Zhe+14]) which we do not cover in our work.

10

2.1 Parallel Processing

We now list some collective operations which we use in subsequent chapters. Assume
that P denotes the set of process ranks participating in a collective operation.

• Broadcast: A particular rank emits some data D. All ranks in P receive D.
• Reduce, All-reduce: Each rank i ∈ P contributes a value xi. Given an asso-
ciative operation ⊗, the result X ∶= ⊗

m−1
i=0 xi is computed. In a reduction, one

particular rank receives result X. In an all-reduction, all ranks in P receive X.
Note that an all-reduction is logically equivalent to a reduction onto a certain
rank followed by a broadcast to all other ranks.

• Gather, all-gather: Each participating rank i contributes a buffer bi. In a
gather operation, one particular rank receives the concatenation B ∶= b0 ○ b1 ○

. . . ○ bm−1. In an all-gather operation, all ranks in P receive this result B.
• Prefix sum: Given an associative operation ⊗ and an element xi on each rank
i ∈ P , a prefix sum yields the result ⊗i

j=0 xj (inclusive prefix sum) or ⊗i−1
j=0 xj

(exclusive prefix sum) on rank i. As such, a prefix sum has as many results as
there are participating processes, and each result represents the aggregation of a
prefix of the sequence ⟨x0, . . . , xm−1ð.

2.1.2.b HPC and Cloud Computing

A computing environment (or cluster) which allows to perform distributed compu-
tations on thousands, hundreds of thousands, or even millions of cores is commonly
called a supercomputer. Performing distributed computations on such a supercomputer
is referred to as High Performance Computing (HPC) [SBA18]. Providers of super-
computers optimize their systems for high-bandwidth, low-latency communication and
schedule user jobs in a way that utilization is maximized [YZ13]. Consequently, the
scheduling latency for a submitted user job can range from seconds to weeks depending
on the job’s scale and duration and the cluster’s utilization [Reu+18].

A related computation model which emerged in the last decades is called cloud
computing. Compute clouds are mostly commercially provided environments where
computational power is made available on demand and, from a user perspective, in a
nearly unlimited amount (within the user’s financial constraints) [MG11]. As a result,
user applications can be deployed and rescaled rapidly. In contrast to most HPC
environments, where users receive exclusive “bare-metal” access to physical machines,
application code run in a cloud environment is usually virtualized [MG11] which incurs
overhead in terms of startup time [XFJ16] and application performance [Exp+13]. In
addition, communication between (virtual) compute nodes can be considerably slower
than with the high-speed interconnects of HPC [Ost+10]. As such, transferring HPC
applications to clouds bears considerable challenges [Ost+10; Exp+13].

2.1.3 Assessing Parallel Algorithms

To analyze parallel and distributed algorithms from an asymptotic point of view,
we use the notions of work and span [Ble96]. The work of a distributed algorithm
is defined as the total complexity of local operations performed by all processes.

11

2 Preliminaries and Related Work

Next, consider a dependency graph induced by the data dependencies between all
operations across all processes. The span, or depth, of the algorithm is defined as the
length of a critical path through this graph from the input to the output data.

For example, consider a reduction of n numbers on n processes along a binary tree
of processes, i.e., each inner node receives partial results from its children and sends
its own partial result to its parent. The work is O(n) since each process performs a
constant number of operations. The span is O(logn) since the computation’s critical
path is to traverse the tree from the bottom up. Similarly, a prefix sum can be
implemented with O(n) work and O(logn) span, while broadcasting data of length
O(n) requires O(n2) work and O(n logn) span.

To assess our algorithms empirically, we use the notions of speedup and effi-
ciency [San+19, p.62]. If a parallel algorithm Apar on p cores has running time
Tpar(I, p) on an input I and the best available sequential algorithm Aseq for the same
problem has running time Tseq(I), we define the speedup s(I, p) ∶= Tseq(I)/Tpar(I, p).
If Aseq is substituted with the execution of Apar on a single processing unit, we use
the term self-speedup instead. The efficiency of Apar is given as E(I, p) ∶= s(I, p)/p.
A parallel algorithm has linear scaling if s(I, p) ∈ Θ(p) and scales perfectly if s(I, p) = p
(i.e., E(I, p) = 1). Superlinear speedups s(I, p) > p are possible if the parallel algorithm
profits from additional resources, e.g., having access to more main memory or cache
memory in total [San+19, p. 62]. Otherwise, scheduling the parallel execution threads
sequentially may in fact constitute a better sequential algorithm than Aseq.

A parallel algorithm is commonly evaluated for different values of p to observe how
its speedup and efficiency develop. If the work to be performed remains fixed, we use
the term strong scaling. If the work to be performed is increased proportional to p, we
use the term weak scaling (see [Gus88]). Intuitively, weak scaling accounts for the fact
that investing large amounts of resources is commonly tied to accordingly large inputs.

2.2 SAT Fundamentals

In the following, we aim to provide a mostly self-contained overview of the Boolean
Satisfiability problem, denoted SAT. We discuss essential sequential SAT solving
approaches, outline the concept of unsatisfiability certificates, and touch on some
applications and extensions of the SAT problem. For a comprehensive overview of
SAT solving, we refer to the Handbook of Satisfiability [Bie+21].

2.2.1 The SAT Problem

A Boolean variable is a variable which can only be true or false. A literal is a
Boolean variable or its negation. For each literal l we write the negation of l as l or
¬l. A clause is a disjunction of literals, i.e., a logical expression which evaluates to
true if and only if at least one of the literals in the clause is true. A Conjunctive
Normal Form (CNF) formula is a conjunction of clauses, i.e., a logical expression
which evaluates to true if and only if each of the clauses evaluates to true.

12

2.2 SAT Fundamentals

An assignment A for a logical expression F assigns values to some of the variables
occurring in F . A is partial if some variables in F are left unassigned, and A is total
otherwise. If A is total and F evaluates to true under A, then we write A ⊧ F and
say that A is a model for F or that A satisfies F . We refer to such an assignment
as a satisfying assignment (for F). A CNF formula F is satisfiable if and only if a
satisfying assignment to F exists. Otherwise, F is unsatisfiable.

An instance of the SAT decision problem is given as a CNF formula F .2 The task
is to decide whether F is satisfiable. We define the constructive SAT problem as an
extension of the SAT decision problem which additionally requires to output a satisfying
assignment A if F was found to be satisfiable. Likewise, we define the certified SAT
problem as an extension of the constructive SAT problem which additionally requires
to output an unsatisfiability certificate C if F was found to be unsatisfiable. Intuitively,
an unsatisfiability certificate is a chain of logical reasoning which the solver used to
derive unsatisfiability and which others can verify independently. We will introduce
unsatisfiability certificates more precisely in Section 2.2.4.

2.2.2 Complexity

One of the most famous results of theoretical computer science, Cook showed in 1971
that the SAT decision problem is NP-complete [Coo71]. This theorem consists of
two parts: The first part is that SAT is in the problem class NP, i.e., SAT can be
solved in polynomial time with a non-deterministic Turing machine. The second and
more intricate part of the theorem is that every other problem in NP can be reduced
to SAT in polynomial time: Intuitively, every problem in NP is at most as hard as
SAT, up to a polynomial-time transformation. Cook’s result implied that a feasible
(polynomial-time) algorithm processing SAT problems would also represent a feasible
algorithm for a rich class of other problems. The question whether such an algorithm
exists is equivalent to the P vs. NP problem, arguably the most famous open problem
of computer science [Coo00].

2.2.3 Sequential Algorithms

On the one hand, Cook’s result proved that SAT is a problem of fundamental and
generic nature to which a rich set of difficult problems can be reduced. On the other
hand, the result also implied that it would be impossible to solve SAT “efficiently”,
i.e., in polynomial time, unless P=NP.

Over the last decades, while P
?
=NP remained unsolved, research on SAT and

its solving approaches soared, leading to two encouraging insights. First, the ap-
plicability of SAT to other problems is not only of theoretical interest but can
be a practical approach to process a variety of combinatorial problems, such as
planning, scheduling, verification, cryptography, or design tasks (see Chapter 2.2.5).

2Any Boolean expression with common junctors (∧, ∨, implication, equivalence, XOR, etc.) of size
n can be transformed into a CNF formula of size O(n) by introducing helper variables [Tse83].

13

2 Preliminaries and Related Work

Secondly, it showed that SAT solving algorithms can be exponential in the worst case
and yet efficient on practical inputs [Fic+23]. In the following, we will touch on the
most crucial sequential SAT solving algorithms and techniques.

2.2.3.a DP and DPLL

The Davis-Putnam (DP) procedure [DP60] and its successor, the Davis-Putnam-
Logemann-Loveland (DPLL) algorithm [DLL62], form the basis for today’s most
efficient complete SAT solvers [DP21].

The DP procedure is an iterative procedure which, at its core, uses the inference rule
of resolution [Rob65]: Given two clauses c, c′ such that l ∈ c and l̄ ∈ c′ for some literal
l, the resolution rule states that the clause ĉ ∶= {c 8 l} ∪ {c′ 8 l̄} can be inferred. This
clause ĉ is called a resolvent. Given a CNF formula F , the DP procedure repeatedly
performs the following steps:3

• Unit propagation, also called unit resolution or Boolean Constraint Propaga-
tion [ZM88], extends a partial variable assignment A for F using a special case
of the resolution rule: In a clause c where one literal is unassigned and all other
literals are assigned to be false, the unassigned literal must be set to true to
satisfy c. Extending A this way can trigger additional clauses to satisfy this
condition. The rule is thus applied repeatedly until no eligible clauses remain.

• Pure literal elimination extends A by A(l) ∶= true for each literal l for which l̄

does not occur in F .
• Termination criteria: If A is total, i.e., if all variables are assigned, then F is
reported to be satisfiable with A as a witness. If a clause only features false
literals and no unassigned literals, then F is reported to be unsatisfiable. We
call the derivation of such an empty clause a conflict.

• Resolution for l ∶= v and l̄ = ¬v is applied to all eligible pairs of clauses, where
variable v is picked in some way at each resolution step. This step can add a
quadratic number of new resolvent clauses to F .

The most problematic aspect of the DP procedure is its space usage: Each time
another variable v is picked for resolution, the set of clauses may multiply in size,
which implies exponential space requirements.

DPLL [DLL62] addressed this problem of DP. In contrast to the iterative reasoning
procedure DP, the DPLL algorithm performs a backtracking search over the space of
partial variable assignments. Instead of explicitly generating all resolvent clauses for a
picked variable v, DPLL branches on v, i.e., the search is continued recursively for
A(v) ∶= true and for A(v) ∶= false respectively. Like DP, DPLL also incorporates
unit propagation and pure literal elimination in each iteration. The search terminates
if A is total, and the search backtracks on its last decision if a conflict arises. This
behavior corresponds to a kind of depth-first search which only requires additional
space in the depth of the search tree, i.e., in the number of variables. Unit propagation
and branching put together are sufficient to render DPLL complete both for satisfiable

3For the sake of consistent notation, we express DP and DPLL in terms of manipulating a partial
assignment A. The original formulations successively edited and simplified clauses.

14

2.2 SAT Fundamentals

problems (eventually reaching a satisfying assignment) and for unsatisfiable problems
(eventually having searched the entire tree).

2.2.3.b Conflict-Driven Clause Learning

The DPLL search algorithm was substantially refined by a number of different tech-
niques. The successor algorithm named Conflict-Driven Clause Learning (CDCL),
pioneered by the solver GRASP in the late 90s [MS96; MS99], is distinguished from
DPLL mainly based on two major interrelated advancements: clause learning and
non-chronological backtracking [MLM21]. We discuss some further important features
of today’s CDCL solvers, such as heuristics and restarts, thereafter in Section 2.2.3.c.

DPLL performs exhaustive search on the tree of variable decisions if F is unsatisfi-
able. Depending on the variable decision order, a lot of time can be spent searching
all branches of a large subtree and backtracking repeatedly even if the decision at
a subtree’s root already introduces a hidden contradiction to the problem [MS96].
CDCL incorporates the insights gained from conflicts to shortcut this search.

Each assignment to a variable v in our search is either due to a decision (a branching
point in our search tree) or due to subsequent (unit) propagation. We associate each
assignment to v with the number of decisions made so far, the decision level d ∈ N0.
For assignments due to propagation, we remember which assignment caused this
assignment to v. When encountering a conflict, we use this information to build a
causal network of assignments which caused this conflict. Such a network is a directed
acyclic graph (DAG) and is called an implication graph [DP21].

Fig. 2.2 shows an example for such an implication graph. We begin at decision
level 0 and make decisions A ∶= true, B ∶= true, C ∶= true. Our decision at level 3,
X ∶= true, implies Y ∶= true due to clause (iii), then Z ∶= true due to clause (v), and
finally a conflict due to clause (vii) becoming empty.

We can infer two valuable pieces of information from such an implication graph.
First, consider a cut of G that separates the conflict from the decisions which caused

it. The set of assignments with a cut outgoing edge imply a conflict and, therefore,
mark an unsatisfiable subspace of variable assignments. A clause which consists of
these literals in negated form is a constraint forbidding this subspace for the subsequent
search. We can add this conflict clause to the set of problem clauses, not unlike the
addition of resolvents in the DP procedure. Fig. 2.2 shows three such cuts between
conflict {�} and its causes {A,X}. While any of the resulting conflict clauses can be
added to the problem, the most prominent strategy to choose a clause is the 1-UIP
learning scheme [Zha+01], where we cut the outgoing edges of the first assignment
(seen from the conflict side) that lies on all paths from the conflict to the last decision.
In our example, this strategy chooses conflict clause A(Y since assignment Y ∶= true

lies on all such paths and is closer to the conflict than the last decision X ∶= true

itself. There are many extensions and variants of clause learning. For example, clauses
can be minimized after learning [SB09], and the alternative All-UIP learning scheme
was recently found to reduce the size of learned clauses even further [FB21] and is
today used by the state-of-the-art solvers CaDiCaL and Kissat [BFH21].

15

2 Preliminaries and Related Work

(i)

(ii)

(iii)

(iv)

(v)

(vi)

(vii)

A ∨B

B ∨ C

A ∨X ∨ Y

A ∨X ∨ Z

A ∨ Y ∨ Z

A ∨X ∨ Z

A ∨ Y ∨ Z

0A

1B

2C

3X
3Y

3Z

3⊥

(iii)

(iii)

(v)
(vii)

(vii)

(vii)

(v)

A ∨X

A ∨ Y

A ∨ Y ∨ Z

Figure 2.2: Example adapted from Darwiche and Pipatsrisawat [DP21] of an
implication graph during CDCL conflict analysis. The problem is defined by
clauses (i)–(vii) on the right. Each circle represents a variable assignment and
contains the literal set to true and the decision level. Decisions are white,
propagated assignments are gray, and the conflict is orange. Each edge, i.e.,
implication is labeled with the clause responsible for the implication. Three cuts
of the implication graph and resulting conflict clauses are shown, colored in blue.

Secondly, an implication graph and a resulting conflict clause c indicate the decision
levels where the decisions resulting in the conflict were made. Non-chronological
backtracking is the method of backtracking directly to the decision level where c becomes
asserting, i.e., a unit clause [DP21]. In Fig. 2.2, non-chronological backtracking lets us
backtrack all the way to decision level 0 (last decision A ∶= true) where conflict clause
A(Y asserts Y due to unit propagation. While clause learning ensures that the subspace
identified as contradictory will not be visited again, non-chronological backtracking
ensures that search will immediately leave this subspace and continue in a more
promising branch. Non-chronological backtracking has been the undisputed backbone
of CDCL until Nadel and Ryvchin [NR18] challenged this view by combining non-
chronological and (a form of) chronological backtracking with promising results [MB19].
CaDiCaL [Bie18] and Kissat [Bie+20a] now use such a combination.

Beame et al. found that clause-learning solvers, under certain assumptions, can
find exponentially shorter proofs than DP or DPLL [BKS04]. Such considerations
have led some to view CDCL as a resolution engine instead of a search procedure. For
instance, Audemard and Simon remark that “[m]odern SAT solvers themselves share
fewer and fewer properties with their ancestor, the classical backtrack search DPLL
procedure” [AS12], and Huang notes how “clause learning SAT solvers [. . .] are now
understood as performing a form of resolution, something fundamentally different from
search (in the sense of backtracking search for satisfying assignments)” [Hua07].

2.2.3.c Advanced Techniques

Today’s CDCL SAT solvers are remarkably complex pieces of software which feature
a plethora of heuristics, techniques, and subprocedures in order to perform well on

16

2.2 SAT Fundamentals

diverse problems. In the following, we will highlight some of these advanced techniques
since this will also help understand how today’s solvers can be diversified effectively
(Section 2.3.2). For the most part, we will put a focus on the techniques which are
featured in Kissat [Bie+20a] and CaDiCaL [Bie17], arguably the best performing
sequential SAT solvers to date.

Efficient propagation. DPLL and CDCL solvers tend to spend the majority of time
on propagation [Mos+01; HMS10], i.e., applying a new variable assignment to the
entire formula and identifying clauses which become unit clauses. Therefore, in order
to obtain efficient solvers, propagation has been a popular subject of optimization
efforts. In particular, Moskewicz et al. [Mos+01] introduced a scheme where only
two literals are being watched per clause. For each literal a watcher list contains the
clauses in which this literal is being watched [ES04]. During propagation, only these
clauses need to be visited, and backtracking of decisions becomes essentially free with
this scheme. This technique has been refined over the last decades to achieve highly
efficient propagation for all types of clauses [Rya04; Bie10; Bie+20a].

Managing learned clauses. An important trait of CDCL solvers is to periodically
reduce the database of learned clauses. While learned clauses are crucial for CDCL,
too many of them can slow down propagation significantly and may eventually require
too much memory. For instance, Audemard and Simon proposed an aggressive deletion
strategy based on the Literal Block Distance (LBD) metric [AS09]. Given a conflict
clause c, the LBD or glue value of c is the number of distinct decision levels from
which the conflicting variable assignments originate. Audemard and Simon argued
and experimentally showed that clauses with lower LBD are much more likely to
help the subsequent solving procedure, in particular those with an LBD value of 2
(termed glue clauses). Their solver Glucose consequently deletes the “worse” half of
all learned clauses every 20000 + 500i conflicts (incrementing i each time) and was
shown to be highly competitive at the time [Le +09]. Following this success, most
CDCL solvers adopted the LBD metric for their solving strategy (e.g., Biere’s solvers
since 2010 [Bie10], CryptoMiniSAT [SNC09] and the MapleSAT family [Lia+16a]).
Many of them now follow a three-tier clause database management, where very low-
LBD clauses are kept indefinitely in the highest tier and other clauses are promoted
and demoted across tiers (and potentially removed) based on their participation in
recent conflicts [Oh15; Bie+20a]. The LBD metric is also used in further contexts such
as selecting clauses to be minimized [Luo+17], scheduling restarts [AS12], and deciding
which clauses to exchange across solvers in parallel SAT solving (see Section 2.3.2.b).

Variable decision heuristics. The choice of which literal to branch on during search is
crucial for SAT solving performance [Mos+01]. Since this choice is mostly treated as
two separate decisions—first deciding on a variable and then committing to a phase
(another term for the variable’s polarity)—we begin outlining crucial work on variable
decision heuristics and then continue with the selection of variable phases.

In order to select a variable to branch on, one of the most widely used heuris-
tics is the Variable State-Independent Decaying Sum (VSIDS) heuristic [Mos+01].

17

2 Preliminaries and Related Work

Moskewicz et al. introduced VSIDS with the solver Chaff [Mos+01]. VSIDS priori-
tizes literals which occurred in recently learned conflict clauses. This is achieved by
“bumping”, i.e., incrementing the scores of a learned clause’s literals and periodically
dividing all scores by some constant. A more efficient refinement of VSIDS was
proposed via Minisat [ES04] and termed Exponential VSIDS (EVSIDS) in subsequent
research [BF15]. Another popular decision heuristic is the Variable Move-To-Front
(VMTF) heuristic introduced with the solver Siege [Rya04] (see also [BF15]). The
idea of VMTF is to keep all variables in a list sorted by score in descending order and
to bump (a subset of) the variables occurring in a conflict clause by moving them to the
front of the list. More recently, Liang et al. [Lia+16a] proposed Learning Rate Branch-
ing (LRB), a branching heuristic designed to maximize the learning rate of the chosen
variable, i.e., its potential to generate learned clauses, with the use of Multi-Armed
Bandit models. This study created the MapleSAT solver family [Lia+16a]. The
solvers CaDiCaL and Kissat employ both EVSIDS and VMTF, switching between
them based on the solving mode (see below at “Restarts”).

Variable phases. To decide on a variable’s phase the first time it is selected for a
decision, static heuristics can be used, which are computed once and remain constant
throughout the solving progress. A popular example is the One-Sided Jeroslow-Wang
heuristic [JW90] which rates each literal according to the number and size of clauses
it occurs in. When branching over a variable several times (with backtracking in
between), the technique of phase saving has been established [PD07], where each
assignment is cached before backtracking and then later re-used as the variable’s
default phase. As such, a solver can remember partial solutions despite frequent
non-chronological backtracking, hence avoiding redundant work.

With the CaDiCaL solver in 2018, Biere introduced rephasing [Bie18] where
periodically (with increasing period) the stored phases of variables are manipulated in
different ways, including resetting each to its initial phase or flipping it. In addition,
in 2019 Biere introduced the concept of target phases [Bie19]: During backtracking, if
there is a large prefix in the solver’s trail (i.e., the sequence of decisions) which did not
cause any conflicts yet, then these assignments are stored as the target phases of the
respective variables, which are then used preferably during stable solving (see below
at “Restarts”). Biere considered target phases one of the most crucial improvements
to CaDiCaL [Bie19] and confirmed it to be an essential part of Kissat’s outstanding
performance on satisfiable instances [BF20].

Restarts. Gomes et al. [Gom+00] demonstrated that performing n runs of a ran-
domized backtracking search procedure (such as DPLL) results in a running time
distribution which exhibits heavy-tailed characteristics. In particular, the mean run-
ning time does not stabilize with an increasing number of runs n but tends to diverge.
For each run there is a non-negligible probability to exceed the mean by multiple
orders of magnitude. As a countermeasure, Gomes et al. suggested to introduce
periodic restarts to these procedures. For the case of SAT solving, a restart means
that all decisions the solver made are reset, while certain gathered information such
as heuristic scores may be kept. Restarts have been integrated in CDCL solvers,

18

2.2 SAT Fundamentals

where the database of learned clauses is preserved across restarts [Hua07]. Minisat

implemented restarts following a geometric series [ES04], first restarting after 100
conflicts and then multiplying this interval by 1.5 each restart. Huang identified the
Luby sequence [LSZ93] as promising for scheduling restarts [Hua07]. The Glucose

solver, by contrast, introduced aggressive and rapid restarts which contributed to
its outstanding performance on unsatisfiable instances [AS12]. Essentially, Glucose

restarts if the LBD of the X most recently learned clauses is considerably higher than
average (for X = 100 in version 2.0 and X = 50 in version 2.1). Since the resulting
frequent restarts can deteriorate performance on satisfiable instances, Audemard et al.
proposed to delay restarts if unusually many variables are assigned [AS12].

Oh [Oh15] further examined the different behavior of SAT solvers on satisfiable
versus unsatisfiable instances and proposed specialized strategies for each case, in
particular regarding restart scheduling. Oh suggested that overall solver performance
could be improved by interleaving these specialized strategies. Biere [Bie18; Bie19]
followed this suggestion and implemented in CaDiCaL and Kissat what he later
referred to as stable and unstable solving mode [Bie+20a]. In stable solving mode, the
solver is specialized to satisfiable instances; restarts are done rarely and variable scores
are updated smoothly using a EVSIDS-based heap. In unstable solving mode, the
solver is specialized to unsatisfiable instances; it restarts rapidly and updates variable
scores more aggressively with a VMTF-based queue of variables.

Pre- and inprocessing. Modern SAT solvers feature an ever increasing set of processing
techniques which promise to boost performance by applying transformations to the
input or the set of learned clauses. Such a technique is called preprocessing if it is
performed once prior to solving, and is often called inprocessing if it is interleaved
with the solving process [JHB12]. We only provide a few crucial examples for such
techniques and refer to the Handbook of Satisfiability [BJK21] for an overview of the
rich diversity of pre– and inprocessing in SAT solving.

Bounded variable elimination (BVE) [EB05] is a technique which, as Biere stated
in 2019, “remains the most important pre- and inprocessing technique” [Bie19]. A
variable x can be eliminated by applying the resolution rule for (x, x̄) exhaustively and
replacing the resolved clauses with the resolvents. Sometimes many resolvents can be
identified to be redundant, allowing to drop them instead [EB05]. Variable elimination
is bounded if it is enforced not to increase the volume of the formula [BJK21].

An central method related to simplifying the set of clauses is subsumption: A
clause C subsumes another clause C ′ if (interpreted as sets of literals) C ⊂ C ′. In this
case, C ′ can be replaced by C. Subsumption strategies can be categorized in forward
subsumption, checking if a given clause is subsumed by F , and backward subsumption,
checking if F features clauses which are subsumed by a given clause [BJK21].

Another approach to improve the quality of learned clauses is termed vivifica-
tion [Luo+17; Li+20], where SAT solvers attempt to subsume certain clauses (e.g.,
with a low LBD score [Luo+17]) by testing unit propagation on each clause’s literals
in a certain order [PHS08]. A closely related concept is that of clause strengthening,
which was proposed to be performed concurrently to the solving process [WH13b].

19

2 Preliminaries and Related Work

2.2.3.d Local Search

Contrary to CDCL solvers which explore the space of partial assignments, the idea of
local search solvers is to begin with a total (usually not satisfying) variable assignment
and to perform small modifications (“flips”) on the assignment such that the number
of unsatisfied clauses is minimized [HS00]. While local search approaches can solve
satisfiable instances this way, they cannot find unsatisfiability and are therefore
considered incomplete for the task of SAT solving [KSS21].

Since local search solvers work very differently from CDCL solvers, it can be
beneficial to schedule local search into CDCL solvers and either find satisfiability this
way or otherwise reuse the best found assignment as saved variable phases (and exploit
further statistics from local search) for the CDCL procedure [Cai+22].

For a recent and comprehensive overview of local search and other incomplete SAT
solving algorithms, we refer to the Handbook of Satisfiability [KSS21].

2.2.3.e Look-Ahead Solvers

A third kind of SAT solving algorithm is called look-ahead solving. The basic idea of
look-ahead solvers is to spend more effort on a single branching decision than CDCL
solvers do in order to arrive at a more informed decision [HvM21]. Specifically, a
potential branching variable is propagated through the formula to evaluate the impact
of the decision before actually committing to its assignment.

While they do not play a crucial role in our work, look-ahead solvers are an impor-
tant backbone for a particular parallelization approach to SAT solving (Cube&Conquer,
Section 2.3.1) since they can be used to recursively split a formula into many, sim-
ilarly difficult sub-formulas. For more details on look-ahead solving we refer to the
corresponding book chapter in the Handbook of Satisfiability [HvM21].

2.2.4 Certified Unsatisfiability

In Section 2.2.1, we defined the certified SAT problem where we extend the pure decision
problem by also requiring a justification for the found result. For the satisfiable case,
this is easy to achieve. All common SAT solving approaches conclude the satisfiability
of a formula by constructing a satisfying assignment. This assignment is suitable
as a justification since it can be verified in linear time by evaluating the formula on
the assignment. Many applications of SAT require the solver to report a satisfying
assignment since it can be decoded to a solution to the original problem at hand.

For the unsatisfiable case, the chain of logical reasoning which the solver followed
to arrive at the empty clause, showing unsatisfiability, needs to be considered as a
justification. In contrast to a satisfying assignment, this chain is not necessarily linear
in the problem input, and in fact, the resolution calculus used by common SAT solvers
can require an exponentially sized proof for certain inputs [Hak85; Heu21b].

Consider a formula F and a sequence of clauses C ∶= ⟨c1, c2, . . . , cnð learned by a
CDCL solver S while processing F . cn is the empty clause, i.e., the solver has derived

20

2.2 SAT Fundamentals

unsatisfiability for F . In order to verify that the result is correct, we can check for
each i ∈ {1, . . . , n} if ci is indeed a logical implication of the prior formula:

(F ∪

i−1

⋃
j=1

cj)
?

⇒ ci

Established clause learning as well as many clause-producing preprocessing tech-
niques have a convenient property named the Reverse Unit Propagation (RUP) prop-
erty [Van08]. For any clause found with RUP property, the above check can always be
achieved by means of unit propagation: We assert each literal of ci to be false and
then check if unit propagation leads to a direct conflict. In this case, we showed that
F ' ¬ci is unsatisfiable, hence ci is a logical consequence of F and S was correct to
derive it. If no conflict arises from unit propagation, ci is not a sound RUP clause and
we therefore reject the proof. Performing this check step by step for the entire sequence
C is a means of verifying the result of S. Later proof formats use refinements of RUP
to allow for more powerful reasoning and more efficient checking [Heu16; Cru+17].

Propagating each clause in C through F can be expensive, and for large derivations
we cannot keep the entirety of F ∪C in memory. Therefore, a popular extension of
proof formats is to support the deletion of clauses [Heu16]. Whenever S deletes a
clause, it logs this deletion just like it logs learned clauses. This deletion can then
be mirrored by the proof checker traversing the proof. A proof certificate now takes
the shape C ∶= ⟨a1, a2, . . . , an′ð where ai = (op, ci), op ∈ {add,delete}, and ci is a clause.
Outputting such a certificate C when reporting unsatisfiability solves a Certified SAT
problem instance according to our definition (Section 2.2.1).

2.2.5 Applications

The academic and industrial applications of SAT solving are numerous and diverse.
For example, SAT solving has been used successfully for automated planning [KS92]
and scheduling [Met+05], combinatorial design theory [Zha96], test pattern genera-
tion [SS97; Bie21], formal verification [Cla+01], electronic design automation [MS00],
cryptography [SNC09], theorem proving [HKM16], puzzle solving [Web05], social choice
theory [BGP17], design of data structures [WH20], knowledge compilation [Dar20],
and explainable AI [SS21a]. In the following we discuss two major disciplines, namely
formal verification and automated planning & scheduling, in some more detail.

Automated planning and scheduling. Automated planning is among the oldest and
most well-established branches of Artificial Intelligence (AI) and was one of the
earliest major applications of SAT solving [KS96]. In its classical formulation, a
planning problem consists of a set of world state features, a set of operators which
have certain preconditions and effects with respect to the current world state, as well
as an initial world state and a set of goals to reach. The task is to find a sequence
of operators which successively transform the initial state to a state where all goals
hold [GNT04]. Since automated planning is PSPACE-complete [Byl94], a planning
problem presumably cannot be encoded into a single polynomial sized SAT encoding.

21

2 Preliminaries and Related Work

Instead, the problem is iteratively re-encoded with an increasing number of steps until
the resulting formula is satisfiable [KS92; Rin14]. In addition to classical planning,
SAT solving has found application in non-deterministic planning [FG00], contingent
planning under uncertainty [ML03], multi-agent path finding [Sur12; Sur+22], temporal
planning [RG15], and hierarchical planning [MK98; Sch+19b]. We provide a more
in-depth introduction to (hierarchical) automated planning in Chapter 6.

Related to automated planning, scheduling problems commonly feature a number
of resources (e.g., machines) and a number of tasks which need to be executed on the
machines [Gra+79]. For many (mostly NP-hard) scheduling formalisms, SAT solving
is one of the most popular approaches to efficiently obtain schedules which satisfy all
problem constraints. It has been applied to open job shop problems [Kos+10], distrib-
uted real-time systems [Met+05], project scheduling [CV11], sport schedules [Zha02;
HBB12], and periodic event scheduling problems [Gro+12].

Formal verification. Generally speaking, formal verification aims to show the cor-
rectness of a certain program or model with respect to a certain specification. An
important branch of this discipline is called model checking, where a finite-state
transition system is analyzed for whether it behaves correctly [VWM15]. Planning
and model checking share structural similarities [GT99; KBS19]: Whereas classical
planning aims to find a goal in the space of world states, model checking aims to find a
counter-example to a model’s correctness in the space of model states. As in automated
planning, many SAT-based approaches to model checking impose a bound on the
depth up to which the transition system is explored [Bie+99]. This so-called bounded
model checking [Cla+01] has become one of the most essential techniques for formal
hardware [VWM15] and software [DKW08] verification. SAT-based methods are also
prevalent in unbounded model checking [McM03], information flow analysis [KMM13],
bug detection [XA05], and many other verification tasks. For further reading we refer
to Prasad et al. [PBG05], D’Silva et al. [DKW08], and Vizel et al. [VWM15].

2.2.6 Extensions

Due to the generic nature and wide applicability of SAT solving, a plethora of
extensions and generalizations of the SAT problem exist. For example, MaxSAT is the
optimization problem to SAT where the amount of (certain) unsatisfied clauses is to
be minimized [LM21]. Another important example are Satisfiability Modulo Theories
(SMT) which provide a powerful framework to generalize SAT to mathematical formulas
or even entire computer programs [Mon16]. In the following, we describe the concept
of incremental SAT solving and briefly touch on QBF solving.

2.2.6.a Incremental SAT Solving

Incremental SAT solving provides a popular interface for applications which make
internal use of SAT solving [AHL08; Liu+16; GB17; KBS19; Sch+19b; Sur+22].
Initially proposed by Een and Sörensson [ES03], today’s most widely used incremental
SAT solving model extends conventional SAT solving in two aspects. First, instead of

22

2.2 SAT Fundamentals

a single SAT solving call, a sequence of calls can be made to the same solver instance,
with the possibility to add new clauses in between solve calls. Each clause added once
is permanent and cannot be removed. Secondly, each solve call may be accompanied
by one or several assumption literals. An assumption (literal) is a unit literal which
the solver will consider to hold for the current solve call only. As such, while the set
of considered clauses is monotonic in the number of solve calls, assumptions can be
used to effectively activate or deactivate some previous clauses [ALS13].

This simple interface enables many useful interactions between an application
and a solver. For example, automated planning problems are commonly re-encoded
iteratively with an increasing number of permitted actions until a satisfiable assignment
can be found (Section 2.2.5). Incremental SAT solving allows to maintain and expand
a single formula, which renders the solving process more efficient [GB17; Sch+19a].
Many other applications can profit from this technique, e.g., model checking [ES03;
KBS19], multi-agent path finding [Sur+22], and formal grammar analysis [AHL08].
Other use cases of incremental SAT include searching for optimal solutions with
respect to some cost metric [Sch+19b] as well as interactively refining an under-defined
(relaxed) problem until a solution to the actual problem is found [Glo+19; FBS19c].

Compared to conventional SAT solving, an incremental solver is able to preserve its
knowledge base and, in particular, reuse conflict clauses from earlier solving iterations
[ES03]. In addition, incremental solving helps to avoid the repeated parsing and
preprocessing of similar sets of clauses [FBS19a]. On the other hand, assumption-based
incremental SAT solving can require more complex inprocessing techniques [FBS19a]
or limit their use, which can lead to worse performance in some cases [NR12].

On a technical level, the standard interface used by most applications of incre-
mental SAT solving is called IPASIR, a reverse acronym for Re-entrant Incremental
Satisfiability Application Program Interface [Bal+16]. IPASIR features a small set
of functions which an application can call to interact with a SAT solver, such as
adding literals/clauses to the problem, performing a solving attempt with a number
of assumptions, and querying the found satisfying assignment to a certain variable.
The SAT solver code is directly compiled into or linked with the application code.

Note that there is very few literature on parallel incremental SAT solving to our
knowledge. Wieringa and Heljanko [WH13a] presented asynchronous processing of
several increments for certain use cases on up to eight threads.

2.2.6.b QBF Solving

A Quantified Boolean Formula (QBF) is a CNF formula in which all Boolean variables
are quantified either universally (∀) or existentially (#) in a certain order [Bey+21].
As in SAT solving, the QBF problem is to decide whether the formula is satisfiable.
Constructing and reporting a satisfying assignment for a QBF is significantly more
complex than for a usual CNF since the assignment to each variable needs to be
expressed relative to the values of its preceding variables. QBF solving is the canonical
PSPACE-complete problem [GJ79] and has uses, among others, for automated plan-
ning [CFG13; SvdP22], explainable AI [DM21], and bounded model checking [DHK05].

23

2 Preliminaries and Related Work

For further information on QBF solving we refer to the corresponding chapter in the
Handbook of Satisfiability [Bey+21].

2.3 Parallel SAT Solving

We now turn to the parallelization of SAT solving. We focus on two orthogonal
parallelization approaches which together subsume the vast majority of parallel SAT
solvers, namely explicit search space partitioning approaches and portfolio approaches,
both with and without clause sharing across workers. After discussing the general
parallelization paradigms, we discuss SAT solving approaches specifically designed for
large distributed systems. Lastly, we discuss parallel certified SAT solving.

For a broad overview of early parallel SAT solvers with a finer taxonomy of
approaches than ours, we refer to Martins et al. [MML12]. A more recent but less
comprehensive overview of parallel SAT solving was given by Balyo and Sinz [BS18].

2.3.1 Explicit Search Space Partitioning

Since DPLL and CDCL are fundamentally based on the notion of searching the space
of (partial) variable assignments, a natural approach to parallel SAT solving appears to
be to parallelize this search itself. For many years, most parallel SAT solvers followed
this paradigm [BS18]. We now highlight a number of important works on this subject.

One of the first parallel SAT solvers in literature, named PSATO [ZBH96], in-
troduced the notion of guiding paths. A guiding path represents a path of decision
variables along the decision tree of a parallel DPLL procedure and tracks which nodes
along the path still need to be explored in the opposite direction. Multiple workers can
work independently on different guiding path prefixes, which is equivalent to assigning
a different partial assignment, i.e., a small number of assigned variables, to each worker.
Deriving the satisfiability of a subtree is equivalent to deriving the satisfiability of
the original problem via appending the partial assignment which corresponds to the
subtree. A subtree is pruned if it proves to be unsatisfiable, and pruning the root of
the tree implies that the input formula is unsatisfiable. Interestingly, this very early
work on parallel SAT solving already considered distributed computation, preemption
of solvers, and fault tolerance: Guiding paths are distributed by a leader node to all
workers,4 and bookkeeping the guiding paths the workers followed allows to resume
an interrupted or cancelled solving procedure later on [ZBH96].

Similar to PSATO, Böhm & Speckenmeyer introduced a parallel solver [BS96]
which assigns a certain subspace of assignments to each worker. However, their solver
performs a rebalancing of work whenever the estimated workload of a worker goes
below a certain limit. The workload is estimated based on the number of unassigned
variables. Rebalancing itself is performed based on prefix sums. Böhm & Speckenmeyer

4Note that most of the discussed work used the master/slave terminology, which we adjusted to
leader/worker to follow today’s naming conventions.

24

2.3 Parallel SAT Solving

reported near-linear speedups on particular kinds of formulas (random k-SAT and
Tseitin graph instances) for up to 256 processors.

Attention to parallel SAT solving soared in the 2000s. As an important cornerstone,
guiding path based solver PaSAT [SBK01] introduced clause sharing (then called lemma
exchange) to parallel SAT solving as an additional means to improve performance.
Intuitively, if a solver finds a conflict clause, then it may share this clause with the
other solvers in order to reduce redundant work. We discuss clause sharing in more
detail in the context of solver portfolios in Section 2.3.2.b.

The basic ideas of dynamic load balancing and clause sharing were adopted and
refined in subsequent works [CW03; BSK03; JLU05; LSB07]. Chrabakh and Wol-
ski [CW03] proposed to recursively split a subproblem once solving time surpasses
a certain threshold, and Blochinger et al. [BSK03] introduced load balancing via
randomized work stealing [BL99] to parallel SAT solving: If a worker runs out of
work, it will attempt to “steal” a subproblem from a different worker. The latter
work uses the notion of mobile agents to share clauses among workers: Each worker is
associated with a mobile agent which visits remote workers one by one and collects
knowledge on its way until it returns to its home worker. MiraXT [LSB07] uses a
single shared-memory clause database across all workers with concurrent read access.

In later years, the term Cube&Conquer has been coined for an extreme variant
of search space partitioning where a large number of partial assignments—named
cubes—are generated using look-ahead solvers (Section 2.2.3.e) and then distributed
over all available workers [Heu+11]. In principle, this static load balancing can result in
uneven load across workers. Still, by using good branching heuristics, generating many
cubes and distributing them randomly, the expectation is that good load balancing is
achieved in practice. Cube&Conquer is a simple and effective parallelization technique
after all cubes have been generated, and unsatisfiability proofs for all individual cubes
can be transformed into an unsatisfiability proof for the entire formula [HS18]. C&C
solving in large distributed systems managed to solve long-standing open problems
of mathematics, such as the Pythagorean Triples problem [HKM16] or Schur num-
ber five [Heu18]. On shared-memory hardware, the Lingeling-based C&C solver
Treengeling [Bie12; Bie14] was among the top performing parallel solvers in some
iterations of the International SAT Competition (ISC), especially on hard combinato-
rial problems [Bel+14]. There has been work towards finding a middle ground between
C&C and conventional search space partitioning, for instance letting C&C solvers
split and generate cubes dynamically based on perceived difficulty [Aud+16; HFB20;
Sch21a], not unlike the much older GrADSAT [CW03].

Overall, search space partitioning solvers promise speedups by splitting the problem
into several subproblems. The main drawback of these approaches is that the heuristics
used to split problems (or generate cubes) are crucial for overall performance and
ideally fine-tuned to the application at hand [HKM16]. A bad choice of a branching
variable may not divide the work at hand into two halves but rather multiply it,
yielding two problems that are as hard as the original problem—a phenomenom Schulz
and Blochinger referred to as “bogus splits” [SB10]. Another possible problem is
that some of the split problems may turn out to be trivial (“oblique splits” [SB10]).

25

2 Preliminaries and Related Work

If such splits happen repeatedly, a ping-pong phenomenom occurs where more time is
spent on communication and waiting than on solving [JLU01]. In terms of SAT solving
that is general purpose, i.e., practically efficient for diverse application instances,
today’s search space partitioning solvers tend to be outperformed [BS18] by another
parallelization paradigm which we describe in the following.

2.3.2 Solver Portfolios

Consider a large assembly of puzzle experts which are given a single difficult puzzle,
e.g., a (generalized) Sudoku problem [Web05]. Their task is to solve the puzzle as
quickly as possible. Each of the experts is rather anti-social and achieves the highest
output if left undisturbed. Since each expert has their own strategies, strengths, and
weaknesses, it can be an effective approach to have all experts work independently on
the entire puzzle. Only one of the experts needs to arrive at a solution.

The SAT solving approach which corresponds to the described “assembly of experts”
is termed the (pure) portfolio approach [GS03]: A number of sufficiently diverse
solvers are executed in parallel and “compete” for solving the same problem. The
optimistic view on this simple kind of parallelization is that it effectively emulates
a perfect oracle—a theoretical device which has access to a set of approaches and,
given a particular problem, always selects the approach which solves this problem the
fastest.5 Such a device is also called the Virtual Best Solver, VBS in short [Xu+12].
A more pessimistic (or perhaps realistic) view is that a pure portfolio, while it may be
effective for many problems, is not efficient (see Section 2.1.3). With p solvers, only a
single solver contributes to the final solution, hence the efficiency is 1/p relative to the
“winning” solver. If we only consider a single particular instance, the definition of a
(parallel) speedup even suggests that there is no speedup at all since we are comparing
our portfolio to the best available sequential algorithm.

2.3.2.a Diversification

A crucial aspect of pure portfolios is the diversification of solvers. Diversification is
any kind of mechanism which lets the participants in a portfolio explore different parts
of search space [HJS10; BSS15]. Ideally, small differences made to a solver cause a
“butterfly effect” with respect to the solver’s internal state and therefore its decision
making, resulting in different search space exploration. In the following, we provide
some common examples for diversification strategies.

• Supplying different random seeds to solvers. Arguably the simplest way to
diversify multiple instances of the same solver, this lets solvers take different
branches when taking random decisions [BSS15].

• Setting initial variable phases. When a SAT solver selects a variable to branch
on, its phase decides which value it should be assigned first (Section 2.2.3.c,

5This “oracle” view neglects potential slowdowns incurred by running solvers in parallel due to
shared resources [Aig+13].

26

2.3 Parallel SAT Solving

Variable phases). If some initial variable phases are set differently for each solver,
the solvers may explore search space in a different manner [HJS10].

• Using different solver parameters. State-of-the-art SAT solvers commonly have
a large set of configuration options which may be set at runtime. Among many
other options, this can include restart intervals [HJS10], pre- and inprocessing
options [Bie10] or clause database management [AS17a].

• Using different SAT solvers. Perhaps the strongest diversification technique,
employing wholly different SAT solving algorithms and/or implementations tends
to lead to very different search behavior across the portfolio members [Xu+12].
However, this diversification technique is very limited with respect to the portfolio
size, since there is only a limited number of somewhat competitive SAT solvers
to integrate in a portfolio solver.6

Some literature [Guo+10] describes diversification as one of two poles in parallel
SAT solving, intensification being the other, which need to be balanced. Some go
as far as referring to this as the “intensification/diversification dilemma” [Aud+16].
Intensification refers to the effort of focusing several solvers to a certain subspace of
search space (yet still with individual diversification) if that subspace seems promising.

2.3.2.b Clause Sharing

Going back to our puzzle analogy, consider now that the puzzle experts begin to hold
brief meetings in periodic intervals. In such a meeting, each of the experts has the
opportunity to share the insights they gained since the last meeting, e.g., a partial
solution to the puzzle. All experts then continue to work independently, free to include
the other experts’ insights into their own solving process as they deem fit.

The described “meetings” in our assembly of experts correspond to what we know
as clause sharing in parallel portfolio SAT solving. While clause sharing for parallel
SAT solving has been introduced first in the context of search space partitioning
solvers [SBK01] (see Section 2.3.1), it is parallel portfolio solvers with appropriate
clause sharing which tend to perform the best in terms of general-purpose parallel SAT
solving [Bal+16; BHJ17; Fro+21]. Intuitively, each shared clause has the potential to
prune the search space, and communicating a promising pruning opportunity found
by a single solver to many other solvers can lead to significant acceleration [HJS10;
BSS15]. This can reduce the redundancy of work performed in solvers and, in practice,
lead to considerable speedups. That being said, clause sharing also adds overhead in
terms of computation, synchronization and/or communication. For this reason, there
is a trade-off to consider between sharing many potentially useful clauses and keeping
the solver threads as undisturbed as possible [HJS12; ENS14; Aud+17].

The number of conflict clauses produced by a set of solvers is linear in the number
of solvers (disregarding duplicates). In distributed setups with hundreds of solvers,
it is not believed feasible to share all learned clauses across all solvers [ENS14].

6Bach et al. [BIB22] computed optimal pure portfolios of k solvers based on data from the ISC
2020–2021. Their results indicate stagnating performance beyond k ≈ 20.

27

2 Preliminaries and Related Work

As such, parallel solvers need to prioritize which clauses to share [HJS10; Bie13;
ENS14]. Most commonly, the following two metrics for clause quality are considered:

• Clause length. This very simple metric is based on a fundamental property of
CDCL: The fewer variables are part of a conflict clause, the larger the subspace
of assignments which the conflict clause constrains. As a consequence, shorter
clauses are more likely to be useful to another solver. Using clause length to
prioritize clauses to share ranges back to PaSAT [SBK01]. In the first portfolio
solver ManySAT [HJS10] only clauses of length eight or less were shared.

• Literal block distance [AS09]. This metric, also called LBD or glue value,
indicates how many distinct decision levels a conflict features (see Section 2.2.3.c,
Managing learned clauses). Clauses with a low LBD value are more likely to be
useful again in the search procedure [AS09]. In contrast to clause length, LBD
is a metric that depends on the particular solver state in which the clause was
derived and may also be updated during subsequent search [AS09].

In terms of clause quality metrics beyond length and LBD, Audemard et al. proposed
to have receiving solvers assess the subjective merit of incoming clauses based on
how well they fit to the solver’s current variable phases [Aud+12], and Vallade et al.
proposed a metric for clauses based on the formula’s community structure [Val+20a].

Since the distribution over the produced clauses’ quality may vary based on factors
such as execution time or formula structure, imposing fixed thresholds for shared clause
quality (e.g., [HJS10; Bie10]) can result in too many or too few shared clauses [HJS12].
Therefore, some adaptive quality limits have been proposed. For instance, Hamadi
et al. [HJS12] introduced an adaptive control scheme where the quality threshold for
clause sharing evolves over time between each pair of solvers, and HordeSat [BSS15]
features an initially very strict LBD limit for each solver that is increased successively
until the targeted output volume is reached.

Clause sharing can be implemented in a distributed and decentralized manner,
which allows to deploy clause-sharing portfolios on large distributed systems without
a bottleneck on a single machine [BSS15]. Recently, some parallel solvers [Val+20b;
Ehl+20] additionally employ concurrent clause strengthening [WH13b] in separate
threads or even on dedicated GPUs [PSM21] to increase clause quality.

2.3.2.c An Overview of Clause-Sharing Portfolio Systems

Hamadi et al. introduced parallel portfolio SAT solving with ManySAT [HJS10].
It featured two crucial ingredients adopted by most later portfolio solvers: Diver-
sification of individual solvers and clause sharing across solvers. While ManySAT

was fine-tuned to four cores only and restricted to shared-memory parallelism, it
initiated what can be considered a paradigm shift in parallel SAT solving. The
portfolio paradigm was adopted by subsequent solvers such as Plingeling [Bie10],
SArTagnan [KK11], and PeneLoPe [Aud+12]. Since 2010, portfolio solvers have
also dominated the International SAT Competition [BS18]. This included some extreme
cases like ppfolio [Rou12]—a script which just executed several winners from a past
competition in parallel—and a similar approach with slightly more tuning [Wot+12].

28

2.3 Parallel SAT Solving

For many years Plingeling was considered the best performing parallel SAT
solver [BS18]. It runs configurations of the sequential SAT solver Lingeling [Bie10]
and, in later versions, the local search solver YalSAT [Bie14]. Lingeling instances
are diversified in terms of restart scheduling, inprocessing options, and initial variable
phases. While the initial version of Plingeling only shared unit clauses, later versions
also share detected literal equivalences as well as learned clauses up to length 40 and
LBD 8 [Bie13]. Plingeling decides how many YalSAT instances to run based on
how closely the input resembles a uniform random formula [Bie14].

Apart from Plingeling, the Glucose-based portfolio Syrup showed competitive
performance [AS14; AS17a]. Two central ideas in Syrup are (a) a cautious kind of
clause exchange which only considers a clause for sharing after it has been locally
encountered twice, and (b) putting each incoming clause in a probation where only
one of its literals is watched. Only if this literal is falsified at some point, the clause is
promoted to be handled normally. This careful approach to clause sharing results in a
substantial reduction of the set of exchanged and imported clauses [AS14] and has
been (partially) adopted by several later systems [Aud+16; Aud+17; EN19].

Balyo et al. introduced a generic and modular framework for clause-sharing portfo-
lios with HordeSat [BSS15]. Since HordeSat is specifically designed for massively
parallel hardware, we discuss it separately in Chapter 2.3.3.a. Many other modern
portfolios are built on top of the PaInLeSS framework [Le +17b]. PaInLeSS offers
an even more modular architecture than HordeSat in order to “painlessly” develop
parallel SAT solvers and explore new techniques. It offers parallelization via port-
folios, clause sharing, and search space partitioning. PaInLeSS adopted many of
HordeSat’s features and parameters, such as diversification based on sparsely and
randomly setting variable phases, periodic all-to-all clause exchange of 1500 literals
per solver unit per sharing, and an adaptive LBD limit for exporting clauses based
on the volume of produced clauses. PaInLeSS portfolios using MCOMSPS7 as a
sequential backend solver [Le +17a; Val+20a; Val+21] were some of the best per-
forming parallel approaches in more recent competitions [Fro+21]. The most recent
versions of P-MCOMSPS also feature concurrent clause strengthening in dedicated
threads [Val+20a; Val+21]. While PaInLeSS as a framework is designed for shared-
memory parallelism, there have been recent efforts to develop distributed solvers by
orchestrating multiple PaInLeSS instances [Val+21].

A shared-memory solver performing very well in 2022, ParkissatRS [ZCC22], is
also built on top of the PaInLeSS framework but uses a Kissat [Bie+20a] variant as
a solver backend. Diversification is achieved by randomly shuffling the branching order
of decision variables. The successor to this system, named PRS [ZCC23], enhances
this style of diversification and also features a distributed setup. In this setup, PRS

deploys four different groups of processes (SAT, UNSAT, DEFAULT, and MAPLE),
the latter of which uses MCOMSPS rather than Kissat. Clause sharing across
processes is performed only within a unidirectional ring communication structure.

7MapleCOMSPS [Lia+16b], or MCOMSPS, is a solver based on CoMinisat-PS [Oh16] with the
LRB heuristic from MapleSAT [Lia+16a] and some further changes.

29

2 Preliminaries and Related Work

Since the running times of clause-sharing portfolios can vary significantly across
different runs, Nabeshima and Inoue [NI20] proposed a framework for deterministic
parallel SAT solving. By synchronizing all solvers at each sharing based on reproducible
metrics (e.g., the number of decisions or conflicts), the parallel solving procedure
results in exactly the same data flow and thus identical behavior for repeated runs.

Fleury and Biere recently presented Gimsatul [FB22], a system with a remarkably
different architecture compared to most portfolio solvers. Gimsatul performs true,
physical sharing of clauses without copying them across different solver threads.
Consequently, Gimsatul is written from scratch instead of reusing existing sequential
solvers. This approach led to a decreased memory footprint as well as to near-
linear self-speedups for up to 16 threads on a 16-core machine. In the International
SAT Competition, Gimsatul [BF22b] did not yet perform competitively [Bal+23b].
Gimsatul’s architecture is restricted to shared memory parallelism by design. That
being said, orchestrating Gimsatul instances on multiple machines with distributed
clause sharing across them appears to be a possibility for future work.

2.3.2.d Scalability Limits

There are some theoretical arguments for intrinsic limits to the scalability of parallel
clause-sharing solvers. On a very fine grained level, the problem of unit propagation
is known to be P-complete and, therefore, difficult to parallelize [HW13]. While this
limitation in principle holds for any algorithm running CDCL in parallel, today’s
solvers are parallelized on a much more coarse grained level.

Katsirelos et al. [Kat+13] used the structure of proofs found by sequential solvers
to argue that the efficiency of parallel clause-sharing solvers is intrinsically limited.
Specifically, the considered proofs often resemble a deep network of clausal dependencies.
All clauses along a critical path through this network, up until the empty clause,
need to be derived sequentially. In particular, Katsirelos et al. argue that typical
proofs feature several clauses which are necessarily part of all critical paths and which
therefore present bottlenecks for a parallel derivation.

While this study does indicate that there are (UN)SAT instances which are intrin-
sically hard to parallelize with clause sharing, it is difficult to estimate its practical
consequences for today’s clause-sharing solvers. Most importantly, Katsirelos et al.
assume that a parallel solver needs to reproduce the same proof which the sequential
solver found. In reality, many application instances may allow parallel solvers to find
another proof of similar volume but with fewer (perceived) bottlenecks (cf. [FS18]). It
is also worth considering that the majority of clauses learned by a sequential solver do
not actively contribute to its final proof [Sim14], indicating that the resolution steps
taken by sequential CDCL solvers are suboptimal as well. Ehlers and Nowotka [EN19]
argue that strict scalability limits for individual instances are of limited concern if the
main objective is to achieve good performance in terms of weak scaling, where the
difficulty of problems increases together with the degree of parallelism.

30

2.3 Parallel SAT Solving

2.3.3 SAT Solving in Distributed Systems

The majority of works we discussed so far have been focusing on shared-memory
parallelism. To efficiently exploit massively parallel and distributed systems, we
differentiate two strategies: On the one hand, isolated formulas can be solved with a
massively parallel solver that uses all available resources. On the other hand, multiple
SAT tasks can be scheduled and resolved in parallel. We will now shed light on both
these strategies and their combination in previous literature.

2.3.3.a Massively Parallel SAT Solving

The oldest massively parallel SAT solvers performed explicit search space partitioning,
such as PSATO [ZBH96] and the solver by Böhm & Speckenmeyer [BS96] (see
Section 2.3.1). A somewhat recent distributed search-space partitioning solver is
satUZK-ddc [Gri17], which was evaluated on 160 cores and achieved a median
speedup of 5.7 over sequential solver satUZK-seq on the ISC 2017 benchmark
set [Gri17]. (We discuss our view on speedup metrics later in Section 2.4.2.b).

The most famous results achieved by parallel and distributed SAT solving have
been due to C&C setups [HKM16; Heu18; SH23]. All cubes are first generated on a
single processing element, followed by a decentralized solve phase with independent
SAT solver tasks on many compute nodes [Heu+11]. Practical advantages of this
strategy are that the cubing and solving phases can be performed independently
and that no communication across solving tasks is required. However, in order to
achieve the mentioned results, several steps of manual labor were required, such as
identifying good splitting strategies for the problem at hand. By contrast, some
integrated distributed systems for C&C SAT solving have been proposed, such as
Dolius [Aud+14] and, more recently, Paracooba [HFB20] which Heisinger et al.
showed to achieve linear speedups on a specific kind of instance [HFB20]. In terms
of general-purpose distributed SAT solving, C&C strategies are currently not on par
with clause-sharing portfolio solvers [BS18; Fro+21; Bal+23a].

HordeSat [BSS15] is a system for massively parallel clause-sharing portfolio SAT
solving. Its modular solver interface allows to orchestrate different SAT solvers without
changing their internal workings. Each process in HordeSat runs multiple solver
threads (four in the original evaluation). Dedicated communication threads are used for
communication across processes—solvers never need to be synchronized. HordeSat

performs periodic all-to-all clause exchange via a collective operation (all-gather, see
Section 2.1.2.a). Each process contributes a fixed volume of the best (shortest) clauses
produced by its local solvers. Initially only clauses with LBD score ≤ 2 are considered
for export. A process lifts this restriction successively whenever it is not able to
contribute the expected volume of clauses. HordeSat performs approximate filtering
of previously seen incoming clauses using Bloom filters [Blo70]. Balyo et al. evaluated
HordeSat on up to 2048 cores [BSS15], which to our knowledge is the largest evaluated
scale of a portfolio solver (prior to our work). HordeSat reached a median speedup
of 13.8 at 1024 cores (13.1 at 2048 cores) on ISC application benchmarks [BSS15].

31

2 Preliminaries and Related Work

We do not necessarily agree with the claim that HordeSat achieves “superlinear
average speedup for difficult instances” [BSS15] since the underlying speedup metric is
statistically not meaningful—see Section 2.4.2.b.

Ehlers and Nowotka explored massively parallel SAT solving with a system named
TopoSAT [ENS14; EN19]. TopoSAT is an integrated system which orchestrates a
number of modified Glucose [AS09] instances. Instead of performing all-to-all clause
sharing in fixed time intervals, TopoSAT threads export clauses autonomously either
after some time since the last sharing passed or when their internal export buffer
runs full. Only clauses with LBD ≤ 4 are considered for export. TopoSAT can also
follow a lazy clause exchange policy which only exports clauses after at least four
process-local solvers deemed this clause relevant. At import, each incoming clause is
attributed an LBD value equal to the clause’s length, a conservative upper bound,
whereas HordeSat reuses the LBD from the exporting thread in each importing
thread. The initial version of TopoSAT realizes clause sharing with point-to-point
messaging along communication graphs [ENS14]. To our understanding, TopoSAT2
as submitted to ISC 2020 [Ehl+20] has each solver process send each batch of clauses to
every other solver process (näıve all-to-all), implying a quadratic number of messages.

Audemard et al. proposed a distributed version [Aud+17] of their shared-memory
solver Syrup [AS17a]. They emphasized the benefit of combining multiple solvers per
(MPI) process with multiple processes across machines. In addition, Audemard et al.
observed degrading performance the more often all-to-all clause sharing is performed.
Instead, their systemD-Syrup has solvers individually export clauses over the network,
presumably to all other processes. As in Syrup, clause export and import is done
carefully by only allowing clauses encountered twice to be exported and by putting
imported clauses in a certain probation. In experiments on up to 256 cores, their system
D-Syrup outperformed the initial versions of HordeSat and TopoSAT [Aud+17].
Audemard et al. did not report speedup measures.

Burgess et al. recently proposed the distributed system Dagster [Bur+22] which
incorporates user knowledge on how to partition a given formula. The interrelated
subproblems are then solved with leader-worker load balancing and search space
partitioning. Since Dagster expects a DAG of subproblems as an input, it is not
obvious how to exploit the system for general-purpose SAT solving.

Last but not least, there have been some efforts to parallelize local search SAT
solving (see Section 2.2.3.d) on up to 256 cores [AC12].

2.3.3.b Processing SAT Tasks in Parallel

In general, processing many SAT formulas in parallel constitutes a more efficient use
of computational resources than using all resources for a single formula at a time.
The argument supporting this claim is simple: Since mean speedups reported by
general-purpose distributed SAT solvers are strongly sublinear (see Chapter 4), solving
k formulas with p/k processing elements each leads to higher efficiencies than solving
one formula at a time with p processing elements. The most basic way to achieve this
is by running p sequential solvers concurrently to process p formulas (cf. [Aig+13]).

32

2.4 Pragmatics of SAT Solving

Ngoko et al. presented a distributed system for cloud environments [NTC17; NCT19]:
A centralized scheduler uses running time predictions to compute an offline schedule
that features stages of portfolio solving without any clause sharing, with the reasoning
that “such solutions [for exchange of knowledge] are not necessarily suitable for
distributed clouds in which the communication time could be important” [NTC17].

Some work on scheduling SAT tasks in distributed systems concentrates on explicit
search space partitioning. The C&C solver Paracooba [HFB20] supports parallel
processing of multiple jobs and malleable load balancing: The partitioning of the
problem at hand into a large number of cubes allows to dynamically redistribute
work if new compute nodes register or if leaving nodes unregister from a computation.
Another C&C platform has been proposed for “serverless cloud” setups [OWB21b].

Recently, Biere et al. proposed a mechanism to migrate the internal state of a
(sequential) SAT solver from one machine to another [Bie+22] which can allow the
preemption and/or rescheduling of SAT tasks.

2.3.4 Parallel Certified SAT Solving

In the following, we describe the state of the art for providing certificates of unsatisfia-
bility (Section 2.2.4) in parallel SAT solving.

Achieving certified unsatisfiability is trivial for pure portfolio solvers if each of
the employed solvers is able to output a proof itself. Certified SAT solving is also
possible with search space partitioning solvers by appropriately joining the proofs for
all subproblems [HKM16; Nai+22]. For clause-sharing portfolios, on the other hand,
the derivation of the empty clause can depend on a clause produced by another solver,
which may again depend on clauses from other solvers, and so on. The full chain of
reasoning for a formula’s unsatisfiability can thus be a dense and interleaved network
that features conflict clauses from many or even all participating solvers.

Prior work on generating proofs from clause-sharing portfolio solvers is limited to
shared-memory parallelism and cannot be generalized to distributed memory in any
obvious manner. The recent shared-memory solver Gimsatul [BF22b] is designed
specifically to support outputting proofs. In terms of generic clause-sharing portfolios,
Heule et al. [HMP14] attempted to generate proofs by having the solver threads emit
proof lines concurrently into a single proof. Clause deletion statements can be added
to the proof only after all solvers have reported deletion of the clause. Heule et al.
obtained mixed results and for the most part were not able to arrive at proofs that are
feasible to check, mostly due to the sheer size of the output and the large circumference
of clauses which the checker is required to keep in memory.

2.4 Pragmatics of SAT Solving

In the following, we consider some pragmatic aspects of the development, use, and
evaluation of SAT solving systems.

33

2 Preliminaries and Related Work

2.4.1 File Formats and Standards

The DIMACS CNF format (.cnf or .dimacs ending), originally proposed for a
DIMACS implementation challenge in 1993 [JT96], is the standard format for SAT
formulas. It is a simple text-based format that features a header line followed by one
line for each clause. The header line provides the number of variables ∣V ∣ and clauses
∣C ∣ in the formula. Each clause line features a number of whitespace-separated literals
terminated by a zero. Each literal is represented by a decimal number from 1 to ∣V ∣,
or from -1 to −∣V ∣ if the literal is negated.

A SAT solver takes a DIMACS CNF file and, before terminating, outputs a text
line indicating whether the problem is SATISFIABLE, UNSATISFIABLE, or of UNKNOWN
status. In case of satisfiability, the solver includes the found satisfying assignment
in its output, represented by a sequence of integers. In case of unsatisfiability, if the
solver is configured accordingly and supports certified SAT solving, a proof is written
to a separate file and can then be verified by an independent checker. Such checker
applications take the DIMACS CNF file and the proof file and output whether the
proof is a correct certificate for the formula (e.g., [THM23]).

2.4.2 Evaluating SAT Solving Performance

We now discuss how the performance of sequential and parallel SAT solvers is commonly
assessed and add some of our own considerations.

2.4.2.a Performance metrics

The performance of a SAT solver is usually examined by running it on a fixed set of
diverse benchmark problems at a fixed (CPU or wallclock) timeout per instance. The
data from such a run is then evaluated based on various metrics.

One of the most simple and popular metrics is the number of solved instances,
sometimes referred to as solved count. Since solvers behave and perform differently on
satisfiable vs. unsatisfiable problems [Oh15], it is often worthwhile to separate this
metric into the number of solved satisfiable and unsatisfiable instances respectively.

Another commonly used metric is called Penalized Average Runtime (PAR). For any
integer X, the PAR-X score of a run is defined as its arithmetic mean running time over
all considered instances, where each timeout is attributed a running time of X times
the time limit (e.g., a timeout at 5 000 s incurs a PAR-2 penalty of 10 000 s) [Fro+21].
The value of X weighs the solved count versus the average running time on solved
instances. For instance, PAR-1 assumes that all unsolved instances are solved at
the time limit, and PAR-X for X →∞ ranks solvers according to their solved count.
Other commonly used PAR metrics are PAR-10 (e.g., [AC12; Mal+13; Khu+16]) and
PAR-2 (e.g., [Sco+21; Fro+21; BIB22]).

PAR scores are suited to aggregate a solver’s performance on many instances to a
single value and thus to compare several different solver systems with each another,
as is done in the International SAT Competition [Fro+21]. However, if differences

34

2.4 Pragmatics of SAT Solving

between competitors are small, PAR scores can be vulnerable to noise introduced by
variances in the solvers’ running times. The underlying issue is that PAR-X for X > 1
features significant discontinuities: a minor variation in the running time on some
instance can result in hitting the time limit, which incurs a penalty and therefore
leads to a jump in the PAR score. This effect is amplified if a small time limit is
used. In our research, we noticed this effect mostly for satisfiable instances, which are
well-known to result in much larger running time variation compared to unsatisfiable
instances (e.g., [OU09; Sim14; Oh15]). Averaging multiple runs of each configuration
can be useful for reducing variances but can also be costly depending on the setup.

In cases where PAR scores and the sets of solved instances are sufficiently similar,
we will consider an additional metric which we refer to as Commonly Solved Average
Runtime (CSAR). Given a set of solver configurations, we identify the set of instances
which all configurations were able to solve and then compute each configuration’s
arithmetic mean running time on those instances. While CSAR neglects additional
solved instances, we believe that it complements PAR in a useful manner since it
features significantly less noise. Note that CSAR scores, in contrast to PAR scores,
cannot be compared across different sets of experiments.

2.4.2.b Speedup Metrics

For a single input I and p cores, the speedup of a parallel algorithm Apar with running
time Tpar(I, p) over a sequential algorithm Aseq with running time Tseq(I) is simply
computed as s(I, p) = Tseq(I)/Tpar(I, p) (see Section 2.1.3). The accumulation of
several speedups on a given benchmark set B is more challenging. An initial idea might
be to compute the arithmetic mean of speedups 1

∣B∣ ∑I∈B s(I, p) [BSS15; BS18]. This,

however, is not an adequate measure. In general, arithmetic means over normalized
values or ratios are meaningless [FW86]. As an example, consider two instances I1, I2
and two algorithms A, B. On instance I1 algorithm A is 10× faster than B whereas
on instance I2 algorithm B is 10× faster than A. The arithmetic mean speedup of
A over B and of B over A are exactly the same, namely (10 + 0.1)/2 = 5.05. The
evidently incorrect conclusion is that both A and B are on average more than five
times faster than the other. The statistically sound measure to compute a mean value
of individual speedups is the geometric mean sgeom ∶= (∏I∈B s(I, p))1/n [FW86]. To
our knowledge, this measure is used rarely in SAT solving research.

The median speedup smed is defined as the ∣B∣
2
-th speedup from a sorted list of

speedups s(I, p),I ∈ B. As Balyo et al. noted, this value can be unsatisfactory if B
contains many easy instances where parallelization does not pay off [BS18]. Since
median speedups on such benchmark sets can also indicate the amount of overhead a
parallel solver incurs, we do consider median speedups an important metric.

The total speedup stot ∶= ∑I∈B Tseq(I)/∑I∈B Tpar(I, p) is the speedup with respect
to the total time spent by Apar vs. Aseq on the entire benchmark set. While this is a
sensible metric with a direct and intuitive meaning, total speedups put a large emphasis
on the instances which took a long time. Therefore, it should not be misinterpreted as
a kind of “average speedup” or expected speedup for a single instance.

35

2 Preliminaries and Related Work

Tp T1

n1

np

T1
T ′
p

Tp T1

n1

CBS =

t

#solved

t

#solved

T ′
1

Tp
CBS =

np > n1 np ≤ n1

np

T ′
1

T ′
p

Figure 2.3: Illustration of the Count-Based Speedup (CBS) definition according
to Balyo et al. [BSS15]. Assume that a parallel solver solved np instances within
Tp seconds and a sequential baseline solved n1 instances within T1 seconds. The
definition is split into two cases, np > n1 (left) and np ≤ n1 (right).

The last speedup metric we discuss is the Count Based Speedup (CBS) by Balyo
et al. [BSS15]. As illustrated in Fig. 2.3, we take the per-instance time limit T1 (Tp)
of the approach which solved fewer instances and compute the ratio between this time
limit and the time limit T ′p (T ′1) required by the other approach to solve the same
number of instances. The ratio is always computed in such a way that the sequential
solver’s time limit is divided by the parallel solver’s time limit. CBS does not require to
handle one-sided timeouts separately (see Section 2.4.2.c) and can be used to estimate
the acceleration any improved approach brings over a baseline, regardless of the degree
of parallelism involved. Since the set of solved instances may differ between the solvers,
CBS can indirectly account for additional solved instances. A drawback of CBS is
its sensitivity to outliers. As a pathological example, assume that the stronger solver
solved 100 instances within 1 s each and that the weaker solver solved 99 instances
within 1 s each and one instance within 1000 s. The CBS then evaluates to 1000 even
though the stronger solver achieved a true speedup only on a single instance.

2.4.2.c Handling One-sided Timeouts

Orthogonal to the choice of how speedups are aggregated, another question is how
to handle timeouts when calculating speedups or other instance-specific metrics.
Oftentimes, a parallel solver solves more instances than a sequential solver, leading to
incomplete data when trying to accumulate speedups over a given benchmark set.

One option is to only consider the instances which both the sequential solver and
the parallel solver were able to solve. This neglects parts of the merit of the parallel
solver but results in accurate and truthful speedup measures for the considered set.

36

2.4 Pragmatics of SAT Solving

Another option is to “generously” reinterpret each of the sequential solver’s timeouts
as instances solved exactly within the time limit [BSS15]. This approach can be
combined with running the sequential solver for a significantly longer (wallclock) time
than the parallel solver to avoid under-approximating the sequential running times by
too much. In particular, setting the sequential time limit to p times the time limit of
the parallel solver at p cores results in equal CPU time budgets for both approaches.

We suspect that there are cases where some instances can be solved realistically
only by the parallel solver but not by the sequential solver. This may be, e.g., due
to a crucial technique in one of the portfolio’s solvers which the sequential solver is
missing or because the empty clause’s derivation requires a huge set of learned clauses
which a single solver cannot realistically maintain in its single database. Reporting
such instances as solved after an impractically high time limit may inflate the reported
speedups or render them difficult to interpret. For this reason, our preferred approach
is to keep speedups and additional solved instances separate.

2.4.2.d Weak Scaling

Balyo and Sinz [BS18] suggest to transfer the idea of weak scaling (Section 2.1.3) to
parallel SAT solving in the following way: If Apar was run with c cores, then only
consider the instances which took Aseq at least k ⋅ c seconds to solve for some constant
k. Evaluating the resulting speedups for different scales can give an impression on
how well a solver scales to larger inputs. Large k can result in a very small number
of considered instances, especially if only commonly solved instances are considered,
which can add noise and amplify few large speedups (cf. [BSS15]). We thus suggest to
consider different values of k for more robust results.

2.4.3 International SAT Competition

The International SAT Competition (ISC) is a research-oriented competition [Fro+21]
whose first iteration took place in 1992 [BK92]. For at least 17 years, organizers have
used the following statement to express the objective of the ISC:
“The area of SAT Solving has seen tremendous progress over the last years. Many
problems (e.g. in hardware and software verification) that seemed to be completely out
of reach a decade ago can now be handled routinely. Besides new algorithms and better
heuristics, refined implementation techniques turned out to be vital for this success. To
keep up the driving force in improving SAT solvers, we want to motivate implementors
to present their work to a broader audience and to compare it with that of others.”8

Indeed, the solvers and datasets gathered throughout the history of the ISC indicate
that the mentioned “tremendous progress” first noted decades ago is still ongoing.
Over its 25 iterations at the time of writing, the ISC tracked significant improvements
in terms of SAT solving performance achieved through new algorithms, techniques,
and engineering. For sequential solving, this progress is shown in Fig. 2.4 with a plot
type that is popular in SAT literature and will occur several times in later chapters.

8See http://fmv.jku.at/sat-race-2006 as well as https://satcompetition.github.io/2023

37

http://fmv.jku.at/sat-race-2006
https://satcompetition.github.io/2023

2 Preliminaries and Related Work

0 1,000 2,000 3,000 4,000 5,000
0

50

100

150

200

250

CPU time

so
lv
ed

in
st
a
n
ce
s

SAT Competition Winners on the SC2020 Benchmark Suite

kissat-2020

maple-lcm-disc-cb-dl-v3-2019

maple-lcm-dist-cb-2018

maple-lcm-dist-2017

maple-comsps-drup-2016

lingeling-2014

abcdsat-2015

lingeling-2013

glucose-2012

glucose-2011
cryptominisat-2010
precosat-2009
minisat-2008

berkmin-2003
minisat-2006
rsat-2007

satelite-gti-2005

zchaff-2004

limmat-2002

data produced by Armin Biere and Marijn Heule

Figure 2.4: Direct comparison of winning SAT solvers from ISC 2002-2020 [Bie22].
Biere and Heule conducted the experiments on modern hardware and used the
ISC 2020 benchmark set. Taken from: http://fmv.jku.at/kissat/

The displayed kind of plot is sometimes referred to as inverted cactus plot since the
same plot with flipped axes is commonly dubbed cactus plot—allegedly due to the
visual image of cactus-like arms extending from left to right.9 Another term for inverted
cactus plots is CDF plot : normalizing the y axis to the number of considered instances
leads to a cumulative distribution function (CDF) for the empirical probability that
an instance is solved within a certain time limit.

For instance, Fig. 2.4 visualizes how the solver from 2019 solved 58% more instances
than the 2009 solver and was able to solve 130 instances at a per-instance time limit
of 1177 s whereas the 2009 solver required a time limit of 5000 s to solve the same
number of instances. Since the considered solvers’ performance strongly correlates
with their age and since identical hardware was used for all runs, it is evident that
SAT solving has become increasingly viable not (only) due to improved hardware but
rather due to algorithmic improvements and better engineering (cf. [FHS20]).

Initial iterations of the ISC were restricted to sequential SAT solving. As far as we
are aware, the first ISC featuring a parallel track was the 2010 iteration where each
parallel solver was executed on eight cores. Ten years later, distributed SAT solving

9We have not found any original source for this term. Cactus plots have been used by the SAT
community at least since 2002 [SLH05]. In 2009 Audemard and Simon referenced “the classical

‘cactus’ plot used in SAT competitions” [AS09].

38

http://fmv.jku.at/kissat/

2.4 Pragmatics of SAT Solving

was introduced to the ISC in the form of a so-called cloud track sponsored by Amazon
Web Services [Fro+21]. Each submission to this track is executed on 100 machines
at once with 16 hardware threads each at a timeout of 1000 s per formula. Later
iterations of the ISC in 2021 and 2022 maintained this track as well as the parallel
track that is evaluated on a single machine with 64 hardware threads at a timeout of
5000 s per formula. Across all tracks, the PAR-2 metric (see Section 2.4.2.a) is used to
rank solver submissions [Fro+21].

The set of ISC benchmark instances are carefully selected each year based on new
submissions from participants as well as a representative mix of instances from previous
years [Fro+21]. The ISC benchmark sets have therefore become a crucial resource for
researching and evaluating SAT techniques [AS09; BSS15; Lia+16a; NR18; Val+20a].
That being said, it is also important to acknowledge that these benchmarks are not
without bias: ISC instances are filtered10 and selected [Bal+15; Fro+21] based on
how well certain prior solvers perform on them, and solvers are in turn tuned on ISC
instances. This co-evolution bears a risk of overfitting (cf. [BH19]).

10For example, Manthey states in a 2023 benchmark description: “to not move further into a Kissat

solver mono culture, we filtered the generated formulas and dropped the ones that could be solved

easily with Kissat” [Man23].

39

3
Chapter 3

Decentralized Scheduling of
Malleable NP-hard Tasks

In this chapter, we address an online job scheduling problem in a large
distributed computing environment. Each job has a priority and a demand
of resources, takes an unknown amount of time, and is malleable, i.e., the
number of allotted workers can fluctuate during its execution. We subdivide
the problem into (a) determining a fair amount of resources for each job
and (b) assigning each job to an according number of processing elements.
Our approach is fully decentralized, uses lightweight communication, and
arranges each job as a binary tree of workers which can grow and shrink as
necessary. With SAT solving as an application, we experimentally show on
up to 128 machines (6144 cores) that our approach leads to near-optimal
utilization, imposes minimal computational overhead, and performs fair
scheduling of incoming jobs within a few milliseconds.

Author’s Notes. This chapter is based on “Decentralized Online Scheduling of
Malleable NP-hard Jobs” [SS22a], a publication by Peter Sanders and myself. Large
parts of this chapter are copied verbatim or with minor changes from that publication.
Peter Sanders and I have devised the proposed algorithms together. In particular, the
concept and initial wording of the logarithmic-span volume calculation (refining my
earlier and more näıve algorithm) are due to Peter Sanders. I, in turn, refined Peter
Sanders’ algorithm and authored the vast majority of the remaining content featured in
this chapter, with editing by Peter Sanders. This chapter features some added content,
in particular experiments on prefix sum based request matching (Section 3.6.4.b) and a
more in-depth presentation of our system (Section 3.5). The latter section also features
an overview of the case studies we performed (Section 3.5.3), briefly summarizing
several qualification theses I (co-)supervised [Dör22; Sch21a; Sön21; Wil22].

3.1 Introduction

A parallel task is called malleable if it can handle a fluctuating number of workers
during its execution [Fei97]. Malleability has long been recognized as a powerful
paradigm which opens up vast possibilities for fair and flexible scheduling and load
balancing in parallel and distributed systems [Hun04; Gup+14]. Most previous research
on malleable job scheduling focuses on iterative data-driven applications with a regular
kind of parallelization and with near-linear scaling behavior [DEV07; SS12; Gup+14].

41

3 Decentralized Scheduling of Malleable NP-hard Tasks

In this work, we consider malleability in a different context, namely for NP-hard tasks
with unknown processing times—such as instances of the SAT problem (Section 2.2).

Inflexible scheduling policies, which assign a fixed amount of resources to each
incoming job, have limited means to react to unpredictable changes in the system
such as a job finishing earlier or taking much longer than anticipated. For SAT tasks,
where even predicting sequential running times is a challenging machine learning
problem [Hut+14], inflexible scheduling of parallel tasks likely results in suboptimal
utilization of resources and in poor load balancing. We consider malleable scheduling
of parallel SAT tasks much more promising: The description of a job can be relatively
small even for very difficult problems, and the successful portfolio approach where
many orthogonal search strategies compete in parallel (Section 2.3.2) can be made
malleable easily without any redistribution of data. Moreover, the limited scalability
of parallel SAT solving calls for carefully distributing the computational resources
at hand. To this end, processing several jobs in parallel can help to make more
efficient use of a large amount of computational power. Specifically, we believe that
an on-demand service platform for NP-hard problems has the potential to drastically
improve efficiency and productivity for many organizations and environments. Using
malleable job scheduling, we can schedule new jobs within few milliseconds, resolve
trivial jobs in a fraction of second, and rapidly resize more difficult jobs to a fair share
of all resources—as far as the job can make efficient use of these resources.

To meet these objectives, we propose a fully decentralized scheduling approach
which guarantees fast, fair, and bottleneck-free scheduling of resources without prior
knowledge on processing times. We address two subproblems. The first problem is to
let m workers compute a fair number of workers vj for each active job j, accounting
for its priority and maximum demand, while optimizing system utilization. The
second problem is to assign vj workers to each job j while keeping the assignment as
stable as possible over time. For both problems, we outline fully scalable algorithms
with O(logm) span which consistently result in optimal utilization. In particular, we
represent each parallel job as a binary tree of vj processes which can grow and shrink
at its leaf level on demand. Furthermore, we introduce measures to have these job
trees preferably re-grow in such a way that they reuse existing (suspended) workers
for this job rather than initializing new workers.

We present our decentralized scheduling platform Mallob which features practical
implementations of our scheduling approaches and several application case studies.
Experiments on up to 128 nodes (6144 cores), using SAT as an application problem,
show that our system leads to near-optimal utilization and schedules jobs with a fair
share of resources within tens of milliseconds. We consider our theoretical as well
as practical results to be promising contributions towards processing SAT and other
malleable NP-hard tasks in a more scalable and resource-efficient manner.

This chapter is structured as follows. We begin with some foundations in Section 3.2
and a problem statement in Section 3.3. We then describe our algorithmic approach
in Section 3.4. We provide an overview of our scheduling system Mallob, including
the applications it supports, in Section 3.5 and evaluate our work in Section 3.6.
Section 3.7 concludes the chapter and outlines future work.

42

3.2 Foundations

3.2 Foundations

We now discuss foundations and related work in terms of (malleable) job scheduling
in the context of our work. For a comprehensive introduction to job scheduling, we
refer to the Handbook on Scheduling [Bla+19].

We use the following definitions by Feitelson [Fei97]: A rigid task requires a fixed
number of workers. A moldable task can be scaled to a number of workers at the time
of its scheduling but then remains rigid. Finally, a malleable task is able to adapt to
a fluctuating number of workers during its execution. Many parallel algorithms are
moldable (e.g., most parallel SAT solvers described in Section 2.3) while relatively few
parallel algorithms are malleable [Gup+14].

Malleability can be a highly desirable property of tasks because it allows to balance
tasks continuously to warrant fair and optimal utilization of the system at hand [Hun04].
For example, if a small job arrives in a fully utilized system with many large jobs,
malleable scheduling allows to shrink active jobs in order to schedule the new job
immediately, substantially decreasing its response time. Due to the appeal of malleable
job scheduling, there has been ongoing research to exploit malleability, from shared-
memory systems [Gup+14] to HPC environments [Bui+07; DEV07], also as a means
to improve energy efficiency [SS12].

Prior malleable job scheduling approaches mostly rely on prior knowledge on the
processing times of jobs and on an accurate model for their execution time relative to
the degree of parallelism [Bla+04; Bla+06; SS11]. In many cases, these approaches
consider an offline scheduling problem where the number, arrival times, and properties
of jobs are known in advance [Bla+04; SS12]. By contrast, we address an online
scheduling problem, where the system has to react to previously unknown jobs arriving
at unknown times. Our approach also has no prior knowledge of a job’s execution
time and it only assumes that the execution time of a job j generally decreases when
scaling up j, up to some job-specific resource limit dj .

Furthermore, while most approaches employ a centralized scheduler [Hun04; Bui+07;
DEV07], which implies a potential bottleneck and a single point of failure, our approach
is fully decentralized and uses a small part of each processes’ CPU time to perform
distributed scheduling, which also opens up the possibility to add fault tolerance to
our work in the future. For instance, this may include continuing to schedule and
process jobs even in case of network-partitioning faults [Alq+18], i.e., failures where
sub-networks in the computing environment are disconnected from each another.

The effort required to transform a moldable (or rigid) algorithm into a malleable
algorithm depends on the application at hand. For iterative data-driven applications,
redistribution of data is necessary if a task is expanded or shrunk [DEV07]. In
contrast, basic malleability is simple to achieve if the parallel algorithm is composed
of independent search strategies which compete for finding a solution: The abrupt
suspension or termination of individual workers can imply the loss of progress, but
preserves completeness. Moreover, if workers exchange knowledge—as is the case for
clause-sharing solvers (Section 2.3.2.b)—the progress made on a worker may benefit
the job even after the worker has been removed from the distributed computation.

43

3 Decentralized Scheduling of Malleable NP-hard Tasks

We thus do not need to migrate application processes across machines (cf. [HLK03;
DEV07]) to make clause-sharing portfolio SAT solving malleable. In order to account
for applications beyond SAT, we do allow a malleable computation to react in any
way to workers being added or removed, such as redistributing data or re-negotiating
the task’s work subdivision. In future work, we may also combine our approach with
the recently investigated migration of SAT solver states across machines [Bie+22].

3.3 Problem Statement

As described in Section 2.1, we consider a distributed environment with M intercon-
nected, identical machines running a total of m g M processes. Each process has
a rank x ∈ {0, . . . ,m − 1} and runs exclusively on c g 1 cores of its local machine.
Processes exchange information via message passing.

Jobs are introduced over an interface connecting to some of the processes. Each
job j has a job description, a priority pj ∈ R

+, a demand dj ∈ N
+, and a budget bj (in

terms of wallclock time or CPU time). If a process participates in processing a job j,
it runs an execution environment of j named a worker. A job’s demand dj indicates
the maximum number of parallel workers it can currently employ: dj is initialized to 1
and can then be adjusted by the job after an initial worker has been scheduled. A job’s
priority pj may be set, e.g., depending on who submitted j and on how important
they deem j relative to an average job of theirs. In a simple setting where all jobs
are equally important, assume pj = 1 ∀j. A job is cancelled if it spends its budget
bj before finishing. We assume for the active jobs J in the system that the number
n = ∣J ∣ of active jobs is no higher than m and that each process employs at most one
worker at any given time. However, a process can preempt its current worker, run a
worker of another job, and possibly resume the former worker at a later point.

Let Tj be the set of active workers of j ∈ J . We call vj ∶= ∣Tj ∣ the volume of j. Our
aim is to continuously assign each j ∈ J to a set Tj of processes subject to:

(C1) (Optimal utilization) Either all job demands are fully met or all m processes
are occupied: (∀j ∈ J ∶ vj = dj) (3j∈J vj =m.

(C2) (Individual job constraints) Each job must have at least one worker and is limited
to dj workers: ∀j ∈ J ∶ 1 f vj f dj .

(C3) (Fairness) Resources allotted to each job j scale proportionally with pj except if
prevented by C2:
For each j, j′ ∈ J with pj g pj′ , there are fair assignments ω,ω′ ∈ R+ with
ω/ω′ = pj/pj′ and some 0 f ε f 1 such that vj = min(dj ,max(1, ⌊ω + ε,)) and
vj′ =min(dj′ ,max(1, ⌊ω′,)).

Due to rounding, in C3 we allow for job volumes to deviate by a single unit (see ε f 1)
from a fair distribution as long as the job of higher priority is favored.

44

3.4 Approach

3.4 Approach

In the following, we present algorithms which address two distinct subproblems: First,
find fair volumes vj for all currently active jobs j ∈ J subject to C1–C3. Secondly,
identify pairwise disjoint sets of processes Tj with ∣Tj ∣ = vj for each j ∈ J .

3.4.1 Calculation of Fair Volumes

Given jobs J with individual priorities and demands, we want to find a fair volume
vj for each job j such that constraints C1–C3 are met. Volumes are recomputed
periodically taking into account new jobs, departing jobs, and changed demands. In
the following, assume that each job has a single worker which represents this (and
only this) job. We elaborate on these representants in Section 3.4.2.

First, we show that algorithms for our volume calculation problem may in principle
scale arbitrarily well. We then present a practically efficient algorithm for our purposes.

3.4.1.a Asymptotic Upper Bound

We now prove that the volume calculation problem can be solved with O(logm) span,
which is asymptotically as expensive as a single collective operation such as, e.g., an
all-reduction of O(1) data.
Theorem 3.1

Given n fm jobs J , volumes vj for each job j ∈ J which meet constraints C1–C3 can
be computed on m processes in O(logm) span and O(m logm) work.
Proof. The sum of available demands, 3j∈J dj can be obtained easily with a single all-
reduction. We assume that this collective demand exceeds the available resources, i.e.,

3j∈J dj >m, since otherwise we can trivially set vj = dj for all jobs j. Assuming real-
valued job volumes for now, we can observe that for any parameter α g 0, constraints
C2–C3 are fulfilled if we set vj = vj(α) ∶= max(1,min(dj , αpj)). By appropriately
choosing α, we can also meet the utilization constraint C1: Consider the function

ξ(α) ∶= m −∑
j∈J

vj(α) = m −∑
j∈J

max(1,min(dj , αpj)) (3.1)

which expresses the resources left unused for a particular value of α. Function ξ

is continuous, monotonically decreasing, and piece-wise linear —see Fig. 3.1 for an
example. Moreover, ξ(0) = m − n g 0 and ξ(maxj∈J dj/pj) = m −3j∈J dj < 0. Hence
ξ(α) = 0 has a solution α0 which represents the desired choice of α that exploits all
resources and thus satisfies constraint C1.

Assuming that we know α0, we only need to round each vj(α0) to an integer. Due
to C1 and C3, we propose to round down all volumes and then increment the volume
of the k ∶=m −3j⌊vj(α0), jobs of highest priority. To this end, we sort all jobs with
some remaining demand, J ′ ∶= {j ∈ J ∶ vj(α0) < dj}, by job priority and compute k

with an all-reduction. We can then select the first k jobs among the sorted jobs.

45

3 Decentralized Scheduling of Malleable NP-hard Tasks

0.80.2

1

2

3

α

ξ(α)

−1

d1 = 2
d2 = 10
d3 = 5
d4 = 2

p1 = 1
p2 = 2
p3 = 3
p4 = 10

1
p4

d4
p4

1
p3

1
p2

0

1
p1

10.4 0.6

Figure 3.1: Volume calculation example with four jobs and m = 7. Five of the
eight points where ξ(α) is evaluated are depicted, three more (d3/p3, d1/p1, and
d2/p2) are omitted. The red circle marks α0 = 0.8.

We now outline how to find α0 in O(logm) span. We exploit that ξ′, the derivative
of ξ, changes at no more than 2n values of α, namely when αpj = 1 (blue spheres in
Fig. 3.1) or when αpj = dj (orange diamond in Fig. 3.1) for some j ∈ J . Since we
have m g n processes, we can evaluate all these O(n) values of ξ(α) in parallel. We
then find the two points with smallest positive value and largest negative value using
another all-reduction. Lastly, we interpolate ξ between these points to find α0.

In the example in Fig. 3.1, we find α0 = 0.8 in the interval [1/p2,1/p1] = [0.5,1].
Since α0 > d4/p4 we cap job 4 at its demand (v4 = 2), and since α0 < 1/p1 we raise
the volume of job 1 to v1 = 1. The real-valued shares α0p2 = 1.6 and α0p3 = 2.4 are
rounded to v2 = 1 and v3 = 3 as job 3 has the higher priority.

The parallel evaluation of ξ is still nontrivial since a näıve implementation would
incur quadratic work—O(n) for each value of α. We now explain how to accelerate
the evaluation of ξ. For this, we rewrite ξ(α) =m −3j∈J vj(α) as:

ξ(α) = m − (∑
j ∶αpj<1

1 + ∑
j ∶αpj>dj

dj

´¹¹¸¹¹¶
R

) − α ∑
j ∶1fαpjfdj

pj

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
P

(3.2)

Intuitively, R sums up all resources which are assigned due to raising a job volume to
1 (if αpj < 1) and due to capping a job volume at dj (if αpj > dj); and αP sums up all
resources assigned as vj = αpj (if 1 f αpj f dj).

This new representation only features two unknown variables, R and P , which can
be computed efficiently. At α = 0, we have R = n and P = 0 since all job volumes are
raised to one. If we then successively increase α, we pass 2n events where R and P

are modified, namely whenever αpj = 1 or αpj = dj for some job j. Since each such
event modifies R and P by a fixed amount, we can use a single prefix sum calculation
to obtain all intermediate values of R and P .

46

3.4 Approach

We define an event as a triple e = (αe, re, pe) which represents that e occurs at point
αe and adds re to R and pe to P . Each job j causes two events: ej = (1/pj ,−1, pj) for
the point αpj = 1 where vj stops being raised to 1, and ej = (dj/pj , dj ,−pj) for the point
αpj = dj where vj begins to be capped at dj . We sort all events by αe and then compute
a prefix sum over re and pe: (Re, Pe) = (3e′¯e re′ ,3e′¯e pe′), where “z” denotes the
ordering of events after sorting. We can now compute ξ(αe) =m − (n +Re) − αePe at
each event e.1 The value of n can be obtained with an all-reduction.

Computing all-reductions and prefix sums of O(1) data is possible in logarithmic
time. We also need to sort 2n job events and later, for correct rounding, O(n) jobs
with remaining demand, which is possible in logarithmic time as well using m g n

processes.2 This results in O(logm) span and O(m logm) work. ◻

3.4.1.b Practical Implementation

For our practical implementation, we compute job volumes similar to the algorithm
outlined in the previous proof. However, each process computes the desired change of
root α0 of ξ locally. All events in the system (job arrivals, departures, and changes
in demands) are aggregated and broadcast periodically such that each process can
maintain a local image of all active jobs’ demands and priorities. The local search
for α0 is then done via bisection over the domain of ξ. This approach requires a
single all-reduction of worst-case message length O(n) followed by a computation of
complexity O(n logn) on each worker. Therefore, in the worst case our approach incurs
O(m ⋅ n logn) = O(m2 logm) work and has span O(n logm + n logn) = O(m logm).
Compared to our theoretical fully scalable algorithm, we cut down the required
communication to a single sparse all-reduction at the cost of requiring more complex
local computations. We expect this to be a worthwhile trade-off, especially at the
targeted scale of our current implementation (n f 103 and m f 104) and for the case of
njm. When targeting much larger configurations in the future, it may be beneficial
to implement a variant of our theoretical algorithm instead.

3.4.2 Assignment of Jobs to Processes

We now describe how the fair volumes computed as in the previous section translate
to an actual assignment of jobs to processes. First, we outline how each malleable job
is structured in our distributed system. Then we propose three different approaches to
match requests for new workers with idle processes. Finally, we discuss adjustments
to our strategies which result in an increased reuse of suspended workers.

1If there are multiple events at the same α, their prefix sum results can differ but will still result
in the same ξ(α). This is due to the continuous nature of ξ: Note how each event modifies the
gradient ξ′(α) but preserves the value of ξ(α).

2Asymptotically optimal sorting on communication networks [AKS83] is of mostly theoretical value
due to the large constant values involved. However there are quite practical algorithms when
n ∈ O(√m) or when spending O(log2 n) time is acceptable [AS17b].

47

3 Decentralized Scheduling of Malleable NP-hard Tasks

0vj = 10 vj = 4

1 2

3 4 5 6

7 8 9

0

1 2

3 4 5 6

7 8 9

Figure 3.2: Left: Job tree Tj features ten workers {w0
j , w

1
j , . . . , w

9
j} due to the

volume vj = 10 assigned to j. Right: Volume update vj = 4 arrives. Consequently,
all workers with index g 4 are suspended and the corresponding processes can
run other workers instead.

3.4.2.a Distributed Structure of Jobs

For each job j, we address the k current workers in Tj as w0
j , w

1
j , . . . , w

k−1
j . These

workers can be scattered throughout the system—their job indices 0, . . . , k−1 within Tj

are not to be confused with their process ranks. The k workers form a communication
structure in the shape of a binary tree (Fig. 3.2) which can also be used conveniently
for job-internal communication—such as the periodic exchange of clauses for the case
of SAT solving. Worker w0

j is the root of this tree and represents j for the calculation

of its volume (Section 3.4.1). Workers w2i+1
j and w2i+2

j are the left and right children

of wi
j . Jobs are made malleable by letting Tj grow and shrink dynamically. Specifically,

we enforce that Tj consists of exactly k = vj workers. If vj is updated, all workers wi
j

for which i g vj are suspended and the corresponding processes turn idle. Likewise,
workers without a left (right) child for which 2i + 1 < vj (2i + 2 < vj) attempt to find a
child worker w2i+1

j (w2i+2
j). We find new workers for a job via request messages: A

request message rij = (j, i, x) holds index i of the requested worker wi
j as well as rank x

of the requesting worker. If a new job is introduced at some process, then this process
emits a request for the root node w0

j of Tj . All requests for w
i
j , i > 0 are emitted by

the designated parent node w⌊(i−1)/2,
j

of the desired worker.

3.4.2.b Matching through Random Walks

We now outline a first approach to route request messages to idle workers. Consider
a directed graph G = (V,E) where V is the set of processes in the system and E is
a set of communication channels between them. If a request message is spawned, it
performs a random walk through G and is resolved as soon as it hits an idle process.
We choose E in such a way that G is a regular graph, where each vertex has k outgoing
edges for a constant k. Specifically, we generate E in a communication-free manner
on the basis of k pseudo-random permutations of {1, . . . ,m}. As a special case, the
very first hop of a request rij is not bound to G but can be any process in the system:
It is determined by the i-th item of a pseudo-random permutation πj of {1, . . . ,m}.

48

3.4 Approach

4

2 1

w

100 0 0 0 0 0

11 0 0

Figure 3.3: Routing tree matching strategy. Left: Each subtree of processes
aggregates the number of idle processes (gray) to its root. Process w receives 2+1
idle counts and is idle itself, hence it reports 2 + 1 + 1 = 4 to its parent. Right:
w has received five request messages. It matches one of them with itself and
sends two requests to its left subtree and one request to its right subtree. The
remaining request is routed upwards to be handled recursively.

πj is generated using the ID j as a seed. Deciding on each request’s first destination
in this special manner has two consequences: First, each request begins its random
walk in an environment of G that is independent from its parent process. Secondly, if
a single job enters an empty system, then each request immediately arrives at an idle
process without any need for random walks.

Our rationale for this approach based on random walks is that a logarithmic number
of hops will result in a roughly uniform probability distribution over the location which
the request is currently visiting [CF05]. The work needed to let a request perform
a hop is constant and no synchronization is required. However, some requests can
require a large number of hops until they are matched. If we assume as a simplification
that G is fully connected (k = m − 1) and if only a small share ε of workers is idle,
then each hop of a request corresponds to a Bernoulli process with success probability
ε, and a request takes an expected 1/ε hops until an idle process is hit. In particular,
this results in expected linear work to match a single request with a single idle process
in an otherwise busy system—a realistic scenario when scheduling a new job. In order
to mitigate this worst-case latency, we can configure our volume calculation to target
a system utilization smaller than 1 such that a small ratio of workers is kept idle.

3.4.2.c Matching through Routing Tree

In contrast to our basic approach, our next algorithm does not depend on suboptimal
utilization. After sending each request rij to its natural point of departure πj[i], we
deliberately route each surviving request towards idle processes. To achieve this, we
use a k-ary routing tree R of processes (for a small constant k) to route requests as
well as information on idle processes. If a process becomes idle or occupied, it reports
this change to its parent in R. Each inner node in R maintains the idle count, i.e., the
number of idle processes, in each of its subtrees (see Fig. 3.3 left). A process receiving
a request performs the first possible action among the following options:

49

3 Decentralized Scheduling of Malleable NP-hard Tasks

7

Figure 3.4: Examples for matching requests and idle processes. White (gray)
squares represent idle (busy) processes, spheres (diamonds) represent requests
(idle tokens). Left: A prefix sum (not depicted) numbers all requests and idle
tokens, and each request (token) of index i is sent to rank i. Each process with
a matching pair sends the request to the idle process. Right: A job j grows by
multiple layers of Tj . Requests are sent along a tree structure and child-parent
relationships of Tj are encoded into the distributed requests.

1. Match the request with yourself (if you are idle).

2. Send the request to a subtree with non-zero idle count.

3. Send the request to your parent.

Fig. 3.3 (right) shows an example where all of these actions are performed. Intu-
itively, most requests will be resolved in a small local environment of the starting point.
The number of requests versus the number of idle processes may still be imbalanced
across neighboring subtrees, in which case the imbalanced requests need to be routed
over their common parent process. In particular, the traffic along the root r of R
to offset this imbalance may constitute a bottleneck if a large number of requests
are emitted at once. In the worst case, where one of the k subtrees of r has no idle
processes but m −m/k requests for all other processes, all these O(m) requests need
to be transferred along r. In a simplified probabilistic framework, we can consider the
k subtrees as bins and the number x of requests as balls for a balls-into-bins analysis,
which tells us for xk k that the most heavily loaded subtree has x/k +Θ(√x log k/k)
requests with high probability [RS98; Ber+00]. Since that subtree has an expected
number of x/k idle processes, it needs to route an expected O(√x) requests over r.
3.4.2.d Matching through Prefix Sums

Our third and final algorithm is not randomized but matches processes and requests in
a regular manner using prefix sums. Fig. 3.4 illustrates this algorithm. We regard our
system as an array of processes where each process is either busy or idle and where
each process can emit a number of requests. We first assume a synchronized procedure
where all requests are emitted at the same point in time and need to be matched with
the processes that are currently idle. Afterwards we relax this assumption and outline
a fully asynchronous variant of the procedure.

50

3.4 Approach

In a first phase, our algorithm computes two prefix sums with one collective
operation: the number of requests qi being emitted by processes of rank < i, and the
number oi of idle processes of rank < i. We also broadcast the total sums, qm and om,
to all processes. The qi and oi provide an implicit global numbering of all requests and
all idle processes. In a second phase, the i-th request and the i-th token are both sent
to rank i. In the third and final phase, each process which received both a request
and an idle token sends the request to the idle process referenced by the token.

If we assume that each request for a worker wi
j , i > 0 originates from its designated

parent worker w⌊(i−1)/2,
j

, then our algorithm so far may need to be repeated O(logm)
times to account for a single volume update: In repetition l workers are initialized
which need to wait for repetition l + 1 to emit requests themselves. As such, each
repetition only allows to grow a job tree by a single layer. Alternatively, we can let
a worker emit requests not only for its direct children, but for all transitive children
it desires. Each worker wi

j can compute the number k of desired transitive children
from vj and i. The worker’s process then contributes value k to the prefix sum qi.
In the second phase, the k requests can be distributed communication-efficiently to
a range of ranks {x, . . . , x + k − 1}: wi

j sends requests for workers w2i+1
j and w2i+2

j

to ranks x and x + 1, which send requests for corresponding child workers to ranks
x + 2 through x + 5, and so on, until worker index vj − 1 is reached. To enable this
distribution, we append to each request the values x, vj , and the rank of the process
where the respective parent worker will be initialized. As such, each child knows its
parent within Tj (Fig. 3.4) for job-internal communication.

We now outline a fully asynchronous version of our algorithm. We compute prefix
sums within an In-Order binary tree of processes [San+19, Sect. 13.3], i.e., all children
in the left subtree of rank i have a rank < i and all children in the right subtree have
a rank > i. This computation can be made sparse and asynchronous: Only non-zero
contributions to a prefix sum are sent upwards, and there is a minimum delay in
between sending contributions to a parent. We extend our prefix sums to also include
inclusive prefix sums q′i, o

′

i which denote the number of requests (tokens) at processes
of rank f i. Every process can see from the difference q′i − qi (o

′

i − oi) how many of its
local requests (tokens) took part in the prefix sum. The number of tokens and the
number of requests may not always match—a process which receives either a request
or an idle token (but not both) knows of this imbalance due to the total sums qm, om.
The unmatched message then can re-participate in the next iteration.

Our matching algorithm has O(logm) span and takes O(m) local work. The
maximum local work of any given process is in O(logm) (to compute the above k),
which is amortized by other processes because at most m requests are emitted.

3.4.3 Reuse of Suspended Workers

Each process remembers a small constant of most recently used workers before deleting
them, since a suspended worker may be resumed at a later time. Our scheduling
so far is unaware of suspended workers, which are therefore only reused in lucky
circumstances. We now outline how we can increase the reuse of suspended workers.

51

3 Decentralized Scheduling of Malleable NP-hard Tasks

3.4.3.a Basic Approach

In our first approach, each worker remembers a limited number of ranks of its past
(direct) children. A worker which desires a child queries them for reactivation one
after the other until success or until all past children have been queried unsuccessfully.
In the latter case, a normal job request is emitted. A process on the receiving side
may also respond that the concerned worker is not present any more, which prompts
the requesting worker to forget this past child.

3.4.3.b Improved Approach

We made two improvements to our basic strategy. First, we remember past workers
in a distributed fashion. More precisely, whenever a worker joins or leaves Tj , we
distribute information along Tj to maintain the following invariant: Each current leaf
wi

j in Tj remembers the past workers which were located in a subtree below index i.
As such, past workers can be remembered and reused even if Tj shrinks by multiple
layers and needs to re-grow differently at some point.

Secondly, we adjust our scheduling to actively prioritize the reuse of existing workers
over the initialization of new workers. In our implementation, each idle process can
infer from its local volume calculation (Section 3.4.1) which of its local suspended
workers wi

j are eligible for reuse, i.e., vj > i in the current volume assignment. If a

process has such a suspended worker wi
j , the process will reject any job requests until

it received a message regarding wi
j . This message is either a query to resume wi

j or a

notification that wi
j will not be reused. On the opposite side, a worker which desires a

child begins to query past children according to a “most recently used” strategy. If a
query succeeds, all remaining past children are notified that they will not be reused.
If all queries failed, a normal job request is emitted.

3.5 The Mallob System

In the following, we outline the design and implementation of our platform named
Mallob, short forMalleable Load Balancer. We also describe the different applications
which we explored to be scheduled within Mallob.

3.5.1 Overview

Mallob is an application written in C++ 17. It has been developed over the course
of four years and currently features roughly 30 000 lines of code.3 Using the Message
Passing Interface (MPI) [GLS99], Mallob can be deployed on a single machine
or on many interconnected machines at the same time. It features an API which
applications can be connected to and then allows to schedule and process tasks from

3As of September 2023; excluding comments, blank lines, and external libraries/tools. Mallob’s
core accounts for 16.5 kLOC and our SAT solving engine MallobSat accounts for 13.3 kLOC.

52

3.5 The Mallob System

ACTIVE SUSPENDED

PAST

suspend()

terminate()

resume()
INACTIVE

execute()

Construction

isDestructible() ?
X

Add job description

getDemand()
communicate(·)
getResult()

Figure 3.5: Simplified overview of the life cycle of a worker.

these applications on demand. There are no dedicated processes or machines for the
scheduling of jobs—every process can be configured to take job submissions from an
external source and to participate in decentralized scheduling negotiations.

Within each (MPI) process of Mallob, the program flow is structured as follows.
A single main thread frequently loops through a number of tasks, namely (i) polling
for incoming messages and dispatching them to appropriate modules; (ii) checking
progress in the active worker (if present), the scheduling and balancing components,
and any open job interfaces; and (iii) sending messages which these different actors
wish to emit. As such, only the main thread of an MPI process issues MPI calls,
which adheres to the most widely supported mode of operation for multithreaded MPI
programs [Vai+15]. As we aim for scheduling latencies in the range of milliseconds,
each process must frequently check for incoming messages. For instance, if a main
thread copies a large job description, this can cause a prohibitively long period where
no messages are processed. For this reason, we use a separate thread pool for all tasks
which involve a risk of taking a long time.

The application-specific workers running on each process are defined via an API
with a small set of methods. These methods define a worker’s behavior if it is started,
suspended, resumed, or terminated, and allow it to send and receive application-specific
messages. An important contract with applications in Mallob is that all of these
interface methods return quickly and that none of them blocks the calling main thread
for a significant period (i.e., a few milliseconds). Instead, a worker is required to use
separate threads or subprocesses for the actual job processing and any potentially
costly initialization or destruction procedures.

Fig. 3.5 shows an overview of a worker’s life cycle. Initially, a worker is Inactive
and devoid of any job-specific information. After adding a job description to the
worker, execute() transitions the worker into an Active state. The process main
thread now frequently queries the worker whether a result is present and whether it
would like to communicate. If the worker represents the job’s root node, it is also
queried periodically for how many workers the job currently desires (getDemand()).

53

3 Decentralized Scheduling of Malleable NP-hard Tasks

At any time, an active worker may be suspended and a suspended worker may
be resumed, prompting the application to suspend or resume its worker threads
respectively. After a worker is terminated, the process main thread repeatedly queries
if the worker can be cleaned up (isDestructible()). If this is not the case, e.g.,
because it still needs to forward some information to another worker, then the process
main thread also progresses the worker’s communication while performing this check.

3.5.2 Communication

We now elaborate on the implementation of communication protocols in Mallob.
Our system exclusively features asynchronous communication, i.e., a process will never
block when sending or receiving messages. As a result, our protocols are designed
without explicit synchronization (barriers or similar) and only use point-to-point
message passing (MPI Isend and MPI Irecv), with few exceptions.

Each message in MPI is associated with a certain (integer) message tag which
indicates the meaning of the message and allows its matching with an open request
handle on the receiver side. Mallob abstracts away the maintenance of such request
handles via a simplified subscription system: Any module of Mallob may subscribe
to a specific message tag by providing a callback function which the main thread calls
whenever a message of this tag arrives. This abstraction greatly simplifies asynchronous
message passing compared to a direct use of MPI functions. Furthermore, Mallob

splits large messages into batches of smaller messages, e.g., when transferring large job
descriptions to new workers, in order not to occupy the main thread for too long with
handling a single message. The message is re-assembled concurrently at the receiving
process and then digested normally.

As an example for our communication protocols, we provide a flow diagram for
a new worker joining a job in Fig. 3.6. If a job request arrives (via a message of
tag MSG REQUEST WORKER), the receiving process will check whether it is eligible for
adopting the request. Reasons against this may be an active worker at this process
or an ongoing commitment with respect to another request. If the process is able to
adopt the request, it commits to the request and offers its adoption to the requesting
process. While a process is in a committed state, any other requests are rejected
until the commitment is resolved one way or another. In the displayed case, the
requesting process finds that its request is still relevant and answers the adoption offer
affirmatively, prompting the accepting process to query the required job description
and finally begin to execute the worker. There are some alternative cases which
Fig. 3.6 does not cover for the sake of simplicity. For instance, the requesting process
may find that the incoming adoption offer has become obsolete because the job’s
allowed number of workers decreased in the meantime due to a volume update. In
this case, it returns a message which prompts the accepting process to withdraw its
commitment, allowing it to adopt other requests instead. Another example is that the
accepting process may find that it already has the required job description, e.g., due
to a suspended worker, and therefore does not need to query the requesting process.

54

3.5 The Mallob System

REQUESTING PROCESS ACCEPTING PROCESS

Eligibility check

MSG_OFFER_ADOPTION

Obsolescence check

MSG_ANSWER_ADOPTION_OFFER

. . .

commit()

Job tree update

Job description present?

MSG_QUERY_JOB_DESCRIPTION

MSG_SEND_JOB_DESCRIPTION

uncommit()

MSG_REQUEST_WORKER

MSG_REQUEST_WORKER

Execute worker

Figure 3.6: Flow diagram for a common scenario in Mallob where a process
adopts an incoming job request and joins an active job as a new worker.

3.5.3 Applications

We designed Mallob as a generic scheduling framework for malleable tasks with
unknown execution time. Consequently, while SAT solving was the central motivation
for Mallob, a natural extension to our work is to consider applications beyond SAT.
We now outline the applications we have explored with Mallob, namely SAT solving
and two further case studies: hierarchical planning and k-means clustering.

3.5.3.a SAT Solving

Mallob’s SAT solving engine, which we denote as MallobSat throughout this
work, is described in detail in Chapter 4. Parallelization is achieved by employing
a clause-sharing portfolio of solvers (see Section 2.3.2). Clauses to be shared are
aggregated and broadcast along Tj . The 2021 version of our engine served as the
application code executed in the evaluations in this chapter.

In addition to MallobSat, we have investigated alternative parallel SAT solv-
ing approaches within Mallob. Most notably, the master thesis of Maximilian
Schick [Sch21a] explored a Cube&Conquer-inspired parallelization (see Section 2.3.1)
and its implementation in Mallob, and the master thesis of Malte Sönnichsen [Sön21]
investigated an asynchronous peer-to-peer clause exchange scheme. Overall, these
more explorative studies did not surpass the performance of our primary engine.

We have experimented with setting specific job demands for SAT jobs, especially
with initializing each demand to dj = 1 and then increasing the demand geometrically
(dj = 1, 3, 7, 15, . . .) in periodic intervals until the maximum demand dj =m is reached.

55

3 Decentralized Scheduling of Malleable NP-hard Tasks

This “careful expansion” of jobs is supposed to account for the many easy SAT jobs
where parallelization does not pay off. However, in preliminary experiments this
strategy led to slightly worse performance compared to immediately setting dj =m.
Due to our efficient and low-latency scheduling approach, expanding jobs aggressively
turns out to be inexpensive and makes best use of the available resources. For this
reason, we set SAT job demands to dj =m in most cases. That being said, we did find
the described geometric increases of job demands beneficial in distributed incremental
SAT solving (Chapter 7) where we reset job demands for each new increment and
where extremely low response times for individual increments proved to be crucial.

3.5.3.b Hierarchical Planning

The master thesis of Niko Wilhelm [Wil22] integrated an engine for processing Totally
Ordered Hierarchical Task Network (TOHTN) planning problems in Mallob. We
refer to Chapter 6 for an introduction to this hierarchical variant of automated
planning. Since TOHTN planning is a 2-EXPTIME-hard problem [ABA15], it features
extremely irregular search spaces. Therefore, we found TOHTN tasks to be even more
unpredictable than SAT tasks, which merits the use of malleable scheduling. Rather
than a SAT-based approach (see Chapter 6), we investigated a direct, search-based
approach in this case study.

Our parallel TOHTN planning approach employs a distributed tree search which
dynamically splits the search space at hand using randomized work stealing [San02].
Adding new workers to an existing planning task is simple—arriving workers will
simply steal work from established, busy workers. Removing workers turned out to be
more challenging. Discarding a leaving worker’s open nodes leads to an incomplete
search, and returning its open nodes to another node can be costly since a worker’s
fringe of open nodes may be very large. In our case study we found a middle ground
in only returning the root node common to all local open nodes, which discards
some work performed but preserves completeness. In addition, the workers in our
distributed planner periodically share visited search nodes in order to avoid duplicate
work. Visited nodes are shared in an approximate manner using an Approximate
Membership Query (AMQ) data structure. To mitigate completeness issues arising
from false positives in the AMQ, search is restarted globally in increasing intervals.

In experiments with moderate degrees of parallelism (up to 64 cores), the described
TOHTN planning approach proved to be feasible and showed good scaling behavior
for some planning domains. However, we observed deteriorating performance under
fluctuating resources of a TOHTN task. In terms of absolute performance, our
approach is still outperformed by the state of the art in sequential TOHTN planning.

All in all, we were able to show that irregular search problems with randomized
work stealing can be integrated in Mallob. Still, it remains an open problem for
future work to design and implement a well performing protocol for leaving workers
and to evaluate such an approach on a larger, distributed scale.

56

3.6 Evaluation

3.5.3.c k-means Clustering

Given a set P of n d-dimensional points, k-means clustering aims to find k d-
dimensional cluster centers which best fit the observed distributions of points in
P [HW79]. In contrast to SAT solving and planning, k-means clustering is a numerical
problem which can be parallelized in a regular manner [Zha+11]. Since finding an
optimal solution is NP-hard [Alo+09], the k-means algorithm approximates a solution:
Beginning with k initial cluster centers, each point p ∈ P is assigned to its nearest
center and then each center is updated to best fit its points [HW79]. This is repeated
until a termination condition is met (e.g., the change per iteration becomes negligible).

The bachelor thesis of Michael Dörr [Dör22] presented a malleable engine for k-
means clustering within Mallob. Parallelization is achieved by partitioning P into∣Tj ∣ equally sized parts P1, . . . , P∣Tj ∣ and updating this partitioning whenever Tj is

updated.4 Each worker assigns points and computes updated cluster centers for its
personal chunk of P , and these partial results can be all-reduced along Tj to obtain
the global new cluster centers for the next iteration. Special handling is required for
workers leaving a job during such an all-reduction. Our approach has each leaving
worker send a special message to its (transitive) active parent, which then adopts the
work that should have been performed by its children.

In experiments with up to 128 cores, our approach showed good scaling behavior (e.g.,
a self-speedup of 31 for 127 workers) up to a certain point. Eventually, communication
dominates running times and no further speedups are possible by adding workers.
Based on this observation, we introduced a simple predictor f(n, d, k) for the maximum
resources a given task is able to make efficient use of, and we used this predictor to set
job demands. Using Mallob’s feature of fairly scheduling jobs with such constraints,
we were able to observe improved performance compared to a scheduling scenario with
default demands (dj = m). Overall, while the absolute performance of our parallel
clustering is not yet on par with established and optimized approaches, we consider the
results encouraging for future use of Mallob for numerical optimization problems.

3.6 Evaluation

We now present our experimental evaluation. Our software and experimental data are
available online (see Appendix A).

3.6.1 Setup

All experiments have been conducted on the supercomputer SuperMUC-NG. This
system at the Leibniz Rechenzentrum features a total of “311 040 compute cores
with a main memory of 719TB and a peak performance of 26.9 PetaFlop/s” [Rec23].

4
P is replicated on all participating workers. While keeping only the relevant chunk Pi at each
worker w

i
j would be more memory-efficient, such an approach requires redistribution of data

whenever a job is resized. Our simple approach is quite practical for modestly sized jobs if job
volumes fluctuate frequently. See also Section 8.3.

57

3 Decentralized Scheduling of Malleable NP-hard Tasks

Throughput Efficiency

npar θ θopt
θ

θopt
η u

3 0.159 0.16 0.991 0.990 0.981
6 0.318 0.32 0.994 0.990 0.983

12 0.636 0.64 0.993 0.991 0.984
24 1.271 1.28 0.993 0.992 0.985
48 2.543 2.56 0.993 0.993 0.985
96 5.071 5.12 0.990 0.993 0.986

192 10.141 10.24 0.990 0.995 0.985
384 20.114 20.48 0.982 0.995 0.983
768 39.972 40.96 0.976 0.992 0.980

Table 3.1: Scheduling uniform jobs on 1536 processes (6144 cores) compared to
a hypothetical optimal rigid scheduler. From left to right: Max. number npar

of parallel jobs, max. measured throughput θ, optimal throughput θopt (in jobs
per second), throughput efficiency θ/θopt, work efficiency η, mean measured CPU
utilization u of worker threads.

In particular, SuperMUC-NG features 6 336 “thin” compute nodes each with a two-
socket Intel Skylake Xeon Platinum 8174 processor clocked at 2.7GHz with 48 physical
cores (96 hardware threads) and 96GB of main memory. Nodes are interconnected
via OmniPath [Bir+15] and run SUSE Linux Enterprise Service (SLES).

If not specified otherwise, we used 128 “thin” compute nodes. We launch twelve
processes per machine, assign eight hardware threads to each process, and let an active
worker run four threads. Our system can use the four remaining hardware threads on
each process in order to keep disturbance of the actual computation at a minimum.
We compiled Mallob with GCC 9 and with Intel MPI [Int23] 2019.

3.6.2 Uniform Jobs

In a first set of experiments, we analyze the base performance of our system by
introducing a stream of jobs in such a way that exactly npar jobs are in the system at
any time. We limit each job j to a CPU time budget of B = 1920/npar core-minutes,
thus ranging from 640 core-min for npar = 3 to 2.5 core-min for npar = 768 while the
duration of jobs remains fixed. Each job corresponds to a difficult SAT formula which
cannot be solved within the given budget. As such, we emulate jobs of fixed size.

We chose m and the values of npar in such a way that m/npar ∈ N for all runs. We
compare our runs against a hypothetical rigid scheduler which functions as follows:
Exactly m/npar processes are allotted for each job, starting with the first npar jobs
at t = 0. At periodic points in time, all jobs finish and each set of processes instantly
receives the next job. This leads to perfect utilization and maximizes throughput. We
further pretend that this strategy is completely free of any kind of overhead.

58

3.6 Evaluation

0 0.25 0.5 0.75 1

Priority

0

50

100

150

M
ea
n
a
ss
ig
n
ed

vo
lu
m
e
v
j

0

50

100

150

200

M
ea
n
re
sp
o
n
se

ti
m
e
[s
]

pj ṽj # RT [s]

0.01 1.0 27 229.6
0.02 3.0 36 198.0
0.03 5.0 37 189.1
0.05 8.1 45 171.3
0.10 17.1 50 161.2
0.20 35.2 51 146.0
0.30 52.4 54 138.6
0.50 87.5 56 133.1
1.00 176.6 58 130.0

Figure 3.7: Impact of job priority on mean assigned volume (left axis, blue
triangles) and response time (right axis, orange squares). The table shows each
used priority pj with the corresponding mean assigned volume ṽj , number of
solved instances (“#”), and mean response time in seconds.

For a modest number of parallel jobs npar in the system (npar f 192), our scheduler
reaches 99% of the optimal rigid scheduler’s throughput (Table 3.1). This efficiency
decreases to 97.6% for the largest npar where vj = 2 for each job. As the CPU time of
each job is calculated in terms of its assigned volume and as the allocation of workers
takes some time, each job uses slightly less CPU time than advertised: Dividing the
time for which each job’s workers have been active by its advertised CPU time, we
obtained a work efficiency of η g 99%. Lastly, we measured the CPU utilization of all
worker threads as reported by the operating system, which averages at 98% or more.
In terms of overall work efficiency η ×u, we observed an optimum of 98% at npar = 192,
a point where neither npar nor the size of individual job trees is close to m.

3.6.3 Impact of Priorities

In the following we evaluate the impact of job priorities. We use 32 nodes (1536 cores,
384 processes) and introduce nine streams of jobs, each stream with a different job
priority p ∈ [0.01,1] (see Fig. 3.7 right) and with a wallclock limit of 300 s per job.
As such, the system processes nine jobs with nine different priorities at a time. Each
stream is a permutation of 80 diverse SAT instances from the ISC 2020 (see [SS21b]).

As expected, Fig. 3.7 indicates a proportional relationship between priority and
assigned volume, with small variations due to rounding. Response times appear to
decrease exponentially, which is in line with the NP-hardness of SAT and the limited
scalability of parallel SAT solving (Chapter 4). The number of solved instances
increases consistently and more than doubles going from the lowest to the highest
priority job stream. As such, we can clearly observe the desired impact of job priorities.

59

3 Decentralized Scheduling of Malleable NP-hard Tasks

0 1000 2000 3000

Elapsed time [s]

0

200

400

600

A
ct
iv
e
jo
b
s

1/λ = 10 s

1/λ = 5 s

1/λ = 2.5 s

0 1000 2000 3000

Elapsed time [s]

0.994

0.996

0.998

1.000

U
ti
li
za
ti
o
n

Figure 3.8: Left: Number of active jobs for different interarrival times 1/λ. Right:
Utilization (i.e., ratio of busy processes) for 1/λ = 5 s at a sliding average of
window size 1 s, 15 s, and 60 s respectively.

3.6.4 Realistic Job Arrivals

In the next set of experiments, we analyze the properties of our system in a more
realistic scenario. Four processes introduce batches of jobs, with each batch consisting
of one to eight jobs. Arrival times of individual batches are drawn from an exponential
distribution with rate parameter λ ∈ {0.4/s,0.2/s,0.1/s}, equivalent to expected inter-
arrival time 1/λ ∈ {2.5 s,5 s,10 s}. This way, the arrivals of batches follow a Poisson
distribution [KR68]. Our intention is to simulate users which arrive independently and
submit several jobs at once, where the choice of λ controls the overall load. We also
sample a priority pj ∈ [0.01,1], a maximum demand dj ∈ {1, . . . , p}, and a wallclock
limit bj ∈ [1 s,600 s] for each job.

3.6.4.a Overview

Fig. 3.8 (left) shows the number of active jobs in the system over time for our default
configuration—featuring our improved worker reuse strategy (Section 3.4.3.b) and
matching requests along a routing tree (Section 3.4.2.c). For all tested interarrival
times, considerable changes in the system load can be observed during a job’s average
life time which justify the employment of a malleable scheduling strategy. Fig. 3.8
(right) illustrates for 1/λ = 5 s that system utilization is at around 99.8% on average
and almost always above 99.5%. We also measured the ratio of time for which each
process is idle: The median process is busy 99.08% of all time for the least frequent
job arrivals (1/λ = 10 s), 99.77% for 1/λ = 5 s, and 99.85% for 1/λ = 2.5 s. Also note
that ∑j dj <m for the first seconds of each run, hence not all processes can be utilized
immediately. The latency of our volume calculation, i.e., the latency until a process
receives an updated volume for an updated job, reaches a median of 1ms and a
maximum of 34ms for our default configuration (not shown).

60

3.6 Evaluation

0.00 0.02 0.04 0.06

Initial scheduling latency [s]

10−2

10−1

D
en
si
ty

h = 0

h = 10

h = 100

h = ∞

0.00 0.02 0.04 0.06

Tree growth latency [s]

10−3

10−2

10−1

D
en
si
ty

h = 0

h = 10

h = 100

h = ∞

Figure 3.9: Distribution over measured latency for the initial scheduling of a job
(left) and finding a requested worker (right), for inter arrival rate 1/λ = 5 s, for a
varying number h of random hops until a request message is routed along R.

3.6.4.b Request Matching Strategies

In the following, we evaluate our request matching strategies. We first compare our
routing tree based request matching (denoted T; see Section 3.4.2.c) with our “random
walks” approach (denoted W; see Section 3.4.2.b). For different values of h, each
request message performs up to h random hops before switching to strategy T.

We first examine latencies for the initial scheduling of an arriving job. Fig. 3.9 (left)
shows that the lowest latencies were achieved by executing strategy T only (h = 0). For
increasing values of h, the variance of latencies increases and high latencies become
increasingly likely. Note that jobs usually enter a fully utilized system and begin with
a demand of dj = 1. Therefore, some balancing updates render only a single process
idle, which heavily disfavors W (see Section 3.4.2.b).

The second kind of latency we examine is the tree growth latency, measuring how
long it takes until an emitted request results in a ready worker reporting back. Fig. 3.9
(right) illustrates that while most requests are resolved very quickly with W, some
requests take a very large number (thousands) of hops to succeed, resulting in high
latencies (> 50ms). Again, T results in much lower and more predictable latencies.

In addition to our original publication [SS22a], we have implemented a third request
matching approach based on asynchronous prefix sums (Section 3.4.2.d). We therefore
present another set of experiments with 96, 384, and 1536 processes (384, 1536, 6144
cores) to compare all three approaches on different scales.5 We configured m/24
processes to introduce jobs with Poisson-distributed inter arrival rates.

Fig. 3.10 shows results. As in the previous experiments, random walks (W) match
some requests very rapidly but also result in a significant ratio of high latencies.

5We performed this set of experiments with a newer version of our codebase (March 2023) compared
to all other experiments in this chapter (February 2022).

61

3 Decentralized Scheduling of Malleable NP-hard Tasks

0.00 0.02 0.04

Latency t [s]

0.0

0.2

0.4

0.6

0.8

1.0

P
r[
w
o
rk
er

fo
u
n
d
in

≤
t
s
] 96 processes

P

T

W

0.00 0.02 0.04

Latency t [s]

0.0

0.2

0.4

0.6

0.8

1.0

P
r[
w
o
rk
er

fo
u
n
d
in

≤
t
s
] 384 processes

P

T

W

0.00 0.02 0.04

Latency t [s]

0.0

0.2

0.4

0.6

0.8

1.0

P
r[
w
o
rk
er

fo
u
n
d
in

≤
t
s
] 1536 processes

P

T

W

Figure 3.10: Comparison of three request matching strategies (W: random walks
with h =∞; T: routing trees; P: prefix sums) executed with 96 (left), 384 (center),
and 1536 (right) processes. Each plot shows cumulative distribution functions for
the probability that a requested worker is found within a given time.

We can also see that latencies of W scale the worst with an increasing number of
processes. Our approaches with prefix sums (P) and routing trees (T) scale substantially
better. P is more likely to result in very low latencies (around 5ms and lower) compared
to T—an effect that becomes more pronounced when scaling up to a higher number
of processes. We suspect this is due to the fact that P is able to expand job trees
by multiple layers at once, therefore avoiding a logarithmic factor on many latencies.
On the other hand, higher latencies (around 10ms and higher) are marginally more
frequent for P than for T: Since changes in the set of active jobs (i.e., volume updates
or jobs finishing) can invalidate some of the process-request pairs matched by a prefix
sum, individual requests may need to undergo several rounds of prefix sums until they
are matched successfully. T, on the other hand, can react to changes in the system
state more quickly and dynamically. This drawback of P becomes less pronounced for
a high number of processes.

To conclude, we found request matching both with routing trees and with prefix
sums to be robust strategies, with an indication that prefix sums scale better to large
systems. For the following experiments, we used request matching via routing trees.

3.6.4.c Worker Reuse Strategies

We compare three different suspended worker reuse strategies (Section 3.4.3): No
deliberate reuse at all, the basic approach, and our improved approach. As an
evaluation metric, we count how often a new worker was created for job j and divide
this total by the job’s maximum assigned volume vj . This Worker Creation Ratio
(WCR) is ideally 1 and becomes larger the more often a worker is suspended and then
re-created at a different process. We report the WCR for each job and in total: As
Tab. 3.2 shows, our latest approach reduces a WCR of 2.14 down to 1.8 (-15.9%).

62

3.7 Conclusion

WCR CS Pr [WC≤ ⋅]

med. max. total med. mean Pr. RT 1 2 5 10 25

None 1.43 33.0 2.14 136 138.2 5923 153.40 0.87 0.90 0.94 0.97 0.992
Basic 1.40 31.5 2.07 134 135.3 5921 153.89 0.87 0.90 0.94 0.97 0.993
Ours 1.25 24.5 1.80 130 131.8 5939 152.33 0.89 0.91 0.94 0.97 0.993

Table 3.2: Worker reuse strategies in terms of worker creation ratio (WCR, per
job—median, maximum—and in total), context switches (CS, median per process
and mean), jobs processed within 1h (Pr.), their mean response time (RT), and
the fraction of workers created on at most {1,2,5,10,25} distinct processes.

Context switches (i.e., how many times a process changed its affiliation) and average
response times are improved marginally compared to the näıve approach. Last but
not least, we counted on how many distinct processes each wi

j has been created: Our
latest strategy initializes 89% of all workers only once, and 94% of workers have been
created at most five times. We conclude that most jobs only feature a small number
of workers, at the leaf level of their job tree, which are rescheduled frequently.

3.7 Conclusion

We have presented a decentralized and highly scalable approach to online job scheduling
of malleable NP-hard jobs with unknown processing times. We split our problem into
two subproblems, namely the computation of fair job volumes and the assignment of
jobs to processes, and proposed scalable distributed algorithms with O(logm) span
for both of them. We presented a practical implementation and, with SAT solving as
an application, experimentally showed that our system schedules incoming jobs within
tens of milliseconds, distributes resources proportional to each job’s priority, and leads
to near-optimal utilization of resources. The application studies we performed indicate
that our approach may also offer an appealing scheduling environment for disciplines
beyond SAT solving in the future.

In terms of future work, we consider to generalize our approach to heterogeneous
computing environments and add fault tolerance to our distributed algorithms. Fur-
thermore, we intend to explore more realistic and sophisticated models for job priorities.
In particular, we envision the use of decentralized auctioning schemes for determining
job volumes that are based on the submitters’ expressed utility for different job sizes.
Such a mechanism may not only increase resource-efficiency but would also allow our
approach to be used in the context of service-based computing with explicit accounting.

63

4
Chapter 4

Scalable Distributed SAT Solving

SAT solving in large distributed environments has previously led to some
famous results and to linear or even super-linear speedups for particular
inputs. However, in terms of general-purpose SAT solving, existing ap-
proaches still cannot make efficient use of a large number of processors.
We aim to address this issue with a complete and systematic overhaul of the
prior solving system HordeSat with a focus on its algorithmic building
blocks. In particular, we propose a communication-efficient approach to
clause sharing, careful buffering and filtering of produced clauses, and a
new portfolio consisting of state-of-the-art solver backends. In our eval-
uations, our approach significantly outperforms HordeSat, doubling its
mean speedup. In the last four iterations of the International SAT Competi-
tion (2020–2023) our system was consistently the best performing massively
parallel solver (1600 hardware threads) and one of the best performing
shared-memory parallel solvers (64 hardware threads). Last but not least,
our SAT solving engine is malleable, i.e., designed to be deployed in a
flexible manner on a fluctuating set of resources. In experiments with up
to 6400 cores we show that our system combines parallel job processing and
parallel SAT solving to resolve a record number of instances from a SAT
competition in a highly resource-efficient manner.

Author’s Notes. This chapter can be considered a substantial revision and extension
of “ Scalable SAT Solving in the Cloud” [SS21b], a publication by Peter Sanders and
myself. Some parts of this chapter are copied verbatim or with minor changes from
that publication. The publication features a preliminary introduction to our scheduling
environment (see Chapter 3) which is omitted in this chapter. I contributed the vast
majority of the publication’s remaining content, with editing by Peter Sanders. This
chapter also includes content from my solver descriptions to the International SAT
Competition [Sch20; Sch21e; Sch22; Sch23] (non-peer-reviewed technical reports).

4.1 Introduction

In today’s applied SAT solving, researchers and industrial users increasingly strive to
exploit modern distributed environments with hundreds to thousands of cores [NTC17;
HFB20; Fro+21; Coo21; Bur+22] in order to reduce processing times and to tackle
difficult problems which are infeasible to solve with the sequential state of the art.

65

4 Scalable Distributed SAT Solving

Prior massively parallel approaches which are used successfully to solve open mathe-
matical problems [HKM16; Heu18] are usually fine-tuned to the particular problem at
hand. In terms of SAT solving that is general purpose, i.e., that works efficiently on
application problems never seen before, mean speedups of existing distributed solvers
still leave much to be desired. Since the difficulty of individual propositional formulas
can range from trivial to extremely difficult and is usually not known beforehand,
the linear or even superlinear speedups which have been reported for few individual
instances [BSS15] must be set in relation with the total work invested in every single
formula to achieve such peak speedups. The prior state of the art in massively parallel
SAT solving, HordeSat, reportedly achieved a median speedup of 13 on 2048 cores
on industrial benchmarks [BSS15], implying a median efficiency of only 0.6%.

We argue that two distinct challenges must be met to improve on the practical merit
of distributed SAT solving. First and foremost, distributed SAT solving itself needs to
become more efficient and more scalable for realistic and diverse inputs. Secondly, the
deployment of SAT solving tasks in distributed environments must be performed in a
more careful manner—ideally processing several tasks at a time and allotting a large
amount of computational resources only to sufficiently difficult problems.

In this work, we aim to address both challenges with a new distributed SAT solving
engine, denoted MallobSat throughout this work. We revisit the popular massively
parallel SAT solver HordeSat [BSS15] and carefully re-engineer its algorithmic
building blocks. Most notably, we introduce a novel approach to periodic all-to-
all clause sharing. We aggregate the globally most useful clauses (w.r.t. clause
length primarily and LBD secondarily) and we limit the overall sharing volume to a
function that is sublinear in the number of participating solvers, therefore ensuring a
communication-efficient operation and low overhead even with thousands of cores. We
also introduce a distributed filtering approach for recently shared clauses. To further
improve the practicality of our approach, we propose different measures to make more
careful use of main memory, such as the manipulation of shared clauses’ LBD values,
and we extend and update the used sequential SAT solver backends. Last but not
least, MallobSat is designed to be malleable, i.e., it supports a fluctuating number
of workers during its execution. This allow us to integrate MallobSat in the job
scheduling platform Mallob we presented in Chapter 3.

In comprehensive evaluations, we investigate the benefits of our different techniques
and configurations. Among other results, we find that our clause sharing acts as an
effective kind of work subdivision even if solver diversification is reduced to a minimum.
Our scaling results show that our solver doubles the speedups of an updated version of
HordeSat. With our system we observed improved performance whenever increasing
the computational resources, up to 3072 cores (64 nodes). We analyze the results of four
iterations of the International SAT Competition (ISC), which together clearly indicate
that our system represents the state of the art in (massively) parallel SAT solving.
We also demonstrate that MallobSat’s malleability is an important feature which
can result in an appealing combination of “embarrassingly parallel” job processing
and the speedups obtained by parallel SAT solving: In an experiment on 6400 cores,

66

4.2 Overview

Mallob with flexible deployment of MallobSat tasks is able to resolve a record
number of instances from ISC2021 within merely two hours of total running time.

This chapter is structured as follows. In Section 4.2 we provide an overview of our
design decisions. We then present our novel approaches on clause sharing in Section 4.3
and on diversification in Section 4.4. We describe further technical contributions such
as memory awareness in Section 4.5. Section 4.6 features our own experimental
evaluation and Section 4.7 contains a discussion of our system in the International
SAT Competition. We conclude this chapter in Section 4.8.

4.2 Overview

We now discuss our high-level design decisions compared to HordeSat [BSS15]. For
a general introduction to HordeSat we refer to Section 2.3.3.a.

Some of our technical design decisions are directly adopted from HordeSat. First,
we follow a modular portfolio solver design with a generic and compact interface to
which different sequential solver backends can be connected. This “blackbox approach”
allows a distributed solver to profit from a large pool of diversification and can also
help to transfer progress in sequential SAT solving to distributed solving with little
effort, in contrast to systems which have a tighter integration with a specific sequential
solver (e.g., TopoSAT [ENS14] or D-Syrup [Aud+17] with Glucose).

Secondly, we follow a two-level parallelization model where multiple (distributed)
processes communicate via message passing and multiple solvers run concurrently
within each process. In this point we will go further than HordeSat, which was
tuned to spawn a process for each set of four cores, by preparing our system for process
layouts that are faithful for the hardware at hand. In other words, we aim to group all
cores of a socket into a single process, which requires careful use of concurrent data
structures given that a socket can feature dozens of cores.

Thirdly, we overlap communication and SAT solving: Distributed clause sharing is
performed in a dedicated communication thread and solvers do not need to be inter-
rupted. Again, we will go further than HordeSat by performing purely asynchronous
communication. As a consequence, even the communication thread of a process can
perform other tasks while a collective operation is being performed.

Compared to HordeSat, we make some deviating assumptions to our execution
environment. First, we do not assume any kind of shared memory, disk or RAM, across
processes. For this reason, in our system a single process parses the input formula
and then distributes it to all processes via message passing. Secondly, we require
our computation to be malleable, i.e., certain processing elements may be added or
removed during its execution. In particular, we use the job deployment model of
Mallob (Chapter 3). On an abstract level, we can imagine a particular SAT solving
task as a list of processes where, at any time during the computation, any (strict)
suffix may be removed or appended. More specifically, each solving task is deployed as
a binary tree of processes T = ⟨w0, w1, . . . , w∣T ∣−1ð which can grow or shrink at the leaf
level at any time. Any communication we perform has to respect these fluctuations.

67

4 Scalable Distributed SAT Solving

4.3 Clause Sharing

In the following, we describe the overall design decisions for our approach to clause
sharing and then describe three crucial aspects of its implementation: the collective
operation itself, the appropriate buffering of clauses, and the filtering of undesirable
clauses. We also touch on a compensation mechanism for unused sharing volume and
on the appropriate handling of LBD values.

4.3.1 Design Decisions

We now present our view on clause sharing and our subsequent design decisions.

On an abstract level, we consider a distributed solving procedure a collaborative
effort of diverse experts (Section 2.3.2.b) where clause sharing acts as a kind of search
space pruning: If a single solver is able to find a crucial conflict c which has not yet been
found by any other solver, broadcasting c prevents the other solvers from exploring
the subspace pruned by c. Following this intuition, we explore all-to-all clause sharing
rather than limiting the potential receivers of a given clause producer to a subset of
solvers (cf. [ENS14]). Prior all-to-all clause sharing [BSS15; Aud+17; EN19] does suffer
from problems in terms of scalability and/or quality, which we intend to overcome
with algorithmic improvements. Furthermore, in line with prior observations,1 we
assume that distributed search space pruning via clause sharing works best if the mean
clause turnaround time, i.e., the time it takes for a produced clause to be imported
by another solver, is as low as possible. Intuitively, the longer it takes for a clause
to be shared and imported, the higher the probability that other solvers redundantly
performed the same work. We thus aim to reduce clause turnaround times.

On a technical level, in large parts we adopt the general information flow of
HordeSat’s clause sharing as illustrated in Fig. 4.1. The solver threads within each
process write some of their produced clauses into a shared, process-local export buffer.
Periodically, all processes extract clauses from their export buffers and contribute
them to a collective sharing operation. Each process then receives the aggregated set
of shared clauses and forwards them to its solver threads for import. At several stages
of this procedure, clauses may be filtered or selected based on various criteria.

A central design consideration of clause sharing is which and how many clauses to
share (Section 2.3.2.b). When sharing more and more clauses in a distributed solver,
we assume that the merit of clause sharing eventually levels off whereas communication
and computational overhead continue to increase [ENS14; BSS15; EN19]. For this
reason, we aim to limit clause sharing to a point where its merit is nearly maximized
while avoiding any unnecessary overhead. We believe that fixing the volume of the
globally best distinct clauses in a careful all-to-all sharing operation is a robust and
effective means to control the degree of clause sharing. In addition, this global view
allows clause sharing to seamlessly adapt to the instance at hand and to the current

1“sharing clauses, as soon as possible, among search units provides better results” [Aud+17];
“it appears [. . .] important to exchange learnt clauses fast” [EN19]

68

4.3 Clause Sharing

S0 S1 Sc-1. . .

Export buffer

Import

buffers

Select, filter

. . .

. . .

. . .

Filter

Selective export

Collective sharing operation

Sharing buffer

Figure 4.1: Information flow in the clause sharing of HordeSat and also our
system. Each blue rectangle corresponds to a solver process. One of these
processes is depicted in more detail with c solvers, clause buffering and filtering.

state of solvers—effectively enforcing dynamic quality criteria (cf. [HJS12]) rather
than fixed clause length or LBD thresholds.

Under the view of clause sharing as distributed search space pruning, we believe
that clause length is a sensible metric for clause quality. Without any further as-
sumptions, shorter clauses in general prune larger parts of search space and therefore
provide the most valuable and most densely encoded information to other solvers (see
Section 2.3.2.b). LBD values, which are a crucial clause quality metric in sequential
SAT solving, may not necessarily translate to a (massively) parallel setting in the same
direct manner. Since the LBD value of a clause depends on the producing solver’s
internal state, the metric is not necessarily as meaningful on a global scale, i.e., for all
receiving solvers with different internal states. As such, we design our clause sharing
to prefer short clauses first and merely break ties using LBD values.

4.3.2 Clause Exchange Operation

We now discuss the collective (communication) operation which forms the basis for
clause sharing, beginning with HordeSat and then presenting our own approaches.

4.3.2.a HordeSat

HordeSat uses synchronous MPI calls to periodically perform an all-to-all clause
exchange. Specifically, a collective operation named all-gather (Section 2.1.2) is used.

69

4 Scalable Distributed SAT Solving

Figure 4.2: Exemplary flow of information in the first half of HordeSat’s all-
gather operation (left) and in our aggregation within a job tree (right). Each
circle is a process; each box in a circle represents the process’s buffer bi.

Each process i contributes a buffer bi of fixed size β. Each bi contains a serialization
of a set of clauses which the process’s solver threads produced and then stored
in the process-local export buffer. The concatenation of all bi, the sharing buffer
B ∶= ⟨b1, . . . , bpð, is broadcast to all processes. Then each process can hand (some of)
the shared clauses to its solvers. Fig. 4.2 (left) illustrates the process of aggregating B.

The above clause exchange mechanism has various shortcomings. First, whenever
some process i does not completely fill bi, parts of the sharing buffer B remain unused
and carry no information [Aud+17]—see Fig. 4.2 (left) for an illustration. HordeSat

attempts to remedy this with an initially very strict LBD requirement for exported
clauses which under-producing processes can then successively lift for their solvers.
This, however, does not work reliably in all cases and also implies an initial “warmup
phase” where many decent clauses may be discarded. A second problem is that B can
contain a significant portion of redundant clauses. In particular at the beginning of
SAT solving when a formula is simplified and preprocessed, we noticed that this can
lead to highly redundant sets of clauses in B. This effect is especially pronounced for
unit clauses which are never checked for redundancy (see below). Thirdly, the targeted
volume of shared clauses is strictly proportional to the number of involved processes.
For sufficiently large setups, this may constitute a bottleneck both in communication
volume and in the local work necessary to digest and process every clause received.

4.3.2.b Compact Clause Exchange

We assume a distributed binary tree T of processes as a communication structure (see
Section 4.2). At the beginning of each clause exchange, each leaf node in T sends
its exported clauses to its parent node in T . When an inner node has received as
many buffers as it has children, it exports its own clauses and then performs a two- or
three-way merge of the present buffers: All input buffers are read simultaneously from
left to right and aggregated into a single sorted output buffer, similar to the merge
of sorted sequences in textbook Mergesort [San+19, p. 160]. We keep the clauses
in each buffer ordered by length, then by LBD and finally in lexicographic order.

70

4.3 Clause Sharing

We sort the literals within each exported clause, which brings them into a canonical
form and helps to easily recognize and filter duplicates.

In the merge operation at a node of T that is the root of a subtree with u nodes, we
limit the size of the output buffer with a function b(u). Any remaining clauses in the
input buffers which exceed the limit b(u) are inserted back into the local export buffer
(see Section 4.3.3.b) where they may be re-exported at a later point in time. As the
clauses in each merged buffer are ordered by quality, we aggregate some of the globally
most valuable information while imposing a strict limit on the overall communication
volume. We also ensure high density of useful information in the transferred data
because each sent buffer is of compact shape and contains no duplicates.

For m = ∣T ∣ solver processes and any monotonically increasing function b(m), our
clause sharing operation has span O(b(m) logm) and incurs O(m ⋅ b(m)) internal
work. Due to the binary tree structure of our aggregation and broadcast, exactly
2(m − 1) messages of size O(b(m)) are sent.

Malleable implementation. Our compact clause exchange is straight forward to make
malleable as described in Section 4.2. In our implementation, a clause exchange is
initiated by the root of T broadcasting a signal through T . The “snapshot” T̃ of
all processes receiving this signal defines the aggregation operation. Inner nodes in
T̃ expect a contribution of clauses from each of their children in T̃ , and leaves in T̃

prepare to export and send clauses to their parent. If a process leaves the computation
before it can send clauses, it sends an empty buffer to their parent in T̃ to ensure that
the aggregation progresses. The broadcast of the sharing buffer, by design, reaches all
processes which belong to T at that point in time.

Buffer limit scaling. Initially, we chose the limit b(u) on the buffer size at each node
of T as follows: Bundled with each buffer payload we communicate the number u of
buffers aggregated so far. For each aggregation step, i.e., for each further level of Tj

that is reached, we want to discount the maximum buffer size by a factor of α. As a
consequence, we compute the buffer size limit b(u) ∶= ⌈u ⋅ αlog

2
(u)
⋅ β,, where β is the

base sharing volume per process (see Section 4.3.2.a). This limit on the shared clause
literals can be steered by a parameter α ∈ [1

2
,1], the discount factor at each buffer

aggregation. For α = 1
2
, we can see that the clause buffer size converges to β; for α > 1

2
,

the clause buffer size diverges. For α = 1, our approach emulates HordeSat’s shared
clause buffer which grows proportionally without any discount.

After some experiments with MallobSat, we have noticed a few shortcomings of
the above function b(u). First, b(u), while sublinear in u, is still unbounded, such that
the sharing volume may eventually overburden the solvers. Secondly, the appropriate
parametrization of b(u) proved to be challenging. For instance, b(u) depends only on
the number u of processes involved in sharing, not on the number of solver threads.
Therefore, deploying MallobSat with varying process layouts changes the scaling of
buffer sizes in an undesired manner. As an example, running MallobSat with 960
solvers at four solvers per process and β = 1500, the buffer limit for α = 0.9 evaluates
to b(240) = 156 496, whereas running MallobSat at the same scale at 24 solvers per
process and consequently with β = 24/4 ⋅ 1500 = 9000 yields b(40) = 205487.

71

4 Scalable Distributed SAT Solving

0 500 1000 1500 2000

u (# workers)

0.0

0.2

0.4

0.6

0.8

1.0
b
(u
),

b̃
(u
)

×106

α = 1

α = 7/8

α = 6/8

α = 5/8

L = 1000 000

L = 500 000

L = 200 000

L = 100 000

Figure 4.3: Different parametrization of b(u) (fine orange lines, based on α) and
b̃(u) (thick blue lines, based on L) for β = 1500.

For our second approach, we remodel buffer limit b̃(u) based on three simple
constraints. For the smallest of setups, the buffer size should be proportional to the
number of workers. Therefore, the value and the derivative of b̃(u) at u = 1 should

both be equal to β: (i) b̃(1) = β and (ii) b̃
′(1) = β. For sufficiently large setups, the

buffer limit should converge to an upper bound L. Therefore, (iii) b̃(u)→ L for u→∞.
A simple model which satisfies constraints (i) and (iii) is the function

b̃(u) = L − (L − β) ⋅ e−k(u−1)
for k ∈ R+. To satisfy constraint (ii), we set k ∶= β

L−β
and therefore2 arrive at

b̃(u) = L − (L − β) ⋅ e β

β−L
(u−1).

Fig. 4.3 illustrates how b(u) and b̃(u) scale differently relative to u. At large scales
where b̃(u) approaches L and stops increasing, note that we may still profit from
adding solvers to the computation—not in the sense of sharing more clauses, but
rather in the sense of sharing better clauses. Whereas b(u) is based on the notion
of reducing the buffer growth by a certain factor at each further aggregation level
in T , b̃(u) depends on the limit L on each sharing’s volume. We consider the latter
parameter to be more natural and ergonomic than the former. Last but not least,
changing the number of solver threads per process while adjusting β by the same
factor now leads to very similar behavior relative to u, except for small differences

2The derivative of b̃(u) is b̃
′

(u) = k(L − β)e−k(u−1). Assuming b̃
′

(1) = β yields k(L − β) = β and
therefore k = β/(L − β).

72

4.3 Clause Sharing

due to the offset of u by 1 in the exponent.3 Alternatively, we can reinterpret u as
the number of solver threads and β as the buffer base size per solver to render b̃(u)
completely agnostic to how solvers are deployed.

4.3.3 Clause Buffering

In distributed clause sharing, the journey of a produced clause from its original solver
to the clause database of another solver features several steps of buffering where the
clause may be deferred or discarded for various reasons. We describe this journey for
HordeSat and then propose our improvements. Our overarching aim is to discard
a clause c only if the volume of shareable clauses of equal or better quality than c

already exhausts the budget of clauses to share.

4.3.3.a HordeSat

In HordeSat, clauses of sufficient quality exported by local solvers are written into
an export buffer structure B which features buckets, one for each admissible clause
length. Each such bucket is a stack of fixed capacity that stores each clause together
with its individual LBD value. If a bucket is full, any further clauses of this length
will be discarded until the next export of clauses. At each export, the buffers are
flushed by decreasing clause quality until the local export volume is met or no more
clauses remain. A consequence of this simple strategy is that some buckets running
full may result in losing potentially useful clauses. Another consequence is that if full
buckets are not flushed for an extended period, the first (oldest) clauses which have
been produced are preserved whereas more recent clauses are discarded.

Regarding the import of incoming clauses, the main thread of a HordeSat process
copies all admitted clauses from clause sharing into an import buffer BS for each solver
S and increases its size as necessary. S can then import the clauses in BS at its own
discretion. BS is guarded by a mutex which is locked by the solver thread before
reading clauses and by the main thread before writing clauses. If S cannot acquire
this lock, it retries at a later point in time. If S does not import clauses sufficiently
fast or often enough, BS may increase in size indefinitely. For instance, we noticed
that certain solvers can spend minutes in expensive preprocessing routines without
retrieving any shared clauses, which leads to very large import buffers at times.

4.3.3.b Adaptive Clause Buffering

We observed that the statistical distribution over the length of clauses exported
by a solver depends on many variables, such as the input formula, the type and
configuration of the solver, and the point in time during solving. This indicates
that a clause buffering structure with fixed-size buckets for each clause length such
as HordeSat’s is suboptimal for portfolio solving. Instead it may be beneficial to
adapt the size of individual buckets to the observed distribution of clause lengths.

3In the earlier example we get b̃(240) = 97413 for β = 1500 and b̃(40) = 98077 for β = 9000.

73

4 Scalable Distributed SAT Solving

For example, if a clause of length three arrives yet the bucket for such clauses is full,
then we may increase that bucket’s capacity at the cost of shrinking the bucket for
clauses of length four. Likewise, if an import buffer BS runs full, we should not discard
the oldest or latest clauses but rather the clauses of worst quality.

Following this intuition, we aimed at a more dynamic allocation of space across
the buckets in the export buffer B. We again implement B as an array of buckets,
one bucket for each clause length l g 1. Each bucket corresponds to a stack of clauses
which can be added to or removed from. A single budget integer shared by all buckets
represents the remaining number of literals which can still be inserted until B is full.
If this budget is insufficient for inserting a given clause c of length l, an attempt is
made to discard clauses from a bucket l′ > l in order to “steal” space for c. If this is
unsuccessful for all admissible l′, c is discarded. With this flexible buffering structure,
we balance the available space dynamically among the different clause quality levels
and therefore discard any clauses below a certain quality threshold. This threshold is
determined indirectly by the distribution over produced clause lengths.

We do not insert produced clauses beyond length 60 in B. Note that long clauses
with tens of literals are admitted (and thus considered for sharing) only if the mean
produced clause length is accordingly high, which we did observe on some instances.
In terms of LBD scores, we dropped HordeSat’s method to only admit low-LBD
clauses to B and to successively lift this limit for underproducing solvers. Steering the
export volume per process is not as crucial for our approach, and in fact, MallobSat

achieved slightly better performance without this method in early experiments [SS21b].
We do, however, use separate buckets for each length-LBD combination up to a certain
clause length, allowing us to break ties via LBD values during export.

We noticed that solvers occasionally produce huge amounts of unit clauses (tens
of thousands) in a single burst, which overburdens B and results in discarding most
produced clauses. For this reason, we now allow the buffers to store an unlimited
number of unit clauses while keeping the shared budget for all other slots. We expect
that even keeping all derivable unit clauses of the problem in main memory is not a
problem since the representation of F itself is strictly larger.

We use the same data structure as B for each import buffer BS . This way, the
buffering of incoming clauses is robust towards solvers which may not import clauses
for a long period of time and therefore necessitate dropping some buffered clauses:
Only the clauses of worst quality will be dropped in such cases.

4.3.4 Clause Filtering

Tied to clause sharing, the clause filtering problem is to decide for a shared clause
c and a solver S whether S has received or produced c before and should therefore
not receive c (cf. [BSS15]). A variant of this problem is to block such clauses not
indefinitely but to rather re-allow their sharing after some amount of time or some
number of sharing operations have passed. The reasoning behind such temporally
limited filtering is that solvers forget most redundant clauses over time and may in
some cases benefit from re-learning crucial clauses [AS14; BSS15].

74

4.3 Clause Sharing

4.3.4.a HordeSat

HordeSat’s clause filtering is realized with approximate membership query (AMQ)
data structures [BSS15], specifically Bloom filters [Blo70]. Each process employs one
node filter and t solver filters (one for each solver thread). At clause export, each
clause is registered in its solver filter and then tested against the node filter. At clause
import, each clause is tested against the node filter and then against each solver filter.
The usage of AMQs implies that false positives may occur, leading to the rejection of
some potentially useful clauses which have in fact not been shared before. This risk
of false positives was the main motivation for HordeSat to admit all produced unit
clauses without any filtering due to their importance [BSS15]. This can be problematic
because particular unit clauses can be produced redundantly by many solvers and can
therefore waste considerable amounts of space in HordeSat’s sharing buffers.

4.3.4.b Base Approach

In our first approach, we adjusted HordeSat’s clause filtering to align it with our new
clause sharing operation. We omitted node filters because their main use is to check
for duplicate clauses across processes, what is already done during the aggregation of
buffers in our case. We complemented the solver filters with an additional filtering of
unit clauses, using an exact set instead of an AMQ data structure. This way we do not
get any false positives for unit clauses and make sure that each such clause is being
shared once. We also implemented a mechanism similar to restarts into the clause
filters: Every X seconds, half of all clauses (chosen randomly) in each clause filter are
forgotten and therefore can be shared again. However, the probabilistic forgetting
in our implementation can result in a “degenerating” AMQ and empirically did not
perform convincingly compared to keeping filter information indefinitely [SS21b]. For
this reason, we omit this technique from our evaluations in this chapter.

4.3.4.c Distributed Filter

Our base approach still features Bloom filters at each solver process which occasionally
result in erroneous rejection of unseen clauses. The probability for such false positives
grows with the number of clauses registered in the filters, which may become noticeable
if millions of clauses are being shared.

For any e g 0, we define epoch e as the time interval that begins with the e-th
sharing operation (or, for e = 0, with the start of solving) and ends with the e + 1-th
sharing operation. The clause filtering mechanism we describe in the following is exact
in the sense that a shared clause c is admitted for import in epoch e if and only if c
has not been shared and admitted for import in epochs e − z, . . . , e − 1, where z g 0 is
the user-defined resharing period. The insight enabling our approach is that it is very
much possible to remember all (successfully) shared clauses within a horizon z if we
exploit the available distributed memory effectively. In our approach, each process
is responsible for remembering the clauses which it contributed itself. We can use
a periodic garbage collection to remove clauses older than z epochs from the filter.

75

4 Scalable Distributed SAT Solving

As such, the memory requirements at each process are limited to the volume of clauses
it produced within the last O(z) epochs.

On each process, we use a hash table H of clauses which maps a produced clause
c to H[c] ∶= (p(c), eprod(c), esh(c)), where p(c) is a bitset representing which local
solvers produced c, eprod(c) ∈ N indicates the last epoch where a local solver produced
c, and esh(c) ∈ N ∪ {−z} indicates the last epoch where c was shared and admitted for
import by our filter. If c was never shared before, then esh(c) = −z.

Each produced clause c which meets a basic quality criterion (w.r.t. clause length,
see Section 4.3.3.b) is looked up in H . If c ∉H , we try to insert c into export buffer B.
On success, c is inserted into H as well, initializing p(c) with the producing solver and
eprod(c) with the current epoch. Note that the attempted insertion in B presents an
additional quality-dependent barrier for sharing c and may on success delete “worse”
clauses in B. If c ∈H but the insertion in B was not performed (successfully), we still
add the calling solver to p(c) and update eprod(c).

Clause sharing and filtering in epoch e works as follows:
• Export: Each process flushes clauses from B up to a certain total length l. The
sharing buffer B of globally best clauses is aggregated and then broadcast to all
processes as described in Section 4.3.2.

• Each process iterates over each clause ci ∈ B, i g 0 and constructs a bit vector
ṽ where ṽ[i] = qci ∶= [ci ∈ H ' e f esh(ci) + z] ∈ {0,1}. As such, the i-th bit of ṽ
represents whether the process remembers that ci was shared and admitted for
import in one of the last z epochs.

• All local bit vectors ṽ are reduced to a single filter vector v via bitwise OR
operations. v is aggregated and then shared among all processes just like B.

• Import: Each process iterates over B and v and only admits clause ci for import
if v[i] = 0. Each admitted clause c is inserted into the import buffer BSj

of each
local solver Sj if (c ∉ H (j ∉ p(c)). If c ∈ H for an admitted clause c, then c is
marked as shared : esh(c) ∶= e and we reset p(c) ∶= 0 after its use.

Our filter has two purposes: filtering clauses shared recently (distributed filtering)
and preventing clauses from being mirrored back to their producers (by-solver filtering).
For the former purpose, we establish our filter’s correctness with the following theorem:

Theorem 4.1 (Correctness of distributed filtering)

The described approach admits a shared clause c for import in epoch e if and only if c
has not been admitted for import in epochs e − z, . . . , e − 1.

Proof. Assume that some process shares c in epoch e. The following chain of reasoning
holds in both directions:

⇔ c is admitted for import in epoch e

⇔ at epoch e, qc = 0 on all processes
⇔ at epoch e, c ∉H (e > esh(c) + z on all processes
⇔ at epoch e, esh(c) < e − z on each process with c ∈H

⇔ ∀ e′ ∈ {e − z, . . . , e − 1}, no process has marked c as shared
⇔ ∀ e′ ∈ {e − z, . . . , e − 1}, c has not been admitted for import.

76

4.3 Clause Sharing

The last equivalence holds due to the following argument: A shared clause c always
has at least one process of origin where c ∈ H. Since each such process with c ∈ H

marks c as shared if and only if c is admitted for import, it follows that a clause c is
admitted for import if and only if there is a process which marks c as shared. ◻

In terms of by-solver filtering, an exact approach may guarantee the following: If a
solver S produces clause c, then c will not be handed to S for exactly z epochs. We
relax two aspects of this guarantee to allow for a more efficient implementation.

First, if z epochs expire without c being shared and admitted, then c may still be
blocked once from being handed to S in a later epoch. This is because the epoch of
production eprod(c) is a field shared between all local solvers. Other solvers producing
c update eprod(c) as well, which can prolong the filtering status of c. This inaccuracy
can be eliminated by replacing p(c) and eprod(c) with a vector of production epochs,
one for each local solver, at the cost of storing additional data for each clause in H.

Secondly, we only employ by-solver filtering for clauses which are successfully
inserted or updated in H at the time of production. A produced clause c which does
not meet the requirements to fit in B is not inserted in H but may still be shared
successfully by another process at a later point in time. This is possible if, at the time
of production of c, B is full and some of the later incoming clauses are of equal or
worse quality than all clauses in B. Since we configure B to hold x times the export
volume β per epoch (x = 10 in our implementation), this scenario is unlikely except if
the distribution over produced clause quality changes suddenly, e.g., if solvers produce
batches of particularly short clauses during some pre– or inprocessing. We could
eliminate this inaccuracy completely if we inserted every produced clause in H no
matter its quality, which would increase the filter’s memory footprint.

The communication cost of our clause filtering approach is a second all-reduction
whose span, work, and communication volume are dominated by the corresponding
clause exchange operation. Each process now needs to iterate over the shared clause
buffer twice—once for filtering and once for importing clauses. On each process, H
requires memory linear in the volume of locally produced clauses which were inserted
in B in the last O(z) epochs. Such an insertion, in turn, is done only if the volume of
clauses in B of equal or higher quality does not exceed the capacity of B.

4.3.5 Compensating for Unused Sharing Volume

The volume of clauses successfully shared across processes can often stay behind the
sharing volume which we target with our scaled sharing buffer limit (Section 4.3.2.b).
There are three causes for this effect: (i) the processes do not produce enough
clauses that are admissible for sharing; (ii) duplicate clauses are detected and con-
sequently eliminated during aggregation; (iii) our filtering mechanism leads to the
rejection of some transmitted clauses. While (i) is a normal occurrence, e.g., at the
beginning of a large formula’s processing, we wish to compensate for the sharing
volume that remained unused for algorithmic reasons, i.e., due to causes (ii) and (iii).

77

4 Scalable Distributed SAT Solving

For this purpose, we multiply the buffer limit for epoch e with a compensation factor
κ(e) which is calculated based on statistics of recent sharings.

Let Xtarget be the targeted number and Xactual the actual number of successfully
shared literals so far. Let x̃in be an estimate for the number xin of incoming literals next
sharing (i.e., all literals contributed by all processes before aggregation and filtering)
and let x̃out be an estimate for the number xout of successfully shared literals. We keep
x̃in and x̃out normalized by κ. Since we want the next sharing of expected effective size
κx̃out to not only meet the anticipated sharing volume x̃in but to also compensate for
the discrepancy Xtarget−Xactual, we target κx̃out =Xtarget−Xactual+ x̃in. Therefore we
set κ =min{κmax, (Xtarget −Xactual + x̃in)/x̃out}, where κmax is a small constant that
presents an upper bound for κ (κmax = 5 in our configuration). We obtain estimates
x̃in and x̃out using “elastic” updates with update factor δ:

x̃in
(e+1)

∶= δx̃in
(e)
+ (1 − δ)xin

(e)

κ(e)

x̃out
(e+1)

∶= δx̃out
(e)
+ (1 − δ)xout

(e)

κ(e)

These estimates allow our sharing to react to changes in the distribution over produced,
filtered, and duplicate clauses. Instead of aggregating Xtarget and Xactual exactly over
the entire execution time, we decay these values over time. As such, missed out sharing
volume is either compensated for in a timely fashion or otherwise forgotten over time.
Limiting κ to κmax helps to keep communication manageable at all times and also
aims to distribute larger amounts of compensation over multiple epochs rather than
performing a single huge sharing with comparably bad clauses.

4.3.6 Handling LBD Values

Each clause c a sequential SAT solver produces is associated with a particular LBD
value. We refer to Section 2.2.3.c for a general introduction to LBD values and
Section 2.3.2.b for a discussion in the context of parallel SAT solving. We reiterate
how prior systems handle LBD values and then describe our own approach.

HordeSat considers a clause’s LBD value a fixed part of the clause during export,
aggregation, and import and has each solver import each clause together with its
original LBD value. Since LBD is an essential metric for clause quality in sequential
SAT solving, many SAT solvers keep clauses with an LBD value of at most 2 indefinitely
and never consider to delete them [AS09; Bie+20a]. These solvers, however, are usually
tuned to expect a single solver’s worth of clauses. In massively parallel systems, a
statistical argument can be made that the overall volume of such “very good” clauses
can become very large compared to a sequential execution [EN19]—especially if we
prefer sharing low-LBD clauses. As such, the solvers’ clause databases may grow in
size significantly, leading to running time overhead and increased memory footprints.

By contrast, in the system TopoSAT 2 each LBD value is reset to ∣c∣, i.e., an
upper bound on possible LBD values, before c is imported [EN19]. This lets a solver

78

4.4 Achieving Diversity

prioritize the clauses it produced itself over external clauses and presumably leads to
many shared clauses being deleted quickly after a brief probation period [AS14].

In our system, we have implemented both LBD handling approaches and propose
a third alternative: At the import of a clause c, we increment its LBD value. With
this measure, we preserve the LBD-based prioritization of (most) shared clauses while
also ensuring that a solver prefers local clauses and retains authority over which of
its clauses are kept indefinitely. As such, we expect that this strategy keeps clause
databases more manageable than with HordeSat-style LBD handling and still allows
the solvers to make good use of the shared clauses’ original LBD values.

4.4 Achieving Diversity

Intuitively, diversification of solvers has two important merits. First, if different solvers
explore different subspaces, the probability is higher for some solver to arrive at a
satisfying assignment. Secondly, starting off the solvers along different directions leads
to different learned clauses, which results in more diverse sets of shared clauses.

As in HordeSat, our approach relies on different sources of diversification. First,
our solver takes a certain portfolio policy π as an input, e.g., π = ⟨k, k, c, l, gð for Kissat-
Kissat-CaDiCaL-Lingeling-Glucose, and then maps the i-th solver thread in the
computation (i g 0) to the solver backend π[i mod ∣π∣]. Specifically, if each process
runs c solvers, then the j-th process of MallobSat (j g 0) launches solver threads
with i ∈ {j ⋅ c, . . . , (j +1) ⋅ c−1}. Secondly, each solver thread has a diversification index
x, which indicates that it is the x-th thread running this particular solver backend.
x is used to cycle through solver-specific diversification options. Lastly, a distinct
diversification seed is computed for each thread based on i, which is used for random
decisions within the solver and for additional random diversification (Section 4.4.2).

4.4.1 Solver Portfolio

We have integrated several different sequential SAT solvers in our system. In addition
to an updated version of HordeSat’s Lingeling [Bie10] backend, we support the
popular and widely used solver Glucose [AS09] (a fork of Minisat [ES04]) as well
as the two state-of-the-art solvers Kissat and CaDiCaL [Bie18; Bie+20a].

We provide all used configurations in Tab. 9.1 (Appendix B). We picked most
configurations and their ordering by measuring their individual 32-core performance
on the ISC 2020 benchmark set and then greedily adding the next best configuration
to a virtual pure portfolio until improvements become negligible (cf. [BIB22]). While
we found this approach to result in good performance, dedicated machine learning
approaches may be able to further improve our setup (cf. [Xu+12; Bie15; BIB22]).

For the initial version of MallobSat [Sch20; SS21b], we focused on Lingeling as
an efficient and reliable SAT solver with well-performing diversification options from
Plingeling [Bie14]. Note that Lingeling features some non-standard reasoning,
such as Gaussian elimination and cardinality constraint reasoning [Bie12; Bie13].

79

4 Scalable Distributed SAT Solving

Due to these techniques, Lingeling has a crucial advantage on some unsatisfiable
instances compared to many other solvers [IMM17]. While these techniques cannot
be expressed in terms of general resolution and therefore have to be disabled for
certified SAT solving [Bie13], we are able to exploit them for (uncertified) parallel
SAT solving. We use the most recent version of Lingeling in terms of sequential
solving features [Bie18]. Similarly, we use most CDCL diversification options from
the latest Plingeling [Bie18]. Every eleventh solver thread uses local search solver
YalSAT (integrated in Lingeling), alternatingly with and without preprocessing.

For the Glucose [AS09] interface, we used some of the sources of Syrup [AS14] to
import and export clauses asynchronously. This includes the technique of exporting
clauses only after they have been encountered for the second time. We adopted and
adjusted the diversification of Syrup, which includes different scheduling strategies
for clause deletion and restarts, toggling simplification techniques, and a dynamic
adaption of some parameters after the first x conflicts. In addition, the first search
descent and initial variable activities are randomized.

For CaDiCaL [Bie17], we used the existing clause export interface and implemented
a clause import interface—a first version of this interface was provided by Maximilian
Schick [Sch21a]. We diversify CaDiCaL instances via its sat and unsat presets,
randomizing restart intervals, and toggling individual options such as random walks,
bounded variable elimination, and inprocessing in general. For Kissat [Bie+20a], we
implemented our own clause import and export mechanism based on our CaDiCaL

variant and employ diversification similar to CaDiCaL. In the latest versions of our
solver interfaces, we let the solvers try to import arrived clauses whenever at decision
level 0—in earlier versions we had Kissat find a minimum of 500 conflicts between
attempted clause imports, which can increase clause turnaround times.

Note that certain inprocessing, such as bounded variable elimination, has a peculiar
impact on clause sharing: Incoming clauses which feature a literal that has been
eliminated in the importing solver cannot be imported but must be discarded [Bie13].
We performed measurements with our Kissat backend and observed that this can,
in some cases, lead to around 90% of incoming clauses being discarded by individual
solvers. Disabling these inprocessing techniques in some solvers can therefore allow
them to import much richer sets of clauses. We also experimented with completely
disabling such inprocessing for many or even all solvers but were not able to observe
improved performance. We believe that enabling full clause sharing despite extensive
pre- and inprocessing is an important line of future work, especially considering the
recent emergence of new powerful preprocessing techniques [HGH23; RB23].

4.4.2 Diversification Techniques

In the following, we present the diversification techniques we employ beyond the
hand-crafted sets of solver configurations.

Sparse random variable phases. A variable phase in a solver decides which value
to assign to the variable if it is chosen as a decision variable (see Section 2.2.3.c).

80

4.4 Achieving Diversity

HordeSat features a diversification technique where in a run with p solvers, each
variable’s initial phase in a solver is overridden with probability 1/p [BSS15]. The
variable phase is then determined by a coin flip. We adopted this technique in
MallobSat; it is enabled after configuration-based diversification is exhausted. For
Kissat, we implemented an option to provide a vector of initial variable phases since
this was not part of its original interface.

Input permutation. There is no formal notion of order among the clauses in a CNF
formula F—any permutation of a given sequence of clauses is logically the same input
to a SAT solver. In practice however, the order in which clauses are given to a SAT
solver can make a difference in terms of the internal data structures and the decisions
made by the solver, therefore leading to considerable variation in running time [BH19].
For this reason, permuting the input clauses before handing them to a solver can be
exploited as an additional source of diversification. In our implementation, all but the
first ten solver threads have a 50% chance to perform input permutation.

A formula arrives at each of our SAT solving processes in the form of a flat array
of integers. For very large formulas,4 it can take tens of seconds for each solver thread
to import all clauses. Permuting this input by explicitly reordering the data for each
solver is unacceptable in terms of running time and/or additional memory usage.
Creating a pointer to each clause and then permuting these pointers is more viable
in practice but leads to highly irregular memory accesses and thus cache-unfriendly
behavior while importing the permuted formula.

We select up to k = 128 clauses to which we store a pointer. The first clause in the
input is always selected while the remaining k − 1 clauses are selected at random. As
such, each of the k pointers represents a chunk of the input beginning at the referenced
clause and ending at the next pointer’s address or at the end of the input data. These
k pointers are then permuted and the input chunks are read in the corresponding order.
This procedure remains cache-friendly for large inputs. It cannot yield all possible n!
clause permutations, but for any pair of clauses (c1, c2) in the input there is a non-zero
probability that the order of c1 and c2 is reversed. Overall, the approach allows for(n
k
) ⋅ k! different permutations of the input since there are (n

k
) possible selections of

pointers and k! ways to permute them.

Noisy numerical parameters. To further diversify solvers, we suggest to add a small
amount of random noise to certain numerical parameters. For each such parameter,
we sample a number from a Gaussian distribution centered at zero and then add the
number to the parameter’s default. We have chosen restart intervals and variable
score decays as promising candidates for this kind of randomization.

4The largest instance of ISC 2022, SAT MS sat nurikabe p16.pddl 166.cnf, has 213 million clauses.
It results in a serialization with more than 712 million integers (including clause separators) and,
therefore, around 2.65GB of raw data.

81

4 Scalable Distributed SAT Solving

4.5 Technical Improvements

In addition to the presented main ingredients to our system—clause sharing and
diversification—we present a number of improvements on a technical level which
contribute to the efficiency and viability of our system.

4.5.1 Memory Awareness

The memory consumption of parallel portfolios is a known issue [IBS19; FB22]: As
each solver commonly maintains its own clause database, the increase in memory
requirements is proportional to the number of employed solvers. As such, our system
executed on large formulas can cause nodes to run out of main memory. To counteract
this issue, we introduce a simple but effective step of precaution: For a given threshold
ŝ, if a given serialized formula description has size s > ŝ, then only t′ =max{1, ⌊t ⋅ ŝ/s,}
threads will be spawned for each process. The choice of ŝ depends on the amount of
available main memory per process. The system we used only features 2GB of RAM
per solver if all physical cores are used. Based on monitoring the memory usage for
different large formulas in our system, we use ŝ ∶= 50 ⋅106. As t′ only depends on s, the
t′ threads can be started immediately without any further inspection of the formula.

The above step of precaution can be effective for some inputs, but it does not
address all issues. Most significantly, memory usage which is initially acceptable
but then grows to unsustainable levels is not accounted for. We thus introduce an
additional measure to counteract excessive memory usage. At program start, we
create a communication group for the MPI processes at each physical machine. In
other words, we identify groups of processes with a shared RAM budget. Each group
periodically checks the current memory usage of its machine and exchanges certain
diagnostics for each process. If a certain memory limit is exceeded (> 90% of RAM
used), one or multiple processes are chosen to trigger a memory panic (cf. [AS14]).
The heuristic which decides on the particular process(es) considers the memory used
by each process as well as the importance of its role in the portfolio—processes closer
to the job tree’s root are considered more important. A memory panic at a particular
process triggers the termination and clean up of some of the process’ solver threads.

4.5.2 Preemption of Solvers

To support malleability, it is essential that a process’s management thread can suspend,
resume, and terminate each job node at will. We noticed that we cannot rely on each
solver thread periodically calling an according callback function because a solver can
sometimes get stuck in expensive preprocessing and inprocessing [Bie16b] for several
minutes. To still enable quick preemption, we enabled our solver’s workers to be run
as a separate subprocess. This incurs some overhead as a new process is forked, a
shared memory segment for efficient inter-process communication (IPC) is set up,
and the subprocess runs an additional management thread. However, suspension and
termination of a process is supported on the OS level in a safe manner through signals.

82

4.6 Evaluation

As solver threads may be unresponsive when the subprocess catches a termination
signal, they are interrupted and cleaned up forcefully. We can also adjust each
subprocess in such a way that it is killed first by the operating system if a machine
runs out of main memory [Sch23]. In both cases, this leaves the main process and the
distributed computation in a valid state. Last but not least, performing SAT solving
in a subprocess allows for a kind of fault tolerance: If a solver crashes,5 the concerned
subprocess can be restarted without disrupting the distributed solving effort.

4.6 Evaluation

We now turn to the evaluation of our work. After explaining the experimental setup,
we first evaluate MallobSat on individual inputs at fixed scales. Then we evaluate
MallobSat within our malleable job scheduler Mallob (Chapter 3), scheduling
multiple distributed solving procedures in parallel. Our software and experimental
data are available online (see Appendix A).

4.6.1 Experimental Setup

We implemented MallobSat in C++17 as an application engine within Mallob.
For implementation details on Mallob we refer to Section 3.5.

We updatedHordeSat to also use the latest Lingeling+YalSAT [Bie18] backend.
Furthermore, we fixed a performance bug in HordeSat: Lingeling frequently queries
the time elapsed since its initialization. In the original code, no callback providing
this elapsed time was given to Lingeling which caused each solver thread to fall
back to expensive system calls. Depending on the configuration this led to each solver
spending more than 10% of its time in kernel mode.

We performed our experiments on SuperMUC-NG (see Section 3.6.1) where each
machine features two 24-core sockets, i.e., two sockets with 48 hardware threads each.
We allocated up to 134 machines (= 134× 2× 24 = 6432 cores) at a time, mapping each
MPI process either to four cores as in HordeSat or to an entire socket of 24 cores.
We compiled our software with GCC11.2 and Intel MPI 2019.12.

We tested the parallel solvers on a comparably low wallclock time limit of 300
seconds because we are interested in solving SAT instances as rapidly as possible in a
costly large-scale distributed environment, where we invest more resources than with
sequential solving by multiple orders of magnitude.6

Performance metrics. We rate solver runs based on solved count and PAR-2 score (see
Section 2.4.2.a). To compute PAR-2 scores restricted to satisfiable and to unsatisfiable
instances, we assume that there are equally many satisfiable and unsatisfiable instances.

5For instance, we experienced occasional crashes of Lingeling on an instance named
lang28.cnf.gz.CP3-cnfmiter.cnf where Lingeling’s simple probing mechanism [Bie12] results
in vast amounts of irredundant clause literals which eventually exceed a hard limit in the code.

6In the ISC, the by-instance CPU timeout in the cloud track (1000 s × 1600 hardware threads)
exceeds that of the sequential main track (5000 s × 1 hardware thread) by a factor of 320.

83

4 Scalable Distributed SAT Solving

Mean RAM # PAR-2 CSAR

16 × 12 × 4 342.0 323 147.1 36.1
16 × 2 × 24 286.0 320 142.3 27.9

Table 4.1: Impact of process layout, written as (# machines) × (# processes per
machine) × (# solvers per process). The better result per column is highlighted.

In addition, we use CSAR scores (Section 2.4.2.a) in cases where PAR-2 scores and
solved instances are similar.

Selection of benchmarks. For the unbiased evaluation of SAT solvers, a benchmark
set consisting of many formulas from diverse origins is necessary. For the evaluation of
the modules and parameters of our system we used the 349 benchmark instances from
ISC 2022 [Bal+22a] which some solver was able to solve (across all tracks). This may
lead to slight underestimation of a run’s performance but drastically reduces running
times and, consequently, resource usage. For instance, our baseline configuration
spent 4.9 h on the 349 instances whereas it would have spent up to 9.2 h on all 400
instances with unchanged results, assuming it to be unsuccessful on the instances
which remained unsolved in the competition. To evaluate the scaling behavior and
speedups of our system, we use a different benchmark set in order to reduce overfitting
effects. We use the ISC 2021 benchmark set [Bal+21a] consisting of 400 instances.

4.6.2 SAT Solving Configuration

We begin our experiments with a pretuned configuration of MallobSat obtained by
a series of explorative tests on a random selection of 125 instances from the ISC 2022
Anniversary benchmark set. This configuration features our latest techniques and data
structures; two sharings per second with compensation for unused sharing volume;7

distributed filtering with a resharing period of 30 epochs (15 s); incrementing each
LBD score before import; a clause buffer limit based on limited growth (L = 100000);
and a process setup faithful to the hardware used, i.e., with one MPI process for
each socket of 24 cores. In the following, we adjust individual components and/or
parameters of our system and analyze the respective differences. If not indicated
otherwise, we use a setup with 768 cores (16 machines). We chose this scale as a
compromise between making responsible use of resources and still being able to observe
effects that are specific to distributed solving (such as fully exhausted diversification
in terms of distinct solver configurations).

Process layout. We begin with the observation that our setup faithful to the hardware
at hand is indeed beneficial for performance and memory usage (Tab. 4.1). In a direct

7The “Process Layout” and “Portfolio” runs in this section and the runs in Sections 4.6.5 and 4.6.6
updated Xtarget in a way that erroneously led to more clause sharing than anticipated—in total
around 2× the volume intended with L = 100 000. All other experiments use corrected updates of
Xtarget and, as discussed later, switch to L = 250000 at some point.

84

4.6 Evaluation

0 60 120 180 240 300

Running time t [s]

0

50

100

150

200

250

300

#
in
st
an

ce
s
so
lv
ed

in
≤

t
s

KCL

KCLG

KLG

CLG

KCG

L

Horde

overall SAT UNSAT

Portfolio # PAR # PAR # PAR

KCL / G 323 140.1 158 141.9 165 138.4
KCLG 320 142.3 156 145.4 164 139.2
KLG / C 322 145.9 158 148.9 164 143.0
CLG / K 318 146.2 154 154.2 164 138.1
KCG / L 317 146.7 158 140.4 159 153.0
L 283 206.6 126 238.8 157 174.4

L (Horde) 253 243.8 121 254.3 132 233.2

Figure 4.4: Performance of MallobSat with different solver portfolios and of
HordeSat. MallobSat employs combinations of Kissat (K), CaDiCaL (C),
Lingeling (L), and Glucose (G).

comparison of our most recent “16 × 2 × 24” setup with the earlier HordeSat-style
“16 × 12 × 4” setup, we arrived at a PAR-2 score of 142.3 for the former and 147.1 for
the latter, although the latter setup was barely able to solve three additional instances
close to the time limit. Our new setup’s advantage in terms of CSAR scores is even
larger. More importantly, our new setup reduced mean RAM usage8 by more than
16% (286GB down from 342GB), mostly due to the fact that fewer copies of the
formula are present on each machine.

Portfolio. To assess the impact of individual solver backends, we performed cross-
checking by omitting one solver backend at a time from our portfolio. We also included
a Lingeling-only portfolio and a run of HordeSat (also with Lingeling). Fig. 4.4
shows results. First, MallobSat significantly outperforms HordeSat if both use
the same solver backend, solving 30 more instances overall. Secondly, all diverse
portfolios of MallobSat significantly outperform MallobSat’s Lingeling-only
portfolio. Across the portfolios with three to four solver backends each, we only
observed modest differences in performance. Kissat appears to be most important
for satisfiable instances: Its omission degraded performance on satisfiable instances
whereas the three portfolios with the highest Kissat ratio (one out of three) performed
the best. By contrast, Lingeling seems to be the most important solver for unsatisfi-
able instances, presumably due to its advanced reasoning techniques (Section 4.4.1).

8RAM usage is measured by aggregating the global Resident Set Size (RSS) main memory usage of
all Mallob processes, including SAT subprocesses, every second.

85

4 Scalable Distributed SAT Solving

100 101 102

Running time t [s]

0

100

200

300

#
in
st
an

ce
s
so
lv
ed

in
≤

t
s +div. +sharing

−div. +sharing

+div. −sharing

−div. −sharing
overall SAT UNSAT

div. sh. # PAR # PAR # PAR

+ + 321 143.4 155 149.1 166 137.6
– + 321 143.5 156 146.9 165 140.0
+ – 239 271.7 152 162.4 87 381.0
– – 217 308.7 138 215.6 79 401.9

Figure 4.5: Impact of diversification (seeds, phases, permutation, noise) and clause
sharing, one by one and together. Note the logarithmic scale in x direction.

Our CaDiCaL backend appears to be a solid all-rounder since its omission results in
increased running times for both satisfiable and unsatisfiable instances. Glucose is
the only solver whose omission results in slightly improved overall performance. Re-
moving Glucose has two further merits: Glucose tends to spend the most amount
of memory, and Glucose is the only part of our system with a non-free license.9 For
these reasons, we continue our evaluation with a portfolio of Lingeling, CaDiCaL,
and Kissat (at equal parts).

Diversification. Since we were not able to isolate significant performance differences
between enabling and disabling individual diversification techniques, we show results for
all of our diversification put together—random seeds, initial phases, input permutation,
and noisy parameters—and for all of it disabled. The results (Fig. 4.5) were surprising
to us: Disabling all such diversification, which leaves less than 40 distinct solver
procedures across 768 cores, led to almost unchanged performance. We repeated the
same experiments with clause sharing disabled and found that our diversification
does have a significant merit in that case. The conclusion we draw is that our clause
sharing effectively subsumes many common forms of diversification, resulting in its own
kind of work subdivision. Note how in the first few seconds of solving, diversification
is in fact beneficial for our clause-sharing solver: Without our diversification, the
exact same SAT solving code is executed many times redundantly which results in
bad performance. After a brief initial period, however, solvers begin to differ due to
shared clauses arriving at slightly different points in time, and quickly these differences
become significant enough such that clause sharing is able to function as a kind of
distributed search space pruning.

9The use of Glucose in any competitive event without the authors’ explicit permission is prohibited.

86

4.6 Evaluation

Mean RAM Median RAM # PAR-2 CSAR

Original LBD 269.0 99.1 321 143.6 31.3
Reset LBD 269.0 92.5 322 143.2 32.2
Increment LBD 267.1 93.5 321 143.4 30.0

Table 4.2: Impact of LBD handling in terms of RAM usage (in GB) and scores.

1 3 5 7 9 11 13 15 17 19

Shared clause length

0.0

0.05

0.10

0.15

0.20

0.25

D
en
si
ty

Static

Adaptive

PAR-2 CSAR

Both adaptive 321 143.4 27.9
Static export 321 141.9 26.5
Static import 320 146.5 31.9

Figure 4.6: Impact of different clause buffers. The left figure shows a histogram
over successfully shared clauses’ lengths for adaptive and static export buffers.

Handling LBD values. We compare our strategy of incrementing each incoming
LBD value with the established approaches of using each LBD as is [BSS15] and
resetting each LBD at import [EN19]. As Tab. 4.2 shows, editing LBD value appears
to make a difference regarding (median) memory usage. While the differences in
PAR-2 performance are insignificant, we found our strategy to result in a slightly
lower CSAR score than both other strategies. As such, we consider our strategy an
appealing combination of good performance with reduced memory requirements.

Clause buffering. Next we evaluate our clause buffering techniques. Compared to
HordeSat-style export buffers (with bucket sizes adjusted to our export buffer size),
our adaptive export buffers reduce the mean shared clause length from 6.5 to 5.7.
As shown in Fig. 4.6 (left), unit and ternary clauses are much more likely to be
shared whereas longer clauses become less likely. Binary clauses are produced less
frequently than unit or ternary clauses, hence both buffer types can handle their
modest volume well. Despite sharing shorter clauses, adaptive export buffers resulted
in no improvement but rather a moderate decline in performance (Fig. 4.6 right). A
possible explanation is that the unlimited buffering of unit clauses may in fact be
detrimental for some instances where huge amounts of unit clauses arise and prevent
other clauses from being shared. Our adaptive import buffering, on the other hand,
outperformed the earlier approach based on lock-free ring buffers [SS21b].

87

4 Scalable Distributed SAT Solving

0 60 120 180 240 300

Running time t [s]

200

225

250

275

300

325

#
in
st
an

ce
s
so
lv
ed

in
≤

t
s

Distr. z = 15 s

Distr. z = 2 s

Bloom

None

PAR CSAR

No filtering 322 148.4 —
Bloom filters 321 147.5 —

Distr., z = 2 s 321 145.6 31.78
Distr., z = 4 s 324 141.4 30.49
Distr., z = 7.5 s 325 139.6 29.38
Distr., z = 15 s 325 138.8 28.47
Distr., z = 30 s 322 141.9 28.48
Distr., z =∞ 322 141.8 28.55

Distr., z = 7.5 s, NC 322 145.5 —

Figure 4.7: Left: CDFs for the best and worst performing distributed filter
configuration as well as for Bloom filtering and no filtering (note the offset of
the y axis). Right: Performance of filter strategies, also including a run with no
compensation (“NC”) for unused sharing volume.

Clause filtering. In terms of clause filtering, we compared our distributed filter at
different resharing periods z with HordeSat-style filtering (Section 4.3.4.b) and no
filtering at all. MallobSat counts the resharing period in terms of sharing epochs;
for the sake of simplicity we display z in terms of seconds. As MallobSat performs
two sharings per second, z = 7.5 s is equivalent to filtering clauses for 15 epochs.

We provide results in Fig. 4.7. Disabling clause filtering completely resulted in
worst performance. All distributed filtering runs resulted in improved PAR-2 scores
compared to Bloom filtering. Distributed filtering at blocking period z = 15 s performed
the best in terms of PAR-2 scores and performed similar to higher z in terms of CSAR
scores. It appears to be particularly beneficial to filter clauses which are re-shared after
a brief period. Clauses which re-occur after an extended period are less important to
filter and might even be useful to admit for sharing again. Removing clauses from the
filter after some time also keeps the memory footprint more manageable for higher
time limits. The total ratio of clauses which were admitted ranges from 43.8% (z =∞)
to 75.1% (z = 2 s). A resharing period of z = 15 s is sufficiently high to block more
than half of all clauses (47.8% of clauses admitted) at this sharing volume.

Upon closer inspection, we found that the instances which profit the most from our
clause filtering (speedup g 2) are unsatisfiable model checking tasks. These include
nine of “some of the hardest SAT problems generated by the bounded model checker
CBMC [CKL04] when verifying open-source code at AWS” [Fof+22], two string safety
problems also encoded with CBMC [OW21], and one unsatisfiable automated planning
problem with a bounded number of steps [Fro20b]. Classical automated planning tasks
and bounded model checking tasks are structurally similar (see Section 2.2.5).

88

4.6 Evaluation

PAR-2 CSAR

3/s 323 140.9 30.0
2/s 325 138.8 30.1
1/s 321 144.5 32.4

Table 4.3: Impact of clause sharing frequency.

Unused sharing volume compensation. To assess how well our compensation technique
(Section 4.3.5) makes up for the significant ratio of filtered clauses, we also performed
a run at resharing period z = 7.5 s without such compensation—neither for filtered
clauses nor for clauses identified as duplicates during aggregation. We observed worse
results, underperforming all other distributed filtering runs except for z = 2 s (see
Fig. 4.7 left). In total, the run without compensation exchanged 80.5% and admitted
for sharing 87.5% of the literals which the corresponding run with compensation
exchanged/admitted. MallobSat with compensation reaches 88.6% of its total
targeted sharing volume while MallobSat without this technique only reaches 72.3%.
The sharing volume that remains unused despite our compensation is, in large parts,
due to points in time where insufficient amounts of distinct clauses are available for
sharing in the first place. Overall, our compensation mechanism proved to be a relevant
contribution to the performance of our clause sharing approach.

Frequency of clause sharing. We ran some experiments to assess the impact of the
frequency at which sharing is performed. We tried frequencies of 1/s, 2/s, and 3/s and
resized the base buffer size per process by a factor of 1, 1/2, and 1/3 respectively to
keep the overall sharing volume fixed. The PAR-2 and CSAR scores given in Table 4.3
indicate that performing clause sharing more than once a second is indeed beneficial
for performance. Note that this result contrasts earlier work [Aud+17] where more
frequent all-to-all sharing resulted in worse performance. Clearly, our clause sharing
implementation and its embedding in the solver processes is sufficiently scalable to
profit from reduced clause turnaround times while the added overhead is negligible.
Two sharings per second performed the best in terms of PAR-2 scores while three
sharings per second performed similarly well in terms of CSAR scores.

Buffer limit scaling. To assess our buffer limit scaling strategies, we first identified
a sharing volume with which our system performs well on a relatively large scale of
32 nodes (1536 cores). The adjusted parametrization we use is a limit of L = 250000
literals per sharing and, equivalent in terms of sharing volume at this scale, a discount
factor of α = 0.903121. We then used these parameters on successively lower scales
to see how well each function is suited to be used across all scalings with a fixed
parametrization. Fig. 4.8 shows that our function based on recursive discounts results
in similar performance at 4 nodes and in worse performance at 8 nodes and above.
Indeed, our more recent approach appears to adapt better to the different scales. For
the following experiments, we consequently use L = 250000.

89

4 Scalable Distributed SAT Solving

0 60 120 180 240 300

Running time t [s]

200

220

240

260

280

300

320

#
in
st
an

ce
s
so
lv
ed

in
≤

t
s

m=32 L=250k
m=32 α≈0.9
m=16 L=250k
m=16 α≈0.9
m=8 L=250k
m=8 α≈0.9
m=4 L=250k
m=4 α≈0.9

m Variant Lits/s # PAR CSAR

32 L = 250k 345 274 331 127.4 27.5
32 α ≈ 0.9 345 274 329 130.2 28.5

16 L = 250k 221 835 324 139.2 29.6
16 α ≈ 0.9 190 728 322 141.7 30.5

8 L = 250k 127 031 318 151.7 36.0
8 α ≈ 0.9 105 132 320 153.2 39.3

4 L = 250k 68 126 308 173.6 45.6
4 α ≈ 0.9 57 718 308 173.7 45.3

Figure 4.8: Impact of buffer scaling strategies for a common, fixed sharing volume
at m = 32 nodes. Note the offset of the y axis in the left figure. CSAR scores are
computed separately for each pair of competing configurations.

4.6.3 Scaling and Speedups

In order to assess the scalability of our tuned system, we use the set of 400 benchmarks
from ISC2021. We run MallobSat on 1, 2, 4, . . . , 128 24-core sockets (i.e., up to
3072 cores on 64 machines) with one solver per physical core. As a sequential baseline
we run KissatMABHyWalk [Zhe+22], the winning sequential solver from ISC 2022,
without proof logging. We set the sequential solver’s time limit per instance to a
very high 115200 s (32 hours). In terms of CPU time, this limit is equivalent to the
maximum CPU time per instance for our run with 384 cores. We limited the main
memory for each sequential run to 12GB.

Fig. 4.9 shows the scaling behavior of our MallobSat configuration. Performance
increases whenever computational resources are doubled, including the largest scale of
3072 cores. Improvements do diminish noticeably beyond 16 nodes (768 cores). On
satisfiable instances, the number of solved instances only increases marginally from 96
cores onward whereas average running times improve consistently up to 3072 cores.
On unsatisfiable instances, we observe more pronounced scaling up to 3072 cores both
in terms of instances solved and in terms of PAR-2 scores. At the largest scale tested,
our system solves 19 more unsatisfiable instances than satisfiable instances. While
this may partly be a result of the considered benchmark set, we later show that clause
sharing especially benefits unsatisfiable instances (Section 4.6.4), which may indicate
that more work is required to achieve similar benefits for satisfiable instances.

90

4.6 Evaluation

0 60 120 180 240 300

Running time t [s]

0

50

100

150

200

250

300

#
in
st
an

ce
s
so
lv
ed

in
≤

t
s

64× 2× 24
32× 2× 24
16× 2× 24
8× 2× 24
4× 2× 24
2× 2× 24
1× 2× 24
1× 1× 24
seq.

overall SAT UNSAT

m cores # PAR # PAR # PAR

1 24 257 251.3 126 256.1 131 246.5
1 48 279 221.2 139 222.6 140 219.7
2 96 305 184.0 150 187.3 155 180.7
4 192 312 164.2 153 169.3 159 159.1
8 384 321 147.2 156 159.1 165 135.3

16 768 328 132.4 156 151.1 172 113.8
32 1536 331 124.4 157 145.3 174 103.5
64 3072 337 115.1 159 137.2 178 92.9

seq. 154 414.0 87 389.1 67 438.9

Figure 4.9: MallobSat scaling results for an increasing number of machines
m. We also include sequential baseline KissatMABHyWalk (“seq.”) with the
same wallclock timeout of 300 s per instance.

Tab. 4.4 lists the speedups of our system compared to the currently best sequential
solver. In an effort to provide as clean and authentic measures as possible, at each
scale we only consider the set of instances which both the sequential approach and
the parallel approach were able to solve (see Section 2.4.2.c). We provide median and
geometric mean speedups as well as total speedups (see Section 2.4.2.b).

KissatMABHyWalk was able to solve 331 instances. As such, our system at 1536
cores is able to solve the same number of instances within five minutes per instance as
a state-of-the-art sequential solver can solve within 32 hours per instance. That being
said, the parallel approach at this scale was allowed to use 4× the CPU time of the
sequential baseline. In contrast to previously reported behavior of HordeSat [BSS15],
our speedup measures never decline but consistently increase whenever more resources
are used. At the largest scale of 3072 cores we observed a median speedup of 41
and a total speedup of 159. To put these measures in perspective, prior literature
on massively parallel general-purpose SAT solving reported median speedups of up
to 13.8 (at 1024 cores) and total speedups of up to 109 (at 2048 cores)—both with
HordeSat [BSS15].10 Our work achieves a median speedup of 19 with only 384
cores and a total speedup of 138.7 with only 1536 cores. The geometric speedup of
MallobSat at 3072 cores is 43.7 over all commonly solved instances and is slightly
larger for unsatisfiable instances compared to satisfiable instances (45.3 vs. 41.9).

10Note that we explicitly disregard the “arithmetic mean speedups” reported by Balyo et al. [BSS15]
since these measures are statistically not meaningful (see Section 2.4.2.b for a discussion).

91

4 Scalable Distributed SAT Solving

overall SAT UNSAT

m cores # med. geom. total # med. geom. total # med. geom. total

1 24 254 6.51 7.20 12.13 126 5.12 6.30 8.91 128 7.48 8.21 14.92
1 48 275 8.32 9.42 17.46 138 6.73 7.92 11.18 137 9.76 11.21 23.52
2 96 302 10.88 12.62 21.54 150 9.36 10.87 15.70 152 12.77 14.63 26.29
4 192 309 15.52 17.71 37.09 153 13.17 16.13 30.16 156 17.87 19.41 42.52
8 384 316 19.00 22.63 63.20 154 14.96 18.80 35.06 162 25.33 27.00 86.15

16 768 322 25.14 31.75 105.01 154 19.86 28.27 51.05 168 35.86 35.32 137.13
32 1536 323 32.92 37.40 138.70 154 30.76 33.30 63.58 169 38.02 41.57 182.29
64 3072 324 40.99 43.67 159.00 154 42.09 41.93 78.29 170 38.90 45.30 200.54

Table 4.4: Speedups of MallobSat over KissatMABHyWalk on 24 to 3072
cores. Each section shows the number of commonly solved instances and the
median, geometric mean, and total speedup for these instances.

At 384 cores, where the parallel and sequential approach received equal resources,
MallobSat achieves an efficiency of 63.20/384 ≈ 16.5% in terms of total speedup.

Fig. 4.10 shows per-instance speedups of MallobSat at the smallest and largest
tested scale. Speedups clearly correlate with sequential running times, which confirms
the increasing merit of parallel solving as instances become more difficult. At 3072
cores, all 14 instances which resulted in a slowdown (speedup < 1) took the sequential
solver less than 1.4 seconds. On the more difficult half of instances, i.e., those which
took the sequential solver more than 349 s to solve, MallobSat at 3072 cores achieves
a geometric mean speedup of 104.5 (median 81.9). On the 40 instances which took
the sequential solver more than an hour to solve, the geometric mean speedup reaches
418.7 (median 370.5) and thus an efficiency of 418.7/3072 = 13.6%. Increasing the
sequential and parallel running times may further extend the observed speedups.

While our 24-core run achieved superlinear speedups on 45 instances, the 3072-core
run achieved only four such speedups. Our solver executes many different solver
implementations and configurations which excel on different instances, whereas the
sequential baseline only runs a single configuration. We believe this discrepancy to be
the main reason for the observed superlinear speedups. At 3072 cores, this effect is
watered down by using far more cores than there are distinct configurations. Note
however that the 3072-core run solved 31% more instances than the 24-core run, which
clearly indicates weak scaling (Section 2.4.2.d). Fig. 9.1 (Appendix B) provides a full
graphical overview of the weak scaling of MallobSat.

Using the SAT benchmark database GBD [IS19], we traced the observed speedups
to specific benchmark families. Among the instances at the lower edge of the cone
of speedups in Fig. 4.10, where MallobSat at 3072 cores scales the worst, are un-
satisfiable string safety verification tasks [OW21] (speedups of 13–25 at sequential
running times of 800–1800 s) and satisfiable Hamiltonian Cycle encodings [Heu21a]
(speedups of 17–36 for seven instances with sequential times of 700–2300 s). Con-
versely, Tab. 4.5 shows some of the best consistent speedups MallobSat achieves.

92

4.6 Evaluation

10−1 100 101 102 103 104

Running time of sequential solver [s]

10−1

100

101

102

103

104

105

S
p
ee
d
u
p
at

2
4
co
re
s

unsatisfiable

satisfiable

10−1 100 101 102 103 104

Running time of sequential solver [s]

10−1

100

101

102

103

104

105

S
p
ee
d
u
p
at

30
7
2
co
re
s

unsatisfiable

satisfiable

Figure 4.10: Per-instance log-scale speedups of MallobSat relative to the se-
quential solver’s running time, on 24 cores (left) and on 3072 cores (right). The
horizontal dotted lines separate sublinear from superlinear speedups.

Speedup on x cores

Instance Seq. (s) 24 48 92 192 384 768 1536 3072

ctl 4201 555 unsat.cnf 1873.9 14.4 20.1 32.8 49.0 75.3 105.7 138.7 171.2
edit distance031 283.cnf 2465.9 20.3 36.3 59.8 85.9 122.7 184.2 230.8 247.1
edit distance031 284.cnf 2561.6 22.0 34.3 59.4 87.7 130.4 185.7 230.3 256.8
mp1-bsat201-707.cnf 3087.9 41.4 67.7 125.3 165.5 234.1 260.7 287.5 321.3
mp1-bsat210-739.cnf 7011.8 36.6 60.3 109.1 150.8 253.0 294.4 324.3 387.5
mp1-klieber2017s-2000-022-eq.cnf 908.0 28.1 49.0 65.8 81.6 92.7 110.6 149.7 172.7
randomG-B-Mix-n16-d05.cnf 3053.2 24.4 41.1 63.5 106.5 163.4 238.5 332.6 413.3
rphp4 065 shuffled.cnf 671.5 24.1 42.3 66.0 94.0 129.0 179.4 231.5 276.8
rphp4 080 shuffled.cnf 2145.0 29.7 53.1 85.3 161.1 229.6 295.1 416.3 542.1
rphp4 090 shuffled.cnf 3709.9 28.2 51.3 91.7 138.9 261.7 379.4 503.2 638.1
satch2ways14u.cnf 1868.9 29.0 45.9 60.8 87.7 120.7 183.0 218.1 270.9
satch2ways15.cnf 10383.0 39.0 59.6 78.5 106.8 180.0 265.9 369.4 506.1
sp4-33-one-stri-tree-noid.cnf 727.5 39.4 55.6 95.6 133.4 198.0 266.6 320.0 390.0

Table 4.5: Instances where the speedup of MallobSat increases consistently (by
g 5% per step) and exceeds 5% efficiency (i.e., speedup g 153.6) at 3072 cores.

93

4 Scalable Distributed SAT Solving

overall SAT UNSAT

Sys. m cores # med. geom. total # med. geom. total # med. geom. total

H 1 24 184 3.80 3.26 7.95 82 3.03 2.56 5.62 102 4.74 3.95 10.17
H 1 48 214 3.67 3.87 8.02 98 2.96 2.94 5.01 116 5.27 4.89 11.51
H 2 96 241 6.00 6.00 19.35 105 5.35 5.10 15.29 136 7.34 6.80 22.11
H 4 192 267 8.54 8.13 26.72 117 7.54 6.86 17.14 150 9.77 9.27 32.70
H 8 384 284 10.93 11.23 34.35 127 9.61 10.21 17.75 157 11.52 12.14 43.69
H 16 768 293 13.72 13.83 43.31 133 12.16 12.46 26.50 160 15.06 15.08 54.95
H 32 1536 294 17.52 15.92 49.73 132 16.26 14.63 31.65 162 18.11 17.07 60.97
M’L 32 1536 311 20.37 21.14 59.51 147 17.46 17.81 31.71 164 25.33 24.63 83.24

Table 4.6: Speedups of HordeSat (H) and of MallobSat with a Lingeling-
only portfolio (M’L), with the same metrics as in Tab. 4.4.

All of the displayed instances are unsatisfiable since speedups on satisfiable in-
stances are more erratic. The benchmark families featured more than once encode
cluster graph editing distance (edit distance*) [Men21], balanced random SAT
problems (mp1-bsat*) [Spe17], relativized Pidgeon Hole Principle (PHP) problems
(rphp4*) [EN16], and automated test configuration (satch*) [Bie21].

We ran HordeSat on up to 1536 cores and computed speedups in the same manner
as for MallobSat. As Tab. 4.6 shows, speedups are slightly larger than reported for
original HordeSat—now achieving a median speedup of 17.5 on 1536 cores—although
we computed them based on the current sequential state of the art and disregard
sequential timeouts. The most likely causes for this improvement are (a) our updates
to HordeSat’s sources and solver backends, (b) differing benchmark sets, and (c)
deviating time limits. Tab. 4.6 also includes a run of our system where we replaced
our final, mixed portfolio with a Lingeling-only portfolio as HordeSat’s. With the
same solver backend, MallobSat improves on HordeSat’s geometric mean speedup
by 32.8% while also solving 17 more instances. With our mixed portfolio, MallobSat

more than doubles the speedups of HordeSat at all scales (see Tab. 4.4).

4.6.4 Performance Insights

To conclude the evaluation of MallobSat, we provide some further insights based
on the data of our scaling experiments.

Fig. 4.11 provides a direct comparison of HordeSat vs. MallobSat on the ISC
2021 benchmarks at 1536 cores. We again show the performance of MallobSat both
with Lingeling only as well as with our final mixed portfolio consisting of equal parts
of Kissat, CaDiCaL, and Lingeling. Clearly, MallobSat only reaches its full
potential with our new portfolio. Since we designed, tested, and tuned our techniques
based on this new portfolio, this does not imply that HordeSat would improve
by the same margin if it employed this portfolio as well. The CBS (Count Based
Speedup, Section 2.4.2.b) of MallobSat over HordeSat is 1.98 if both systems use
Lingeling only and 4.54 if MallobSat uses our mixed portfolio.

94

4.6 Evaluation

0 60 120 180 240 300

Running time t [s]

0

100

200

300

#
in
st
a
n
ce
s
so
lv
ed

in
≤

t
s

MallobSat KCL

MallobSat L

HordeSat

overall SAT UNSAT

PAR # PAR # PAR

Mal’KCL 331 122.8 158 142.4 173 103.2
Mal’ L 318 153.8 149 183.9 169 125.1
Horde 299 184.8 133 226.6 166 143.1

Figure 4.11: Comparison of our updated HordeSat vs. MallobSat on ISC 2021
benchmarks with 1536 cores.

0 100 200 300

Running time t [s]

0

100

200

300

#
so
lv
ed

in
≤

t
s

Overall

0 100 200 300

Running time t [s]

0

50

100

150

#
so
lv
ed

in
≤

t
s

SAT

0 100 200 300

Running time t [s]

0

50

100

150
#

so
lv
ed

in
≤

t
s

UNSAT

Figure 4.12: Performance of MallobSat at 3072 cores with (straight line) and
without (dotted line) clause sharing.

Next, we analyze the impact of MallobSat’s clause sharing at the largest tested
scale of 3072 cores. We re-ran MallobSat at this scale without clause sharing,
rendering it a pure portfolio solver without any exchange of information. Visual results
are given in Fig. 4.12. Separating the benchmarks into satisfiable and unsatisfiable
instances, we can confirm earlier findings that clause sharing is crucial for unsatisfiable
instances, much moreso than for satisfiable instances [BSS15]. Balyo et al. did not find
evidence that clause sharing benefits satisfiable instances at all—even finding clause
sharing to deteriorate performance for random instances. By contrast, we do observe
improved performance on satisfiable instances. This supports the intuition that shared
clauses are central for eventually deriving the empty clause of unsatisfiable problems
but can also be useful as a means of pruning the search for a satisfying assignment.

95

4 Scalable Distributed SAT Solving

1 2 4 8 16 32 64 128

workers

0

50

100

150

200

k
L
it
s
sh
a
re
d

1 2 4 8 16 32 64 128

workers

0

50

100

150

200

L
it
s
p
e
r
so
lv
e
r

1 2 4 8 16 32 64 128

workers

3

4

5

6

7

C
la
u
se

le
n
g
th

1 2 4 8 16 32 64 128

workers

0.7

0.8

0.9

1.0

A
d
m
it
te
d
ra
ti
o

Figure 4.13: Clause sharing behavior for 1–128 workers (1–3072 cores) in terms of
the median successfully shared literals (top left), the same measure divided by
the number of solvers (top right), the mean length of successfully shared clauses
(bottom left), and the mean ratio of exchanged clauses admitted by the distributed
filter (bottom right). Note the y axis offsets in the bottom figures.

The CBS of the clause sharing run over the sharing-less run is 4.08 for satisfiable
and 15.59 for unsatisfiable instances. Without sharing, the PAR-2 score is 166.1
on satisfiable instances and 309.7 on unsatisfiable instances. We can compare these
scores to the PAR-2 scores MallobSat achieves at different scales with sharing
enabled (Fig. 4.9): On satisfiable instances, the sharing-less run on satisfiable instances
performs worse than the clause sharing run at 384 cores (PAR-2 159.1) and more. On
unsatisfiable instances, the sharing-less run performs worse than all clause sharing
runs—even the run at only 24 cores (PAR-2 246.5). With these results, we provide
clear evidence that clause sharing is crucial for the performance of our system and
causes it to substantially surpass the performance of a pure portfolio.

Last but not least, we consider some clause sharing statistics. Fig. 4.13 (top) illus-
trates the impact of the sharing buffer’s sublinear scaling: The number of successfully
shared literals per solver and per sharing decreases as the number of solvers increases.
In these measures the clauses blocked by distributed filtering (see Fig. 4.13 bottom
right) have already been compensated for by correspondingly larger sharing buffers.

The average length of successfully shared clauses (Fig. 4.13 bottom left) mostly
increases with the number of involved solvers. Whenever the number of solvers is
doubled, significantly more literals are allowed to be shared. Since the set of distinct
short clauses which the solvers produce is limited, this generally leads to an increase in

96

4.6 Evaluation

the mean length of successfully shared clauses. This is no longer the case at the largest
scale of 128 workers (3072 solvers), where the total sharing volume increases only by
about 31% compared to 64 workers. We rather see a slight reduction in the mean
shared clause length (7.5 to 7.3) at this scale—showing that more selective sharing
relative to the global volume of produced clauses can indeed improve shared clause
quality. We conjecture that the mean clause quality may continue to improve when
further increasing the number of solvers.

The ratio of clauses admitted by the distributed filter (Fig. 4.13 bottom right)
indicates the increasing relevance of filtering the more workers are involved. Adding
workers increases the probability that a clause is exported redundantly at several
workers. At the largest scale, another effect can be observed: As the sharing budget
per solver decreases, stricter quality criteria are enforced which results in a smaller
interval of admissible clause lengths and, therefore, an increased ratio of duplicates.

4.6.5 Malleable SAT Solving

In the following, we evaluate how the performance of MallobSat is impacted by
malleability, i.e., by repeatedly modifying the number of associated workers. We use
a 32-machine setup (1536 cores) of our scheduler Mallob with two streams of jobs:
a benchmark stream and a disturbance stream. The benchmark stream sequentially
introduces 400 jobs corresponding to the ISC 2021 benchmarks at a time limit of 300 s
per instance. The disturbance stream is configured differently: Every 20 s, a formula
with a wallclock timeout of 10 s is introduced. The formula is chosen in such a way that
it is realistically not solvable within these constraints.11 We assign a certain priority
p to each such disturbance job while we keep default priority 1 for each benchmark
job. As such, each benchmark job is forced to yield 100 ⋅ p

p+1
% of its resources 50%

of the time (on average). We run the experiment once with p = 1 and once with
p = 3, which corresponds to periodically removing one and two layers from the job tree
respectively. We compare the performance of our disturbed benchmark stream with
the performance observed in our scaling results.

Fig. 4.14 compares the performance of each benchmark stream to our earlier scaling
runs without any disturbances. The disturbed stream oscillating between 1536 and 384
cores is not able to reach or surpass the performance of an undisturbed 768-core stream
although its mean resources are at 960 cores. Still, it clearly surpasses the performance
of a 384-core run which confirms that the fluctuating resources do have some merit. On
unsatisfiable instances, disturbed performance is quite close to 768-core performance.
On satisfiable instances, the disturbed run happens to solve one instance less than the
384-core run while very slightly improving on its running times.12 The disturbed stream
oscillating between 1536 and 768 cores behaves similarly—showing good performance
on unsatisfiable instances just between the 768-core and the 1536-core run while
dropping to the 768-core run’s performance on satisfiable instances.

11Since the formula encodes the existence of a period-19 pattern in Conway’s Game of Life [Gar70]
in a 20×20 grid, we would welcome to be proven wrong.

12At 200 instances and a 300 s timeout, an unsolved instances incurs 2 ⋅ 300/200 = 3 PAR-2 points.

97

4 Scalable Distributed SAT Solving

0 60 120 180 240 300

Running time t [s]

260

280

300

320

#
in
st
an

ce
s
so
lv
ed

in
≤

t
s

1536

768–1536

768

384–1536

384

overall SAT UNSAT

cores # PAR # PAR # PAR

384 322 141.7 157 150.0 165 133.3
384–1536 327 133.9 156 150.5 171 117.4

768 328 130.1 157 146.5 171 113.6
768–1536 330 127.4 157 146.4 173 108.4

1536 331 122.8 158 142.4 173 103.2

Figure 4.14: SAT performance with fluctuating resources—note the y axis offset.

We conclude that under continuous and significant fluctuations of a job’s resources,
our simple malleability model allows to maintain the performance achieved by the
(undisturbed) base resources and to profit from the fluctuating resources to some
degree. However, we were not able to demonstrate the latter effect for satisfiable
instances. A possible reason is that unsatisfiable instances profit substantially from
shared clauses, which a solver contributes whenever it is not suspended. In this sense,
the progress made within a particular solver may still benefit the overall procedure
even at times where it is suspended. On satisfiable instances, which do not benefit
from shared clauses to the same extent, a solver which is only active half of the time
is unlikely to contribute in a truly significant manner, i.e., by being the first to find
a solution. As such, further work is required to achieve similar positive effects when
solving satisfiable instances. We believe that this may potentially be achieved by more
aggressive and dynamic (re-)diversification of solvers, especially of those which are
resumed after they have been suspended for some time.

4.6.6 Massively Parallel Processing of SAT Jobs

In a last set of experiments, we evaluateMallob as a malleable scheduler and processor
of many concurrent SAT tasks with MallobSat as an application engine. We allocate
a certain set of computational resources for two hours of wallclock time and attempt
to complete as many tasks as possible among 400 SAT tasks, which correspond to the
benchmark set of ISC2021 and which are all available at the beginning of the time
frame. We use our malleable scheduling system as follows: We randomly partition the
400 formulas into 16 equally sized sets. Among all worker processes, we configure 16
processes to additionally parse and introduce one of the job sets at system start.

98

4.6 Evaluation

m Cores Processes Cores/job

1600×4 136 6400 1600 16
400×4 36 1600 400 4
400×1 9 400 400 1

Table 4.7: Scales used in experiments on massively parallel job processing.

0 1800 3600 5400 7200

Total running time [s]

0

50

100

150

200

250

300

350

#
fi
n
is
h
ed

jo
b
s

Mall 1600×4
Rigid 1600×4
Mall 400×4
Rigid 400×4
Mall 400×1
400×Kissat

OOS 1536 c.
OOS 384 c.

Cores # PAR

Mall 1600×4 6400 347 2220.8
Rigid 1600×4 6400 332 2825.9
Mall 400×4 1600 334 2909.9
Rigid 400×4 1600 316 3508.3
Mall 400×1 400 319 3635.3
400×Kissat 400 303 5204.5

OOS 1536 328 3695.0
OOS 384 308 4467.4

Figure 4.15: Performance of different (real-world or virtual) scheduling strategies
for the ISC 2021 benchmark set on 384–6400 cores.

We compare our malleable scheduling with some other, simpler scheduling strategies.
First, we use our scheduling system while capping the maximum demand of each task
to 1/400 of the overall computational resources. This approach thus runs 400 parallel
solvers, all with fixed and equal amounts of resources, at the same time. We thus refer
to this approach as rigid scheduling. Secondly, we consider the isolated processing
times of our massively parallel solver at a comparable scale and sort the 400 instances
by processing time in ascending order. This yields what we refer to as an Optimal
Offline Schedule (OOS)—the best possible way to sequentially schedule runs of our
parallel solver if we had perfect knowledge on the processing time of each job.

As detailed in Tab. 4.7, we run our scheduling at three scales which initially
run each job on 16, four, and a single core respectively. At the lowest scale of 400
cores, instead of running Mallob with rigid scheduling we provide the results of
KissatMABHyWalk, pretending that all 400 runs are done in parallel on 400 cores.

Fig. 4.15 shows results in terms of finished jobs over time. The OOS are shown at
1536 cores and at 384 cores—slightly different scales compared to the other schedulers.

99

4 Scalable Distributed SAT Solving

Still, the OOS can provide a good intuition on how such schedules would perform.
Given sufficient time, running each job at the maximum available scale will presumably
solve the most instances. However, the OOS are clearly not resource efficient: Over long
time periods, they stay behind the response times achieved by running 400×Kissat.
The rigid strategies, including 400×Kissat, achieve better resource efficiency since
each job is executed at a comparably low degree of parallelism and in turn all jobs can
be processed in parallel. We observed significant speedups for increasing the resources
of each job from one to four cores and from four to 16 cores respectively.

Enabling our scheduling’s full malleability further improves performance by signifi-
cant margins. We especially consider the pronounced performance improvements of
our 400-core malleable scheduler over 400×Kissat to be a strong result since it shows
how our system is able to seamlessly shift from a multi-instance sequential solver to a
(small-scale) parallel solver, both with state-of-the-art performance. This is achieved
while demonstrably incurring low overhead, even though we run an MPI process for
every single solver thread, and without requiring any additional resources except
for making use of both hardware threads on each core. Furthermore, the 400-core
malleable scheduler reaches the performance of the 1600-core rigid scheduler after
around 1.5 hours and then even solves a few more instances. At this point in time,
less than 100 jobs are remaining for the malleable approach and therefore each job
runs on at least four cores—the resources per job of the rigid approach. An equivalent
effect can be seen for the 1600-core malleable scheduler which begins to outperform
the 6400-core rigid scheduler after around 40 minutes since each job then receives
at least 16 cores. Evidently, MallobSat is able to make good use of these added
resources, which we consider a confirmation that our malleable solving approach is
useful and effective in such scenarios. At the largest scale, our malleable approach is
able to solve 347 instances—by far more than any system in the ISC2021 or in our
prior evaluations—while only spending 12 800 ch (core hours).13

4.7 MallobSat in the International SAT Competition

At the time of writing, our system participated in four iterations of the ISC (2020–2023).
For a general introduction to the ISC, see Section 2.4.3. We now discuss the submitted
configurations of MallobSat and their performance in these four years. In short,
our submissions competed with a total of thirteen other submissions in four iterations
of the cloud track, achieving the best performance each time, and competed with a
total of 30 other submissions in three iterations of the (shared-memory) parallel track,
achieving a top-three rank each time. Overall, our submissions have been awarded
with 18 medals (11 gold, 5 silver, 2 bronze). These results confirm that MallobSat

(i) performs well as a general-purpose SAT solver on previously unseen inputs, (ii) can
be efficiently deployed in a cloud environment, and (iii) compares favorably to other
parallel SAT solvers, from shared-memory parallelism to distributed computing.

13In our latest scaling experiments MallobSat solved 331 instances within 12 129 ch (at 1536 cores)
or 335 instances within 22 919 ch (at 3072 cores).

100

4.7 MallobSat in the International SAT Competition

4.7.1 Setup

Since 2020, the parallel and cloud tracks of the ISC are evaluated in Amazon Web
Services (AWS) [Bal+20a]. In this cloud environment (see Section 2.1.2.b), solvers are
deployed in Docker containers. In the parallel track, a single machine of instance type
m4.16xlarge is used. This instance type features Intel Broadwell Xeon E5-2686 v4
processors and is advertised to feature 64 “virtual CPUs” and 256GB of RAM.14 We
assume that the machine is in fact two-socket hardware with 18 cores (36 hardware
threads) each, totalling 72 hardware threads 64 of which are accessible for user tasks.
In the cloud track, 100 machines of instance type m4.4xlarge are used in parallel.
This type is advertised to feature 16 virtual CPUs and 64GB of RAM.15

The setup suggested by the organizers to set up communication via MPI is the
following: Each worker node reports its IP to a single leader node (via SSH and
the leader node’s file system). The leader node then executes the solver system via
MPI on the assembled list of IPs. Latencies and overhead of this TCP/IP based
communication setup are significantly higher than with the rapid interconnects on
modern HPC clusters such as Infiniband or OmniPath [Gra+06]. This may lead to
a relative disadvantage for systems with high communication bandwidth (such as
TopoSAT 2 in 2020 with näıve all-to-all sharing). Since our system performs careful
communication with only a few collective operations per second and performs this
communication strictly asynchronously, it is able to handle these increased costs well.

4.7.2 By-year Discussion

We now discuss our submissions and the results achieved in each year. Table 4.8
provides an accompanying overview.

4.7.2.a 2020

The first time MallobSat participated in the ISC was in 2020 [Sch20]. Our work back
then was focused on preparing a malleable SAT solving engine based on HordeSat

with reasonable efficiency, with the aim of deploying it within Mallob. Our configura-
tion performed very cautious clause sharing (up to clause length five) and employed an
updated Lingeling portfolio including some YalSAT instances. We did not consider
submitting MallobSat to the parallel track that year.

Our SAT solving engine proved to be highly competitive even though its main
feature, malleability, remained unused. MallobSat outperformed the second best
performing cloud solver TopoSAT 2 by a decent margin [Bal+20b] and was able to
solve two satisfiable (“Steiner”) instances exclusively across all main, parallel, and
cloud track solvers. However, since the organizers did not provide performance data of
HordeSat, which had been set up as a baseline example solver, the degree to which
MallobSat advanced the state of the art remained unclear.

14https://aws.amazon.com/ec2/dedicated-hosts/pricing
15https://aws.amazon.com/de/ec2/instance-types/

101

https://aws.amazon.com/ec2/dedicated-hosts/pricing
https://aws.amazon.com/de/ec2/instance-types/

4 Scalable Distributed SAT Solving

Year, ref. Track Submission name # PAR Rank

2020 [Bal+20b] Cloud
mallob-mono 299 583 1.
TopoSAT 2 278 706 2.

2021 [Bal+21b]

Cloud
Mallob-HC

∗ 337 373 —
Mallob 316 480 1.
MergeHordeSat 260 858 2.

Parallel
P-MCOMSPS 320 2386 1.
Mallob-parallel 318 2411 2.

2022 [Bal+22b]

Cloud
Mallob-KiCaLiGlu 341 345 1.
Paracooba 221 795 2.

Parallel
ParkissatRS 326 2105 1.
Mallob-Ki 292 2988 3.

Anniv. Cloud
Mallob-KiCaLiGlu 4687 279 1.
Paracooba 3619 725 2.

Anniv. Parallel
Mallob-Ki 4400 1992 1.
MergeSAT-AWS 4076 2690 2.

2023 [Bal+23a]

Cloud
Mallob1600 328 426 1.
PRS-distributed 305 531 2.

Parallel
PRS-parallel 320 2272 1.
Mallob64 301 2746 2.
Mallob32 293 2941 —

Table 4.8: Overview of MallobSat’s performance in ISC 2020–2023, including all
of our submissions as well as the best ranking competitor for each track. The 2022
Anniversary tracks featured 5355 benchmark instances; all other tracks featured
400 instances. ∗Mallob-HC was not ranked officially since the mixed portfolio
it employed was disallowed in the competition.

4.7.2.b 2021

Following the success of MallobSat in 2020, we submitted a configuration both to the
parallel and the cloud track [Sch21e]. Among that year’s improvements, MallobSat

now shared clauses up to length 30 and also targeted a significantly higher sharing
volume, with an increased discount factor α from 0.75 in 2020 up to 0.9 (cloud
track) and 1.0 (parallel track) respectively. We also introduced a rudimentary and
probabilistic clearing of our (Bloom) clause filters at a half life of 300 s. Motivated by
huge formulas in the prior year’s benchmark set, we added basic memory awareness to
MallobSat (spawning fewer solver threads based on formula size).

MallobSat in 2021 dominated the cloud track with a substantial margin to all
other competitors, solving 56 instances more than the submission placed second.
MallobSat also proved to be a highly competitive system in the parallel track,

102

4.7 MallobSat in the International SAT Competition

scoring the second place overall and being the only solver with a top-3 rank on both
satisfiable and unsatisfiable instances. While mixed portfolios featuring multiple differ-
ent solver backends were still disallowed, the organizers kindly ran such a submission of
MallobSat hors concours as in the cloud track. This version, Mallob-HC, signifi-
cantly outperformed our official submission and was able to solve 42 out of 400 instances
exclusively across the three tracks (listed online, see Appendix A)—demonstrating
the power of our mixed portfolio with clause sharing. Following this iteration of the
competition, the unprecedented performance of our system was acknowledged in an
Amazon Science blog post on automated reasoning, commenting that it “is now, by a
wide margin, the most powerful SAT solver on the planet” [Coo21].

4.7.2.c 2022

2022 marked the first iteration of the ISC where authors were allowed to submit mixed
portfolios consisting of several different sequential solvers to the cloud track [Bal+22b].
We submitted MallobSat with a portfolio of Kissat, CaDiCaL, Lingeling, and
Glucose. For the first time, MallobSat used subprocessing and an early version of
distributed filtering. In the parallel track (where mixed portfolios remain forbidden) we
intended to submit a Kissat-only portfolio [Sch22] but in fact submitted a Lingeling-
only portfolio due to a misconfiguration. The same mistake also led to a deviating
buffer limit discount α = 0.9 instead of the intended value α = 1 in the parallel track.

The cloud track, unfortunately, only saw two qualified participants (with a third
one disqualified), the other submission being Paracooba [Hei22]. In the parallel
track, our unintentional submission of a Lingeling-based portfolio proved to be a
blessing in disguise on unsatisfiable instances: MallobSat scored the top rank in all
unsatisfiability sub-tracks it was eligible for. Overall our parallel solver scored the 3rd
place. 16 instances among the 400 benchmark instances were solved exclusively by
some MallobSat configuration(s) (listed online, see Appendix A).

We ran a follow-up evaluation on our own hardware (64 hardware threads) to assess
the impact of our misconfiguration in the parallel track. Fig. 4.16 shows results, indicat-
ing that our intended configuration performs substantially better than our submitted
configuration and is on par with the winning parallel solver ParkissatRS [ZCC22] at
a timeout of 1000 s. A mixed portfolio further improves performance by a considerable
margin but is disallowed in the parallel track.

Since 2022 marked the 25th iteration of the ISC, it featured three further tracks on
the Anniversary benchmark set—the largest set of SAT instances yet, with a total of
5355 formulas. MallobSat won both the cloud and the parallel Anniversary track.
Since this benchmark set features many instances on which solvers have been tuned for
years, these results are not necessarily as meaningful as those in the usual tracks.16 We
identified 266 instances which only MallobSat (parallel or cloud) was able to solve
(see Appendix A). We also provide a comparison of MallobSat with Paracooba

based on the 2022 Anniversary cloud track in Fig. 9.2 (Appendix B).

16Biere et al. suggest to use a benchmark set for up to three years after its publication [Bie+20b].

103

4 Scalable Distributed SAT Solving

0 200 400 600 800

Running time t [s]

0

50

100

150

200

250

300

#
in
st
an

ce
s
so
lv
ed

in
≤

t
s

MallobSat KCLG α=1

ParkissatRS

MallobSat K α=1

MallobSat L α=0.9

PAR-2

MallobSat KCLG α=1 295 623.4
ParkissatRS 286 687.0
MallobSat K α=1 285 692.5
MallobSat L α=0.9 252 858.6

Figure 4.16: Performance at 64 hardware threads of ParkissatRS (2022) and of
MallobSat with the submitted 2022 configuration (“L α = 0.9”), the intended
configuration (“K α = 1”), and a mix of all solvers supported by MallobSat

(“KCLG α = 1”, a configuration which would be disallowed in the parallel track).

4.7.2.d 2023

In the most recent iteration of the ISC at the time of writing, we submitted our
system in a configuration similar to our final tuned version in this chapter with some
notable differences [Sch23]. Our submission shares clauses three times a second and
still uses the older sublinear buffer limit function. It also contains a bug in the clause
filtering which leads to suboptimal by-solver filtering and only features a preliminary
compensation technique for unused sharing volume. We submitted two variants to the
parallel track: One which employs 32 solver threads and one which employs 64 solver
threads, in both cases within a single process. Our intention was to assess whether
making full use of all advertised virtual CPUs is actually beneficial.

The 2023 iteration of the ISC marks the first year where competitors in the sequential
main track were allowed to specify the proof validation tool which should be used for
their submission [Bal+23b]. Three different proof checking systems were submitted,
two of which allow for more powerful reasoning techniques than the classical resolution
calculus most conventional CDCL solvers still use. Even though parallel solvers are not
required to emit proofs, this change indirectly proved to be relevant for all tracks: Since
the ISC enforces sequential solver submissions to “Bring Your Own Benchmarks”,
the submissions using other proof systems were accompanied by benchmark instances
which are known to be difficult to solve with pure resolution [Bog+23; CRB23].

The 2023 cloud track featured a small but strong set of competitors, with our
submission of MallobSat winning by the smallest margin so far (yet still decidedly).
On satisfiable instances the new system PRS-distributed [ZCC23] (where clause

104

4.8 Conclusion

sharing is limited to a ring communication structure) achieved performance close
to MallobSat whereas on unsatisfiable instances the system Malloblin [Cho23]
performed similarly and in fact solved slightly more instances. The latter system
is a fork of MallobSat that replaced Lingeling’s local search solver YalSAT

with an alternative named yallin. Since this local search solver is unable to find
unsatisfiability, we attribute Malloblin’s success on unsatisfiable instances to the
choice of Lingeling vs. our mixed portfolio. In the parallel track, Malloblin

achieved the second place on unsatisfiable instances, similar to our own Lingeling-
based submission one year earlier. On satisfiable instances and in the overall rating,
our own submission of MallobSat with 64 solvers scored the second place after
PRS-parallel [ZCC23] (the successor to ParkissatRS). Our 32-solver variant
performed considerably worse than the 64-solver variant, indicating that using more
than half of the virtual CPUs is beneficial on the used AWS instance type.

Despite the stronger competition, four instances were only solved by MallobSat

submissions across the three principal tracks, among them—coming full circle with
our introduction (Section 1.1)—an arithmetic circuit equivalence problem17 [Kau+19].

4.8 Conclusion

In order to improve the scalability and resource-efficiency of general-purpose SAT
solving in large distributed environments, we presented a novel malleable SAT solving
engine MallobSat within our job scheduling framework Mallob. Our engine is
a consequent overhaul of HordeSat and incorporates a compact clause sharing
approach, state-of-the-art solver backends, and various practical improvements. We
showed that our standalone SAT solver significantly outperforms the prior state of
the art in massively parallel solving and consistently leads to improved speedups. In
particular, we observed scaling up to 3072 cores especially for unsatisfiable instances.
We also discussed the results of four iterations of the International SAT Competition,
where our system performed very favorably compared to other (massively) parallel
solvers. Last but not least, we showed that Mallob’s combination of parallel job
processing and flexible parallel SAT solving is able to reduce scheduling and response
times and to maximize resource efficiency in a distributed environment.

While we have advanced the state of the art in distributed SAT solving, our
evaluations also indicate promising directions for future research. An important task
is to further improve our system’s running times and scaling behavior on satisfiable
instances, especially under fluctuating resources. For this purpose, we may pursue
more dynamic and aggressive diversification of solvers. Other relevant directions to
extend our work may include the integration of GPUs, the parallelization of pre- and
inprocessing techniques, and a data-driven selection of diverse solver portfolios via
machine learning techniques (cf. [BIB22]).

17eqspctbk14spwtcl14.cnf

105

5
Chapter 5

Unsatisfiability Proofs for
Distributed SAT Solving

Our previous efforts on distributed clause-sharing SAT solving have led
to impressive speedups over sequential SAT solvers by sharing derived
information among many solvers working on the same problem. Unlike
sequential solvers, however, distributed solvers have not been able to produce
proofs of unsatisfiability in a scalable manner, which limits their use in
critical applications. In this chapter, we present a method to produce
unsatisfiability proofs for our distributed SAT solver by combining the
partial proofs produced by each sequential solver into a single, linear proof.
Our approach is more scalable and general than previous explorations for
parallel clause-sharing solvers. We propose a simple sequential algorithm
as well as a fully distributed algorithm for proof composition. Our empirical
evaluation shows for a setup with 100 nodes × 16 hardware threads that our
distributed approach allows proof composition and checking with reasonable
overhead. We analyze the overhead and discuss how and where future
efforts may further improve performance.

Author’s Notes. This chapter is based on “Unsatisfiability Proofs for Distributed
Solvers” [Mic+23], a joint publication by Dawn Michaelson, Benjamin Kiesl-Reiter,
Marijn Heule, Michael W. Whalen, and myself. Dawn Michaelson and I are equal
main authors of that publication. While I revised large parts of the publication, some
parts of this chapter are copied verbatim or with minor changes from the publication.
The basic proof production approach, the implementation of necessary changes to
CaDiCaL, and the experiments conducted in the AWS cloud are due to my co-authors.
I designed, implemented, and analyzed the distributed proof production approach,
implemented the vast majority of necessary changes to MallobSat, contributed to the
experimental setup, authored most of the presentation and discussion of experiments,
and contributed significantly to the remaining sections. Compared to the original
publication, this chapter only briefly outlines basic proof production. In turn, this
chapter features some added content, in particular a proof of correctness for our
distributed proof production and a revised evaluation section.

5.1 Introduction

Distributed clause-sharing SAT solvers such as MallobSat are demonstrably some
of the most powerful tools available for solving hard SAT problems [Fro+21; Coo21].

107

5 Unsatisfiability Proofs for Distributed SAT Solving

However, there is an important caveat: unlike sequential solvers, current distrib-
uted clause-sharing solvers cannot produce proofs of unsatisfiability (Section 2.2.4).
A direct consequence is that these distributed solvers cannot be used for proving theo-
rems [HKM16; Heu18; SH23]. Even in cases where proofs are not strictly required, it
is important to be able to trust the output of an algorithm.1 For instance, in bounded
model checking [Cla+01], one of the most prominent applications of SAT solving, a
formula’s reported unsatisfiability is interpreted as a system behaving correctly up
to the considered depth (see Section 2.2.5). Therefore, the safety and reliability of
crucial systems may depend on a SAT solver answering correctly.

In this sense, we argue that distributed clause-sharing solvers are lacking behind
sequential SAT solvers in terms of general trustworthiness. The former, while complex
pieces of software, not only generate verifiable proofs but are also being rigorously
tested (e.g., [BLB10; Bie21]) and feature limited external interfaces. Distributed
clause-sharing solvers, on the other hand,
– are more costly (and thus more difficult) to test rigorously;
– make use of several different SAT solvers configured in many different ways [BSS15];
– run many execution threads concurrently; and
– make use of non-trivial interfaces for data transfer such as message passing [BSS15]
and/or inter-process communication [SS21b]. All of these properties have some
potential to introduce faults or correctness issues in certain corner cases, which makes
it all the more critical to be able to independently verify the system’s output.

While there has been foundational work in producing proofs for shared-memory
clause-sharing SAT solvers [HMP14; BF22b], existing approaches are not general
enough for large-scale distributed portfolio solvers (see Section 2.3.4). In this chapter,
we address this issue and present the first scalable approach for generating proofs for
such solvers. To construct proofs, we maintain provenance information about shared
clauses in order to track how they are used in the global solving process, and we use
the recently-developed LRAT proof format [Cru+17] to track dependencies among
partial proofs produced by solver instances. By exploiting these dependencies, we
are then able to reconstruct a single linear proof from all the partial proofs produced
by the sequential solvers. We first outline a simple sequential algorithm for proof
reconstruction before devising a parallel algorithm that we implemented in a fully
distributed way. Both algorithms produce independently-verifiable proofs in the LRAT
format. We demonstrate our approaches using an LRAT-producing version of the
sequential SAT solver CaDiCaL [Bie+20a] to turn it into a clause-sharing solver, and
then modify MallobSat (see Chapter 4) to orchestrate a portfolio of such CaDiCaL

instances while tracking the IDs of all shared clauses.

We conduct an evaluation of our approaches from the perspective of efficiency,
benchmarking the performance of our clause-sharing portfolio solver against the winners
of the cloud track, parallel track, and sequential track from the ISC 2022. Our approach
introduces overhead in terms of solving, proof reconstruction, and proof checking.

1There are certain exceptions, such as Monte Carlo algorithms where providing some incorrect
results is an explicit part of the specification.

108

5.2 Proof Formats

We examine this overhead in detail and show that our approach is still considerably
faster than sequential approaches. We also demonstrate that our approach substantially
outperforms prior work on proof production for clause-sharing portfolios [HMP14].
We argue that much of the overhead of our current setup can be compensated, among
other measures, by improving support for LRAT in solver backends. We thus hope
that our work incentivizes researchers to add LRAT support to other solvers.

This chapter is structured as follows. In Section 5.2, we present common proof
formats which are relevant for the discussion of our work. For a discussion of related
work we refer to Section 2, in particular Sections 2.3.2 and 2.3.3.a for clause-sharing
portfolios and Section 2.3.4 for parallel certified SAT solving. In Section 5.3, we outline
the general problem of producing proofs for distributed SAT solving and outline a
first simple algorithm for proof combination. In Section 5.4, we describe an efficient
distributed version of our algorithm. We discuss implementation details in Section 5.5.
Finally, we present the results of our empirical evaluation in Section 5.6 and conclude
with a summary and an outlook for future work in Section 5.7.

5.2 Proof Formats

For a general introduction to proofs of unsatisfiability, we refer to Section 2.2.4. In
terms of specific proof formats, the current standard format for sequential SAT solving
is called DRAT [Heu16]. An example DRAT proof is given in Figure 5.1 (center),
formatted in the commonly used DIMACS CNF syntax (see Section 2.4.1). Each line
of the proof is either an addition or a deletion statement. Additions are lines that
represent clauses which were derived (“learned”) by the solver. Each clause addition
must preserve satisfiability. Furthermore, each added clause must adhere to a certain
criterion which allows checkers to reliably confirm that the clause is indeed a logical
consequence of the prior clause set. The specifics of this RAT criterion [Heu16] are
not essential to our work. Deletions are lines that start with a ‘d’, followed by a
clause; they identify clauses that were deleted by the solver. Clause deletions can only
make a formula “more satisfiable”, meaning that they are not required for deriving
unsatisfiability, but they drastically speed up proof checking [Heu16]. A valid DRAT
proof of unsatisfiability ends with the derivation of the empty clause. As the empty
clause is trivially unsatisfiable (and since each proof step preserves satisfiability) the
unsatisfiability of the original formula can then be concluded.

The more recent LRAT proof format [Cru+17] augments each clause addition
with hints, or dependencies, which identify the clauses that were required to de-
rive the current clause. This makes proof checking more efficient, and in fact the
usual pipeline for trusted proof checking is to first use an efficient but unverified
tool (like drat-trim [Heu16]) to transform a DRAT proof into an LRAT proof, and
then check the resulting LRAT proof with a formally verified proof checker [Cru+17;
Heu+17; Lam20; THM21]. Figure 5.1 shows an LRAT proof corresponding to a
DRAT proof. Each proof line starts with a clause ID. The numbering starts with
ID 9 because the eight clauses of the original formula are assigned the IDs 1 to 8.

109

5 Unsatisfiability Proofs for Distributed SAT Solving

DIMACS CNF

p cnf 4 8

1 -2 0

2 -4 0

1 2 4 0

-1 -3 0

1 -3 0

-1 3 0

1 3 -4 0

1 3 4 0

-3 0

1 2 0

-1 0

d -3 0

2 3 -4 0

1 2 3 0

0

DRAT proof

9 -3 0 5 4 0

10 1 2 0 3 2 0

11 -1 0 6 9 0

11 d 9 0

12 2 3 -4 0 7 11 0

13 1 2 3 0 8 12 0

14 0 11 10 1 0

LRAT proof

Figure 5.1: CNF formula and corresponding DRAT and LRAT proofs. Headers
and separators are colored gray, deletions are colored red, clause IDs are colored
blue, and hints are colored orange. Clause literals are always colored black.

Each clause addition first lists the literals of the clause and then the clause’s depen-
dencies in the form of clause IDs. Clause deletions just state the ID(s) of the clauses
to delete, as in the later deletion of clause 9. In our work, we exploit the hints of
LRAT to determine dependencies among distributed solvers.

5.3 Basic Proof Production

Our goal is to produce checkable unsatisfiability proofs for problems solved by distrib-
uted clause-sharing SAT solvers. We propose to reuse the work done on proofs for
sequential solvers by having each solver produce a partial proof containing the clauses
it learned. These partial proofs are invalid in general because each sequential solver
can rely on clauses shared by other solvers when learning new clauses. For example,
when solver A derives a new clause, it might rely on clauses from solvers B and C,
which in turn relied on clauses from solvers D and E, and so on. The justification of
A’s clause derivation is thus spread across multiple partial proofs. We need to combine
the partial proofs into a single valid proof in which the clauses are in dependency order,
meaning that each clause can be derived from previous clauses.

To produce efficiently checkable proofs in a scalable way, we address three challenges:

(i) Provide metadata to identify which solver produced each learned clause.
(ii) Efficiently sort learned clauses in dependency order across all solvers.
(iii) Reduce proof size by removing unnecessary clauses.

Switching from DRAT to the LRAT proof format provides the mechanism to unlock
all three challenges. First, we specialize the clause-numbering scheme used by LRAT
in order to distinguish the clauses produced by each solver. Second, we use the
dependency information from LRAT to construct a complete proof from the partial
proofs produced by each solver. Finally, we determine which clauses are unnecessary
(or used only for parts of the proof) to trim the proof where possible.

110

5.3 Basic Proof Production

Instance A

9 -3 0 5 4 0

11 -1 0 6 9 0

11 d 9 0

13 1 2 3 0 8 12 0

10 1 2 0 3 2 0

12 2 3 -4 0 7 11 0

14 0 11 10 1 0

Instance B

9 -3 0 5 4 0

11 -1 0 6 9 0

10 1 2 0 3 2 0

12 2 3 -4 0 7 11 0

14 0 11 10 1 0

Combined

9 -3 0 5 4 0

11 -1 0 6 9 0

11 d 9 0

10 1 2 0 3 2 0

14 0 11 10 1 0

Pruned

Figure 5.2: Partial proofs and combined and pruned proof, colored as in Fig. 5.1.
The blue arrows indicate remote dependencies across the partial proofs.

5.3.1 Partial Proof Production

To combine the partial proofs into a complete proof, we modify the mechanism how
LRAT proofs are produced in each of the individual sequential solvers. We assign to
each clause an ID that is unique across solvers and identifies which solver originally
derived it. The following mapping from clauses to IDs achieves this:

Definition 5.1

Let o be the number of clauses in the original formula and let p be the number of
sequential solvers. Then the ID of the k-th derived clause (k ≥ 0) of solver i is defined
as ID i

k = o + i + pk.

Given ID i
k, we can easily determine the producing solver i using modular arithmetic.

We extend our clause sharing to send each clause together with its ID. A receiving
solver stores the clause with its ID and uses the ID in proof hints when the clause
is used locally, as it does with locally-derived clauses. Unlike locally-derived clauses,
we add no derivation lines for incoming clauses to the local proof. Instead, these
derivations will be added to the final proof when combining the partial proofs.

5.3.2 Partial Proof Combination

Once the distributed solver reports unsatisfiability, we have p partial proofs. The
derivations in these proofs can refer to clauses of other partial proofs, but they
are, locally, in dependency order. We can thus combine the partial proofs without
reordering their clauses beforehand. We can simply interleave their clauses so the
resulting proof is also in dependency order, ignoring any deletions in the partial proofs.

Our combination algorithm traverses the partial proofs round-robin. At each step,
we read and output the next clause c from the current partial proof as long as all
dependencies of c have already been output. Checking whether a dependency d has
already been output is simple: We determine which solver produced d (see Def. 5.1)
and check if the next clause of the corresponding partial proof has an ID higher than d.
Our algorithm terminates when it emits the empty clause.

Suppose that two clause-sharing solver instances, A and B, found the formula from
Figure 5.1 to be unsatisfiable and emitted two partial proofs as displayed in Figure 5.2.

111

5 Unsatisfiability Proofs for Distributed SAT Solving

Starting with A, we can emit clause 9 (only depending on original clauses) and 11

(depending on original clauses and clause 9). We cannot emit clause 13 since it depends
on clause 12 from B. Proceeding with B, we can now emit the remaining clauses 10,
12, and 14. Since clause 14 is the empty clause, we finish with the complete proof
shown in Figure 5.2 (right). Note that clause 13 was not added to the combined
proof—it was not required to satisfy any dependencies of the empty clause.

5.3.3 Proof Pruning

The combined proof our procedure produces is valid but not efficiently checkable
because (1) it can contain superfluous clauses and (2) it does not contain deletion lines,
meaning that a proof checker must maintain all learned clauses in memory throughout
the checking process. To reduce size and improve checking performance, we prune our
combined proof to only contain necessary clauses, and we add deletion statements for
clauses as soon as they are not needed anymore.

Our pruning algorithm walks the combined proof in reverse to find all transitive de-
pendencies of the empty clause, similar to backward checking of DRAT proofs [HHW13].
We maintain a set R of clause IDs required in the proof, initialized to the ID of the
empty clause alone. We then read all clauses in reverse order, including the empty
clause. When encountering a clause derivation whose ID is in R, we check for each
of its dependencies whether this is the first time (from the proof’s end) we see this
dependency. In such cases, we can emit a deletion line for the dependency since it will
never be used again in the proof. After checking all its dependencies, we output the
required clause derivation and add its dependencies (except for original clauses) to R.
The final output of the algorithm is a proof in reversed order, where each clause is
required for some derivation and deleted as soon as it is no longer required. Reversing
this output line by line yields a sound and compact proof.

Consider the combined proof from Figure 5.2. Working backward from clause 14,
with clause IDs 11 and 10 added to R, we determine that clause 12 is not required, so
it is ignored. Additionally, prior to clause 11, clause 9 is not in R, so it can be deleted
after the derivation of clause 11. As such, we arrive at the pruned proof in Figure 5.2.

On realistic proofs, we show in Section 5.6 that pruning can sometimes reduce the
proof size by several orders of magnitude.

5.4 Distributed Proof Production

The proof production as described above is sequential and may process huge amounts of
data, all of which needs to be accessible from the machine that executes the procedure.
In addition, maintaining the required clause IDs during the procedure can require
a prohibitive amount of memory for large proofs. In the following, we propose an
efficient distributed approach to proof production.

112

5.4 Distributed Proof Production

S0

S1

S2

S3

100104108112

101105

102106

103107

116

109

110

111

S0

S1

S2

S3

100104108112

101105

102106110

103107

Epoch 0 Epoch 1

Sharing

Epoch 0 Epoch 1

Sharing

. . .

. . .

. . .

120124 128

113

114 122 . . .

Epoch 2

123

Sharing

128

129

130

131

Epoch 2

Sharing

. . .

. . .

. . .

. . .

116120124

117

118122

119123127

Produced clauses

115119

118

Produced clauses

Figure 5.3: Four solvers work on a formula with 99 original clauses, produce new
clauses (depicted by their ID) and share clauses periodically, without (left) and
with (right) clause ID alignment.

5.4.1 Overview

Our sequential algorithm first combines all partial proofs into a single proof and then
prunes unneeded proof lines. In contrast, our distributed algorithm first prunes all
partial proofs in parallel and only then merges the required lines into one file.

We have m processes with c solvers each, amounting to a total of p =mc solvers.
We make use of the fact that the solvers exchange clauses in periodic intervals (see
Section 4.3). We refer to these intervals between subsequent sharing operations as
epochs. Consider Fig. 5.3 (left): Clause 118 was produced by S2 in epoch 1. Its
derivation may depend on local clause 114 and on any of the 11 clauses produced in
epoch 0, but it cannot depend, e.g., on clause 109 or 111 since these clauses have been
produced after the last clause sharing. More generally, a clause c produced by solver
i during epoch e can only depend on (i) earlier clauses by solver i produced during
epoch e or earlier, and (ii) clauses by solvers j ≠ i produced before epoch e.

Using this knowledge, we can rewind the solving procedure. Each process reads
its partial proofs in reverse, outputs each line which adds a required clause, and adds
the line’s dependencies to the required clauses. Required remote clauses produced in
epoch e are transferred to their origin before any process begins to read proof lines
from epoch e. As such, whenever a process reads a proof line, it knows if the clause is
required. We later explain how the outputs of all processes can be merged.

5.4.2 Clause ID Alignment

To synchronize the reading and redistribution of clause IDs in our distributed pruning,
we need a way to decide from which epoch a remote clause ID originates. However,
solvers generally produce clauses with different speeds, so the IDs by different solvers
will likely be in dissimilar ranges within the same epoch over time. For instance, in
Fig. 5.3 (left) solver S3 has no way of knowing from which epoch clause 118 originates.
To solve this issue, we propose to align all produced clause IDs after each sharing.
During solving, we add a certain offset δei to each ID produced by solver i in epoch e.

113

5 Unsatisfiability Proofs for Distributed SAT Solving

As such, we can associate each epoch e with a global interval [Ae,Ae+1) that contains
all clause IDs produced in that epoch. In Fig. 5.3 (right), A0 = 0, A1 = 116, and
A2 = 128. Clause 118 on the left has been aligned to 122 on the right (δ1

2
= 4) and due

to A1 ≤ 122 < A2 all solvers know that this clause originates from epoch 1.

Initially, δ0i ∶= 0 for all i. Let Iei be the first original (unaligned) ID produced by
solver i in epoch e. With the sharing that initiates epoch e > 0, we want to define
the common start of epoch e, Ae, to be larger than all aligned clause IDs from epoch
e − 1 but no larger than any aligned clause ID from epoch e. We align each solver’s
first ID from epoch e via the prior offset: Iei + δ

e−1
i . We then normalize each such

ID by subtracting the solver’s individual offset i. Since two subsequent unaligned
clause IDs always differ by p (the total number of solvers) and since i < p, we know
that Iei + δ

e−1
i − i is larger than the last ID solver i produced in epoch e − 1. We thus

compute Ae as the maximum of these values: Ae ∶=maxi{I
e
i + δ

e−1
i − i}. Next, we want

to compute new offsets δei in such a way that the first aligned clause ID of solver i in
epoch e, Iei + δ

e
i , is equal to Ae + i. Consequently, we set δei ∶= Ae + i − I

e
i .

If we export a clause produced in epoch e by solver i, we add δei to its ID, and if
we import shared clauses to i, we filter any clauses produced by i itself. Note that we
do not modify the solvers’ internal ID counters nor the proofs they output, and there
is no need to block or synchronize the solver threads at any time. Later, when reading
the partial proof of solver i at epoch e, we need to add δei to each ID originating from
i. All remote clause IDs in the partial proofs are already aligned.

5.4.3 Rewind Algorithm

Assume that solver u ∈ {1, . . . , p} has derived the empty clause in epoch ê. For each
process-local solver i, each process has a frontier Fi of required clauses produced by
i. In addition, each process has a backlog B of remote required clauses. B and Fi

are maximum-first priority queues of clause IDs. Initially, Fu contains the ID of the
empty clause while all other frontiers and backlogs are empty. Iteration x ≥ 0 of our
algorithm processes epoch ê − x and features two stages:

1. Processing: Each process continues to read its partial proofs in reverse order
from the final derived clause of the current epoch. If a line from solver i is read whose
clause ID is at the top of Fi, then the ID is removed from Fi, the line is output, and
each clause ID hint h in the line is treated as follows:

• h is inserted in Fj if local solver j (possibly j = i) produced h.
• h is inserted in B if a remote solver produced h.
• h is ignored if h is an ID of an original clause of the problem.

Reading stops as soon as a line’s ID precedes epoch e = ê − x. Each Fi as well as B
now only contain clauses produced before e.

2. Task redistribution: Each process extracts all clause IDs from B that were
produced during ê − x − 1. These clause IDs are aggregated among all processes.
For this means, we reuse our compact clause exchange operation (see Section 4.3.2),
adjusted to aggregate clause IDs instead of clauses. This also allows us to eliminate

114

5.4 Distributed Proof Production

duplicates among the redistributed IDs. Each process then traverses the aggregated
clause IDs, and each clause produced by a local solver i is added to Fi.

Our algorithm stops in iteration ê after the processing stage, at which point all
frontiers and backlogs are empty and all relevant proof lines have been output.

5.4.4 Correctness

We now establish the correctness of our proof production. First, we show that our
clause ID alignment works as intended:

Lemma 5.2

The alignment of clause IDs as described above results in a sequence A0,A1,A2, . . . ,Aê

such that for any clause with unaligned ID j produced by the i-th solver,
Ae ≤ j + δ

e
i < Ae+1 holds if and only if j was produced in epoch e.

Proof. We perform induction over epoch e in which a clause was produced.
For e = 0, we setA0 = 0. The first sharing definesA1 =maxi{I

1

i +δ
0

i −i} =maxi{I
1

i −i}.
I1i is the first clause ID the i-th solver produced in epoch 1 and i is smaller than the
difference p between two of its subsequent clause IDs. Therefore, I1i − i is larger than
any ID it produced in epoch 0. Consequently, A1 is larger than any ID produced in
epoch 0 by any solver. It follows that a clause with ID j was produced in epoch 0 if
and only if A0 = 0 ≤ j < A1.

Assuming that the lemma holds for clauses produced in epochs 0, . . . , e, we show
that the lemma also holds for clauses produced in epoch e + 1.

Due to induction, a clause from the i-th solver with unaligned ID j was produced in
epoch e if and only if Ae ≤ j +δ

e
i < Ae+1. We need to show that a clause with unaligned

ID j was produced in epoch e + 1 if and only if Ae+1 ≤ j + δ
e+1
i < Ae+2.

The induction prerequisite enforces that Ae+1 exactly separates the aligned clause
IDs produced in epoch e from the aligned clause IDs produced in later epochs.
Therefore, Ae+1 ≤ j + δ

e+1
i if and only if j was produced in epoch e + 1 or later.

Concerning the upper bound, our procedure defines Ae+2 =maxi{I
e+2
i + δe+1i − i} =

maxi{I
e+2
i +(Ae+1+i)−I

e+1
i −i} = Ae+1+maxi{I

e+2
i −Ie+1i }. Since δe+1j = Ae+1+i−I

e+1
i ,

it follows that j +δe+1i < Ae+2 holds if and only if j + i−Ie+1i <maxi{I
e+2
i −Ie+1i }, which

is equivalent to (A) j < Ie+1i +maxi{I
e+2
i − Ie+1i }− i. Since the first clause ID produced

by the i-th solver in epoch e+ 2 is Ie+2i ≥ Ie+1i +maxi{I
e+2
i − Ie+1i }− i, (A) holds if and

only if j was produced before epoch e + 2. ◻

Next, we need to formally define a partial proof for an individual solver thread.

Definition 5.3

Let S be a sequential solver which runs within a distributed clause-sharing solver.
A partial proof for CNF formula F is a sequence P = ⟨l1, . . . , lnð of LRAT proof lines
output by S without any clause deletions, where for each line li = (j, c,D) with ID j,
clause c, and dependencies D, (i) and (ii) hold:

115

5 Unsatisfiability Proofs for Distributed SAT Solving

(i) Each dependency d ∈D references either (a) an original clause in F or (b) a clause
derived in an earlier line lj (j < i) or (c) a clause from another partial proof for F .
There must not be any cyclic dependencies.
(ii) li constitutes a valid LRAT derivation of c if given the referenced dependencies.

The following theorem states the correctness of our proof production under the
assumption that the individual solvers output valid partial proofs.

Theorem 5.4

Let P1, . . . ,Pm be the partial proofs for an unsatisfiable CNF formula F of a completed
run of a distributed solver which performs all-to-all clause sharing with clause ID
alignment as outlined above. Let O ∶= ⟨O1, . . . ,Omð be the proof line output of each
solver thread from our rewind procedure, and let Õ be a flat sequence of all proof lines
in O sorted by ID in ascending order. Then Õ constitutes a sound LRAT proof for F .

Proof. First, we state that Õ contains the empty clause due to construction: Since
F is unsatisfiable and the distributed solver’s run completed, the empty clause has
been found by at least one solver and is consequently output by some solver at the
beginning of the rewind procedure.

Next, we show for any line l = (j, c,D) ∈ Õ that a linear pass through Õ establishes
all dependencies d ∈D before l itself is reached. Since l ∈ Õ, there is a solver i whose
partial proof Pi contains l in epoch e and where j is considered required such that l is
output. We distinguish three cases.

(a) If d references an original clause in F , the dependency is trivially established.
(b) If d references an earlier clause derived in Pi, then dependency d is inserted

in Fi as l is read from Pi. We know that d < j: Each solver assigns clause IDs in a
strictly monotonic manner and the alignment of clause IDs preserves this property.
Since the derivation of d is contained in Pi and since the IDs in Pi are processed in
decreasing order, the line deriving d is read from Pi at some later point in time.
At this point, d must be at the top of Fi for the following arguments. IDs extracted
from Fi are monotonically decreasing because Fi functions as a maximum-first priority
queue and because each ID inserted in Fi is necessarily smaller than the last ID
extracted from Fi. If a higher ID d′ > d is at the top of Fi, then the required
dependency d′ was not matched with any former line in Pi and, due to the processing
order of IDs in Pi, is not matched with any later line either. As our procedure ensures
that Fi only contains IDs produced by solver i, this constitutes a contradiction to Pi

being a valid partial proof. If a lower ID is at the top of Fi or if Fi is empty, then d

was removed from Fi earlier, which means that d can be matched with several lines
from Pi—a contradiction to the uniqueness of derived clause IDs in Pi.
Since d is at the top of Fi as its derivation is read from Pi, d is considered required
and thus output. Due to d < j, dependency d is in fact established before l is reached.

(c) In the third case, d references a clause c′ from another solver’s partial proof
P
′. Due to the structure of clause sharing, any such remote clause c′ originates

from a strictly smaller epoch e′ than the epoch e from which l itself originates.

116

5.4 Distributed Proof Production

Our clause ID alignment (Lemma 5.2) hence ensures that the ID d of c′ is strictly
smaller than j and that d would be featured in Õ earlier than l.
It remains to be shown that Õ does contain d. Since l is output, the remote dependency
d is inserted either in backlog Bi (if d originates from a different process) or directly
in the producing solver’s frontier F ′. In the former case, before epoch e′ is processed,
d is extracted from Bi, redistributed to the producing solver, and then inserted in
that solver’s frontier F ′. During the processing of epoch e′, the derivation of d is read
from P ′. At this point in time, the ID d must be at the top of F ′ for exactly the same
arguments as in case (b) for Fi. Since d is at the top of F ′, d is considered required
and therefore output as well.

All in all, Õ is a sequence of valid LRAT derivations in dependency order which
eventually features the empty clause. Therefore, Õ constitutes a sound LRAT proof
of unsatisfiability for F . ◻

To complement Theorem 5.4, we can also argue that any proof line l ∈ Õ is
necessarily a transitive requirement of the empty clause and that, therefore, Õ is
minimal in the sense that all lines in Õ are in some way required for the proof at hand.
There can still be ways to achieve smaller proofs for F . For instance, the same clause
c may be featured multiple times with different IDs in Õ or there may be an entirely
different, shorter chain of reasoning leading to the empty clause.

5.4.5 Analysis

In terms of total work performed, all partial proofs are read completely. For each
required clause we may perform an insertion into some B, a deletion from said B,
an insertion into some Fi, and a deletion from said Fi. If Vin is the combined size
of all partial proofs, Vout is the size of the output proof, and we assume logarithmic
work for each insertion and deletion, then the work for these operations is in O(Vin +

Vout logVout). In addition, due to the redistribution of clause IDs we have ê iterations
of communication whose overall cost is bounded by the communication done during
solving. In fact, since only a subset of shared clauses is required and we only share
64 bits per clause, we expect strictly less communication than during solving. The
computation of Ae for each epoch e during solving can be integrated into the all-
reduction of the filter bitset v (see Section 4.3.4.c) and is therefore negligible.

In terms of memory usage, the size of each B and each Fi can be proportional to
the combined size of all required lines of the according partial proofs. This memory
requirement may become problematic for large-scale runs. We thus suggest to employ
external-memory priority queues (e.g., [San00]) which keep most of their data on disk.

5.4.6 Merging Step

For each partial proof processed during the pruning step, we have a stream of proof
lines sorted in reverse chronological order, i.e., starting with the highest clause
ID. The remaining task is to merge all these lines into a single, sorted proof file.

117

5 Unsatisfiability Proofs for Distributed SAT Solving

103

93

95107

87

107

103

95

93

87

85

.

.

.

85

.

.

.

.

.

.

.

.

.

Figure 5.4: Left: Proof merging with seven processes and 14 solvers. Each
box represents a process with two local proof sources. Dashed arrows denote
communication. Right: Example of merging three streams of LRAT lines into a
single stream. Each number i represents an LRAT line describing a clause of ID i.

We arrange all processes in a k-ary tree as shown in Fig. 5.4 (left) for k = 2. At each
node of this tree, we can easily merge a number of sorted input streams into a single
sorted output stream by repeatedly outputting the line with the highest ID among all
inputs (Fig. 5.4 right). This way, we can hierarchically merge all streams along the
tree. At the tree’s root, the output stream is directed into a file. This is a sequential
I/O task that limits the speed of merging. Finally, since the produced file is in reverse
order, a buffered operation reverses the file’s content.

In general, there may be more scalable ways to sort the available proof information
(e.g., [JK03]), especially if we allow several processes to output slices of the final sorted
proof in parallel. However, our algorithm assumes that (a) we require a single proof
file on a single process and (b) the proof volume is so large that we need to stream it
from disk memory. Moreover, since other steps in our pipeline (postprocessing and
proof checking, see Section 5.6.1) process the final proof sequentially, our merging
approach does not constitute a bottleneck.

A final challenge is to add clause deletion statements to the final proof. Before a line
is written to the combined proof file, we can scan its hints and output a deletion line
for each hint we did not encounter before (see Section 5.3.3). However, implementing
this in an exact manner requires maintaining a set of clause IDs which scales with the
final proof size. Since our proof remains valid even if we omit some clause deletions,
we can use an approximate membership query (AMQ) structure with fixed size and a
small false positive rate, e.g., a Bloom filter [Blo70].

5.5 Implementation

We employ a solver portfolio based on the sequential SAT solver CaDiCaL [Bie+20a].
We modified CaDiCaL to output LRAT proof lines and to assign clause IDs as
described in Section 5.3.1. To ensure sound LRAT proof logging, we needed to turn

118

5.6 Evaluation

off some features of CaDiCaL, such as bounded variable elimination, hyper-ternary
resolution, and vivification. Similarly, MallobSat’s original portfolio of CaDiCaL

configurations features several options that are incompatible with our CaDiCaL as of
yet. We thus created a smaller portfolio of “safe” configurations that include shuffling
variable priorities, adjusted restart intervals, and disabled inprocessing. We also use
different random seeds and sparse random variable phases (Section 4.4.2).

We modified MallobSat [Sch22] to associate each clause with a 64-bit clause
ID. For consistent bookkeeping of sharing epochs, we defer clause sharing until all
processes have fully initialized their solvers. While several solvers may derive the
empty clause simultaneously, only one of them is chosen as the “winner” whose empty
clause will be traced. The distributed proof production features communication epochs
similar to MallobSat’s clause sharing. To keep memory requirements of our proof
assembly manageable even for huge proofs, we implement the clause ID priority queues
Fi and B with a simple semi-external datastructure based on an in-memory priority
queue Q for the current epoch and one external-memory stack Ee for each epoch e

still to be processed. Upon reaching a new epoch e, all clause IDs from e are read
from Ee and inserted into Q to allow for efficient polling and insertion.

To merge the pruned partial proofs, we use point-to-point messages to query and
send buffers of proof lines between processes. We perform pruning and merging
simultaneously to avoid writing the pruned partial proofs to disk. We use a fixed-size
Bloom filter to add deletion lines to the final proof.

5.6 Evaluation

In this section, we present an evaluation of our proof production approaches. We
provide all software and experimental data online (see Appendix A).

5.6.1 Experimental Setup

Supporting proofs introduces several kinds of performance overhead for clause-sharing
portfolios in terms of solving, proof reconstruction, and proof checking. We wish to
examine how well our proof-producing solver performs against (1) state-of-the-art
(massively) parallel solvers that do not produce proofs, (2) previous approaches to
proof-producing parallel solvers, and (3) state-of-the-art sequential solving with and
without proof production. We analyze the overhead introduced by each phase of the
process, and we discuss how and where future efforts might improve performance.

We use the following pipeline for our proof-producing solvers: First, the input
formula is preprocessed via exhaustive unit propagation—a necessity due to a tech-
nical limitation of our LRAT-producing modification of CaDiCaL. Second, we
execute our proof-producing variant of MallobSat on the preprocessed formula.
Third, we prune and combine all partial proofs, using either our sequential proof
production or our distributed proof production. Fourth, we merge the preprocessor’s
proof and our produced proof, compressing all clause IDs into a compact domain.

119

5 Unsatisfiability Proofs for Distributed SAT Solving

Fifth and finally, we run lrat-check2 to check the final proof. Only steps two and
three of this pipeline are parallelized (step three depending on the particular experi-
ment). We refer to the first two steps as solving, the third step as assembly, the fourth
step as postprocessing, and the fifth step as checking.

To analyze solving performance, we compare our parallel (MallobSatP64) and
cloud (MallobSatP1600) solvers with proof production to several other solvers. First,
we include the winners of the ISC 2022 cloud track (MallobSat1600-KCLG, using
Kissat, CaDiCaL, Lingeling, Glucose), parallel track (ParkissatRS [ZCC22],
using Kissat), and sequential track (KissatMABHyWalk [Zhe+22]), as well as the
recent shared-memory parallel solver Gimsatul

3 which also supports proof production.
In addition, we reconfigured MallobSat1600-KCLG to only use CaDiCaL (its
original version, i.e., without LRAT capabilities) with the restricted configuration
options used by MallobSatP1600 and MallobSatP64. We run this solver on a
parallel (MallobSat64-C) and cloud (MallobSat1600-C) scale.

Since prior work on proof production for clause-sharing portfolios [HMP14] is no
longer competitive in terms of solving time, we only compare proof-checking times.
Specifically, we measure the overhead of checking un-pruned DRAT proofs as produced
by the earlier approach [HMP14]. As such, we can get a picture of the performance of
the earlier approach if it was realized with today’s solving techniques. We generate
un-pruned DRAT proofs from the original (un-pruned) LRAT proof by stripping out
dependency information and adding delete lines for the last use of each clause.

We ran our experiments in Amazon Web Services (AWS) infrastructure. Specif-
ically, following the ISC setup, each cloud solver runs on 100 m6i.4xlarge EC2
instances (16 hardware threads, 64GB RAM), each parallel solver runs on a single
m6i.16xlarge EC2 instance (64 hardware threads, 256GB RAM), and the sequential
KissatMABHyWalk runs on a single m6i.4xlarge EC2 instance. We use all 400
benchmark instances from ISC 2022. We set the timeout for the solving step to 1000 s
and the timeout for all subsequent steps put together to 4000 s.

5.6.2 Results

First we examine the performance overhead of changing portfolios to enable proof
generation (see Section 5.5) regarding solving times only. Fig. 5.5 and Table 5.1
show this data. Our CaDiCaL portfolio MallobSat64-C drastically outperforms
KissatMABHyWalk as well as Gimsatul and is almost on par with ParkissatRS.
Similarly, MallobSat1600-C solves eight instances less than MallobSat1600-

KCLG but performs almost equally well otherwise. In both cases, we have constructed
solvers which are almost on par with the state of the art.

For our proof-producing solvers MallobSatP64 and MallobSatP1600, we
noticed a more pronounced decline in solving performance. On top of the overhead
introduced by proof logging and our preprocessing, we experienced a few technical

2https://github.com/marijnheule/drat-trim
3We use the ISC 2022 data, where Gimsatul [BF22b] was still in an early stage of development
(cf. [BFP23]).

120

https://github.com/marijnheule/drat-trim

5.6 Evaluation

0 250 500 750 1000

Running time t [s]

0

100

200

300
#

in
st
an

ce
s
so
lv
ed

in
≤

t
s MallobSat1600-KCLG

MallobSat1600-C

MallobSatP1600

ParkissatRS

MallobSat64-Ca

MallobSatP64 (Seq.)

MallobSatP64 (Par.)

Gimsatul

KissatMABHyWalk

Figure 5.5: Solving times of considered solvers. MallobSatP1600, Mallob-

SatP64, and KissatMABHyWalk output proof information during solving.

Type Solver # # SAT # UNSAT PAR-2

S KissatMABHyWalk 218 118 100 1065.7

P

ParkissatRS 300 155 145 603.0
Gimsatul 216 119 97 1058.0
MallobSat64-C 292 145 147 641.6
MallobSatP64 (Seq.) 279 140 139 719.8
MallobSatP64 (Par.) 276 141 135 731.4

C
MallobSat1600-KCLG 341 165 176 344.8
MallobSat1600-C 333 163 170 378.0
MallobSatP1600 316 159 157 480.5

Table 5.1: Performance of (S)equential, (P)arallel, and (C)loud solvers in terms of
solved instances and PAR-2 scores (see Section 2.4.2.a).

problems, including memory issues,4 which resulted in a drop in the number of
instances solved and also caused MallobSatP64 with parallel proof production to
solve three instances less than with sequential proof production. We believe that
we can overcome these issues in future versions of our system. That being said, our
proof-producing solvers do clearly outperform all of the solvers at a lower scale.

Next, we examine statistics on proof reconstruction and checking, showing results
in Table 5.2. Since we want to investigate our approaches’ overhead compared to
pure solving, we measure running times as a multiple of the solving time. Note
that we provide results in terms of absolute running times in Appendix C, Table 9.2.

4We disabled MallobSat’s memory panic (Section 4.5.1) to ensure consistent proof logging.

121

5 Unsatisfiability Proofs for Distributed SAT Solving

Property # min p10 med mean p90 max

DRAT check 81 0.512 1.725 7.442 10.370 67.065 169.869

Seq. assembly 139 0.019 0.305 1.376 1.387 5.747 13.289
Seq. postprocessing 139 0.001 0.012 0.131 0.112 0.790 2.218
Seq. checking 139 0.007 0.043 0.572 0.469 3.970 10.980
Seq. asm+post+chk 139 0.037 0.412 2.110 2.129 10.834 26.487

Par. assembly 135 0.059 0.080 0.365 0.408 2.227 7.475
Par. postprocessing 135 0.001 0.016 0.156 0.128 0.861 2.300
Par. checking 135 0.007 0.042 0.622 0.471 3.540 11.645
Par. asm+post+chk 135 0.067 0.167 1.097 1.062 6.611 21.420

Cld. assembly 157 0.121 0.194 1.680 1.204 5.348 43.853
Cld. postprocessing 157 0.003 0.051 0.744 0.634 4.744 35.667
Cld. checking 157 0.032 0.215 3.391 2.499 21.908 135.737
Cld. asm+post+chk 157 0.162 0.579 5.174 4.819 31.968 215.257

DRAT proof size (GB) 139 0.012 0.366 1.236 3.246 8.395 29.308
Seq. proof size (GB) 139 0.016 0.223 2.379 5.384 16.082 46.986
Par. proof size (GB) 135 0.006 0.173 2.034 5.345 13.164 57.739
Cld. proof size (GB) 157 0.016 0.269 4.595 11.138 34.457 92.276

Cld. pruning factor 157 2.080 5.312 16.472 28.319 299.858 8415.070

Table 5.2: Statistics on proof production and checking. All properties except for
file sizes and pruning factor are given as a multiple of the solving time. We list
minima, maxima, medians, means, and the 10th and 90th percentiles—using the
arithmetic mean for proof sizes and the geometric mean for all ratios.

The prefix “Seq.” denotes MallobSatP64 with sequential proof production, “Par.”
denotes MallobSatP64 with distributed proof production run on a single machine,
and “Cld.” denotes MallobSatP1600 with distributed proof production.

DRAT checking succeeded in 81 out of 139 cases and timed out in 58 cases. For the
successful cases, DRAT checking took 10.4× the solving time5 whereas our sequential
assembly, postprocessing and checking combined succeeded in 139 cases and only took
2.1× the solving time. This result confirms that our approach successfully overcomes
the major scalability problems of earlier work [HMP14]. In terms of uncompressed
proof sizes, our LRAT proofs can be about twice as large as the DRAT proofs, which
seems more than acceptable considering the dramatic difference in performance. Given
that DRAT-based checking was ineffective at the scale of parallel solvers, we decided
to omit it in our distributed experiments which feature even larger proofs.

The parallel proof production of MallobSatP64 reduces proof assembly times
from 1.4× down to 0.4× the solving time, which also significantly reduces the overall
overhead of proof production and checking (2.13× down to 1.06× the solving time).
Fig. 5.6 (left) illustrates these relative overheads (y direction, as multiples of solving
time) in relation to the actual solving time (x direction).

5Throughout this discussion, we use the geometric mean if we refer to a mean of ratios.

122

5.6 Evaluation

101 102 103

Solving time [s]

10−3

10−2

10−1

100

101

102

R
el
at
iv
e
ov
er
h
ea
d
o
f
p
ro
o
f
st
a
g
e
[s
] MallobSatP64 (Par.)

all
chk
post
asm

101 102 103

Solving time [s]

10−3

10−2

10−1

100

101

102

R
el
at
iv
e
ov
er
h
ea
d
o
f
p
ro
o
f
st
a
g
e
[s
] MallobSatP1600

Figure 5.6: Overhead of proof-related stages (assembly, postprocessing, checking,
and overall) relative to solving time, for MallobSatP64 with parallel proof
production (left) and for MallobSatP1600 (right). Note the logarithmic scaling.

The results for MallobSatP1600 demonstrate that our proof assembly is feasible,
still taking only around 1.2× the solving time on average. By contrast, the sequential
stages of postprocessing and checking do not scale and therefore become more noticeable
relative to the solving time (see Fig. 5.6 right). The proofs produced are about twice
as large as for MallobSatP64. Considering that the proofs originate from 25 times
as many solvers, this increase in size is quite modest, which is partly due to our proof
pruning. We captured the pruning factor—the number of clauses in all partial proofs
divided by the number of clauses in the combined proof—for each instance. Our
pruning reduces the derived clauses by a mean factor of 28.3 (median 16.4) and by a
factor of 300 or more for 10% of all instances. This underlines that our pruning is a
crucial technique to feasibly combine and check proofs. We also managed to produce
and check a proof of unsatisfiability for a formula whose unsatisfiability has not been
verified before to our knowledge (PancakeVsInsertSort 8 7.cnf).

To compare our approaches with the state of the art in sequential solving, we
analyzed drat-trim checking times of KissatMABHyWalk (Table 5.3), kindly
provided by the competition organizers, and arrived at a mean overhead of 1.2×
its own solving time. Using this data, we computed the speedups of our parallel
trusted approaches over KissatMABHyWalk—once where both the sequential and
the parallel approach perform solving only and once where both approaches perform
solving, proof production, and checking. Note that the sequential solvers in the ISC
are executed on different hardware than the parallel solvers. Our speedup measures
are thus not fully reliable and only meant to give a rough impression.

123

5 Unsatisfiability Proofs for Distributed SAT Solving

min p10 med (g/a)mean p90 max

Ratio 146 0.137 0.269 1.109 1.208 6.394 66.494
Time 146 8.978 59.325 576.400 2675.813 5246.770 (Timeout)

Table 5.3: DRAT-trim checking overhead of KissatMABHyWalk in the SAT
Competition 2022, in terms of multiples of its solving time (“Ratio”) and in terms
of absolute running times (“Time”).

min p10 med gmean p90 max total

Solve only
Seq. (64×) 263 0.028 0.742 3.869 3.806 23.224 122.854 4.429
Par. (64×) 260 0.051 0.865 3.786 3.831 21.147 901.653 4.599
Distr. (1600×) 283 0.100 2.179 10.887 11.253 64.624 1235.170 13.336

Solve+Check
Seq. (64×) 263 0.028 0.572 3.275 3.234 21.665 127.707 5.385
Par. (64×) 260 0.051 0.866 4.120 3.851 21.217 901.654 6.472
Distr. (1600×) 283 0.101 1.093 6.362 6.818 60.380 1235.170 7.226

Table 5.4: Speedups over KissatMABHyWalk in terms of solving times (top)
and the entire trusted solving pipeline (bottom) for both approaches respectively.

Table 5.4 shows these speedups. The mean speedup in terms of pure solving times
is about 4 with 64 solvers and about 11 with 1600 solvers—still comparable to the
speedups which have earlier been reported by MallobSat’s precursor HordeSat

(with no proof production capabilities) at similar scales [BSS15]. In terms of the
full trusted solving pipeline, our parallel proof production with 64 solvers actually
achieves slightly larger speedups than if we only consider solving times—indicating
that our LRAT-based proof production and checking pipeline is highly efficient and
practical when compared to a sequential DRAT-based proof pipeline. The speedup
at a distributed scale, by constrast, drops by roughly 40% when also considering the
production and checking of proofs. As analyzed above, this is in large parts due to
the sequential and therefore non scalable postprocessing and checking steps in our
pipeline. While pre- and postprocessing is a technical necessity in our current setup,
large portions of it can be eliminated in the future with further engineering. For
instance, enhancing the LRAT support of solver backends to natively handle unit
clauses in the input will allow us to skip preprocessing and simplify postprocessing.6

As such, while the current speedups of our trusted solving pipeline are considerably
below speedups achieved without proof production (see Section 4.6.3) due to different
kinds of overhead, we consider them encouraging results towards efficient trusted
general-purpose SAT solving in distributed environments.

6Most recently, CaDiCaL has indeed received full LRAT support [PFB23], which we were not able
to exploit for the work at hand but which we intend to make use of in the near future.

124

5.7 Conclusion

5.7 Conclusion

Distributed clause-sharing solvers are currently the fastest tools for solving a wide
range of difficult SAT problems. Nevertheless, they have previously not supported
proof-generation techniques, leading to potential soundness concerns. In this chapter,
we have examined mechanisms to add efficient support for proof generation to clause-
sharing portfolio solvers. We have introduced a distributed system with reasonable
SAT solving performance which takes about five times its own solving time to assemble
and check a proof of unsatisfiability based on partial proofs generated during solving.
As such, our results demonstrate that it is feasible to make distributed clause-sharing
solvers fully trustworthy and therefore viable for critical applications.

Following our research, more work is required to reduce overhead in the different
steps involved and to improve scalability of the end-to-end procedure. This may
include designing more efficient (perhaps even parallel) LRAT checkers, examining
proof-streaming techniques to eliminate most I/O operations, and improving LRAT
support in solver backends. In fact, it might be possible to generalize our approach
to DRAT-based solvers by adding additional metadata, and this might allow easier
retrofitting of the approach onto larger portfolios of solvers. We also intend to
investigate producing proofs in Mallob for the case where several MallobSat

instances run concurrently and are rescaled dynamically (Chapter 3).

125

6
Chapter 6

Lifted Hierarchical Planning:
A Case Study in Applied SAT

Domain-independent automated planning, or AI planning, is one of the
oldest and most well-established applications of SAT solving. A planning
task is encoded into a sequence of propositional formulas and a SAT solver
is used iteratively in order to eventually find a plan to the task at hand.
In Hierarchical Task Network (HTN) planning, a popular extension of
automated planning, all SAT-based approaches so far need to perform an
expensive preprocessing step called grounding, which oftentimes introduces
a combinatorial blowup in terms of the size of the problem to encode. Our
contribution named Lilotane (Lifted Logic for Task Networks) eliminates
this issue for Totally Ordered HTN planning by directly encoding the lifted
representation of the problem at hand. We lazily instantiate the problem
hierarchy layer by layer and use a novel SAT encoding which allows us to
defer decisions regarding method arguments to the stage of SAT solving. We
show the correctness of our encoding and compare it to the best performing
prior SAT encoding in a worst-case analysis. Empirical evaluations confirm
that Lilotane outperforms prior SAT-based approaches, often by orders
of magnitude, produces much smaller formulas on average, and compares
favorably to prior HTN planners regarding robustness and plan quality.

Author’s Notes. This chapter is a shortened and adapted version of my journal article
“Lilotane: A Lifted SAT-based Approach to Hierarchical Planning” [Sch21d], which
featured purely original research. Large portions of this chapter are copied verbatim
or with minor changes from that article. Previous publications [Sch+19a; Sch+19b]
which emerged from my master’s thesis [Sch18] provided the inspiration for this work.

6.1 Introduction

Automated planning is a branch of AI which is sometimes referred to as “classical
AI”. In contrast to data-driven AI methods based on machine learning, automated
planning deals with an idealistic, deterministic world and an agent with perfect
knowledge [GNT04]. The agent can execute certain actions in order to manipulate the
world state and eventually reach a certain goal (state). Domain-independent automated
planning offers a generic interface to problem solving—not unlike SAT—and is used in
spacecraft control [Fuk+97], autonomous robotics [RP12], logistics [Gar+13], puzzle
generation and solving [BF22a], and business process management [Mar19].

127

6 Lifted Hierarchical Planning: A Case Study in Applied SAT

Over the last decades, hierarchical planning gained traction and high popularity
among researchers and users alike [GA15; BAH19]. Specifically, in Hierarchical Task
Network (HTN) planning, the domain at hand is enriched with hierarchical expert
knowledge which results in better guidance for planners and in well-structured and intu-
itive plans. In 2020, the collective interest in hierarchical planning resulted in the first
International Planning Competition (IPC) for HTN Planning [BHB21]. Today’s appli-
cations for HTN planning include robot planning [WOZ10] and coordination [OB05;
Bev+15], web service composition [Sir+04], AI in video games [Mah+14], pedagogic
courseware generation [Ull08], and automatic workflow design [Kie+12].

In addition to operators known from classical planning which are templates for
atomic manipulations of the world state, HTN planning features tasks which provide
an abstract notion of something that needs to be achieved, and methods which provide
conditional “recipes” for decomposing a specific task into smaller tasks. In an HTN
planning problem, a number of initial tasks are successively decomposed by applicable
methods under the notion of stepwise refinement until the resulting tasks can be
achieved atomically by operators [GA15]. In this work we focus on a highly popular1

subclass of HTN planning where the domain model fixes a particular order on each
method’s subtasks, named Totally Ordered HTN (TOHTN) planning.

Among various established algorithms to resolve HTN planning problems as effi-
ciently as possible [BAH19], one popular approach is to reduce the problem to SAT.
First, the HTN planning problem at hand is transformed into an easier to handle repre-
sentation through a preprocessing stage called grounding which instantiates all possible
(i.e., reachable) argument combinations of each operator and each method. Then, the
structurally simpler ground problem is encoded into a sequence of propositional logic
formulas which are handed to a SAT solver. Eventually, if the problem is solvable then
at some point a satisfying assignment will be found and can be decoded into a plan.
Recently, various efficient SAT encodings were introduced [BHB18; BHB19a; BHB19b;
Sch+19a; Sch+19b] while on the other hand new grounding approaches [Ram+17;
Beh+20] result in smaller encodings and therefore better performance.

In all these recent contributions, grounding is essential and has, in fact, clear merits:
The objects which result from grounding are structurally much simpler than in the
lifted, i.e., un-grounded representation, and unreachable operators and methods can
be identified as such and therefore be discarded. However, as a correct grounding
procedure must enumerate all instantiations of operators and methods that may be
part of a plan, grounding implies a combinatorial blowup in the worst case. As such,
grounding can also be a heavyweight task and become a bottleneck for the whole
planning procedure in terms of running time and memory footprint [WTH19]. For
these reasons, planners which rely on a ground representation may fail to scale to large
problems when compared to lifted planners, which directly operate on the parametrized
structures and therefore do not perform any grounding.

1For instance, in the IPC 2020, the Total Order track had twice the number of competitors of the
Partial Order track, and 40 totally ordered planning domains from nine different groups but only
eleven partially ordered planning domains from two groups were submitted [BHB21].

128

6.2 Preliminaries

With our contributions, we circumvent the problems tied to grounding for TOHTN
planning by designing a SAT-based approach that omits this phase of the planning
procedure. Our approach Lilotane (Lifted Logic for Task Networks) generates an
incremental sequence of propositional formulas from a still parametrized TOHTN
problem description by instantiating operators and methods in a lazy manner and
preserving free arguments where appropriate. As such, Lilotane defers any non-
trivial argument substitution choices up until the stage of SAT solving and therefore
follows the well-known least-commitment principle which suggests to defer a planner’s
decisions for as long as possible [Wel94]. In terms of plan quality, we employ incremental
SAT solving to iteratively tighten the bounds on possible plan lengths at a certain
depth [Sch+19b] and obtain successively shorter plans in the process. Experiments
indicate that our planning approach outperforms previous SAT-based HTN planners
in terms of running times by more than one order of magnitude on the majority of
instances and in most cases produces substantially smaller SAT encodings of TOHTN
planning problems. Lilotane also compares favorably to other HTN planners: A
preliminary version of Lilotane participated in the IPC 2020 and scored the second
place. We conclude that Lilotane is an appealing engine for TOHTN planning based
on its robustness and effective quality awareness.

The chapter is structured as follows: First, in Section 6.2 we provide the necessary
background for our work. Section 6.3 provides an overview of our planning approach
and describes its different components as well as a number of optimizations and
improvements. In Section 6.4 we provide our SAT encoding as well as a proof of
correctness and a worst-case analysis of the encoding’s size. We outline an anytime
plan improvement technique for our approach in Section 6.5. In Section 6.6 we evaluate
our approach. A conclusion and an outlook follow in Section 6.7.

6.2 Preliminaries

In this section we introduce necessary preliminaries for presenting our contributions.

6.2.1 TOHTN Planning

Several HTN planning formalisms with differing expressive power have been intro-
duced [EHN96; ABA15]. We refine the model by Schreiber et al. [Sch+19b] as this work
provides the foundation for our approach. In terms of expressiveness, this notation is
equivalent to TOHTN planning with variables as specified by Alford et al. [ABA15]
and compatible with the TOHTN formalism used in the IPC 2020 [BHB21].

6.2.1.a HTN Structures

We begin with some basic definitions. A constant c ∈ C is an atomic symbol from a
finite domain C. A signature σ(a1, . . . , ak) is a syntactical construct with a name σ

and a list of k g 0 arguments. k is a fixed constant for each σ. We call k the arity of σ.

129

6 Lifted Hierarchical Planning: A Case Study in Applied SAT

Each argument ai is either a constant or a variable; a variable acts as a placeholder for
a constant. The domain of each ai of σ is limited to a fixed subset τi ¦ C of constants,
the type of the i-th argument of σ. We call a signature ground if all of its arguments
are constants, i.e., ∀i ∈ {1, . . . , k} ∶ ai ∈ C. We call a signature lifted if it is not ground.
We use the term free arguments to refer to any variables left in a signature.

Predicates are special signatures which represent Boolean features of our problem’s
world state. A fact is a predicate supplied with a polarity (positive or negative). For any
set s of literals, we define s+ ∶= {p ∈ s ∣ p is positive} and s− ∶= {¬p ∣ p ∈ s, p is negative}.
A state s is a set of positive ground facts. When we interpret a state s as the world
state of a planning problem, due to the closed-world assumption [Rei81] we assume
that every fact not contained in s is negative.

A task is a non-predicate signature t(a1, . . . , ak) and a syntactical footprint of
something that needs to be achieved. An operator o = (sig(o),pre(o), eff(o)) is a tuple
of a task sig(o) and two sets pre(o), eff(o) of literals whose arguments are arguments
of sig(o). An action is an operator o where sig(o) is ground. A method is a tuple
m = (sig(m), task(m),pre(m), subtasks(m)) where sig(m) is a non-predicate signature,
task(m) is a task, pre(m) is a set of literals, subtasks(m) = ⟨t1, . . . , tjð is a sequence
of j g 0 tasks, and all arguments in task(m),pre(m), and subtasks(m) are arguments
of sig(m). A reduction is a method m where sig(m) is ground. Note that in general
HTN planning, subtasks(m) is not a sequence but rather a set of tasks supplied with a
precedence relation. We will not pursue this more general case any further but restrict
subtasks to be totally ordered, hence the name Totally Ordered HTN planning. We
use the term operation to refer to an object that is either an action or a reduction.

Operators and methods are “recipes” to achieve an existing task, either by applying
a matching operator that alters the world state or by replacing the task with the
subtasks of a matching method. In both cases, the structures’ preconditions pre(⋅)
need to hold in the world state immediately before this refinement is performed. Given
a method m for some task t such that task(m) = t, we say that m matches t and that
t is compound. Given an operator o for some task t such that sig(o) = t, we say that o
matches t and that t is primitive. Each task is either compound or primitive. Since
we enforce signature names of distinct operators and methods to be unique, there
can only be a single operator matching a primitive task whereas there may be several
methods matching a single compound task.

6.2.1.b Problem Definition

A TOHTN domain (Totally Ordered Hierarchical Task Network) D = (C,P,O,M)
consists of constants C, predicates P , operators O, and methods M . The domain’s
actions A and reductions R are defined as the result of exhaustively substituting the
arguments in each operator/method with all possible combinations of constants.

A TOHTN problem Π = (D,sI , T) consists of a TOHTN domain D, initial state
sI , and initial task network T . sI is a state and T is a list of ground tasks. In the
following, let “○” denote the concatenation of two sequences.

130

6.2 Preliminaries

Definition 6.1

A sequence of actions π is a solution to a TOHTN problem Π = (D,sI , T) iff one of
the following cases holds and the resulting recursion is well-defined.

(i) (Base case.) π = ⟨ð and T = ⟨ð.
(ii) (Applying a reduction.) T = ⟨tð ○ T ′, t = sig(r) for some r ∈ R, pre+(r) ¦ sI ,

pre−(r) ∩ sI = ∅, and π is a solution to Π′ ∶= (D,sI , subtasks(r) ○ T ′).
(iii) (Applying an action.) T = ⟨tð ○ T ′, π = ⟨að ○ π′, t = sig(a) for some a ∈ A,

pre+(a) ¦ sI , pre−(a) ∩ sI = ∅, and π′ is a solution to:
Π′ ∶= (D, (sI 8 eff−(a)) ∪ eff+(a), T ′).

Note that this definition directly provides a recursive algorithm to resolve a TOHTN
problem—so-called progression search planners such as SHOP [Nau+99] are essentially
refinements of this algorithm. Alternative (i) solves the empty problem where there is
nothing to achieve (T = ⟨ð) hence no actions are performed (π = ⟨ð). In alternative (ii),
a reduction r is applied which matches the current first task and whose preconditions
hold in s: The matched task is replaced with the subtasks of r. In alternative (iii), an
action a is applied which matches the current first task and whose preconditions hold
in s: a is appended to the plan, its effects are applied to the current state, and the
matched task is removed from the list of tasks yet to achieve.

The decisions left to a planner which follows the above algorithm are limited to
picking a reduction in case (ii). This includes the decision for a particular method
and the choice of argument substitutions that ground the method into a reduction.
The third case does not induce any decisions: the tasks in T are invariantly ground,
so there can only be one particular action matching any given task t ∈ T .

To reproduce and verify a solution, it should not only contain a flat sequence of
actions but the full trace leading to this plan, which we define semi-formally as follows:

Definition 6.2 (semi-formal)

A directed tree H = (V,E) with a total node ordering relation z ¦ V ×V is a hierarchical
solution to a problem Π if:
(1) Each leaf node v corresponds to some action av ∈ A, and each inner node v

corresponds to some reduction rv ∈ R. In particular, the root node v̂ corresponds to
the initial reduction, i.e., a reduction r0 with subtasks(r0) = T .
(2) The children of an inner node u, ordered by z, correspond to the subtasks of ru.
(3) A depth-first traversal of H from v̂, using z as a node ordering relation and departing
from world state sI , yields a sequence of operations which satisfy the definition of a
solution π (Def. 6.1).

We formalize Def. 6.2 in Appendix D.1. Essentially, we define H as a witness for a
particular “path” through Def. 6.1 yielding the given classical solution π. In particular,
π can be read from H just by enumerating all leaf nodes in H according to z. The
structure of H closely resembles the plan output format [BBH20] required for the IPC
2020, and H can be transformed easily into this format.

General HTN planning is a strictly semi-decidable problem [EHN94]. By contrast,
TOHTN planning is decidable due to its more rigid and predictable structure [EHN94].

131

6 Lifted Hierarchical Planning: A Case Study in Applied SAT

R1

R2R1R1

R2

F1

F2
F3

T1

T2L1

L7

Figure 6.1: Example instance of the Factories planning domain.

do construct(F3, L7)

get resource(R1+2, L7) constr(F3, R1+2, L7)

get resource(R1, L7) get resource(R2, L7) fuse(R1+2, R1, R2, L7)

do construct(F1, L1) do produce(F1, R1) do deliver(R1, L1, L7)
. . .

produce(R1, F1, L1) pickup(T1, R1, L1) drop(T1, R1, L7)goto(T1, L1) goto(T1, L7)

Figure 6.2: Selected parts of a task network for above Factories planning instance.
Primitive tasks are gray rectangles, compound tasks have rounded corners.

Specifically, the property that makes TOHTN planning decidable is that it prevents
arbitrary interleavings of subtasks. However, Alford et al. showed that TOHTN
planning in our setting, i.e., with variables, is 2-EXPTIME-complete [ABA15] and as
such conjectured to be strictly more difficult than classical automated planning, which
Bylander showed to be PSPACE-complete [Byl94].

A last technical detail to note is that Def. 6.2 alters the problem such that exactly
one (virtual) reduction r0 is the hierarchy’s root which then features the initial tasks
T as its subtasks. This transformation originates from pandaPIparser [Beh+20], a
parser for (TO)HTN problem descriptions which we make use of.

6.2.1.c Example

Throughout the paper we will use the domain Factories [SS21c] as an example for
our formalism. In the planning instance illustrated in Fig. 6.1, two trucks T1, T2 can
transport resources from one location to another and a factory F1 can indefinitely
produce resource R1. The objective is to construct factory F3 at location L7, for which
resources R1 and R2 are required. In addition we have a blueprint for factory F2

which is able to produce resource R2. However, one unit of resource R1 is consumed
in order to construct F2 and also for each unit of resource R2 that F2 produces.

In this planning domain we have predicates such as at(o, l) (Is object o at location
l?), requires(f, r) (Does factory f require resource r to be built?) and free(l) (Can

132

6.2 Preliminaries

a factory be built at l?). Possible operators include move(t, l1, l2) to move truck t

in between connected positions, pickup(t, r, l) and drop(t, r, l) for picking up and
dropping resources, and so on. Fig. 6.2 depicts a partially expanded task network
for our domain. The only initial task do construct(F3, L7) is achieved via a method
m(f, r, l) for f ∶= F3, r ∶= R1+2 (where R1+2 represents the union of R1 and R2),
and l ∶= L7. The method has preconditions {requires(f, r), free(l),¬constructed(f)}
and subtasks ⟨get resource(r, l), construct(f, r, l)ð. In words, we can construct F3 at
L7 by bringing one unit of R1+2 to L7 and then, atomically, performing the actual
construction. We get resource R1+2 to L7 by getting both R1 and R2 to L7 and then
fusing the two resources; we get R1 to L7 by ensuring that F1 is constructed at L1,
producing R1, and finally delivering it to L7; and so on. In the bottom left, the chosen
method for task do construct(F1, L1) leads to an empty sequence of subtasks: This
method has a precondition at(F1, L1) which ensures that F1 is already present, and
thus expands to an empty “no-op” action.

As we repeatedly apply such methods and instantiate more and more layers of the
network, we successively decompose the task network into more and more concrete
tasks until only actions remain. If this sequence of actions is executable from left to
right, beginning with initial state sI , then we found a solution to our problem.

6.2.2 Grounding

While many HTN planners operate on the lifted problem description (e.g., [Nau+99;
MMdS21]), ground approaches operate on a simplified and “flattened” representation
of the problem. Through grounding, all facts, actions, and reductions which may
be relevant to solve the problem are enumerated and compressed into compact data
structures. Finding this subset of relevant facts and operations is a difficult problem in
itself: For general HTN planning it can even be shown that it is undecidable whether
a given action can be part of a plan [Beh+20].

Grounding procedures in automated planning generally perform graph-based reach-
ability analyses to only accumulate instantiations which may be reachable during
planning [Hel09]. The science of grounding HTN domains is comparably young as
a designated area of research with only two notable prior publications [Ram+17;
Beh+20]. Two different analyses that are employed in HTN grounding are (i) top-
down reachability analyses where only the operations reachable from the problem’s
initial tasks over transitive subtask relationships are instantiated, and (ii) bottom-up
reachability analyses. The latter perform a state-based reachability analysis on the
classical planning problem, for example a delete-relaxed reachability analysis based on
planning graphs [Hel09], obtain an upper bound on the set of reachable world states
and actions, and discard any operations (and potentially their parent operations in
the hierarchy) which are never applicable regarding their preconditions.

The grade of success of such approaches varies depending on the problem at hand. In
many cases grounding is successful in practice and can be beneficial for the subsequent
search algorithm [Ram+17]. For instance, grounding procedures can be able to prune
an operation o because some unavoidable (transitive) child of o is impossible to achieve.

133

6 Lifted Hierarchical Planning: A Case Study in Applied SAT

.

.

.

L1

L2

L3

L4

L5

Ln

Ln+1L0

T1, . . . , Tn

. . .

Figure 6.3: Excerpt of an artificial planning instance from the domain Factories

Lifted planners may get lost in search space without this knowledge. However, on
some planning domains, grounding suffers from intrinsic scaling problems. Fig. 6.3
illustrates a simple example from the domain Factories. There are n trucks at L0

and the objective of the problem (i.e., resources to be transported) is located at the
far right beyond Ln+1. Assume that only a single truck is required for this objective.
Any complete grounding procedure is required to instantiate operations for each of the
n trucks to traverse any of the locations L1, . . . , Ln in order to get to Ln+1 and achieve
the actual task. None of the O(n2) operations can be omitted because every operation
is reachable and can be part of a plan.2 More generally, domains can be constructed
for which the minimum number of operations produced through grounding is a high
order polynomial in the problem size. The maximum arity of any operation signature
provides an upper bound on the polynomial’s order. By contrast, a lifted progression
search planner can simply make an ad-hoc decision on the truck and the route to take.

6.2.3 SAT-Based Planning

As we outlined in Section 2.2.5, most SAT encodings for planning problems encode
a sequence of SAT formulas of increasing “problem horizon” until, at some point,
a formula is found to be satisfiable. All relevant SAT-based classical planners have
been following this kind of procedure [KS98; KSH06; Rin14], using the maximum
number of considered steps as the problem horizon and sometimes allowing for several
non-conflicting actions to be executed in a single step [Rin14].

Gocht and Balyo [GB17] introduced incremental SAT solving (Section 2.2.6.a) to
SAT-based planning as an improvement. Automated planning can be considered a
very natural application of incremental SAT solving since the sequence of propositional
formulas to solve can be formulated as a single set of clauses that grows monotonically,
with the exception of few assumption literals which represent that all goals are reached
at the currently considered makespan. Schreiber et al. [Sch+19a; Sch+19b] were the
first to adopt this technique for hierarchical planning.

2An interesting direction of research could be to explore incomplete grounding approaches which
detect symmetries in the problem and only instantiate some sufficient subset of operations.

134

6.2 Preliminaries

6.2.3.a Prior SAT-based HTN Planning

We now discuss prior SAT-based HTN planning approaches. For an overview of other
HTN planning approaches, we refer to corresponding survey articles [GA15; BAH19].

The first propositional logic encodings for HTN planning problems [MK98] were
restricted to non-recursive (or acyclic) domains. An HTN domain is non-recursive
when the graph of all subtask relationships is acyclic. For such domains there is a fixed
maximum number of actions any given task can induce, which renders the formalism
relatively inexpressive and therefore arguably less interesting.3

After these initial encodings, two decades passed until Behnke et al. [BHB18]
revisited the topic and developed a novel encoding approach which was designed for
TOHTN planning, showing that it outperformed several prior HTN planning algorithms.
Behnke et al. refined this approach to support general HTN planning [BHB19a] and
optimal planning regarding the number of actions [BHB19b]. The employed encoding
is expanded iteratively, but handed to a conventional SAT solver at each iteration. All
these techniques have been integrated into the PANDA planning system, so we will
refer to this branch of approaches as “PANDA-SAT”.

Independently and almost simultaneously, Schreiber et al. [Sch+19a] developed
a SAT encoding for TOHTN planning problems which exploits incremental SAT
solving by simulating a stack machine of tasks and using the number of stack machine
transitions as the problem horizon to increase. An enhancement of this approach
resulted in the Tree-REX planner [Sch+19b] which performs significantly better
than its precursor and allows to optimize plan quality.

Although their authors were unaware of each other’s work, Tree-REX and
PANDA-SAT share a similar encoding structure: The encodings are iteratively
extended not along the length of a final plan (as is the case for encodings for classical
planning) but instead along the depth of the hierarchy. The main difference between
the encodings is that Tree-REX encodes states, preconditions, and effects at ev-
ery layer of the problem while PANDA-SAT propagates all fact-based constraints
to the current final layer. Both approaches rely on a grounding stage prior to the
encoding and solving stage. Tree-REX uses the grounding procedure by Ramoul
et al. [Ram+17] and enhances it by a top-down reachability analysis. The PANDA

planning system uses a separate grounding procedure which was recently used as a
basis for pandaPIgrounder, the most efficient HTN grounder to date [Beh+20]; yet,
the original grounder of PANDA is significantly slower and of lower quality. A direct
comparison by Schreiber et al. [Sch+19b] suggested that Tree-REX mostly finds
plans faster and of comparable or better quality compared to PANDA-SAT.

6.2.4 Lifted Encodings

The idea of reducing the number of encoded actions in SAT-based planning ranges
back to Kautz et al. [KS92] who proposed to “factorize” actions by splitting signatures.

3In the IPC 2020, 40 TOHTN planning domains but only three non-recursive domains were submitted,
and an advertised Acyclic Track [BHB21] was cancelled due to lack of participants.

135

6 Lifted Hierarchical Planning: A Case Study in Applied SAT

Based on this idea, factorized encodings have been established which encode arguments
explicitly and can therefore be considered lifted SAT encodings [EMW97]. Executing
multiple non-interfering actions at a single step can be problematic and requires
nontrivial adjustments [Rob+09; Wil20]. To reduce grounding overhead and encoding
size, Cashmore et al. [CFG13] suggested an approach based on Quantified Boolean
Formulas (QBF). Bonet and Geffner [BG20] described a lifted “meta-encoding” of
planning domains to infer a first-order symbolic representation from a state space
structure. Most recently, Höller and Behnke [HB22] proposed a lifted encoding
approach which avoids to encode (intermediate) states completely.

Our hierarchical encoding shares some of the issues of previous lifted encodings such
as more complex frame axioms [EMW97]. Yet, due to the rigid layout of operations
induced by the given problem hierarchy, we do not consider parallel action execution
and are faced with new challenges and opportunities, as elaborated in the following.

6.3 Planning Approach

We now present our overall planning algorithm. In order to solve a TOHTN planning
problem, we partition the hierarchy into a sequence of hierarchical layers {L0, L1, . . .}.
The first layer L0 only contains the initial reduction r0. For i > 0, layer Li contains all
operations which match a subtask of some operation at layer Li−1. Intuitively, the
index or depth i of a layer can be seen as the degree of refinement of the planning
problem. Each layer is represented as a sequence of positions to account for the total
ordering of all operations; scanning a layer from left to right chronologically traverses
the possible operations at the given degree of refinement. The central challenge of
planning, which we will delegate to a SAT solver, is to choose exactly one operation
from each position of each layer such that a valid hierarchical solution emerges. We
refer to these chosen operations as active.

The structure of our planning algorithm resembles the one of Tree-REX [Sch+19b].
As illustrated in Algorithm 6.1, we begin to construct the first two hierarchical layers
L0, L1 of the problem, encode them into propositional logic, and then perform a first
solving attempt of the formula in line 24 under the logical assumption that all active
operations at the currently final layer are primitive, i.e., actions. As long as the SAT
solver reports unsatisfiability, we construct the next layer, extend our formula by
that layer’s encoding, and attempt to solve it in the same way. When satisfiability is
reported, we either directly decode and return a plan from the satisfying assignment
or we employ a plan improvement procedure as desired (see Section 6.5).

6.3.1 Instantiation

Let us now take a closer look at how hierarchical layers are defined and constructed.

Let Pl,x denote the x-th position of the l-th layer Ll. For l = 0, there is only one
position in L0, P0,0, which only contains the initial reduction r0. For l > 0, given layer

136

6.3 Planning Approach

Algorithm 6.1 : Lilotane Planning Procedure

Input : Π = (D,sI , T)
Result : Plan π

1 Preprocess Π; —parsing and simplification

2 H ∶= ⟨ð;
3 L0 ∶= ⟨ CreateInitialPosition(T, sI) ð;
4 H ∶=H ○ ⟨L0ð;
5 F ∶= ∅; —global relevant facts

6 for l = 0,1, . . . do — instantiate new layer

7 Ll+1 ∶= ⟨ð;

8 S0

l+1 ∶= (sI ,∅); —reachable facts at this layer

9 x′ ∶= 0;

10 for x = 0, . . . , ∣Ll∣ − 1 do
11 el,x ∶=max{1,max{∣subtasks(r)∣ ∣ r ∈ Pl,x}}; —max. expansion size

12 for z = 0, . . . , el,x − 1 do

13 Pl+1,x′ ∶= Instantiate(Pl,x, z, S
x′

l+1);
14 Ll+1 ∶= Ll+1 ○ ⟨Pl+1,x′ð;

15 Sx′+1
l+1 ∶= S

x′

l+1 ∪ possibleFactChanges(Pl+1,x′);
16 F ∶= F ∪ relevantFacts(Pl+1,x′);
17 x′ ∶= x′ + 1;

18 end

19 end
20 for x′ = 0, . . . , ∣Ll+1∣ − 1 do — encode new layer

21 Encode(Pl+1,x′ , F);

22 end
23 H ∶=H ○Ll; —finalize layer

24 result ∶= Solve(H); —attempt to solve

25 if result is satisfying assignment then
26 while further plan improvement is desired do —optional plan optimization

27 OptimizeCurrentPlan(H);
28 if plan is depth-optimal break;

29 end
30 return Decode(H, result);

31 end

32 end

Ll = ⟨Pl,0, Pl,1, . . . , Pl,x, . . .ð, we compute the possible children of the operations at
each Pl,x and append respective new positions to the subsequent layer Ll+1.

Consider the situation in Fig. 6.4: We are instantiating layer l + 1. Positions
Pl,0, . . . , Pl,x−1 of layer Ll have already been processed and resulted in new positions
Pl+1,0, . . . , Pl+1,x′−1 at layer Ll+1 for some x′. Consequently, the children of Pl,x begin
at index x′. We refer to this index x′ as sl(x), the first successor position (or child
position) of Pl,x. In Fig. 6.4, Pl,x features three possible operations: reductions r and
r′ and action a. Assume that r has three subtasks and r′ has two subtasks.

137

6 Lifted Hierarchical Planning: A Case Study in Applied SAT

ε εa
ε

r

ε

r
′

ε ε

a

a

a

r
′

r

x

x
′ x

′
+ 1 x

′
+ 2

l

l + 1

a

r
′

r

x
l

Figure 6.4: Layer construction. Rectangles are actions, rounded rectangles are
reductions. Stacked operations denote a set of alternatives (“or”). Left: Pl,x has
three operations whose expansions are normalized to the maximum expansion
size of three. Right: The child operations are aggregated into three new positions.

RF0
RF1

T1 T2

F2
R

A B C

Figure 6.5: Simple planning example from the Factories domain.

Each subtask of an operation may be achieved by any of several operations, de-
pending on whether an operator matches the subtask or, otherwise, how many distinct
methods match the subtask. For the final plan, only a single operation from each
position will be chosen. We denote the set of operations which can result from the z-th
subtask of an operation o as children(o, z) for z g 0. As we know for every operation
how many children it must have (1 for an action and ∣subtasks(r)∣ for a reduction r),
we can compute the maximum expansion size el,x of any operation at Pl,x.

As a consequence, we know that position Pl,x induces el,x child positions beginning
from sl(x). To ensure that each child position is well-defined, we define children(o, z) ∶=
{ε} if either (a) o is a reduction and z g ∣subtasks(o)∣, or (b) o is an action and z g 1.
We define ε as a special action with pre(ε) = eff(ε) = ∅ which we treat as a normal
action but omit in the final plan. As such, in Fig. 6.4 we have constructed three new
positions each of which contains the union of all children at the respective offset.

6.3.1.a Example

We now illustrate this approach with the Factories domain introduced in Sec-
tion 6.2.1.c. The goal is to construct factory F2 at location C which requires one unit
of resource R (Fig. 6.5). This resource can be produced without any prerequisites
either by F0 at A or by F1 at B and must be transported to C by truck T1 or T2.

138

6.3 Planning Approach

goto(T1, B, C,C)

do construct(F2, C)P0,0

P1,0

get(R,F1, B, C)

get(R,F0, A, C)

constr noop(F0, A)

constr noop(F1, B)

do produce(R,F0, A)

do produce(R,F1, B)

deliver(R, T1, A, C)

P2,0

P1,1

P2,1 P2,3P2,2

produce(R,F0, A)

produce(R,F1, B)

goto noop(T1, A)
goto noop(T2, B)
goto(T1, A,B,B)
goto(T2, B,A,A)

pickup(T1,R,A)
pickup(T1,R,B)
pickup(T2,R,A)
pickup(T2,R,B)

drop(T1,R,C)

drop(T2,R,C)

produce(R,F0, A)

produce(R,F1, B) . . .

ε() pickup(T1,R,A)
pickup(T1,R,B)
pickup(T2,R,A)
pickup(T2,R,B)

move(T1,A,B)

move(T2,B,C)

. . .

goto noop(T2, C)

drop(T1,R,C)

drop(T2,R,C)

. . .

P3,0 P3,1 P3,2 P3,3 P3,4 P3,5 P3,6

P4,0 P4,1 P4,2 P4,4 P4,5 P4,6 P4,7 P4,8

goto(T1, A,B,C)
goto(T2, B, C,C)
goto(T2, A,B,C)

constr(F2, R, C)

constr(F2, R, C)

constr(F2, R, C)

constr(F2, R, C)

ε()

ε()

deliver(R, T2, A, C)
deliver(R, T1, B, C)
deliver(R, T2, B, C)

. . .

. . .

ε()

P4,3

Figure 6.6: Five hierarchical layers of the Factories instance from Fig. 6.5. Each
white rectangle is a position. Black lines connect a position to its child positions.
Actions are displayed as rectangles, reductions are displayed as rounded rectangles.
A set of operations leading to a valid plan is colored green.

Fig. 6.6 illustrates the layers instantiated by Lilotane for solving this planning
problem. The tree-like structure is similar to the illustration of a task network in
Fig. 6.2. However, note two important differences: First, while the nodes in Fig. 6.2
represent compound and primitive tasks, the nodes in the above tree feature reductions
and actions instead. Secondly, the task network in Fig. 6.2 represents one particular
(partial) expansion of a problem whereas the structure in Fig. 6.6 represents all possible
expansions (abbreviated where necessary).

Layers L0 through L4 are displayed from top to bottom. L0 only contains a single
initial reduction do construct(F2, C) at position P0,0.

4 This reduction induces two
child positions at layer L1, P1,0 and P1,1, with all possible operations which match
the first and second subtask of do construct(F2, C) respectively. Further down, we
omitted some operations at positions marked with “. . . ”.

An “almost complete” hierarchical plan for the problem at hand is colored green.
This plan involves producing R at factory F1 and using truck T2 to transport it in a sin-
gle move action to location C where R is used to construct F2. The plan is not entirely
finished: Operation goto noop(T2, C) at P4,6 is not primitive and still needs to be
concretized. This reduction at P4,6 will decompose into an ε-action at the next layer L5.
Then all chosen operations at the final layer are primitive and we found a solution.

4For the sake of simplicity, the illustration deviates from our actual model where the initial reduction
is a virtual operation which features the actual initial reduction(s) as its children.

139

6 Lifted Hierarchical Planning: A Case Study in Applied SAT

Note that the inability of our basic approach to find a plan at L4 in the above
example can be corrected by treating certain reductions as actions, as introduced in
earlier work [Sch+19b]. We refer to the full journal article for details [Sch21d].

6.3.1.b Pseudo-Constants

Unlike previous SAT-based approaches which perform a complete grounding, Lilotane
lazily instantiates each operation from a parent’s definition just when needed. In
addition, as we explain next, this instantiation is done minimalistically: We do not
fully instantiate child operations with free arguments but instead keep them lifted.

Consider position P1,0 in Fig. 6.6. On an intuitive level, this position features the
production and transportation of resource R to location C. Both F0 and F1 are able
to produce R. In addition, at position P2,2 truck T1 or T2 must be chosen to transport
R. The combination of these two decisions leads to four different deliver operations at
position P2,2. In general, the full instantiation of such argument combinations can
drastically increase the number of operations at each position (see Section 6.2.2).

To alleviate this issue, we keep method arguments instead of instantiating them. Let
φ be a factory, λ the location of φ, and θ a truck. Then we can express both operations
at P1,0 as get(R,φ,λ,C) and all four operations at P2,2 as deliver(R, θ, λ,C). We call
the new argument symbols pseudo-constants : At a later point, φ must be substituted
with either F0 or F1, θ must be substituted with either T1 or T2, and so on. The
encoding we present in Section 6.4 will allow us to let a SAT solver decide which
substitution to apply for each pseudo-constant. In general, for each free argument
ai of operation o, we initialize the effective domain, dom(αi), of pseudo-constant
αi with the argument type τi. We then remove any constants from dom(αi) for
which a precondition of o becomes impossible at the current position. (We explain in
Section 6.3.2 how this can be checked.) Only if ∣dom(αi)∣ = 1, we directly substitute
ai with the only valid constant. Essentially, instead of introducing ∏i ∣dom(αi)∣
operations, we introduce one lifted operation with 3i ∣dom(αi)∣ pseudo-constant values
to handle. We still need to enumerate and encode all (ground) preconditions and
effects that can result from such a lifted operation. Similar to other works on
lifted planning [Cor+20], we build upon the assumption that the problem features
significantly fewer ground facts than (reachable) ground operations.

Fig. 6.7 applies the example from Fig. 6.6 to the use of pseudo-constants. This
figure serves as a running example throughout the following sections and hence also
introduces certain fact collections at each layer which we will discuss in Section 6.3.2.
For now, let us concentrate on the operations that occur within the layers. At P1,0

we introduce pseudo-constant φ for the factory producing R and at P2,2 we introduce
pseudo-constant θ for the truck to transport R to C. At positions P1,0, P3,2, . . .

we introduce pseudo-constants λ1, λ2, . . . to represent particular locations. Just like
normal arguments, pseudo-constants are propagated down to the (transitive) children
of the operation they originated from. In the top left corner the chosen substitution
for each relevant pseudo-constant is displayed: This information is essential to decode

140

6.3 Planning Approach

goto(θ,λ4,λ6,C)

R@{A,B,C,T1,T2}

T1@A

T2@B
A↔B

B↔C

do construct(F2, C) R@{A,B,C,T1,T2}

P0,0 P0,1

P1,0

get(R,φ,λ1,C)

F0⇒R

F1⇒R

F0@A

R@A

R@B

F2@C

P2,0

P1,1

P2,1 P2,3P2,2

P1,2

P2,4

R@A

R@B

goto(θ,λ3,λ2,λ1) ¬T1@A pickup(θ,R,λ1) R@{T1,T2} drop(θ,R,C) R@C F2@C

F1@B

T1@{B,C}

T1@A

T2@B
A↔B

B↔C
F0⇒R

F1⇒R

F0@A

F1@B

. . .

¬T2@B

T1@{B,C}
T2@{A,C}

R@A

R@B

. . .
ε()

. . .

¬T1@A

¬T2@B

T1@{B,C}
T2@{A,C}

R@{T1,T2}

move(θ,λ5,λ4)
goto noop(θ, C)

drop(θ,R,C) F2@C

P3,0 P3,1 P3,2 P3,3 P3,4 P3,5 P3,6 P3,7

P4,0 P4,1 P4,2 P4,4 P4,5 P4,6 P4,7 P4,8 P4,9

goto noop(θ, C)

R@C

constr(F2, R, C)

constr(F2, R, C)

constr(F2, R, C)

constr(F2, R, C)

ε()

. . .

ε()

. . .

constr noop(φ,λ1)

do produce(R,φ,λ1) deliver(R,λ1,C,θ)

produce(R,φ,λ1)

goto noop(θ, λ1)

goto(θ, λ5, λ4, C)

produce(R,φ,λ1) pickup(θ,R,λ1)

ε() ε()

= F0 ∨ F1

= A ∨B

= A ∨B ∨ C

= A ∨B ∨ C

= T1 ∨ T2

φ

λ1

λ4

λ5

θ

T2@{A,C}
F2@C

¬T1@A

¬T2@B

T1@{B,C}
T2@{A,C}
F2@C

¬T1@A

¬T2@B

R@{C,T1,T2}
T1@{B,C}
T2@{A,C}

¬T1@A

¬T2@B

R@C

Figure 6.7: Hierarchy as in Fig. 6.6 but with pseudo-constants and reachable facts.
Blue boxes with rounded corners represent facts occurring for the first time in a
layer. Horizontal lines connect operations with “new” facts they may cause.

a valid plan from the chosen operations. A pseudo-constant is only relevant if the
operation it originates from is part of the (hierarchical) solution.

6.3.2 Reachability Analysis for Facts and Operations

In order to minimize the number of considered operations, we perform a reachability
analysis at each layer where we examine the possible world states at each position.

For each operation o which we instantiate, we define pfc(o) as the possible fact
changes of o—an over-approximation of all positive and negative facts which may
be caused by o or by any transitive child of o. At each layer Ll+1, we construct and
successively update Sl+1, which represents all such facts which may have been effected
up to a certain position. We define the x-th update of Sl+1 as follows:

Sx
l+1 ∶= (+Sx

l+1,−S
x
l+1) ∶= (

x−1

⋃
i=0

⋃
o∈Pl+1,i

pfc(o)+,
x−1

⋃
i=0

⋃
o∈Pl+1,i

pfc(o)−).

As such, +Sx
l+1 (−Sx

l+1) consists of all positive (negative) facts that may be produced
by some operation up to the x-th position.

For position Pl,x, we define a positive fact f to be reachable at Pl,x if
f ∈ sI ∪ +Sx

l . Similarly, a negative fact ¬f is reachable at Pl,x if f ∈ −Sx
l or

f ∉ sI . If fact f is not reachable at Pl,x, then we call f invariantly false at Pl,x.

141

6 Lifted Hierarchical Planning: A Case Study in Applied SAT

If the negation ¬f of a fact f is not reachable at Pl,x, then we call f invariantly true at
Pl,x. Note that if fact f is invariantly true (false) at Pl,x, then ¬f is invariantly false
(true) at Pl,x. We use Sl and these definitions to check the invariance of preconditions
in the “Instantiate” procedure in line 13 of Alg. 6.1 to prune impossible operations.

Fig. 6.7 illustrates a number of facts. We write F0@A to denote that factory F0

is present at location A, A↔B to denote that there is a path between A and B, and
F0 ⇒ R to denote that factory F0 produces resource R. Some redundant facts are
omitted: Each fact (¬)φ@λ for factory φ and location λ also implies (¬)constructed(φ).
In each position Pl,0 all facts in the initial state are displayed (abbreviated for l g 2).
In each position Pl,x for x > 0 all facts are displayed which were invariantly false at
Pl,0, . . . , Pl,x−1 and which become reachable at Pl,x. Horizontal lines indicate which
facts are caused by which operation. For instance, get(R,φ,λ1, C) at P1,0 may cause
resource R to be located anywhere (due to do produce and deliver) and both trucks T1,
T2 to be located anywhere (because the goto subprocedure in deliver is recursive and
may lead a truck to any location). These fact changes include the negative facts ¬T1@A

and ¬T2@B as they were unreachable before (because T1@A and T2@B hold initially).
According to pfc(⋅), the operation may even cause F2 to be constructed—this false
positive will be discussed further in Section 6.3.2.b.

Reduction r = get(R,φ,λ1, C) at P1,0 encompasses the construction of some factory
φ at location λ1 as its first subtask. Without any further knowledge, we would assume
that dom(φ) = {F0, F1, F2} and dom(λ1) = {A,B,C}. However, r has a precondition
φ ⇒ R. According to S0

1
, this precondition is invariantly false for φ = F2. For this

reason, we initialize φ with a smaller domain, dom(φ) = {F0, F1}. Reducing the
domain of a pseudo-constant is a form of pruning, as it cuts the number of ground
operations that are represented by the enclosing lifted operation.

It can also occur that an entire operation is pruned. The first subtask of r, namely
the construction of φ at λ1, is achieved at position P2,0. This task can be matched
by constr noop(φ,λ1) (with a precondition φ@λ1) or do construct(φ,λ1) (with a
precondition ¬constructed(φ)). As both F0 and F1 are already constructed according
to S0

2
, we know that the precondition of do construct(φ,λ1) is invariantly false for all

substitutions of φ. As such, this operation is not included in position P2,0.
Note that we implemented a kind of precondition inference which, similar to the

pullup compilation in HyperTensioN [MMdS21], propagates such crucial precon-
ditions up the hierarchy. This helps preserve the effectiveness of our instantiation
approach even for domains which feature preconditions only in actions but not in
methods. We refer to the full journal article for details [Sch21d].

6.3.2.a Computation and Correctness

We now describe how to efficiently compute our reachability analysis. S0

l+1 is initialized
with the initial state sI and no negative facts in line 8 of Alg. 6.1. All facts not
featured in Sx

l+1 are considered invariantly false.

For x′ g 0, we construct Sx′+1
l+1 via possibleFactChanges(Pl+1,x′) in line 15 of Alg. 6.1.

In that call we collect all possible fact changes of Pl+1,x′ , PFCl+1,x′ ∶= ão∈Pl+1,x′
pfc(o),

142

6.3 Planning Approach

and then update Sx′+1
l+1 ∶= (+Sx′

l+1 ∪PFC+

l+1,x′ ,−S
x′

l+1 ∪PFC−

l+1,x′). For any operation o,
we compute pfc(o) as follows:

If o is primitive, then pfc(o) = g(eff(o)), where g(⋅) is the ground hull of a set of
facts: Any lifted fact in eff(o) is fully instantiated into a set of ground facts.

Otherwise, pfc(o) = g(ãel,x
z=0 ão′∈children(o,z) pfc(o′)), i.e., we recursively compute the

possible fact changes of each possible child of o and ground the resulting facts.
To avoid infinite recursion, we remember each visited method together with its

subset of ground arguments and break recursion when an equivalent signature occurs
again. We ensure that fact changes are computed only once per operator and method.

We now establish a central (semi-formal) correctness property of Sl:

Theorem 6.3

For l g 0 and x g 0, let Ol ∶= ⟨o0, . . . , oxð be a sequence of operations where each oi is
a possible operation at position Pl,i. Decompose each oi ∈ Ol to some sequence Oi of
actions such that O ∶= O0 ○ . . . ○Ox is executable from sI .
(1) If fact f holds after executing O, then f is reachable at Pl,x+1 according to Sx+1

l .
(2) Similarly, if f does not hold after executing O, then ¬f is reachable at Pl,x+1.

The proof of this theorem is given in Appendix D.2. As a direct consequence, if some
fact (¬)f is not reachable at some position, then there is no way how any execution of
the operations before this position could lead to f being true (false). For this reason,
we can safely prune any operations for which a precondition is not reachable according
to Sl, as in this case the precondition is definitely impossible.

6.3.2.b Relevant Facts and Retroactive Pruning

The procedure we just described gains knowledge the deeper we explore the problem
hierarchy: The more concrete our operations become, the more exact pfc(⋅) becomes.
For instance, in Fig. 6.7, F2@C is invariantly false at P1,0 but reachable at P1,1: As
pfc(⋅) ignores the preconditions of children, it finds that operation get(R,φ,λ1, C) has
a possible child do construct(⋅) which might achieve the construction of F2. One layer
later, it becomes apparent that this is an over-approximation: There is no operation
before P2,3 which can cause the construction of F2.

One consequence of this stepwise refinement is that some facts which in practice are
irrelevant for the planning task may be added to Sl. To counteract this, we maintain
a set of relevant facts F which grows monotonically with each further layer. A fact is
relevant and consequently added to F if it occurs as a (positive or negative) action
effect or as a (positive or negative) precondition of some operation added to the current
layer. Later, when encoding the layer, we can check for each fact whether it is relevant
and should be encoded. Otherwise, we know that the fact cannot be actively involved
in the planning task so far and we omit it from our encoding.

Another consequence of our technique is that we may encode an operation o at
layer Ll and then notice at layer Ll+k that a precondition of some required transitive
child o′ of o is not reachable. In this case, o turns out to be impossible to achieve.

143

6 Lifted Hierarchical Planning: A Case Study in Applied SAT

m0(A,B)

m0(α1, β1) m1(α1, β2) m0(α2, β3)

m0(B,α1) m1(B,α2)

m0(β1, γ1) m1(β1, γ2) m0(β2, γ3) m1(β2, γ4) m0(β3, γ5) m1(β3, γ6)

m0(A,B)

m1(α, β)m0(α, β)

m0(B,α) m1(B,α)

m0(β, γ) m1(β, γ)

Figure 6.8: Naive (left) and true (right) children of m0. New pseudo-constants
are colored blue. An edge from u to v denotes that v matches a subtask of u.

We mentioned in Section 6.2.2 how ground approaches are often able to prune such
operations a priori while our approach does not have the necessary knowledge to do
so. In our approach, if we encounter a subtree of impossible operations, we (i) prune
this subtree from our instantiated structures and (ii) add a unit clause to our encoding
that forbids the root operation o to be chosen. As such, while the pruned subtree
remains in our encoding, it is logically “switched off” and will not be explored any
further. We refer to our journal article for details [Sch21d].

6.3.3 Shared Pseudo-Constants and Dominated Operations

Our approach is based on the idea that every operation at some position will induce one
new pseudo-constant κ for each of its free arguments, with domain dom(κ) as described
in Section 6.3.1.b, and that child operations at subsequent layers naturally inherit some
of these pseudo-constants in addition to introducing new pseudo-constants themselves.
There are scenarios where this leads to undesired behavior. For example, consider
methods m0(a, b) and m1(a, b) with subtasks(m0(a, b)) = subtasks(m1(a, b)) = ⟨t(b)ð
where task t(b) can be achieved both by m0(b, a) and m1(b, a). The transitive children
of m0(a, b) will blow up in our approach as depicted in Fig. 6.8 (left): At each further
layer, each operation branches into two new operations, and all operations syntactically
differ due to the unique names of pseudo-constants. As such, the number of operations
grows exponentially in the explored depth whereas the true structure of m0 only
results in two distinct operations as depicted in Fig. 6.8 (right).

As only a single operation can be active at each position, we suggest to share the
same new pseudo-constant among multiple operations. When two or more operations
have a free argument which would lead to exactly the same effective domain of a
pseudo-constant, we introduce the same pseudo-constant for these arguments. With
this change, the recursive children of m0(a, b) are already computed properly in our
minimalistic example. Secondly, to account for pseudo-constant domains that are
similar but not identical, we unify certain operations after their instantiation. We
define that an operation o dominates another operation o′ if (i) sig(o) and sig(o′) are
syntactically equivalent except for any number of argument positions i where both
arguments ai of o and a′i of o

′ are pseudo-constants, and (ii) both ai and a′i originate
from the same position and dom(ai) § dom(a′i) for each such i. After instantiating
a position P , we identify operations o′ ∈ P dominated by another operation o ∈ P .

144

6.4 Encoding

In such a case, we remove each dominated operation o′ from P and update the possible
parents of o′ to feature o as a child instead. In addition, we logically restrict the
pseudo-constants of o to be equivalent to those of o′ as necessary.

6.4 Encoding

We now present our encoding Ll(Π) of layers L0, . . . , Ll of a TOHTN planning problem
Π into propositional logic. We first provide succinct definitions for all clauses to encode.
Thereafter, we explain how to decode a plan from a satisfying assignment, refer to a
proof of correctness, and present a worst-case complexity analysis.

6.4.1 Base Encoding

Some parts of the following encoding, namely those specified in Section 6.4.1.a, are
taken from the Tree-REX approach [Sch+19b]. The fundamental difference between
Tree-REX and our new encoding is that we must now handle lifted actions, reductions,
and, consequently, lifted fact constraints.

We call operations in our hierarchy actions and reductions regardless of whether
they contain pseudo-constants or not. We use the term ground fact for a fact without
pseudo-constants and the term pseudo-fact for a fact with pseudo-constants. We use
the following Boolean variables: olx denotes that operation o is active at position Pl,x

and f l
x denotes that ground fact f holds at Pl,x. Variables prim

l
x represent whether

a primitive operation, i.e., an action, is active at position Pl,x. In addition, for each
pseudo-constant κ introduced to the problem we introduce variables “[κ/c]” for each
c ∈ dom(κ) which represent that κ is substituted with constant c.

6.4.1.a Basic Constraints

We begin with enforcing the initial reduction at the only position of the first layer:

(r0)00 (6.1)

To avoid encoding superfluous facts, we make use of the set Fl of relevant facts (see
Section 6.3.2.b). We introduce a Boolean variable for each relevant fact and enforce it
to assume a polarity according to the initial state at the zeroth position:

∀f ∈ Fl ∩ sI ∶ f l
0

(6.2)

∀f ∈ Fl 8 sI ∶ ¬f l
0

If an action a occurs at position x at layer l, then we define the respective position as
primitive. Similarly, if a reduction occurs, we define the position as non-primitive.

alx ⇒ priml
x (6.3)

rlx ⇒ ¬priml
x

145

6 Lifted Hierarchical Planning: A Case Study in Applied SAT

At most one action and at most one reduction may occur at the same position. Together
with Eq. 6.3, this enforces that at most one operation is active at each position.

∀a ≠ a′ ∈ Pl,x ∶ ¬alx (¬(a′)lx (6.4)

∀r ≠ r′ ∈ Pl,x ∶ ¬rlx (¬(r′)lx
This constraint adds O(n2) clauses if there are n actions, or reductions, at the same
position. In our case this is not as problematic as for Tree-REX because we generally
instantiate significantly fewer operations. Still, if n does become too large, we use a
logically equivalent encoding which introduces log(n) helper variables but only encodes
O(n log(n)) clauses. Based on preliminary experiments we use the latter encoding if
n g 50. We refer to Schreiber [Sch18, Appendix A] for a precise specification.

Any operation o at Pl,x enforces its preconditions at Pl,x:

olx ⇒ â
f∈pre(o)+

f l
x ' â

f∈pre(o)−
¬f l

x (6.5)

Similarly, any action a enforces its effects at Pl,x+1:

alx ⇒ â
f∈eff(a)+

f l
x+1 ' â

f∈eff(a)−
¬f l

x+1 (6.6)

Later on (Section 6.4.1.b) we introduce so-called frame axioms which complement the
correct enforcement of action effects. Also note that each f in the above formulas
may contain pseudo-constants. For now we treat such pseudo-facts as we treat ground
facts and encode each of them with a Boolean variable.

To logically connect subsequent layers with each another we use the following
clauses. First, a ground fact f that holds at Pl,x must be logically equivalent to the
same ground fact at the first successor position Pl+1,sl(x) of Pl,x:

f l
x⇔ f l+1

sl(x)
(6.7)

Note that in practice these clauses do not occur in our encoding; instead we use exactly
the same Boolean variable for f l

x and f l+1
sl(x)

in the first place.
Next, we describe the sufficient and necessary conditions for operations at a new

layer: When a parent o is active at Pl,x, then for each offset z one of its children o′ at
offset z must be active at Pl+1,sl(x)+z.

∀z ∈ {0, . . . , el,x − 1} ∶ olx ⇒ ⋁
o′∈children(o,z)

(o′)l+1sl(x)+z
(6.8)

Remember that children(o, z) is well-defined for all such z: For each action a and z > 0,
children(a, z) = {ε}, and for each reduction r and z g ∣subtasks(r)∣, children(r, z) = {ε}.

Schreiber et al. [Sch+19b] found that it is beneficial for SAT solving performance to
also redundantly enforce the opposite direction: When a child o′ is active at Pl+1,sl(x)+z,
then any of its possible parents o must be active at Pl,x.

∀z ∈ {0, . . . , el,x − 1} ∶ (o′)l+1sl(x)+z
⇒ ⋁
o ∣ o′∈children(o,z)

olx (6.9)

146

6.4 Encoding

To conclude the clause sets which Tree-REX featured in a similar form [Sch+19b],
we enforce the currently deepest layer Ll′ to be fully primitive. This implies a
fully expanded hierarchical task network. The following unit clauses are added as
assumptions, i.e., they are considered axioms by the SAT solver for the next solving
attempt and discarded afterwards.

∀x ∈ {0, . . . , ∣Ll′ ∣ − 1} ∶ priml′

x (6.10)

6.4.1.b Pseudo-Constants and Pseudo-Facts

Next we define the semantics of pseudo-constants and their enclosing structures.
For each pseudo-constant κ introduced by some operation o, κ must be substituted

with at most one constant from its possible domain, dom(κ), and if o is active then
exactly one such substitution must hold:

â
c1≠c2∈dom(κ)

¬[κ/c1] (¬[κ/c2] (6.11)

olx ⇒ ⋁
c∈dom(κ)

[κ/c] (6.12)

As in Eq. 6.4, we employ an asymptotically better encoding instead of Eq. 6.11 if κ
has at least n = 50 substitutions.

Consider a pseudo-fact fp with pseudo-constants κ1, . . . , κk (k g 1). Assume that
substituting each such pseudo-constant κi with a particular constant ci ∈ dom(κi)
yields ground fact f . Then we define:

([κ1/c1] ' [κ2/c2] ' . . . ' [κk/ck])⇒ ((fp)lx⇔ f l
x) (6.13)

In words, we enforce a pseudo-fact to be equivalent to the ground fact it corresponds
to when performing particular substitutions.

In most automated planning encodings, so-called frame axioms logically specify the
necessary conditions for a fact change in between two adjacent time steps. In other
words, frame axioms are necessary to prevent a SAT solver from arbitrarily changing
the world state without executing a supporting action [KS92]. In our encoding, frame
axioms are needed for ground facts only, as the pseudo-facts are well-defined by
Eq. 6.13. We define a ground fact’s support, supp((¬)f), as the set of actions which
have f as a positive (negative) effect. Also, we define the fact’s indirect support,
isupp((¬)f), as the set of actions which are not in supp((¬)f) but which have some
pseudo-fact fp as a positive (negative) effect that can be syntactically unified with f .
We add two types of clauses to specify frame axioms:

(i) If fact f changes its value, then either a reduction is responsible for the change
(represented by ¬priml

x), or some action directly or indirectly supports this fact change.

f l
x ' ¬f

l
x+1 ⇒ ¬priml

x (⋁
a∈supp(¬f)

alx (⋁
a∈isupp(¬f)

alx (6.14)

¬f l
x ' f l

x+1 ⇒ ¬priml
x (⋁

a∈supp(f)

alx (⋁
a∈isupp(f)

alx

147

6 Lifted Hierarchical Planning: A Case Study in Applied SAT

(ii) If fact f changes its value and some action a ∈ isupp((¬)f) is applied, then some
set of substitutions must be active which unifies an effect fp of a with f .

f l
x ' ¬f

l
x+1 ' alx ⇒ ⋁

fp∈eff(a)
−,

fp[κ1/c1]...[κk/ck]=f

(
k

â
i=1

[κi/ci]) (6.15)

¬f l
x ' f l

x+1 ' alx ⇒ ⋁
fp∈eff(a)

+,

fp[κ1/c1]...[κk/ck]=f

(
k

â
i=1

[κi/ci])

Frame axioms (ii) in the above rule are not in Conjunctive Normal Form (CNF):
We require a transformation of Disjunctive Normal Form (DNF) into CNF whenever
a features multiple effects which can be unified to f . Considering that the arity of
predicates is commonly very small in planning domains (see Table 9.3, Section F), we
just arrange the substitution constraints as a tree of Boolean literals in a heuristically
chosen order and then encode the branches as CNF. No additional variables are
required. We refer to the original publication [Sch21d] for details.

6.4.1.c Argument Type Restrictions

Assume in the Factories domain that we can transport resources not only with trucks
but with airplanes as well, and that trucks and airplanes share a common “vehicle”
type τ . While some operation deliver(r, λ, l, ν) to transport resource r from λ to l

may introduce ν as a pseudo-constant of type τ , some child operations drive to(ν, ⋅)
and fly to(ν, ⋅) may force ν to be of the type “truck” or “airplane”. More generally,
it can happen that a child restricts the valid domain τ of a pseudo-constant from an
earlier layer to some τ ′ ¢ τ . We explicitly deal with such type restrictions by either
forbidding all illegal substitutions or enforcing one of the valid substitutions:

∀c ∈ τ 8 τ ′ ∶ olx ⇒ ¬[κ/c] (6.16)

olx ⇒ ⋁
c∈τ ′
[κ/c] (6.17)

We dynamically decide on whether to encode Eq. 6.16 or Eq. 6.17 based on which of
the sets induces a smaller overall number of Boolean literals. Empirically we found
that oftentimes one of the two sets is very small.

6.4.1.d Actions with Contradictory Effects

Planning descriptions allow an operator o to have both f and ¬f as an effect. Seeming
contradictory at first glance, it is indeed consistent with the common semantics of
applying an action in automated planning: First all negative effects are deleted from
the state and then all positive effects are added to the state [GNT04, Def. 2.7]. For
example, this allows to consistently instantiate an operator “go from x to y” for the
case x = y, first deleting and then re-adding the current location x.

148

6.4 Encoding

In encodings generated from ground representations, each action can be trivially
preprocessed by deleting each effect ¬f for which f is also an effect. In our lifted
encoding, whether an action contains contradictory effects generally depends on which
substitutions are applied. Our encoding specified so far may then logically imply both
f l
x and ¬f l

x at the same time, rendering the formula unsatisfiable.

We propose the following solution to this problem. Each positive effect of action a

is encoded normally. For each negative effect f ∈ eff(a)− we collect all positive effects
f ′ ∈ eff(a)+ such that f and f ′ share the same predicate. We then compute the set Σ
of all substitution sets which unify f with such an f ′. We distinguish three cases:

(i) If Σ = ∅, then there are no conflicting positive effects for negative effect ¬f and
the effect will be encoded normally as in Eq. 6.6.

(ii) If ∅ ∈ Σ, i.e., f is already unified with some f ′ ∈ eff(a)+ without applying
any substitution, then f and f ′ are syntactically equal: The negative effect is
discarded because it is always overridden by the positive effect.

(iii) Otherwise, Σ ∶= {Σ1, . . . ,Σm} where each Σi unifies some f ′ ∈ eff(a)+ with f .
We enforce that either the negative effect holds or some Σi is active:

olx ⇒ ¬f l
x+1 (

m

⋁
i=1

â
[κ/α]∈Σi

[κ/α] (6.18)

Let us examine the above symbols of the form [κ/α]. Whenever one effect’s argument
κ is a pseudo-constant while the other’s α is a constant, [κ/α] is a substitution
variable. Also, at least one of κ and α must be a pseudo-constant: For constants
c ≠ c′, substitutions of the form [c/c′] are invalid and substitutions of the form [c/c]
are redundant and hence omitted. What remains is the special case of unifying a pair
of pseudo-constants, i.e., κ′ ∶= α is a pseudo-constant as well. For each such case we
introduce a new Boolean variable and give it the meaning: “κ and κ′ are equal.“

To have a variable [κ/κ′] assume this meaning, we introduce additional clauses:
First the intersection of both domains, I = dom(κ) ∩ dom(κ′), and the respective
differences, D ∶= dom(κ) 8 I and D′

∶= dom(κ′) 8 I, are computed. If I is empty, then
the pseudo-constants cannot be equal: [κ/κ′] is false. Otherwise, we encode clauses
to guarantee that [κ/κ′] holds if and only if both pseudo-constants are substituted
with the same constant:

∀c ∈ I ∶ [κ/κ′] ⇒ ([κ/c]⇔ [κ′/c]) (6.19)

∀c ∈ I ∶ ([κ/c] ' [κ′/c])⇒ [κ/κ′]
∀c ∈D ∶ [κ/c] ⇒ ¬[κ/κ′]
∀c ∈D′

∶ [κ′/c] ⇒ ¬[κ/κ′]

We encode Eq. 6.18 with a DNF-to-CNF transformation as for Eq. 6.15 and encode
Eq. 6.19 whenever a new equality variable emerges which did not occur before.

149

6 Lifted Hierarchical Planning: A Case Study in Applied SAT

6.4.1.e Dominated Operations

Last but not least, we turn to the situation where some operation o dominates another
operation o′ as described in Section 6.3.3. Whenever o becomes active as a child of
one of the parents of o′ (but no parent of o), we restrict the pseudo-constants of o to
be equivalent to those of o′. Again, we make use of variables [κ/κ′] as defined above.

∀op ∈ Pl,x ∣ o′ ∈ children(op, z), o ∉ children(op, z) ∶ (op)lx ' ol+1sl(x)+z
⇒â

κ∈o,κ′∈o′
[κ/κ′]

(6.20)

This concludes the set of clauses which are required for the correctness of our approach
in conjunction with the techniques described in Section 6.3.

6.4.2 Optimizations

In the following, we describe some optimizations for our encoding. Some minor
techniques are omitted and can be found in the full journal article [Sch21d].

So far, we encoded all facts which appear as a precondition or as an effect at some
position Pl,x. However, our reachability analysis allows us to identify invariant facts,
i.e., (ground) facts which are definitely true or definitely false at a certain position (see
Section 6.3.2). We avoid to introduce Boolean variables for invariant facts. Instead of
encoding each relevant fact at the zeroth position, we adjust Eq. 6.2 as follows:

∀f ∈ Fl ∣ f is invariantly true at Pl,x but not at Pl,x+1 ∶ f l
x (6.21)

∀f ∈ Fl ∣ f is invariantly false at Pl,x but not at Pl,x+1 ∶ ¬f l
x

In words, at each layer Ll we delay the encoding and initialization of fact f as a
Boolean variable until the last position where f is invariant. Note that all facts are
invariant at the zeroth position due to sI . Replacing Eq. 6.2 with Eq. 6.21 allows us
to skip many trivial frame axioms which preserve the polarity of an unchanging fact
(see Eq. 6.14 with empty supports) and completely omits the encoding of globally
invariant facts. Whenever f is invariant and hence not encoded, we consequently do
not encode the equivalence of f to any present pseudo-fact fp (Eq. 6.13). However, to
preserve correctness, we may need to introduce some other constraints instead.

First, if an operation (action) at Pl,x has a ground precondition (effect) that is
invariantly true at Pl,x (Pl,x+1), then we can simply omit Eq. 6.5 (Eq. 6.6) for this
particular constraint. Note that effects are never invariantly false due to construction,
and operations with invariantly false preconditions are pruned during instantiation.

Secondly, assume that operation o has k preconditions with pseudo-constants. For
each such precondition f , each ground fact resulting from f is either invariantly false or
invariantly true or not invariant. All non-invariant facts are handled as before by linking
them with a pseudo-fact (Eq. 6.13). In addition, we must make sure that no substitution
is applied which transforms f into an invariantly false precondition. Generally, for
each 1 f i f k, there are ni sets Πi1, . . . ,Πini

of substitutions rendering precondition i

150

6.4 Encoding

invariantly false, and mi remaining sets Σi1, . . . ,Σimi
for which precondition i may

hold (invariantly or not). For each precondition, we either enforce a valid substitution
set (Eq. 6.22) or that no invalid substitution set can hold (Eq. 6.23).

∀i ∈ {1, . . . , k} ∶ olx ⇒
mi

⋁
j=1

â
[c/κ]∈Σij

[c/κ] (6.22)

∀i ∈ {1, . . . , k} ∀j ∈ {1, . . . , ni} ∶ olx ⇒ ⋁
[c/κ]∈Πij

¬[c/κ] (6.23)

As in Eq. 6.16–6.17, we encode the smaller of these sets. Eq. 6.22 is realized with a
DNF-to-CNF transformation.

As a special case, if all ground facts which may result from a precondition are
invariant, we can omit the pseudo-fact corresponding to the precondition (Eq. 6.13).
This situation occurs frequently in practice because most planning domains contain
so-called rigid predicates [GNT04, p. 43] which are not featured in any action effect.
In our Factories example (Fig. 6.7), some rigid predicates are A↔B (there is a road
between A and B) and F1⇒R (factory F1 can produce resource R).

We now turn to effects with pseudo-constants. Each ground fact that can result from
such an effect is considered a possible fact change by our reachability analysis. As such,
an effect is never invariantly false. It can happen, however, that some substitutions
which turn the effect into a ground fact are known to be invalid because a precondition
of the same operation becomes invariantly false for these substitutions. We omit
Eq. 6.13 for each such substitution; the according substitutions are already prohibited
by the precondition’s encoding. If all ground facts resulting from the effect are either
omitted this way or invariantly true, we do not encode an according pseudo-fact.

6.4.3 Decoding a Plan

We now explain the process of decoding a classical and hierarchical solution from
a satisfying assignment to our encoding found by a SAT solver. Assume that the
encoding Ll′ of layers L0 through Ll′ is satisfiable and a satisfying assignment A to all
variables is available. We define that an operation o is active at Pl,x iff A(ol′x) = true.
Similarly, a substitution [κ/c] is active at Pl,x iff A([κ/c]) = true.

We first decode a plan π (see Def. 6.1) from A: We begin with an empty plan
π ∶= ⟨ð. For each position index x = 0, . . . , ∣Ll′ ∣−1 we find an active action a ∈ Pl′,x. If a
is an ε-action, we discard it. Otherwise, if a is ground, we append it to π. Otherwise,
for each pseudo-constant κ of a we find an active substitution [κ/c] and substitute all
occurrences of κ in action a with c. The resulting ground action ã is appended to π.

To obtain the hierarchical solution leading to π (see Def. 6.2) we begin with a
graph H without any edges and a single node (r0,0,0) which represents the ini-
tial reduction r0 at the zeroth position of layer L0. We traverse all layers in the
order of their instantiation. For each position Pl+1,sl(x)+z where l + 1 > 0, we first
examine the parent node (o, l, x) in H. If o is an action, then we ignore the child
position and continue. Otherwise we find an active child operation o′ at Pl+1,sl(x)+z.

151

6 Lifted Hierarchical Planning: A Case Study in Applied SAT

We add a new node (õ′, l + 1, sl(x) + z) where õ′ is the ground representation of o′ (as
explained above for actions ã), and we add edge ((o, l, x), (õ′, l + 1, sl(x) + z)) to H.

In our Factories example in Fig. 6.7 we obtain π by traversing L4 from left to right
and collecting all active actions which are not ε-actions. For each pseudo-constant in
each action, we apply the according highlighted equivalence in the top left corner of
Fig. 6.7. Reduction goto noop(θ,C) at P4,6 is treated as an action but is omitted from
π due to our optimizations. Fig. 6.7 also contains a representation of the hierarchical
solution H: Each position with a highlighted operation corresponds to a node in H

except for positions with repeated actions from an earlier layer (P3,1, P4,1, P2,3, etc.)
and positions where an ε-action is active.

6.4.4 Correctness

The following theorem establishes the correctness of our encoding:

Theorem 6.4

Let (π,H) be the decoded (classical and hierarchical) solution for the Lilotane

encoding Ll′(Π) for TOHTN planning problem Π. Then π is a valid solution for Π
and H is a valid hierarchical solution for Π.

Proof. See Appendix D.3. ◻

A corollary of this theorem is the correctness of the previous Tree-REX encod-
ing [Sch+19b] where no pseudo-constants are introduced, only ground operations are
added, and all relevant facts are encoded at position zero of each layer.

While we do not provide a proof of completeness for our encoding, note that a
similar chain of arguments as in our correctness proof can be made to show that
whenever a problem Π has a solution (π,H) at depth l′, our encoding will be satisfiable
at layer l′ and enable us to extract a valid solution from a satisfying assignment.

6.4.5 Complexity

In the following, we assess the complexity of the Lilotane encoding, providing the
worst case asymptotic number of variables and clauses in the encoding of Ll′(Π).

Consider a worst-case hierarchy which grows exponentially both in the size of its
layers and the encoded operations at each position. Let X be the maximum number of
subtasks of any method and let B be the maximum number of methods with different
signature names which achieve the same task. Given the initial layer size ∣L0∣ = 1, the
size of layer l′ is in O(X l′). Since the encoded operations per position can multiply

by a factor of B per layer, the total number R of encoded operations is in O(X l′Bl′).
Let V be the maximum arity (i.e., the number of arguments) of any operation, and let
U be the maximum number of free arguments of any method. Let C be the number
of constants, and let P (E) be the maximum number of preconditions (effects) of any

152

6.4 Encoding

operation. Then the number of encoded variables is in

O(X l′(F +Bl′(UC + P +E + V 2))) (6.24)

as we derive in Appendix E.1. Essentially, at each position we need to encode each fact
(X l′F), and for each operation we need to encode each pseudo-constant (X l′Bl′UC),

each pseudo-fact emerging from a precondition or effect (X l′Bl′(P +E)), and possibly

an equality variable for each pair of pseudo-constants in the action (X l′Bl′V 2).
Let us compare this to the previous Tree-REX approach [Sch+19b] for a worst-

case result of grounding: When expanding a position in the hierarchy, each operation at
some position can lead not to B, but instead to B ⋅CU new operations for each subtask
because we fully ground all operations. This creates O(X l′(BCU)l′) operations in

total and overall leads to O(X l′(F + (BCU)l′)) variables. However, also note that
for Tree-REX the number of operations per position cannot grow indefinitely but
is bounded by O((∣M ∣ + ∣O∣)CV), i.e., the number of instantiated operations, while
for Lilotane the number of operations at each position is unbounded: At each layer,
new pseudo-constants and thus “new” operations may be introduced. We counteract
this with shared pseudo-constants and dominating operations (Section 6.3.3).

Next, let us consider the number of encoded clauses. We define Y as the maximum
predicate arity. We arrive at the following asymptotic complexity:

O(X l′Bl′(l′ logB +C(U logC + V 2) + F (P + Y E) + Y E2)) (6.25)

For the derivation we again refer to Appendix E.2. If we assume V , U , and Y to be
constants, then we arrive at

O(X l′Bl′(l′ logB +C logC + F (P +E) +E2)) (6.26)

clauses. Terms l′ logB and C logC are caused by at-most-one constraints over the
operations at each position and over the substitutions for a pseudo-constant. Term
F (P +E) is implied by (among others) the semantics of pseudo-facts and term E2

originates from the encoding of contradictory action effects.
For Tree-REX, applying our complexity model under above assumptions yields

O(X l′(T ⋅ (logT + P +E) + F)) (6.27)

clauses (see [Sch+19b], Complexity) where T ∶=min{Bl′CUl′ , (∣M ∣ + ∣O∣)CV }.
The advantages of Tree-REX are that only a constant number of clauses is added

for each fact, each precondition and each effect at each position and that, again, there
is an upper bound on the number of operations at each position. By contrast, while
Lilotane may encode more clauses per operation due to its more complex handling
of facts, its much smaller initial branching factor leads to fewer operations by a factor
of CUl′ as long as the upper bound for T is not reached.

153

6 Lifted Hierarchical Planning: A Case Study in Applied SAT

The exponential complexity of both encodings, which compile 2-EXPTIME-complete
TOHTN planning to NP-complete SAT (see Section 6.2.1.b), is presumably unavoidable.
However, the number of clauses and variables encoded by Lilotane is exponential
only in l′ while for Tree-REX the encoding size is exponential both in l′ and in either
Ul′ or V . We conclude that the Lilotane encoding compared to Tree-REX is a
new and to some degree orthogonal approach which focuses on reducing the number
of encoded operations at the cost of a more complex logic related to the problem’s
state space features. Our experiments in Section 6.6 will complement this analysis
with some empirical practical insights.

6.5 Plan Improvement

The length of a given plan π = ⟨a0, . . . , ak−1ð is given by k = ∣π∣. We are interested
in finding as short plans as possible because in a real-world application each action
will require some effort in order to be executed: In most cases, shorter plans are
more efficient and executed faster. However, our base algorithm generally produces
suboptimal plans because it can introduce ε-actions which do not contribute to the
plan length. In order to minimize ∣π∣ we can maximize the number of active ε-actions
at the layer l where a plan was found. Such an optimization will yield an optimal plan
at layer l, which we call a depth-optimal plan, but not necessarily a globally optimal
plan: A different choice of methods which require a larger depth to be fully expanded
may be able to induce a higher number of ε-actions. Hence, we may find an even
shorter plan by admitting a deeper hierarchy [BHB19b]. In our plan improvement, we
construct a depth-optimal plan but no globally optimal plan.

Let us reiterate the plan improvement approach of Tree-REX [Sch+19b]:

(i) After finding an initial plan π0 at layer Ll′ , all positions at Ll′ are permanently
enforced to be primitive by adding Eq. 6.10 as unit clauses instead of assumptions.

(ii) We encode further variables and clauses to count the length of a plan in such a
way that specific assumptions can restrict the plan length for a single solver call.

(iii) Beginning with i = 0, we add assumptions to forbid any plan length k g ∣πi∣ and
call the SAT solver again. In case of satisfiability, we decode the new plan πi+1,
count its new length ∣πi+1∣ < ∣πi∣, and repeat (iii) for incremented i. In case of
unsatisfiability we return πi which proved to be depth-optimal.

This procedure belongs to a broad class of optimization approaches which feature
the decision problem “Is there a solution of cost f k?” for a sequence of different
k. This class of approaches has been studied by Rintanen [Rin04] for scheduling
SAT-based planning, was generalized by Streeter and Smith [SS07], and has been
used in SAT-based HTN planning in different contexts [Sch18; BHB19b]. The above
strategy of monotonically decreasing k is appealing because it produces a series of
constructive SAT results concluded by a single UNSAT result. As such, an improved
plan can be decoded from every intermediate result. In addition, a plan of length
k′ < k may be found which allows to skip tests for the intermediate values.

154

6.6 Evaluation

We adapted and improved the Tree-REX plan improvement for Lilotane. More
specifically, we encode a mechanism which counts the number of positions where
a normal action, i.e., an action other than aε, is active. We then successively add
constraints of the form ∣πi∣ ≠ k as unit clauses rather than assumptions: SAT solvers
can perform more simplification once a unit constraint is known to be permanent [NR12;
FBS19a]. We refer to our article [Sch21d] for details on the encoding.

6.6 Evaluation

In the following, we discuss an experimental evaluation of Lilotane. Our software
and experimental data are available online (see Appendix A).

6.6.1 Implementation

We have implemented our approach in C++17. We use pandaPIparser [Beh+20] for
parsing and performing light preprocessing of input files in the HDDL (Hierarchical
Domain Description Language) format [Höl+20a]. We used the interface called IPASIR
(Section 2.2.6.a) to link our software with any SAT solver supporting this interface.
We linked Lilotane with the popular incremental solver Glucose [AS09] for all
evaluations in this chapter.5

6.6.2 Lilotane as a SAT-Based HTN Planner

First and foremost, we compare our planner to previous SAT-based HTN planners.6

We included the up-to-date version of Lilotane; a quality-aware variant LilotaneQ
which finds a depth-optimal plan at the layer where the initial plan was found;
Tree-REX without plan improvement; TOHTN planner PANDA-totSAT [BHB18];
and optimal HTN planner PANDA-SAT-OPT [BHB19b]. We use PANDA with its
default SAT solver CryptoMiniSAT [SNC09] and use the configuration sat-exists-

forbidden-implication and search strategy BIN for the optimal variant.
We used all twelve HTN benchmark domains for which equivalent formulations

for all planners’ input formats exist (see [Sch+19b]). Due to technical limitations
we cannot compare the plans output by Tree-REX and by Lilotane in a fair
manner, which is why we did not include a plan improving variant of Tree-REX.
We fixed some notable issues with the grounding backend of Tree-REX to ensure a
fair comparison; see our article [Sch21d] for details. We set a timeout of 300 s and a
memory limit of 8GB. We used a desktop PC running Ubuntu 18.04 with a quad-core
Intel i7-6700 processor clocked at 3.40GHz with 32GB of RAM.

5We later observed moderately improved performance [Sch21b] using CaDiCaL [Bie17] instead of
Glucose. We use this improved setup in Chapter 7.

6Note that the state of the art in TOHTN planning has progressed since we performed this
experimental evaluation in 2020/21. In Section 8.2 we briefly discuss Lilotane’s impact and
current role regarding the state of the art.

155

6 Lifted Hierarchical Planning: A Case Study in Applied SAT

10−2 10−1 100 101 102

Running time t [s]

0

50

100

150

200
#

in
st
a
n
ce
s
so
lv
ed

in
≤

t
s

Lilotane

LilotaneQ

Tree-REX

PANDA-totSAT

PANDA-SAT-OPT

Figure 6.9: Running times of PANDA-SAT, Tree-REX, and Lilotane.
Note the logarithmic scale along the x axis.

6.6.2.a Overview

Fig. 6.9 provides an overview of running times. PANDA-SAT-OPT found an optimal
plan on 64 out of 242 instances and found some plan on 193 instances (not pic-
tured). PANDA-totSAT solved 200 instances, Tree-REX solved 230 instances and
Lilotane solved 232 instances. The quality-aware variant LilotaneQ completed plan
improvement on 221 instances, including 189 instances for which PANDA-SAT-OPT

found some plan. Among these 189 instances, LilotaneQ found a shorter plan in 89
cases and matched the plan length of PANDA-SAT-OPT otherwise. In particular,
LilotaneQ found an optimal plan wherever PANDA found an optimal plan.

More detailed comparisons are shown in Fig. 6.10. Each point (x, y) corresponds
to an instance. For points along the diagonal y = x both approaches performed equally
well. For points on the i-th diagonal above (below) the central diagonal, Lilotane
performed better (worse) by i orders of magnitude.

In the left graphs, raw solving times are compared. Both PANDA and Tree-REX

incur a considerable amount of overhead which leads to a large relative difference in
running times at the bottom left, i.e., for easier instances. This gap is much more
pronounced for PANDA which has a quite slow preprocessing [Beh+20].

218/242 problems (90.0%) have been resolved by both Lilotane and Tree-REX,
and 197 problems (81.4%) have been resolved by both Lilotane and PANDA. Among
the instances solved by both, on 98.2% (68.4% / 7.3%) Lilotane outperformed
Tree-REX (by more than one / two orders of magnitude). On 99.5% (97.5% /
59.9% / 5.1%) Lilotane outperformed PANDA (by more than one / two / three
orders of magnitude). Satellite is the only domain where Lilotane is slower than
Tree-REX for multiple instances. This domain heavily features recursive subtask
relationships which can be simplified by the grounding of Tree-REX.

156

6.6 Evaluation

10−2 10−1 100 101 102

10−2

10−1

100

101

102

R
u
n
n
in
g
ti
m
e
o
f
T
r
e
e
-
R
E
X

[s
]

10−2 10−1 100 101 102

Running time of Lilotane [s]

10−2

10−1

100

101

102

R
u
n
n
in
g
ti
m
e
of

P
A
N
D
A

[s
]

103 104 105 106 107

103

104

105

106

107

C
la
u
s
e
s
o
f
T
r
e
e
-
R
E
X

103 104 105 106 107

Clauses of Lilotane

103

104

105

106

107

C
la
u
s
e
s
o
f
P
A
N
D
A

Barman

Elevator

Rover

Blocksworld

Entertainment

Satellite

Childsnack

Gripper

Transport

Depots

Hiking

Zenotravel

Figure 6.10: Log-log run times (left) and encoded clauses (right) of Lilotane vs.
Tree-REX (top) and vs. PANDA-totSAT (bottom).

6.6.2.b Encoding Properties

In the right graphs in Fig. 6.10, the number of encoded clauses is compared, providing
more insight into the relative quality of our encoding while implementation-dependent
performance differences are excluded. For some domains, the respective set of points
resembles a line of slope m > 1 in log-log scale, which indicates a polynomial fac-
tor in encoding size as the problem size increases. This effect is visible for the
domains Childsnack, Depots and Zenotravel in comparison to Tree-REX and for
Childsnack, Transport and Gripper in comparison to PANDA, which confirms our
claim that grounding can lead to a severe blowup in problem size (Section 6.2.2).

157

6 Lifted Hierarchical Planning: A Case Study in Applied SAT

Figure 6.11: Distribution over different clause categories per domain in the
Tree-REX and Lilotane encodings.

For instance, the methods decomposing each initial task of Childsnack have four free
arguments. Each of these arguments has O(n) possible values where n defines the
problem difficulty. For each initial task, Tree-REX instantiates O(n4) reductions
whereas Lilotane instantiates O(1) reductions. Both instantiate O(n) facts.

We do not observe any exponential differences in encoding size. In the Childsnack
domain in particular, the problem hierarchy has a constant depth of two, hence the
described blowup in the number of child operations occurs only once before the problem
is solved. More generally speaking, most domains do not have a hierarchy which
expands indefinitely with respect to the density of operations (as assumed in our worst
case analysis in Section 5.5) but instead become quite simple after few layers.

Entertainment is the only domain for which the Lilotane encoding is consistently
larger—by up a factor of 50. For these instances, the grounding procedures of
Tree-REX and PANDA prune large parts of search space before encoding them.
Our algorithm prunes these parts retroactively when they turn out to be impossible
to achieve, after the clauses were already added. The shown results indicate that our
lifted approach may be at a disadvantage in cases where the ground problem becomes
substantially smaller and simpler than the lifted representation.

We visualized the relative occurrence of different kinds of clauses in Fig. 6.11. In the
Tree-REX encoding, substantially more operations are encoded due to full grounding,
hence at-most-one constraints over operations are the most expensive category of
clauses followed by reduction constraints (i.e. non-primitiveness and preconditions)
and expansion constraints. In the Lilotane encoding, it is the frame axioms which
consistently make up large parts of the encoding, which is why we split them into direct

158

6.6 Evaluation

frame axioms (Eq. 6.14) and indirect frame axioms (Eq. 6.15). Pseudo-fact semantics
are the next most costly clauses, followed only then by reduction constraints (which
also include constraints of substitutions, Eq. 6.22–6.23). Simply put, for Tree-REX

the encoding of operations is the main bottleneck and for Lilotane the encoding
of (pseudo-)facts is the main bottleneck. For Entertainment, while no single clause
category is alone responsible for Lilotane’s much larger encodings, we do see a
relatively high ratio of reduction constraints. Tree-REX encodes Entertainment
problems with the lowest ratio of at-most-one constraints throughout all domains,
implying a vastly simplified task network. This confirms that Lilotane encodes a
much larger problem as it has no access to valuable information gained from grounding.

We provide some further material in Appendix F. Notable insights include that
Lilotane produces longer clauses than PANDA-totSAT (3.15 vs. 2.5 literals on
average), only uses a fraction of the memory required by the other planners, and is
able to spend more than 85% of its time on SAT solving (<40% for the other planners).

6.6.3 International Planning Competition 2020

We now discuss the International Planning Competition (IPC) 2020 [BHB21] and the
performance of Lilotane in this competitive event.

The IPC was run on an exceptionally large and difficult set of benchmarks for
HTN planning (see Table 9.3, Appendix F). The benchmarks have confirmed our
assumption that the maximum arity of predicates is a small constant (four in the IPC’s
Entertainment domain and at most three everywhere else) and is mostly smaller but
never larger than the maximum arity of actions and reductions.

Planners were rated according to the following metric: If a planner solves an instance
within one second, a score of 1 is attributed. If a planner solves an instance within
1 < t f T seconds (where T = 30 min is the time limit), a score of 1 − log(t)/ log(T)
is attributed [BHB21]. This so-called agile metric favors planners which find plans
very quickly over slower but more robust planners: If a planner solves five instances
in 2 seconds while not solving five other instances, it is attributed a score of around
5 ⋅ 0.91 = 4.55. If a planner solves each of the ten instances in two minutes, it is
attributed a score of around 10 ⋅ 0.36 = 3.6. Furthermore, plan quality is ignored.

The competition consisted of two tracks: Total Order and Partial Order. Six
planners were submitted to the Total Order track while only three planners were
submitted to the Partial Order track (one of which was disqualified). Among these six
planners are a preliminary version of Lilotane, the lifted progression search planner
HyperTensioN, the ground progression search planner PDDL4J in a Total Order
and a Partial Order version, the lifted progression search planner SIADEX, and the
plan-space planner pyHiPOP. All are described in the IPC proceedings [BHB21].

6.6.3.a Results

Tab. 6.1 shows the results of the IPC. In addition to the IPC score explained
above, we include the coverage metric which counts the number of solved instances.

159

6 Lifted Hierarchical Planning: A Case Study in Applied SAT

HyperT. Lilotane P4JTO P4JPO SIADEX pyHiPOP

Domain NC IPC NC IPC NC IPC NC IPC NC IPC NC IPC

AssemblyHierarchical 0.10 0.08 0.17 0.12 0.07 0.06 0.07 0.06 0.00 0.00 0.03 0.02

Barman-BDI 1.00 1.00 0.80 0.74 0.55 0.48 0.55 0.49 1.00 0.92 0.00 0.00

Blocksworld-GTOHP 0.53 0.43 0.77 0.64 0.53 0.41 0.57 0.43 0.47 0.35 0.03 0.01

Blocksworld-HPDDL 1.00 0.89 0.03 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Childsnack 1.00 1.00 0.97 0.87 0.70 0.46 0.70 0.47 0.73 0.50 0.00 0.00

Depots 0.80 0.76 0.80 0.73 0.77 0.57 0.77 0.60 0.73 0.70 0.00 0.00

Elevator-Learned 1.00 1.00 1.00 0.78 0.01 0.01 0.01 0.01 0.07 0.07 0.01 0.01

Entertainment 0.00 0.00 0.42 0.14 0.42 0.19 0.25 0.27 0.00 0.00 0.08 0.07

Factories-simple 0.15 0.14 0.20 0.19 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.01

Freecell-Learned 0.00 0.00 0.15 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Hiking 0.83 0.83 0.73 0.60 0.57 0.32 0.50 0.39 0.00 0.00 0.00 0.00

Logistics-Learned 0.28 0.26 0.55 0.32 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Minecraft-Regular 0.98 0.88 0.54 0.35 0.39 0.32 0.39 0.32 0.59 0.33 0.00 0.00

Minecraft-Player 0.25 0.25 0.05 0.03 0.05 0.03 0.05 0.03 0.15 0.13 0.00 0.00

Monroe-Fully-Obs. 0.00 0.00 1.00 0.78 1.00 0.49 1.00 0.58 0.50 0.27 0.00 0.00

Monroe-Partially-Obs. 0.00 0.00 1.00 0.73 0.05 0.03 0.05 0.03 0.00 0.00 0.00 0.00

Multiarm-Blocksworld 0.11 0.11 0.05 0.03 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00

Robot 1.00 0.96 0.55 0.52 0.30 0.27 0.30 0.27 0.00 0.00 0.05 0.05

Rover-GTOHP 1.00 0.92 0.77 0.55 1.00 0.60 0.87 0.65 1.00 0.77 0.20 0.14

Satellite-GTOHP 1.00 1.00 0.75 0.59 1.00 0.44 0.50 0.73 0.00 0.00 0.35 0.19

Snake 1.00 1.00 0.90 0.74 1.00 0.71 1.00 0.71 0.35 0.29 0.10 0.03

Towers 0.85 0.77 0.50 0.39 0.80 0.58 0.75 0.61 0.55 0.47 0.10 0.09

Transport 1.00 1.00 0.88 0.76 0.85 0.65 0.82 0.71 0.03 0.03 0.45 0.23

Woodworking 0.23 0.23 1.00 0.98 0.20 0.17 0.20 0.17 0.10 0.10 0.13 0.09

Total rel. score 14.12 13.51 14.57 11.60 10.25 7.47 9.35 6.36 6.29 4.93 1.60 0.94

Table 6.1: IPC results. NC = normalized coverage, IPC = agile runtime score
(higher is better). Best scores per line are printed in bold for each metric.

As each run was repeated ten times, we count an instance as solved if it was solved in
any of the runs. We normalized both kinds of scores per domain by the number of
instances in the domain (e.g., a normalized coverage score of 0.6 means that 60% of
all instances within the domain were solved).

Regarding IPC scores, which decided the official ranking, Lilotane scored sec-
ond, behind HyperTensioN by a decent margin. All further competitors scored
significantly lower. Notably, Lilotane outperformed ground approach PDDL4J

on all but four domains (Entertainment, Minecraft-Player, Rover, and Towers).
HyperTensioN scored best on 15/24 domains and Lilotane scored best on 8/24
domains, leaving only one domain where PDDL4J scored best. Lilotane’s weakest
domains are Blocksworld-HPDDL, Minecraft-Player, and Multiarm-Blocksworld.
Each of these domains leads to deep and large task networks which favor progression
search planners over planners such as Lilotane which are required to instantiate the
entire hierarchy with all alternatives up to the layer where a plan can be found. By
contrast, our planner excels on the domains Monroe [BA05; Höl+18] and Woodworking

(manufacturing and processing tasks with many arguments per operator and method).

160

6.6 Evaluation

Lilotane solved three more instances (548) than HyperTensioN (545) and
scored slightly better. Yet, Lilotane solved 14 of these instances only in some of
the runs, while HyperTensioN solved each instance consistently with one exception.
Overall, while the agile score benefits the very fast execution times of HyperTensioN,
Lilotane performed similarly to HyperTensioN in terms of robustness and, unlike
HyperTensioN, was able to solve some instance(s) on every single domain.

6.6.4 Follow-Up Evaluation

We now present our own evaluation based on IPC benchmarks. First, we improved
Lilotane in various aspects after the submission deadline of the IPC.7 Secondly, as
solution quality did not matter in the IPC, we also want to evaluate the quality of our
approach with and without plan improvement on a large set of benchmarks.

As PDDL4J, SIADEX, and pyHiPOP were mostly dominated regarding both
IPC scores and coverage, we do not include them in the following evaluations. We do
include the winner HyperTensioN [MMdS21] and different versions of Lilotane:
(i) Prelilotane (the preliminary version submitted to the IPC), (ii) Lilotane

(the up-to-date version without quality awareness), (iii) LilotaneQ (a quality-aware
configuration which finds the depth-optimal plan at the layer where a plan is found),
and (iv) LilotaneQ+ (a configuration which instantiates one extra layer after finding
an initial plan and then finds the depth-optimal plan). For approaches (iii) and (iv),
unfinished runs where some plan was output are considered unsolved.

The evaluations were conducted on an server with an AMD EPYC 7702P 64-Core
processor (plus hyperthreading) clocked between 2.0 and 3.35 GHz with 1024 GB of
DDR4 RAM, running Ubuntu 20.04. We executed up to 63 runs in parallel and set a
time limit of 30 minutes and a memory limit of 8GB as in the IPC.

6.6.4.a Overview

A first overview of the results is provided in Fig. 6.12. HyperTensioN solved
539 out of 892 instances (60.4%) and Prelilotane solved 529 instances (59.3%).
The lower coverages compared to the IPC data can be explained by (a) different
hardware and (b) the fact that we performed only one run for each competitor-instance
combination. HyperTensioN retains its status being fastest on the majority of
benchmarks. However, up-to-date Lilotane solved 558 instances (62.6%) making it
more robust in the long run. LilotaneQ finished plan improvement on 523 instances
and LilotaneQ+ finished on 496 instances. In other words, the quality-aware
configurations of Lilotane found a depth-optimal plan at the first solvable layer on
93.7% of the solved instances and a depth-optimal plan at the subsequent layer on
88.9%. We provide some more details in Appendix F, Fig. 9.3–9.4 and Tab. 9.4.

7Note that we integrated each of these improvements before gaining access to the IPC benchmarks

and only applied bugfixes thereafter. No fine-tuning with respect to the benchmarks was done.

161

6 Lifted Hierarchical Planning: A Case Study in Applied SAT

10−1 100 101 102 103

Running time t [s]

0

100

200

300

400

500

#
in
st
an

ce
s
so
lv
ed

in
≤

t
s

101 102 103 104

Plan length x

0

100

200

300

400

500

#
in
st
a
n
ce
s
w
it
h
|π
|
≤

x

Lilotane

HyperTensioN

Prelilotane

LilotaneQ

LilotaneQ+

Figure 6.12: CDFs for running times and found plan lengths of HyperTensioN

and Lilotane. Note the logarithmic scale along the x axis.

Domain # HyperTensioN Prelilotane Lilotane LilotaneQ LilotaneQ+

AssemblyHierarchical 3 0.80 1.00 1.00 1.00 1.00

Barman-BDI 16 0.55 0.64 0.63 0.92 1.00

Blocksworld-GTOHP 16 0.87 0.89 0.92 1.00 1.00

Blocksworld-HPDDL 1 0.91 1.00 1.00 1.00 1.00

Childsnack 29 1.00 1.00 1.00 1.00 1.00

Depots 23 1.00 0.96 0.97 1.00 1.00

Elevator-Learned 144 0.35 0.83 0.83 1.00 0.98

Factories-simple 3 0.58 0.62 0.67 1.00 1.00

Hiking 21 0.98 0.96 0.96 1.00 1.00

Logistics-Learned 22 0.78 0.72 0.71 1.00 1.00

Minecraft-Player 1 1.00 0.85 0.74 1.00 1.00

Minecraft-Regular 28 1.00 0.85 0.87 1.00 1.00

Multiarm-Blocksworld 4 0.91 0.82 0.85 1.00 1.00

Robot 11 0.51 1.00 1.00 1.00 1.00

Rover-GTOHP 20 0.51 0.69 0.69 0.99 0.96

Satellite-GTOHP 13 0.50 0.58 0.60 1.00 0.99

Snake 17 0.28 0.92 0.89 1.00 1.00

Towers 9 1.00 1.00 1.00 1.00 1.00

Transport 33 0.73 0.75 0.74 1.00 0.99

Woodworking 7 0.94 0.93 0.95 0.98 0.98

Total 421 15.20 17.01 17.02 19.89 19.90

Table 6.2: Normalized plan length scores over all IPC instances for which
HyperTensioN and all configurations of Lilotane found some plan.

162

6.7 Conclusion

6.6.4.b Plan Quality

In terms of coverage and plan quality, Lilotane outperforms HyperTensioN (see
Fig. 6.12 right). The plans output by HyperTensioN are longer than the plans found
by Lilotane even without employing plan improvement. This is because Lilotane

always finds a plan at the smallest depth possible, which strongly correlates with the
potential length of plans. By contrast, HyperTensioN performs depth-first search
and hence traverses search space more greedily [MMdS21], resulting in larger plans.

Table 6.2 provides more insights into the approaches’ plan quality. We use satisficing
IPC scores [Col+12]: If π is the shortest plan found by an algorithm for an instance,
a score of ∣π∣∗/∣π∣ is attributed where π∗ is some reference plan. In our case, π∗ is
the best plan found by any of the competitors for this instance. To exclude coverage
results, we only considered the instances for which each competitor found some (not
necessarily final) plan. For each competitor we summed up the scores within a domain
and then normalized the result by the number of solved instances in that domain.

Computed over all 421 such instances, all configurations of Lilotane outperform
HyperTensioN with respect to this metric. Since none of the used post-IPC im-
provements impact plan lengths, Prelilotane and Lilotane achieve very similar
results. LilotaneQ improves upon Lilotane’s score by almost three points. The
degree of improvement heavily depends on the domain model. For instance, choosing
different trucks and/or construction locations in Factories can lead to high variations
in plan length, which makes the domain well-suited for evaluating quality-aware plan-
ning [SS21c]. Other domains such as Childsnack or Towers feature a rigid hierarchy
and leave no room for plan improvement. LilotaneQ+ improves on LilotaneQ’s
final plan lengths only on 17 instances from six domains. Barman-BDI is the only
domain where this improvement is reflected in the scores. LilotaneQ+ occasionally
scores lower than LilotaneQ since plan improvement on the first solvable layer can
be much easier to perform than on the subsequent layer. Among all IPC instances,
LilotaneQ+ finished on 477 instances without any improvement over LilotaneQ.
This indicates that depth-optimal plans found at the first solvable layer can rarely
be improved any further when the hierarchy is extended by another layer. We ex-
pect improvements to further diminish if we instantiate even more layers. As such,
LilotaneQ in particular appears to strike a good balance between high plan quality
and low running times and often results in optimal or near-optimal plans.

6.7 Conclusion

We have presented an approach of grounding-free SAT-based TOHTN planning mo-
tivated by the combinatorial blowup which grounding can induce. To process the
lifted problem representation as is, we proposed a lazy instantiation approach cou-
pled with a reachability analysis and the introduction of non-committal pseudo-
constants whenever free method arguments are encountered. We presented an accord-
ing SAT encoding designed for incremental SAT solving and showed its correctness.

163

6 Lifted Hierarchical Planning: A Case Study in Applied SAT

We performed a worst-case analysis where we found that our encoding is exponential
along fewer dimensions than the prior Tree-REX encoding but introduces more
complex logic related to the facts in the problem. We enhanced an existing plan
improvement procedure to make Lilotane quality-aware.

Our evaluations suggest that Lilotane outperforms prior SAT-based TOHTN
approaches and produces the smallest SAT encodings among these approaches. In
comparison with the arguably best prior TOHTN planner, HyperTensioN, Lilotane
is more robust if sufficient time is available but often takes more time than the more
lightweight greedy progression search planner. Still, investing additional time to solve
an instance with Lilotane is worthwhile because the found plans are of high quality,
even without any explicit plan improvement. As such, we consider HyperTensioN

and Lilotane to correspond to two different points on the Pareto frontier between
speed, robustness, and quality.

As we have seen in our evaluations, there are planning domains where grounding is
very beneficial while on some other domains it is next to infeasible. We believe that our
reachability analysis can be improved further by computing a better approximation of
the possible fact changes an operation may effect. This could lead to earlier and more
effective pruning of irrelevant operations and may render Lilotane more competitive
regarding the domains where grounding is highly effective. Nikolai Schnell [Sch21b]
was able to make some initial progress in this direction. Nonetheless, it remains an
open question whether the “best of both worlds” can be achieved by creating an
efficient instantiation approach which keeps the problem lifted but effectively performs
the same a priori pruning that is achieved by high quality grounding. Orthogonally,
we have begun to investigate parallel portfolios of TOHTN planners which execute
lifted and ground approaches in parallel [BWS22].

164

7
Chapter 7

Distributed Incremental SAT
Solving for Hierarchical Planning

We conclude the contributions of this thesis with a liaison of our SAT-based
TOHTN planning approach and our work on decentralized job scheduling
and scalable SAT solving. Based on prior experimental results, we analyze
the potential of parallelizing the SAT backend of our planning application.
We propose a low-latency interface for incremental jobs and specifically for
IPASIR-style incremental SAT solving to our decentralized SAT processing
platform Mallob. Moreover, we suggest to process many independent
planning instances in parallel, making use of Mallob’s malleable job
scheduling. In an experiment where 587 TOHTN planning problems are
resolved in parallel on 2348 cores, we find that our measures to minimize
overhead in our interface are crucial for achieving speedups. Thanks to the
rapid scheduling and resizing of problems, we observe noticeable speedups
for several planning domains where SAT solving constitutes a major part
of Lilotane’s running times. As such, our findings indicate that our work
may be useful for a wide range of SAT applications in the future.

Author’s Notes. This chapter features previously unpublished content. A preliminary
form of the parallelization approach I present in this chapter was featured before in a
student research project by Colin Bretl and Niko Wilhelm [BWS22]. I provided the
idea for this approach and implemented and evaluated it in the scope of this chapter.

7.1 Introduction

In the earlier chapters of this thesis, we have explored how distributed environments can
be exploited effectively for SAT solving—both with (massively) parallel SAT solving
(Chapter 4) and by processing many tasks in parallel (Chapter 3). We have also seen
how a specific application, TOHTN planning, can profit from a novel SAT encoding
approach which omits a central stage of prior SAT-based approaches (Chapter 6). In
this chapter, we extend this case study to distributed environments by connecting
it to our distributed SAT processing framework. This endeavor serves two purposes.
First, we specifically explore a possible avenue to parallelizing TOHTN planning—a
challenging problem due to the 2-EXPTIME-hard nature of TOHTN planning [ABA15].
Secondly, we evaluate and improve the practical merit of our distributed platform
from an application perspective and thus provide an outlook on how applications of
incremental SAT solving may profit from our work in the future.

165

7 Distributed Incremental SAT Solving for Hierarchical Planning

We first analyze the data gathered in our earlier evaluation (Section 6.6) and
investigate requirements for an effective parallelization of Lilotane’s SAT solving
backend. We conclude that an incremental job interface with very low latencies is
needed to account for the many trivial SAT calls made by applications like Lilotane.
We then enhance Mallob by such a low-latency interface for incremental jobs and
extend MallobSat to support incremental SAT solving. We conduct an experiment
where we use a single large-scale run of Mallob to process many planning tasks at
the same time. We observe noticeable speedups on the planning problems on which
our planning approach makes sufficiently difficult SAT calls.

This chapter is structured as follows. We present a brief requirement analysis in
Section 7.2; we describe our approach in Section 7.3; we present experimental results
in Section 7.4; and we conclude the chapter in Section 7.5.

7.2 Requirement Analysis

In the following, we analyze the data gathered in earlier evaluations of Lilotane with
respect to the opportunities and challenges of parallelizing its SAT solving calls.

During planning, each SAT solving call of Lilotane corresponds to one hierar-
chical layer of the problem (see Section 6.3.1). As such, Lilotane emits a series of
unsatisfiable problems until it reaches a layer where a plan can be found and the
encoding is satisfiable. Since different domains result in task networks of varying
depth, this number of calls varies significantly across domains. For the median IPC
2020 instance, Lilotane makes ten SAT solving calls. Instances from the Childsnack
domain, which feature a shallow and fixed hierarchy, always result in three calls. The
other extreme is the Towers domain at 120.6 calls on average.

In terms of the total time which Lilotane spent on successfully solved instances
from the IPC 2020 benchmarks, around 78% was spent on SAT solving itself. On the
other hand, considering the median instance, only 9.5% of time was spent on SAT
solving. Fig. 7.1 (left) shows this ratio for every IPC instance solved by Lilotane.
We found a weak to moderate correlation between an instance’s running time and
the ratio of time spent on SAT solving (Pearson’s r = 0.497). Such a correlation is
desirable since difficult instances with long running times bear the highest potential for
meaningful speedups. On 75% of instances which take at least 20 s to solve, Lilotane
spends the majority of time on SAT solving. The same holds for 80% of the instances
which take at least 100 s to solve. From a domain-dependent view, only two domains
(Logistics and Assembly) feature such a SAT solving ratio larger than 50% for the
median instance. Eight domains do not feature a single instance where this ratio
even exceeds 10%. As such, the effectiveness of a parallelization of Lilotane’s SAT
backend will be highly domain-dependent. For fully scalable TOHTN planning across
the entire range of available domains, Lilotane’s instantiation and encoding approach
would need to be parallelized as well, which we do not consider in this work.

Another point to consider is that the time Lilotane spends on SAT solving is split
into thousands of individual SAT calls, many of which are made in rapid succession

166

7.3 Approach

10−2 10−1 100 101 102 103

Running time [s]

0.0

0.2

0.4

0.6

0.8

1.0

R
at
io

of
ti
m
e
sp
en
t
o
n
S
A
T

10−3 10−2 10−1 100 101 102 103

Running time x [s]

0.7

0.8

0.9

1.0

P
r
[S
A
T

ca
ll
ta
ke
s
≤

x
s]

Figure 7.1: Analysis of Lilotane on IPC 2020 instances (see Section 6.6.4). Left:
Ratio of time spent on SAT solving for solved instances. Right: CDF for the
duration of individual SAT calls on solved instances (note the offset of the y axis).
Both x axes are scaled logarithmically.

and only few of which actually prove to be non-trivial. Fig. 7.1 (right) shows that
two thirds of all SAT calls take less than a millisecond and more than 95% of SAT
calls take less than a second. Therefore, in order to achieve good average speedups
with a parallel SAT solving backend, it is crucial to carefully engineer an efficient
interface with low turnaround times for individual SAT calls. Parallelization should
be performed in a cautious manner—only investing work in scaling up a SAT call
if it proves to be non-trivial. The job model of Mallob is specifically designed for
these criteria, offering low-latency scheduling of incoming jobs and a flexible amount
of parallelization based on the system state and a job’s perceived difficulty.

7.3 Approach

In the following, we describe how we extended Mallob to support incremental (SAT)
jobs and how we designed the interface between a Mallob process and an application.

7.3.1 Incremental Jobs in Mallob

The interface of Lilotane expects an incremental SAT solver. It is possible to
simulate an incremental SAT solving interface with a non-incremental solver by
adding assumptions as permanent unit clauses and by in turn starting a completely
new solver instance for each increment [NR12]. However, our requirement analysis
suggests that our application relies on very low response times for decent performance.

167

7 Distributed Incremental SAT Solving for Hierarchical Planning

File system

IPASIR
solver

Application

IPASIR

bridge

Mallob

IPASIR

bridge

Mallob

IPASIR

bridge

Mallob

Mallob

Application

Application

Application

Figure 7.2: Incremental SAT application interface. Left: conventional IPASIR
interface with direct linkage of the application code to SAT solver code. Right:
our approach. The application is linked with bridge code, which communicates
with a running instance of Mallob via the local machine’s file system and via
inter-process communication (IPC).

For this reason and also to allow a plethora of further applications of incremental SAT
solving [AHL08; Liu+16; GB17; KBS19; Sur+22] to use our system, we implemented
a “native” pipeline for processing incremental jobs to Mallob.

We model a simple protocol for incremental jobs in Mallob as follows: A job
can have multiple revisions (which correspond to the increments of incremental SAT
solving) indexed by r = 0,1, Each revision r adds a certain payload Pr to the
job and can be submitted as soon as the previous revision r − 1 has finished (or was
cancelled).1 In Mallob, the root worker of an incremental job is present and active
from the scheduling of revision 0 until the conclusion of the final revision. Any further
workers of the job are suspended whenever revision r − 1 is done and revision r is not
present yet. Revision payloads are transferred to workers down the job tree just like
usual job descriptions, with the constraint that a worker can only begin to process
revision r after all payloads P0, . . . , Pr have arrived at this worker.

Fig. 7.2 illustrates our technical setup for incremental SAT solving specifically.
We emulate the interface IPASIR (Section 2.2.6.a) for the application side and thus
provide a drop-in replacement for sequential IPASIR solvers. On a technical level,
an application process communicates with Mallob by writing a small (JSON) file,
describing the job, to a certain directory watched by a local Mallob process. The
job description itself is then transferred from the application process to the Mallob

process via inter-process communication (IPC). The application process then waits for
the Mallob process to transfer back a result. We use named (UNIX) pipes for inter-
process communication to ensure fast transfer of large amounts of data (i.e., formulas
and satisfying assignments). We use the Linux subsystem inotify for watching files
in a directory, which allows Mallob to react to incoming jobs immediately.

1We have considered an extension to this model where multiple increments of a job can be solved in

parallel. This extended protocol is still in an early experimental stage.

168

7.4 Evaluation

7.3.2 Incremental SAT Solving Engine

In order to prepare MallobSat (Chapter 4) for incremental SAT solving, we restrict
our portfolio to CaDiCaL and Lingeling which both natively support incremental
SAT solving. We perform clause sharing just like for non-incremental solving. The
only SAT-specific invariant we need to maintain is that a solver never imports any
clauses from a future revision r′ > r with respect to its own current revision r. We
achieve this by marking each contribution to a clause buffer with the current revision
of the exporting SAT process. When aggregating buffers, the maximum revision that
is present is propagated and is then broadcast together with the final buffer.

7.3.3 Reducing Revision Turnaround Times

Our analyses of Lilotane’s behavior on IPC instances showed that low latencies of
individual SAT solving calls are crucial for its performance. We made a few small
modifications to Mallob to account for this requirement and to minimize the average
turnaround time of a trivial SAT call.

First, we remove large parts of the initial scheduling latency of a job for subsequent
revisions by preserving the root worker of each job across revisions. To introduce a
new revision for a job, only a single message (featuring the new revision payload) must
be sent to this root worker. Additional workers are then allocated as usual by emitting
a balancing event, computing new fair job volumes, and emitting job request messages
(see Section 3.4). Secondly, Mallob’s main thread usually checks the status of a job
every 10ms. This interval is now set to 1ms whenever a new worker is scheduled on
the process and then increases successively until it reaches 10ms. Thirdly, we reduced
the latency of a SAT solving process reporting a trivial result by letting Mallob’s
main thread read and parcel small job results itself immediately instead of always
running a separate background worker for this task.

7.4 Evaluation

We now turn to the experimental evaluation of our approach. Our software and
experimental data are available online (see Appendix A). We run all experiments on
SuperMUC-NG (see Section 3.6.1), using GCC11.2 and Intel MPI 2019.12.

As a sequential baseline, we run Lilotane on the IPC 2020 benchmarks. We
changed Lilotane’s backend solver from Glucose to CaDiCaL since the latter
proved to result in overall better performance [Sch21b].

We refer to our approach as Mallotane [BWS22]—a portmanteau of Mallob

and Lilotane. We use a subset of the IPC 2020 benchmarks, filtering out two kinds
of instances based on our sequential baseline: (a) instances where Lilotane exceeded
the main memory limit of 8GB, and (b) instances where the time spent on SAT solving
accounts for less than 0.1% of the total running time. 34.2% of all instances match these
criteria, leaving 587 instances for our experiment. Evidently, to improve performance
on the filtered instances, more invasive changes to Lilotane itself would be in order.

169

7 Distributed Incremental SAT Solving for Hierarchical Planning

Note that the remaining benchmark set still features instances from several domains
where the amount of time spent on SAT solving is negligible, therefore allowing us to
analyze the worst-case behavior of Mallotane.

We construct a similar scenario as in the Massively Parallel Processing of SAT Jobs
(Section 4.6.6): We allocate a fixed amount of computational resources and attempt
to resolve as many problems as possible within a given time frame. Since we only
parallelize parts of our planning procedure, we decided to set up our experiment in
such a way that each planner instance initially receives very few resources (four cores)
and then successively scales up to 30-40 cores given that the task is sufficiently difficult.
Specifically, we configure each job to grow by another job tree layer every 0.5 seconds:
We initialize job demand dj (the desired number of processes, see Section 3.3) to 1 at
the arrival of j and update dj ∶= 2 ⋅ dj + 1 every 0.5 seconds until dj has reached the
number of processes in the system.

Deploying Lilotane and Mallob at the same time on SuperMUC-NG proved to
be challenging due to the small amount of main memory available (2GB per core
or 1GB per hardware thread). Since one instance of Lilotane on average requires
considerably more memory than one SAT solver instance in our system, we decided to
deploy Lilotane and Mallob as follows:

• We allocate 4 × 587 = 2348 cores of 49 compute nodes, spawning one Mallob

process for each set of four cores.
• We configure MallobSat to only employ three solver threads per process.
• Together with each Mallob process we execute one instance of our planner,
which then communicates with theMallob process as a SAT interface. Note that
this Mallob process only introduces the corresponding job to the decentralized
scheduler—the job’s first worker may be scheduled to any Mallob process.

Note that, in order to avoid allocating additional compute nodes, we distributed the
planning problems over the compute nodes in a balanced manner based on the amount
of memory required by sequential Lilotane. In a real-world application of our system,
we would expect the application code (i.e., our planners) to be run on client machines
that are separated from Mallob’s worker processes.

7.4.1 Results

We now discuss the results of our experiment. Tab. 7.1 lists the speedups of
Mallotane over Lilotane and Fig. 7.3 shows a visual comparison of individual
running times. As expected, our setup incurs some overhead compared to a sequential
SAT solver that is compiled into the planning application. This overhead, however,
proves to be small and mostly concerns easy problems which are resolved in less than
a second. Whether Mallotane results in speedups and how high these speedups can
reach is, unsurprisingly, highly dependent on the planning domain. We observed a
median speedup greater than two for the five domains Elevator, Freecell, Logis-
tics, Minecraft-Player, and Multiarm-Blocksworld. Mallotane achieved the
highest domain-specific performance for Elevator at a median speedup of 3.4 and
also achieved the largest individual speedup (24.8) on a problem from this domain.

170

7.4 Evaluation

Domain # min. med. geom. max. total

Assembly 5 0.15 1.11 0.772 3.19 2.821

Barman 18 0.18 0.84 0.808 4.12 2.069

BlocksworldG 22 0.12 0.81 0.639 1.14 0.946

BlocksworldH 1 0.91 0.91 0.910 0.91 0.914

Childsnack 26 0.19 0.46 0.460 1.09 0.930

Depots 22 0.32 0.77 0.734 1.33 1.196

Elevator 146 0.14 3.40 3.103 24.82 9.054

Entertainment 2 0.93 0.99 0.960 0.99 0.938

Factories 4 0.16 1.75 0.839 2.06 1.835

Freecell 12 1.01 2.28 2.429 5.17 3.228

Hiking 23 0.29 0.82 0.815 2.06 1.455

Logistics 50 0.54 2.02 1.948 3.86 2.171

MinecraftP 4 0.78 2.16 1.717 2.67 2.294

MinecraftR 32 0.37 0.96 0.895 1.09 0.990

MonroeFO 19 0.58 0.91 0.899 1.14 0.949

MonroePO 19 0.83 0.94 1.014 2.68 1.058

Multiarm 4 1.02 2.20 1.649 3.17 2.869

Robot 8 0.10 0.34 0.375 1.37 1.249

Rover 24 0.12 1.89 1.528 5.85 3.477

Satellite 15 0.16 1.04 0.849 1.42 1.125

Snake 20 0.14 0.74 0.586 1.11 1.027

Towers 6 0.20 0.84 0.581 0.89 0.864

Transport 32 0.13 0.54 0.645 8.63 3.207

Woodworking 22 0.14 0.65 0.547 1.01 0.824

Table 7.1: Speedups of Mallotane over Lilotane by domain on the commonly
solved instances from the considered subset of IPC 2020 benchmarks, in terms of
minimum, median, geometric mean, maximum, and total speedup.

In addition, Mallotane is able to solve ten additional instances, specifically from the
domains Logistics (5), Assembly (2), Rover (2), and Transport (1). There are three
domains on which Mallotane never achieves any speedups, namely BlocksworldH,
Entertainment, and Towers (which together only amount to nine considered in-
stances). For a total of 15 domains, the median speedup achieved is less than one,
indicating a slowdown for the majority of instances from these domains. MinecraftR
is one of them and constitutes a good example for a domain where very little time
is required for SAT solving. On eight instances in this domain, Lilotane spent less
than 1% of its time on SAT solving with running times ranging between 12 and 89
seconds. Mallotane’s “speedups” range between 0.924 and 0.972 on these instances,
indicating an overhead between 2.8% and 7.6%.

As Fig. 7.3 shows, almost all instances which result in a considerable slowdown are
solved very quickly in terms of absolute running times. As such, while the median
speedup of Mallotane on the considered benchmark set is 1.018, its total speedup
is 2.63. In addition, we set each speedup in relation to the ratio of time (sequential)
Lilotane spent on SAT calls. Fig. 7.4 confirms that most slowdowns occur on
instances where SAT solving constitutes a small ratio of the overall running time.

171

7 Distributed Incremental SAT Solving for Hierarchical Planning

10−1 100 101 102 103

Running time of seq. Lilotane [s]

10−1

100

101

102

103
R
u
n
n
in
g
ti
m
e
of

M
a
l
l
o
t
a
n
e
[s
] Assembly

Barman

Rover

Satellite

Transport

BlocksworldH

Entertainment

Towers

Elevator

Freecell

Logistics

MinecraftP

Multiarm

Figure 7.3: Selected (log-log) running times of Lilotane vs. Mallotane, show-
ing five domains with median speedup ≥ 2 (blue), three domains where no instance
was sped up (red), and five domains with notable outliers (orange).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Ratio of time Lilotane spent on SAT calls

0.125

0.25

0.5

1

2

4

8

16

S
p
ee
d
u
p
o
f
M
a
l
l
o
t
a
n
e

Figure 7.4: Speedups of Mallotane (log. scale) relative to the ratio of time
sequential Lilotane spent on SAT calls, with y = 1 highlighted by a black line.

172

7.4 Evaluation

0 500 1000 1500

Running time t [s]

0.7

0.8

0.9

1.0

P
r
[c
a
ll
ta
ke
s
≤

t
s]

SAT

M

L

0 500 1000

Running time t [s]

0.996

0.997

0.998

0.999

1.000

P
r
[c
a
ll
ta
ke
s
≤

t
s]

UNSAT

M

L

0 0.2 0.4 0.6

Running time t [s]

0.5

0.6

0.7

0.8

0.9

1.0

P
r
[c
a
ll
ta
ke
s
≤

t
s]

UNSAT (≤ 0.6 s)

M

L

Figure 7.5: Distribution over the duration of individual SAT solving calls for
sequential Lilotane (L) and for Mallotane (M), separated into SAT and
UNSAT results, for commonly solved instances only. The y axes are offset to
allow for discerning relevant differences. Since almost all UNSAT calls are very
short, we added a separate plot only showing calls which take less than 0.6 s.

Indeed, whether or not Mallotane achieves a speedup > 1 can be predicted rather
accurately based on whether sequential Lilotane spends the majority of its time on
SAT solving. Such a classifier wrongly attributes no speedup to 41 instances with
some speedup and wrongly attributes a speedup to 4 instances with no speedup. All
remaining 491 instances are classified correctly.

On the 536 commonly solved instances, both the sequential and the parallel approach
made a total of 6181 SAT solving calls, thereof 5645 calls resulting in unsatisfiability
(“UNSAT calls”) and the remaining 536 calls resulting in satisfiability (“SAT calls”).
Fig. 7.5 shows how the duration of these calls is distributed for the sequential and the
parallel backend. With the sequential backend, 96.86% of UNSAT calls and 57.65% of
SAT calls took less than one second—confirming that the performance of our planner
crucially depends on low overhead for individual calls. The break-off point where
our Mallob backend begins to outperform the sequential backend is at 0.23 s: The
same ratio of calls (90.4%) finished within this time for both approaches. For UNSAT
calls this break-off point is at 0.28 s (95.1% of calls finished) while for SAT calls it is
already at 0.053 s (31.7% of calls finished). Still, since both satisfiable and unsatisfiable
increments can occasionally be very hard, the total speedup is comparable for SAT
calls vs. UNSAT calls (3.257 vs. 2.908) and, notably, closely matches the on average
three SAT solving threads per instance.

Fig. 7.6 illustrates how a job’s volume changes over time in our experiment. The
displayed instance from the Assembly domain requires a total of 31 SAT solving
calls and finishes within 18.4 minutes of total running time. Lilotane with a se-
quential CaDiCaL backend on this instance exceeds its time limit (30 minutes)
more than 22 minutes into its 27th SAT solving call. Mallotane solves that in-
crement 263 s after application start, taking 108 s for the SAT solving call itself.

173

7 Distributed Incremental SAT Solving for Hierarchical Planning

0 5 10 15

Running time [s]

2

4

6

8

10

12

#
w
o
rk
er
s

0 250 500 750 1000

Running time [s]

0

2

4

6

8

10

12

14

#
w
o
rk
er
s

Figure 7.6: Job volume (# workers) for a difficult Assembly instance, in the first
few seconds (left) and over the job’s entire processing time (right).

Whenever an increment is solved, the job shrinks down to a single “standby” worker
(the job’s root worker). Whenever a new revision is introduced, the job’s demand
and consequently its volume increase exponentially over time until the demand has
reached the current fair share of resources which the job is entitled to. The most
difficult increment to solve is the final unsatisfiable increment at a SAT solving time
of 501.5 seconds, after which the very final (satisfiable) increment only takes 0.6 s to
solve. In the latter half of the job’s life time, the number of cores associated with the
job mostly ranges between 39 (13 workers) and 45 (15 workers).

We can conclude from our experiments that connecting SAT-based applications
to Mallob as a service-based backend can indeed be beneficial and can result in
improved performance. Naturally, the degree of improvement heavily depends on
the amount of work the application performs apart from SAT solving. In this sense,
(SAT-based) hierarchical planning proved to be a challenging yet interesting application
to explore since the problem domains are extremely diverse in their behavior and
therefore highlight the strong points of our approach—good speedups for difficult solve
calls and improved performance via flexible rescaling of jobs—as well as its remaining
weakness, namely mild slowdowns on instances with no difficult SAT calls.

7.5 Conclusion

We explored the connection of our SAT-based hierarchical planning system Lilotane

to our decentralized job processing and SAT solving platform Mallob. We analyzed
the requirements for such an undertaking and consequently integrated a low-latency
interface for incremental jobs in Mallob and extended MallobSat to support
incremental SAT solving. Our experiments showed that a combination of parallel job

174

7.5 Conclusion

processing and (modestly) parallel SAT solving can result in appealing speedups in cases
where our planner emits sufficiently hard SAT increments. We consider these results
encouraging for the future use of Mallob as a SAT backend for other applications
relying on incremental SAT solving, e.g., for electronic design automation [Liu+16],
model checking [KBS19], or multi-agent path finding [Sur+22].

In terms of future work, it may be promising to go beyond Lilotane’s trivial
sequential makespan scheduling and instead attempt to solve multiple increments of
an instance in parallel. By generalizing the incremental job model of Mallob and
carefully extending its application interface, such an approach may also benefit other
applications of incremental SAT solving (cf. [WH13a]). Furthermore, we intend to
explore how incremental and non-incremental SAT solvers may cooperate via careful
clause exchange in order to exploit the advantages of both approaches.

175

8
Chapter 8

Conclusion

In this chapter we sum up the central contributions and results obtained
throughout this thesis. We estimate the impact of our research, both in
terms of future research and practical application, and provide an outlook
on possible directions for future work.

8.1 Conclusion

In this thesis, we addressed a number of scalability challenges in the realm of applied
SAT solving, guided by three research questions: (i) How can we efficiently exploit
modern distributed computing environments for SAT solving? (ii) How can we render
SAT solving systems in such environments trustworthy for critical applications? And:
(iii) How can complex applications make more efficient use of SAT solvers in order to
handle previously infeasible inputs?

On an algorithmic level, we have presented decentralized approaches to schedule
malleable tasks with unknown processing time in large distributed environments;
we have introduced a compact approach to periodic all-to-all clause sharing and
subsequent clause filtering; we have introduced the first feasible approach to produce
independently verifiable proofs for distributed clause-sharing solvers; and we have
presented the first SAT-based approach to TOHTN planning which keeps a lifted, i.e.,
parametrized, problem description while encoding and solving a planning problem.

On a practical level, we have introduced Mallob, a decentralized distributed frame-
work for large-scale job processing which, in particular, features the award-winning
distributed SAT solving engine MallobSat. Our framework features practical im-
plementations of our algorithmic contributions to scheduling, SAT solving, and proof
production and proved to be fast and scalable compared to baseline approaches. Fur-
thermore, we have presented Lilotane—an efficient implementation of our lifted
SAT-based TOHTN planning approach. Both of these major practical contributions
have proven themselves in international research-oriented competitive events on previ-
ously unseen inputs, and the liaison of both systems successfully demonstrates how
applications of (incremental) SAT solving can profit from Mallob.

We now discuss whether we were able to address our research questions. Regarding
question (i), we successfully demonstrated ways to exploit HPC and cloud environments
for SAT solving more efficiently than before—both by introducing a scalable SAT
solver that doubles previously achieved speedups and also by scheduling many SAT
tasks at once on thousands of cores with great flexibility and resource efficiency.

177

8 Conclusion

We also addressed question (ii) with our scalable proof production approach, although
it remains an open engineering task to reduce the overhead incurred by our prototypical
setup and to allow for malleable scheduling of our trusted SAT solver. Regarding
question (iii), we studied the application of TOHTN planning and advanced the state
of the art by carefully designing a more direct encoding of the problem at hand, by
exploiting incremental SAT solving, and by introducing an approach to distributed
incremental SAT solving which may benefit many further applications in the future.
Our planning approach is indeed able to handle some problems which prior approaches
have been unable to solve (see Section 6.6.3). Put together, we argue that we have
been able to address our three research questions in a satisfactory (although, of course,
not exhaustive) manner.

8.2 Impact

We now estimate the impact of our contributions, in particular considering the reactions
and subsequent works they have prompted so far.

As we discussed in detail in Section 4.7, our work on parallel and distributed
SAT solving has received a large amount of attention through its success in four
subsequent iterations of the International SAT Competition. In 2021 considered “by a
wide margin, the most powerful SAT solver on the planet” by Amazon scholar Byron
Cook [Coo21], MallobSat has established itself as the state of the art in distributed
SAT solving. So far there have been two third-party submissions of MallobSat to
a competition [Man22; Cho23]. We also noticed first interest from the application
side [EME22]. While other distributed SAT solving systems begin to gain traction
due to improved diversification techniques [ZCC23], we believe that our clause sharing
approach is, as of 2023, the single most beneficial approach to exchange information
across a large number of solvers. Other disciplines related to SAT may also profit from
this clause sharing approach or slight variations thereof. Examples for this are parallel
Satisfiability Modulo Theories (SMT) solving (cf. [MHS16]) and parallel Quantified
Boolean Formula (QBF) solving (cf. [BL16])—see Section 2.2.6.

For some applications, the question arises as to whether Mallob should be used
as a (distributed) SAT solving backend for the separate application program or rather
as the scheduling environment which dynamically deploys and processes the entire
application task with an integrated malleable engine. To prepare Mallob for its role
as a SAT backend, we have connected our TOHTN planning approach to Mallob

(Chapter 7)—ensuring that it features a generic and low-latency interface applications
can be connected to. We believe that this alone may be sufficient to allow many
applications of SAT, such as multi-agent path finding [Sur+22] or bounded model
checking [KT14; KBS19], to make (better) use of parallel and distributed environments
and in turn process high-priority problems faster. We also have conducted preliminary
case studies (Section 3.5.3) which, overall, leave us optimistic that implementing new
application interfaces into Mallob is reasonably convenient and can be performed
without any intricate knowledge on the system’s distributed algorithms.

178

8.3 Future Work

We consider our contributions to producing proofs of unsatisfiability from distrib-
uted clause-sharing solvers to be important pioneering work towards fully trustworthy
distributed general-purpose SAT solvers that are similarly efficient as their less trustwor-
thy counterparts. The recent implementation of full LRAT support in the CaDiCaL

solver [PFB23] was partially motivated by our work. We intend to integrate this
version of CaDiCaL into MallobSat for even better performance than with our
prototypical setup. According to Marijn Heule, it is now a distinct possibility to use
our system for solving some of the next open problems of mathematics. Furthermore,
our work opens up vast possibilities for closely analyzing the proof structure of modern
clause sharing solvers, which may help to better understand their behavior and their
scalability limits (see Section 2.3.2.d).

Lilotane in the context of this thesis serves as a case study on how taking new and
radical approaches to encoding applications into SAT can lead to efficient application
solvers which outperform existing “direct”, i.e., non-SAT-based, approaches. Since
the initial publication of our work [Sch21d], many new approaches and techniques
for SAT-based and other ways of HTN planning have emerged [Höl+20b; Beh21;
Höl21; BS21; Beh+22]. Depending on the planning domain, our planning system
is still one of the best performing TOHTN planners.1 In the IPC 2023, two inde-
pendent third-party submissions were based on Lilotane. First, a configuration
of LiftedLinear [Wu+23] (a preprocessor which transforms HTN problems into
TOHTN problems) was powered by Lilotane as its planning backend and achieved
very respectable results as the best performing lifted planning system in the Partial
Order Agile track—overall ranked 6th out of 15 and achieving 94.6% of the winning
system’s score points [BSA23]. Secondly, the system LTP (Lifted Tree Path) [QPF23]
uses both the algorithmic framework and the codebase of Lilotane as a foundation.
As such, we observe that our work has gained traction in the automated planning
community and is being considered for future efforts on efficient hierarchical planning.

8.3 Future Work

We now outline some directions for future work concerning this thesis as a whole. Note
that we also discuss more specific future work in Sections 3.7, 4.8, 5.7, 6.7, and 7.5.

Application studies. An important line of future work is the transfer of our work
to application domains. We have made crucial first steps by preparing Mallob

as a scalable incremental SAT solving backend and initiating some case studies for
supporting applications beyond SAT solving in Mallob. As a next step, we intend
to design and implement a distributed approach to QBF solving (see Section 2.2.6.b)
as a “first-class” application engine in Mallob. Furthermore, we plan to conduct
additional case studies where we connect SMT solvers and other SAT-based veri-
fication tools to Mallob. Beyond SAT-related applications, we are interested in
exploring more classical applications of malleable scheduling [Bla+04; Hun04; SS12].

1For instance, see Monroe and Woodworking in the 2022 evaluations by Behnke et al. [Beh+22].

179

8 Conclusion

For these applications, the given input data is not replicated on all workers but rather
redistributed dynamically whenever a job is resized. Our research so far was mainly
focused on supporting frequent, rapid, and significant changes of a job’s resources,
which presumably renders constant data redistribution prohibitively expensive. In fu-
ture work we would like to consider our approach for scheduling Big Data applications
(cf. [Reu+18]) where replicating the input on all workers is considered infeasible.

On a related note, it may be worthwhile to explore alternative communication pro-
tocols for job-internal communication which does not solely rely on Mallob’s job tree.
Such a communicator may prove to be crucial for some malleable algorithms such as
randomized work stealing or efficient data redistribution.

Improving parallel SAT solving. As of now, general-purpose parallel SAT solving
appears to be dominated by clause-sharing portfolio solvers. It remains to be seen
whether tightly integrated parallel solvers such as Gimsatul [FB22] continue to gain
traction and eventually outperform conventional, modular portfolio solvers due to
specialized data structures and better efficiency. In this context, a natural extension
of our work would be to orchestrate such integrated solvers, one per machine or per
socket, using our decentralized scheduling and distributed clause sharing techniques.
Conversely, there are recent developments of new and carefully designed application
interfaces emerging for SAT solvers, such as IPASIR-UP [Faz+23] and IPASIR2,2

which offer sophisticated ways to orchestrate solvers. Developing efficient portfolio
solvers without any kind of solver-specific code may hence become a possibility.

With the increasing attention towards proof systems beyond resolution [Bal+23a],
an important question for future work is how to extend parallel solvers to support
these more sophisticated reasoning techniques. In particular, a preprocessing technique
called Structured Bounded Variable Addition (SBVA) [HGH23; HG23] led to impressive
results in the sequential track of the most recent SAT Competition [Bal+23a]. It
appears natural to investigate (a) how to enable sound clause sharing after some
or all solvers performed SBVA, (b) how to extend our distributed proof production
approach to such a setup, and (c) how to parallelize SBVA itself—considering that the
preprocessing can take many minutes on some formulas [HGH23]. The latter question
falls into the broader category of parallel pre- and inprocessing, a problem which has
so far not been addressed in a fully satisfactory manner [HW13; GM13; IBS19].

Heterogeneous and fault-tolerant computing. Throughout this thesis, we have dealt
with homogeneous hardware that solely features CPUs. In recent years, graphical
processing units (GPUs) have become increasingly prevalent in HPC environments
and, as of now, contribute significant amounts of today’s top supercomputers’ perfor-
mance [Kha+21]. We thus suggest that several parts of our work should be extended to
exploit heterogeneous environments which feature a combination of CPUs and GPUs
on several types of compute nodes. For example, recent works in terms of SAT solving
exploit GPUs for parallel inprocessing [OWB21a] and clause strengthening [PSM21].

2Under active development, see https://github.com/ipasir2

180

https://github.com/ipasir2

8.3 Future Work

Another important topic is to make distributed computations fault-tolerant [CL99;
Phi05; Hüb+21], i.e., to have them gracefully handle software and hardware failures.
Our decentralized scheduling, not relying on any single point of failure, appears to be
well-suited for such an undertaking. All in all, extending our work to heterogeneous and
fault-tolerant computing may allow different applications to untap the full potential
of modern HPC environments.

181

Appendix

9
Chapter 9

Appendix

A Online Repository: Software and Experimental Data

The online repository accompanying this work is available at https://zenodo.org/
doi/10.5281/zenodo.10184679. This repository contains the gathered experimental
data as well as references to the used benchmarks and the evaluated software.

B Scalable SAT Solving: Supplementary Material

0 1800 3600 5400 7200

Sequential running time threshold x [s]

0

100

200

300

400

500

600

700

800

S
p
ee
d
u
p
on

in
st
an

ce
s
w
it
h
T
s
e
q
≥

x

3072

1536

768

384

192

96

48

24

Figure 9.1: Weak scaling of MallobSat on 24 to 3072 cores. For a given
sequential running time threshold x, speedups are computed based on commonly
solved instances which took KissatMABHyWalk Tseq g x seconds to solve. At
each scale, we display data until less than 25 instances are considered.

185

https://zenodo.org/doi/10.5281/zenodo.10184679
https://zenodo.org/doi/10.5281/zenodo.10184679

9 Appendix

10−1 100 101 102 103

Running time of Paracooba [s]

10−1

100

101

102

103

R
u
n
n
in
g
ti
m
e
of

M
a
l
l
o
b
S
a
t
[s
]

Sat

Unsat

Figure 9.2: Performance of MallobSat vs. Paracooba in the ISC 2022 Anniver-
sary cloud track (5355 instances). MallobSat’s performance on simple instances
is impacted (a) by the startup time of OpenMPI in the AWS setup, whereas
Paracooba immediately begins executing a sequential Kissat instance [Hei22],
and (b) by the manager script only polling for a response from our solver once a
second. Most instances which take more than a few seconds to solve are solved
substantially faster (or exclusively) by MallobSat.

186

B Scalable SAT Solving: Supplementary Material

Idx. Configuration

L
in
g
e
l
in
g

A

A classify=0

0 gluescale=5

1 plain=1 decompose=1

2 plain=0|1 locs=-1 locsrtc=1 locswait=0 locsclim=16777216

3 restartint=100

4 sweeprtc=1

5 restartint=1000

6 scincinc=50

7 restartint=4

8 phase=1

9 phase=-1

10 block=0 cce=0

G
l
u
c
o
s
e

A !adaptStrats simplify [>2]randomizeFirstDescent [>2]rndInitAct

0 adaptStrats simplify

1 lubyRestart lubyRestartFactor=100 (max)VarDecay=.999

2 chanseokStrat coLBDBound=4 glureduce 1stReduceDB=2k clsBeforeReduce=2k !incReduceDb

3 (max)VarDecay=.95 firstReduceDB=4k lbdQueueSize=100 K=0.7 incReduceDB=500

4 !adaptStrats !simplify

5 chanseokStrat

6 adaptStrats !simplify

7 chanseokStrat coLBDBound=3 glureduce 1stReduceDB=30k (max)VarDecay=.99 randomizeOnRestarts

C
a
D
iC

a
L

0 phase=0

1 config=sat

2 elim=0

3 config=unsat

4 condition=1

5 walk=0

6 restartint=100

7 cover=1

8 shuffle=1 shufflerandom=1

9 inprocessing=0

K
is
s
a
t

A quiet=1 check=0

0 eliminate=0

1 delay=10

2 restartint=100

3 walkinitially=1

4 restartint=1000

5 sweep=0

6 config=unsat

7 config=sat

8 probe=0

9 failedcont=50 failedrounds=10

10 minimizedepth=104

11 modeconflicts=105 modeticks=109

12 reducefraction=90

13 vivifyeffort=1000

14 xorsclslim=8

Table 9.1: Cyclic solver configuration of MallobSat (Chapter 4.4.1) used in
our experiments. “A” corresponds to the default for all configurations; “[>2]”
denotes that all but the first three solvers are configured as such.

187

9 Appendix

C Distributed UNSAT Proofs: Supplementary Material

min p10 med mean p90 max

DRAT check 81 24.564 161.947 636.053 1025.771 2675.848 3399.476

Seq. assembly 139 6.141 37.998 158.011 277.023 747.614 1571.190
Seq. postprocessing 139 0.120 1.695 13.776 31.376 87.583 231.958
Seq. checking 139 0.716 7.627 60.587 140.934 368.082 1200.319
Seq. asm+post+chk 139 7.924 62.542 242.040 449.334 1208.350 2831.480

Par. assembly 135 2.196 10.763 41.781 96.167 231.383 1054.070
Par. postprocessing 135 0.202 1.552 16.708 34.587 82.215 338.245
Par. checking 135 0.867 5.157 59.240 148.206 377.040 1469.763
Par. asm+post+chk 135 3.406 18.492 113.739 278.960 697.353 2862.080

Cld. assembly 157 1.474 11.008 61.019 108.122 277.119 848.708
Cld. postprocessing 157 0.249 2.944 31.703 87.176 266.439 690.279
Cld. checking 157 1.141 9.564 130.755 347.430 1006.636 2626.983
Cld. asm+post+chk 157 3.626 36.400 217.736 542.728 1526.270 4165.970

Table 9.2: Statistics on proof production and checking given in seconds.

D Lilotane: Formal Definitions and Proofs

D.1 Hierarchical Solutions

Definition 9.1 (Formalization of Def. 6.2)

A directed tree H = (V,E) with a total node ordering relation z ¦ V ×V is a hierarchical
solution to a problem Π iff (1)–(3) hold.

(1) Each leaf node v corresponds to some action av ∈ A, and each inner node v

corresponds to some reduction rv ∈ R. In particular, the root node v̂ corresponds
to the initial reduction, i.e., a reduction r0 with subtasks(r0) = T .

(2) If an inner node u has k outgoing edges (u, v1), . . . , (u, vk), sorted such that
vi z vj if i < j, then ru has k subtasks and each vi corresponds to an operation
which matches the i-th subtask of ru.

(3) Let Ω ∶= ⟨o1, o2, . . . , okð be a sequence of operations which results from a depth-
first traversal of H beginning from v̂ and using z as an ordering. Specifically, if
node v is visited, its corresponding operation is appended to Ω and all children
of v are added according to “z” to the frontier of nodes to visit (i.e., v1 is visited
before v2 if v1 z v2). Then there is a sequence of actions π such that (A) holds:
(A) π is a solution for Π according to Def. 6.1 where either case 1 applies
or case 2 with r ∶= o1 applies or case 3 with a ∶= o1 applies; and in the two
latter cases, (A) holds recursively for the resulting π′, the resulting Π′, and for
Ω′ ∶= ⟨o2, . . . , okð.

188

D Lilotane: Formal Definitions and Proofs

D.2 Reachability Analysis

Theorem (6.3, Section 6.3.2.a)

For l g 0 and x g 0, let Ol ∶= ⟨o0, . . . , oxð be a sequence of operations where each oi is
a possible operation at position Pl,i. Decompose each oi ∈ Ol to some sequence Oi of
actions such that O ∶= O0 ○ . . . ○Ox is executable from sI .
(1) If fact f holds after executing O, then f is reachable at Pl,x+1 according to Sx+1

l .
(2) Similarly, if f does not hold after executing O, then ¬f is reachable at Pl,x+1.

Proof. By definition, the sets ±Sx+1
l grow monotonically in x.

(1) If f holds after executing O, then either (i) f ∈ sI and f never changed, or (ii)
the execution of O causes f as an effect in some action. In case (i), f is reachable at
Pl,x+1 by definition. In case (ii), there is some action of which causes f as a direct
effect, implying f ∈ pfc(of) and either (a) of = oj for 0 f j f x or (b) of is a (transitive)
child of one such oj . In case (a), PFC+l,j+1 § pfc(of) ∋ f by definition, and in case (b),

PFC+l,j+1 § pfc(oj) § pfc(of) ∋ f because of is a child of oj . In both cases (a) and (b)

PFC+l,j+1 is added to +Sj+1

l
and, since j f x and +Sx

l grows monotonically in x, we

obtain f ∈ +Sx+1
l , hence f is reachable according to Sx+1

l .

(2) If f does not hold after executing O, then either (i) f ∉ sI and f never changed,
or (ii) as (1)(ii) but with a negative effect. In case (i), ¬f is reachable at Pl,x+1 by
definition. In case (ii), similar to (1)(ii) we obtain f ∈ PFC−l,x+1 and consequently

f ∈ −S
j+1

l
. Since −Sx

l is monotonic, we obtain f ∈ −Sx+1
l , hence ¬f is reachable. ◻

D.3 Correctness of Encoding

We show the correctness of the Lilotane encoding, beginning with some prerequisites.

Lemma 9.2

For any satisfying assignment A for Ll′(Π) there is exactly one active operation at
each position Pl,x for l ∈ {0, . . . , l′} and x ∈ {0, . . . , ∣Ll∣ − 1}.

Proof. At position P0,0 exactly the initial reduction is active due to construction and
Eq. 6.1. At each further position Pl,x at most one action and at most one reduction is
active due to Eq. 6.4 which, together with Eq. 6.3, ensures that at most one operation
is active. Also, there is at least one active operation at each position: If there were not
a single active operation at some position, then, due to Eq. 6.8 and our instantiation
technique where all offset positions are filled with children (possibly with ε-actions),
the parent position would be empty as well. Repeatedly applying this argument leads
to a contradiction to Eq. 6.1. ◻

Lemma 9.3

The result π of decoding a plan from a satisfying assignment A for Ll′(Π) as described
in Section 6.4.3 is well-defined and unambiguous.

189

9 Appendix

Proof. First we observe that at the final layer l′ there must be an action (and no
reduction) at every position due to Eq. 6.10 together with Lemma 9.2.

Next we argue that the substitution of pseudo-constants with actual constants in
any active operation o is unambiguous. For each pseudo-constant κ, due to Eq. 6.11
at most one substitution can be active. Furthermore, if the operation op from which κ

originated is active, then due to Eq. 6.12 each pseudo-constant κ must have at least
one and thus exactly one constant substituted for it. The only possibility for o to
be active yet op to be inactive is that o came into effect by dominating some other
operation o′ which has another parent and does not contain κ. In that case, Eq. 6.20
will enforce at least one substitution of κ to be active. Otherwise, by construction κ

can only occur in the hierarchy induced by the origin operation of κ. Hence, for each
active operation in a solution there is exactly one set of active substitutions which
replace each pseudo-constant with actual constants.

Together with Lemma 9.2, this implies that there is exactly one operation at each
position with exactly one ground representation each, and the final layer only consists
of actions. This renders our plan decoding well-defined and unambiguous. ◻

Next, we establish a mapping of satisfying assignments of fact variables to world states:

Lemma 9.4

Let A be a satisfying assignment for Ll′(Π). Then for each position Pl,x we can
unambiguously infer a world state sl,x based on A and sI .

Proof. At each position Pl,x there is a set of variables f l
x which represent ground

facts. Each such fact f has a polarity assigned to it by A. Additionally, some positive
facts may not have been encoded (yet) at Pl,x but must hold nevertheless: These are
exactly the unencoded facts which are contained in the initial state (see Chapter 6.4.2).
Consequently we define sl,x ∶= {f ∣ A(f l

x) = true} ∪ {f ∈ sI ∣ A(f l
x) = �}. ◻

In order to reason about the correct application of actions, we show that whenever a
particular action with pseudo-constants is active, all preconditions and effects of the
implied ground action are enforced correctly.

Lemma 9.5

Consider a satisfying assignment A for Ll′(Π) and an active operation o at position
Pl,x which becomes a ground operation õ through zero or more active substitutions.
Then the following holds:
(i) pre(õ)+ ¦ sl,x and pre(õ)− ∩ sl,x = ∅.
(ii) If õ is an action, then sl,x+1 = (sl,x 8 eff(õ)−) ∪ eff(õ)+.
Proof. Eq. 6.5 and Eq. 6.6 enforce that each precondition of o holds at position
Pl,x and (if o is an action) each effect of o holds at position Pl,x+1; however, each
precondition or effect may contain pseudo-constants. Eq. 6.18 and Eq. 6.19 ensure
that the effects are enforced in a consistent way: If some (possibly empty) set of active
substitutions unifies a pair of effects to be contradictory, i.e., {f,¬f} ¦ pre(õ) for some

190

D Lilotane: Formal Definitions and Proofs

f , then the positive effect is enforced as usual while Eq. 6.18 and Eq. 6.19 allow the
negative effect to be ignored because an appropriate set of substitutions is active.

As õ was obtained from o by substituting each of its pseudo-constants κ with
the unique substitution [κ/c] that is active in A, Eq. 6.13 enforces that any non-
ground preconditions and effects of o are logically equivalent to the respective ground
preconditions and effects of õ—as long as these ground facts are indeed encoded. Some
ground precondition (effect) f arising from a precondition (effect) of o through active
substitutions may not have been encoded because f is invariant there. In case of
an effect, f must be invariantly true because due to construction an effect cannot
be invariantly false. In case of a precondition, Eq. 6.22 or Eq. 6.23 prevent any
combination of substitutions which unify a precondition of o with an invariantly false
fact, hence f must be invariantly true as well. It follows from the correctness of our
reachability analysis (Theorem 6.3) that f holds in sl,x. Hence, sl,x and sl,x+1 induced
by assignment A are consistent with the constraints of õ at Pl,x and Pl,x+1.

If o is an action, then any fact not featured as an effect does not change, following
from our frame axioms: As the position is primitive due to Eq. 6.3 if õ is an action,
Eq. 6.14 constrains each fact to change only if an action from its direct or indirect
support is active. Hence, for each such fact f that changes its polarity, either
o ∈ supp(f) or o ∈ isupp(f). In the former case, f is a direct effect of o and it follows
directly that f is also a direct effect of õ. In the latter case, Eq. 6.15 implies that a
set of substitutions must be active which unify a pseudo-fact effect of o with f . As we
know that the active substitutions for the pseudo-constants of o unify o with õ, we
also know that the respective pseudo-fact effect of o must be an effect of õ as well. ◻

Inducing over the length of the final layer (using Lemma 9.5) leads us to the following
central property which guarantees that the decoded classical plan is executable:

Lemma 9.6

When a plan π = ⟨a0, . . . , ak−1ð is decoded from a valid satisfying assignment A for
Ll′(Π), there is a sequence of states Q = ⟨s0 ∶= sI , s1, . . . , skð such that pre(ai)+ ¦ si,
pre(ai)− ∩ si = ∅, and si+1 = (si 8 pre(ai)−) ∪ pre(ai)+ hold for 0 f i < k.

Proof. We construct Q from π and from the states sl′,x induced by A.
When plan π contains k actions, the size of the final layer, k′ ∶= ∣Ll′ ∣, may be larger

than k: Layer Ll′ contains k
′
− k g 0 ε-actions which do not contribute to π and which

have no preconditions or effects. We inductively construct Q for k′ g 0.
For the base case k′ = 0 and π = ⟨ð, we note that at position 0 all fact assignments

must be consistent with the initial state sI due to construction: When a fact is
introduced at some position, then its assignment is fixed according to the initial state
(Eq. 6.2 or Eq. 6.21). Consequently Q ∶= ⟨sIð fulfils above requirements.

Let k′ > 0. By induction, for some k < k′ we have a valid sequence of states
Qk′−1 ∶= ⟨s0, . . . , skð for πk′−1 ∶= ⟨a0, . . . , ak−1ð decoded from positions 0, . . . , k′ − 1, and
we want to construct Qk′ for πk′ decoded from positions 0, . . . , k′. There is exactly
one action active at position k′ (see Lemma 9.3)—an ε-action or a normal action.

191

9 Appendix

In the former case, we note by trivially applying Lemma 9.5 that sl′,k′ = sl′,k′−1, i.e.,
no fact changes are possible over the course of this position, so Qk′ ∶= Qk′−1 fulfils
above requirements for the unchanged plan πk′ = πk′−1. In the latter case, we have
πk′ = πk′−1 ○ ⟨ãð, where action ã was constructed from the active action a at position
k′ through a set of substitutions. We apply Lemma 9.5 and obtain pre(ã)+ ¦ sl′,k′ ,
pre(ã)− ∩ sl′,k′ = ∅, and sl′,k′+1 = (sl′,k′ 8 pre(ã)−) ∪ pre(ã)+. As a result, setting
Qk′ ∶= Qk′−1 ○ ⟨sl′,k′+1ð fulfils the above requirements. ◻

Next, we turn to the hierarchical solution for our problem.

Lemma 9.7

Let H be the decoded hierarchical solution for Ll′(Π). Then the structure of H

resembles an actual hierarchical solution, i.e., H satisfies (1) and (2) from Def. D.1.

Proof. First we note that the structure of H resembles the structure of hierarchical
layers, i.e., H is a tree where each node (o, l, x) has depth l within H and each of
its outgoing edges lead to nodes of depth l + 1. We perform an induction over the
maximum depth l′ g 0 of H counted from its root (r0,0,0) and show that each node
(o, l, x) corresponds to a valid operation o and, if o is a reduction, either resides at the
maximum depth l′ or has outgoing edges to valid child nodes according to subtasks(o).
All leaves being actions then follows from the well-definedness of the plan decoding
procedure (Lemma 9.3), notably from only actions being active at layer l′.

Let l′ = 0. Then the only node in the graph is (r0,0,0) where r0 is fully ground
and a valid reduction of the problem by definition.

Let l′ > 0. Assume that H up to layer Ll′−1 fulfills each of the Lemma’s requirements.
We first show that each node at layer Ll′−1 has the correct number of children at layer
Ll′ . Let (o, l′ − 1, x) be a node at layer Ll′−1. If o is an action, then the node has no
children by construction. In the following, let o be a reduction. By construction, node
(o, l′ − 1, x) has n g 0 outgoing edges to nodes (o′k, l′, sl′−1(x) + zk) where each zk is a
valid offset for reduction o: 0 f zk < el′−1,x. Each o′k is a ground instantiation of some
child action or reduction of o at offset zk. For each 0 f zk < ∣subtasks(o)∣ there must be
exactly one such child node due to Eq. 6.8 and Lemma 9.2, and for zk g ∣subtasks(o)∣
there are no such children because by construction o induces ε-actions as children at
those offsets which are never added to H. As a consequence the given parent node
has the correct number of children.

Next we show for 0 f k < ∣subtasks(o)∣ that o′k from child node (o′k, l′, sl′−1(x) + k)
matches the k-th subtask of o. Operation o′k was constructed from the original active
operation ô

′

k at position sl′−1(x) + k of layer l′ by a series of zero or more active
substitutions. We know from Eq. 6.8 and Eq. 6.9 that ô′k matches the k-th subtask
of its parent ô from which o was constructed, the only exception being differing
pseudo-constant names if the original child of ô was dominated by another operation
(see Chapter 6.3.3). For each substitution [κ/c] involved in the transformation of ô′k
into o′k, pseudo-constant κ originated either (a) from ô

′

k itself or (b) from parent ô or
some common ancestor or (c) from (a parent of) an operation which dominated the

192

D Lilotane: Formal Definitions and Proofs

original child of ô. In case (a) we know that the argument of ô′k which took κ as its
value is a new, free argument not bound by ô. In case (b) we know that κ is globally
substituted with the same single constant c. In case (c), Eq. 6.20 sets κ equivalent to
the original pseudo-constant, hence (a) or (b) applies. In all cases the arguments of
ô
′

k must correspond to the arguments of the k-th subtask of ô, hence o′k matches the
respective subtask of o.

Concerning argument types, the constant c which κ is substituted with is in the
valid domain of the respective argument of its origin operation due to Eq. 6.12. Eq. 6.16
and/or Eq. 6.17 enforce any further restrictions to the type of κ in child operations.

All in all, o′k matches the k-th subtask of o: edge ((o, l′ − 1, x), (o′k, l′, sl′−1(x) + k))
represents a valid subtask instantiation o′k of reduction o. ◻

Similar to the executability of the classical plan shown in Lemma 9.6, we argue that
the hierarchical plan is executable as well:

Lemma 9.8

Let (π,H) be the decoded (classical and hierarchical) solution for the Lilotane

encoding Ll′(Π) for TOHTN planning problem Π. Traverse H as described in (3) in
Def. D.1 with the node ordering relation (g, l, x) z (g′, l′, x′)↔ x < x′ and maintain
a state s which is initialized as sI and updated with the effects of each visited action.
Then the preconditions of all visited actions and reductions hold in s.

Proof. When performing a depth-first traversal of H as specified, we traverse all
action nodes in exactly the order in which the respective actions occur in π. As
changes to s are made only when encountering an action node, it follows from Lemma
9.6 that whenever we visit an action node (a, l, x), s is equivalent to the state sl,x
that can be inferred from A at position Pl,x. In particular, the preconditions of each
visited action are met in s.

In the following, we show that when we visit a reduction node (r, l, x) during the
traversal of H , the preconditions of r must hold in s. We know that r was constructed
from some active reduction r̂ and a set of substitutions, hence Lemma 9.5 implies that
the preconditions of r hold in the state sl,x inferred from A at position Pl,x. Therefore,
we know that each precondition f of r is either invariantly true at Pl,x or encoded as
a direct fact constraint as in Eq. 6.5, possibly via a pseudo-fact (Eq. 6.13).

In the first case, we know due to the correctness of our reachability analysis
(Theorem 6.3) that f must hold in all reachable states so far. In particular, f holds in
sI and no action visited so far may have changed it. For this reason, f also holds in s.

In the second case, due to Eq. 6.7, these constraints are propagated down to the
final layer Ll′ from where π was extracted. At this point, assume that we already
visited k g 0 actions. Consequently s = sk (where sk is defined in Lemma 9.6 as
the intermediate state after applying k actions) and we are currently traversing a
subtree to the right of action ak. It follows that the precondition constraints of r
from layer Ll propagate down to a position at the final layer where ak has already
been applied but ak+1 has not yet been applied, which is exactly where sk holds.

193

9 Appendix

As a consequence, fact constraints from layer Ll also directly enforce the preconditions
to hold in state sk and consequently in s. ◻

Assembling all the parts, we can finally show that our encoding functions as intended:

Theorem 9.9

Let (π,H) be the decoded (classical and hierarchical) solution for the Lilotane

encoding Ll′(Π) for TOHTN planning problem Π. Then π is a valid solution for Π
and H is a valid hierarchical solution for Π.

Proof. We know due to Lemma 9.7 that H satisfies criteria (1) and (2) from Def. D.1
for a hierarchical solution. It remains to be shown that H satisfies criterion (3) for the
decoded plan π. Namely, we show the following: If Ω ∶= ⟨o1, o2, . . . , okð is the sequence
of operations visited by a depth-first traversal of H with the node ordering relation
(o, l, i) z (o′, l′, j)⇔ i < j, then π is a (classical) solution for Π in such a way that Ω
is a “witness” for which operation should be applied at each recursive step of Def. 6.1.

Let T ∶= ⟨t0ð be the initial tasks of Π where, according to the initial transformation
of T we perform, t0 is a virtual task with r0 as its only reduction. Let Γ be the frontier
of unvisited nodes during the depth-first traversal of H: Initially Γ ∶= ⟨(r0,0,0)ð, and
each step of the traversal removes node v from the front of Γ and pushes the children
of v with respect to z to the front of Γ. Clearly, the i-th operation oi in Ω corresponds
to the node at the front of Γ after i − 1 nodes have already been visited.

In the following, we transform the recursive Definition 6.1 into an iterative procedure
in a straight forward manner to obtain a more natural proof. We maintain a state s

initialized with sI , a task sequence T initialized with T , and an action sequence P
initialized with π. At each iteration, if we can apply case 2 or case 3 of Def. 6.1 to
problem Π ∶= (D,s,T) and to solution π ∶= P and obtain some altered Π′ and π′, then
we update s, T , and P accordingly. Specifically, we apply the i-th operation visited
in H at the i-th iteration. If there is no such operation left and we can apply case 1
instead, the procedure terminates.

We show invariant (I): At all times of this procedure, ∣Γ∣ = ∣T ∣ holds and for each
0 f i < ∣T ∣ the operation corresponding to the i-th node in Γ matches the i-th task in
T . Initially, (I) holds because Γ = ⟨(r0, 0, 0)ð and T = ⟨t0ð. Next, assume that (I) holds
at some point during the procedure. If task t at the front of T is compound, then
according to Def. 6.1, case 2 we replace it with its subtasks. Due to (I), the frontmost
node in Γ then corresponds to a reduction matching t. Following the definition of the
depth-first traversal, this node in Γ is replaced with operations matching its subtasks
in the correct order (Lemma 9.7). If task t is primitive, then according to Def. 6.1,
case 3 we remove it from T . Due to (I), the frontmost node in Γ then corresponds to
an action matching t and, as such, is a leaf in H, hence it is removed from Γ. Both
cases preserve (I).

Next, state s from the above procedure is equivalent to state s from Lemma 9.8
because we begin with s ∶= sI and alter s with the effects of each visited action.

194

E Lilotane: Derivation of Complexity Results

Now we show that the above procedure is well-defined and terminates. At iteration
zero, we have tasks T ∶= ⟨t0ð and frontier Γ ∶= ⟨(r0, 0, 0)ð. By definition, r0 matches t0
and r0 has no preconditions; we can apply case 2 of Def. 6.1.

At the i-th iteration, we have state s, tasks T , and action sequence P . If T is not
empty yet, then we know due to (I) that operation o corresponding to the first node
in Γ matches the first task in T . Lemma 9.8 implies that pre(o) hold in s. Hence, if o
is an action, we can apply case 3—we remove a from the front of P and apply eff(a)
to s—and if o is a reduction, we can apply case 2.

If T is empty, then due to (I) Γ is empty and the traversal of H is finished. All
actions in π (each of which corresponds to a leaf node in H) have been visited, so each
of them has been removed from P . As a result, P = ⟨ð and case 1 applies.

To conclude, we have shown that we can recursively apply the definition for a
classical solution for Π to π using the sequence of visited operations in H . This proves
that π is a classical solution for Π and that criterion (3) of Def. D.1 is satisfied for H,
concluding the proof that H is a valid hierarchical solution for Π. ◻

E Lilotane: Derivation of Complexity Results

We now derive the complexity results discussed in Chapter 6.4.5.

E.1 Number of Variables

With our encoding approach, each operation at some position of some layer may induce
up to X ⋅B new operations at the subsequent layer: At each of the X child positions,
up to B new children are possible. Initial layer L0 has size ∣L0∣ = 1 and contains exactly
Rl = 1 operation per position. Given layer Ll−1 of size ∣Ll−1∣ and with Rl−1 operations
at each position, the next layer Ll has a maximum size of ∣Ll∣ f X ⋅ ∣Ll−1∣ and up
to Rl f Rl−1 ⋅B operations at each position. From these inequalities we can deduce

∣Ll∣ f X l and Rl f Bl. For encoding Ll′ we have R ∶= ∑
l′

l=0 ∣Ll∣ ⋅ Rl f ∑
l′

l=0X
l
⋅ Bl =

1 +XB +X2B2
+ . . . +X l′Bl′ ∈ O(X l′Bl′) operations in total.

Each operation with U free arguments induces up to U pseudo-constants and
thus U ⋅ C new variables to represent their possible substitutions. We arrive at
RUC ∈ O(X l′Bl′UC) variables for pseudo-constant substitutions in total.

Let F be the number of relevant facts during the planning process. In the worst case

where we need to encode each fact at each position, we obtain a total of ∑
l′

l=0 ∣Ll∣ ⋅ F ∈
O(X l′F) variables representing ground facts.

At each position, P preconditions (and E effects) of each operation (action) may

introduce a variable representing a pseudo-fact. We arrive at R⋅(P +E) ∈ O(X l′Bl′(P +
E)) variables for pseudo-facts. For some action effects and for each dominated
operation, a variable denoting the equivalence of a pair of pseudo-constants may be
encoded. For an action of arity V the equality of O(V 2) pairs of pseudo-constants may
be encoded which leads to O(R ⋅ V 2) variables. If each encoded operation dominates
another (unencoded) operation, O(R ⋅U) equality variables may be added.

195

9 Appendix

For each position we add one variable representing the primitiveness of the position,
leading to O(X l′) additional variables. Finally, as explained in the next section,
we introduce logn helper variables whereever we encode at-most-constraints over n
variables. This results in O(X l′ logBl′) variables from Eq. 6.4 and in O(RU logC)
variables from Eq. 6.11.

In total, the asymptotic number of encoded variables evaluates to

R +RUC +X l′F +R(P +E) +RV 2
+X l′

+X l′ logBl′
+RU logC

∈ O(X l′(Bl′(1 +UC + P +E + V 2
+U logC) + F + 1 + logBl′))

= O(X l′(F +Bl′(UC + P +E + V 2))). (9.1)

E.2 Number of Clauses

We traverse our encoding in the same order as presented in Chapter 6.4.1 and provide
the asymptotic number of clauses added by each rule.

Eq. 6.1 is a single unit clause. The introduction of new facts in Eq. 6.2 introduces
each fact once per layer, leading to O(l′F) unit clauses, while its optimized replacement
Eq. 6.21 subsumes this measure. Eq. 6.3, the primitiveness of a position w.r.t. its
active operation, is added once for each operation, leading to O(R) clauses.

For at-most-one constraints over operations, Eq. 6.4 presents the naive method of
adding O(n2) binary clauses to restrict n variables. However, if n becomes sufficiently
large we employ a more sophisticated encoding with O(n logn) clauses (see [Sch18,

Appendix A]). As a consequence, Eq. 6.4 asymptotically leads to O(X l′(Bl′ logBl′)) =
O(R logBl′) clauses, as Bl′ operations may occur at each position.

The preconditions and effects in Eq. 6.5 and Eq. 6.6 make up for O(R(P +E))
clauses. The fact propagations introduced by Eq. 6.7 are virtual as explained earlier.

To define child/parent relationships, we add O(R) clauses from Eq. 6.8 and Eq. 6.9.

Eq. 6.10 leads to X l′ assumptions (which are not permanently added to the
encoding). The enforcement of at least one active substitution for each pseudo-constant
as defined in Eq. 6.12 leads to O(RU) clauses; one clause for each introduced pseudo-
constant. Again employing a binary at-most-one constraint scheme for substitutions
instead of Eq. 6.11 we obtain O(RU(C logC)) further clauses. Eq. 6.13 links each
pseudo-fact to its respective ground fact for each possible substitution combination.
Overall O(R(P +E)) pseudo-facts are encoded, one for each precondition and effect.
In the worst case, up to F ground facts may correspond to a single pseudo-fact and
overall we need to add O(R(P +E)F) clauses.

Direct frame axioms, Eq. 6.14, add up to two clauses for each fact at each position,
leading to O(X l′F) clauses. Indirect frame axioms in Eq. 6.15 are added for each
fact f for each action that may indirectly support the change of f , so we may
need to instantiate the formula O(FR) times. For each axiom, our DNF-to-CNF
transformation incurs EY clauses, resulting in O(FREY) indirect frame axiom clauses.

Clauses from Eq. 6.22 and Eq. 6.23 may be added for each precondition of each
operation. There can be O(F) possible substitution combinations for a given pseudo-

196

E Lilotane: Derivation of Complexity Results

fact. We can either encode the invalid options (Eq. 6.23) leading to one clause for each
invalid substitution or encode the valid options (Eq. 6.22) which may induce O(Y)
clauses for each valid substitution if realized with our DNF-to-CNF transformation. In
the worst case we have around F /2 valid substitutions and F /2 invalid substitutions,
in which case we add O(RPF) clauses in total.

Type restrictions for pseudo-constants—Eq. 6.16 or Eq. 6.17—make up a constant
number of clauses per pseudo-constant if chosen correctly, leading to O(RU) clauses.

To handle contradictory effects, in Eq. 6.18 we enumerate the substitution combina-
tions which unify two given effects of an action. Each operator may have E/2 negative
effects which can each be unified with each of the remaining E/2 positive effects. This
leads to O(E) DNF-to-CNF transformations over combinations of substitution and
equality variables, similar to our indirect frame axioms (where pseudo-facts are unified
with a ground fact). Each transformation can add O(EY) clauses, so each operation
adds O(E2

⋅ Y) clauses, leading to O(RE2Y) clauses overall.
The equality of pairs of pseudo-constants is encoded as in Eq. 6.19 in some cases.

For up to RV 2 variables, O(C) clauses are encoded, leading to O(RV 2C) clauses.
If each encoded operation dominates another (unencoded) operation, Eq. 6.20 leads

to O(R) clauses and up to RU equality variables, adding O(RUC) further clauses.
In total we arrive at an asymptotic number of

O(l′F +R +R logBl′
+R(P +E) +R +RU +RU(C logC) +R(P +E)F +X l′F

+ FREY +RPF +RU +RE2Y +RV 2C +RUC)

= O(R(l′ logB +UC logC + (P +E)F + FEY + PF +E2Y + V 2C) + FX l′)

= O(R(l′ logB +C(U logC + V 2) + F (P + Y E) + Y E2)) (9.2)

permanent clauses added to the encoding.

197

9 Appendix

F Lilotane: Supplementary Figures

Domain # O M X B U Pa Pr E Yf Ya Yr C ∣sI ∣ ∣T ∣

Barman 20 23 21 7 3 5 7 4 8 2 6 8 41 80 14

Blocksworld 20 13 10 4 2 1 4 4 5 2 2 2 24 29 24

Childsnack 20 9 2 5 2 5 5 5 5 2 5 9 77 101 16

Depots 20 17 14 4 4 3 5 4 6 2 5 5 28 45 8

Elevator 20 16 15 3 3 2 5 5 2 2 3 3 32 299 1

Entertainment 12 15 23 3 9 2 10 7 4 2 4 4 45 403 3

Gripper 20 8 4 6 2 3 3 2 3 2 3 6 27 28 12

Hiking 20 20 20 9 4 5 8 7 8 3 8 8 27 52 1

Rover 20 30 16 4 3 3 6 4 4 3 6 6 58 877 16

Satellite 20 14 12 3 3 2 5 3 3 2 4 4 121 176 79

Transport 30 6 10 4 3 2 4 1 4 2 5 5 25 43 9

Zenotravel 5 11 9 4 3 3 8 8 4 2 9 12 15 20 4

AssemblyHierarchical 30 17 20 2 8 2 9 6 3 3 7 7 116 368 1

Barman-BDI 20 33 23 6 3 5 7 7 8 2 6 6 59 89 11

Blocksworld-GTOHP 30 13 10 4 2 1 4 4 5 2 2 2 138 148 144

Blocksworld-HPDDL 30 14 14 4 5 2 200 200 5 2 200 200 200 413 1

Childsnack 30 9 2 5 2 5 5 5 5 2 5 9 262 390 62

Depots 30 17 14 4 4 3 5 4 6 2 5 5 83 150 48

Elevator-Learned 147 41 25 5 3 2 4 3 2 2 3 3 47 660 16

Entertainment 12 19 26 7 4 2 7 2 2 4 4 7 45 403 1

Factories-simple 20 17 11 4 3 3 4 3 4 3 4 4 73 98 1

Freecell-Learned 60 283 304 7 15 6 14 8 7 2 8 8 52 177 4

Hiking 30 20 20 9 4 5 8 7 8 3 8 8 44 87 1

Logistics-Learned 80 56 54 3 8 3 4 4 2 2 5 5 55 48 22

Minecraft-Player 20 21 24 6 4 3 4 4 2 3 5 16 752 217363 1

Minecraft-Regular 59 15 14 6 3 2 3 3 2 3 5 16 22150 129799 1

Monroe-Fully-Obs. 20 68 84 6 10 3 6 1 6 3 5 8 91 419 1

Monroe-Partially-Obs. 20 67 83 6 10 3 5 1 6 3 5 8 91 420 1

Multiarm-Blocksworld 74 15 15 4 5 2 54 54 5 2 54 55 58 118 4

Robot 20 6 13 2 4 3 3 3 3 3 3 3 60 97 1

Rover-GTOHP 30 30 16 4 3 3 6 4 4 3 6 6 95 2351 28

Satellite-GTOHP 20 14 12 3 3 2 5 3 3 2 4 4 121 176 79

Snake 20 7 5 3 3 3 28 28 8 3 28 28 29 149 1

Towers 20 7 10 2 3 3 4 3 6 2 5 5 14 111 1

Transport 40 4 6 4 3 2 4 0 4 2 5 5 55 125 26

Woodworking 30 15 51 3 4 4 9 0 7 2 12 12 110 241 22

Table 9.3: Averaged per-domain properties of HDDL benchmarks (after prepro-
cessing), divided into prior benchmarks (see Section 6.6.2) and IPC benchmarks.
Left to right: Number of operators (O), methods (M); max. expansion size (X),
max. methods per task (B), max. free non-trivial arguments per method (U);
number of preconditions of actions (Pa) / reductions (Pr), effects (E); arity of
facts (Yf) / actions (Ya) / reductions (Yr); number of constants (C) / initial true
facts (∣sI ∣) / initial tasks (∣T ∣).

198

F Lilotane: Supplementary Figures

Figure 9.3: Distribution of occurrences of different clause categories encoded by
LilotaneQ on the IPC benchmarks, overall (leftmost column) and per domain.
All instances for which LilotaneQ found some initial plan were considered.

Figure 9.4: Partitioning of running times for three SAT-based planners on prior
benchmarks [Sch+19b] and for Lilotane on IPC benchmarks.

199

9 Appendix

Domain # pos. lay. cls./106 act.
pos.

red.
pos.

psc.

pos.
ret.pr. pruned dom. +prec.

AssemblyH. 5 136.00 14.00 0.43 9.75 1.54 1.94 50.60 50.60 71.80 76.00

Barman 17 702.53 6.00 0.14 2.15 0.54 0.59 0.00 0.00 0.00 2.00

Blocksw-G. 23 8215.70 10.39 0.66 2.22 0.07 0.05 7.48 80.61 26.00 6.00

Blocksw-H. 1 10929.00 13.00 3.34 3.99 3.25 1.25 0.00 0.00 3.00 11.00

Childsnack 29 284.38 2.00 1.67 0.83 0.17 0.66 0.00 0.00 0.00 8.00

Depots 24 1696.58 6.00 1.48 2.59 0.24 0.42 0.96 7.12 25.67 11.00

Elevator 147 3547.09 8.99 1.05 2.23 0.61 0.25 0.01 0.01 0.00 7.00

Entertainm. 4 510.75 7.25 20.31 3.26 2.00 0.95 0.00 0.00 282.00 64.00

Factories 4 4747.75 12.75 0.51 2.01 0.94 0.79 0.00 0.00 21.25 0.00

Freecell 12 3147.08 9.33 13.85 8.85 11.00 3.12 3.75 3.75 3653.75 642.00

Hiking 23 10578.04 12.48 0.78 1.53 0.15 0.32 18.57 3873.09 0.00 7.00

Logistics 45 3483.71 11.91 1.99 4.65 1.29 0.73 0.00 0.00 0.00 41.07

Minecraft-P. 2 777.50 8.50 5.05 4.98 3.07 1.50 19.50 47.50 0.50 5.00

Minecraft-R. 35 10699.46 12.60 1.22 4.25 0.69 0.00 94.46 630.17 0.00 2.00

Monroe-FO. 20 1153.95 7.85 0.84 3.14 0.67 0.60 6.55 28.15 86.45 112.75

Monroe-PO. 20 1811.55 8.00 1.32 3.22 0.64 0.58 4.35 15.95 134.45 89.80

Multiarm-Bl. 4 22465.75 14.50 5.26 4.16 1.90 0.88 0.00 0.00 7.25 11.00

Robot 11 186.73 15.00 0.01 4.25 0.55 0.45 2.91 3.09 0.00 13.00

Rover 23 826.22 4.57 1.44 2.07 0.23 0.30 0.04 0.04 0.00 43.43

Satellite 16 1562.56 7.00 3.12 1.95 0.43 0.31 0.00 0.00 0.00 7.00

Snake 20 244.20 8.55 1.00 2.44 0.56 0.59 0.00 0.00 0.00 7.00

Towers 9 19601.33 119.56 0.30 2.47 0.01 0.02 0.00 0.00 0.00 4.00

Transport 33 393.64 4.64 0.27 2.46 0.29 0.60 0.24 0.24 14.94 13.00

Woodworking 30 249.47 4.63 0.09 1.53 0.56 1.60 4.97 5.10 0.57 126.77

Table 9.4: Statistics overview of all IPC instances solved by Lilotane. From left
to right: Solved instances; created positions / layers / clauses; actions / reductions
/ pseudo-constants per position; retroactive prunings, operations pruned by these
prunings, dominated operations, inferred preconditions. All but the three “per
position” measures are arithmetic averages over all solved instances in the domain.
Measures for operations and pseudo-constants per position also include the objects
which are later removed again due to retroactive prunings or dominated operations.

Mean clause length Memory peak (GB)

min med mean max med mean

PANDA-totSAT 2.00 2.31 2.50 7.36 0.515 1.069
Tree-REX 2.46 2.66 3.13 12.89 0.369 0.790
Lilotane 2.25 2.95 3.15 5.56 0.026 0.128

Table 9.5: Aggregation over TOHTN planner statistics reported per instance.

200

List of Acronyms

AE Algorithm Engineering 4, 5
AI Artificial Intelligence 2, 21, 23, 127, 128
AMQ Approximate Membership Query 56, 75, 118
API Application Programming Interface 52, 53
AWS Amazon Web Services 101, 105, 120

CBS Count Based Speedup 36, 94, 96
CDCL Conflict-Driven Clause Learning 15–18, 20, 24, 28, 30, 80, 104
CDF Cumulative Distribution Function 38, 88, 162, 167

CNF Conjunctive Normal Form 12–14, 23, 34, 81, 109, 110, 115, 116, 148,
149, 151

CPU Central Processing Unit 37, 43, 44, 58, 59, 83, 90, 91, 180
CSAR Commonly Solved Average Runtime 35, 84, 85, 87–90

DAG Directed Acyclic Graph 15, 32

DIMACS Center for Discrete Mathematics and Theoretical Computer Science
34, 109

DP Davis-Putnam 14–16
DPLL Davis-Putnam-Logemann-Loveland 14–18, 24

DRAT Delete Reverse Asymmetric Tautology 109, 110, 112, 120, 122, 124,
125, 188

GPU Graphical Processing Unit 180

HDDL Hierarchical Domain Description Language 155, 198
HPC High Performance Computing v, vii, 4, 5, 11, 43, 101, 177, 180, 181
HTN Hierarchical Task Network xiii, 127–133, 135, 154, 155, 159, 179

IPASIR Re-entrant Incremental Satisfiability Application Program Interface
23, 155, 165, 168, 180

IPC International Planning Competition 6, 128, 129, 131, 135, 159–163,
166–169, 171, 179, 198–200

IPC Inter-Process Communication 82, 168

ISC International SAT Competition 2, 25, 27, 31, 32, 37–39, 59, 66, 67,
79, 81, 83, 84, 90, 94, 95, 97–104, 108, 120, 123, 186

201

List of Acronyms

LBD Literal Block Distance xii, 17, 19, 28, 29, 31, 32, 66, 68–70, 73, 74,
78, 79, 84, 87

LRAT Linear Reverse Asymmetric Tautology 108–111, 115–120, 122, 124,
125, 179

MPI Message Passing Interface 10, 32, 52–54, 58, 69, 82–84, 100, 101,
169

NUMA Non-Uniform Memory Access 9

OOS Optimal Offline Schedule 99, 100

PAR Penalized Average Runtime 34, 35, 39, 83–91, 95–99, 102, 104, 121

QBF Quantified Boolean Formula 7, 22–24, 136, 178, 179

RAM Random Access Memory 9, 67, 82, 84, 85, 87, 101, 120, 155, 161

SAT Propositional Satisfiability v–viii, xi–xiv, 1–7, 9, 12–35, 37–39, 41–
44, 48, 52, 55–59, 63, 65–70, 72, 74, 76, 78–86, 88, 90–92, 94–98,
100–105, 107–110, 112, 114, 116, 118, 120–122, 124, 125, 127–130,
132, 134–136, 138, 140, 142, 144, 146–148, 150–152, 154–156, 158–160,
162–175, 177–180, 199

SMT Satisfiability Modulo Theories 7, 22, 178, 179

TOHTN Totally Ordered Hierarchical Task Network vi, viii, xiii, 6, 7, 56,
128–132, 135, 136, 145, 152, 154, 155, 163–166, 177–179, 193, 194,
200

VBS Virtual Best Solver 26

202

Publications and Supervised Theses

In Conference Proceedings

Dominik Schreiber, Damien Pellier, Humbert Fiorino, and Tomáš Balyo. “Efficient
SAT Encodings for Hierarchical Planning”. In: Proc. ICAART. 2019, pp. 531–538.
doi: 10.5220/0007343305310538

Dominik Schreiber, Damien Pellier, Humbert Fiorino, and Tomáš Balyo. “Tree-REX:
SAT-based tree exploration for efficient and high-quality HTN planning”. In: Proc.
ICAPS. 2019, pp. 382–390. doi: 10.1609/icaps.v29i1.3502

Nils Froleyks, Tomáš Balyo, and Dominik Schreiber. “PASAR—Planning as Sat-
isfiability with Abstraction Refinement”. In: Proc. SoCS. 2019, pp. 70–78. url:
https://ojs.aaai.org/index.php/SOCS/article/download/18504/18295

Kai Fieger, Tomas Balyo, Christian Schulz, and Dominik Schreiber. “Finding optimal
longest paths by dynamic programming in parallel”. In: Proc. SoCS. 2019, pp. 61–69.
url: https://ojs.aaai.org/index.php/SOCS/article/download/18503/18294/
22019

Dominik Schreiber and Peter Sanders. “Scalable SAT Solving in the Cloud”. In: Proc.
SAT. Springer. 2021, pp. 518–534. doi: 10.1007/978-3-030-80223-3_35

Peter Sanders and Dominik Schreiber. “Decentralized online scheduling of malleable
NP-hard jobs”. In: Proc. Euro-Par. Springer. 2022, pp. 119–135. doi: 10.1007/978-
3-031-12597-3_8. Nominated for a Best Paper Award.

Dawn Michaelson, Dominik Schreiber, Marijn J. H. Heule, Benjamin Kiesl-Reiter,
and Michael W. Whalen. “Unsatisfiability proofs for distributed clause-sharing SAT
solvers”. In: Proc. TACAS. Springer. 2023, pp. 348–366. doi: 10.1007/978-3-031-
30823-9_18. Nominated for a Best Paper Award.

Journal Articles

Dominik Schreiber. “Lilotane: A Lifted SAT-Based Approach to Hierarchical Plan-
ning”. In: JAIR 70 (2021), pp. 1117–1181. doi: 10.1613/jair.1.12520

Peter Sanders and Dominik Schreiber. “Mallob: Scalable SAT Solving On Demand
With Decentralized Job Scheduling”. In: JOSS 7.76 (2022), p. 4591. doi: 10.21105/
joss.04591

203

https://doi.org/10.5220/0007343305310538
https://doi.org/10.1609/icaps.v29i1.3502
https://ojs.aaai.org/index.php/SOCS/article/download/18504/18295
https://ojs.aaai.org/index.php/SOCS/article/download/18503/18294/22019
https://ojs.aaai.org/index.php/SOCS/article/download/18503/18294/22019
https://doi.org/10.1007/978-3-030-80223-3_35
https://doi.org/10.1007/978-3-031-12597-3_8
https://doi.org/10.1007/978-3-031-12597-3_8
https://doi.org/10.1007/978-3-031-30823-9_18
https://doi.org/10.1007/978-3-031-30823-9_18
https://doi.org/10.1613/jair.1.12520
https://doi.org/10.21105/joss.04591
https://doi.org/10.21105/joss.04591

Publications and Supervised Theses

Technical Reports

Nils Froleyks, Tomáš Balyo, and Dominik Schreiber. “PASAR Entering the Sparkle
Planning Challenge 2019”. In: Proc. Sparkle Planning Challenge 2019. 2019

Dominik Schreiber. “Engineering HordeSat towards malleability: mallob-mono in the
SAT 2020 cloud track”. In: Proc. SAT Competition. 2020, pp. 45–46

Dominik Schreiber. “Lifted logic for task networks: TOHTN planner Lilotane in the
IPC 2020”. In: Proc. International Planning Competition. 2021, pp. 9–12

Malte Sönnichsen and Dominik Schreiber. “The “Factories” HTN Domain”. In: Proc.
International Planning Competition. 2021, pp. 45–46

Dominik Schreiber. “Mallob in the SAT Competition 2021”. In: Proc. SAT Competi-

tion. 2021, pp. 38–39

Dominik Schreiber. “Mallob in the SAT Competition 2022”. In: Proc. SAT Competi-

tion. 2022, pp. 46–47

Dominik Schreiber. “Mallob{32,64,1600} in the SAT Competition 2023”. In: Proc.
SAT Competition. 2023, pp. 46–47

Theses

Dominik Schreiber. “Energieeffiziente Ausführung von qualitätsbewussten Algorithmen
für Mobile Simulationen”. Bachelor’s thesis. Universität Stuttgart, 2016

Dominik Schreiber. “Hierarchical task network planning using SAT techniques”.
Master’s thesis. Grenoble Institut National Polytechnique (INP) and Karlsruhe
Institute of Technology (KIT), 2018. doi: 10.5445/IR/1000104165

Supervised Theses

Samuel Born. “Sharing Clauses Across Different Problems in Distributed SAT Solving”.
Bachelor’s thesis. Karlsruhe Institute of Technology (KIT), 2023

Michael Dörr. “K-Means in a Malleable Distributed Environment”. Bachelor’s thesis.
Karlsruhe Institute of Technology (KIT), 2022

Nils Froleyks. “PASAR—Planning as Satisfiability with Abstraction Refinement”.
Master’s thesis. Karlsruhe Institute of Technology (KIT), 2020. Faculty Prize for best

student thesis.

Tan Grumser. “Engineering Optimal Solvers for Rubik’s Cubes”. Bachelor’s thesis.
Karlsruhe Institute of Technology (KIT), 2022

Jean-Pierre von der Heydt. “Cube&Conquer-inspired Techniques for Parallel Au-
tomated Planning”. Bachelor’s thesis. Karlsruhe Institute of Technology (KIT),
2019

Jens Manig. “Kompressionstechniken für Beschreibungen von SAT Formeln”. Bache-
lor’s thesis. Karlsruhe Institute of Technology (KIT), 2019

204

https://doi.org/10.5445/IR/1000104165

Publications and Supervised Theses

Ha Phuong Nguyen. “An Empirical Study on Clause Selection and Filtering in
Distributed SAT Solving”. Bachelor’s thesis. Karlsruhe Institute of Technology (KIT),
2023

Maximilian Schick. “Cube&Conquer-inspired Malleable Distributed SAT Solving”.
Master’s thesis. Karlsruhe Institute of Technology (KIT), 2021

Nikolai Schnell. “Pruning Techniques for Lifted SAT-based Hierarchical Planning”.
Master’s thesis. Karlsruhe Institute of Technology (KIT), 2021

Malte Sönnichsen. “Asynchronous Clause Exchange for Malleable SAT Solving”.
Master’s thesis. Karlsruhe Institute of Technology (KIT), 2021

Niko Wilhelm. “Malleable Distributed Hierarchical Planning”. Master’s thesis. Karl-
sruhe Institute of Technology (KIT), 2022

Marvin Williams. “Partially Instantiated Representations for Automated Planning”.
Master’s thesis. Karlsruhe Institute of Technology (KIT), 2020

205

Bibliography

All URLs have last been accessed September 20, 2023.

[ABA15] Ron Alford, Pascal Bercher, and David Aha. “Tight bounds for HTN planning”.
In: Proc. ICAPS. 2015, pp. 7–15. doi: 10.1609/icaps.v25i1.13721.

[see pages 56, 129, 132, 165]

[AC12] Alejandro Arbelaez and Philippe Codognet. “Massively parallel local search for
SAT”. In: Proc. ICTAI. IEEE. 2012, pp. 57–64. [see pages 32, 34]

[AHL08] Roland Axelsson, Keijo Heljanko, and Martin Lange. “Analyzing context-free
grammars using an incremental SAT solver”. In: Proc. ICALP. Springer. 2008,
pp. 410–422. doi: 10.1007/978-3-540-70583-3_34. [see pages 22, 23, 168]

[Aig+13] Martin Aigner, Armin Biere, Christoph M. Kirsch, et al. “Analysis of Portfolio-
Style Parallel SAT Solving on Current Multi-Core Architectures.” In: Proc.
Pragmatics of SAT. 2013, pp. 28–40. doi: 10.29007/73n4. [see pages 26, 32]

[AKS83] Miklós Ajtai, János Komlós, and Endre Szemerédi. “Sorting in logn Parallel
Steps”. In: Combinatorica 3.1 (1983), pp. 1–19: Springer. doi: 10.1109/tc.
1985.5009385. [see page 47]

[Alo+09] Daniel Aloise, Amit Deshpande, Pierre Hansen, and Preyas Popat. “NP-hardness
of Euclidean sum-of-squares clustering”. In: Machine learning 75 (2009), pp. 245–
248: Springer. doi: 10.1007/s10994-009-5103-0. [see page 57]

[Alq+18] Ahmed Alquraan, Hatem Takruri, Mohammed Alfatafta, and Samer Al-Kiswany.
“An Analysis of Network-Partitioning Failures in Cloud Systems”. In: Proc. Symp.
Operating Systems Design and Implementation. 2018, pp. 51–68. [see page 43]

[ALS13] Gilles Audemard, Jean-Marie Lagniez, and Laurent Simon. “Improving glucose
for incremental SAT solving with assumptions: Application to MUS extraction”.
In: Proc. SAT. Springer. 2013, pp. 309–317. doi: 10.1007/978-3-642-39071-
5_23. [see page 23]

[AS09] Gilles Audemard and Laurent Simon. “Predicting learnt clauses quality in
modern SAT solvers”. In: Proc. IJCAI. 2009, pp. 399–404.

[see pages 2, 17, 28, 32, 38, 39, 78–80, 155]

[AS12] Gilles Audemard and Laurent Simon. “Refining restarts strategies for SAT and
UNSAT”. In: Proc. CP. Springer. 2012, pp. 118–126. doi: 10.1007/978-3-642-
33558-7_11. [see pages 16, 17, 19]

207

https://doi.org/10.1609/icaps.v25i1.13721
https://doi.org/10.1007/978-3-540-70583-3_34
https://doi.org/10.29007/73n4
https://doi.org/10.1109/tc.1985.5009385
https://doi.org/10.1109/tc.1985.5009385
https://doi.org/10.1007/s10994-009-5103-0
https://doi.org/10.1007/978-3-642-39071-5_23
https://doi.org/10.1007/978-3-642-39071-5_23
https://doi.org/10.1007/978-3-642-33558-7_11
https://doi.org/10.1007/978-3-642-33558-7_11

Bibliography

[AS14] Gilles Audemard and Laurent Simon. “Lazy clause exchange policy for parallel
SAT solvers”. In: Proc. SAT. Springer. 2014, pp. 197–205. doi: 10.1007/978-
3-319-09284-3_15. [see pages 29, 74, 79, 80, 82]

[AS17a] Gilles Audemard and Laurent Simon. “Glucose and Syrup in the SAT’17”. In:
Proc. SAT Competition. 2017, pp. 16–17. [see pages 27, 29, 32]

[AS17b] Michael Axtmann and Peter Sanders. “Robust Massively Parallel Sorting”. In:
Proc. ALENEX. 2017, pp. 83–97. doi: 10.1137/1.9781611974768.7.

[see page 47]

[Aud+12] Gilles Audemard, Benôıt Hoessen, Said Jabbour, et al. “Revisiting clause
exchange in parallel SAT solving”. In: Proc. SAT. Springer. 2012, pp. 200–213.
doi: 10.1007/978-3-642-31612-8_16. [see page 28]

[Aud+14] Gilles Audemard, Benôıt Hoessen, Said Jabbour, and Cédric Piette. “Dolius: A
Distributed Parallel SAT Solving Framework.” In: Proc. Pragmatics of SAT.
Citeseer. 2014, pp. 1–11. doi: 10.29007/hvqt. [see page 31]

[Aud+16] Gilles Audemard, Jean-Marie Lagniez, Nicolas Szczepanski, and Sébastien
Tabary. “An adaptive parallel SAT solver”. In: Proc. CP. Springer. 2016, pp. 30–
48. doi: 10.1007/978-3-319-44953-1_3. [see pages 25, 27, 29]

[Aud+17] Gilles Audemard, Jean-Marie Lagniez, Nicolas Szczepanski, and Sébastien
Tabary. “A distributed version of syrup”. In: Proc. SAT. Springer. 2017, pp. 215–
232. doi: 10.1007/978-3-319-66263-3_14.

[see pages 27, 29, 32, 67, 68, 70, 89]

[BA05] Nate Blaylock and James Allen. “Generating artificial corpora for plan recogni-
tion”. In: Int. Conf. User Modeling. Springer. 2005, pp. 179–188. doi: 10.1007/
11527886_24. [see page 160]

[BAH19] Pascal Bercher, Ron Alford, and Daniel Höller. “A Survey on Hierarchical
Planning – One Abstract Idea, Many Concrete Realizations”. In: Proc. IJCAI.
2019, pp. 6267–6275. doi: 10.24963/ijcai.2019/875. [see pages 6, 128, 135]

[Bal+15] Adrian Balint, Anton Belov, Matti Järvisalo, and Carsten Sinz. “Overview and
analysis of the SAT Challenge 2012 solver competition”. In: Artificial Intelligence
223 (2015), pp. 120–155: Elsevier. doi: 10.1016/j.artint.2015.01.002.

[see page 39]

[Bal+16] Tomáš Balyo, Armin Biere, Markus Iser, and Carsten Sinz. “SAT race 2015”. In:
Artificial Intelligence 241 (2016), pp. 45–65: Elsevier. doi: 10.1016/j.artint.
2016.08.007. [see pages 23, 27]

[Bal+20a] Tomáš Balyo, Nils Froleyks, Marijn J. H. Heule, et al. SAT Competition. Ac-
cessed: 2021-03-19. 2020. url: https://satcompetition.github.io/2020/.

[see page 101]

[Bal+20b] Tomáš Balyo, Nils Froleyks, Marijn J. H. Heule, et al. The Results of SAT
Competition 2020. 2020. url: https://satcompetition.github.io/2020/
downloads/satcomp20slides.pdf. [see pages 101, 102]

[Bal+21a] Tomáš Balyo, Nils Froleyks, Marijn J. H. Heule, et al., eds. Proceedings of
SAT Competition 2021: Solver and Benchmark Descriptions. Department of
Computer Science, University of Helsinki, 2021. [see page 84]

208

https://doi.org/10.1007/978-3-319-09284-3_15
https://doi.org/10.1007/978-3-319-09284-3_15
https://doi.org/10.1137/1.9781611974768.7
https://doi.org/10.1007/978-3-642-31612-8_16
https://doi.org/10.29007/hvqt
https://doi.org/10.1007/978-3-319-44953-1_3
https://doi.org/10.1007/978-3-319-66263-3_14
https://doi.org/10.1007/11527886_24
https://doi.org/10.1007/11527886_24
https://doi.org/10.24963/ijcai.2019/875
https://doi.org/10.1016/j.artint.2015.01.002
https://doi.org/10.1016/j.artint.2016.08.007
https://doi.org/10.1016/j.artint.2016.08.007
https://satcompetition.github.io/2020/
https://satcompetition.github.io/2020/downloads/satcomp20slides.pdf
https://satcompetition.github.io/2020/downloads/satcomp20slides.pdf

Bibliography

[Bal+21b] Tomáš Balyo, Nils Froleyks, Marijn J. H. Heule, et al. The Results of SAT
Competition 2021. 2021. url: https://satcompetition.github.io/2021/
slides/ISC2021-fixed.pdf. [see page 102]

[Bal+22a] Tomáš Balyo, Marijn J. H. Heule, Markus Iser, et al., eds. Proceedings of
SAT Competition 2022: Solver and Benchmark Descriptions. Department of
Computer Science, University of Helsinki, 2022. [see page 84]

[Bal+22b] Tomáš Balyo, Marijn J. H. Heule, Markus Iser, et al. The Results of SAT
Competition 2022. 2022. url: https://satcompetition.github.io/2022/
slides/satcomp22slides.pdf. [see pages 102, 103]

[Bal+23a] Tomáš Balyo, Nils Froleyks, Marijn J. H. Heule, et al. SAT Competition. Ac-
cessed: 2023-08-04. 2023. url: https://satcompetition.github.io/2023/.

[see pages 2, 31, 102, 180]

[Bal+23b] Tomáš Balyo, Marijn J. H. Heule, Markus Iser, et al. The Results of SAT
Competition 2023. 2023. url: https://satcompetition.github.io/2023/
downloads/satcomp23slides.pdf. [see pages 30, 104]

[BBH20] Gregor Behnke, Pascal Bercher, and Daniel Höller. Plan Verification. 2020. url:
http://gki.informatik.uni-freiburg.de/ipc2020/format.pdf.

[see page 131]

[Beh+20] Gregor Behnke, Daniel Höller, Alexander Schmid, et al. “On Succinct Ground-
ings of HTN Planning Problems”. In: Proc. AAAI. 2020, pp. 9775–9784. doi:
10.1609/aaai.v34i06.6529. [see pages 128, 132, 133, 135, 155, 156]

[Beh+22] Gregor Behnke, Florian Pollitt, Daniel Höller, et al. “Making translations to
classical planning competitive with other HTN planners”. In: Proc. AAAI. 2022,
pp. 9687–9697. doi: 10.1609/aaai.v36i9.21203. [see page 179]

[Beh21] Gregor Behnke. “Block compression and invariant pruning for SAT-based totally-
ordered HTN planning”. In: Proc. ICAPS. 2021, pp. 25–35. doi: 10.1609/icaps.
v31i1.15943. [see page 179]

[Bel+14] Anton Belov, Daniel Diepold, Marijn J. H. Heule, and Matti Järvisalo. SAT
Competition. 2014. url: http://satcompetition.org/2014/index.shtml.

[see page 25]

[Ber+00] Petra Berenbrink, Artur Czumaj, Angelika Steger, and Berthold Vöcking. “Bal-
anced allocations: The heavily loaded case”. In: Proc. ACM Symp. on Theory
of computing. 2000, pp. 745–754. doi: 10.1145/335305.335411. [see page 50]

[Bev+15] Giuseppe Bevacqua, Jonathan Cacace, Alberto Finzi, and Vincenzo Lippiello.
“Mixed-initiative planning and execution for multiple drones in search and rescue
missions”. In: Proc. ICAPS. 2015, pp. 315–323. doi: 10.1609/icaps.v25i1.
13700. [see page 128]

[Bey+21] Olaf Beyersdorff, Mikoláš Janota, Florian Lonsing, and Martina Seidl. “Quanti-
fied boolean formulas”. In: Handbook of Satisfiability. IOS Press, 2021, pp. 1177–
1221. doi: 10.3233/faia200987. [see pages 23, 24]

[BF15] Armin Biere and Andreas Fröhlich. “Evaluating CDCL variable scoring schemes”.
In: Proc. SAT. Springer. 2015, pp. 405–422. doi: 10.1007/978-3-319-24318-
4_29. [see page 18]

209

https://satcompetition.github.io/2021/slides/ISC2021-fixed.pdf
https://satcompetition.github.io/2021/slides/ISC2021-fixed.pdf
https://satcompetition.github.io/2022/slides/satcomp22slides.pdf
https://satcompetition.github.io/2022/slides/satcomp22slides.pdf
https://satcompetition.github.io/2023/
https://satcompetition.github.io/2023/downloads/satcomp23slides.pdf
https://satcompetition.github.io/2023/downloads/satcomp23slides.pdf
http://gki.informatik.uni-freiburg.de/ipc2020/format.pdf
https://doi.org/10.1609/aaai.v34i06.6529
https://doi.org/10.1609/aaai.v36i9.21203
https://doi.org/10.1609/icaps.v31i1.15943
https://doi.org/10.1609/icaps.v31i1.15943
http://satcompetition.org/2014/index.shtml
https://doi.org/10.1145/335305.335411
https://doi.org/10.1609/icaps.v25i1.13700
https://doi.org/10.1609/icaps.v25i1.13700
https://doi.org/10.3233/faia200987
https://doi.org/10.1007/978-3-319-24318-4_29
https://doi.org/10.1007/978-3-319-24318-4_29

Bibliography

[BF20] Armin Biere and Mathias Fleury. “Chasing target phases”. In: Proc. Pragmatics
of SAT. 2020. [see page 18]

[BF22a] Tomáš Balyo and Nils Froleyks. “AI Assisted Design of Sokoban Puzzles Using
Automated Planning”. In: Proc. ArtsIT. Springer. 2022, pp. 424–441. doi:
10.1007/978-3-030-95531-1_29. [see page 127]

[BF22b] Armin Biere and Mathias Fleury. “Gimsatul, IsaSAT, Kissat Entering the SAT
Competition 2022”. In: Proc. SAT Competition. 2022, pp. 10–11.

[see pages 3, 30, 33, 108, 120]

[BFH21] Armin Biere, Mathias Fleury, and Maximilian Heisinger. “CaDiCaL, Kissat,
Paracooba entering the SAT Competition 2021”. In: Proc. SAT Competition.
2021, pp. 10–12. [see page 15]

[BFP23] Armin Biere, Mathias Fleury, and Florian Pollitt. “CaDiCaL vivinst, IsaSAT,
Gimsatul, Kissat, and TabularaSAT Entering the SAT Competition 2023”. In:
Proc. SAT Competition. 2023, p. 14. [see page 120]

[BG20] Blai Bonet and Hector Geffner. “Learning First-Order Symbolic Representations
for Planning from the Structure of the State Space”. In: Proc. ECAI. 2020.

[see page 136]

[BGP17] Felix Brandt, Christian Geist, and Dominik Peters. “Optimal bounds for the
no-show paradox via SAT solving”. In: Mathematical Social Sciences 90 (2017),
pp. 18–27: Elsevier. doi: 10.1016/j.mathsocsci.2016.09.003. [see page 21]

[BH19] Armin Biere and Marijn J. H. Heule. “The Effect of Scrambling CNFs”. In:
Proc. Pragmatics of SAT. 2019, pp. 111–126. [see pages 39, 81]

[BHB18] Gregor Behnke, Daniel Höller, and Susanne Biundo. “totSAT – Totally-ordered
hierarchical planning through SAT”. In: Proc. AAAI. 2018, pp. 6110–6118. doi:
10.1609/aaai.v32i1.12083. [see pages 128, 135, 155]

[BHB19a] Gregor Behnke, Daniel Höller, and Susanne Biundo. “Bringing order to chaos
– A compact representation of partial order in SAT-based HTN planning”.
In: Proc. AAAI. 2019, pp. 7520–7529. doi: 10.1609/aaai.v33i01.33017520.

[see pages 128, 135]

[BHB19b] Gregor Behnke, Daniel Höller, and Susanne Biundo. “Finding Optimal Solutions
in HTN Planning – A SAT-based Approach”. In: Proc. IJCAI. 2019, pp. 5500–
5508. doi: 10.24963/ijcai.2019/764. [see pages 128, 135, 154, 155]

[BHB21] Gregor Behnke, Daniel Höller, and Pascal Bercher, eds. Proceedings of the
10th International Planning Competition: Planner and Domain Abstracts –
Hierarchical Task Network (HTN) Planning Track (IPC 2020). 2021. url: https:
//ipc2020.hierarchical- task.net/publications/IPC2020Booklet.pdf.

[see pages 128, 129, 135, 159]

[BHJ17] Tomás Balyo, Marijn J. H. Heule, and Matti Jarvisalo. “SAT Competition 2016:
Recent developments”. In: Proc. AAAI. 2017. doi: 10.1609/aaai.v31i1.10641.

[see page 27]

[BIB22] Jakob Bach, Markus Iser, and Klemens Böhm. “A Comprehensive Study of
k-Portfolios of Recent SAT Solvers”. In: Proc. Pragmatics of SAT. 2022.

[see pages 27, 34, 79, 105]

210

https://doi.org/10.1007/978-3-030-95531-1_29
https://doi.org/10.1016/j.mathsocsci.2016.09.003
https://doi.org/10.1609/aaai.v32i1.12083
https://doi.org/10.1609/aaai.v33i01.33017520
https://doi.org/10.24963/ijcai.2019/764
https://ipc2020.hierarchical-task.net/publications/IPC2020Booklet.pdf
https://ipc2020.hierarchical-task.net/publications/IPC2020Booklet.pdf
https://doi.org/10.1609/aaai.v31i1.10641

Bibliography

[Bie+20a] Armin Biere, Katalin Fazekas, Mathias Fleury, and Maximilian Heisinger.
“CaDiCaL, Kissat, Paracooba, Plingeling and Treengeling entering the SAT
Competition 2020”. In: Proc. SAT Competition. 2020, p. 50.

[see pages 2, 16, 17, 19, 29, 78–80, 108, 118]

[Bie+20b] Armin Biere, Matti Järvisalo, Daniel Le Berre, et al. The SAT Practitioner’s
Manifesto. Version 1.0. 2020. doi: 10.5281/zenodo.4500928. [see page 103]

[Bie+21] Armin Biere, Marijn J. H. Heule, Hans van Maaren, and Toby Walsh. Hand-
book of Satisfiability. 2nd ed. Vol. 185. Frontiers in Artificial Intelligence and
Applications. IOS Press, 2021. doi: 10.3233/faia336. [see page 12]

[Bie+22] Armin Biere, Md Solimul Chowdhury, Marijn J. H. Heule, et al. “Migrating
Solver State”. In: Proc. SAT. 2022. doi: 10.4230/LIPIcs.SAT.2022.27.

[see pages 33, 44]

[Bie+99] Armin Biere, Alessandro Cimatti, Edmund Clarke, and Yunshan Zhu. “Symbolic
model checking without BDDs”. In: Proc. TACAS. Springer. 1999, pp. 193–207.
doi: 10.1007/3-540-49059-0_14. [see page 22]

[Bie10] Armin Biere. “Lingeling, Plingeling, Picosat and Precosat at SAT race 2010”.
In: Proc. SAT Competition. 2010. [see pages 3, 17, 27–29, 79]

[Bie12] Armin Biere. “Lingeling and friends entering the SAT Challenge 2012”. In: Proc.
SAT Challenge. 2012, pp. 33–34. [see pages 25, 79, 83]

[Bie13] Armin Biere. “Lingeling, Plingeling and Treengeling entering the SAT competi-
tion 2013”. In: Proc. SAT Competition. 2013, p. 1. [see pages 28, 29, 79, 80]

[Bie14] Armin Biere. “Yet another local search solver and Lingeling and friends entering
the SAT Competition 2014”. In: Proc. SAT Competition. 2014, p. 65.

[see pages 25, 29, 79]

[Bie15] Armin Biere. “Lingeling and Friends Entering the SAT Race 2015”. In: FMV
Reports Series. 2015. doi: 10.35011/fmvtr.2015-2. [see page 79]

[Bie16a] Armin Biere. “Collection of combinational arithmetic miters submitted to
the SAT Competition 2016”. In: Proc. SAT Competition. 2016, pp. 65–66.

[see page 2]

[Bie16b] Armin Biere. “Splatz, Lingeling, Plingeling, Treengeling, YalSAT entering the
SAT competition 2016”. In: Proc. SAT Competition. 2016, pp. 44–45.

[see pages 3, 82]

[Bie17] Armin Biere. “CaDiCaL, Lingeling, Plingeling, Treengeling and YalSAT Entering
the SAT Competition 2017”. In: Proc. SAT Competition. 2017.

[see pages 17, 80, 155]

[Bie18] Armin Biere. “CaDiCaL, Lingeling, Plingeling, Treengeling and YalSAT entering
the SAT competition 2018”. In: Proc. SAT Competition. 2018, pp. 14–15.

[see pages 16, 18, 19, 79, 80, 83]

[Bie19] Armin Biere. “CaDiCaL at the SAT race 2019”. In: Proc. SAT Race. 2019,
pp. 8–9. [see pages 18, 19]

[Bie21] Armin Biere. “CNF Encodings of Complete Pairwise Combinatorial Testing of
our SAT Solver SATCH”. In: Proc. SAT Competition. 2021, p. 46.

[see pages 21, 94, 108]

211

https://doi.org/10.5281/zenodo.4500928
https://doi.org/10.3233/faia336
https://doi.org/10.4230/LIPIcs.SAT.2022.27
https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.35011/fmvtr.2015-2

Bibliography

[Bie22] Armin Biere. Kissat SAT Solver. 2022. url: http://fmv.jku.at/kissat/.
[see page 38]

[Bir+15] Mark S. Birrittella, Mark Debbage, Ram Huggahalli, et al. “Intel® omni-path
architecture: Enabling scalable, high performance fabrics”. In: Proc. IEEE Symp.
High-Performance Interconnects. IEEE. 2015, pp. 1–9. doi: 10.1109/HOTI.2015.
22. [see pages 10, 58]

[BJK21] Armin Biere, Matti Järvisalo, and Benjamin Kiesl. “Preprocessing in SAT
Solving”. In: Handbook of Satisfiability. IOS Press, 2021, pp. 391–435. doi:
10.3233/faia200987. [see page 19]

[BK92] Michael Buro and Hans Kleine-Büning. Report on a SAT competition. Fach-
bereich Math.-Informatik, Univ. Gesamthochschule Paderborn, Germany, 1992.

[see page 37]

[BKS04] Paul Beame, Henry Kautz, and Ashish Sabharwal. “Towards understanding and
harnessing the potential of clause learning”. In: JAIR 22 (2004), pp. 319–351.
doi: 10.1613/jair.1410. [see page 16]

[BL16] Tomáš Balyo and Florian Lonsing. “HordeQBF: A modular and massively
parallel QBF solver”. In: Proc. SAT. Springer. 2016, pp. 531–538. doi: 10.1007/
978-3-319-40970-2_33. [see page 178]

[BL99] Robert D. Blumofe and Charles E. Leiserson. “Scheduling multithreaded com-
putations by work stealing”. In: J. ACM 46.5 (1999), pp. 720–748. doi: 10.
1145/324133.324234. [see page 25]

[Bla+04] Jacek Blazewicz, Maciej Machowiak, Jan Weglarz, et al. “Scheduling malleable
tasks on parallel processors to minimize the makespan”. In: Annals of Operations
Research 129.1-4 (2004), p. 65: Springer. doi: 10.1023/b:anor.0000030682.
25673.c0. [see pages 43, 179]

[Bla+06] Jacek Blazewicz, Mikhail Y. Kovalyov, Maciej Machowiak, et al. “Preemptable
malleable task scheduling problem”. In: IEEE Transactions on Computers 55.4
(2006), pp. 486–490: IEEE. doi: 10.1109/tc.2006.58. [see page 43]

[Bla+19] Jacek Blazewicz, Klaus Ecker, Erwin Pesch, et al. Handbook on scheduling.
Springer, 2019. doi: 10.1007/978-3-319-99849-7. [see page 43]

[BLB10] Robert Brummayer, Florian Lonsing, and Armin Biere. “Automated testing and
debugging of SAT and QBF solvers”. In: Proc. SAT. Springer. 2010, pp. 44–57.
doi: 10.1007/978-3-642-14186-7_6. [see page 108]

[Ble96] Guy E. Blelloch. “Programming parallel algorithms”. In: Comm. ACM 39.3
(1996), pp. 85–97: ACM. doi: 10.1145/227234.227246. [see page 11]

[Blo70] Burton H. Bloom. “Space/time trade-offs in hash coding with allowable errors”.
In: Comm. ACM 13.7 (1970), pp. 422–426: ACM. doi: 10.1145/362686.362692.

[see pages 31, 75, 118]

[Bog+23] Bart Bogaerts, Jakob Nordström, Andy Oertel, and Cagrı Uluç Yıldırımoglu.
“Crafted Benchmark Formulas Requiring Symmetry Breaking and/or Parity
Reasoning”. In: Proc. SAT Competition. 2023, p. 67. [see page 104]

[Boo47] George Boole. The mathematical analysis of logic. Philosophical Library, 1847.
[see page 1]

212

http://fmv.jku.at/kissat/
https://doi.org/10.1109/HOTI.2015.22
https://doi.org/10.1109/HOTI.2015.22
https://doi.org/10.3233/faia200987
https://doi.org/10.1613/jair.1410
https://doi.org/10.1007/978-3-319-40970-2_33
https://doi.org/10.1007/978-3-319-40970-2_33
https://doi.org/10.1145/324133.324234
https://doi.org/10.1145/324133.324234
https://doi.org/10.1023/b:anor.0000030682.25673.c0
https://doi.org/10.1023/b:anor.0000030682.25673.c0
https://doi.org/10.1109/tc.2006.58
https://doi.org/10.1007/978-3-319-99849-7
https://doi.org/10.1007/978-3-642-14186-7_6
https://doi.org/10.1145/227234.227246
https://doi.org/10.1145/362686.362692

Bibliography

[Bor23] Samuel Born. “Sharing Clauses Across Different Problems in Distributed SAT
Solving”. Bachelor’s thesis. Karlsruhe Institute of Technology (KIT), 2023.

[see page 204]

[BS18] Tomáš Balyo and Carsten Sinz. “Parallel Satisfiability”. In: Handbook of Parallel
Constraint Reasoning. Ed. by Youssef Hamadi and Lakhdar Sais. Springer, 2018.
Chap. 1. doi: 10.1007/978-3-319-63516-3_1.

[see pages 3, 24, 26, 28, 29, 31, 35, 37]

[BS21] Gregor Behnke and David Speck. “Symbolic search for optimal total-order HTN
planning”. In: Proc. AAAI. 2021, pp. 11744–11754. doi: 10.1609/aaai.v35i13.
17396. [see page 179]

[BS96] Max Böhm and Ewald Speckenmeyer. “A fast parallel SAT-solver – Efficient
workload balancing”. In: Annals of Mathematics and Artificial Intelligence 17
(1996), pp. 381–400: Springer. doi: 10.1007/bf02127976. [see pages 24, 31]

[BSA23] Gregor Behnke, Dominik Schreiber, and Ron Alford. IPC 2023 – HTN Tracks.
2023. url: https://ipc2023-htn.github.io/results-presentation.pdf.

[see page 179]

[BSK03] Wolfgang Blochinger, Carsten Sinz, and Wolfgang Küchlin. “Parallel propo-
sitional satisfiability checking with distributed dynamic learning”. In: Par-
allel Computing 29.7 (2003), pp. 969–994: Elsevier. doi: 10.1016/s0167-

8191(03)00068-1. [see page 25]

[BSS15] Tomáš Balyo, Peter Sanders, and Carsten Sinz. “Hordesat: A massively parallel
portfolio SAT solver”. In: Proc. SAT. Springer. 2015, pp. 156–172. doi: 10.
1007/978-3-319-24318-4_12.

[see pages 4–6, 26–29, 31, 32, 35–37, 39, 66–68, 74, 75, 81, 87, 91,
95, 108, 124]

[Bui+07] Jérémy Buisson, Ozan Sonmez, Hashim Mohamed, et al. “Scheduling malleable
applications in multicluster systems”. In: Proc. Cluster Computing. IEEE. 2007,
pp. 372–381. doi: 10.1109/clustr.2007.4629252. [see page 43]

[Bur+22] Mark Alexander Burgess, Charles Gretton, Josh Milthorpe, et al. “Dagster:
Parallel Structured Search with Case Studies”. In: Pacific Rim Int. Conf.
Artificial Intelligence. Springer. 2022, pp. 75–89. doi: 10.1007/978-3-031-
20862-1_6. [see pages 32, 65]

[BWS22] Colin Bretl, Niko Wilhelm, and Dominik Schreiber. “Parallel and Distributed
TOHTN Planning”. Student research project. 2022. [see pages 164, 165, 169]

[Byl94] Tom Bylander. “The computational complexity of propositional STRIPS plan-
ning”. In: Artificial Intelligence 69.1-2 (1994), pp. 165–204. doi: 10.1016/0004-
3702(94)90081-7. [see pages 21, 132]

[Cai+22] Shaowei Cai, Xindi Zhang, Mathias Fleury, and Armin Biere. “Better decision
heuristics in CDCL through local search and target phases”. In: JAIR 74 (2022),
pp. 1515–1563 . [see pages 2, 20]

[CF05] Colin Cooper and Alan Frieze. “The cover time of random regular graphs”.
In: J. Discrete Mathematics 18.4 (2005), pp. 728–740: SIAM. doi: 10.1137/
s0895480103428478. [see page 49]

213

https://doi.org/10.1007/978-3-319-63516-3_1
https://doi.org/10.1609/aaai.v35i13.17396
https://doi.org/10.1609/aaai.v35i13.17396
https://doi.org/10.1007/bf02127976
https://ipc2023-htn.github.io/results-presentation.pdf
https://doi.org/10.1016/s0167-8191(03)00068-1
https://doi.org/10.1016/s0167-8191(03)00068-1
https://doi.org/10.1007/978-3-319-24318-4_12
https://doi.org/10.1007/978-3-319-24318-4_12
https://doi.org/10.1109/clustr.2007.4629252
https://doi.org/10.1007/978-3-031-20862-1_6
https://doi.org/10.1007/978-3-031-20862-1_6
https://doi.org/10.1016/0004-3702(94)90081-7
https://doi.org/10.1016/0004-3702(94)90081-7
https://doi.org/10.1137/s0895480103428478
https://doi.org/10.1137/s0895480103428478

Bibliography

[CFG13] Michael Cashmore, Maria Fox, and Enrico Giunchiglia. “Partially grounded
planning as quantified Boolean formula”. In: Proc. ICAPS. 2013, pp. 29–36.
doi: 10.1609/icaps.v23i1.13549. [see pages 23, 136]

[Cho23] Md Solimul Chowdhury. “kissat-hywalk-gb, kissat-hywalk-exp, kissat-hywalk-
exp-gb, and malloblin Entering the SAT Competition-2023”. In: Proc. SAT
Competition. 2023, p. 28. [see pages 105, 178]

[CKL04] Edmund Clarke, Daniel Kroening, and Flavio Lerda. “A tool for checking ANSI-
C programs”. In: Proc. TACAS. Springer. 2004, pp. 168–176. doi: 10.1007/978-
3-540-24730-2_15. [see page 88]

[CL99] Miguel Castro and Barbara Liskov. “Practical byzantine fault tolerance”. In:
Proc. Symp. Operating Systems Design and Implementation. 1999, pp. 173–186.

[see page 181]

[Cla+01] Edmund Clarke, Armin Biere, Richard Raimi, and Yunshan Zhu. “Bounded
model checking using satisfiability solving”. In: Formal methods in system design
19 (2001), pp. 7–34: Springer. doi: 10.1023/A:1011276507260.

[see pages 2, 21, 22, 108]

[Col+12] Amanda Coles, Andrew Coles, Angel Garćıa Olaya, et al. “A survey of the
seventh international planning competition”. In: AI Magazine 33.1 (2012),
pp. 83–88. doi: 10.1609/aimag.v33i1.2392. [see page 163]

[Coo00] Stephen Cook. “The P versus NP problem”. In: Clay Mathematics Institute 2
(2000) . [see pages 1, 13]

[Coo21] Byron Cook. Automated reasoning’s scientific frontiers. 2021. url: https://
www.amazon.science/blog/automated-reasonings-scientific-frontiers.

[see pages 65, 103, 107, 178]

[Coo71] Stephen A. Cook. “The complexity of theorem-proving procedures”. In: Proc.
ACM Symp. on Theory of computing. 1971, pp. 151–158. doi: 10.1145/800157.
805047. [see pages 1, 13]

[Cor+20] Augusto B. Corrêa, Florian Pommerening, Malte Helmert, and Guillem Frances.
“Lifted Successor Generation Using Query Optimization Techniques”. In: Proc.
ICAPS. 2020, pp. 80–89. doi: 10.1609/icaps.v30i1.6648. [see page 140]

[CRB23] Cayden R. Codel, Joseph E. Reeves, and Randal E. Bryant. “Pigeon Hole
and Mutilated Chessboard with Mixed Constraint Encodings and Symmetry-
Breaking”. In: Proc. SAT Competition. 2023, p. 72. [see page 104]

[Cru+17] Luis Cruz-Filipe, Marijn J. H. Heule, Warren A. Hunt Jr., et al. “Efficient
Certified RAT Verification”. In: Proc. CADE. 2017, pp. 220–236. doi: 10.1007/
978-3-319-63046-5_14. [see pages 21, 108, 109]

[CV11] José Coelho and Mario Vanhoucke. “Multi-mode resource-constrained project
scheduling using RCPSP and SAT solvers”. In: European Journal of Operational
Research 213.1 (2011), pp. 73–82: Elsevier. doi: 10.1016/j.ejor.2011.03.019.

[see page 22]

[CW03] Wahid Chrabakh and Rich Wolski. “GrADSAT: A parallel SAT solver for the
grid”. In: Proc. IEEE SC03. 2003. [see pages 3, 25]

214

https://doi.org/10.1609/icaps.v23i1.13549
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1023/A:1011276507260
https://doi.org/10.1609/aimag.v33i1.2392
https://www.amazon.science/blog/automated-reasonings-scientific-frontiers
https://www.amazon.science/blog/automated-reasonings-scientific-frontiers
https://doi.org/10.1145/800157.805047
https://doi.org/10.1145/800157.805047
https://doi.org/10.1609/icaps.v30i1.6648
https://doi.org/10.1007/978-3-319-63046-5_14
https://doi.org/10.1007/978-3-319-63046-5_14
https://doi.org/10.1016/j.ejor.2011.03.019

Bibliography

[Dar20] Adnan Darwiche. “Three modern roles for logic in AI”. In: Proc. ACM SIGMOD-
SIGACT-SIGAI Symp. Principles of Database Systems. 2020, pp. 229–243. doi:
10.4204/eptcs.326.0.2. [see pages 2, 21]

[DEV07] Travis Desell, Kaoutar El Maghraoui, and Carlos A. Varela. “Malleable ap-
plications for scalable high performance computing”. In: Cluster Comput-
ing 10.3 (2007), pp. 323–337: Springer. doi: 10.1007/s10586-007-0032-9.

[see pages 41, 43, 44]

[DHK05] Nachum Dershowitz, Ziyad Hanna, and Jacob Katz. “Bounded model check-
ing with QBF”. In: Proc. SAT. Springer. 2005, pp. 408–414. doi: 10.1007/
11499107_32. [see page 23]

[DKW08] Vijay D’silva, Daniel Kroening, and Georg Weissenbacher. “A survey of au-
tomated techniques for formal software verification”. In: IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems 27.7 (2008),
pp. 1165–1178: IEEE. doi: 10.1109/tcad.2008.923410. [see page 22]

[DLL62] Martin Davis, George Logemann, and Donald Loveland. “A machine program
for theorem-proving”. In: Comm. ACM 5.7 (1962), pp. 394–397: ACM. doi:
10.1145/368273.368557. [see page 14]

[DM21] Adnan Darwiche and Pierre Marquis. “On quantifying literals in Boolean logic
and its applications to explainable AI”. In: JAIR 72 (2021), pp. 285–328. doi:
10.1613/jair.1.12756. [see page 23]

[Dör22] Michael Dörr. “K-Means in a Malleable Distributed Environment”. Bachelor’s
thesis. Karlsruhe Institute of Technology (KIT), 2022. [see pages 41, 57, 204]

[DP21] Adnan Darwiche and Knot Pipatsrisawat. “Complete Algorithms”. In: Handbook
of Satisfiability. IOS Press, 2021, pp. 101–132. doi: 10.3233/faia200987.

[see pages 14–16]

[DP60] Martin Davis and Hilary Putnam. “A computing procedure for quantification
theory”. In: JACM 7.3 (1960), pp. 201–215: ACM. doi: 10.1145/321033.321034.

[see page 14]

[EB05] Niklas Eén and Armin Biere. “Effective preprocessing in SAT through variable
and clause elimination”. In: Proc. SAT. Springer. 2005, pp. 61–75. doi: 10.
1007/11499107_5. [see page 19]

[Ehl+20] Thorsten Ehlers, Mitja Kulczynski, Dirk Nowotka, and Philipp Sieweck.
“TopoSAT 2”. In: Proc. SAT Competition. 2020, p. 60. [see pages 28, 32]

[EHN94] Kutluhan Erol, James Hendler, and Dana S. Nau. “HTN planning: Complexity
and expressivity”. In: Proc. AAAI. 1994, pp. 1123–1128. [see page 131]

[EHN96] Kutluhan Erol, James Hendler, and Dana S. Nau. “Complexity results for HTN
planning”. In: Annals of Mathematics and Artificial Intelligence 18.1 (1996),
pp. 69–93: Springer. doi: 10.1007/bf02136175. [see page 129]

[EME22] Johannes Erlacher, Florian Mendel, and Maria Eichlseder. “Bounds for the secu-
rity of ascon against differential and linear cryptanalysis”. In: IACR Transactions
on Symmetric Cryptology (2022), pp. 64–87. doi: 10.46586/tosc.v2022.i1.64-
87. [see page 178]

215

https://doi.org/10.4204/eptcs.326.0.2
https://doi.org/10.1007/s10586-007-0032-9
https://doi.org/10.1007/11499107_32
https://doi.org/10.1007/11499107_32
https://doi.org/10.1109/tcad.2008.923410
https://doi.org/10.1145/368273.368557
https://doi.org/10.1613/jair.1.12756
https://doi.org/10.3233/faia200987
https://doi.org/10.1145/321033.321034
https://doi.org/10.1007/11499107_5
https://doi.org/10.1007/11499107_5
https://doi.org/10.1007/bf02136175
https://doi.org/10.46586/tosc.v2022.i1.64-87
https://doi.org/10.46586/tosc.v2022.i1.64-87

Bibliography

[EMW97] Michael D. Ernst, Todd D. Millstein, and Daniel S. Weld. “Automatic SAT-
compilation of planning problems”. In: Proc. IJCAI. 1997, pp. 1169–1176.

[see page 136]

[EN16] Jan Elffers and Jakob Nordström. “Documentation of some combinatorial
benchmarks”. In: Proc. SAT Competition. 2016. [see page 94]

[EN19] Thorsten Ehlers and Dirk Nowotka. “Tuning parallel SAT solvers”. In: Proc.
Pragmatics of SAT. 2019, pp. 127–143. doi: 10.29007/z3g2.

[see pages 4, 29, 30, 32, 68, 78, 87]

[ENS14] Thorsten Ehlers, Dirk Nowotka, and Philipp Sieweck. “Communication in
massively-parallel SAT solving”. In: Proc. ICTAI. IEEE. 2014, pp. 709–716. doi:
10.1109/ictai.2014.111. [see pages 4, 27, 28, 32, 67, 68]

[ES03] Niklas Eén and Niklas Sörensson. “Temporal induction by incremental SAT
solving”. In: Electronic Notes in Theoretical Computer Science 89.4 (2003),
pp. 543–560: Elsevier. doi: 10.1016/s1571-0661(05)82542-3.

[see pages 22, 23]

[ES04] Niklas Eén and Niklas Sörensson. “An extensible SAT-solver”. In: Proc. SAT.
Springer. 2004, pp. 502–518. doi: 10.1007/978-3-540-24605-3_37.

[see pages 2, 17–19, 79]

[Exp+13] Roberto R. Expósito, Guillermo L. Taboada, Sabela Ramos, et al. “Performance
analysis of HPC applications in the cloud”. In: Future Generation Computer
Systems 29.1 (2013), pp. 218–229: Elsevier. doi: 10.1016/j.future.2012.06.
009. [see page 11]

[Faz+23] Katalin Fazekas, Aina Niemetz, Mathias Preiner, et al. “IPASIR-UP: User
Propagators for CDCL”. In: Proc. SAT. 2023. doi: 10.4230/LIPIcs.SAT.2023.8.

[see page 180]

[FB21] Mathias Fleury and Armin Biere. “Efficient all-UIP learned clause minimization”.
In: Proc. SAT. Springer. 2021, pp. 171–187. doi: 10.1007/978-3-030-80223-
3_12. [see page 15]

[FB22] Mathias Fleury and Armin Biere. “Scalable Proof Producing Multi-Threaded
SAT Solving with Gimsatul through Sharing instead of Copying Clauses”. In:
Proc. Pragmatics of SAT. 2022. [see pages 30, 82, 180]

[FBS19a] Katalin Fazekas, Armin Biere, and Christoph Scholl. “Incremental inprocessing
in SAT solving”. In: Proc. SAT. Springer. 2019, pp. 136–154. doi: 10.1007/978-
3-030-24258-9_9. [see pages 23, 155]

[FBS19b] Nils Froleyks, Tomáš Balyo, and Dominik Schreiber. “PASAR Entering the
Sparkle Planning Challenge 2019”. In: Proc. Sparkle Planning Challenge 2019.
2019. [see page 204]

[FBS19c] Nils Froleyks, Tomáš Balyo, and Dominik Schreiber. “PASAR—Planning as
Satisfiability with Abstraction Refinement”. In: Proc. SoCS. 2019, pp. 70–78.
url: https://ojs.aaai.org/index.php/SOCS/article/download/18504/
18295. [see pages 23, 203]

[Fei97] Dror G. Feitelson. “Job scheduling in multiprogrammed parallel systems”. In:
IBM Research Report (1997). Citeseer . [see pages 41, 43]

216

https://doi.org/10.29007/z3g2
https://doi.org/10.1109/ictai.2014.111
https://doi.org/10.1016/s1571-0661(05)82542-3
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1016/j.future.2012.06.009
https://doi.org/10.1016/j.future.2012.06.009
https://doi.org/10.4230/LIPIcs.SAT.2023.8
https://doi.org/10.1007/978-3-030-80223-3_12
https://doi.org/10.1007/978-3-030-80223-3_12
https://doi.org/10.1007/978-3-030-24258-9_9
https://doi.org/10.1007/978-3-030-24258-9_9
https://ojs.aaai.org/index.php/SOCS/article/download/18504/18295
https://ojs.aaai.org/index.php/SOCS/article/download/18504/18295

Bibliography

[FG00] Paolo Ferraris and Enrico Giunchiglia. “Planning as satisfiability in nondetermin-
istic domains”. In: Proc. AAAI/IAAI. Citeseer. 2000, pp. 748–753. [see page 22]

[FHS20] Johannes K. Fichte, Markus Hecher, and Stefan Szeider. “A time leap challenge
for SAT-solving”. In: Proc. CP. Springer. 2020, pp. 267–285. doi: 10.1007/978-
3-030-58475-7_16. [see page 38]

[Fic+23] Johannes K. Fichte, Daniel Le Berre, Markus Hecher, and Stefan Szeider. “The
Silent (R)evolution of SAT”. In: Comm. ACM 66.6 (2023), pp. 64–72: ACM.
doi: 10.1145/3560469. [see pages 2, 14]

[Fie+19] Kai Fieger, Tomas Balyo, Christian Schulz, and Dominik Schreiber. “Finding
optimal longest paths by dynamic programming in parallel”. In: Proc. SoCS.
2019, pp. 61–69. url: https://ojs.aaai.org/index.php/SOCS/article/
download/18503/18294/22019. [see page 203]

[Fof+22] Ronak Fofaliya, Jim Grundy, Robert Jones, et al. “AWS CBMC Benchmarks”.
In: Proc. SAT Competition. 2022, p. 54. [see page 88]

[Fos+08] Ian Foster, Yong Zhao, Ioan Raicu, and Shiyong Lu. “Cloud computing and grid
computing 360-degree compared”. In: Grid computing environments workshop.
IEEE. 2008, pp. 1–10. [see pages 4, 5]

[Fro+21] Nils Froleyks, Marijn J. H. Heule, Markus Iser, et al. “SAT competition 2020”.
In: Artificial Intelligence 301 (2021), p. 103572: Elsevier. doi: 10.1016/j.
artint.2021.103572. [see pages 2, 27, 29, 31, 34, 37, 39, 65, 107]

[Fro20a] Nils Froleyks. “PASAR—Planning as Satisfiability with Abstraction Refine-
ment”. Master’s thesis. Karlsruhe Institute of Technology (KIT), 2020.

[see page 204]

[Fro20b] Nils Froleyks. “Planning track benchmarks”. In: Proc. SAT Competition. 2020,
p. 64. [see page 88]

[FS18] Rohan Fossé and Laurent Simon. “On the non-degeneracy of unsatisfiability
proof graphs produced by SAT solvers”. In: Proc. CP. Springer. 2018, pp. 128–
143. doi: 10.1007/978-3-319-98334-9_9. [see page 30]

[Fuk+97] Alex Fukunaga, Gregg Rabideau, Steve Chien, and David Yan. “Aspen: A
framework for automated planning and scheduling of spacecraft control and
operations”. In: Proc. Int. Symp. AI, Robotics and Automation in Space. 1997,
pp. 181–187. [see page 127]

[FW86] Philip J. Fleming and John J. Wallace. “How not to lie with statistics: the
correct way to summarize benchmark results”. In: Comm. ACM 29.3 (1986),
pp. 218–221: ACM. doi: 10.1145/5666.5673. [see page 35]

[GA15] Ilche Georgievski and Marco Aiello. “HTN planning: Overview, comparison,
and beyond”. In: Artificial Intelligence 222 (2015), pp. 124–156: Elsevier. doi:
10.1016/j.artint.2015.02.002. [see pages 128, 135]

[Gan+19] Robert Ganian, Neha Lodha, Sebastian Ordyniak, and Stefan Szeider. “SAT-
encodings for treecut width and treedepth”. In: Proc. ALENEX. SIAM. 2019,
pp. 117–129. doi: 10.1137/1.9781611975499.10. [see page 3]

[Gao23] Yu Gao. “Kissat MAB prop in SAT Competition 2023”. In: Proc. SAT Compe-
tition. 2023, p. 16. [see page 2]

217

https://doi.org/10.1007/978-3-030-58475-7_16
https://doi.org/10.1007/978-3-030-58475-7_16
https://doi.org/10.1145/3560469
https://ojs.aaai.org/index.php/SOCS/article/download/18503/18294/22019
https://ojs.aaai.org/index.php/SOCS/article/download/18503/18294/22019
https://doi.org/10.1016/j.artint.2021.103572
https://doi.org/10.1016/j.artint.2021.103572
https://doi.org/10.1007/978-3-319-98334-9_9
https://doi.org/10.1145/5666.5673
https://doi.org/10.1016/j.artint.2015.02.002
https://doi.org/10.1137/1.9781611975499.10

Bibliography

[Gar+13] Javier Garćıa, José E. Florez, Álvaro Torralba, et al. “Combining linear program-
ming and automated planning to solve intermodal transportation problems”. In:
European Journal of Operational Research 227.1 (2013), pp. 216–226: Elsevier.
doi: 10.1016/j.ejor.2012.12.018. [see page 127]

[Gar70] Martin Gardner. “The Fantastic Combinations of John Conway’s New Solitaire
Game ”Life””. In: Sc. Am. 223 (1970), pp. 20–123 . [see page 97]

[GB17] Stephan Gocht and Tomas Balyo. “Accelerating SAT Based Planning with
Incremental SAT Solving”. In: Proc. ICAPS. 2017, pp. 135–139. doi: 10.1609/
icaps.v27i1.13798. [see pages 22, 23, 134, 168]

[GJ79] Michael R. Garey and David S. Johnson. Computers and intractability: A Guide
to the Theory of NP-Completeness. 1979. doi: 10.1137/1024022. [see page 23]

[GL96] William Gropp and Ewing Lusk. User’s Guide for mpich, a Portable Implemen-
tation of MPI. 1996. url: https://ftp.mcs.anl.gov/pub/mpi/old/userguide.
pdf. [see page 10]

[Glo+19] Gael Glorian, Jean-Marie Lagniez, Valentin Montmirail, and Nicolas Szczepanski.
“An incremental SAT-based approach to the graph colouring problem”. In: Proc.
CP. Springer. 2019, pp. 213–231. doi: 10.1007/978- 3- 030- 30048- 7_13.

[see page 23]

[GLS99] William Gropp, Ewing Lusk, and Anthony Skjellum. Using MPI: portable
parallel programming with the message-passing interface. Vol. 1. MIT press,
1999. isbn: 9780262326605. [see page 52]

[GM13] Kilian Gebhardt and Norbert Manthey. “Parallel variable elimination on CNF
formulas”. In: Annual Conference on Artificial Intelligence. Springer. 2013,
pp. 61–73. doi: 10.1007/978-3-642-40942-4_6. [see page 180]

[GNT04] Malik Ghallab, Dana Nau, and Paolo Traverso. Automated Planning: theory
and practice. Elsevier, 2004. doi: 10.1016/B978-1-55860-856-6.X5000-5.

[see pages 21, 127, 148, 151]

[Gom+00] Carla P. Gomes, Bart Selman, Nuno Crato, and Henry Kautz. “Heavy-tailed
phenomena in satisfiability and constraint satisfaction problems”. In: J. Autom.
Reason. 24.1 (2000), pp. 67–100: Springer. doi: 10.1023/A:1006314320276.

[see page 18]

[Gra+06] Richard L. Graham, Galen M. Shipman, Brian W. Barrett, et al. “Open MPI: A
high-performance, heterogeneous MPI”. In: IEEE Int. Conf. Cluster Computing.
IEEE. 2006, pp. 1–9. doi: 10.1109/clustr.2006.311904. [see pages 10, 101]

[Gra+79] Ronald Lewis Graham, Eugene Leighton Lawler, Jan Karel Lenstra, and AHG
Rinnooy Kan. “Optimization and approximation in deterministic sequencing
and scheduling: a survey”. In: Annals of discrete mathematics. Vol. 5. Elsevier,
1979, pp. 287–326. doi: 10.1016/S0167-5060(08)70356-X. [see page 22]

[Gri17] Alexander van der Grinten. “Design, implementation and evaluation of a distrib-
uted CDCL framework”. PhD thesis. Universität zu Köln, 2017. [see page 31]

[Gro+12] Peter Großmann, Steffen Hölldobler, Norbert Manthey, et al. “Solving periodic
event scheduling problems with SAT”. In: Proc. IEA/AIE. Springer. 2012,
pp. 166–175. doi: 10.1007/978-3-642-31087-4_18. [see pages 2, 22]

218

https://doi.org/10.1016/j.ejor.2012.12.018
https://doi.org/10.1609/icaps.v27i1.13798
https://doi.org/10.1609/icaps.v27i1.13798
https://doi.org/10.1137/1024022
https://ftp.mcs.anl.gov/pub/mpi/old/userguide.pdf
https://ftp.mcs.anl.gov/pub/mpi/old/userguide.pdf
https://doi.org/10.1007/978-3-030-30048-7_13
https://doi.org/10.1007/978-3-642-40942-4_6
https://doi.org/10.1016/B978-1-55860-856-6.X5000-5
https://doi.org/10.1023/A:1006314320276
https://doi.org/10.1109/clustr.2006.311904
https://doi.org/10.1016/S0167-5060(08)70356-X
https://doi.org/10.1007/978-3-642-31087-4_18

Bibliography

[Gru22] Tan Grumser. “Engineering Optimal Solvers for Rubik’s Cubes”. Bachelor’s
thesis. Karlsruhe Institute of Technology (KIT), 2022. [see page 204]

[GS03] Carla P. Gomes and Bart Selman. “Algorithm portfolios.” In: Artificial Intelli-
gence 126.1-2 (Nov. 19, 2003), pp. 43–62. doi: 10.1016/s0004-3702(00)00081-
3. [see page 26]

[GT99] Fausto Giunchiglia and Paolo Traverso. “Planning as model checking”. In: Proc.
European Conference on Planning. Springer. 1999, pp. 1–20. [see page 22]

[Guo+10] Long Guo, Youssef Hamadi, Said Jabbour, and Lakhdar Sais. “Diversification
and intensification in parallel SAT solving”. In: Proc. CP. Springer. 2010,
pp. 252–265. doi: 10.1007/978-3-642-15396-9_22. [see page 27]

[Gup+14] Abhishek Gupta, Bilge Acun, Osman Sarood, and Laxmikant V. Kalé. “Towards
realizing the potential of malleable jobs”. In: Proc. HiPC. IEEE. 2014, pp. 1–10.
doi: 10.1109/hipc.2014.7116905. [see pages 41, 43]

[Gus88] John L. Gustafson. “Reevaluating Amdahl’s law”. In: Comm. ACM 31.5 (1988),
pp. 532–533: ACM. doi: 10.1145/42411.42415. [see page 12]

[Hak85] Armin Haken. “The intractability of resolution”. In: Theoretical computer
science 39 (1985), pp. 297–308: Elsevier. doi: 10.1016/0304-3975(85)90144-6.

[see page 20]

[HB22] Daniel Höller and Gregor Behnke. “Encoding lifted classical planning in propo-
sitional logic”. In: Proc. ICAPS. 2022, pp. 134–144. doi: 10.1609/icaps.v32i1.
19794. [see pages 3, 136]

[HBB12] Andrei Horbach, Thomas Bartsch, and Dirk Briskorn. “Using a SAT-solver to
schedule sports leagues”. In: J. Scheduling 15 (2012), pp. 117–125: Springer.
doi: 10.1007/s10951-010-0194-9. [see page 22]

[Hei22] Maximilian L. Heisinger. “Paracooba Enters SAT Competition 2022”. In: Proc.
SAT Competition. 2022, p. 42. [see pages 103, 186]

[Hel09] Malte Helmert. “Concise finite-domain representations for PDDL planning
tasks”. In: Artificial Intelligence 173.5-6 (2009), pp. 503–535: Elsevier. doi:
10.1016/j.artint.2008.10.013. [see page 133]

[Heu+11] Marijn J. H. Heule, Oliver Kullmann, Siert Wieringa, and Armin Biere. “Cube
and conquer: Guiding CDCL SAT solvers by lookaheads”. In: Haifa Verification
Conference. Springer. 2011, pp. 50–65. doi: 10.1007/978-3-642-34188-5_8.

[see pages 25, 31]

[Heu+17] Marijn J. H. Heule, Warren A. Hunt Jr., Matt Kaufmann, and Nathan Wetzler.
“Efficient, Verified Checking of Propositional Proofs”. In: Proc. ITP. 2017,
pp. 269–284. doi: 10.1007/978-3-319-66107-0_18. [see page 109]

[Heu16] Marijn J. H. Heule. “The DRAT format and DRAT-trim checker”. In: CoRR
abs/1610.06229 (2016). arXiv: 1610.06229. [see pages 4, 21, 109]

[Heu18] Marijn J. H. Heule. “Schur number five”. In: Proc. AAAI. 2018. doi: 10.1609/
aaai.v32i1.12209. [see pages 3, 25, 31, 66, 108]

[Heu21a] Marijn J. H. Heule. “Hamiltonian Cycle Instances using the Chinese Remainder
Encoding”. In: Proc. SAT Competition. 2021, p. 54. [see page 92]

219

https://doi.org/10.1016/s0004-3702(00)00081-3
https://doi.org/10.1016/s0004-3702(00)00081-3
https://doi.org/10.1007/978-3-642-15396-9_22
https://doi.org/10.1109/hipc.2014.7116905
https://doi.org/10.1145/42411.42415
https://doi.org/10.1016/0304-3975(85)90144-6
https://doi.org/10.1609/icaps.v32i1.19794
https://doi.org/10.1609/icaps.v32i1.19794
https://doi.org/10.1007/s10951-010-0194-9
https://doi.org/10.1016/j.artint.2008.10.013
https://doi.org/10.1007/978-3-642-34188-5_8
https://doi.org/10.1007/978-3-319-66107-0_18
https://arxiv.org/abs/1610.06229
https://doi.org/10.1609/aaai.v32i1.12209
https://doi.org/10.1609/aaai.v32i1.12209

Bibliography

[Heu21b] Marijn J. H. Heule. “Proofs of unsatisfiability”. In: Handbook of Satisfiability.
IOS Press, 2021, pp. 635–668. doi: 10.3233/faia200987. [see pages 6, 20]

[HFB20] Maximilian Heisinger, Mathias Fleury, and Armin Biere. “Distributed Cube
and Conquer with Paracooba”. In: Proc. SAT. Springer. 2020, pp. 114–122. doi:
10.1007/978-3-030-51825-7_9. [see pages 4, 25, 31, 33, 65]

[HG23] Andrew Haberlandt and Harrison Green. “SBVA-CADICAL and SBVA-KISSAT:
Structured Bounded Variable Addition”. In: Proc. SAT Competition. 2023, p. 18.

[see page 180]

[HGH23] Andrew Haberlandt, Harrison Green, and Marijn J. H. Heule. “Effective Auxil-
iary Variables via Structured Reencoding”. In: Proc. SAT. 2023. doi: 10.4230/
LIPIcs.SAT.2023.11. [see pages 80, 180]

[HHW13] Marijn J. H. Heule, Warren Hunt, and Nathan Wetzler. “Trimming while
checking clausal proofs”. In: Proc. FMCAD. IEEE. 2013, pp. 181–188. doi:
10.1109/fmcad.2013.6679408. [see page 112]

[HJS10] Youssef Hamadi, Said Jabbour, and Lakhdar Sais. “ManySAT: a parallel SAT
solver”. In: JSAT 6.4 (2010), pp. 245–262: IOS Press. doi: 10.3233/sat190070.

[see pages 3, 26–28]

[HJS12] Youssef Hamadi, Said Jabbour, and Jabbour Sais. “Control-based clause sharing
in parallel SAT solving”. In: Autonomous Search (2012), pp. 245–267: Springer.
doi: 10.1007/978-3-642-21434-9_10. [see pages 27, 28, 69]

[HKM16] Marijn J. H. Heule, Oliver Kullmann, and Victor Marek. “Solving and verifying
the boolean pythagorean triples problem via cube-and-conquer”. In: Proc.
SAT. Springer. 2016, pp. 228–245. doi: 10.1007/978-3-319-40970-2_15.

[see pages 2, 3, 21, 25, 31, 33, 66, 108]

[HLK03] Chao Huang, Orion Lawlor, and Laxmikant V. Kale. “Adaptive MPI”. In:
Proc. International workshop on languages and compilers for parallel computing.
Springer. 2003, pp. 306–322. doi: 10.1007/978-3-540-24644-2_20.

[see page 44]

[HMP14] Marijn J. H. Heule, Norbert Manthey, and Tobias Philipp. “Validating Unsatis-
fiability Results of Clause Sharing Parallel SAT Solvers.” In: Proc. Pragmatics
of SAT. 2014, pp. 12–25. doi: 10.29007/6vwg.

[see pages 4, 33, 108, 109, 120, 122]

[HMS10] Steffen Hölldobler, Norbert Manthey, and Ari Saptawijaya. “Improving resource-
unaware SAT solvers”. In: Proc. LPAR. Springer. 2010, pp. 519–534. doi:
10.1007/978-3-642-16242-8_37. [see page 17]

[Höl+18] Daniel Höller, Gregor Behnke, Pascal Bercher, and Susanne Biundo. “Plan and
goal recognition as HTN planning”. In: Proc. ICTAI. 2018, pp. 466–473. doi:
10.1109/ictai.2018.00078. [see page 160]

[Höl+20a] Daniel Höller, Gregor Behnke, Pascal Bercher, et al. “HDDL: An Extension to
PDDL for Expressing Hierarchical Planning Problems”. In: Proc. AAAI. 2020,
pp. 9883–9891. doi: 10.1609/aaai.v34i06.6542. [see page 155]

[Höl+20b] Daniel Höller, Pascal Bercher, Gregor Behnke, and Susanne Biundo. “HTN
planning as heuristic progression search”. In: JAIR 67 (2020), pp. 835–880. doi:
10.1613/jair.1.11282. [see page 179]

220

https://doi.org/10.3233/faia200987
https://doi.org/10.1007/978-3-030-51825-7_9
https://doi.org/10.4230/LIPIcs.SAT.2023.11
https://doi.org/10.4230/LIPIcs.SAT.2023.11
https://doi.org/10.1109/fmcad.2013.6679408
https://doi.org/10.3233/sat190070
https://doi.org/10.1007/978-3-642-21434-9_10
https://doi.org/10.1007/978-3-319-40970-2_15
https://doi.org/10.1007/978-3-540-24644-2_20
https://doi.org/10.29007/6vwg
https://doi.org/10.1007/978-3-642-16242-8_37
https://doi.org/10.1109/ictai.2018.00078
https://doi.org/10.1609/aaai.v34i06.6542
https://doi.org/10.1613/jair.1.11282

Bibliography

[Höl21] Daniel Höller. “Translating totally ordered HTN planning problems to classical
planning problems using regular approximation of context-free languages”. In:
Proc. ICAPS. 2021, pp. 159–167. doi: 10.1609/icaps.v31i1.15958.

[see page 179]

[HS00] Holger H. Hoos and Thomas Stützle. “Local search algorithms for SAT: An
empirical evaluation”. In: J. Autom. Reason. 24.4 (2000), pp. 421–481: Springer.
doi: 10.1023/A:1006350622830. [see page 20]

[HS18] Youssef Hamadi and Lakhdar Sais. Handbook of Parallel Constraint Reasoning.
Springer, 2018. doi: 10.1007/978-3-319-63516-3. [see page 25]

[Hua07] Jinbo Huang. “The Effect of Restarts on the Efficiency of Clause Learning”. In:
Proc. IJCAI. 2007, pp. 2318–2323. [see pages 16, 19]

[Hüb+21] Lukas Hübner, Alexey M. Kozlov, Demian Hespe, et al. “Exploring parallel
MPI fault tolerance mechanisms for phylogenetic inference with RAxML-NG”.
In: Bioinformatics 37.22 (2021), pp. 4056–4063: Oxford University Press. doi:
10.1101/2021.01.15.426773. [see page 181]

[Hun04] Jan Hungershöfer. “On the combined scheduling of malleable and rigid jobs”.
In: Proc. Symp. Computer Architecture and HPC. IEEE. 2004, pp. 206–213.
doi: 10.1109/sbac-pad.2004.27. [see pages 41, 43, 179]

[Hut+14] Frank Hutter, Lin Xu, Holger H. Hoos, and Kevin Leyton-Brown. “Algorithm
runtime prediction: Methods & evaluation”. In: Artificial Intelligence 206 (2014),
pp. 79–111. doi: 10.1016/j.artint.2013.10.003. [see page 42]

[HvM21] Marijn J. H. Heule and Hans van Maaren. “Look-Ahead Based SAT Solvers”.
In: Handbook of Satisfiability. IOS Press, 2021, pp. 155–184. doi: 10.3233/
faia200987. [see page 20]

[HW13] Youssef Hamadi and Christoph Wintersteiger. “Seven challenges in parallel SAT
solving”. In: AI Magazine 34.2 (2013), pp. 99–99. doi: 10.1609/aimag.v34i2.
2450. [see pages 30, 180]

[HW79] John A. Hartigan and Manchek A. Wong. “Algorithm AS 136: A k-means
clustering algorithm”. In: Journal of the royal statistical society 28.1 (1979),
pp. 100–108: JSTOR. doi: 10.2307/2346830. [see page 57]

[IBS19] Markus Iser, Tomás Balyo, and Carsten Sinz. “Memory efficient parallel SAT
solving with inprocessing”. In: Proc. ICTAI. IEEE. 2019, pp. 64–70. doi: 10.
1109/ictai.2019.00018. [see pages 82, 180]

[IMM17] Alexey Ignatiev, António Morgado, and João Marques-Silva. “On tackling the
limits of resolution in SAT solving”. In: Proc. SAT. Springer. 2017, pp. 164–183.
doi: 10.1007/978-3-319-66263-3_11. [see page 80]

[Int23] Intel. Intel® MPI Library. 2023. url: https://www.intel.com/content/www/
us/en/developer/tools/oneapi/mpi-library.html. [see pages 10, 58]

[IS19] Markus Iser and Carsten Sinz. “A problem meta-data library for research in
SAT”. In: Proc. Pragmatics of SAT. 2019, pp. 144–152. doi: 10.29007/gdbb.

[see page 92]

221

https://doi.org/10.1609/icaps.v31i1.15958
https://doi.org/10.1023/A:1006350622830
https://doi.org/10.1007/978-3-319-63516-3
https://doi.org/10.1101/2021.01.15.426773
https://doi.org/10.1109/sbac-pad.2004.27
https://doi.org/10.1016/j.artint.2013.10.003
https://doi.org/10.3233/faia200987
https://doi.org/10.3233/faia200987
https://doi.org/10.1609/aimag.v34i2.2450
https://doi.org/10.1609/aimag.v34i2.2450
https://doi.org/10.2307/2346830
https://doi.org/10.1109/ictai.2019.00018
https://doi.org/10.1109/ictai.2019.00018
https://doi.org/10.1007/978-3-319-66263-3_11
https://www.intel.com/content/www/us/en/developer/tools/oneapi/mpi-library.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/mpi-library.html
https://doi.org/10.29007/gdbb

Bibliography

[JHB12] Matti Järvisalo, Marijn J.H. Heule, and Armin Biere. “Inprocessing Rules”.
In: Proc. IJCAR. 2012, pp. 355–370. doi: 10.1007/978-3-642-31365-3_28.

[see page 19]

[JK03] Minsoo Jeon and Dongseung Kim. “Parallel merge sort with load balancing”.
In: J. Parallel Programming 31 (2003), pp. 21–33: Springer. doi: 10.1023/A:
1021734202931. [see page 118]

[JLU01] Bernard Jurkowiak, Chu Min Li, and Gil Utard. “Parallelizing Satz using
dynamic workload balancing”. In: Electronic Notes in Discrete Mathematics 9
(2001), pp. 174–189: Elsevier. doi: 10.1016/s1571-0653(04)00321-x.

[see page 26]

[JLU05] Bernard Jurkowiak, Chu Min Li, and Gil Utard. “A parallelization scheme based
on work stealing for a class of SAT solvers”. In: J. Autom. Reason. 34.1 (2005),
pp. 73–101: Springer. doi: 10.1007/s10817-005-1970-7. [see page 25]

[JT96] David S. Johnson and Michael A. Trick. Cliques, coloring, and satisfiability: sec-
ond DIMACS implementation challenge, October 11-13, 1993. Vol. 26. American
Mathematical Soc., 1996. [see page 34]

[JW90] Robert G. Jeroslow and Jinchang Wang. “Solving propositional satisfiability
problems”. In: Annals of mathematics and Artificial Intelligence 1.1 (1990),
pp. 167–187: Springer. doi: 10.1007/bf01531077. [see page 18]

[Kat+13] George Katsirelos, Ashish Sabharwal, Horst Samulowitz, and Laurent Simon.
“Resolution and parallelizability: Barriers to the efficient parallelization of SAT
solvers”. In: Proc. AAAI. 2013, pp. 481–488. doi: 10.1609/aaai.v27i1.8660.

[see page 30]

[Kau+19] Daniela Kaufmann, Manuel Kauers, Armin Biere, and David Cok. “Arithmetic
verification problems submitted to the SAT Race 2019”. In: Proc. SAT Race.
2019. [see page 105]

[KBS19] Marko Kleine-Büning, Tomáš Balyo, and Carsten Sinz. “Using DimSpec for
Bounded and Unbounded Software Model Checking”. In: Proc. ICFEM. Springer.
2019, pp. 19–35. doi: 10.1007/978-3-030-32409-4_2.

[see pages 22, 23, 168, 175, 178]

[Kha+21] Awais Khan, Hyogi Sim, Sudharshan S. Vazhkudai, et al. “An analysis of system
balance and architectural trends based on TOP500 supercomputers”. In: Proc.
High Performance Computing in Asia-Pacific Region. 2021, pp. 11–22. doi:
10.2172/1649132. [see page 180]

[Khu+16] Ashiqur R. KhudaBukhsh, Lin Xu, Holger H. Hoos, and Kevin Leyton-Brown.
“SATenstein: Automatically building local search SAT solvers from components”.
In: Artificial Intelligence 232 (2016), pp. 20–42: Elsevier. doi: 10.1016/j.
artint.2015.11.002. [see page 34]

[Kie+12] Jörg-Uwe Kietz, Floarea Serban, Abraham Bernstein, et al. “Designing KDD-
workflows via HTN-planning for intelligent discovery assistance”. In: 5th Plan-
ning To Learn Workshop WS28 at ECAI 2012. 2012. [see page 128]

[KK11] Stephan Kottler and Michael Kaufmann. “SArTagnan-a parallel portfolio SAT
solver with lockless physical clause sharing”. In: Proc. Pragmatics of SAT. 2011.

[see page 28]

222

https://doi.org/10.1007/978-3-642-31365-3_28
https://doi.org/10.1023/A:1021734202931
https://doi.org/10.1023/A:1021734202931
https://doi.org/10.1016/s1571-0653(04)00321-x
https://doi.org/10.1007/s10817-005-1970-7
https://doi.org/10.1007/bf01531077
https://doi.org/10.1609/aaai.v27i1.8660
https://doi.org/10.1007/978-3-030-32409-4_2
https://doi.org/10.2172/1649132
https://doi.org/10.1016/j.artint.2015.11.002
https://doi.org/10.1016/j.artint.2015.11.002

Bibliography

[KMM13] Vladimir Klebanov, Norbert Manthey, and Christian Muise. “SAT-based analysis
and quantification of information flow in programs”. In: Int. Conf. Quantitative
Evaluation of Systems. Springer. 2013, pp. 177–192. doi: 10.1007/978-3-642-
40196-1_16. [see page 22]

[Kos+10] Miyuki Koshimura, Hidetomo Nabeshima, Hiroshi Fujita, and Ryuzo Hasegawa.
“Solving open job-shop scheduling problems by SAT encoding”. In: IEICE
Transactions on Information and Systems 93.8 (2010), pp. 2316–2318: The
Institute of Electronics, Information and Communication Engineers. doi: 10.
1587/transinf.e93.d.2316. [see page 22]

[KR68] S. Katti and A. Vijaya Rao. Handbook of the poisson distribution. 1968. doi:
10.1080/00401706.1968.10490580. [see page 60]

[KS92] Henry A. Kautz and Bart Selman. “Planning as Satisfiability”. In: Proc. ECAI.
Citeseer. 1992, pp. 359–363. [see pages 2, 21, 22, 135, 147]

[KS96] Henry Kautz and Bart Selman. “Pushing the envelope: Planning, propositional
logic, and stochastic search”. In: Proc. AAAI. 1996, pp. 1194–1201. [see page 21]

[KS98] Henry Kautz and Bart Selman. “BLACKBOX: A new approach to the applica-
tion of theorem proving to problem solving”. In: AIPS98 workshop on planning
as combinatorial search. 1998, pp. 58–60. [see page 134]

[KSH06] Henry Kautz, Bart Selman, and Joerg Hoffmann. “SatPlan: Planning as satisfi-
ability”. In: Proc. International Planning Competition. 2006, p. 156.

[see page 134]

[KSS21] Henry A. Kautz, Ashish Sabharwal, and Bart Selman. “Incomplete Algorithms”.
In: Handbook of Satisfiability. IOS Press, 2021, pp. 185–203. doi: 10.3233/
faia200987. [see page 20]

[KT14] Daniel Kroening and Michael Tautschnig. “CBMC–C Bounded Model Checker:
(Competition Contribution)”. In: Proc. TACAS. Springer. 2014, pp. 389–391.

[see page 178]

[Lam20] Peter Lammich. “Efficient Verified (UN)SAT Certificate Checking”. In: J. Autom.
Reason. 64.3 (2020), pp. 513–532: Springer. doi: 10.1007/s10817-019-09525-z.

[see page 109]

[Lar+09] Steen Larsen, Parthasarathy Sarangam, Ram Huggahalli, and Siddharth Kulka-
rni. “Architectural breakdown of end-to-end latency in a TCP/IP network”. In:
J. Parallel Programming 37 (2009), pp. 556–571: Springer. doi: 10.1007/s10766-
009-0109-6. [see page 10]

[Le +09] Daniel Le Berre, Olivier Roussel, Laurent Simon, et al. The SAT 2009 compe-
tition results. 2009. url: http://www.satcompetition.org/2009/sat09comp-
slides.pdf. [see page 17]

[Le +17a] Ludovic Le Frioux, Souheib Baarir, Julien Sopena, and Fabrice Kordon. “painless-
maplecomsps”. In: Proc. SAT Competition. 2017, p. 26. [see page 29]

[Le +17b] Ludovic Le Frioux, Souheib Baarir, Julien Sopena, and Fabrice Kordon. “PaIn-
leSS: a framework for parallel SAT solving”. In: Proc. SAT. Springer. 2017,
pp. 233–250. doi: 10.1007/978-3-319-66263-3_15. [see page 29]

223

https://doi.org/10.1007/978-3-642-40196-1_16
https://doi.org/10.1007/978-3-642-40196-1_16
https://doi.org/10.1587/transinf.e93.d.2316
https://doi.org/10.1587/transinf.e93.d.2316
https://doi.org/10.1080/00401706.1968.10490580
https://doi.org/10.3233/faia200987
https://doi.org/10.3233/faia200987
https://doi.org/10.1007/s10817-019-09525-z
https://doi.org/10.1007/s10766-009-0109-6
https://doi.org/10.1007/s10766-009-0109-6
http://www.satcompetition.org/2009/sat09comp-slides.pdf
http://www.satcompetition.org/2009/sat09comp-slides.pdf
https://doi.org/10.1007/978-3-319-66263-3_15

Bibliography

[Lei+20] Charles E. Leiserson, Neil C. Thompson, Joel S. Emer, et al. “There’s plenty of
room at the Top: What will drive computer performance after Moore’s law?” In:
Science 368.6495 (2020), eaam9744: American Association for the Advancement
of Science. doi: 10.1126/science.aam9744. [see page 3]

[Li+13] Yinan Li, Ippokratis Pandis, Rene Mueller, et al. “NUMA-aware algorithms:
the case of data shuffling”. In: Proc. CIDR. 2013. [see page 9]

[Li+20] Chu-Min Li, Fan Xiao, Mao Luo, et al. “Clause vivification by unit propagation
in CDCL SAT solvers”. In: Artificial Intelligence 279 (2020), p. 103197: Elsevier.
doi: 10.1016/j.artint.2019.103197. [see page 19]

[Lia+16a] Jia Hui Liang, Vijay Ganesh, Pascal Poupart, and Krzysztof Czarnecki. “Learn-
ing rate based branching heuristic for SAT solvers”. In: Proc. SAT. Springer.
2016, pp. 123–140. doi: 10.1007/978-3-319-40970-2_9.

[see pages 2, 17, 18, 29, 39]

[Lia+16b] Jia Hui Liang, Chanseok Oh, Vijay Ganesh, et al. “MapleCOMSPS, Maple-
COMSPS LRB, MapleCOMSPS CHB”. In: Proc. SAT Competition. 2016.

[see page 29]

[Liu+16] Duo Liu, Cunxi Yu, Xiangyu Zhang, and Daniel Holcomb. “Oracle-guided
incremental SAT solving to reverse engineer camouflaged logic circuits”. In:
Proc. DATE. IEEE. 2016, pp. 433–438. doi: 10.3850/9783981537079_0915.

[see pages 22, 168, 175]

[LM21] Chu Min Li and Felip Manya. “MaxSAT, hard and soft constraints”. In: Hand-
book of Satisfiability. IOS Press, 2021, pp. 903–927. doi: 10.3233/faia200987.

[see page 22]

[LSB07] Matthew Lewis, Tobias Schubert, and Bernd Becker. “Multithreaded SAT
solving”. In: Asia and South Pacific Design Automation Conference. IEEE.
2007, pp. 926–931. doi: 10.1109/aspdac.2007.358108. [see pages 3, 25]

[LSZ93] Michael Luby, Alistair Sinclair, and David Zuckerman. “Optimal speedup of Las
Vegas algorithms”. In: Information Processing Letters 47.4 (1993), pp. 173–180:
Elsevier. doi: 10.1016/0020-0190(93)90029-9. [see page 19]

[Luo+17] Mao Luo, Chu-Min Li, Fan Xiao, et al. “An effective learnt clause minimization
approach for CDCL SAT solvers”. In: Proc. IJCAI. 2017, pp. 703–711. doi:
10.24963/ijcai.2017/98. [see pages 17, 19]

[Mah+14] Ibrahim M. Mahmoud, Lianchao Li, Dieter Wloka, and Mostafa Z. Ali. “Believ-
able NPCs in serious games: HTN planning approach based on visual perception”.
In: 2014 IEEE Conference on Computational Intelligence and Games. IEEE.
2014, pp. 1–8. doi: 10.1109/cig.2014.6932891. [see page 128]

[Mal+13] Yuri Malitsky, Ashish Sabharwal, Horst Samulowitz, and Meinolf Sellmann.
“Algorithm Portfolios Based on Cost-Sensitive Hierarchical Clustering.” In: Proc.
IJCAI. 2013, pp. 608–614. [see page 34]

[Man19] Jens Manig. “Kompressionstechniken für Beschreibungen von SAT Formeln”.
Bachelor’s thesis. Karlsruhe Institute of Technology (KIT), 2019. [see page 204]

[Man22] Norbert Manthey. “MergeSat, Merge-Mallob and Mallob-MergeCadLing”. In:
Proc. SAT Competition. 2022, p. 25. [see page 178]

224

https://doi.org/10.1126/science.aam9744
https://doi.org/10.1016/j.artint.2019.103197
https://doi.org/10.1007/978-3-319-40970-2_9
https://doi.org/10.3850/9783981537079_0915
https://doi.org/10.3233/faia200987
https://doi.org/10.1109/aspdac.2007.358108
https://doi.org/10.1016/0020-0190(93)90029-9
https://doi.org/10.24963/ijcai.2017/98
https://doi.org/10.1109/cig.2014.6932891

Bibliography

[Man23] Norbert Manthey. “Testing the ASCON Hash Function”. In: Proc. SAT Compe-
tition. 2023, p. 63. [see page 39]

[Mar19] Andrea Marrella. “Automated planning for business process management”. In:
J. data semantics 8.2 (2019), pp. 79–98: Springer. doi: 10.1007/s13740-018-
0096-0. [see page 127]

[MB19] Sibylle Möhle and Armin Biere. “Backing backtracking”. In: Proc. SAT. Springer.
2019, pp. 250–266. doi: 10.1007/978-3-030-24258-9_18. [see page 16]

[McM03] Kenneth L. McMillan. “Interpolation and SAT-based model checking”. In:
Proc. CAV. Springer. 2003, pp. 1–13. doi: 10.1007/978-3-540-45069-6_1.

[see page 22]

[Men21] Stefan Mengel. “A Naive SAT-Encoding of Cluster Editing”. In: Proc. SAT
Competition. 2021, p. 62. [see page 94]

[Met+05] Alexander Metzner, Martin Franzle, Christian Herde, and Ingo Stierand.
“Scheduling distributed real-time systems by satisfiability checking”. In:
Proc. RTCSA. IEEE. 2005, pp. 409–415. doi: 10 . 1109 / rtcsa . 2005 . 90.

[see pages 21, 22]

[MG11] Peter Mell and Tim Grance. The NIST definition of cloud computing. Tech. rep.
National Institute of Standards and Technology, 2011. doi: 10.6028/nist.sp.
800-145. [see page 11]

[MG99] João Marques-Silva and Thomas Glass. “Combinational equivalence checking
using satisfiability and recursive learning”. In: Proc. Design, Automation and
Test in Europe. 1999, pp. 145–149. [see page 2]

[MHS16] Matteo Marescotti, Antti EJ Hyvärinen, and Natasha Sharygina. “Clause sharing
and partitioning for cloud-based SMT solving”. In: Proc. ATVA. Springer. 2016,
pp. 428–443. doi: 10.1007/978-3-319-46520-3_27. [see page 178]

[Mic+23] Dawn Michaelson, Dominik Schreiber, Marijn J. H. Heule, et al. “Unsatisfiability
proofs for distributed clause-sharing SAT solvers”. In: Proc. TACAS. Springer.
2023, pp. 348–366. doi: 10.1007/978-3-031-30823-9_18.

[see pages 7, 107, 203]

[MK98] Amol Dattatraya Mali and Subbarao Kambhampati. “Encoding HTN Planning
in Propositional Logic”. In: Artificial Intelligence Planning Systems. 1998,
pp. 190–198. [see pages 22, 135]

[ML03] Stephen M. Majercik and Michael L. Littman. “Contingent planning under
uncertainty via stochastic satisfiability”. In: Artificial Intelligence 147.1-2 (2003),
pp. 119–162: Elsevier. doi: 10.1016/s0004-3702(02)00379-x. [see page 22]

[MLM21] João Marques-Silva, Inês Lynce, and Sharad Malik. “CDCL SAT Solving”.
In: Handbook of Satisfiability. IOS Press, 2021, pp. 131–153. doi: 10.3233/
faia200987. [see page 15]

[MMdS21] M.C. Magnaguagno, F. Meneguzzi, and L. de Silva. “HyperTensioN – A three-
stage compiler for planning”. In: Proc. International Planning Competition.
2021, pp. 5–8. [see pages 133, 142, 161, 163]

225

https://doi.org/10.1007/s13740-018-0096-0
https://doi.org/10.1007/s13740-018-0096-0
https://doi.org/10.1007/978-3-030-24258-9_18
https://doi.org/10.1007/978-3-540-45069-6_1
https://doi.org/10.1109/rtcsa.2005.90
https://doi.org/10.6028/nist.sp.800-145
https://doi.org/10.6028/nist.sp.800-145
https://doi.org/10.1007/978-3-319-46520-3_27
https://doi.org/10.1007/978-3-031-30823-9_18
https://doi.org/10.1016/s0004-3702(02)00379-x
https://doi.org/10.3233/faia200987
https://doi.org/10.3233/faia200987

Bibliography

[MML12] Ruben Martins, Vasco Manquinho, and Inês Lynce. “An overview of parallel SAT
solving”. In: Constraints 17 (2012), pp. 304–347: Springer. doi: 10.1007/s10601-
012-9121-3. [see page 24]

[Mon16] David Monniaux. “A survey of satisfiability modulo theory”. In: Proc. CASC.
Springer. 2016, pp. 401–425. doi: 10.1007/978-3-319-45641-6_26.

[see page 22]

[Mos+01] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, et al. “Chaff: En-
gineering an efficient SAT solver”. In: Proc. DAC. 2001, pp. 530–535. doi:
10.1145/378239.379017. [see pages 2, 17, 18]

[MS00] João P. Marques-Silva and Karem A. Sakallah. “Boolean satisfiability in elec-
tronic design automation”. In: Proc. DAC. 2000, pp. 675–680. doi: 10.1145/
337292.337611. [see pages 2, 21]

[MS96] João Marques-Silva and Karem A. Sakallah. “GRASP—a new search algorithm
for satisfiability”. In: Proc. ICCAD. IEEE. 1996, pp. 220–227. [see page 15]

[MS99] João Marques-Silva and Karem A. Sakallah. “GRASP: A search algorithm for
propositional satisfiability”. In: IEEE Transactions on Computers 48.5 (1999),
pp. 506–521: IEEE. doi: 10.1109/12.769433. [see pages 2, 15]

[Nai+22] Abhishek Nair, Saranyu Chattopadhyay, Haoze Wu, et al. “Proof-Stitch: Proof
Combination for Divide and Conquer SAT Solvers”. In: Proc. FMCAD. 2022,
pp. 84–88. [see page 33]

[Nau+99] Dana Nau, Yue Cao, Amnon Lotem, and Hector Munoz-Avila. “SHOP: Simple
hierarchical ordered planner”. In: Proc. IJCAI. 1999, pp. 968–973.

[see pages 131, 133]

[NCT19] Yanik Ngoko, Christophe Cérin, and Denis Trystram. “Solving SAT in a distrib-
uted cloud: a portfolio approach”. In: J. Applied Mathematics and Computer
Science 29.2 (2019), pp. 261–274: Sciendo. doi: 10.2478/amcs-2019-0019.

[see pages 4, 33]

[Ngu23] Ha Phuong Nguyen. “An Empirical Study on Clause Selection and Filtering in
Distributed SAT Solving”. Bachelor’s thesis. Karlsruhe Institute of Technology
(KIT), 2023. [see page 205]

[NI20] Hidetomo Nabeshima and Katsumi Inoue. “Reproducible efficient parallel SAT
solving”. In: Proc. SAT. Springer. 2020, pp. 123–138. doi: 10.1007/978-3-030-
51825-7_10. [see page 30]

[NR12] Alexander Nadel and Vadim Ryvchin. “Efficient SAT solving under assumptions”.
In: Proc. SAT. Springer. 2012, pp. 242–255. doi: 10.1007/978-3-642-31612-
8_19. [see pages 23, 155, 167]

[NR18] Alexander Nadel and Vadim Ryvchin. “Chronological backtracking”. In: Proc.
SAT. Springer. 2018, pp. 111–121. doi: 10.1007/978- 3- 319- 94144- 8_7.

[see pages 16, 39]

[NTC17] Yanik Ngoko, Denis Trystram, and Christophe Cérin. “A Distributed Cloud
Service for the Resolution of SAT”. In: Proc. IEEE SC2. IEEE. 2017, pp. 1–8.
doi: 10.1109/sc2.2017.9. [see pages 33, 65]

226

https://doi.org/10.1007/s10601-012-9121-3
https://doi.org/10.1007/s10601-012-9121-3
https://doi.org/10.1007/978-3-319-45641-6_26
https://doi.org/10.1145/378239.379017
https://doi.org/10.1145/337292.337611
https://doi.org/10.1145/337292.337611
https://doi.org/10.1109/12.769433
https://doi.org/10.2478/amcs-2019-0019
https://doi.org/10.1007/978-3-030-51825-7_10
https://doi.org/10.1007/978-3-030-51825-7_10
https://doi.org/10.1007/978-3-642-31612-8_19
https://doi.org/10.1007/978-3-642-31612-8_19
https://doi.org/10.1007/978-3-319-94144-8_7
https://doi.org/10.1109/sc2.2017.9

Bibliography

[OB05] Oliver Obst and Joschka Boedecker. “Flexible coordination of multiagent team
behavior using HTN planning”. In: RoboCup. Springer. 2005, pp. 521–528. doi:
10.1007/11780519_49. [see page 128]

[Oh15] Chanseok Oh. “Between SAT and UNSAT: the fundamental difference in CDCL
SAT”. In: Proc. SAT. Springer. 2015, pp. 307–323. doi: 10.1007/978-3-319-
24318-4_23. [see pages 17, 19, 34, 35]

[Oh16] Chanseok Oh. “Improving SAT solvers by exploiting empirical characteristics
of CDCL”. PhD thesis. New York University, 2016. [see page 29]

[ORe21] Gerard O’Regan. “Foundations of Computing”. In: A Brief History of Computing.
3rd ed. Springer, 2021, pp. 35–51. doi: 10.1007/978-3-030-66599-9.

[see page 1]

[Ost+10] Simon Ostermann, Alexandria Iosup, Nezih Yigitbasi, et al. “A performance
analysis of EC2 cloud computing services for scientific computing”. In: Proc.
CloudComp. Springer. 2010, pp. 115–131. doi: 10.1007/978-3-642-12636-9_9.

[see page 11]

[OU09] Kei Ohmura and Kazunori Ueda. “c-sat: A Parallel SAT Solver for Clusters”. In:
Proc. SAT. Springer. 2009, pp. 524–537. doi: 10.1007/978-3-642-02777-2_47.

[see page 35]

[OW21] Muhammad Osama and Anton Wijs. “Verifying String Safety Properties in
AWS C99 Package with CBMC”. In: Proc. SAT Competition. 2021, p. 64.

[see pages 88, 92]

[OWB21a] Muhammad Osama, Anton Wijs, and Armin Biere. “SAT solving with GPU
accelerated inprocessing”. In: Proc. TACAS. Springer. 2021, pp. 133–151. doi:
10.26226/morressier.604907f41a80aac83ca25cee. [see page 180]

[OWB21b] Alex Ozdemir, Haoze Wu, and Clark Barrett. “SAT Solving in the Serverless
Cloud”. In: Proc. FMCAD. IEEE. 2021, pp. 241–245. doi: 10.34727/2021/
isbn.978-3-85448-046-4_33. [see page 33]

[PBG05] Mukul R. Prasad, Armin Biere, and Aarti Gupta. “A survey of recent advances in
SAT-based formal verification”. In: J. Software Tools for Technology Transfer 7
(2005), pp. 156–173: Springer. doi: 10.1007/s10009-004-0183-4. [see page 22]

[PD07] Knot Pipatsrisawat and Adnan Darwiche. “A lightweight component caching
scheme for satisfiability solvers”. In: Proc. SAT. Springer. 2007, pp. 294–299.
doi: 10.1007/978-3-540-72788-0_28. [see page 18]

[PFB23] Florian Pollitt, Mathias Fleury, and Armin Biere. “Faster LRAT checking than
solving with CaDiCaL”. In: Proc. SAT. 2023. doi: 10.4230/LIPIcs.SAT.2023.
21. [see pages 124, 179]

[Pfi01] Gregory F. Pfister. “An introduction to the infiniband architecture”. In: High
performance mass storage and parallel I/O 42.617-632 (2001), p. 102 .

[see page 10]

[Phi05] Ian Philp. “Software failures and the road to a petaflop machine”. In: Proc.
HPCA. 2005, pp. 125–128. [see page 181]

[PHS08] Cédric Piette, Youssef Hamadi, and Lakhdar Sais. “Vivifying propositional
clausal formulae”. In: Proc. ECAI. 2008, pp. 525–529. [see page 19]

227

https://doi.org/10.1007/11780519_49
https://doi.org/10.1007/978-3-319-24318-4_23
https://doi.org/10.1007/978-3-319-24318-4_23
https://doi.org/10.1007/978-3-030-66599-9
https://doi.org/10.1007/978-3-642-12636-9_9
https://doi.org/10.1007/978-3-642-02777-2_47
https://doi.org/10.26226/morressier.604907f41a80aac83ca25cee
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_33
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_33
https://doi.org/10.1007/s10009-004-0183-4
https://doi.org/10.1007/978-3-540-72788-0_28
https://doi.org/10.4230/LIPIcs.SAT.2023.21
https://doi.org/10.4230/LIPIcs.SAT.2023.21

Bibliography

[Pop34] Karl R. Popper. Logik der Forschung. 1934. [see page 4]

[PSM21] Nicolas Prevot, Mate Soos, and Kuldeep S. Meel. “Leveraging GPUs for Effective
Clause Sharing in Parallel SAT Solving”. In: Proc. SAT. Springer. 2021, pp. 471–
487. doi: 10.1007/978-3-030-80223-3_32. [see pages 28, 180]

[QPF23] Gaspard Quenard, Damien Pellier, and Humbert Fiorino. “LTP: Lifted Tree
Path”. In: Proc. International Planning Competition. 2023. To appear.

[see page 179]

[Ram+17] Abdeldjalil Ramoul, Damien Pellier, Humbert Fiorino, and Sylvie Pesty.
“Grounding of HTN planning domain”. In: J. Artificial Intelligence Tools
26.05 (2017), p. 1760021: World Scientific. doi: 10.1142/s0218213017600211.

[see pages 128, 133, 135]

[RB23] Joseph E. Reeves and Randal E. Bryant. “Preprocessors PReLearn and ReEn-
code Entering the SAT Competition 2023”. In: Proc. SAT Competition. 2023,
p. 23. [see page 80]

[Rec23] Leibniz Rechenzentrum. SuperMUC-NG. 2023. url: https://doku.lrz.de/
supermuc-ng-10745965.html. [see page 57]

[Rei81] Raymond Reiter. “On closed world data bases”. In: Readings in artificial
intelligence. Elsevier, 1981, pp. 119–140. doi: 10.1016/b978-0-934613-03-
3.50014-3. [see page 130]

[Reu+18] Albert Reuther, Chansup Byun, William Arcand, et al. “Scalable system schedul-
ing for HPC and big data”. In: J. Parallel and Distributed Computing 111 (2018),
pp. 76–92: Elsevier. doi: 10.1016/j.jpdc.2017.06.009. [see pages 11, 180]

[RG15] Masood Feyzbakhsh Rankooh and Gholamreza Ghassem-Sani. “ITSAT: an
efficient sat-based temporal planner”. In: JAIR 53 (2015), pp. 541–632. doi:
10.1613/jair.4697. [see page 22]

[Rin04] Jussi Rintanen. “Evaluation strategies for planning as satisfiability”. In: Proc.
ECAI. 2004, p. 682. [see page 154]

[Rin14] Jussi Rintanen. “Madagascar: Scalable planning with SAT”. In: Proc. Interna-
tional Planning Competition. 2014. [see pages 22, 134]

[Rob+09] Nathan Robinson, Charles Gretton, Duc Nghia Pham, and Abdul Sattar. “SAT-
Based Parallel Planning Using a Split Representation of Actions”. In: Proc.
ICAPS. 2009, pp. 281–288. doi: 10.1609/icaps.v19i1.13368. [see page 136]

[Rob65] John Alan Robinson. “A machine-oriented logic based on the resolution princi-
ple”. In: JACM 12.1 (1965), pp. 23–41: ACM. doi: 10.1145/321250.321253.

[see page 14]

[Rou12] Olivier Roussel. “Description of ppfolio (2011)”. In: Proc. SAT Challenge. 2012,
p. 46. [see page 28]

[RP12] Purushothaman Raja and Sivagurunathan Pugazhenthi. “Optimal path planning
of mobile robots: A review”. In: J. Physical Sciences 7.9 (2012), pp. 1314–1320
. [see page 127]

[RS98] Martin Raab and Angelika Steger. ““Balls into bins”—A simple and tight
analysis”. In: Int. Workshop on Randomization and Approximation Techniques
in Computer Science. 1998, pp. 159–170. [see page 50]

228

https://doi.org/10.1007/978-3-030-80223-3_32
https://doi.org/10.1142/s0218213017600211
https://doku.lrz.de/supermuc-ng-10745965.html
https://doku.lrz.de/supermuc-ng-10745965.html
https://doi.org/10.1016/b978-0-934613-03-3.50014-3
https://doi.org/10.1016/b978-0-934613-03-3.50014-3
https://doi.org/10.1016/j.jpdc.2017.06.009
https://doi.org/10.1613/jair.4697
https://doi.org/10.1609/icaps.v19i1.13368
https://doi.org/10.1145/321250.321253

Bibliography

[Rya04] Lawrence Ryan. “Efficient algorithms for clause-learning SAT solvers”. PhD
thesis. Theses (School of Computing Science)/Simon Fraser University, 2004.

[see pages 17, 18]

[San+19] Peter Sanders, Kurt Mehlhorn, Martin Dietzfelbinger, and Roman Dementiev.
Sequential and Parallel Algorithms and Data Structures. Springer, 2019. doi:
10.1007/978-3-030-25209-0. [see pages 9, 10, 12, 51, 70]

[San00] Peter Sanders. “Fast priority queues for cached memory”. In: JEA 5 (2000),
7–es: ACM. doi: 10.1145/351827.384249. [see page 117]

[San02] Peter Sanders. “Randomized receiver initiated load-balancing algorithms for
tree-shaped computations”. In: The Computer Journal 45.5 (2002), pp. 561–573:
Oxford University Press. doi: 10.1093/comjnl/45.5.561. [see page 56]

[San09] Peter Sanders. “Algorithm engineering–an attempt at a definition”. In: Efficient
Algorithms: Essays Dedicated to Kurt Mehlhorn on the Occasion of His 60th
Birthday (2009), pp. 321–340: Springer. doi: 10.1007/978-3-642-03456-5_22.

[see pages 4, 5]

[SB09] Niklas Sörensson and Armin Biere. “Minimizing learned clauses”. In: Proc.
SAT. Springer. 2009, pp. 237–243. doi: 10.1007/978-3-642-02777-2_23.

[see page 15]

[SB10] Sven Schulz and Wolfgang Blochinger. “Cooperate and compete! A hybrid
solving strategy for task-parallel SAT solving on peer-to-peer desktop grids”. In:
Proc. Int. Conf. HPC & Simulation. IEEE. 2010, pp. 314–323. [see page 25]

[SBA18] Thomas Sterling, Maciej Brodowicz, and Matthew Anderson. High performance
computing: modern systems and practices. Morgan Kaufmann, 2018. doi: 10.
1016/C2013-0-09704-6. [see pages 4, 11]

[SBK01] Carsten Sinz, Wolfgang Blochinger, and Wolfgang Küchlin. “PaSAT – Parallel
SAT-checking with lemma exchange: Implementation and applications”. In:
Electronic Notes in Discrete Mathematics 9 (2001), pp. 205–216: Elsevier. doi:
10.1016/s1571-0653(04)00323-3. [see pages 25, 27, 28]

[Sch+19a] Dominik Schreiber, Damien Pellier, Humbert Fiorino, and Tomáš Balyo. “Ef-
ficient SAT Encodings for Hierarchical Planning”. In: Proc. ICAART. 2019,
pp. 531–538. doi: 10.5220/0007343305310538.

[see pages 23, 127, 128, 134, 135, 203]

[Sch+19b] Dominik Schreiber, Damien Pellier, Humbert Fiorino, and Tomáš Balyo. “Tree-
REX: SAT-based tree exploration for efficient and high-quality HTN planning”.
In: Proc. ICAPS. 2019, pp. 382–390. doi: 10.1609/icaps.v29i1.3502.

[see pages 22, 23, 127–129, 134–136, 140, 145–147, 152–155, 199,
203]

[Sch16] Dominik Schreiber. “Energieeffiziente Ausführung von qualitätsbewussten Al-
gorithmen für Mobile Simulationen”. Bachelor’s thesis. Universität Stuttgart,
2016. [see page 204]

[Sch18] Dominik Schreiber. “Hierarchical task network planning using SAT techniques”.
Master’s thesis. Grenoble Institut National Polytechnique (INP) and Karlsruhe
Institute of Technology (KIT), 2018. doi: 10.5445/IR/1000104165.

[see pages 127, 146, 154, 196, 204]

229

https://doi.org/10.1007/978-3-030-25209-0
https://doi.org/10.1145/351827.384249
https://doi.org/10.1093/comjnl/45.5.561
https://doi.org/10.1007/978-3-642-03456-5_22
https://doi.org/10.1007/978-3-642-02777-2_23
https://doi.org/10.1016/C2013-0-09704-6
https://doi.org/10.1016/C2013-0-09704-6
https://doi.org/10.1016/s1571-0653(04)00323-3
https://doi.org/10.5220/0007343305310538
https://doi.org/10.1609/icaps.v29i1.3502
https://doi.org/10.5445/IR/1000104165

Bibliography

[Sch20] Dominik Schreiber. “Engineering HordeSat towards malleability: mallob-mono
in the SAT 2020 cloud track”. In: Proc. SAT Competition. 2020, pp. 45–46.

[see pages 7, 65, 79, 101, 204]

[Sch21a] Maximilian Schick. “Cube&Conquer-inspired Malleable Distributed SAT Solv-
ing”. Master’s thesis. Karlsruhe Institute of Technology (KIT), 2021.

[see pages 25, 41, 55, 80, 205]

[Sch21b] Nikolai Schnell. “Pruning Techniques for Lifted SAT-based Hierarchical Plan-
ning”. Master’s thesis. Karlsruhe Institute of Technology (KIT), 2021.

[see pages 155, 164, 169, 205]

[Sch21c] Dominik Schreiber. “Lifted logic for task networks: TOHTN planner Lilotane
in the IPC 2020”. In: Proc. International Planning Competition. 2021, pp. 9–12.

[see page 204]

[Sch21d] Dominik Schreiber. “Lilotane: A Lifted SAT-Based Approach to Hierarchical
Planning”. In: JAIR 70 (2021), pp. 1117–1181. doi: 10.1613/jair.1.12520.

[see pages 7, 127, 140, 142, 144, 148, 150, 155, 179, 203]

[Sch21e] Dominik Schreiber. “Mallob in the SAT Competition 2021”. In: Proc. SAT
Competition. 2021, pp. 38–39. [see pages 7, 65, 102, 204]

[Sch22] Dominik Schreiber. “Mallob in the SAT Competition 2022”. In: Proc. SAT
Competition. 2022, pp. 46–47. [see pages 7, 65, 103, 119, 204]

[Sch23] Dominik Schreiber. “Mallob{32,64,1600} in the SAT Competition 2023”. In:
Proc. SAT Competition. 2023, pp. 46–47. [see pages 7, 65, 83, 104, 204]

[Sco+21] Joseph Scott, Aina Niemetz, Mathias Preiner, et al. “MachSMT: A machine
learning-based algorithm selector for SMT solvers”. In: Proc. TACAS. Springer.
2021, pp. 303–325. doi: 10.1007/978-3-030-72013-1_16. [see page 34]

[SH23] Bernardo Subercaseaux and Marijn J. H. Heule. “The packing chromatic number
of the infinite square grid is 15”. In: Proc. TACAS. Springer. 2023, pp. 389–406.
doi: 10.1007/978-3-031-30823-9_20. [see pages 3, 31, 108]

[Sim14] Laurent Simon. “Post Mortem Analysis of SAT Solver Proofs.” In: Proc. Prag-
matics of SAT. 2014, pp. 26–40. [see pages 30, 35]

[Sin07] Carsten Sinz. “Visualizing SAT Instances and Runs of the DPLL Algorithm”.
In: J. Autom. Reason. 39.2 (2007), pp. 219–243: Springer. doi: 10.1007/s10817-
007-9074-1. [see page 3]

[Sir+04] Evren Sirin, Bijan Parsia, Dan Wu, et al. “HTN planning for web service
composition using SHOP2”. In: J. Web Semantics 1.4 (2004), pp. 377–396:
Elsevier. doi: 10.1016/j.websem.2004.06.005. [see page 128]

[SLH05] Laurent Simon, Daniel Le Berre, and Edward A. Hirsch. “The SAT2002 compe-
tition”. In: Annals of Mathematics and Artificial Intelligence 43 (2005), pp. 307–
342: Springer. doi: 10.1007/s10472-005-0424-6. [see page 38]

[SLM92] Bart Selman, Hector Levesque, and David Mitchell. “A New Method for Solving
Hard Satisfiability Problems”. In: Proc. AAAI. 1992, pp. 440–446. [see page 2]

[Smi22] Robin Smith. Aristotle’s Logic. The Stanford Encyclopedia of Philosophy. Ed. by
Edward N. Zalta and Uri Nodelman. 2022. url: https://plato.stanford.
edu/archives/win2022/entries/aristotle-logic/. [see page 1]

230

https://doi.org/10.1613/jair.1.12520
https://doi.org/10.1007/978-3-030-72013-1_16
https://doi.org/10.1007/978-3-031-30823-9_20
https://doi.org/10.1007/s10817-007-9074-1
https://doi.org/10.1007/s10817-007-9074-1
https://doi.org/10.1016/j.websem.2004.06.005
https://doi.org/10.1007/s10472-005-0424-6
https://plato.stanford.edu/archives/win2022/entries/aristotle-logic/
https://plato.stanford.edu/archives/win2022/entries/aristotle-logic/

Bibliography

[SNC09] Mate Soos, Karsten Nohl, and Claude Castelluccia. “Extending SAT Solvers
to Cryptographic Problems”. In: Proc. SAT. Springer. 2009, pp. 244–257. doi:
10.1007/978-3-642-02777-2_24. [see pages 2, 17, 21, 155]

[Sön21] Malte Sönnichsen. “Asynchronous Clause Exchange for Malleable SAT Solving”.
Master’s thesis. Karlsruhe Institute of Technology (KIT), 2021.

[see pages 41, 55, 205]

[Spe17] Ivor Spence. “Balanced random SAT benchmarks”. In: Proc. SAT Competition.
2017, p. 53. [see page 94]

[SS07] Matthew J. Streeter and Stephen F. Smith. “Using Decision Procedures Effi-
ciently for Optimization”. In: Proc. ICAPS. 2007, pp. 312–319. [see page 154]

[SS11] Peter Sanders and Jochen Speck. “Efficient parallel scheduling of malleable
tasks”. In: Proc. International Parallel & Distributed Processing Symp. IEEE.
2011, pp. 1156–1166. doi: 10.1109/ipdps.2011.110. [see page 43]

[SS12] Peter Sanders and Jochen Speck. “Energy efficient frequency scaling and schedul-
ing for malleable tasks”. In: Proc. Euro-Par. Springer. 2012, pp. 167–178. doi:
10.1007/978-3-642-32820-6_18. [see pages 41, 43, 179]

[SS21a] André Schidler and Stefan Szeider. “SAT-based decision tree learning for large
data sets”. In: Proc. AAAI. 2021, pp. 3904–3912. doi: 10.1609/aaai.v35i5.
16509. [see page 21]

[SS21b] Dominik Schreiber and Peter Sanders. “Scalable SAT Solving in the Cloud”. In:
Proc. SAT. Springer. 2021, pp. 518–534. doi: 10.1007/978-3-030-80223-3_35.

[see pages 7, 59, 65, 74, 75, 79, 87, 108, 203]

[SS21c] Malte Sönnichsen and Dominik Schreiber. “The “Factories” HTN Domain”. In:
Proc. International Planning Competition. 2021, pp. 45–46.

[see pages 132, 163, 204]

[SS22a] Peter Sanders and Dominik Schreiber. “Decentralized online scheduling of
malleable NP-hard jobs”. In: Proc. Euro-Par. Springer. 2022, pp. 119–135. doi:
10.1007/978-3-031-12597-3_8. [see pages 7, 41, 61, 203]

[SS22b] Peter Sanders and Dominik Schreiber. “Mallob: Scalable SAT Solving On
Demand With Decentralized Job Scheduling”. In: JOSS 7.76 (2022), p. 4591.
doi: 10.21105/joss.04591. [see page 203]

[SS97] JOM Silva and Karem A. Sakallah. “Robust search algorithms for test pattern
generation”. In: Proc. IEEE Int. Symp. Fault Tolerant Computing. IEEE. 1997,
pp. 152–161. doi: 10.1109/ftcs.1997.614088. [see page 21]

[Sur+22] Pavel Surynek, Roni Stern, Eli Boyarski, and Ariel Felner. “Migrating Techniques
from Search-Based Multi-Agent Path Finding Solvers to SAT-Based Approach”.
In: JAIR 73 (2022), pp. 553–618. doi: 10.1613/jair.1.13318.

[see pages 3, 22, 23, 168, 175, 178]

[Sur12] Pavel Surynek. “Towards optimal cooperative path planning in hard setups
through satisfiability solving”. In: Pacific Rim Int. Conf. Artificial Intelligence.
Springer. 2012, pp. 564–576. doi: 10.1007/978-3-642-32695-0_50.

[see page 22]

231

https://doi.org/10.1007/978-3-642-02777-2_24
https://doi.org/10.1109/ipdps.2011.110
https://doi.org/10.1007/978-3-642-32820-6_18
https://doi.org/10.1609/aaai.v35i5.16509
https://doi.org/10.1609/aaai.v35i5.16509
https://doi.org/10.1007/978-3-030-80223-3_35
https://doi.org/10.1007/978-3-031-12597-3_8
https://doi.org/10.21105/joss.04591
https://doi.org/10.1109/ftcs.1997.614088
https://doi.org/10.1613/jair.1.13318
https://doi.org/10.1007/978-3-642-32695-0_50

Bibliography

[SvdP22] Irfansha Shaik and Jaco van de Pol. “Classical planning as QBF without
grounding”. In: Proc. ICAPS. 2022, pp. 329–337. doi: 10.1609/icaps.v32i1.
19817. [see page 23]

[Tau+02] Rizwan Ali Tau Leng, Jenwei Hsieh, Victor Mashayekhi, and Reza Rooholamini.
“An empirical study of hyper-threading in high performance computing clusters”.
In: Linux HPC Revolution 45 (2002) . [see page 9]

[THM21] Yong Kiam Tan, Marijn J. H. Heule, and Magnus O. Myreen. “cake lpr: Verified
Propagation Redundancy Checking in CakeML”. In: Proc. TACAS. Springer.
2021, pp. 223–241. doi: 10.1007/978-3-030-72013-1_12. [see page 109]

[THM23] Yong Kiam Tan, Marijn J. H. Heule, and Magnus Myreen. “Verified LRAT and
LPR Proof Checking with cake lpr”. In: Proc. SAT Competition. 2023, p. 89.

[see page 34]

[TM12] Markus Triska and Nysret Musliu. “An improved SAT formulation for the social
golfer problem”. In: Annals of Operations Research 194.1 (2012), pp. 427–438:
Citeseer. doi: 10.1007/s10479-010-0702-5. [see page 3]

[Tse83] Grigori S. Tseitin. “On the complexity of derivation in propositional calculus”.
In: Automation of reasoning: 2: Classical papers on computational logic 1967–
1970 (1983), pp. 466–483: Springer. doi: 10.1007/978-3-642-81955-1_28.

[see page 13]

[Ull08] Carsten Ullrich. Pedagogically founded courseware generation for web-based
learning: an HTN-planning-based approach implemented in PAIGOS. Vol. 5260.
Springer, 2008. doi: 10.1007/978-3-540-88215-2. [see page 128]

[Vai+15] Karthikeyan Vaidyanathan, Dhiraj D. Kalamkar, Kiran Pamnany, et al. “Im-
proving concurrency and asynchrony in multithreaded MPI applications using
software offloading”. In: Proc. Int. Conf. HPC, Networking, Storage and Analysis.
2015, pp. 1–12. doi: 10.1145/2807591.2807602. [see page 53]

[Val+20a] Vincent Vallade, Ludovic Le Frioux, Souheib Baarir, et al. “Community and
LBD-based clause sharing policy for parallel SAT solving”. In: Proc. SAT.
Springer. 2020, pp. 11–27. doi: 10.1007/978-3-030-51825-7_2.

[see pages 28, 29, 39]

[Val+20b] Vincent Vallade, Ludovic Le Frioux, Souheib Baarir, et al. “P-MCOMSPS-STR:
a Painless-based Portfolio of MapleCOMSPS with Clause Strengthening”. In:
Proc. SAT Competition. 2020, p. 56. [see page 28]

[Val+21] Vincent Vallade, Ludovic Le Frioux, Razvan Oanea, et al. “New concurrent and
distributed painless solvers: p-mcomsps, p-mcomsps-com, p-mcomsps-mpi, and
p-mcomsps-com-mpi”. In: Proc. SAT Competition. 2021, p. 40. [see page 29]

[Van08] Allen Van Gelder. “Verifying RUP Proofs of Propositional Unsatisfiability.” In:
ISAIM. 2008. [see page 21]

[vdHey19] Jean-Pierre von der Heydt. “Cube&Conquer-inspired Techniques for Parallel
Automated Planning”. Bachelor’s thesis. Karlsruhe Institute of Technology
(KIT), 2019. [see page 204]

[VWM15] Yakir Vizel, Georg Weissenbacher, and Sharad Malik. “Boolean Satisfiability
Solvers and Their Applications in Model Checking”. In: Proc. IEEE. 2015,
pp. 2021–2035. doi: 10.1109/JPROC.2015.2455034. [see page 22]

232

https://doi.org/10.1609/icaps.v32i1.19817
https://doi.org/10.1609/icaps.v32i1.19817
https://doi.org/10.1007/978-3-030-72013-1_12
https://doi.org/10.1007/s10479-010-0702-5
https://doi.org/10.1007/978-3-642-81955-1_28
https://doi.org/10.1007/978-3-540-88215-2
https://doi.org/10.1145/2807591.2807602
https://doi.org/10.1007/978-3-030-51825-7_2
https://doi.org/10.1109/JPROC.2015.2455034

Bibliography

[Web05] Tjark Weber. “A SAT-based Sudoku solver”. In: LPAR. 2005, pp. 11–15.
[see pages 21, 26]

[Wel94] Daniel S. Weld. “An introduction to least commitment planning”. In: AI
Magazine 15 (1994), pp. 27–61 . [see page 129]

[WH13a] Siert Wieringa and Keijo Heljanko. “Asynchronous multi-core incremental SAT
solving”. In: Proc. TACAS. Springer. 2013, pp. 139–153. doi: 10.1007/978-3-
642-36742-7_10. [see pages 23, 175]

[WH13b] Siert Wieringa and Keijo Heljanko. “Concurrent clause strengthening”. In: Proc.
SAT. Springer. 2013, pp. 116–132. doi: 10.1007/978-3-642-39071-5_10.

[see pages 19, 28]

[WH20] Sean Weaver and Marijn J. H. Heule. “Constructing minimal perfect hash
functions using SAT technology”. In: Proc. AAAI. 2020, pp. 1668–1675. doi:
10.1609/aaai.v34i02.5529. [see page 21]

[Wil20] Marvin Williams. “Partially Instantiated Representations for Automated Plan-
ning”. Master’s thesis. Karlsruhe Institute of Technology (KIT), 2020.

[see pages 136, 205]

[Wil22] Niko Wilhelm. “Malleable Distributed Hierarchical Planning”. Master’s thesis.
Karlsruhe Institute of Technology (KIT), 2022. [see pages 41, 56, 205]

[Wot+12] Andreas Wotzlaw, Alexander van der Grinten, Ewald Speckenmeyer, and Stefan
Porschen. “pfolioUZK: Solver description”. In: Proc. SAT Challenge. 2012.

[see page 28]

[WOZ10] Martin Weser, Dominik Off, and Jianwei Zhang. “HTN robot planning in
partially observable dynamic environments”. In: IEEE Int. Conf. Robotics and
Automation. IEEE. 2010, pp. 1505–1510. doi: 10.1109/robot.2010.5509770.

[see page 128]

[WTH19] Julia Wichlacz, Alvaro Torralba, and Jörg Hoffmann. “Construction-planning
models in minecraft”. In: Proc. ICAPS Workshop on Hierarchical Planning.
2019. [see page 128]

[Wu+23] Ying Xian Wu, Conny Olz, Songtuan Lin, and Pascal Bercher. “Grounded
(Lifted) Linearizer: Solving Partial Order HTN Problems by Linearizing Them”.
In: Proc. International Planning Competition. 2023. To appear. [see page 179]

[XA05] Yichen Xie and Alex Aiken. “Saturn: A SAT-based tool for bug detection”. In:
Proc. CAV. Springer. 2005, pp. 139–143. doi: 10.1007/11513988_13.

[see page 22]

[XFJ16] Bruno Xavier, Tiago Ferreto, and Luis Jersak. “Time provisioning evaluation of
kvm, docker and unikernels in a cloud platform”. In: Proc. IEEE/ACM CCGrid.
IEEE. 2016, pp. 277–280. doi: 10.1109/ccgrid.2016.86. [see page 11]

[Xu+12] Lin Xu, Frank Hutter, Holger Hoos, and Kevin Leyton-Brown. “Evaluating
component solver contributions to portfolio-based algorithm selectors”. In: Proc.
SAT. Springer. 2012, pp. 228–241. doi: 10.1007/978-3-642-31612-8_18.

[see pages 26, 27, 79]

233

https://doi.org/10.1007/978-3-642-36742-7_10
https://doi.org/10.1007/978-3-642-36742-7_10
https://doi.org/10.1007/978-3-642-39071-5_10
https://doi.org/10.1609/aaai.v34i02.5529
https://doi.org/10.1109/robot.2010.5509770
https://doi.org/10.1007/11513988_13
https://doi.org/10.1109/ccgrid.2016.86
https://doi.org/10.1007/978-3-642-31612-8_18

Bibliography

[YZ13] Haihang You and Hao Zhang. “Comprehensive workload analysis and model-
ing of a petascale supercomputer”. In: Job Scheduling Strategies for Parallel
Processing: International Workshop, JSSPP. Springer. 2013, pp. 253–271. doi:
10.1007/978-3-642-35867-8_14. [see page 11]

[ZBH96] Hantao Zhang, Maria Paola Bonacina, and Jieh Hsiang. “PSATO: a distributed
propositional prover and its application to quasigroup problems”. In: J. Symbolic
Computation 21.4-6 (1996), pp. 543–560: Academic Press. doi: 10.1006/jsco.
1996.0030. [see pages 3, 24, 31]

[ZCC22] Xindi Zhang, Zhihan Chen, and Shaowei Cai. “ParKissat: Random Shuffle Based
and Pre-processing Extended Parallel Solvers with Clause Sharing”. In: Proc.
SAT Competition. 2022, p. 51. [see pages 29, 103, 120]

[ZCC23] Xindi Zhang, Zhihan Chen, and Shaowei Cai. “PRS: A new parallel/distributed
framework for SAT”. In: Proc. SAT Competition. 2023, pp. 39–40.

[see pages 29, 104, 105, 178]

[Zha+01] Lintao Zhang, Conor F. Madigan, Matthew H. Moskewicz, and Sharad Malik.
“Efficient conflict driven learning in a boolean satisfiability solver”. In: Proc.
IEEE/ACM ICCAD. IEEE. 2001, pp. 279–285. doi: 10.1109/iccad.2001.
968634. [see page 15]

[Zha+11] Jing Zhang, Gongqing Wu, Xuegang Hu, et al. “A parallel k-means clustering
algorithm with MPI”. In: Proc. Symp. Parallel Architectures, Algorithms and
Programming. IEEE. 2011, pp. 60–64. doi: 10.1109/paap.2011.17.

[see page 57]

[Zha02] Hantao Zhang. “Generating college conference basketball schedules by a SAT
solver”. In: Proc. SAT. Springer. 2002, pp. 281–291. [see page 22]

[Zha96] Jian Zhang. “Constructing finite algebras with FALCON”. In: J. Autom. Reason.
17 (1996), pp. 1–22: Springer. doi: 10.1007/bf00247667. [see page 21]

[Zhe+14] Yili Zheng, Amir Kamil, Michael B. Driscoll, et al. “UPC++: a PGAS exten-
sion for C++”. In: IEEE Int. Parallel and Distributed Processing Symp. 2014,
pp. 1105–1114. [see page 10]

[Zhe+22] Jiongzhi Zheng, Kun He, Zhuo Chen, et al. “Combining Hybrid Walking Strategy
with Kissat MAB, CaDiCaL, and LStech-Maple”. In: Proc. SAT Competition.
2022, p. 20. [see pages 90, 120]

[ZK17] Neng-Fa Zhou and H̊akan Kjellerstrand. “Optimizing SAT encodings for arith-
metic constraints”. In: Proc. CP. Springer. 2017, pp. 671–686. doi: 10.1007/978-
3-319-66158-2_43. [see page 3]

[ZM88] Ramin Zabih and David A. McAllester. “A Rearrangement Search Strategy for
Determining Propositional Satisfiability”. In: Proc. AAAI. 1988, pp. 155–160.

[see page 14]

234

https://doi.org/10.1007/978-3-642-35867-8_14
https://doi.org/10.1006/jsco.1996.0030
https://doi.org/10.1006/jsco.1996.0030
https://doi.org/10.1109/iccad.2001.968634
https://doi.org/10.1109/iccad.2001.968634
https://doi.org/10.1109/paap.2011.17
https://doi.org/10.1007/bf00247667
https://doi.org/10.1007/978-3-319-66158-2_43
https://doi.org/10.1007/978-3-319-66158-2_43

	Title Page
	Abstract
	Deutsche Zusammenfassung
	Acknowledgments
	Table of Contents
	1 Introduction
	1.1 Motivation
	1.2 Problem Statement
	1.3 Methodology
	1.4 Contributions
	1.5 Chapter Overview
	1.6 Reading This Thesis

	2 Preliminaries and Related Work
	2.1 Parallel Processing
	2.1.1 Parallel Hardware
	2.1.2 Distributed Computing
	2.1.3 Assessing Parallel Algorithms

	2.2 SAT Fundamentals
	2.2.1 The SAT Problem
	2.2.2 Complexity
	2.2.3 Sequential Algorithms
	2.2.4 Certified Unsatisfiability
	2.2.5 Applications
	2.2.6 Extensions

	2.3 Parallel SAT Solving
	2.3.1 Explicit Search Space Partitioning
	2.3.2 Solver Portfolios
	2.3.3 SAT Solving in Distributed Systems
	2.3.4 Parallel Certified SAT Solving

	2.4 Pragmatics of SAT Solving
	2.4.1 File Formats and Standards
	2.4.2 Evaluating SAT Solving Performance
	2.4.3 International SAT Competition

	3 Decentralized Scheduling of Malleable NP-hard Tasks
	3.1 Introduction
	3.2 Foundations
	3.3 Problem Statement
	3.4 Approach
	3.4.1 Calculation of Fair Volumes
	3.4.2 Assignment of Jobs to Processes
	3.4.3 Reuse of Suspended Workers

	3.5 The Mallob System
	3.5.1 Overview
	3.5.2 Communication
	3.5.3 Applications

	3.6 Evaluation
	3.6.1 Setup
	3.6.2 Uniform Jobs
	3.6.3 Impact of Priorities
	3.6.4 Realistic Job Arrivals

	3.7 Conclusion

	4 Scalable Distributed SAT Solving
	4.1 Introduction
	4.2 Overview
	4.3 Clause Sharing
	4.3.1 Design Decisions
	4.3.2 Clause Exchange Operation
	4.3.3 Clause Buffering
	4.3.4 Clause Filtering
	4.3.5 Compensating for Unused Sharing Volume
	4.3.6 Handling LBD Values

	4.4 Achieving Diversity
	4.4.1 Solver Portfolio
	4.4.2 Diversification Techniques

	4.5 Technical Improvements
	4.5.1 Memory Awareness
	4.5.2 Preemption of Solvers

	4.6 Evaluation
	4.6.1 Experimental Setup
	4.6.2 SAT Solving Configuration
	4.6.3 Scaling and Speedups
	4.6.4 Performance Insights
	4.6.5 Malleable SAT Solving
	4.6.6 Massively Parallel Processing of SAT Jobs

	4.7 MallobSat in the International SAT Competition
	4.7.1 Setup
	4.7.2 By-year Discussion

	4.8 Conclusion

	5 Unsatisfiability Proofs for Distributed SAT Solving
	5.1 Introduction
	5.2 Proof Formats
	5.3 Basic Proof Production
	5.3.1 Partial Proof Production
	5.3.2 Partial Proof Combination
	5.3.3 Proof Pruning

	5.4 Distributed Proof Production
	5.4.1 Overview
	5.4.2 Clause ID Alignment
	5.4.3 Rewind Algorithm
	5.4.4 Correctness
	5.4.5 Analysis
	5.4.6 Merging Step

	5.5 Implementation
	5.6 Evaluation
	5.6.1 Experimental Setup
	5.6.2 Results

	5.7 Conclusion

	6 Lifted Hierarchical Planning: A Case Study in Applied SAT
	6.1 Introduction
	6.2 Preliminaries
	6.2.1 TOHTN Planning
	6.2.2 Grounding
	6.2.3 SAT-Based Planning
	6.2.4 Lifted Encodings

	6.3 Planning Approach
	6.3.1 Instantiation
	6.3.2 Reachability Analysis for Facts and Operations
	6.3.3 Shared Pseudo-Constants and Dominated Operations

	6.4 Encoding
	6.4.1 Base Encoding
	6.4.2 Optimizations
	6.4.3 Decoding a Plan
	6.4.4 Correctness
	6.4.5 Complexity

	6.5 Plan Improvement
	6.6 Evaluation
	6.6.1 Implementation
	6.6.2 Lilotane as a SAT-Based HTN Planner
	6.6.3 International Planning Competition 2020
	6.6.4 Follow-Up Evaluation

	6.7 Conclusion

	7 Distributed Incremental SAT Solving for Hierarchical Planning
	7.1 Introduction
	7.2 Requirement Analysis
	7.3 Approach
	7.3.1 Incremental Jobs in Mallob
	7.3.2 Incremental SAT Solving Engine
	7.3.3 Reducing Revision Turnaround Times

	7.4 Evaluation
	7.4.1 Results

	7.5 Conclusion

	8 Conclusion
	8.1 Conclusion
	8.2 Impact
	8.3 Future Work

	9 Appendix
	A Online Repository: Software and Experimental Data
	B Scalable SAT Solving: Supplementary Material
	C Distributed UNSAT Proofs: Supplementary Material
	D Lilotane: Formal Definitions and Proofs
	D.1 Hierarchical Solutions
	D.2 Reachability Analysis
	D.3 Correctness of Encoding

	E Lilotane: Derivation of Complexity Results
	E.1 Number of Variables
	E.2 Number of Clauses

	F Lilotane: Supplementary Figures

	Appendix
	List of Acronyms
	Publications and Supervised Theses
	Bibliography

