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Zusammenfassung 

Die vorgelegte Doktorarbeit beschäftigt sich erstmals damit einen gesamten 

biopharmazeutischen Downstream Prozess mit computergestützten Modellen 

zu beschreiben. Mit dem Downstream Prozess ist in diesem Fall die 

Aufreinigung von therapeutischen Proteinen, zur Erzielung eines definierten 

Reinheitsgrades für die klinische Applikation gemeint. Der Fertigungsprozess 

im Downstream besteht in der Regel aus einer Verkettung von mehreren 

Chromatographie- und Filtrationsschritten. Die wesentliche Aufgabe besteht 

darin Verunreinigungen und auftretende Prozessschwankungen zuverlässig 

abzufangen und die Produktqualität zu gewährleisten. Zur Sicherstellung der 

Produktqualität verlangen Aufsichtsbehörden wie die U.S. Food and Drug 

Administration (FDA) und die Europäische Arzneimittelagentur (EMA) einen 

kontrollierten und robusten Fertigungsprozess. Hierdurch soll die 

Patientensicherheit und die effiziente Marktversorgung des Arzneimittels 

gewährleistet werden. Die biopharmazeutischen Unternehmen müssen somit 

alle Prozessparameter und deren Auswirkung auf Produktqualitätsmerkmale 

ermitteln, überwachen und kontrollieren. Zu den geforderten Qualitätszielen, 

findet sich die biopharmazeutische Industrie in einer zunehmend kompetitiven 

Umgebung. Der Kosten- und Zeitdruck nimmt stetig zu und es ist absolut 

entscheidend die Marktreife des Arzneimittels als erstes Unternehmen zu 

erreichen. Es ist somit von großem Interesse die aktuelle Prozessentwicklung 

zu hinterfragen und zu beschleunigen. 

Die derzeitige Prozessentwicklung setzt zur Erschließung der 

Zusammenhänge zwischen Prozessparametern und deren Einfluss auf die 

Produktqualität hauptsächlich auf experimentelle Ansätze. Häufig wird die 

statistische Versuchsplanungen, auch Design of Experiments (DoE‘s) genannt, 

eingesetzt. Hierbei werden die Ursache-Wirkungs-Beziehungen zwischen 

Prozessparametern und Produktqualität durch Planung, Durchführung und 

Auswertung speziell designter Experimente erschlossen. Dieser Ansatz war in 

der Vergangenheit erfolgsversprechend, jedoch gibt es einige Nachteile. Die 

erhaltenden Zusammenhänge sind prozessgebunden und somit nicht generell 

gültig oder übertragbar. Zudem sind Vorhersagen außerhalb des experimentell 

getesteten Rahmens generell nicht zulässig. Aufgrund des exponentiellen 

Zusammenhanges zwischen der Anzahl an Parametern und Experimenten, ist 

die Anzahl an testbaren Prozessparametern ebenfalls limitierend. Auch wenn 

die Anzahl an Parametern geringgehalten wird, ist die experimentelle 

Durchführung sehr zeitintensiv. Prozessschritt übergreifende Studien würden 

deshalb einen unrealistischen experimentellen Aufwand bedeuten, da die 

Anzahl an Prozessparameter jeden möglichen Versuchsrahmen sprengen 

würde. Somit werden die Prozesseinheiten i.d.R. einzeln betrachtet und 
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entwickelt. Die genannten Limitationen können potenziell von 

mechanistischen Modellen ausgeglichen werden. Diese Modelle haben zum Ziel 

die zugrundeliegenden Prozesszusammenhänge anhand von Naturgesetzen zu 

beschreiben. Es werden hierbei mathematische Gleichungen herangezogen, 

welche die zugrundeliegenden Prozesszusammenhänge mit physikalisch-

chemischen Modellen verbinden. Vorhersagen durch mechanistische Modelle 

außerhalb des experimentellen Rahmens sind somit möglich und auch die 

Unabhängigkeit von Prozessdimensionen ist gegeben. Wenn also 

Prozesszusammenhänge im Downstream Prozess durch mechanistische 

Modelle bekannt und beschrieben werden, können hierdurch Experimente und 

Zeit während der Entwicklung eingespart werden.  

Im Idealfall sind alle benötigten Modellparameter bekannt oder direkt 

messbar. In der Realität müssen jedoch häufig einzelne Modellparameter an 

wenigen, gezielten Experimenten bestimmt werden, was als 

Parameteranpassung bezeichnet wird. Die Qualität der Modellvorhersagen 

hängt somit stark von der Wahl des Modelles und der Experimente zur 

Parameteranpassung ab. Es ist anzumerken, dass selbst bei Beachtung der 

genannten Punkte, die Modelle dennoch eine Approximation der Realität 

bleiben. Dennoch helfen sie uns die Prozesszusammenhänge besser zu 

verstehen und zu kontrollieren. 

Das Ziel der vorliegenden Arbeit war es erstmalig mechanistische Modelle zur 

Beschreibung einer gesamten Downstream Sequenz zu verknüpfen. Durch die 

Verknüpfung von mechanistischen Modellen wird eine prozessschritt- und 

dimensions-übergreifende Prozessbeschreibung ermöglicht. Dies erforderte 

eine sorgfältige Modellauswahl, sowie die Sicherstellung einer geeigneten 

Strategie zur Parameteranpassung jedes einzelnen Modells. Das im 

Labormaßstab entwickelte Modell wurde auf Produktionsdaten getestet, um 

die industrielle Anwendbarkeit zu demonstrieren. Dies wurde schrittweise in 

3 Manuskripten umgesetzt. 

In der ersten Veröffentlichung (Kapitel 3) wurde die Verkettung von zwei 

Ionenaustauschchromatographie Schritten unter Beachtung der 

Anpassungsschritte veröffentlicht. Dies ermöglicht die Einflussnahme von 

Puffersubstanzen, pH, Ionen und Proteinkonzentrationen auf die 

entsprechenden folgenden Prozessschritte zu beschreiben. Als geeignetes 

Modell für die Einstellschritte hat sich ein Mean-Field Ansatz erwiesen. Für 

die Beschreibung der Ionenaustauschchromatographie hat sich das 

Transport-Dispersionsmodell in Kombination mit einem kolloidalen 

Partikeladsorptionsmodell bewiesen. Das verknüpfte Modell war schließlich in 

der Lage Prozessvariationen im Produktionsmaßstab von 94 Durchläufen 

angemessen zu reproduzieren. Das Modell konnte zudem nicht nur die 
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Prozessperformance reproduzieren, sondern auch die Größenvarianten als 

kritisches Qualitätsattribut beschreiben. Es konnte erstmals gezeigt werden, 

dass ein verknüpftes Modell im Labormaßstab entwickelt, durchaus in der 

Lage ist Schlüsse auf die Produktionsvariabilität zuzulassen. 

Das Modell in Kapitel 4 beschreibt die Tangentialflussfiltration (TFF) wie sie 

für die Ultrafiltration und Diafiltration (UF/DF) in der biopharmazeutischen 

Industrie angewendet wird. Bei dieser Filtration strömt der Fluss tangential 

zur Membranfläche und erlaubt somit eine hohe Ankonzentration 

(Ultrafiltration) bzw. einen Puffertausch (Diafiltration). Während des UF/DF 

Prozesses wirkt ein komplexes Zusammenspiel aus Drücken und Flüssen in 

Abhängigkeit der Proteineigenschaften wie der Viskosität. Bisherige Modelle 

betrachteten lediglich die Ultrafiltration oder den Druck und dies nicht über 

die gesamten Phasen der UF/DF über die Zeit aufgelöst. Ein modifiziertes 

Polarisationsmodell in Kombination mit einer modifizierten Darcy 

Forchheimer Gleichung erwies sich als zuverlässig. Das Modell war in der Lage 

adäquat auf multivariate Ultrafiltrationsexperimente zu reagieren. Ebenfalls 

konnte ein kompletter UF/DF Prozess beschrieben werden und 

Dimensionseffekte beobachtet werden. 

In Kapitel 5 wird schließlich das verbundene mechanistische Prozessmodell 

präsentiert. Hierzu war es notwendig für die restlichen Prozessschritte 

Modelle zu etablieren. Dies beinhaltet die Beschreibung der 

Affinitätschromatographie mittels eines Transport-Dispersionsmodells in 

Kombination mit einer modifizierten Langmuir Adsorptionsisotherme. Das 

Affinitätsmodell beschreibt die pH induzierte Elution für verschiedene 

Säulenbeladungen und Prozessfahrweisen, was in der Form bisher noch nicht 

gezeigt werden konnte. Des Weiteren wurde für die Tiefenfiltration als 

fähigstes Modell das kombinierte Porenverblockungsmodell identifiziert. Das 

Modell kombiniert die klassische Porenverblockung mit der Kuchenfiltration, 

welche erstmals auf die Tiefenfiltration angewendet werden konnte. Es konnte 

schließlich die Tiefenfiltration über die Zeit aufgelöst und die fluss- als auch 

druckgesteuerte Filtration beschrieben werden. In der Summe konnte 

schließlich ein verbundenes mechanistisches Prozessmodell für einen 

gesamten biopharmazeutischen Downstream Prozess erstellt werden. Das im 

Labormaßstab entwickelte Prozessmodell wurde ebenfalls erstmals genutzt, 

um auf industrielle Produktionsläufe zu extrapolieren. Die Extrapolation der 

Prozessinputs beinhaltete nicht nur Chromatographie Säulen doppelter 

Trennlänge, sondern auch weitere Prozessbedingungen, wie sie im 

Labormaßstab nicht zur Modellentwicklung verwendet wurden. Die 

Modellqualität und Anwendbarkeit konnte zusätzlich gezeigt werden, indem 
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die Prozessschwankung von 23 Produktionsläufen adäquat über den gesamten 

Prozess von dem Prozessmodell wiedergeben wurde. 

Zusammenfassend konnte in der vorliegenden Arbeit anhand eines Proteins 

gezeigt werden, dass die zugrunde liegenden Mechanismen in einem 

biopharmazeutische Downstream Prozess in verbundener Form beschrieben 

werden können. Die Herausforderung der Modellauswahl und Umsetzung 

konnten anhand des vorliegenden Prozesses umgesetzt werden. Die 

Erkenntnisse und Modelle können als Grundlage für weitere Studien und 

Prozesse dienen und bieten somit ein Fundament in Richtung modellgestützter 

Prozessentwicklung. 
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Abstract 

The present doctoral thesis is the first to describe an entire biopharmaceutical 

downstream process with computer-aided models. Downstream processing 

refers to the purification of therapeutic proteins to achieve a defined degree of 

purity for clinical application. The downstream manufacturing process usually 

consists of a concatenation of several chromatography and filtration steps. The 

essential task is to reliably remove impurities, control process fluctuations that 

occur, and to ensure product quality. To ensure product quality, regulatory 

agencies such as the U.S. Food and Drug Administration (FDA) and the 

European Medicines Agency (EMA) demand a controlled and robust 

manufacturing process. This is to ensure patient safety and efficient market 

supply of the drug product. Biopharmaceutical companies must therefore 

identify, monitor, and control all process parameters and their impact on 

product quality. To the required quality goals, the biopharmaceutical industry 

finds itself in an increasingly competitive environment. Cost and time 

pressures are steadily increasing, and it is critical to be the first to market with 

a novel drug candidate. It is therefore of great interest to challenge and 

accelerate the current process development. 

Current process development mainly relies on experimental approaches to 

develop the relationships between process parameters and their influence on 

product quality. For this, statistical design of experiments (DoE) is often used. 

Here, the cause-effect relationships between process parameters and product 

quality are developed by planning, conducting, and evaluating dedicated 

experiments. This approach has been promising, and yet it comes with some 

drawbacks. The relationships obtained are process-specific and not generally 

valid or transferable to future processes. In addition, predictions outside the 

experimentally tested framework are generally not valid. The number of 

testable process parameters is also limited due to the exponential relationship 

between the number of parameters and experiments. Even if the number of 

parameters is kept low, the experimental execution is very time consuming. 

Moreover, cross-unit studies would require an unrealistic experimental effort, 

since the number of process parameters would exceed any possible 

experimental framework. Thus, the process units are usually considered and 

developed individually. The limitations mentioned above can be compensated 

by mechanistic models. The aim of these models is to describe the underlying 

process relationships on the basis of natural laws. Mathematical equations 

used here link the underlying process relationships with physical chemical 

models. Predictions by mechanistic models outside the experimental 

framework are thus possible and the independence of process dimensions is 
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given. If downstream process interrelationships are known and described by 

mechanistic models, this can save experiments and time during development. 

Ideally, all required model parameters are known or directly measurable. In 

reality, however, individual model parameters often have to be mathematically 

determined using a few dedicated experiments, which is usually referred to as 

parameter estimation. Therefore, the quality of model predictions strongly 

depends on the choice of the model and the experiments for parameter fitting. 

It should be noted that even if the above points are taken into account, the 

models still remain an approximation of reality. Nevertheless, they help us to 

better understand and control the process relationships. 

The aim of the present work was to link mechanistic models of different unit 

operations together for the first time to describe an entire downstream 

sequence. Linking mechanistic models enables a process description that spans 

process steps and dimensions. This required careful model selection, as well as 

ensuring an appropriate experimentation and strategy for parameter fitting of 

each model. The laboratory scale model developed was tested using various 

production data to demonstrate industrial applicability. This was implemented 

stepwise in three manuscripts. 

In the first publication (Chapter 3), the concatenation of two ion-exchange 

chromatography steps was published, taking into account the surrounding 

adjustment steps. This allows the influence of buffer substances, pH, ion, and 

protein concentrations on the respective subsequent process steps to be 

described. A mean-field approach has proven to be a suitable model for the 

adjustment steps. For the description of ion-exchange chromatography, the 

transport-dispersive column model in combination with a colloidal particle 

adsorption model proved to be suitable for this study. The linked model was 

finally able to adequately reproduce process variations at the production scale 

of 94 runs. The model was also able to reproduce not only process performance, 

but also size variants of the product as a critical quality attribute. For the first 

time, it has been shown that a linked model developed at laboratory scale 

allows conclusions to be drawn about production variability. 

The model in chapter 4 describes tangential flow filtration (TFF) as applied to 

ultrafiltration and diafiltration (UF/DF) in the biopharmaceutical industry. In 

this filtration step, the flow is tangentially to the membrane surface, allowing 

to reach high product concentration (ultrafiltration) and buffer exchanges 

(diafiltration). During the UF/DF process, a complex interplay of pressures and 

fluxes occurs depending on quantities such as the protein viscosity and protein 

concentration. Previous models considered only filtration and pressure 

independently and were not applied over the entire duration of the UF/DF 



Abstract 

xi 

 

phases. A modified polarization model combined with a modified Darcy 

Forchheimer equation proved to be reliable. The model was able to respond 

adequately to multivariate ultrafiltration experiments. In addition, a complete 

UF/DF process was described, and scale-up effects could be observed. 

Finally, chapter 5 presents the connected mechanistic process model. For this 

purpose, it was necessary to establish models for the remaining process steps. 

This includes the description of affinity chromatography using a transport-

dispersive column model in combination with a modified Langmuir adsorption 

isotherm. The affinity model describes the pH induced elution for different 

column loadings and process driving modes, which has not been shown in the 

form before. Furthermore, for depth filtration, the most capable model 

identified was the combined pore blocking model. The model combines classical 

pore blocking with cake filtration, which could be applied to depth filtration for 

the first time. It was finally possible to resolve depth filtration over time and 

describe it for both flow- and pressure-controlled filtration. In conclusion, this 

work describes the first connected mechanistic process model for an entire 

biopharmaceutical downstream process. The process model developed at 

laboratory scale was also used for the first time to extrapolate to industrial 

production runs. The extrapolation includes not only chromatography columns 

of twice the separation length in some cases, but also process conditions not 

included for model development at the laboratory scale. The model quality and 

applicability could additionally be demonstrated by the fact that the process 

model adequately represents the process variation of 23 production runs over 

the entire process. 

In summary, the present dissertation used a protein to demonstrate that the 

underlying mechanisms in a biopharmaceutical downstream process can be 

described in connected form using mechanistic models. The challenge of model 

selection and implementation could be resolved using the present process. The 

findings and models are a basis for further work and will serve as a foundation 

for model-based process development.  
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1 Introduction 

Biopharmaceuticals or biologics are large molecules that are not produced 

chemically but in living host cells from plants, animals, or bacteria [1]. Since 

the first approval of a recombinant form of human insulin in 1982, biologics 

have transformed disease cures, particularly in the areas of autoimmune 

diseases and refractory cancers  [1–3]. Furthermore, the time for innovative 

breakthroughs is far from over, as demonstrated by recent mRNA vaccines 

against SARS-CoV-2, which has saved countless lives [4]. The market value of 

biopharmaceuticals continues to rise and was estimated to US $343 billion in 

2021 [5]. Biopharmaceutical approvals by the US Food and Drug 

Administration (FDA), or the European Medicines Agency (EMA) are still 

dominated by therapeutic proteins in particular monoclonal antibodies (mAbs). 

In the period of January 2018 to June 2022, among the 197 approved 

biopharmaceuticals, 97 of these approvals in the United States and the EU 

were for mAbs [5]. Nearly half of the mAbs approved or in regulatory review 

have oncology indication [6]. The specificity of mAbs allows for targeting 

specific cell surface antigens or receptors involved in the interaction between 

the immune system and tumor cells. This makes mAbs one of the most 

successful and important strategy for the treatment of various tumors [7–10]. 

Therapeutic proteins such as mAbs have a molecular weight of approximately 

150 kDa which is significantly larger compared to small molecules like Aspirin 

with 0.18 kDa [11,12]. This large and complex protein structure can only be 

expressed by living host cells. The fermentation with host cells, the molecule 

size and molecule complexity lead to manufacturing challenges [13]. Besides 

the target protein, the harvested cell culture fluid (HCCF) potentially contains 

various impurities such as host cell proteins (HCP), DNA, adventitious and 

endogenous viruses, lipids, proteases and other enzymes, product related 

impurities and other additives. To ensure patient safety, impurity levels need 

to be below an acceptable threshold in the final product [14,15]. This is usually 

achieved by a sequence of orthogonal chromatography and filtration steps 

referred to as downstream process. 

To accelerate process development a general platform process is desired to 

bring drug candidates as fast as possible into clinic [16,17]. However, the 

process behavior of the target protein, and related impurities highly depend on 
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their protein characteristics which can drastically differ [18]. Furthermore, a 

trend towards diversification and increasing antibody format complexity does 

not allow for generalization of process conditions. Some of the new formats 

include bispecific antibodies, antibody-drug conjugates, and antibody 

fragments [19–22]. A general process is therefore more of a goal than a reality. 

Moreover, adapting to discrepancies in process behavior presents a challenge 

with the current development strategy, which is primarily experimental and 

heavily dependent on knowledge gained from past projects. This can lead to 

time consuming sequential trial and error experiments in case of unusual 

process behavior. In this case, not only are the chances of success uncertain, 

but there is also a risk of delays in the project schedule. Furthermore, this 

timely strategy seems to be outdated in an environment of increasing 

competition and requirements for cost savings and efficiency [23]. 

The challenges in biopharmaceutical process development require new and 

more efficient methods. In general, a lack of process understanding requires 

extensive experimentation to mitigate risk. A better understanding can 

therefore reduce or even replace experiments and thus time and costs. In 

addition, regulatory authorities encourage a systematic approach and process 

understanding based on sound science as stated in the ICH Q8R2 [24,25]. This 

fundamental process understanding can be derived from first principal models 

referred to as mechanistic models. Such models allow to simulate the process 

based on underlying physical phenomena described by mathematical equations 

[26,27]. The comparison of model predictions with experimental measures 

allows to augment, test, and proof the current state of process understanding. 

In fact, the evaluation of a theory's predictions in mathematical form based on 

real experimental data can be regarded as the foundation of the scientific 

method [28]. From the perspective of developing industrial processes, models 

offer significant value by providing essential knowledge and theoretical 

foundation, which can prove to be critical when time is a constraint, data is 

unavailable, and prompt decisions are necessary. 

In the following sections, the fundamentals of chromatography and filtration 

are presented. This encompasses the mathematical description of relevant 

downstream chromatography and filtration process models. 
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1.1 Downstream process of biopharmaceuticals 

1.1.1 Introduction to preparative liquid chromatography 

Liquid chromatography serves as the workhorse in purification of therapeutic 

proteins. The solid stationary phase consists of packed spherical beads referred 

to as resin beads or adsorber beads. The mobile phase transported through the 

column contains the product and other components. A retention difference of 

components can be achieved based on their differing characteristics. A 

separation by size is achieved with size exclusion chromatography (SEC), 

where smaller components have access to more volume of the porous resin and 

thus show reduced migration speed. Larger molecules are simply excluded by 

their size and therefor elute earlier. If components interact with the resin 

surface, it is referred to as adsorption. In industrial downstream processes of 

therapeutic proteins, adsorption chromatography is primarily applied and can 

be divided in three main mechanisms as schematically illustrated in Figure 1. 

Hydrophobic interaction chromatography (HIC) adsorbs proteins based on 

their hydrophobicity. Usually, hydrophobic amino acids are located to the 

interior of the protein and hydrophilic to the exterior. However, high salt 

concentrations disturb the water shell of the protein which enforces 

hydrophobic interaction of exterior hydrophobic patches with the ligand. The 

hydrophobic binding is sensitive to changes in ionic strength, pH, organic 

solvents, temperature, and hydrophobicity of the protein. In simplified terms, 

the hydrophobic adsorption increases with a protein close to its isoelectric point 

(pI), high ionic strength, high temperature, and absence of organic solvents. 

When the ligand is positively or negatively charged, adsorption is enabled by 

ionic interaction, known as ion exchange chromatography (IEX). A negatively 

charged resin ligand is referred to as cation-exchange chromatography (CEX) 

and a positively charged ligand as anion-exchange chromatography (AEX). 

Both forms are of interest in this thesis and therefore discussed in detail in 

section 1.2.3.2. The term mixed-mode chromatography (MMC) refers to a 

ligand with at least two orthogonal interactions, for example if a ligand consists 

of anionic and hydrophobic ligands. Affinity chromatography (AC) binds a 

product via multipoint adsorption according to a group-specific molecular 

structure. The affinity chromatography is discussed in more detail in section 

1.2.3.1.  
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Figure 1: Schematic illustration of preparative adsorption chromatography. The 

column is packed with adsorber beads. The adsorber surface is coated with functional 

groups referred to as ligands, which define the interaction mode. The protein can 

adsorb to the resin surface via affinity, ionic interaction, or hydrophobic interaction: 

Affinity chromatography (AC), ion-exchange chromatography (IEX), or hydrophobic 

interaction chromatography (HIC). In this figure, the IEX is exemplary an anion-

exchange chromatography (AEX) indicated by the positive charge of the ligand. 

The six phases of a preparative chromatography bind-elute process start with 

an initial equilibration phase. This ensures that the mobile phase and 

stationary phase are in equilibrium. During the second phase the protein is 

loaded onto the column. This is followed by at least one wash phase to remove 

weakly bound impurities. In the fourth elution face, the protein is eluted and 

collected. Then impurities removed from the resin during the fifth phase, the 

so-called regeneration phase. During the last phase the column is buffer 

exchanged in storage conditions. If the loading conditions are non-binding, the 

mode is referred to as flow through. This mode is advantageous when 

impurities bind to the column, but not the target protein, under these 

conditions. Since the flow through is collected the elution phase is skipped, 

whereas the wash, regeneration, and storage phase are performed similarly to 

the bind-elute mode [27]. An illustration for a bind-elute and flow-through 

chromatogram is presented in Figure 2. 



1.1 Downstream process of biopharmaceuticals 

5 

 

 

Figure 2: Chromatogram illustration for bind-elute and flow-through chromatography. 

In flow-through mode the target protein does not interact with the chromatography 

column, but the impurities bind to the resin. In bind-elute mode, the target protein 

binds to the resin and is eluted under conditions that aim to elute the product without 

the impurities. The dashed line indicates intended buffer changes e.g., salt 

concentration. The final storage phase was not included in this figure. 

During process development the overall aim is to identify the optimal 

combination of orthogonal chromatography steps and process conditions to 

achieve a maximum of purity and yield. In general, the more similar the 

impurities are in process behavior to the target protein, the more challenging 

their depletion becomes. In instances of this nature, the selection of resin 

variations, even those of the same chromatography classification, can yield 

significant distinctions in outcome. For example, the depletion capability of a 

weak cation-exchange utilizing a functional group of carboxyl may diverge from 

that of a strong cation-exchange employing a sulfopropyl group. 

1.1.2 Introduction to membrane systems  

Membrane filtration processes play an indispensable role in biopharmaceutical 

processes. The general mechanism separates components from solution 

through a membrane, mainly by steric exclusion and adsorption. Depending on 

the membrane pore size, the membrane either retains the product or 

contaminants such as host cell proteins, DNA, microorganisms, and viruses. 

The two types of filtration operations are (i) normal flow filtration, where the 

filtrate passes the membrane in direction of the flow, and (ii) tangential flow 

filtration. Commonly used normal flow filtration processes are the 

microfiltration, depth filtration and virus filtration. Normal filtration 

processes are controlled either by constant pressure or constant flow. 

Microfiltration membranes in biopharmaceutical downstream processes are 

commonly used as sterile filtration of protein solutions and buffers. The 

membranes usually consist of polyethersulfone (PES) or polyvinylidene 

fluoride (PVDF) with a pore size of 0.1 – 0.2 µm. This pore size allows smaller 

molecules such as the target protein to pass and excludes cells and other larger 

contaminants [29,30]. In contrast, the depth filtration consists of complex pore 
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structures and multiple pore sizes. The filter retains particles through the 

entire depth of the filter pore due to size and adsorption. These filters provide 

a high capacity for clarification purposes. The filter material is usually 

composed of cellulose or polypropylene fibers combined with diatomaceous 

earth [31–33]. Virus filters are specifically designed in pore size to exclude 

viruses and are an integral part of a downstream process. A pore size of usually 

20 nm retains viruses while letting the target protein pass the membrane. The 

membrane material consists of PES, PVDF or cuprammonium regenerated 

cellulose. To decrease protein binding, the hydrophobic PES and PVDF 

material can be modified to be more hydrophilic. The overall filtration 

performance also depends on the pore asymmetry and the number of 

membrane layers [34]. A schematic illustration of the standard blocking 

mechanisms during normal flow filtration are presented in Figure 3. The 

foulant is thought to either clog an entire pore, form a cake layer on the surface, 

constrict the pore diameter, or show a combination of these. Although the 

blocking mechanisms are simplified models and filter pores are not perfect 

cylinders, they are useful to interpret a filtration process as discussed in section 

1.3.1. 

 

 

Figure 3: Filtration blocking mechanisms: The reduction in filtrate flow over time can 

be attributed to various blocking mechanisms. The dominant blocking mechanism is 

determined by the process parameters and the properties of the foulant and filter. It is 

even possible to observe a combination of classic blocking mechanisms, such as pore 

blockage and cake filtration. 

Tangential flow filtration also referred to as ultrafiltration or crossflow 

filtration retains the target protein with a pore size between smaller than 

20 nm. Typically, the membrane exclusion is defined by the size of proteins that 

are excluded, such as those with a molecular weight of 30 kDa. The most 

common application is for ultrafiltration and diafiltration (UF/DF) processes 

with flat sheet cassettes. Due to the tangential crossflow, the membrane is 

prevented from fouling which allows to reach high protein concentrations up to 

200 g/L. For processing, the cassette is connected in a circle to a stirred tank 

as presented in Figure 4. The protein solution is pumped by the feed pump in 

circles from the stirred tank, tangential through the TFF membrane sheets and 
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back to the stirred tank. Inflows can be either buffer or feed solution and the 

outflow is referred to as permeate. The overall aim of a UF/DF process is to 

achieve a defined buffer composition and target concentration which is 

achieved in multiple filtration phases. First the load material is concentrated 

in an ultrafiltration step to reduce the volume. This concentrated pool is then 

buffer exchanged by continuously adding buffer in the same rate as the filtrate 

flow, also referred to as permeate flow, and thus maintain a constant volume 

in the stirred tank. For this a buffer volume of 6-12 times of the stirred tank 

volume is exchanged which is referred to as diafiltration volumes (DV). Finally, 

the buffer exchanged pool can be concentrated in a final ultrafiltration step to 

reach the target concentration [29,30]. The main control parameter for the 

permeate flow is the transmembrane pressure (TMP) via a retentate valve. A 

detailed description on the control of UF/DF processes is given in Section 1.3.2. 

  

Figure 4: UF/DF filtration process: The left part of the figure shows a schematic 

illustration of the UF/DF system flow paths. The right side illustrates a zoom into a 

membrane sheet visualizing general effects of TFF. The membrane is permeable for 

small solutes such as ions but retentative for the relatively large protein of interest. The 

TMP drives the permeate flow and the crossflow prevents blockage of the membrane 

surface. This results in a concentration increase on the membrane length in the 

crossflow direction. In the meantime, a pressure loss results in a reduction of the local 

TMP. In addition, the positively charged patches (blue) of the protein attract negatively 

charged ions (red). The resulting difference in ion composition between the retentate 

and permeate side of the membrane can influence the solution pH which is referred to 

as Donnan effect. 

The semipermeable membrane and the charged patches of the protein can 

result in different ion concentrations between the retentate and the permeate. 

This can result in undesired concentration and pH shifts of the final 

concentrated pool. The described phenomenon is known as the Donnan effect 

and is further discussed in Section 1.3.2.  
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1.1.3 Downstream sequence 

As mentioned earlier, most biopharmaceuticals are monoclonal antibodies or 

related products. Today’s production is primarily based on recombinant 

Chinese hamster ovary (CHO) cell fermentation. The cells have proven to be 

stable over time and express proteins with glycoforms that are bioactive in 

humans. Furthermore, continuous vector, cell, and process engineering 

increased the productivity with titers up to 10 g/L [35]. The filtered or 

centrifuged cell culture fluid, harvested after about 14 days of fermentation, 

contains the product but also a number of contaminants. 

A possible downstream process sequence for the purification is presented in 

Figure 5. Most of the HCPs, cell debris, DNA, cell culture additives can be 

removed with a capture chromatography step (Unit I). This is usually a 

protein A affinity chromatography step performed in bind-elute mode. The 

protein binds under neutral pH as described in more detail in Section 1.2.3.1. 

Subsequently to specific wash steps, the elution is accomplished with a low pH 

buffer of approximately pH 3.5. The remaining impurity levels can depend on 

the molecules’ surface chemistry, the cell culture, and harvest condition. Since 

most mAbs are stable under low pH conditions, the already low pH is used to 

proceed with a low pH hold step (Unit II) to inactivate retro viruses [16]. In 

general, for pH adjustments, strong acids and bases are avoided due to possible 

product denaturation. The neutralized pool typically shows high turbidity 

levels which can be clarified by depth filtration (Unit III). The subsequent 

chromatography steps are referred to as polishing sequence and typically 

consist of two orthogonal chromatography steps. The neutral pH after depth 

filtration can be adjusted (Unit IV) to meet pH conditions suitable for AEX 

(Unit V). The typically elevated pI of mAbs enables this chromatography step 

to be performed under flow-through conditions at neutral or above pH, where 

negatively charged DNA and HCPs bind to the resin.  

At this step aggregates, which can be considered a critical quality attribute 

(CQA) are still in the bulk solution. The second polishing step, exemplary CEX, 

aims to remove product related impurities. An pH adjustment step (Unit VI) is 

used to ensure suitable loading conditions for CEX bind-elute around pH 5. The 

positively charged mAb binds to the CEX column and is eluted either with a 

salt step or salt gradient elution. Aggregates tend to have higher charges and 

thus bind stronger to the resin. In rare cases a third chromatography might be 

necessary to reach the demanded purity. The CEX eluate of high ionic strength 

might be pH adjusted (Unit VIII) for virus filtration (Unit IX). The virus 

filtration is an orthogonal step to Unit II and excludes potential retroviruses 

and parvoviruses. Usually, the final downstream unit is the UF/DF to 

concentrate the product (ultrafiltration) and buffer exchange the solution 
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(diafiltration) (Unit X). The concentrated and buffer exchanged UF/DF pool can 

then be formulated with a formulation buffer. 

 

Figure 5: Downstream process at a glance: I - capture, II - pH virus inactivation, III - 

depth filtration, IV - adjustment 1, V - polishing chromatography, VI - adjustment 2, 

VII - polishing chromatography, VIII - adjustment 3, IX - virus filtration, X - UF/DF 
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1.2 Fundamentals of preparative liquid chromatography 

1.2.1 Modeling liquid chromatography 

1.2.1.1 Column model 

The chromatography column is a cylinder of volume 𝑉C [m³], length 𝐿C [m] and 

radius 𝑟C [m] packed with resin beads of radius 𝑟P [m]. The column is operated 

under an incompressible fluid flow at isothermal and isobaric condition. In this 

section the molar material transport equation of fluid flow outside the 

particles, referred to as interstitial phase, for a chromatography column is 

derived. Figure 6 illustrates a differential volume element of a chromatography 

column. 

 

Figure 6: Molar material flux of a differential distance in a cylindrical chromatography 

column. The solid phase is represented in grey color and the liquid phase in white. The 

area of the differential column cross-section 𝐴𝐶 illustrates the division in the resin cross-

section area and the liquid interstitial area 𝐴𝑖𝑛𝑡. The resin particle itself is further 

divided in the liquid and the solid resin fraction, also referred to as resin backbone or 

resin skeleton. The protein-resin interaction takes place at the boundary area between 

liquid and resin backbone. 

First the interstitial fluid flow along the column length axis 𝑥 ∈ [0, 𝐿𝐶] within 

a differentially small distance can be described by a material balance for 

component 𝑖: 

 
𝜕(𝑑𝑁𝑖(𝑥, 𝑡))

𝜕𝑡
= 𝑁𝑖̇ (𝑥) − 𝑁𝑖̇ (𝑥 + 𝑑𝑥) − 𝑑𝑁̇trans,𝑖(𝑥) 

( 1 ) 

 

where 𝑁𝑖̇ (𝑥) [mols-1] represents the material inflow, 𝑁𝑖̇ (𝑥 + 𝑑𝑥) the outflow and 

𝑑𝑁̇trans,𝑖(𝑥) the conversion term. The outflow term can be approximated by a 

first order Taylor approximation: 
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   𝑁𝑖̇ (𝑥 + 𝑑𝑥) =  𝑁𝑖̇ (𝑥) + 
𝑑𝑁𝑖̇ (𝑥)

𝑑𝑥
𝑑𝑥 

( 2 ) 

 

which inserted for the outflow term in Eq. ( 1 ), results in: 

 
𝜕(𝑑𝑁𝑖(𝑥, 𝑡))

𝜕𝑡
=  −

𝑑𝑁̇𝑖(𝑥)

𝑑𝑥
𝑑𝑥 − 𝑑𝑁̇trans,𝑖(𝑥) 

( 3 ) 

 

The molar material transport 𝑁̇𝑖(𝑥) within the interstitial liquid phase consists 

of diffusion and convection: 

 𝑁̇𝑖(𝑥) = 𝑁̇diffusion,𝑖(𝑥) + 𝑁̇convection,𝑖(𝑥) 
( 4 ) 

 

defined by Fick’s law for diffusion: 

 𝑁̇diffusion,𝑖(𝑥) = −𝐴int𝐷AX
𝜕𝑐𝑖(𝑥, 𝑡)

𝜕𝑥
= −𝐴𝐶𝜀int𝐷AX

𝜕𝑐𝑖(𝑥, 𝑡)

𝜕𝑥
 

( 5 ) 

 

where 𝐷AX [m²s-1] represents the axial dispersion, 𝐴int [m²] the interstitial cross-

sectional area, and 𝑐𝑖 [molm³] the concentration in the interstitial fraction. The 

convective flow is given by: 

 𝑁̇convection,𝑖(𝑥) = 𝑢𝑖,int𝐴int𝑐𝑖(𝑥, 𝑡) =
𝑢

𝜀int
𝐴𝐶𝜀int𝑐𝑖(𝑥, 𝑡) = 𝑢𝐴C𝑐𝑖(𝑥, 𝑡). 

( 6 ) 

 

where the interstitial flow 𝑢𝑖,int [ms-1] is the driving term. Both Eq. ( 5 ) and Eq. 

( 6 ) are described in terms of the column cross-sectional area 𝐴C [m²] and the 

flow rate 𝑢 [ms-1]. This is achieved with the interstitial fraction 𝜀int [-] defined 

as the interstitial column volume 𝑉int [m³] to 𝑉C ratio: 

 𝜀int =
𝑉int
𝑉C

=
𝐴int
𝐴𝐶

 
( 7 ) 

 

In the following, Eq. ( 3 ) is considered and simplified. First, inserting Eq. ( 4 )-

( 6 ) for the first term in Eq. ( 3 ) results in: 

 

𝑑𝑁̇𝑖(𝑥)

𝑑𝑥
=

𝑑 (−𝐴C𝜀int𝐷AX
𝜕𝑐𝑖(𝑥, 𝑡)

𝜕𝑥
+ 𝑢𝐴C𝑐𝑖(𝑥, 𝑡))

𝑑𝑥
𝑑𝑥

= (−𝐷AX𝜀int
𝜕2𝑐𝑖(𝑥, 𝑡)

𝜕𝑥2
+ 𝑢

𝜕𝑐𝑖(𝑥, 𝑡)

𝜕𝑥
)𝐴C𝑑𝑥. 

( 8 ) 
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The conversion term in Eq. ( 3 ) accounts for transfer through the film layer 

which is formed between the interstitial and the particles liquid phase. The 

transfer through the film layer surrounding the particles surface 𝐴p[m²] is 

driven by the concentration difference between interstitial and the solute 

concentration in the particle 𝑐p,𝑖 [molm³]: 

 𝑁̇trans,𝑖(𝑥) = 𝑘eff,𝑖 (𝑐𝑖(𝑥, 𝑡) − 𝑐𝑝,𝑖(𝑥, 𝑡)) 𝐴p 
( 9 ) 

 

where 𝑘eff,𝑖 [ms-1] represents the effective mass transfer coefficient. A schematic 

illustration of the film transfer concentration profile is presented in Figure 7. 

Eq. ( 9 ) needs to be described in terms of the column volume. Therefore, the 

resin particle surface to resin particle volume ratio 𝑉p [m³] is required: 

 
Ap

𝑉p
=
4𝜋𝑟p

2

4
3𝜋𝑟p

3
=
3

𝑟p
 

( 10 ) 

 

where the particle volume in terms of the column volume is defines as: 

 𝑉p = (1 − 𝜀int)𝑉C 
( 11 ) 

 

which leads to the expression: 

 𝐴p =
3

𝑟p
(1 − 𝜀int)𝑉𝐶 

( 12 ) 

 

for the particle surface area. Now Eq. ( 9 ) and Eq. ( 12 ) can be inserted in Eq. 

( 3 ) for the boundary layer transport description in a differential column 

volume: 

 

𝑑𝑁̇trans,𝑖(𝑥) =  𝑑 (𝑘eff,𝑖
3

𝑟p
(1 − 𝜀int) (𝑐𝑖(𝑥, 𝑡) − 𝑐𝑝,𝑖(𝑥, 𝑡)) 𝑉𝐶)

= 𝑘eff,𝑖
3

𝑟p
(1 − 𝜀int) (𝑐𝑖(𝑥, 𝑡) − 𝑐𝑝,𝑖(𝑥, 𝑡)) 𝐴C𝑑𝑥. 

( 13 ) 

 

The left-hand side of Eq. ( 3 ) can be transformed for an incompressible fluid 

with the product rule to: 

 
𝜕(𝑑𝑁𝑖(𝑥, 𝑡))

𝜕𝑡
=
𝜕(𝑑𝑉int𝑐𝑖(𝑥, 𝑡))

𝜕𝑡
= 𝜀int𝐴C𝑑𝑥

𝜕𝑐𝑖(𝑥, 𝑡)

𝜕𝑡
 

( 14 ) 

 

The Eqs. ( 8 ), ( 13 ) and ( 14 ) derived in this section inserted in Eq. ( 3 ) result 

in: 
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𝜀int𝐴C𝑑𝑥
𝜕𝑐𝑖(𝑥, 𝑡)

𝜕𝑡

=  (−𝑢
𝜕𝑐𝑖(𝑥, 𝑡)

𝜕𝑥
+ 𝐷AX𝜀int

𝜕2𝑐𝑖(𝑥, 𝑡)

𝜕𝑥2
)𝐴𝐶𝑑𝑥

− 𝑘eff,𝑖
3

𝑟p
(1 − 𝜀int) (𝑐𝑖(𝑥, 𝑡) − 𝑐𝑝,𝑖(𝑥, 𝑡))𝐴C𝑑𝑥 

( 15 ) 

 

which can be simplified to 

 

𝜕𝑐𝑖(𝑥, 𝑡)

𝜕𝑡
=  −

𝑢

𝜀int

𝜕𝑐𝑖(𝑥, 𝑡)

𝜕𝑥
+ 𝐷AX

𝜕2𝑐𝑖(𝑥, 𝑡)

𝜕𝑥2

−
(1 − 𝜀int)

𝜀int
(𝑘eff,𝑖

3

𝑟p
(𝑐𝑖(𝑥, 𝑡) − 𝑐𝑝,𝑖(𝑥, 𝑡))) 

( 16 ) 

 

which is a partial differential equation (PDE) referred to as transport 

dispersive model (TDM). Eq. ( 16 ) can be simplified to the equilibrium 

dispersive model (EDM) when the boundary layer transport term is neglected: 

 
𝜕𝑐𝑖(𝑥, 𝑡)

𝜕𝑡
=  −

𝑢

𝜀int

𝜕𝑐𝑖(𝑥, 𝑡)

𝜕𝑥
+ 𝐷AX

𝜕2𝑐𝑖(𝑥, 𝑡)

𝜕𝑥2
−
(1 − 𝜀int)

𝜀int

𝑑𝑞𝑖(𝑥, 𝑡)

𝑑𝑡
. 

( 17 ) 

 

To solve the EDM or TDM boundary conditions are required. The Danckwerts 

boundary conditions at the inlet and outlet can be considered the industry 

standard [36]. The concentration at the column inlet is defined by the first 

boundary condition: 

 
𝜕𝑐𝑖(𝑥 = 0, 𝑡)

𝜕𝑡
=
uint
𝐷AX

(c𝑖(0, 𝑡) − 𝑐in,𝑖(𝑡)). 
( 18 ) 

 

where 𝑐in,𝑖 represents the inlet concentration and at the outlet a zero gradient 

is assumed by: 

 
𝜕𝑐𝑖(𝑥 = 𝐿𝐶 , 𝑡)

𝜕𝑡
= 0 

( 19 ) 

 

1.2.2 Pore model 

The concentration in the particles liquid phase 𝑐p,𝑖(𝑥, 𝑡) of the TDM can be 

achieved by different pore model approaches. The assumption of a equally 

distributed concentration within the particle leads to the lumped rate model 

(LRM) that is derived later. A more general approach would be the general rate 

model (GRM) [Eq. ( 27 )] which additionally considers radial pore diffusion as 

illustrated in Figure 7.  
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Figure 7: The transport of the substance from the bulk phase to the particle phase occurs 

through the liquid film. The concentration profiles depicted with the grey line 

represents the lumped rate model, assuming a uniform concentration within the 

particle. The concentration depicted by the curved black line represents the transport 

through the particle, applying the general rate model (GRM). 

The particle is divided into a liquid phase volume 𝑉p,liquid [m³] and solid phase 

volume 𝑉p,solid [m³], representing the resin skeleton volume or resin backbone. 

In the following, the pore model is derived.  

The following molar material balance boundary surrounds the particles liquid 

phase: 

 
𝜕𝑁p,𝑖(𝑥, 𝑡)

𝜕𝑡
= 𝑁̇trans,p,𝑖(𝑥) − 𝑁̇bound,p,𝑖(𝑥) 

( 20 ) 

 

The material inflow from the interstitial through the film layer is defined 

similarly to 𝑁̇trans,𝑖(𝑥) in Eq. ( 9 ) as: 

 𝑁̇trans,p,𝑖(𝑥) = 𝑘eff,𝑖 (𝑐𝑖(𝑥, 𝑡) − 𝑐𝑝,𝑖(𝑥, 𝑡)) 𝐴p 
( 21 ) 

 

and the outflow due to binding to the resin skeleton 𝑞𝑖(𝑥, 𝑡) [molm-3] is defined 

as: 

 𝑁̇bound,p,𝑖(𝑥) =
𝑑𝑞𝑖(𝑥, 𝑡)

𝑑𝑡
𝑉p,solid =

𝑑𝑞𝑖(𝑥, 𝑡)

𝑑𝑡
(1 − 𝜀p) ∙ 𝑉p. 

( 22 ) 

 

In Eq. ( 22 ) the skeleton volume can be described by the particle porosity 

defined as: 
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 𝜀p =
𝑉p,liquid

𝑉p
 𝑜𝑟  (1 − 𝜀p) =  

𝑉p,solid

𝑉P
. 

( 23 ) 

 

Assuming a constant particle volume, the left hand-side equation can be 

transformed to: 

  
𝜕𝑁p,𝑖(𝑥, 𝑡)

𝜕𝑡
= 𝜀p𝑉p

𝜕𝑐p,𝑖(𝑥, 𝑡)

𝜕𝑡
 

( 24 ) 

 

which inserted with Eqs. ( 21 ) and ( 22 ) into Eq. ( 20 ) results in: 

 𝜀p𝑉p
𝜕𝑐p,𝑖(𝑥, 𝑡)

𝜕𝑡
= 𝑘eff,𝑖 (𝑐𝑖(𝑥, 𝑡) − 𝑐𝑝,𝑖(𝑥, 𝑡)) 𝐴p −

𝑑𝑞𝑖(𝑥, 𝑡)

𝑑𝑡
(1 − 𝜀p) ∙ 𝑉p 

( 25 ) 

 

where the particles surface to volume ratio [Eq. ( 10 )] and further 

simplification leads to the LRM: 

 
𝜕𝑐p,𝑖(𝑥, 𝑡)

𝜕𝑡
=
3

𝑟p

𝑘eff,𝑖
𝜀p

(𝑐𝑖(𝑥, 𝑡) − 𝑐𝑝,𝑖(𝑥, 𝑡)) −
(1 − 𝜀p)

𝜀p

𝑑𝑞𝑖(𝑥, 𝑡)

𝑑𝑡
 

( 26 ) 

 

The general rate model (GRM) accounts for diffusion within the particles liquid 

phase along the particle radius. Therefore, Eq. ( 26 ) can be changed including 

an Fickian pore diffusion: 

 

𝜕𝑐p,𝑖(𝑥, 𝑟, 𝑡)

𝜕𝑡
= 𝐷pore (

𝜕2𝑐𝑖(𝑥, 𝑟, 𝑡)

𝜕𝑟2
+
2

𝑟

∂𝑐𝑖(𝑥, 𝑟, 𝑡)

∂𝑟
 )

−
(1 − 𝜀p)

𝜀p

𝑑𝑞𝑖(𝑥, 𝑟, 𝑡)

𝑑𝑡
 

( 27 ) 

 

where the pore diffusion parameter 𝐷pore [m²s-1] and the first term describe 

symmetrical diffusion and the second term the convection towards the center 

of the bead. 

1.2.3 Binding models 

1.2.3.1 Affinity chromatography binding model 

The binding of a protein 𝑃 to an affinity ligand 𝐿 builds a protein ligand complex 

𝐿𝑃complex. The reversible adsorption-desorption reaction can be expressed by: 

  𝑃 + 𝐿  

𝑘ads
→  

𝑘des
←  

 𝐿𝑃complex 
( 28 ) 

 

which leads, based on the law of mass action, to the following binding model: 
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𝑑𝑞(𝑥, 𝑡)

𝑑𝑡
= 𝑘ads[𝑃][𝐿] − 𝑘des𝑞(𝑥, 𝑡) 

( 29 ) 

 

where 𝐿𝑃complex is replaced by 𝑞(𝑥, 𝑡). The amino acids involved in the complex 

formation of the protein and ligand are known to be protonated at low pH which 

prevents complex formation. The sum of protein 𝑃total must equal the sum of 

protein states which in turn must equal the sum of bound and solute protein:  

  [𝑃total] =  [𝑃] + [𝑃+] + [𝐿𝑃complex] = 𝑞(𝑥, 𝑡) + 𝑐p(𝑥, 𝑡). 
( 30 ) 

 

and likewise for the total ligand 𝐿𝑡𝑜𝑡𝑎𝑙:  

  [𝐿𝑡𝑜𝑡𝑎𝑙] =  [𝐿] + [𝐿+] + [𝐿𝑃complex] = 𝑞𝑚𝑎𝑥 . 
( 31 ) 

 

where the 𝐿𝑃complex can be replaced by 𝑞𝑖(𝑥, 𝑡). The maximum achievable 

concentration bound to the resin is represented by 𝑞𝑚𝑎𝑥 [molm-3]. To accomplish 

an expression for 𝑃 and 𝐿, an expression for the protonated version of the 

protein and ligand is derived. The pH or specifically the hydrogen ion 

concentration 𝐻+ induces the protonation described by the reversible reaction 

for the protein: 

  𝑃+   
𝐾𝑎
′

↔ 𝐻+ + 𝑃 

( 32 ) 

 

 [𝑃+]   =
[𝐻+][𝑃]

𝐾𝑎′
 

( 33 ) 

 

and similarly for the ligand 𝐿: 

  𝐿+   
𝐾𝑎
′′

←  𝐻+ + 𝐿 

( 34 ) 

 

 [ 𝐿+]  =
[𝐻+][𝐿]

𝐾𝑎′′
. 

( 35 ) 

 

Replacing the protonated state in Eq. ( 30 ) by Eq. ( 32 ) leads to: 

   [𝑃] +
[𝑃][𝐻+]

𝐾𝑎′
+ 𝑞(𝑥, 𝑡) = 𝑞(𝑥, 𝑡) + 𝑐p(x, t) 

( 36 ) 

 

which can be simplified to: 



1.2 Fundamentals of preparative liquid chromatography 

17 

 

 
  [𝑃] =

𝑐p(𝑥, 𝑡)

(1 +
[𝐻+]
𝐾𝑎′

)
=

𝑐p(𝑥, 𝑡)

(1 + 10p𝐾a
′−𝑝𝐻)

. 
( 37 ) 

 

for the protein concentration available for complex formation. Likewise, 

replacing the protonated ligand in Eq. ( 34 ) by Eq. ( 31 ) leads to: 

  [𝐿] +
[𝐿][𝐻+]

𝐾𝑎′′
+ 𝑞(𝑥, 𝑡) = 𝑞𝑚𝑎𝑥. 

( 38 ) 

 

which can be transformed to: 

  [𝐿] = 𝑞𝑚𝑎𝑥

(1 −
𝑞(𝑥, 𝑡)
𝑞𝑚𝑎𝑥

)

(1 +
[𝐻+]
𝐾𝑎′′

)
= 𝑞𝑚𝑎𝑥

(1 −
𝑞(𝑥, 𝑡)
𝑞𝑚𝑎𝑥

)

(1 + 10p𝐾a
′′−𝑝𝐻)

. 
( 39 ) 

 

The expression in the denominator was transformed with the log of basis 10 to 

achieve an expression of pH and p𝐾a. The derived equations for the ligand Eq. 

( 39 ) and protein Eq. ( 37 ) can be inserted to Eq. ( 29 ) which results in:  

 
 
𝑑𝑞(𝑥, 𝑡)

𝑑𝑡
= 𝑘ads𝑞𝑚𝑎𝑥

𝑐p(𝑥, 𝑡)

(1 + 10p𝐾a
′−𝑝𝐻)(1 + 10p𝐾a

′′−𝑝𝐻)
(1 −

𝑞(𝑥, 𝑡)

𝑞𝑚𝑎𝑥
)

− 𝑘des𝑞(𝑥, 𝑡). 

( 40 ) 

 

The kinetic form is obtained by dividing by 𝑘des. Further, the sum of bound 

protein 𝑖 of n species is considered for the multicomponent binding resulting in 

the isotherm expression for affinity chromatography: 

 

 𝑘kin,𝑖
𝑑𝑞𝑖(𝑥, 𝑡)

𝑑𝑡

= 𝐾eq,𝑖𝑞𝑚𝑎𝑥

𝑐p,𝑖(𝑥, 𝑡)

(1 + 10p𝐾a
′−𝑝𝐻)(1 + 10p𝐾a

′′−𝑝𝐻)
(1

−∑
𝑞𝑖(𝑥, 𝑡)

𝑞max

𝑛

𝑖=1

) − 𝑞𝑖(𝑥, 𝑡) 

( 41 ) 

 

Based on Eq. ( 41 ), the equilibrium and local state for a single component is 

given by: 

  𝑞 = 𝑞max

𝐾eq𝑐p

(1 + 10p𝐾a
′−𝑝𝐻)(1 + 10p𝐾a

′′−𝑝𝐻) + 𝑐p
 

( 42 ) 

 

 which represents the Langmuir formulation. 
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1.2.3.2 Ion-exchange chromatography binding model 

The interaction of protein and a charged adsorber can be considered a function 

of pH and ions in solution. In the past, adsorption modeling in IEX was 

dominated by stoichiometric adsorption models, especially the steric mass 

action (SMA) model [37]. The SMA model is derived in the supplementary and 

describes a reversible stoichiometric displacement of counter-ions and charged 

proteins on the adsorber surface. Limitations of the model describing protein 

elution behavior might be compensated by multiple binding states [38] or an 

activity coefficient [39]. The alternative colloidal binding models present a 

promising alternative class of models [40–42]. In contrast to stoichiometric 

models, colloidal models approximate the protein as a perfect sphere and 

assume a limiting adsorber surface. Electrostatic interactions are typically 

based on a mean-field approach using the Poisson -Boltzmann theory [43]. A 

colloidal particle adsorption (CPA) model for the nonlinear adsorption range of 

IEX, for multicomponent systems and with a similarly count of unknown 

parameters compared to SMA was derived by Briskot [42,44,45].  

 

Figure 8: Schematic representation of the Colloidal particle adsorption (CPA) 

mechanism: Left represents a charged protein approximated by a perfect sphere colloid. 

The charged colloid interacts with the charged adsorber surface covered with 

immobilized charges. The interaction can be described by the interaction free energy 

represented on the right. Adsorption is considered solely within the interaction 

boundary layer. The thickness of the interaction boundary layer depends on the 

minimum interaction free energy which in turn depends on the ionic strength as 

schematically demonstrated. 

Figure 8 presents a schematic representation of the electrostatic double layer 

interaction profile included in the CPA model. The interaction of a charged 

colloidal protein 𝑖 with a charged adsorber surface in an electrolyte solution 

can be described by the interaction free energy 𝑢A,𝑖 [J] which is a function of 

the distance 𝑧 [m]. The electrostatic interaction between the colloid and the 

surface, and thus adsorption, is limited within the interaction boundary layer 

constraint by the distance of minimum interaction free energy 𝛿m [m] and the 
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thickness of the boundary layer 𝛿∗ [m]. The protein bound to the adsorber 

surface is given by: 

 𝑞𝑖 = 𝑐p,𝑖𝐾𝑖𝐵𝑖 exp (−
𝑢𝑙𝑎𝑡,𝑖
𝑘b𝑇

) 
( 43 ) 

 

where 𝐾𝑖 [m] represents the partitioning coefficient, 𝐵𝑖 [-] represents the 

available surface function, and the last term accounts for protein-protein 

interactions. The Boltzmann constant is represented by 𝑘b [JK-1], the 

temperature by 𝑇 [K], and the lateral protein-protein interaction energy by 𝑢lat,𝑖 

[J]. For the linear regime the protein adsorbed to the resin approaches zero and 

Eq. ( 43 ) reduces to: 

 𝑞𝑖 = 𝑐p,𝑖𝐾𝑖 =
𝑐p,𝑖∆𝑖𝑘b𝑇

𝑢A,𝑖(𝛿m)
(1 − exp (−

𝑢A,𝑖(𝛿m)

𝑘b𝑇
)) 

( 44 ) 

 

where 𝑢A,𝑖 is a function of the ionic strength 𝐼m [molm-3] and the characteristic 

protein charge 𝑍 [-]. The measure for the thickness of the interaction boundary 

layer defined as: 

 ∆𝑖= 𝐴S,𝑖(𝛿
∗ − 𝛿m) 

( 45 ) 

 

is a fitting parameter. The specific adsorber surface per skeleton volume is 

represented by 𝐴S,𝑖 [m-1]. The pH dependency of the CPA model results from 

the change of the protein charge with pH. 

For non-linear adsorption, the steric surface blocking effects are described by 

𝐵𝑖 and 𝑢𝑙𝑎𝑡,𝑖. The steric surface blockage is a function of the colloid radius and 

based on the scaled particle theory (SPT) [42,46]. For the electrostatic 

interactions of bound proteins, a hexagonal Yukawa lattice was used to 

describe 𝑢𝑙𝑎𝑡,𝑖 which is a function of the protein radius, the ionic strength and 

characteristic lateral charge 𝑍lat,𝑖 of both proteins. Unknown model 

parameters, that need to be determined experimentally are 𝑍𝑖, 𝑍lat,𝑖, ∆𝑖, and 𝐴S,𝑖. 

A detailed description of the model can be found in previous publications 

[42,44,45]. 
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1.3 Fundamentals of filtration 

1.3.1 Dead-end filtration modeling 

The flow through a porous filter membrane is typically controlled by a constant 

pressure difference ∆𝑃 [Pa] between the feed side and filtrate side of the 

membrane. The initial flow rate 𝑄0 [m3s-1] is mainly driven by the membrane 

hydraulic permeability [ms-1Pa-1] [30]: 

 𝐿p =
𝑄

∆𝑃𝐴m
 

( 46 ) 

 

where the flow rate 𝑄 [m3s-1] linearly depends on the transmembrane pressure 

and the membrane area 𝐴m [m2]. With filtration time the filtrate flow decreases 

due to blocking. Assuming uniform cylindric pores, the classic filtration 

mechanisms follow the differential equation [47]: 

  
𝑑2𝑡

𝑑𝑉2
= 𝑘 (

𝑑𝑡

𝑑𝑉
)
𝑛

 

( 47 ) 

 

where 𝑉 [m³] is the filtrate volume, the constants 𝑛 [-] defines the blocking 

mechanism and 𝑘 represents the blocking constant. A graphical illustration of 

blocking mechanisms was presented in Section 1.1.2. Exemplary for the pore 

blockage, also referred to as complete blockage, defined by 𝑛 = 2 gives the 

following solution for Eq. ( 47 ): 

  𝑡 = 𝐶2 −
ln(C1 + 𝑘𝑉)

𝑘
 

( 48 ) 

 

The first derivative is given by: 

  
𝑑𝑡

𝑑𝑉
= −

1

C1 + 𝑘𝑉
 

( 49 ) 

 

and the second derivative by: 

  
𝑑2𝑡

𝑑𝑉2
=

𝑘

(𝐶1 + 𝑘𝑉)2
= 𝑘 (−

1

C1 + 𝑘𝑉
)
2

= 𝑘 (
𝑑𝑡

𝑑𝑉
)
2

 
( 50 ) 

 

which demonstrates the form given in Eq. ( 47 ). The inverse function of Eq. ( 

48 ) leads to an expression describing the filtrate volume over time: 
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 𝑉 =
𝐶3
𝑘
𝑒(−𝑘𝑡) −

𝐶1
𝑘

 
( 51 ) 

 

The flow rate 𝑄 [m3s-1] is given by: 

 
𝑑𝑉

𝑑𝑡
= 𝑄 = −𝐶3exp (−𝑘𝑡) 

( 52 ) 

 

The constants can be derived by two initial conditions. First, an initial flow 𝑄0 

[m3s-1] is assumed in Eq. ( 52 ) and second, the initial filtrate volume of zero is 

used in Eq. ( 51 ) which leads to 𝐶1 = 𝐶3 = −𝑄0. 

Further solutions of Eq. ( 47 ) for the classic blocking mechanisms are given in 

Table 1. During cake filtration the fouling adds a resistance layer in series to 

the membrane resistance. The other models block cylindrical pores (pore 

blockage, intermediate blockage) or reduce the effective pore size (pore 

constriction). The linear form can be useful to analyze filtration data and 

identify a blocking mechanism based on linear trends. However, filtration data 

possibly show mixed forms of blocking. Combined models and flow-controlled 

filtration, which is derived similarly to pressure-controlled filtration, are 

discussed in more detail in the following publications [30,48,49].  

Table 1: Classic blocking equations for constant pressure filtration [30]. For illustration 

purposes, the constant 𝛽 replaces the model-specific constant given in the last column. 

Blocking 

model 

𝑛 Flow rate Linear form Constant 𝛽 

Pore 

blockage 

2 𝑄

𝑄0
= exp(−𝛽𝑡) ln (

𝑄

𝑄0
) =  −𝛽𝑡 

𝑘b 

Pore 

constriction 

3

2
 

𝑄

𝑄0
= (1 + 𝛽𝑡)−2 

√
𝑄0
𝑄

= 𝛽𝑡 + 1 

𝑘p𝑄0

2
 

Intermediate 

blockage 

1 𝑄

𝑄0
= (1 + 𝛽𝑡)−1 

𝑄0
𝑄

= 𝛽𝑡 + 1 
𝑘i𝑄0 

Cake 

filtration 

0 𝑄

𝑄0
= (1 + 𝛽𝑡)−

1
2 (

𝑄0
𝑄
)
2

= 𝛽𝑡 + 1 
2𝑘c𝑄0

2 

 

1.3.2 Tangential flow filtration modeling 

Tangential flow filtration is a commonly used method for concentrating 

products, particularly proteins. This process is typically operated at high 

protein concentrations. The pressure and flow performance of the filtration 

process is influenced by various protein characteristics, such as viscosity and 

osmotic pressure. Additionally, the presence of charged proteins can lead to 
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electrostatic interactions. In this section, the topic of permeate flow is 

discussed, followed by the role of electrostatic interactions during UF/DF. 

1.3.2.1 Pressure and permeate flow model 

The permeate flow or filtrate flow is controlled by the transmembrane pressure 

difference: 

 ∆𝑃𝑇𝑀𝑃 =
(𝑃𝑓𝑒𝑒𝑑 + 𝑃𝑟𝑒𝑡𝑒𝑛𝑡𝑎𝑡𝑒)

2
− 𝑃𝑝𝑒𝑟𝑚𝑒𝑎𝑡𝑒 

( 53 ) 

 

which describes the pressure difference between the feed side and permeate 

pressure. Therefore, the feed pressure 𝑃𝑓𝑒𝑒𝑑 [Pa] and retentate side pressure 

𝑃𝑟𝑒𝑡𝑒𝑛𝑡𝑎𝑡𝑒 [Pa] get averaged and the permeate side pressure 𝑃𝑝𝑒𝑟𝑚𝑒𝑎𝑡𝑒 [Pa] is 

subtracted. The resulting permeate flow typically increases with increasing 

TMP, but reaches a plateau as illustrated in Figure 9. The permeate flow 

during TFF processes can be described by gel-polarization models, resistance 

models, and osmotic pressure models [50]. First, the osmotic pressure model is 

discussed and subsequently the resistance model referred to as stagnant film 

model.  

The osmotic pressure model in Eq. ( 54 ) describes the pressure driven 

permeate flow per membrane area 𝐽v [ms-1] based on the Kedem-Katchalsky 

equations: 

 𝐽v = 𝐿p(∆𝑃𝑇𝑀 − ΔΠ) 
( 54 ) 

 

The osmotic pressure ΔΠ [Pa] across the membrane can be considered equal to 

the osmotic pressure of the protein concentration in the retentate for a fully 

retentive membrane [51,52]. 
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Figure 9: Tangential flow filtration: The figure on the left depicts the relationship 

between flux and TMP in TFF processes. As TMP increases, the flux also increases, but 

eventually reaches a plateau that is independent of TMP. On the other hand, an 

increase in crossflow leads to a decrease in boundary layer thickness, resulting in an 

increase in flux. However, an increase in protein concentration in the bulk leads to a 

decrease in flux due to the polarization effect. The figure on the right illustrates the 

concentration polarization phenomenon in TFF processes. The green color gradient 

represents the pressure loss along the membrane length, which increases depending on 

the membrane screen design, crossflow, and viscosity. 

In addition, the pressure driven solute mass transfer through the membrane 

results in higher protein concentration towards the membrane surface. This 

effect is referred to as concentration polarization described by the stagnant film 

model and illustrated in Figure 9. Assuming a steady state, the one-

dimensional solute flux through the membrane must be equal to the net solute 

flux towards the membrane: 

 
𝑁̇p

𝐴m
= −𝐽v𝑐p = −𝐽v𝑐 − 𝐷

𝜕𝑐

𝜕𝑦
 

( 55 ) 

 

including Fick’s diffusion and a convective contribution. The term 𝐷 [m2s-1] 

denotes the diffusion coefficient, 𝑁̇p [mols-1] is the mass flow on the permeate 

membrane side, and c [molm-3] is the local concentration in the positive 𝑦 [m] 

direction. Note that filtrate flux 𝐽v [ms-1] is taken as positive quantity although 

the filtrate velocity is in the negative 𝑦 direction. Integrating the Eq. ( 55 ) 

across the polarization boundary layer from 0 to 𝛿 [m] and from the constant 

wall concentration 𝑐w [molm-3] to the bulk concentration 𝑐b [molm-3] yields the 

Stagnant film model: 

 𝐽v =
𝐷

𝛿
ln (

𝑐𝑤 − 𝑐𝑝

𝑐𝑏 − 𝑐𝑝
)    

( 56 ) 
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The permeate side 𝑐𝑝 can be assumed to be zero for a fully retentive membrane. 

The ratio of the diffusion coefficient and the boundary layer thickness is 

usually combined to a single mass transfer coefficient. A more detailed 

derivation of the stagnant film model describing the polarization effect during 

TFF can be found in the following publication [53]. A constant diffusion 

coefficient and assuming a constant viscosity, limits the model’s capability to 

describe concentration polarization of highly concentrated protein solutions. To 

include protein-protein interactions, the diffusive term in Eq. ( 55 ) can be 

assumed to be proportional to the gradient in the chemical potential 𝜇 [Jmol-1] 

leading to an alternative expression for Eq. ( 55 )[52,54]: 

 
𝑛̇p

𝐴m
= −𝐽v𝑐p = −𝐽v𝑐 −

𝐷𝑐

𝑅𝑇

𝑑𝜇

𝑑𝑦
 

( 57 ) 

 

The chemical potential can be rewritten in terms of the protein osmotic 

pressure Π [Pa]:  

 
𝑑𝜇

𝑑𝑦
=
𝑀P

𝑐

𝑑Π

𝑑𝑐

𝑑𝑐

𝑑𝑦
 

( 58 ) 

 

Furthermore, the diffusion coefficient can be expressed as function of the 

solution viscosity: 

 𝐷 = 𝐷0 (
𝜂0
𝜂
) 

( 59 ) 

 

where 𝐷0 [m²s-1] and 𝜂0 [Pas] are the diffusivity of the protein free solution. The 

local viscosity is represented by 𝜂 [Pas]. Eq. ( 58 ) and Eq. ( 59 ) inserted in Eq. 

( 57 ) for a fully retentive membrane leads to the modified concentration 

polarization model: 

 𝐽v =
𝐷0
𝛿
∫ (

𝜂0
𝜂

𝑀P

𝑅𝑇

𝑑Π

𝑑𝑐
)
𝑑𝑐

𝑐

𝑐w

𝑐b

 
( 60 ) 

 

A more detailed description of the model is given by the following publications 

[52,55]. The unknown wall concentration might be evaluated using the osmotic 

pressure model [52]. The crossflow is assumed to increase the permeate flow 

due to the reduction of boundary layer thickness. However, the crossflow 𝑄  

[molm-3] also leads to an increase in pressure drop within the feed channel in 

the form of [30]: 
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 ∆𝑃 = 𝑘m𝑄
𝛼 

( 61 ) 

 

where the constant 𝑘m depends on the membrane properties such as the screen 

geometry and the feed channel height. The exponent 𝛼 [-] changes between 1 - 

2 dependent on the flow regime which can range from laminar to turbulent 

flow. 

1.3.2.2 Electrostatic interaction 

A protein in solution exposes amino acid groups on the surface. Oxides are 

usually negatively charged due to the dissociation of a proton (~𝑂𝐻 → ~𝑂− +

𝐻+) and amino groups become positively charged due to protonation (~𝑁𝐻2 +

𝐻+ → 𝑁𝐻3
+). This leads to charges at the protein surface depending on the 𝑝𝐾a 

of the side chains and the surrounding pH. The surface charges can be 

summarized to a total surface charge density 𝜎 [Cm2] assuming a spherical 

colloid. This surface charge causes an electric field that interacts with ions in 

solution in a way to maintain electroneutrality. The layer compensating 

opposite charges is referred to as diffuse double layer and can be described by 

the mean-field Poisson-Boltzmann (PB) model [56,57]. First, charge density 

and electric potential 𝛹 [V] are related by the Poisson equation. Assuming 

radial symmetry, the Laplace operator ∇2𝛹 of the Poisson equation can be 

replaced leading to the radial form of the Poisson equation: 

 
1

𝑟2
𝑑

𝑑𝑟
(𝑟2

𝑑𝛹

𝑟
) = −

𝜌𝑒
𝜀𝜀0

 
( 62 ) 

 

where 𝜌𝑒 [Cm-3] represents the charge density, 𝜀0 [C²N-1m-1] is the vacuum 

permittivity, and 𝜀 [-] represents the relative permittivity. Since ions are free 

to move in solution the special distribution must be known. This local ion 

density can be described by the Boltzmann statistics. Assuming that only 

electric work 𝑒𝜓 [J] has to be done to move an ion 𝑖 of charge 𝑧𝑖 [-] leads to the 

Boltzmann expression: 

 𝜌𝑒 = 𝑒𝑁𝐴∑𝑧𝑖 𝑐𝑖
0𝑒

−
𝑧𝑖𝑒𝜓
𝑘b𝑇  

( 63 ) 

 

where 𝑐𝑖
0 [molm-3] is the bulk concentration of an ion, 𝑁𝐴 [mol-1] is the Avogadro 

constant and 𝑒 [C] is the elementary charge. Combining the Poisson Eq. ( 62 ) 

and Boltzmann Eq. ( 63 ) leads to the following Poisson-Boltzmann expression: 

 
1

𝑟2
𝑑

𝑑𝑟
(𝑟2

𝑑𝛹

𝑟
) = −

𝑒𝑁𝐴
𝜀𝜀0

∑𝑧𝑖 𝑐𝑖
0𝑒

−
𝑧𝑖𝑒𝜓
𝑘b𝑇  

( 64 ) 
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The ions attracted or repulsed by the electric field caused by the charged 

protein can lead to deviations between the retentate and permeate ion 

concentration during filtration with a semipermeable membrane. This effect is 

known as Gibbs-Donnan effect and can lead to undesired shifts in pH. The 

effect becomes predominant at high protein concentrations and low ionic 

strengths which is a common condition for industrial ultrafiltration processes. 

Furthermore, the protein volume exclusion needs to be considered at high 

protein concentration. More detailed description of this phenomenon can be 

found in literature [56–59].   
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2 Thesis outline 

2.1 Research proposal 

The biopharmaceutical industry is currently facing increasing competition, 

which has led to a demand for cost savings and efficiency, as highlighted in the 

introduction Chapter 1. In addition, new drug formats, such as non-

standardized monoclonal antibodies, are introduced into drug development 

pipelines, making the application of standardized process conditions and 

control strategies almost impossible. Despite the advantages of mechanistic 

models in addressing these challenges, which have been highlighted by 

academia and demonstrated by the chemical industry, they are rarely applied 

in the biopharmaceutical industry. However, regulatory authorities encourage 

a scientifically sound understanding of the process to ensure process efficiency 

and drug safety.  

The goal of this research is to develop a mechanistic model of an exemplary 

biopharmaceutical downstream process from a holistic perspective. Since the 

underlying mechanisms do not change between processes for different drug 

candidates, the knowledge and strategies gained from this research are 

expected to be transferable. This could lead industry to adapt to change and 

bring new candidates to market efficiently. However, for industrial purposes, 

the models must meet high standards to provide confidence in the results. To 

ensure confidence in the models, this work is dedicated on the three main 

requirements. First, the model must be able to respond to changing process 

conditions, similar to its real-world counterpart. Second, the scalability of the 

model must be demonstrated. Third, the predictability of the model outside its 

calibration range must be ensured. 

A typical biopharmaceutical downstream process involves various 

chromatography, adjustment, and filtration steps. In this area, mechanistic 

models usually focus on individual steps or on sequences or networks of similar 

steps, such as different chromatography columns, while entire processes are 

usually modeled with relatively simple mass and energy balances. In addition, 

there is often a lack of application of the existing models to real process 

conditions and manufacturing data. To develop a comprehensive 

understanding of the models and process, it is essential to discriminate each 
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unit operation model. Particular attention should be given to the polishing 

chromatography, which is critical for ensuring product quality. Filtration steps 

range from dead-end depth filtration to tangential flow filtration to viral 

filtration. However, as the last unit operation of the downstream sequence, 

UF/DF is typically critical and shows a high complexity of the pressure flow 

relations. This is probably why the description of an entire UF/DF process for 

a biopharmaceutical process has not yet been shown.  

A connected process model for the downstream should be able to describe the 

causes and effects of process parameters such as ion concentration, protein 

concentration, impurities, pH, and volume. The model should be applied to real 

data, including manufacturing data, to underline its relevance for industrial 

use. In conclusion, this research should address the challenge of describing an 

entire downstream process through mechanistic models. The results could 

contribute to an interconnected process understanding of cause and effect 

across the entire process flow. Thus, the model would have the potential to 

improve biopharmaceutical process development as a tool to understand scale 

effects and process variability, help in troubleshooting, support overall decision 

making, and improve experimental design. 
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2.2 Manuscript overview and author statement 

This section provides an overview of this publication-based work. The task of 

modeling a downstream process was divided into sub-tasks. Chapter 3 presents 

the modeling of two consecutive IEX chromatography steps and the enclosing 

adjustment steps from lab to manufacturing scale. Chapter 4 addresses the 

pressure-flow modeling of the UF/DF process. Chapter 5 completes the 

downstream sequence with the missing steps of capture chromatography, 

adjustment, and filtration. In addition, the application of the process model to 

manufacturing data and predictability with respect to manufacturing 

variability is addressed. The manuscripts have been published internationally 

in established peer-reviewed journals and have not been used in any other 

publication-based work. 

 Chapter 3: Integrated process model for the prediction of 

biopharmaceutical manufacturing chromatography and adjustment 

steps 

Federico Rischawy, Till Briskot, Adrian Schimek, Gang Wang, David Saleh, 

Simon Kluters, Joey Studts, Jürgen Hubbuch  

Journal of Chromatography A (2022), Volume 1681 

In this study, consecutive ion-exchange chromatography was of interest. The 

chromatography steps are critical for CQAs. The models are usually considered 

individually, and model limitations are rarely addressed. For model 

discrimination, challenging process conditions were used that could only be 

described by the CPA model. In addition, the associated simulation requires 

the ionic strength as a process input for ion exchange chromatography. 

Therefore, a mean-field approach was used to cover adjustment steps. The 

presented mechanistic models were validated as digital representations of the 

process at laboratory and production scale. As a potential application, the 

model was used to investigate the robustness of the process to input variations. 

 

 Chapter 4: Modeling of biopharmaceutical UF/DF from 

laboratory to manufacturing scale 

Federico Rischawy, Till Briskot, Frederik Nitsch, David Saleh, Gang Wang, 

Simon Kluters, Joey Studts, Jürgen Hubbuch 

Computers & Chemical Engineering (2023), Volume 177 
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The pressure and flow relationship of ultrafiltration and diafiltration (UF/DF) 

processes is complex and depends on the protein concentration. This may be 

one reason why UF/DF development in the biopharmaceutical industry is 

largely empirical and rarely mechanistic. In this study, a model for a 

biopharmaceutical UF/DF process is presented and applied to a Fab fragment 

from laboratory to production scale using an Ultracel Pellicon® 3 C-screen 

cassette. The model required offline viscosity data, membrane permeability, 

and a single ultrafiltration experiment. The model was then able to correctly 

respond to extrapolating process conditions with respect to the control 

parameters of crossflow and transmembrane pressure. This was demonstrated 

using a multivariate data set of ultrafiltration experiments with protein 

concentrations ranging from 5 g/L to 200 g/L. The model was able to describe 

the overall UF/DF process at laboratory and production scale. 

 

 Chapter 5: Connected mechanistic process modeling to predict a 

commercial biopharmaceutical downstream process 

Federico Rischawy, Till Briskot, Nathalie Hopf, David Saleh, Gang Wang, 

Simon Kluters, Joey Studts, Jürgen Hubbuch 

Computers & Chemical Engineering (2023), Volume 176 

The objective of this study is to provide a comprehensive description of the 

downstream process for a Fab fragment. The study addresses the models that 

were not covered in previous chapters, such as capture chromatography, depth 

filtration, virus filtration, and adaptations. To model the capture step, a 

transport-dispersion model (TDM) combined with an extended Langmuir 

isotherm was utilized. The depth filtration was modeled using a combined pore 

blocking model. The tangential flow filtration model accounted for both the 

Donnan effects and flow limitations.  

The final model, developed at the laboratory scale, was used to extrapolate to 

the manufacturing scale of 12,000 liters. Additionally, the model was provided 

with the initial inputs of 23 runs from the manufacturing process, and the 

model response was compared to the actual measurements. 
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Abstract 

A fundamental process understanding of an entire downstream process is 

essential for achieving and maintaining the high-quality standards demanded 

for biopharmaceutical drugs. A holistic process model based on mechanistic 

insights could support process development by identifying dependencies 

between process parameters and critical quality attributes across unit 

operations to design a holistic control strategy. 

In this study, state-of-the-art mechanistic models were calibrated and 

validated as digital representations of a biopharmaceutical manufacturing 

process. The polishing ion-exchange chromatography steps (Q-Sepharose FF, 

Poros 50 HS) were described by a transport-dispersive model combined with a 

colloidal particle adsorption model. The elution behavior of four size variants 

was analyzed and included in the model. Titration curves of pH adjustments 

were simulated using a mean-field approach considering interactions between 

the protein of interest and other ions in solution. By including adjustment steps 

the important process control inputs ionic strength, dilution, and pH were 
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integrated. The final process model was capable to predict online and offline 

data at manufacturing scale. Process variations at manufacturing scale of 94 

runs were adequately reproduced by the model. Furthermore, the process 

robustness against a 20% input variation of concentration, size variant and ion 

composition, volume, and pH could be confirmed with the model. 

The presented model demonstrates the potential of the integrated approach for 

predicting manufacturing process performance across scales and operating 

units. 

3.1 Introduction 

A shorter timeline of biopharmaceutical candidates to Phase I is even more 

expected after the COVID-19 pandemic outbreak [23]. Therefore, a fast process 

development leading to an optimized and robust process is essential. The 

complexity of biopharmaceutical downstream processes consists of the 

connection and interdependencies between multiple process units including 

chromatography, adjustment, and filtration steps. During process development 

the criticality of each process parameter across the manufacturing process 

needs to be determined at great expense for process control. To this end, 

Process System Engineering (PSE) techniques such as mechanistic models 

provide a systematic platform for challenges such as holistic process design 

[60–63]. Despite the many possible application and advantages, integrated 

process models have not yet been implemented in the pharmaceutical industry, 

although they are standard in the chemical industry [64]. One reason for the 

rare application of such process models is that there are not general models for 

each process step available that would make an application easily possible. 

Furthermore, model selection and parameter determination can be a major 

challenge. 

Due to the lack of mechanistic understanding of most biopharmaceutical unit 

operations, empirical approaches such as Design of experiments (DOE) are 

mostly applied to investigate the impact of critical process parameters (CPPs) 

on critical quality attributes (CQAs) [65]. Disadvantages of such empirical 

approaches are the limited number of factors that can be considered due to the 

large number of experiments required leading to material limitations and time 

pressure. If, however, many historical process and development data is 

available, integrated regression models were shown to be an option [66]. This 

method is solely descriptive on historical data and improves with more data 

especially for nonlinear systems. Usually, new data is obtained from 

manufacturing at set-point conditions, which alone is not well suited for 

training machine learning algorithms [67]. Data outside set-point conditions is 
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usually rare and mostly obtained during process development. In contrast, 

prior knowledge stored in equations of mechanistic models, also called digital 

twins, allows for using information of a few experiments for model calibration 

and validation. Validated process models then describe the underlying physics 

and enable understanding of the systems overall behavior even under 

extrapolation conditions [68]. Previous studies demonstrated the advantages 

of modeling integrated chromatography steps like hydrophobic interaction 

chromatography (HIC) and anion-exchange chromatography (AEX) and cation-

exchange chromatography (CEX) to identify optimal process conditions [69–

72]. In the study of Huuk et al., model proteins (cytochrome c, chymotrypsin, 

ribonuclease A) were successfully used in linear gradient and break through 

operation mode. However, the capability to describe industrially relevant step 

elution and gradient elution under high loading conditions was not 

demonstrated [71]. 

Recently, the mechanistic understanding and application of models especially 

for industrial ion-exchange chromatography has shown significant progress 

regarding the calibration strategy and model limitations for single unit 

operations [45,73]. Without significantly increasing the number of parameters, 

the colloidal particle adsorption (CPA) model showed promising data to 

overcome the limitations of the SMA isotherm, especially at high column 

loadings [45]. Although the introduction of ionic strength to the feedstock 

possibly impacts impurity clearance in ion-exchange chromatography steps 

[74], the feedstock pH adjustment is not included mechanistically in previously 

published integrated process models. Recent interest in biopharmaceutical pH 

modeling can be found in the field of tangential flow filtration (TFF) to describe 

the Donnan effect [58,59]. The TFF pH models successfully apply the Poisson-

Boltzmann (PB) mean-field theory to describe pH even at high protein 

concentrations. To date, there are no integrated mechanistic process models 

successfully applied to biopharmaceutical processes that combine feedstock 

adjustment and chromatographic steps to investigate the interactions between 

process units. 

A digital process twin should use “the best available” physical models to 

describe the process [75]. In other words, a digital process twin is therefore an 

integrated representation of complete process trains and is therefore best based 

on a sequence of mechanistic models, where possible. In this study, a state-of-

the-art integrated mechanistic model for an industrial downstream polishing 

sequence including pH adjustment steps was calibrated and validated in lab 

scale. For the adjustment steps a mean field theory model considering protein 

charge and ion in solution was applied. The presented model was challenged 

by extrapolating to manufacturing scale data demonstrating the predictivity of 
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the model. Furthermore, the applicability of the integrated model to investigate 

manufacturing process robustness was demonstrated by a Latin hypercube 

sampling (LHS). The manufacturing data might be used to further improve the 

model, which is outside the scope of this study. 

3.2 Theory 

3.2.1 Manufacturing process 

A manufacturing process of a typical therapeutic protein is presented 

schematically in Figure 10. Used buffer components and pH are chosen on the 

basis of the manufacturing scale used to validate the integrated model of our 

study. The downstream sequence starts with a capture chromatography step 

followed by virus inactivation and depth filtration (Unit: I - III). The sequence 

of interest for this study is marked by a red dashed circle which surrounds the 

polishing sequence (Unit: IV – VIII). The first step IV of this sequence is a pH 

adjustment step from pH 7 to pH 8 with 1 M Tris. The loading material of step 

IV includes glycine and Tris as buffer components. The product of step IV is 

further purified in one or two polishing trains (1,2) of unit V to VII depending 

on the maximal loading capacities of step V. The first polishing 

chromatography is an anion-exchange chromatography step in flow through 

mode. The resulting product pool is adjusted to pH 4.9 with 1 M acetic acid 

(AcOH) and transferred to the cation-exchange chromatography column. The 

CEX elution is achieved by a salt step elution at pH 5.0. The polishing trains 

are subsequently pooled, and pH adjusted in step VIII to pH 5.5 by 0.1 M 

NaOH. The final process sequence comprises to virus filtration and tangential 

flow filtration (TFF) (Unit: VIII – X). 
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Figure 10: Scheme of manufacturing process: I - Capture, II - Virus inactivation, III - 

Depth filtration, IV Adjustment 1 (Adj. 1), V AEX, VI Adjustment 2 (Adj. 2), VII CEX, 

VIII Adjustment 3 (Adj. 3), IX Virus filtration, X tangential flow filtration. The 

dashed red circle surrounds the polishing sequence of interest. Depending on the load 

condition of the AEX unit the polishing sequence is performed in two trains (from V to 

VII) and pooled prior to VIII Adjustment 3. 

3.2.2 Chromatography model 

Any mechanistic description of chromatographic steps consists of an model 

describing transport processes and a model assumption describing protein 

adsorption onto the stationary phase. In our study we employed the Transport 

dispersive model (TDM) combined with the Colloidal particle adsorption (CPA) 

model. The chromatography column of length 𝐿C [m] and diameter 𝑑C [m] is 

assumed to contain spherical resin beads of equal particle radius 𝑟p [m]. The 

transport dispersive model (TDM) is a partial differential equation (PDE) 

derived by a differential mass balance of the liquid phase of the column. The 

TDM in Eq. (65) describes the change in concentration in the solute bulk 𝑐b 

[molm-3] of component j over time and over column length 𝑥 ∈ [0, 𝐿C]. The 

concentration 𝑐P [molm-3] is solute bulk in the particles liquid phase.  

 𝜕𝑐b,𝑗

𝜕𝑡
(𝑥, 𝑡) =  −𝑢int(𝑡)

𝜕𝑐b,𝑗

𝜕𝑥
(𝑥, 𝑡) + 𝐷ax

𝜕2𝑐b,𝑗

𝜕𝑥2
(𝑥, 𝑡)  

−
1 − 𝜀int
𝜀int

3

𝑟p
𝑘eff,𝑖 (𝑐b,𝑗(𝑥, 𝑡) − 𝑐p,𝑗(𝑥, 𝑡))  

(65) 

Parameters of the model are the interstitial velocity of the mobile phase 𝑢int 

[ms-1], the axial dispersion coefficient 𝐷ax [m2s-1], the interstitial fraction 𝜀int[-] 

and the effective mass transfer coefficient 𝑘eff [ms-1] [27]. 

The PDE is completed with Danckwert’s boundary conditions at the column 

inlet and outlet [36]. 
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𝜕𝑐𝑏,𝑗

𝜕𝑡
(𝑥 = 0, 𝑡) =

𝑢𝑖𝑛𝑡(𝑡)

𝐷𝑎𝑥
(𝑐𝑏,𝑗(𝑥 = 0, 𝑡) − 𝑐𝑖𝑛𝑙𝑒𝑡,𝑗(𝑡))  (66) 

𝜕𝑐b,𝑗

𝜕𝑡
(𝑥 = 𝐿C, 𝑡) = 0 (67) 

A lumped rate model with an effective mass transfer equation keff,j as presented 

in Eq. (65) and Eq (68) was used to describe the mass transfer from the void 

fraction to the liquid phase of the particle. The model assumes a constant cp 

inside the particle and lumps transport mechanism to 𝑘eff,𝑗 described by 

 𝜕𝑐p,𝑗

𝜕𝑡
(𝑥, 𝑡) =  

3

𝑟p

𝑘eff,𝑗

𝜀P
 (𝑐b,𝑗(𝑥, 𝑡) − 𝑐p,𝑗(𝑥, 𝑡)) −

1 − 𝜀P
𝜀P

𝜕𝑞v,𝑗

𝜕𝑡
(𝑥, 𝑡).  (68) 

The solute adsorbed on the particles stationary phase 𝑞v [molm-3] is referring 

to the adsorber skeleton volume. The surface density of the protein is given by 

𝑞𝑗 = 𝑞v,𝑗𝐴s,𝑗
−1 [molm-2] [45]. In this study, a constant specific adsorber surface 

per skeleton volume 𝐴s [m
−1] was assumed for all components. 

The adsorption and desorption rate of a protein on the adsorber surface was 

described by a colloidal particle adsorption (CPA) model. [45]. This model 

assumes the protein 𝑗 to be a perfect sphere with radius 𝑎𝑗 [m]. Further, it is 

assumed that temperature remains constant at 𝑇 = 298.15 K and the relative 

permittivity at 𝜀 = 78.3 (water) in the mobile phase. The adsorber surface 𝐴 in 

electrolyte solution with ionic strength 𝐼m [molm-3] is assumed to be solid and 

planar with a ligand density 𝛤L [molm-2] and the surface charge density 𝜎A [Cm-

2]. The protein bound to the resin skeleton volume 𝑞v,𝑖 is given by  

 𝜕𝑞v,𝑖
𝜕𝑡

=  𝑘kin,𝑖(𝐾v,𝑖𝑐p,𝑖 − 𝑞v,𝑖).  (69) 

The kinetic parameter is given by Eq. (70) where 𝑢A,𝑖(𝛿m,𝑖) [J] represents the 

minimum of the interaction energy and depends on protein charge, ionic 

strength 𝐼m and pH. The equation includes the Boltzmann constant 𝑘b [JK-1] 

and the fitting parameter 𝑘kin,𝑖
∗  [s-1] which defines the rate of 

adsorption/desorption. 

 
𝑘kin,𝑖 = 𝑘kin,𝑖

∗ 1

2
(
𝑢A,𝑖(𝛿m,𝑖)

𝑘b𝑇
)

2
1

cosh (
𝑢A,𝑖(𝛿m,𝑖)

𝑘b𝑇
) − 1

  
(70) 

The equilibrium coefficient 𝐾v,𝑖 [-] in Eq. (69) is given by 



3.2 Theory 

37 

 

 
𝐾v,𝑖 = Δ𝑖𝐵𝑖(Θ)

𝑘b𝑇

𝑢A,𝑖(𝛿m,𝑖)
exp (−

𝑢lat,𝑖
𝑘b𝑇

)(1 − exp(−
𝑢A,𝑖(𝛿m,𝑖)

𝑘b𝑇
)) ,  (71) 

 and depends on the available surface function 𝐵𝑖(Θ) [-] 

 
𝐵𝑖(Θ) = (1 − Θ) exp (−

𝜋𝑎𝑖
2∑ 𝑞𝑗𝑁A𝑗 + 2𝜋𝑎𝑖 ∑ 𝑎𝑗𝑞𝑗𝑁A𝑗  

(1 − Θ)

−
𝜋𝑎𝑖

2(∑ 𝑎𝑗𝑞𝑗𝑁A𝑗 )
2
 

(1 − Θ)2
)  

(72) 

The available surface function contains the surface coverage Θ [-] given by 

 Θ =  π𝑁A∑𝑎𝑖
2
𝑞v,𝑖
𝐴s,𝑖

 . (73) 

 The interaction boundary layer thickness Δ𝑖 [-] in Eq. (71) is an unknown 

parameter that needs to be estimated via experimental data. The lateral 

interaction energy between the protein of interest and all other adsorbed 

proteins is represented by 𝑢lat,𝑖 [J] in Eq. (71). The lateral interaction energy 

depends on the characteristic lateral charge 𝑍lat,𝑖 [-] which is an additional 

parameter to be estimated. The Avogadro number is represented by 𝑁A. 

Change of counter ions in the diffuse layer caused by protein adsorption and 

desorption is accounted by the neutrality condition in Eq. (74). The equation 

includes the counter-ions per adsorber surface qc [molm-2], the charge 

compensated by the adsorbed protein 𝑧c,𝑖 and the elementary charge e [C]. 

 
𝜎A − e𝑁A (sgn(𝜎A)𝑞c −∑𝑧c,𝑖𝑞𝑖

𝑖

) = 0 (74) 

A more detailed description of the CPA model can be found in the following 

publications. [42,45]. 

3.2.3 Adjustment model 

The adjustment model described in the following is used to predict the amount 

of titrant needed to achieve a desired pH value. It accounts for the ion 

composition, protein concentration, and the pH of the initial protein solution. 

The pH of the solution is a complex function that depends on several factors, 

including the applied buffer system, the protein concentration, and the protein 

charge, with the latter being a function of the ionic strength and pH itself. The 

mechanisms involved in predicting titration curves of protein mixtures in this 

study are based on the model presented by Briskot et al. with the difference 

that the tank system in this study is considered a closed system [58]. This is 
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achieved by the boundary condition presented in Eq. (80). For reasons of clarity 

the model is presented in this chapter. 

The pH adjustment tank is considered a system of mixed ion solution and 

perfect sphere proteins in electroneutral equilibrium. To derive a mathematical 

expression of the electrostatic interaction of the proteins surface charge and 

ions in solution a Wigner-Seitz (WS) cell approximation was considered. The 

advantage of the applied WS cell model is that each cell represents the entire 

adjustment tank illustrated in Figure 11.  

 

Figure 11: Schematic illustration of the cell model approximation of the adjustment 

tank by a Wigner-Seitz cell model. The tank is divided into multiple identical Wigner-

Seitz cells which radius depends on the protein concentration. 

Thus, the problem is reduced to a single and electroneutral Wigner-Seitz cell 

with a charged protein in the center. Inside the WS cell the solute concentration 

𝑐𝑖,𝑗(𝑟) [molm-3], ionic strength 𝐼m [molm-3], and pH are a function of the radial 

position driven by the radial electrostatic potential between the protein outer 

radius 𝑎M [m] and the radius of the WS cell 𝑅WS given by 

 

𝑅WS = (
3

4π𝑁A𝑐M
)

1
3
. (75) 

The pH̅̅ ̅̅  and ion concentration 𝑐𝑖,𝑗 as average values within the WS cell 

correspond to the measured pH and concentration. The proteins surface charge 

density 𝜎M [Cm-2] given by 

 𝜎M(pH0) = e𝑁A∑𝛤𝑘((𝜁𝑘 − 1)[1 + 10p𝐾𝑘−pH0]−1

𝑘

+ 𝜁𝑘[1 + 10pH0−p𝐾𝑘]−1), 

(76) 

depends on the pH0 at the proteins surface. Based on the Boltzmann relation 

this surface pH0 relates to the average pH̅̅ ̅̅  by  
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pH0 = pH̅̅ ̅̅ +

1

ln(10)

e

𝑘b𝑇
(𝜓0 − 𝜓), (77) 

and in turn depends on the average electrical potential 𝜓 [V] [76]. Charged 

amino acids were considered mainly at the protein surface in accordance with 

Briskot [58]. Therefore, the surface density 𝛤𝑘 [molm-2] in Eq. (76) is directly 

related to the number of amino acids in the primary structure. The charge of 

the protonated side chain is represented by 𝜁𝑘, e [C] represents the elementary 

charge and p𝐾𝑘 the dissociation constant of the 𝑘-th amino acid side chain. The 

resulting proteins surface charge density 𝜎M is required in the following Eq. 

(78) and Eq. (81).  

In the following the electric potential 𝜓 as required for Eq. (77) inside the WS 

is discussed. A basic Stern model was introduced to describe the electrostatic 

potential inside the WS cell resulting in a linear charge-free Stern layer domain 

and a diffuse layer. The linear domain ranges from the protein surface 𝜓0 to 

the origin of the diffuse layer 𝜓D. Within the Stern layer the electrostatic 

potential of the proteins surface 𝜓0 drops linearly to the origin of the diffuse 

layer 𝜓D [77]. The linear drop is given by Eq. (78) and depends on the stern 

capacitance 

 
𝐶S =

𝜎M(𝜓0)

𝜓0 − 𝜓D
. (78) 

Within the diffuse layer driving electrostatic potential 𝜓 can be described by 

the PB equation system Eq. (79). To calculate the arising potential the Poisson 

equation (79) is solved under the boundary condition of the Wigner-Seitz (WS) 

cell and the Boltzmann relation Eq. (82). In contrast to Briskot et al., describing 

a semipermeable filtration system, the tank can be considered as a closed 

system with the potential vanishing at 𝑟 = 𝑅WS represented by the first 

boundary condition given in Eq. (80). The second boundary condition in Eq. (81) 

ensures electroneutrality within the WS cell.  

 𝜕2𝜓

𝜕𝑟2
(𝑟) +

2

𝑟

𝜕𝜓

𝜕𝑟
= −

e𝑁A
𝜀𝜀0

∑∑𝑧𝑖,𝑗𝑐𝑖,𝑗(𝑟)

𝑗𝑖

 (79) 

 𝜓(𝑟 = 𝑅WS) = 0 (80) 

 𝜕𝜓

𝜕𝑟 𝑟=𝑎M
= −

𝜎M(𝜓0)

𝜀𝜀0
 (81) 

 
𝑐𝑖,𝑗(𝑟) =  𝑐𝑖,𝑗(pH̅̅ ̅̅ ) exp(−𝑧𝑖,𝑗

e

𝑘b𝑇
(𝜓(𝑟) − 𝜓))  (82) 
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The resulting PB equation can be solved numerically under the stated 

boundary conditions and reference electrostatic potential 𝜓 and pH. This is 

achieved by solving the equation system including the PB equation iteratively 

until Eq. (83) and Eq. (84) are fulfilled. 

 
𝜓 =  −

𝑘b𝑇

e𝑧𝑖,𝑗
ln (

3

(𝑅WS
3 − 𝑎M

3 )
∫ exp(−𝑧𝑖,𝑗

𝜓(𝑟)

𝑘b𝑇
𝑟2𝑑𝑟)

𝑅WS

𝑎M

) (83) 

 

0 =∑∑𝑧𝑖,𝑗𝑐𝑖,𝑗(𝑟 =  𝑅WS)

𝑗𝑖

=∑∑𝑧𝑖,𝑗𝑐𝑖̅,𝑗(𝑝𝐻̅̅ ̅̅ ) 𝑒𝑥𝑝 (𝑧𝑖,𝑗
𝑒𝜓̅

𝑘b𝑇
)

𝑗𝑖

 (84) 

 

The concentration 𝑐𝑖,𝑗 of ionization state 𝑗 of the 𝑖-th solute are required in Eq. 

(83) and can be derived by the total concentration 𝑐𝑖 and pH according to 

Ladwig [59]. The concentration of the fully protonated state 𝑐𝑖,0 is given by Eq. 

(85), where 𝑐𝐻+  represents the hydrogen ion concentration and 𝐾 the 

dissociation constant of solutes. 

 𝑐𝑖,0 =
𝑐𝑖,total

1 + ∑
∏ 𝐾𝑖,𝑗
𝑁𝑘𝑖

𝑗=1

(𝑐𝐻+)𝑗
𝑁𝑘𝑖

𝑗=1

 
(85) 

All the other dissociation states of the solute are given based on the 

concentration of the fully protonated state and pH by 

 

𝑐𝑖,𝑗 = 𝑐𝑖,0
∏ 𝐾𝑖,𝑗
𝑁𝑘𝑖

𝑗=1

(𝑐𝐻+)𝑗
. (86) 

A shift of the ideal p𝐾𝑘 according to Davies equation is a function of ionic 

strength 𝐼𝑚 for conditions 𝐼𝑚 ⪅ 0.3 molL-1. The fully protonated state is 

represented by 𝜁𝑖 of the 𝑘-th pK value of solute 𝑖. The Debye Hueckel constant 

𝐴H of 0.5 L0.5mol-0.5 and the constant 𝑏 of 0.2 were applied [78]. 

 
p𝐾𝑖,𝑘

∗ = p𝐾𝑖,𝑘 + 𝐴H(2(𝜁𝑖 − 𝑘) + 1) (
√𝐼m

1 + √𝐼m 
− 𝑏𝐼) (87) 

 

To find the amount of titrant required to reach the target pH the concentration 

in the tank was updated iteratively. The addition of titrant was adjusted by an 

increase in volume 𝑉t [L/L] of titrant concentration 𝑐t [mol/L] by 
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𝑐𝑖,total =

𝑐i,total + 𝑐t𝑉t
(1 + 𝑉t)

, (88) 

yielding the target pH. The protein concentration 𝑐M,𝑖 was adjusted accordingly 

by  

 𝑐M,𝑖 =
𝑐M,𝑖

(1 + 𝑉titrant)
. (89) 

3.3 Material and methods 

3.3.1 Protein and adsorbers 

The protein in this study was a therapeutic protein with a molecular weight 

𝑀w of approximately 50 kDa. The protein radius ai [m] was estimated based on 

the molecular weight with an empirical correlation applied by Briskot et al. 

2021 and used in the adjustment and CPA model [42] [79]. The experiments 

were performed on the AEX resin Q-Sepharose FF (Cytiva, Uppsala, Sweden) 

and CEX resin Poros 50 HS (Thermo Fisher Scientific, Waltham, 

Massachusetts, USA). The backbone of Q-Sepharose FF consists of highly 

crosslinked agarose based matrix and quaternary amine ligands whereas the 

Poros 50 HS resin consists of crosslinked poly[styrene divinylbenzene] with 

sulphopropyl ligands. 

3.3.2 Buffer and titration  

The pH adjustment model has no fitting parameter and thus no calibration 

experiments were needed. For all experiments the parameters in Table 1 and 

p𝐾a values listed in Table 2 and Table 3 were applied. The capture step buffer 

substance was glycine, the AEX buffer was based on Tris and CEX buffer on 

acetate. Buffer component concentration were analyzed for a manufacturing 

run for the capture pool. Addition of buffers and salts by adjustment steps was 

calculated by mass balancing. The charged amino acids were quantified based 

on the sequence. In general, experiments used for model calibration have the 

suffix “_C” and validation experiments a “_V”. 
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Table 2: pH adjustment model parameters. 

Parameter Value 

Stern capacitance 𝐶S [Fm-2] [58] 0.2 

Colloid radius 𝑎M [nm] 2.35 

Relative permittivity of water 𝜀 [-] 78.3 

Molecular weight 𝑀W [kDa] ~ 50 

Temperature 𝑇 [K] 298.15 

 

Table 3: Thermodynamic ideal pKa values of buffer systems with fully protonated 

charge 𝜁𝑖. 

Buffer p𝐾𝑖,1 p𝐾𝑖,2 𝜁𝑖 

Glycine p𝐾 2.34 9.60 1 

Tris p𝐾  8.08 - 1 

Acetate p𝐾 4.76 - 0 

 

Table 4: Average residual 𝑝𝐾 values and the charge 𝜁𝑘 of the fully protonated side chain 

[80]. 

Residual p𝐾𝑘 𝜁𝑘 

N-terminal 7.5 1 

Glutamic acid 4.4 0 

Aspartic acid 4.0 0 

Tyrosine 9.6 0 

Lysine 10.4 1 

Arginine 12.0 1 

Histidine 6.3 1 

C-Terminal 3.8 0 

 

Small scale titrations were performed to validate the predictivity of the model. 

Adj.B_V was a pure buffer titration experiment of the capture elution buffer 

without protein. For Adj.1-3_V load material from a manufacturing run was 

used for the respective steps Adj.1 and Adj.2 of the polishing sequence. The ion 
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composition of Adj.1-2_V was estimated via analytical ion-exchange 

chromatography for sodium and Tris, and via reverse phase chromatography 

for glycine and acetate. For Adj.3_V the elution buffer composition was 

assumed. The load conditions are listed in Table 4. 

Table 5: Initial conditions of pH adjustment model validation experiments. The 

titrations were performed at room temperature. 

Exp. pH pH 

target 

Titrant Protein 

conc. 

[g/L] 

Sodium 

[mM] 

Chloride 

[mM] 

Glycine 

[mM] 

Tris 

[mM] 

Acetate 

[mM] 

Adj.B_V 2.4 8.1 1 M 

Tris 

0 31.0 42.0 40.0 0.0 0.0 

Adj.1_V 6.9 8.0 1 M 

Tris 

4.55 22.2 39.6 41.3 14.2 0.0 

Adj.2_V 8.0 5.0 1 M 

AcOH 

3.95 26.2 40.0 41.6 26.7 0.0 

Adj.3_V 5.0 5.4 0.1 M 

NaOH 

5.16 110 75 0.0 0.0 50 

3.3.3 Column experiments 

AEX experiments were conducted on a 12.1 mL self-packed column of 1 cm 

diameter and 15.4 cm height. The calibration experiments were designed to 

cover a realistic process range and investigate the interaction based on varying 

pH, flow rate and ionic strength as shown in Table 5. The equilibration and 

running buffer were pH adjusted 50 mM Tris buffer.  

Table 6: Summary of calibration and validation experiments used for AEX model 

development. 

No pH Cond. [mS/cm] Loading 

density [g/L] 

Flow [cm/h] 

AEX_C1 7.7 5.4 187 77 

AEX_C2 8.3 2.8 187 231 

AEX_V1 8.0 3.7 100 116 

 

CEX experiments were conducted on a prepacked Poros 50 HS (Repligen 

GmbH, Ravensburg, Germany) column of 10.0 mL column volume (CV), 1.1 cm 

diameter, and 10 cm height. The running buffer was a pH adjusted 50 mM 

acetic acid (AcOH) buffer for all runs. Additional low load linear gradients 
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elution (LGE) experiments were performed with purified size variants 4 and 5 

to obtain a pH dependency for those species of interest and information for 

parameter estimation [81]. The load material was prepared by size exclusion 

chromatography (SEC) with a HiLoad 26/600 Superdex 75 pg column (Cytiva, 

Uppsala, Sweden). The purification with the Superdex column was performed 

according to the manufacturer instructions. All calibration and validation 

experiments including the Superdex runs were conducted on an ÄktaTM avant 

25 system (Cytiva, Uppsala, Sweden). The size variants were analyzed with a 

HP-SEC Shodex KW403-4F column (Showa Denko Europe GmbH, Munich, 

Germany). 

Table 7: Overview of calibration and validation experiments for CEX model 

development. * Linear gradient runs were additionally performed with purified size 

variant 4 and 5. 

No. pH Gradient/step 

[mM] 

Loading density 

[g/L] 

Flow 

[cm/h] 

CEX_C1 5.0 110 10 100 

CEX_C2 5.0 34-500 / 20 CV 40 100 

CEX_C3 5.0 34-500 / 20 CV >40 120 

CEX_C4 5.0 110 40 100 

CEX_LG1-3* 4.6, 4.8, 5.0, 5.2 50-500 / 

10, 20, 30 CV 

1 100 

CEX_V1 4.6 34-500 / 20 CV 20 100 

CEX_V2 5.2 34-500 / 20 CV 20 100 

3.3.4 Manufacturing scale: Model application  

The integrated process model was used to predict the manufacturing process 

and thus to demonstrate an applicability of an integrated mechanistic model. 

In total 94 manufacturing runs were used to test the ability of the model to 

predict inferences about production variability based on varying inputs. The 

production scale column volume of AEX was 80 L with a bed height of 25.5 cm 

and the CEX had a column volume of 212 L and a column length of 27 cm. The 

linear flow rate of AEX was constant at 175 cm/h and for CEX the linear flow 

rate was constant at 150 cm/h. All other column properties except volume and 

length were held constant during scaling. The integrated process model 

transferred the loading concentration, loading size variance composition, ion 

composition, ion strength, and pH from one process step to the next. When the 
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maximum loading of 100 g/L for AEX was reached, the pool was divided and 

processed sequentially in separate process runs from AEX to CEX. This is 

indicated by (1) for train 1 and (2) for train 2. For two partial trains, the 

resulting CEX eluates were pooled. Target loading composition, concentration, 

volumes, and pH conditions were considered based on historical offline data to 

represent pH variance. The ion composition of the load was calculated based 

on mass balancing prior process steps. 

The production run predictions were performed at set-point condition. 

However, the model can also be used to investigate the process performance for 

larger input variations, which can be interesting especially in process 

development to detect possible weak points. For this purpose and to 

demonstrate the model application, Latin hypercube sampling was applied, 

varying the process parameters volume, concentration, size variant 

composition, and ion composition in a range of +-20%. Additional variation was 

included by sampling CEX elution pH and ionic strength within the normal 

distribution observed in 94 manufacturing runs. 

3.3.5 Software 

The column models were solved by using ChromX (Cytiva, Uppsala, Sweden) 

with fractional step as time stepping scheme and linear Galerkin method for 

space discretization. The number of finite elements was set greater or equal to 

60 and the step size smaller or equal to 0.7 seconds. MATLAB 2019b (The 

Mathworks Inc., Natick, MA, USA) was used to solve the PB Equation of the 

pH adjustment model using bvp5c. All process steps were connected and 

plotted in MATLAB. 

3.3.6 Parameter estimation 

System parameters were determined by pulse experiments. Dextran (2000 

kDa) pulses were used for the estimation of the void volume 𝜀v, high salt pulses 

for the total porosity and non-binding protein pulses for particle porosity 𝜀p of 

the protein. For AEX Dextran tracer experiments were used fit a velocity 

dependent axial dispersion: 

 𝐷AX(𝑢) =  𝐷AX,0 + 𝐷AX,1𝑢 + 𝐷AX,2𝑢
2 (90) 

To approximate the effective mass transfer coefficient 𝑘eff Eq. (91) was applied 

[27].   

 1

𝑘eff
= 

𝑑p

10𝜀p𝐷
+

1

𝑘film
=

1

𝑘pore
+

1

𝑘film
 (91) 
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The correlation used to calculate the film transfer coefficient 

 
𝑘film =

1.09

𝜀b

𝐷𝑚
𝑑P

(
𝜀int𝑢int𝑑p

𝐷m
)

0.33

  (92) 

is based on the Wilson and Geankoplis correlations. The intraparticle (pore) 

diffusion coefficient 𝐷 [cm2s-1] and the molecular diffusion coefficient 𝐷m [cm2s-

1] were determined based on the Mackie-Meares correlation [82,83]. In 

contrast, for CEX the dispersion coefficient 𝐷AX(𝑢) in Eq.(90) was estimated 

based on non-binding protein pulse experiments at various flowrates. The 

effective mass transfer coefficient 𝑘eff was set to not limiting 
𝑟p

3
 . The ligand 

density was determined by acid-base titration according to Huuk et al. 2016. 

[84] 

Fitting parameters of the CPA model for each protein are the protein charge 

𝑍𝑖(pH) as a function of pH in Eq. (93), the boundary thickness layer Δ𝑖, the 

lateral charge 𝑍lat,𝑖 and the kinetic parameter. The reference pH pHref 

represents the pH of the buffer solution. The accessible surface area AS was set 

equal for all species. 

 
𝑍𝑖(pH) = 𝑍𝑖(pHref) +∑𝑍𝑘,𝑖(pH − pHref)

𝑘

𝑚

𝑘=1

 (93) 

3.4 Results and Discussion 

An integrated mechanistic model of a two-column polishing sequence including 

pH adjustment steps was built, calibrated, validated, and applied. The focus 

was on the interconnection of the process steps and predictivity across scales. 

3.4.1 Model calibration – laboratory scale 

The model for adjustment has no fitting parameter and is therefore not 

calibrated on experimental data. 

3.4.1.1 Parameter estimation – general 

All system parameters of the chromatography columns were kept constant 

across all experiments, conditions, and scales. The resulting column 

parameters obtained by tracer experiments, acid base titration, and inverse 

size exclusion chromatography (iSEC) are listed in Table 7. The total available 

adsorber surface AS,0 of AEX and CEX was adopted by iSEC evaluation 

published by Briskot et al. [42]. The parameters are in alignment with previous 
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published data and the differences in resin types reveal known distinctions 

between agarose (Q-Sepharose FF) and polystyrene divinylbenzene (Poros 50 

HS) beads [42]. Poros resin is known to be a perfusion resin with bimodal pore 

sizes [85]. This is caused by its agglomerated microspheres which form the 

resin particles. The intraparticle macropores allow convective flow and axial 

dispersion, which is the predominant effect to peak broadening in perfusion 

chromatography [86]. To avoid biases in protein parameters by these effects, 

the non-binding protein pulses were used to determine a flow dependent Dax 

function. Moreover, a constant protein particle porosity was introduced to 

match protein pulses under non-binding conditions. Non-binding protein 

pulses as reliable data source for column parameters was presented for a 

Fractogel CEX resin by Heymann et al. [87]. Furthermore, the film diffusion 

was assumed to be not limiting for the Poros 50 HS resin [88]. The model 

assumptions were validated by simulating the non-binding protein pulses at 

different flow rates (data not shown). 

Table 8: Summary of column parameters. Except for volume and concentration, all 

parameters were transferred for the manufacturing scale runs. 

Parameter Q-Sepharose FF (AEX) Poros 50 HS (CEX) 

𝑉C [mL] 12.10 10.00 

𝐿C  [cm] 15.40 10.00 

Void fraction 𝜀int [-] 0.338 0.402 

Total column porosity 𝜀t [-] 0.854 0.725 

Bead radius 𝑟P  [μm] 45 25 

Protein particle porosity 𝜀P  [-] 0.854 0.411 

𝐷ax,0 [mm2s-1] -0.136 0 

𝐷ax,1 [mm] 0.252 0.195 

𝐷ax,2 [s] 0 0.445 

Ionic capacity ΛIEX [M] 1.50 0.31 

AS,0 [m²m-3] 4.80e8 1.40e8 

AS [m²] 3.60e8 6.25e7 

Ligand density ΓL = ΛIEX𝐴S,0
−1 [molm-2] 3.12e-6 2.19e-6 

 

Protein specific isotherm parameters summarized in Table 4 were estimated 

by fitting the model to the calibration data set (Table 6). The calibration set 
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and procedure was aligned with straight forward calibration procedure 

published by Saleh et al. [81]. In this study, size variants (1-5) were included 

in the model based on HP-SEC results. First, all parameters of the highest 

concentrated size variant 1 were estimated, including the accessible surface AS 

to reduce the estimation problem complexity. [88]. The parameter estimates of 

Zi, ∆i, k*
kin,i and Zlat,i were able to describe the entire calibration set by a single 

protein species. The pH dependency of Zi was estimated based on LGE 

experiments at 4 equidistant points between pH 4.6 and pH 5.2.  

To link the model to relevant analytic size exclusion chromatography offline 

data, the size variants (1-5) were introduced to the model. To avoid high 

parameter uncertainty, parameters of size variances were estimated in subsets 

as suggested by Hoffmann et al. [89,90]. Additional LGE experiments with 

purified size variants 4 and 5 were used to estimate Zi and ∆i including pH 

dependency parameters Z1,i(pHref) and Z2,i(pHref). Parameters of low abundant 

species were initially set constant to parameter values of size variant 1, which 

were considered reasonable initial estimates. If Zi and ∆i estimation of a variant 

could not yield a good fit, k*
kin,i and Zlat,i were set free for estimation. A free 

kinetic parameter could not achieve improvement and was therefore mostly 

adopted from size variant 1. 

Table 9: Summary of all CPA model parameters of protein species on CEX. Parameters 

that were transferred from size variant 1 estimates and size variant of the same radius 

are presented by merged cells.  

Parameter Size 

variant 1 

Size 

variant 2 

Size 

variant 3a 

Size 

variant 3b 

Size 

variant 4 

Size 

variant 5 

𝑎  [m] 2.4e-9 1.8e-9 3.4e-9 

Δ𝑖 [-] 5.3e-3 4.3e-3 7.2e-3 5.2e-3 5.5e-3 7.8e-4 

𝑘kin,𝑖
∗

 [s-1] 41.0 32.0 

𝑍𝑖(𝑝𝐻ref) [-] 17.5 17.5 10.9 12.9 13.4 32.9 

𝑍1,𝑖(𝑝𝐻ref) [-] -7.9 -7.6 -13.6 

𝑍2,𝑖(𝑝𝐻ref) [-] 3.5 8.8 -5.3 

𝑍lat,𝑖 [-] 6.0 17.1 

 

The calibration set of AEX revealed no significant adsorber interaction for the 

size variants. However, interactions might occur in different pH regions which 

were not relevant for this study. Thus, the isotherm parameters could be set to 
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zero without loss of model quality, which reduces the influence of uncertain 

parameter values. 

3.4.1.2 Parameter estimation – CEX specific 

To limit the possible parameter combinations, a combination of gradient and 

step elution with low and high loading conditions was chosen. The resulting 

simulations and measured data are shown in Figure 12. Simulations and 

measured data agree well for the strongly different conditions, increasing the 

chance of a predictable parameter set.  

 

Figure 12: Model calibration set for CEX. Dashed line represents the UV280 nm 

measurement data and solid lines the simulation. Fraction data is depicted by points. 

Experiment order starting from top left to bottom right: CEX_C1, CEX_LG1-3, 

CEX_C2, CEX_C3, CEX_C4. 

The presented model to measurement data alignment was not achievable by a 

steric mass action SMA model (data not shown). The advantages of the CPA 

model over the SMA model were discussed by Briskot and could be confirmed 

in this case [42,44]. The zoomed version of Figure 12 is presented in Figure 13. 

A good agreement of model and data alignment for low abundant size variants 

could be observed. However, some deviations were present for example in the 

BTC experiment. Since no parameter combination could be identified to 

describe this trend, the deviation can be stated as model limitations or caused 
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by measurement errors. In this study, it was assumed that all proteins reach 

the same accessible surface area. For different size variants this assumption 

might not hold. However, exact predictions of breakthrough curves are not 

critical for future applications of the model due to the strict control of the 

maximal loading density. 

 

Figure 13: Zoom into the model calibration set for CEX shows the model fit to 

measurement data. Experiment order starting from top left to bottom right: CEX_C1, 

CEX_LG1-3, CEX_C2, CEX_C3, CEX_4. 

The following explains the assumptions that were required to fit the analytic 

data to the elution chromatogram without violating mass balance. Size variant 

4 was found to be significantly higher in the load than in the elution peak of 

high load gradient elution experiment CEX_C2. This observation was verified 

with LGE experiments of purified size variant 4 by preparative SEC (not 

shown). Based on mass balance the loaded size variant 4 was assumed to 

mainly elute during NaOH regeneration step. This might be explained by 

hydrophobic interaction with the hydrophobic backbone of CEX, as pointed out 

by Huang et al [91]. By mass balancing the ratio of ~20 % size variant 4 was 

found to elute during salt gradient and thus was considered in the model. The 

other strongly bound part of size variant 4 was considered to bind to the column 

with a ∆i of 10e3 to simulate the strong binding behavior. Furthermore, no 

parameter set was found to achieve a fit with a single size variant 3, which 
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indicates that the size variant 3 possibly consists of an early and late eluting 

variant which could be caused by charge variants [73,81,88]. Hence, the size 

variant 3 was split in an early (~10 %) and late eluting component based on 

CEX_C2 mass balance to match offline measurement data. All assumptions 

made were adopted to manufacturing process runs. The assumptions 

demonstrate the challenge to stay consistent in mass balance and SEC analytic 

variants. 

3.4.2 Model validation experiments 

Model validation is performed under conditions for which the model has not 

been calibrated. This is intended to emphasize the validity of the model 

selection and calibration procedure. The estimates of the parameters of a 

validated model should therefore have physical meaning that allows 

extrapolation. 

3.4.2.1 Adjustment model 

Since the pH adjustment model has no parameters that need to be determined 

experimentally, it was directly applied to predict titration curves of adjustment 

steps based on protein concentration amino acid composition and ion 

concentration. As shown in Figure 14, the model was able to predict titration 

curves and the amount of titrant required to reach a certain pH. Minor 

deviations could be explained by measurement errors or the neglect of the 

impact of small temperature variations between or within experiments on 

buffer p𝐾 values. Aggregation kinetics were negligible since no measurable 

changes of size variant concentrations could be observed during pH adjustment 

experiments. 
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Figure 14: Validation of the pH adjustment model: (a) shows the neutralization step of 

the low pH virus inactivation (Adj.B_V), (b) is the adjustment (Adj.1_V) with 1 M Tris 

prior to AEX, (c) is the adjustment (Adj.2_V) prior to the CEX loading and (d) is the 

adjustment step (Adj.3_V) prior to virus filtration. (AcOH represents acetic acid) 

 

3.4.2.2 Chromatography model - AEX 

Figure 15 shows simulation, offline and online data of the AEX flow through 

experiments presented in Table 5. The experiment set was designed to reveal 

possible interactions of size variants within the relevant pH, ionic strength, 

and loading. However, the data set did not show any relevant interactions for 

the size variants with the AEX resin, resulting in a pure flow-through model. 

At the beginning of the subsequent salt gradient, elution proteins composed 

mainly of host cell proteins (HCP) were observed and could not be evaluated 

with SEC. This information could be helpful to extend the model by HCPs as 

demonstrated in other studies [74,92]. 

 

Figure 15: Calibration and validation experiments: The flow through mode showed no 

interaction with the resin for the investigated protein species and conditions. From left 

to right: AEX_V1, AEX_C1, AEX_C2. 
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3.4.2.3 Chromatography model – CEX 

The calibration set of the CEX model covered a broad range of conditions. 

However, the pH dependency was only calibrated based on low load LGE. 

Therefore, the validation in Figure 16 included high load experiments at the 

outer edges of the pH calibration range. The prediction shows a good alignment 

of measurement data and simulation with only minor deviations. Peak width 

and shape prediction especially at low pH was well met. It is worth mentioning, 

that the size variant 4 is deviating from the main peak indicating an improved 

depletion at low pH. Discrepancies of the sum signal of simulation and 

measurement signal are caused by neglecting various underlying species not 

correlated with SEC offline analytics. The validation results underline the 

validity of the calibrated model to produce trustworthy results at least within 

the calibrated and validated range. 

 

Figure 16: Validation set of the CEX model: In the upper left is pH 4.6 and in the upper 

right is pH 5.2. The two lower plots are the zoom view and belong to the plots above. 

3.4.2.4 Model application – manufacturing scale 

The laboratory scale calibrated, and validated individual models were 

combined to an integrated model and applied to extrapolate the manufacturing 

run shown in Figure 17. The integrated model consists of 4 individual models 

and the output of one step was the input of the next. Parameters passed 

through were the protein concentration, ionic strength, ion composition and the 

pH. In the following, the results are discussed in process order. The pH 

adjustment model predicted the titrant amount of pH adjustment 1 (Adj.1) with 

minor deviation. The bubble trap prior to the AEX column was approximated 
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by an 8 cm stirred tank reactor to account for additional dispersion. The model 

prediction of the manufacturing elution chromatogram was in very good 

agreement with the measurement data. Minor deviation of the conductivity 

signal can be caused by molar conductivity causing a nonlinear relation with 

ionic strength, which was assumed in this study [93]. The protein ion mixture 

consists of varying concentration between glycine, sodium chloride, acetate, 

and Tris along the process. The second adjustment step (Adj.2) underpredicted 

the AcOH titrant required to reach the target pH by ~ 3 mL/L. This trend was 

also observed in the validation data set; however, the deviation was less 

pronounced. The underprediction of titrants can have various causes like 

measurement uncertainty, choice of p𝑘𝑘 or the temperature sensitivity of Tris 

and requires further investigation. The subsequent CEX step showed very good 

agreement with the elution profile in the manufacturing scale. Compared to 

the calibration column the bed height was more than doubled with no 

significant deviations in peak shape underlining the extrapolation capability 

of the mechanistic model. In summary, the scaling of the integrated 

mechanistic process model describing the basic electrostatic interactions of the 

proteins with the adsorber surface and solutes provides a satisfactory 

prediction of the manufacturing data across the steps. 

 

Figure 17: Manufacturing sequence prediction: Starting with a pooled adjustment step 

(Adj.1), the resulting adjusted pool is split into two polishing trains (1) and (2). The 

output of one unit is the input of the next unit operation. Dashed lines represent the 

measurement data and solid lines the simulation. Cutting lines are shown in dashed 

red vertical lines. Points at the end of the adjustment steps are the measured amount 

of titrant required to reach the target pH. 

The integrated model was applied to 94 historical manufacturing runs to 

investigate the model's ability to describe process variations based on real 

input variations at set-point conditions. The input variation included varying 

protein concentrations, volumes, size variant composition, ion compositions, 
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and pH values. Measured process parameters and analytic results are 

compared to the model predictions. The results in the sequenced boxplots in 

Figure 18 show that the model was capable of predicting the median of the 

process across units as well as the process variation. The high variance in the 

volume was due to the division in one or two polishing sequences trains and 

was well reproduced by the model. Also, the prediction of the concentration and 

its variation fits well to the measured data. The yield trend, however, showed 

small systematic deviations, which may due to measurement inaccuracy. 

However, the variation of the yield was also be reproduced well. The pH model 

was able to reproduce the process dispersion of the titration volume, even if 

there were small systematic deviations. The ion input to the process was higher 

for Adjustment 2 (Adj.2), but still within a moderate spread. Regarding the size 

variant analytics, the size variants 1-5 are well predicted in their depletion 

under process variance by the model. Size variant 3 + 4 and size variant 5 were 

depleted efficiently while size variant 1 was enriched. Hence, the model 

correctly predicted which variant was enriched or depleted. Small systematic 

deviations could also be caused by measurement inaccuracies but also by the 

assumptions made as discussed earlier. It is worth noticing, that for some unit 

inputs/outputs a normal distribution assumption may not apply. 

 

Figure 18: Comparison of model predictions and measured data of historical 

production data set: The process variance was given as input to the integrated process 

model and the comparison of the model prediction to the production data was 

visualized. Process variables as well as quality attributes are considered. Gray boxplots 

represent measured data variation and white filled boxplots represent the simulation 

prediction for the input variation. The lines connecting the medians are only for visual 

representation, where the dashed line was used for the measured data and the solid 

line leads to the simulation data. Volume and concentration were normalized to the 

maximum value. 
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Figure 19: Latin hypercube sampling of loading conditions: Latin hypercube sampling 

(LHS) was performed by varying the loading conditions of the integrated process model 

between +- 20% and plotting the process variation across process units. The process 

parameters elution pH and ionic strength of CEX were additionally varied within the 

observed production normal distribution. The sequence was reduced to the first train 

(1), and redundant boxplots were masked out for clarity. Volume and concentration 

were normalized to the maximum value. 

In general, the calibrated model at laboratory scale confirmed the ability of the 

process to retain depletion capability and high yields under varying loading 

conditions and usual input process perturbation as demonstrated in Figure 18. 

This allows the process to be investigated in silico for optimization potential 

and reveal potential robustness issues. The demonstrated ability of the model 

to predict process performance and variation at the set-point is only one 

possibility in the application of process development and process control. A 

question that can be difficult to address experimentally is whether the process 

chain is capable of maintaining process performance at higher process 

variation. Such issues could be investigated by deflecting process parameters 

further than it would be expected based on historical data. Figure 19 shows the 

results of a LHS with a 20% deflection and 100 sample points of all input data 

of unit IV. Here, it can be directly investigated where the highest process 

variance can be expected as a function of input variance. It becomes clear that 

a variance in the volume is reduced by the CEX step, but results in a high 

variance in concentration. This in turn exhibits a skewed distribution towards 

low concentration. The step yield, however, shows a robust variance range for 

Poros of around 5%. By examining the volumes of the titrants, the input of 

AcOH by Adjustment 2 (Adj.2) is almost twice as high compared to Tris by 
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Adjustment 1 (Adj.1). The robust abundance of the size variants considered 

indicates that the ion input and its variation had no significant influence on 

the process performance. The presented model and data allow to quantitatively 

evaluate propagation of process variance in manufacturing scale. Based on 

these results, statistical methods like the partial rank correlation coefficient 

might be used to further investigate the interrelationships and influencing 

factors to further increase the process understanding across process units [60]. 

3.5 Conclusion 

The downstream process is a series of chromatography, filtration, and 

adjustment steps that interact with the immediately adjacent units. Therefore, 

the impact of process parameters and feed material composition on the product 

quality must be understood across the entire process chain. By means of a 

purely experimental approach, however, this is a very material-intensive, if not 

impossible challenge. This study demonstrated that the state-of-the-art 

mechanistic models could describe a concatenation of ion-exchange 

chromatography as well as adjustment steps. Furthermore, the scale-

independence of the models allowed direct extrapolation from bench scale to 

the production scale and thus conclusions on process capability and facility fit. 

This was demonstrated on 94 historical manufacturing data sets.  

The calibration set presented for CEX was sophisticated in design, providing 

confidence in the CPA model predictions. The approximated pH dependency 

derived by only LGE experiments could be successfully validated to higher 

loading gradients. However, to match analytical measurement data from low 

abundance variants, assumptions were required that underscore the 

complexity of describing analytical variants within a CEX elution profile. For 

scale-up, a bubble trap was added to describe production scale elution behavior. 

Surrounding adjustment steps to the chromatography steps could be predicted 

including titrant volumes and titration curves. The polishing steps in 

particular are crucial for product quality and thus have a significant share in 

the industrial development timeline. The presented model provides a basis on 

which quantitative risk analyses regarding process variance and criticality of 

parameters can be performed at an early stage of development. Variation 

propagation of volume, concentrations, pH, ionic strength can be analyzed for 

their criticality across process units without the need for manufacturing data. 

A control strategy across process units might also lower the criticality of 

specific process unit parameters thereby reducing development and process 

control effort. 
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We demonstrated that the presented electrostatic-based polishing model 

allows to investigate the performance of the concatenated manufacturing 

process including adjustment steps at the very early stage of development in 

silico, which can be an accelerator for development. The size variants included 

in this study are only one of various analytics to consider. Analytic measures 

like charge variants, HCP, DNA, and virus removal might be added to cover 

even more CQAs. Modeling of the underlying mechanisms contributes to the 

fundamental process understanding including interactions between process 

units.
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Abstract 

The development of ultrafiltration and diafiltration (UF/DF) processes in the 

biopharmaceutical industry is largely empirical and rarely mechanistic. As a 

result, the full potential of process understanding is not unleashed. In this 

study, a model for a biopharmaceutical UF/DF process is introduced and 

applied for a Fab fragment from lab to manufacturing scale using a Ultracel 

Pellicon® 3 C-Screen cassette. For model calibration viscosity data, membrane 

permeability and a single ultrafiltration experiment were used. The calibrated 

model responded correctly to extrapolating process conditions regarding the 

control parameters crossflow and transmembrane pressure (TMP). This was 

demonstrated by a multivariate dataset of ultrafiltration experiments ranging 

from a protein concentration of 5 g/L to 200 g/L. The validated model was used 

to predict the entire UF/DF process at lab and manufacturing scale. 
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4.1 Introduction 

Ultrafiltration and diafiltration (UF/DF) is used in biopharmaceutical 

downstream processes for concentration and buffer exchange, typically as the 

final purification step facilitating the formulation of the drug substance. 

Current process development is mostly based on an empirical approach using 

generic platform conditions and membranes. However, challenges like demand 

for high concentrated liquid formulation (HCLF) [94], manufacturing capacity 

limitations, and new antibody formats [22] can result in development 

challenges and a lack of fit to platform conditions. Challenges that need to be 

addressed are, among others, the Donnan effect [58], aggregation [95], 

optimization, and control [30]. Especially for UF/DF experiments, the material 

consumption per experiment is typically high and therefore only possible in 

limited numbers. Mechanistic models offer an efficient way to extract 

information from individual experiments. Subsequently, the models can 

provide guidance for action due to their extrapolation capabilities. The 

extrapolation is possible because the model equations describe underlying 

mechanisms that establish a causal relationship between input and output 

parameters [68]. The objective of this study is to describe the pressure-flow 

relationships for an entire UF/DF process. 

The permeate flow declines with increasing protein concentration during 

tangential flow filtration (TFF). This decline can be usually described by a 

concentration polarization on the membranes surface [53,96]. Mechanistic 

models describing the concentration polarization phenomena can be subdivided 

in resistance models, gel-polarization models and osmotic pressure models [50]. 

The theories can also be combined to determine unknown model parameters, 

such as the combination of the stagnant film model and the osmotic pressure 

model. The stagnant film model is a resistance model that describes the 

permeability of the concentration polarization layer at the membranes surface 

[53]. For this model it is assumed that the permeate flow is limited by the 

osmotic pressure of the concentrated protein at the membrane wall. This wall 

concentration is required for the stagnant film model and can be evaluated by 

the osmotic pressure model [52]. Consequently, the osmotic pressure model 

introduces a transmembrane pressure (TMP) and osmotic pressure dependency 

to the model. However, the stagnant film model is limited because it assumes 

a constant mass transfer coefficient and depends only on the bulk protein 

concentration and the wall concentration. Binabaji et al. introduced the 

modified polarization model, where the gradient in solute concentration is 

replaced by the gradient in chemical potential [52,54]. With this change, the 

concentration polarization model depends on the change of protein osmotic 

pressure and viscosity during ultrafiltration. In addition, the crossflow scaling 
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of the mass transfer was demonstrated to describe the crossflow dependency of 

the permeate flow. Limitations of the model at low protein concentrations and 

the discussion about the wall concentration estimation was later addressed by 

Baek et al. [97,98]. The applied resistance in series model provides a smooth 

transition between the osmotic pressure model and the modified concentration 

polarization model. Furthermore, Baek found that the wall concentration was 

insensitive above a certain concentration value and therefore set the parameter 

constant. Hence, the model presented by Baek et al. should be in theory 

responsive to most relevant process parameters including crossflow, TMP, 

concentration, pressure drop in the module, viscosity, and osmotic pressure. 

For this, additional measurements of osmotic pressure and viscosity, especially 

at high protein concentration, are required. However, the osmotic pressure 

measurements are time consuming which is a disadvantage for an application 

in time-critical industrial process development. Although the model was shown 

to describe the filtrate flux at protein concentrations from 8-100 g/L at varying 

TMPs, a combination of TMP and crossflow was not investigated over a broad 

range of protein concentration. In addition, the pressure combined with flow 

rate progression were not demonstrated simultaneously during ultrafiltration. 

In this study, a model describing the online data of varying TMP, and 

crossflows is introduced. Therefore, the permeate flow model presented by 

Baek et al. was extended and applied from the point of view of applicability in 

process development and transfer. A resistance in series model was calibrated 

and validated in lab scale and the TFF system specific control of the permeate 

and retentate pressure were addressed and incorporated into the model. In 

contrast to previous studies, the pressure drop was described with an effective 

crossflow. The effective crossflow considers membrane-specific influences of the 

permeate flow on the pressure drop, which are neglected in a simple crossflow 

consideration. Viscosity data were measured under low and high salt 

conditions which is required for the filtration and pressure model. 

Ultrafiltration online data was used to determine remaining model 

parameters. The diafiltration phase was approximated by combining the initial 

ultrafiltration (UF1) and the final ultrafiltration (UF2) models based on the 

buffer mixture percentage of a non-retained salt. The final model was applied 

to extrapolate to manufacturing scale of different process conditions. 

4.2 Theory 

In this section, the equations describing the laboratory-scale UF/DF 

experiments are presented. A schematic overview of a UF/DF system is 

presented in Figure 21. The first step of a UF/DF filtration process is 
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ultrafiltration 1 (UF1). The protein solution with relatively high volume and 

low protein concentration is concentrated at constant tank volume. This is 

achieved by adding the protein solution to the tank at the permeate flow rate. 

The second step is diafiltration (DF), in which a buffer solution is added in the 

permeate flow instead of the protein solution, thus achieving buffer exchange. 

In the final ultrafiltration (UF2) phase, the buffer-exchanged protein solution 

is concentrated by reducing the volume at the rate of the permeate flow. In the 

following section. First, general mass balances are defined to describe the 

change in concentration and volume of the filter system over time. Then, the 

permeate flux is described by a general concentration polarization model. The 

model is completed by a model to describe the membrane pressure drop, which 

is presented in the last subsection. 

4.2.1 Mass balance 

To provide a tank model that can describe experimental online data, a time 

dependent description of the UF/DF process is required. This was achieved by 

an ordinary differential equation (ODE) system derived by material balance 

with boundaries around the reservoir and membrane compartment as shown 

in Figure 21. The reservoir of the UF/DF system was considered a perfectly 

mixed stirred tank reactor of varying reservoir volume. The UF/DF system 

volume 𝑉 [L] includes the reservoir and dead volume. Depending on the 

filtration phase, the volume inflows were the protein solution inflow 𝐹in [Ls-1] 

or the buffer flow during DF 𝐹buffer [Ls-1]. With the single outflow of the 

permeate flow 𝐹permeate [Ls-1], the volume equation is given by Eq. (94). 

 𝑑𝑉(𝑡)

𝑑𝑡
= 𝐹in + 𝐹buffer − 𝐹permeate 

 

(94) 

The mass balance for the protein in the bulk solution 𝑐p [gL-1] within the system 

boundaries results in Eq. (95): 

 
𝑑𝑐p(𝑡)

𝑑𝑡
=
(𝐹in𝑐p,in − 

𝑑𝑉(𝑡)
𝑑𝑡

𝑐p(𝑡))

𝑉
 

 

(95) 

assuming a fully retentive membrane. For the salt concentration 𝑖 in the 

system 𝑐s,𝑖  [gL-1] the ODE is given by: 

 𝑑𝑐s,𝑖(𝑡)

𝑑𝑡

=
(𝐹in𝑐s,𝑖,in + 𝐹buffer𝑐s,𝑖,buffer − 𝐹permeate𝑐s,𝑖,permeate − 

𝑑𝑉(𝑡)
𝑑𝑡

𝑐s,𝑖(𝑡))

𝑉
 

 

(96) 
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In this study, the Donnan effect was neglected and thus the permeate 

concentration of salt 𝑐s,𝑖,permeate was considered to be equal to the concentration 

in the bulk solution. The diafiltration buffer concentration of salt ions 𝑖 is given 

by 𝑐s,𝑖,buffer. The presented equation system was solved over time for every 

UF/DF phase (UF1, DF, UF2) until a specific phase target, e.g., the DF volume 

or target concentration, was reached. Between different phases the feed flow 

and other process parameters are variable. For example, during DF the 𝐹buffer 

is set equal to 𝐹in and during UF 𝐹in is set to zero once the load volume is empty 

or the target concentration is reached.  

4.2.2 Permeate flow model 

The permeate flow required for Eqs. (94) - (96) depends on various process 

parameters which include protein characteristics, concentration, membrane 

characteristics, pressure and flow conditions. For the sake of simplicity, 

𝐹permeate was considered to be approximately at steady state. The permeate flow 

is given by: 

 
𝐹permeate = 𝐽v̅𝑀n𝐴m10

−3 = 10−3𝑀n

𝐴m
L
∫ 𝐽v(𝑥)𝑑𝑥 
𝐿

0

 

 

(97) 

where the length average permeate flux 𝐽v̅ [ms-1] is the integral of the local 

permeate flux 𝐽v [ms-1] along the membrane length 𝐿 [m] with 𝑥 𝜖 [0, 𝐿]. The 

number of membranes is represented by 𝑀n [-] and the membrane filtration 

area by 𝐴m [m2]. In this study, the resistance-in-series expression first derived 

by Yeh et al. [99]:  

 1

𝐽v(𝑥)
=

1

𝐽lim
+

𝑅∗

𝐽membr(𝑥)
 

(98) 

was used to describe the local permeate flux 𝐽v [ms-1]. The local permeate flux 

depends on the resistance share of the concentration polarization (first term) 

and the membrane resistance share (second term). In contrast to Baek et al. 

[97] the additional 𝑅∗ [-] accounts for possible resistances due to other fouling 

phenomena such as adsorption and provides an additional degree of freedom. 

The limiting local permeate flux 𝐽lim [ms-1] in Eq. (98) was described by the 

modified concentration polarization model developed by Binabaji et al. [52]: 

 
𝐽lim = 𝑘0 (

𝜂p

𝜂0
)

1
3
∫ (

𝑀p

𝑅𝑇
) (
𝜂0
𝜂
) (
𝑑Π

𝑑𝑐
)
𝑑𝑐

𝑐
 

𝑐w

𝑐p

 
(99) 

where the integral was solved for the protein concentration from the bulk 

concentration to the concentration at the membranes surface wall 𝑐w [gL-1]. 

The protein molecular weight is represented by 𝑀p [kgmol-1], the mass transfer 
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coefficient by 𝑘0 [ms-1], the ideal gas constant by 𝑅 [Jmol-1K-1], the osmotic 

pressure of the protein solution by Π [Pa] and the absolute temperature by 𝑇 

[K]. Although it has been shown that the mass transfer coefficient 𝑘0 [ms-1] 

depends on known membrane quantities [100,101] the parameter was 

estimated from experimental data due to its high sensitivity. By scaling the 𝑘0 

coefficient by 𝑢0.5 according to Binabaji et al. [52] a crossflow dependency of the 

permeate flow is achieved. The viscosity of the protein free buffer solution in 

Eq. (99) is represented by 𝜂0 [Pas] and the viscosity of the protein bulk solution 

by 𝜂p [Pas]. Back filtration could be neglected and thus was not included in this 

study. Eq. (99) has been used in previous works to study the permeate behavior 

at high protein concentration [52,55,102,103]. However, the model has shown 

to overpredict the permeate flow at low protein concentration due to the 

neglected membrane resistance [97]. As pointed out by Baek et al. the effect of 

the membrane resistance given by Eq. (100): 

 
𝐽membr(𝑥) =

𝐿p

𝜂0
(𝑃(𝑥) − 𝑃permeate − ΔΠ) 

 

(100) 

should be considered, where the local feed pressure is represented by 𝑃(𝑥) [Pa], 

the permeate pressure by 𝑃permeate [Pa], and the hydraulic membrane 

permeability by 𝐿p [m]. Inserting in Eq. (100) a linear pressure drop function 

𝛥𝑃(𝑥) [Pa]: 

 𝑃(𝑥) = 𝑃feed − Δ𝑃(𝑥) 
 

(101) 

as presented in section 4.2.3, results in: 

 
𝐽membr(𝑥) =

𝐿p

𝜂0
(𝑃feed − 𝛥𝑃(𝑥) − 𝑃permeate − ΔΠ) = 𝐽0 −

𝐿p

𝜂0
𝛥𝑃(𝑥)  

 

(102) 

where 𝑃feed [Pa] represents the feed pressure and 𝐽0 [ms-1] represents the flow 

at the inlet of the membranes feed channel. The integral of the local permeate 

flux along 𝑥 is given by: 

 
𝐽v̅ =

1

L
∫ 𝐽v(𝑥)𝑑𝑥 =  

1

L
∫

𝐽lim𝐽membr(𝑥)

𝐽lim𝑅∗ + 𝐽membr(𝑥)
𝑑𝑥

𝐿

0

 
𝐿

0

 

 

(103) 

which can be solved for any upper integral bound 𝐿∗ ∈ (0, 𝐿] resulting in: 

 

𝐽v̅ =
𝐽lim𝐿

∗

𝐿
+

𝐽𝑙𝑖𝑚
2 𝑅∗ 

𝐿𝑝
𝜂0

𝛥𝑃(𝐿∗)

log(
𝐽𝑙𝑖𝑚𝑅

∗ + 𝐽0 −
𝐿𝑝
𝜂0

𝛥𝑃(𝐿∗)

𝐽𝑙𝑖𝑚𝑅∗ + 𝐽0
)   

 

(104) 
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Since 𝐽v̅ in Eq. (104) depends on the pressure drop [Eq.(110)], which in turn 

depends on 𝐽v due to 𝑢eff, the equations were solved iteratively. In contrast to 

Baek et al., Eq. (104) is solved between 0 < 𝐿∗ ≤ 𝐿. This is required to describe 

the lab scale filtration system due to the pressure control. The equation that 

possibly reduces the upper integral bound to be lower than L is given by Eq. 

(116). Furthermore, Eq. (104) contains the parameter 𝑅∗ and thus an increased 

degree of freedom. 

For Eq. (99) and Eq. (100) the osmotic pressure of the protein solution is 

required. The osmotic pressure is commonly described with three virial 

coefficients as presented in Eq. (105). The first virial coefficient 𝐵1 [kgmol-1] 

describing the ideal case by the van’t Hoff equation [50,104] given by 𝑀p
−1, the 

second virial coefficient 𝐵2 [molm3kg-2] and the third virial coefficient 𝐵3 

[molm6kg-3] can be estimated experimentally or approximated by potential of 

mean forces [103,105,106]. 

 Π = 𝑅𝑇(𝐵1𝑐p + 𝐵2𝑐p
2 + 𝐵3𝑐p

3)  (105) 

The viscosity of the protein bulk solution as required for Eq. (99) and the 

pressure model presented in section 4.2.3, can be described by the Mooney 

equation Eq. (106) which was first introduced by Ross and Minton [107]: 

 
𝜂

𝜂0
= exp(

𝑏𝑐p

1 − (
𝑐P
𝑐max

)
) 

 

(106) 

The protein concentration 𝑐max [gL-1] at which the viscosity becomes infinite 

and 𝑏 [Lg-1] are fitting parameter to be estimated based on viscosity 

measurements. Another fitting parameter is 𝑏∗ which is a reduced b. The 

parameter leads to an effective viscosity in the pressure model which is further 

described in section 4.4.4.2. 

4.2.3 Pressure model 

The pressures in a UF/DF process are essential for the system description and 

control. Usually, the filtration process is controlled by TMP. The TMP in Eq. 

(107) is defined by the feed side pressure, the retentate pressure 𝑃retentate [Pa] 

and the permeate pressure. 

 
𝑇𝑀𝑃 =

(𝑃feed + 𝑃retentate)

2
− 𝑃permeate 

 

(107) 

If the system is TMP controlled and the pressure drop is known, all the relevant 

system pressures can be described with: 
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𝑃feed = TMP + 𝑃permeate −

∆𝑃

2
 

 

(108) 

and 

 𝑃𝑟𝑒𝑡𝑒𝑛𝑡𝑎𝑡𝑒 = 𝑃feed − ∆𝑃 

 

(109) 

with a constant 𝑃permeate. A constant permeate pressure can be assumed due to 

the permeate pressure control by the filtration system. In order to describe all 

relevant system pressures, the pressure drop is of interest. The linear modified 

Hagen-Poiseuille equation used by Binabaji et al. [55] and Baek et al. [97] 

considers the crossflow 𝑢 [ms-1] to describe the pressure drop in the membranes 

feed channel. Kaiser et al. [108] showed for single-pass tangential flow 

filtration (SPTFF), that a linear relationship of crossflow 𝑢 [ms-1] and pressure 

drop is limited and needs to be extended. Therefor Kaiser applied a quadratic 

Darcy-Forchheimer equation which accounts for additional losses due to 

inertial effects at high Reynolds numbers and crossflows. The Darcy-

Forchheimer equation was solved along the membrane as a function of a local 

crossflow 𝑢(𝑥). In this study, the pressure drop along a single 20 cm membrane 

was assumed to be reasonable approximated by the linear formulation of the 

Darcy-Forchheimer given in Eq. (110).  

 
Δ𝑃(𝑥) = (

𝜂

𝑘p
𝑢eff +

𝜌

𝑘l
𝑢eff
2 ) 𝑥 

 

(110) 

where 𝜌 [kgm-3] represents the solution density, 𝑘p [m²] the Forchheimer 

permeability coefficient and 𝑘l [m] the additional loss coefficient. For high 

values of 𝑘l Eq. (110) becomes the Darcy equation [109]. To account for the 

influence of 𝑢 on the pressure drop, which was considered to show membrane 

specific characteristics, an effective crossflow 𝑢eff [ms-1] was introduced: 

 
𝑢eff =

10−3(𝐹feed − 𝑎p𝐹permeate)

𝐴cs
 

 

(111) 

where the constant permeate flow factor 𝑎p [-] is dependent on the membrane 

type. The feed channel cross-sectional area is represented by 𝐴cs [m²]. This 

pressure model was validated by membrane permeability experiments 

presented in section 4.4.1. The sub-models and the quantities exchanged 

between them are illustrated at a glance in Figure 20. Due to the 

interdependence of the permeate and the pressure model, the models have to 

be solved iteratively. 
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Figure 20: The ultrafiltration model at a glance. The sub-models include the ODE tank 

model, the permeate model and the pressure model. Since the permeate model and the 

pressure model depend on each other, the models must be solved iteratively. The 

viscosity model affects the permeate model and the pressure model. The process controls 

TMP and crossflow are inputs of the pressure model. The quantities that are exchanged 

between the models are colored for illustration purposes. Exchanged pressure 

quantities are shown in blue, permeate flow quantities in yellow, tank model quantities 

in orange, viscosity model quantities in green, and process controls in bold gray. 

4.3 Materials and methods 

4.3.1 Protein and buffers 

The protein used in this study is a Fab fragment with a molecular weight 𝑀P 

[gmol-1] of approximately 50 kDa and was produced in-house by Boehringer 

Ingelheim Pharma GmbH &Co. KG, Biberach an der Riß, Germany. All protein 

solutions were filtered through a 0.2 µm sterile filter before use. All chemicals 

in this study were from Merck Millipore (Burlington, USA). The UF/DF load 

pool condition and first ultrafiltration (UF1) buffer was a 46 mM acetate buffer 

with a salt concentration of 65 mM NaCl. The buffer was pH adjusted with 

approximately 38 mM NaOH to pH 5.4. The diafiltration buffer and second 

ultrafiltration (UF2) buffer was a 25 mM acetate buffer adjusted with 

approximately 20.9 mM NaOH to pH 5.4. Prior to TFF experiments the protein 

solutions were diafiltrated to adjust to the mentioned buffer condition and 

diluted to a concentration of 5 g/L. 
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4.3.2 System description 

The UF/DF system used for lab scale experiments was an ÄKTAcrossflow 

(Cytiva, Uppsala, Sweden) controlled via Unicorn 7.5. The device provides a 

control system which is further explained. The crossflow is controlled via the 

feed pump and the TMP [Eq. (107)] via the retentate control valve and the 

permeate pump at second instance. In addition, the permeate pump is 

controlled for a minimal pressure of 0.2 bar to accurately measure the permeate 

flow. The retentate pressure is controlled if necessary to stay above 0.45 bar. 

Device flow paths and applied system boundaries are shown in Figure 21.  

 

Figure 21: ÄKTAcrossflow [1] (The system flow path) ©2008 Cytiva – Reproduced with 

permission of owner. The red dashed line surrounds the system boundaries for mass 

balance.  

In small scale, an 88 cm² Ultracel Pellicon® 3 C-Screen cassette from Merck 

Millipore (Burlington, USA) based on composite regenerated cellulose was 

used. The dimensions of the membrane sheet were assumed to be of length 𝐿 =

20 cm, width 𝑤 = 2.2 cm, and channel height 𝑤 = 0.024 cm according to 

Binabaji et al. [55]. At manufacturing scale, a stack of the same type of 

cassettes with 1.14 m² was used. Dead volumes were determined before 

experimentation and membrane storage was performed according to the 

manufacturer recommendation. 
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The installed UF/DF membrane characteristics were described by the 

hydraulic permeability and the constant permeate flow factor 𝑎p [-] determined 

by a permeability water experiment. The parameter 𝐿𝑝 in Eq. (112) was 

determined to account for membrane fouling effects prior to each TFF 

experiment at room temperature (RT) conducted with purified water of 

viscosity 𝜂water [Pas]. The slope of permeate flow 𝐽v [ms-1] against TMP shows 

a linear relation and was determined by linear regression. 

 
𝐿p =

𝜂water𝐽v
TMP

 

 

(112) 

The parameter 𝑎p is estimated based on permeability experiments. 

4.3.3 Viscosity 

Viscosity measurements were performed with the HAAKE MARS III plate-

cone rheometer (Thermo Fisher Scientific Waltham, USA) with sterile filtrated 

samples. The shear rate 𝛾̇ [s-1] ranged from 100 to 2000 s-1 at a set temperature 

of 23°C. The measurements were conducted using a titan alloy cone with 1% 

slope (TiAl5L). The dynamic viscosity for samples which showed no deviation 

between increasing and decreasing shear rates were evaluated at a high shear 

rate of 2000 s-1 to compensate observed shear thinning effects. This procedure 

was chosen following Castellanos et al [110], who showed that rheometric 

measurements at high shear rates approximate Newtonian viscosity for 

protein solutions with non-Newtonian behavior. The data was used to describe 

the relative viscosities over the required range of protein concentration by a 

semi-empirical model.  

4.3.4 Experiments 

The experiments conducted in lab scale on the ÄKTAcrossflow system are listed 

in Table 10. This includes the calibration experiment and validation 

experiments differing in crossflow and TMP condition. The first four 

experiments are in the format of a two-factorial Design of Experiments (DoE) 

with the UF/DF condition (TMP 1.4 bar, 395 Lm-2h-1) as center point. The 

manufacturing scale run was performed with the center point condition on a 

customized device of known dead volumes. The online data was transformed 

from time to protein concentration by the theoretical concentration based on 

the permeate flow which was in very good agreement with offline 

measurements (not shown).  
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Table 10: The experiments conducted in lab scale for model calibration and validation. 

The brackets (+), (0), (-) indicate DoE labels. 

Experiment Buffer 

condition 

TMP 

[bar] 

Crossflow 

[Lm-2h-1] 

pH Acetate 

[mM] 

NaCl 

[mM] 

Validation 

(a) 

UF2 1.8 (+) 511 (+) 5.4 25 10 

Validation 

(b) 

UF2 1.0 (-) 272 (-) 5.4 25 10 

Validation 

(c) 

UF2 1.0 (-) 511 (+) 5.4 25 10 

Calibration 

(d) 

UF2 1.8 (+) 272 (-) 5.4 25 10 

Calibration 

(e) 

UF1 1.4 (0) 395 (0) 5.4 46 65 

Validation 

UF/DF 

UF1 / UF2 1.4 (0) 395 (0) 5.4 46 / 25 65 / 10 

4.3.5 Analytics 

The protein concentration in sample was determined by a Lunatic UV/Vis 

spectrometer (Unchained Labs, UK) at 280 nm including a scatter correction 

at 320 nm. Samples above 200 g/L were diluted prior to measurement. 

4.3.6 Software 

All modelling activities and plotting was performed within the MATLAB 2019b 

(The Mathworks Inc., Natick, MA, USA) environment. The ODE system, 

presented in the following, was solved with the ODE15s solver. Parameter 

estimation was performed by solving a least square minimization problem with 

the MATLAB nonlinear programming solver lsqnonlin. The solver converged 

with default solver parameters. The confidence intervals were determined by 

passing the jacobian provided by lsqnonlin to the nlparci function of the 

Statistics Toolbox.  
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4.4 Results and discussion 

4.4.1 System and membrane description 

A prerequisite for describing the flow and pressure behavior during TFF with 

protein solution is the ability to describe the behavior of pure water. Therefore, 

the normalized water permeability (NWP) experiment with increasing TMPs, 

shown in Figure 22, was of interest.  

 

Figure 22: Hydraulic permeability (𝐿𝑝) estimation based on a normalized water 

permeability (NWP) experiment. Measurement data is represented in dashed lines and 

the model in solid lines for the pressure drop and feed pressure. Transparent lines 

represent model calculation with 𝑎𝑝 equal to 1. 

For the 𝐿p estimation the permeate flow increases due to a stepwise increase 

in TMPs at steady crossflow. The estimated permeate flow increase depends on 

membrane permeability which in turn is affected by e.g., resistant membrane 

fouling. The 𝐿p estimates for all calibration and validation UF experiments 

were averaged to 𝐿p to 1.94 mPa with a viscosity of water of 𝜂H2O = 0.932 mPas 

at 23 °C. 𝐿p estimates varied depending on the membrane cycle and storage 

duration with a coefficient of variation of 8 %. For the UF/DF lab scale run, 𝐿p 
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during UF1 was set to 1.81 mPa, which is in the range of the observed 𝐿p 

variability, to match the initial flow more accurately. 

The membrane feed channel is characterized by its geometry and screen 

design. Characteristics like the channel height and mesh design (screen) highly 

influence the feed channel pressure drop [52]. Thus, the pressure drop depends 

on the membrane condition and fluid dynamics and is not trivial to predict. In 

addition, the pressure drop is sensitive and can change with new membrane 

installations due to different torque of membrane fastening. Main process 

parameters that influence the pressure drop are the crossflow and the viscosity 

[52]. In Figure 22 a membrane water permeability experiment is shown at 

constant crossflow but varying TMP. This experiment shows that the 

additional influence of the permeate flow on the pressure drop at constant 

crossflow and viscosity is predominant. Thus, the pressure drop cannot be 

described with the crossflow solely. In addition, a simple subtraction of 

permeate flow from the crossflow still overpredicted the pressure drop by the 

pressure drop model (shown by transparent lines). However, the introduced 

effective crossflow with the constant permeate flow factor described the 

pressure drop accurately [Eq. (111)]. The factor 𝑎p of 1.33 was determined 

based on the experiment presented in Figure 22 which led to a better 

description of the measurement data (solid line). The value for 𝑎p was found to 

vary for different membrane types. The remaining parameters 𝑘p and 𝑘l were 

estimated based on initial pressure drop data of UF (a,b) experiments. The 

estimated 𝑘p was 3.66e-10 m2 and 𝑘l was 2.40e-4 m, which is in the order of 

magnitude compared to Kaiser et al. [108].  

4.4.2 Viscosity model 

This section describes the parameter determination as required for Eq. (104). 

First, the viscosity was described by a fit based on off-line rheometer data to 

estimate 𝑐max and 𝑏. The results are shown in Figure 23. The viscosity of the 

high ionic strength condition (Buffer 1) during UF1 was above the viscosity of 

the UF2 at low salt condition (Buffer 2). This can be interpreted as shielding of 

repulsive charges of the protein leading to stronger attractive interactions 

[102]. However, for this protein the difference in viscosity was not strongly 

pronounced. Compared to full length mAbs viscosity measurements, the 

viscosity of the molecule is on the lower end [111]. 
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Figure 23: Mooney equation fitted to viscosity data. Buffer 1 represents the first 

ultrafiltration step condition and Buffer 2 the final ultrafiltration condition.  

4.4.3 Osmotic pressure 

In literature, the osmotic pressure is widely studied during ultrafiltration to 

understand the impact of different buffer conditions on filtration performance 

[102,103]. The measurement of the osmotic pressure of highly concentrated 

protein solutions, however, is time consuming and difficult to achieve with high 

accuracy [112]. Thus, theoretical values for the osmotic pressure were 

calculated. The virial coefficient 𝐵1 = 0.021 kgmol-1 can be directly calculated 

as described in Chapter 4.2.2. The second virial coefficient 𝐵2 [molm3kg-2] was 

included considering the proteins excluded volume contribution in Eq. (113) 

[104,113]:  

 
𝐵2 =

16

3
(
𝜋𝑟p

3𝑁𝐴

𝑀p
2
)  

(113) 

which depends on the protein radius 𝑟p [m] and resulted in a 𝐵2 of 5.74e-05 

molm3kg-2. The 𝐵3 is then given by 𝐵3 =
5

8
𝐵2
2 according to Vilker et al. [105]. 

The inclusion of the integral over the potential of mean force [106] could not 

improve the model performance and was therefore neglected. To that, the 

difference between high salt (e) and low salt (a,b,c,d) could be described by the 

viscosity differences solely. This might be explained by the strong correlation 

of viscosity and 𝐵2 [114,115]. In addition, small errors of the osmotic pressure 

could be compensated by the correlated parameter 𝑘0. The resulting osmotic 

pressure was in the lower range of measurements presented by Binabaji et al. 

[103]. 
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4.4.4 Inverse calibration and validation 

The aim of a mechanistic approach is to extrapolate to conditions that are not 

present in the calibration set. If the model reacts correctly to input parameter 

changes, the model can be applied to explore a process parameter space. As 

mentioned previously, the process control parameters of interest are TMP and 

crossflow. The results of the DoE are presented in Figure 24 with the applied 

conditions listed in Table 10. In the following the inverse calibration and 

validation is discussed. 

4.4.4.1 Permeate model 

As pointed out by Baek et al. [97], 𝑐w can be set constant and was found to be 

not sensitive above a certain value. Furthermore, the parameter 𝑐w cannot be 

larger than 𝑐max when solving for Jv without causing numerical issues. To ease 

the estimation problem and fix non-sensitive parameters [88] 𝑐w could be set 

to 𝑐max after confirming low sensitivity. Assuming an initial 𝑅∗ equal to one, 

the remaining parameter to be determined was 𝑘0. Although 𝑘0 is related to 

membrane properties and the diffusion coefficient, inputs like the 

characteristic channel diameter are not trivial to determine but show a strong 

influence on 𝑘0. Therefore, 𝑘0 was estimated on UF experiment (d). Experiment 

(d) was chosen, because the condition of high TMP and low crossflow should 

theoretically induce a strong concentration polarization effect suitable for 

parameter estimation. To emphasize this strategy, estimating the parameters 

on UF experiments with low polarization effects, such as experiment (c), the 

model was found to have diminished predictive power for experiments with 

increased polarization effects. The best fit of the permeate flow is presented in 

Figure 24 in a grey solid line. The permeate flow for concentration below 50 g/L 

was underpredicted which could not be compensated by 𝑘0, 𝑐w nor by the virial 

coefficients 𝐵2, 𝐵3. Thus, the model showed a clear limitation caused by 𝐽lim, 

which is not infinite even for very low concentration where no concentration 

polarization occurs. However, 𝑅∗ was used to compensate for this limitation at 

low protein concentration. The result of the parameter estimation is shown in 

Figure 24 with an 𝑅∗ of 0.70 and 𝑘0 of 4.04e-5 ms-1. In general, a smaller protein 

results in a higher 𝑘0 due to increase of the diffusion coefficient. Under this 

assumption the estimated 𝑘0 is comprehensible compared to 1.6e-5 ms-1 of a 

mAb [55]. The remaining model to measurement deviations observed in Figure 

24 could not be further improved by solving the model along the membrane as 

suggested in recent Single Pass Tangential Flow Filtration (SPTFF) studies 

[101,108]. On the contrary, the model solution became significantly slower, so 

this approach was not pursued further. 
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Figure 24: Model calibration (d) and validation (a,b,c,e) experiments. The measurement 

online data is represented in dashed lines and the model simulation in solid lines. 

Calibration experiment (d) was used to estimate 𝑘0, 𝑅∗ and 𝑏∗. The grey lines represent 

the result with 𝑅∗ equal to one. 

 

4.4.4.2 Pressure drop model 

It is common knowledge, that the UF pressure drop increases with increasing 

solution viscosity which is dominated by the TFF membrane. For the pressure 

drop in this study, the Mooney equation model resulted in an overprediction of 

pressure for concentration above approximately 100 g/L (not shown). This is 
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caused by the feed channel characteristics reducing the effect of viscosity on 

pressure drop at high protein concentration which is a phenomenon known and 

published by the manufacturer [116]. A reduction of the 𝑏 parameter to 𝑏∗ 

based on experimental data (d), showed very good agreement of the pressure 

drop model for all experiments as shown in Figure 24. All determined model 

parameters are listed in Table 11. The table incorporates the confidence 

interval for parameter estimates. Wide confidence intervals were observed for 

the Mooney equation and the pressure drop function. This includes the 

parameters 𝑏, 𝑐max, 𝑘P, and 𝑘l. Based on the Fisher Information Matrix, 

parameter correlation could be identified as the root cause for the wide 

intervals. Consequently, the physical interpretation of these parameters 

should be approached with caution. Nevertheless, the model accurately 

described the viscosity and pressure drop data as presented in Figure 22, 

Figure 23, and Figure 24. The model prediction on the validation experiments 

(a,b,c,e) for the filtrate flow in Figure 24 showed acceptable results. Experiment 

(b) and (c) were in very good agreement with the model. However, the condition 

of high TMP and crossflow (a) slightly underpredicted the permeate flow. 
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Table 11: List of model parameters. In the context of the permeate flow model, the 

parameters 𝑘0 and 𝑅∗ were derived through estimation using UF permeate flow data. 

The parameter 𝑏∗, required for calibrating the pressure model, relies on UF data as 

well. However, certain parameters such as 𝑏 and 𝑐𝑚𝑎𝑥 for the permeate flow model, as 

well as the parameter 𝑎𝑝 based on NWP data, can be determined beforehand without 

relying on protein UF data. 

Parameter Value  95 % confidence 

interval  

Estimated on 

𝑘0 [ms-1] 4.04e-5 [4.00e-5, 4.09e-5] Permeate flow curve of 

UF (d) 

𝑅∗ [-] 0.70 [0.696, 0.704] Permeate flow curve of 

UF (d) 

𝑘p [m²] 3.66e-10 [-2.08e-9, 2.82e-9] Initial pressure of UF 

(a,b) 

𝑘l  [m] 2.40e-4 [-10.33e-4, 15.13e-4] Initial pressure of UF 

(a,b) 

𝑏  [-] 4.70e-3 (UF1) 

3.69e-3 (UF2) 

[3.32e-3, 6.10e-3] 

[3.09e-3, 4.28e-3] 

Rheometer data 

𝑏∗ [-] 1.00e-3 (UF1) 

2.19e-3 (UF2) 

[0.99e-3, 1.01e-3] 

[2.18e-3, 2.20e-3] 

Pressure curve of UF (d) 

Pressure curve of UF (e) 

𝑐w = 𝑐max [g/L]  504 (UF1) 

427 (UF2) 

[98.82, 909.60] 

[319.20, 534.81] 

Rheometer data 

𝑎p [-] 1.33 [1.12, 1.54] NWP 

𝐴cs [m²] 5.28e-6 - (Binabaji et al., 2016) 

𝜌 [kgm-3] 1017.3
+ 0.163𝑐p 

- Determined based on 

density measurements 

𝑟p [m] 2.35e-9 - - 

𝑅 [Jmol-1K-1] 8.314 - - 

𝑇 [K] 298.15 - - 

𝑀p [gmol-1] ~ 50,000 - - 

𝐴m [m²] 88e-4 - - 

 

The condition of experiment (c) was challenging due to the high-pressure 

crossflow and low TMP. To ensure TMP control, the ÄKTAcrossflow 

controlled the TMP with a permeate pressure reaching levels above the 

retentate pressure. For this event, the retentate pressure is controlled at 0.45 

bar and the permeate pressure is then given by Eq. (114). 

 
𝑃Permate = 𝑃Retentate +

∆𝑃

2
− 𝑇𝑀𝑃 

 

(114) 

The point 𝐿∗ [m] within the membrane length, where the feed side pressure 

theoretically equals the permeate pressure was derived by Eq. (107): 
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𝑃Permate = 𝑃Feed −

∆𝑃

𝐿
𝐿∗  

 

(115) 

and results in 

 
𝐿∗ =

(𝑃Feed − 𝑃Permeate)

∆𝑃
𝐿

 

 

(116) 

Hence, in case of 𝐿∗ < 𝐿 the integration upper limit 𝐿 in Eq. (104) is replaced by 

𝐿∗. With the presented equations, the model was able to predict the filtration 

for the condition of experiment (c) as shown in Figure 24. With this adjustment 

the model is capable to describe the filtration and pressure behavior under 

complex process control conditions. In conclusion, the presented model was 

capable to predict, outside the calibration set, the permeate flow and the 

pressure drop of UF2 and UF1 of the validation experiments. 

To describe the entire UF/DF process, a simple transition between the UF 

models for the pressure drop and permeate flow was applied as presented by 

Eq. (117) - (119) for an unretained salt component 𝑖 = DF. The exchange of the 

component 𝑥DF [-] is 0 at the end of UF1 and approaches 1 towards UF2. Thus, 

during DF both UF models were solved and were offset against each other to 

obtain combined pressure drop and permeate flow. 

 𝑑𝑥DF
𝑑𝑡

=
𝐹buffer(𝑐𝑠,DF,𝑏𝑢𝑓𝑓𝑒𝑟 − 𝑐𝑠,DF)

𝑉
  

 

(117) 

 𝐹permeate,DF = (1 − 𝑥DF)𝐹permeate,UF1 + 𝑥DF𝐹permeate,UF2  

 

(118) 

 Δ𝑃DF = (1 − 𝑥DF)Δ𝑃UF1 + 𝑥DFΔ𝑃UF2   
 

(119) 

Although a simple transition between the UF models is a simplified estimation 

for the DF process, the model results are in good agreement with the data as 

shown in Figure 25. The UF/DF conditions are extrapolated conditions 

regarding TMP and crossflow and thus were not included in the model 

calibration. 
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Figure 25: UF/DF model prediction. At 200 min the UF1 ends and at 310 min the UF2 

starts. The presented conditions of TMP 1.4 and CF of 395 Lm-2h-1 were not used for 

model calibration. 

4.4.5 Scale-up 

The presented UF/DF model calibrated at small-scale was used to extrapolate 

to manufacturing scale. The total membrane area at manufacturing scale was 

above 25 m². The estimated 𝐿P𝜂0
−1 of 1.17e-10 [ms-1Pa] of the membrane system 

was determined by equilibration data. A control difference to the small-scale 

experiments was the constant pressure drop control during UF1 and DF 

instead of a constant crossflow. The relation of pressure drop and crossflow is 

given by Eq. (110). Therefore, the model could be solved to compensate the 

calculated pressure drop by change in crossflow. For the final UF2 a constant 

crossflow was set. The model prediction of the manufacturing run is presented 

in Figure 26. At the end of the UF1 phase, which ends at 67 minutes, a flush is 

performed before the end of the phase. This leads to abrupt flow and pressure 

changes in the measured data. The description of the manufacturing data 

required adjustments of two parameters. First, the pressure drop was 

underpredicted and thus 𝑘P adjusted to 2.1e-10 [m] to meet the measurement 

data. Next, the 𝐿P𝜂0
−1  was reduced to 1.04e-10 [ms-1Pa] to accurately meet the 

initial permeate flow at the start of the UF1. Including the mentioned 

adjustments, an acceptable description of the manufacturing process could be 

achieved. The required parameter adjustments are indicators for possible scale 
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effects. The increased pressure drop compared to small scale might be caused 

by stronger installation torque resulting in reduced distance of the membrane 

sheets and thus a pressure drop increase. The difference in membrane 

permeability can vary due to potential membrane fouling and differences in 

flow characteristic and thus required minor adjustments. Despite the minor 

adjustments, the extrapolation ability of the model as well as the switch from 

crossflow control in lab scale to pressure drop control in manufacturing scale 

underlines the physical relevance of the derived model and estimated 

parameters. One possible application of the presented model is to improve the 

understanding of the mentioned scale effects and thus provide guidance up to 

process transfer. 

 

Figure 26: Scale-up prediction of manufacturing run. The UF 1 ends at 67 min and the 

UF 2 starts at 90 min. The data includes a flush before the end of UF1 resulting in 

abrupt flow and pressure changes which are not included in the model. 

4.5 Conclusion 

For industrial UF/DF process development a fast and reliable model solution 

is required to investigate the process robustness from early development 

phases on. The presented UF/DF model had only three parameters (𝑘0, 𝑅
∗, 𝑏∗) 

that can be estimated on a single UF experiment. All other parameters could 

be determined by permeability tests and offline viscosity measurements. From 
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there the model was able to extrapolate to changes in crossflow and TMP 

combinations for a wide concentration range of 5 to 200 g/L. This was a 

particular challenge due to the transition from membrane-limited to 

polarization-limited permeate flow phases. Furthermore, the DF phase was 

successfully approximated based on the two UF models. The pressure control 

characteristics of the ÄKTAcrossflow, such as a permeate pressure increase, 

were successfully covered by the model. However, the manufacturing data 

showed an increased pressure drop and decreased membrane permeability 

compared to small-scale data. This could be successfully compensated by 

adjusting one pressure model parameter and the membrane permeability. In 

conclusion, the study demonstrated the potential of accompany process 

development with a mechanistic UF/DF model approach. The presented model 

required minimal calibration effort to successfully describe lab scale and 

manufacturing scale filtration data.  
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Abstract 

Mechanistic modeling has shown to contribute greatly to the process 

understanding of chromatography and filtration processes. However, these are 

mostly considered individually and not connected for an entire downstream 

process. In this study, mechanistic models were connected to describe an entire 

downstream process of a Fab fragment. For the capture step, a transport-

dispersion model (TDM) combined with an extended Langmuir isotherm was 

applied. Depth filtration was modeled with a combined pore blocking model. 

The polishing ion-exchange chromatography steps were described by a TDM 

combined with the colloidal particle adsorption model. The tangential flow 

filtration model accounts for both the Donnan effects and flow limitations. The 

presented downstream process model could predict online and offline data 

recorded at 12,000 L manufacturing scale. Process variations of 23 

manufacturing batches were adequately reproduced by the model based on the 

consideration of input process parameter variations. 
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5.1 Introduction 

Antibody-based therapy for cancer has become one of the most successful and 

important strategies for treatment of various tumors [7,8]. However, the 

biopharmaceutical industry is experiencing an increasingly competitive 

environment and thus a requirement for cost savings and efficiency. In 

addition, the trend towards non-standard formats such as bispecific antibody 

formats [19], antibody-drug conjugates [20], antibody fragments [21], and 

others [22] poses major challenges for a wet-lab process development. The 

divergent process behavior of biopharmaceutical drug candidates requires 

flexibility and generally does not allow generalization of process conditions and 

control strategies. This results in increased resource and time requirements 

when relying on a purely experimental approach. Therefore, to save time and 

experiments, prior process knowledge in form of mechanistic models can be 

used to explore the process behavior in silico. Since mechanistic models heavily 

rely on process knowledge and physical laws, they are particularly relevant 

when limited data is available. In other industries, e.g. chemical engineering, 

Process System Engineering (PSE) models, which are primarily based on 

mechanistic models, have proven their value for decades by increasing the 

industry efficiency from a process design and operations perspective [61]. 

Likewise in pharmaceutical industry, PSE already contributes by generating 

process knowledge and evaluating different operational scenarios [117]. 

Although biopharmaceutical industry is slightly behind using PSE, the trend 

towards taking advantage of these technologies to meet future challenges is 

clear [44,66,71,73,81,118–122]. The delay comes from the fact that the 

biopharmaceutical unit operations are biologically complex and 

mechanistically difficult to describe [65]. Moreover, biopharmaceutical unit 

operations are currently considered individually in both modeling and 

experimental approaches. 

However, the connection of mechanistic models to a connected mechanistic 

process model (CMPM) would allow in silico investigations of multidimensional 

combination and interaction of input variables and process parameters across 

unit operations. Consequently, a cross-process understanding emerges that 

would meet demands by the regulatory authorities (ICH Q8 (R2)) [24]. In 

addition, a CMPM potentially would loosen up the robustness investigations 

regarding potential upstream (USP) variability, which can be considered one 

of the main sources of variability propagated through the entire downstream 

process. Especially, the effect of possible feed composition variability is difficult 

to be captured experimentally due to limited feedstocks in development stages 

and long processing time.  Prior to benefit from models’ application, utmost 

attention needs to be paid to ensure the representativeness of the models for 
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their real counterparts to avoid misleading results. This can include the 

validation of scale independence and extrapolation capability. In this context, 

a former work demonstrated that the connection of mechanistic models is 

capable to describe a biopharmaceutical polishing sequence from lab to 

manufacturing scale and predict manufacturing variability based on input 

variability [119]. Other studies also proposed the advantages of connected 

chromatography simulations [69–72]. To our best knowledge, a mechanistic 

model for the entire downstream process, including pH adjustment and 

filtrations steps, has not yet been published. 

In this study, a complete biopharmaceutical downstream process from capture 

to UF/DF was described by connected mechanistic models. The initial model 

discrimination aimed at minimizing model complexity and the number of 

parameters, but still achieving extrapolation capabilities. The final calibrated 

models were connected to a CMPM and tested for its scale-independence at 

12,000 L fermenter scale. Furthermore, the CMPM was tested to react 

accordingly to real input parameter variability in manufacturing scale 

regarding protein concentration, volume, size variant composition, ion 

concentration, and pH. This study shows a downstream process can be 

represented by an CMPM, which opens unexplored possibilities to accelerate 

the process development whilst saving resources. 

5.2  Theory 

5.2.1 Manufacturing process 

The downstream process in this study is presented schematically in Figure 27. 

The sequence of ten consecutive chromatography, adjustments, and filtration 

steps is typical for the purification of therapeutic proteins [14,16]. The process 

starts with a capture chromatography step (Unit I), where the protein is bound 

under neutral pH condition, followed by three wash steps, and eluted via low 

pH. The capture step is performed in multiple cycles depending on the titer in 

the harvested cell culture fluid (HCCF) and subsequently pooled. The resulting 

pool is hold at low pH to inactivate potential viruses and subsequently adjusted 

to neutral pH with 1 M Tris (Unit II: Virus inactivation). Resulting turbidities 

are clarified via depth filtration (Unit III). The clarified pool is adjusted to pH 

8 with 1 M Tris (Unit IV: Adjustment 1) and loaded on the anion-exchange 

chromatography (AEX) column (Unit V), as the first polishing chromatography 

step, operated in flow-through mode. Afterwards the pool is adjusted to pH 4.9 

with 1 M acetic acid (AcOH) in Unit VI (Adjustment 2) and loaded on the second 

polishing cation-exchange chromatography (CEX) column (Unit VII). The CEX 

is performed in bind-and-elute mode, where the elution is accomplished via salt 
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step elution. Unit V – VII can be performed in either one or two trains, 

depending on the loading condition. In case of two trains, the CEX elution are 

pooled before being adjusted to pH 5.5 with 0.1 M NaOH in Unit VIII 

(Adjustment 3). Unit IX is an orthogonal virus filtration step to Unit II and 

removes potential viruses by size. The last Unit X is the 

ultrafiltration/diafiltration (UF/DF) used for final buffer exchange and pool 

concentration. In this study, a model for every process unit is built and 

connected in sequence including pH, ions, protein concentration, size variants 

and volume. In the following, the models used to describe the downstream 

process are presented. 

 

Figure 27: Scheme of manufacturing process: I - capture, II - pH virus inactivation, III 

- depth filtration, IV - adjustment 1, V – anion-exchange chromatography, VI - 

adjustment 2, VII – cation-exchange chromatography, VIII - adjustment 3, IX - virus 

filtration, X - UF/DF 

5.2.2 Chromatography models 

All models of chromatography units were simulated using the transport-

dispersion model (TDM) [Eq. (65)] in combination with a binding model 

describing the interaction between protein and resin. The dimensions of the 

chromatography column are defined by the diameter 𝑑C [m] and the length 𝐿C 

[m] which is the upper bound of the axial position 𝑥 ∈ [0, 𝐿C]. Equation (65) 

describes the change in the bulk concentration of solute 𝑗 𝑐b,𝑗 [molm-3] over time 

and over column length. The solute bulk concentration in the particle of radius 

𝑟p [m] is represented by 𝑐P [molm-3].  

 𝜕𝑐b,𝑗

𝜕𝑡
(𝑥, 𝑡) =  −𝑢int(𝑡)

𝜕𝑐b,𝑗

𝜕𝑥
(𝑥, 𝑡) + 𝐷ax

𝜕2𝑐b,𝑗

𝜕𝑥2
(𝑥, 𝑡)  

−
1 − 𝜀v
𝜀v

3

𝑟p
𝑘eff,𝑗 (𝑐b,𝑗(𝑥, 𝑡) − 𝑐p,𝑗(𝑥, 𝑡))  

(120) 

Additional parameters are the flowrate, given as the interstitial velocity of the 

mobile phase 𝑢int [ms-1], the axial dispersion coefficient 𝐷ax [m2s-1], the void 

fraction 𝜀v [-], and the effective mass transfer coefficient 𝑘eff [ms-1] [27]. The 

TDM is completed with Danckwerts’ boundary conditions at the column inlet 

and outlet [36]: 
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 𝜕𝑐b,𝑗

𝜕𝑡
(𝑥 = 0, 𝑡) =

𝑢int(𝑡)

𝐷ax
(𝑐b,𝑗(𝑥 = 0, 𝑡) − 𝑐inlet,𝑗(𝑡))  (121) 

 𝜕𝑐b,𝑗

𝜕𝑡
(𝑥 = 𝐿C, 𝑡) = 0 (122) 

where 𝑐inlet,𝑗 [molm-3] represents the column inlet concentration. The lumped 

rate model (LRM) assumes a constant 𝑐P inside the particle: 

 𝜕𝑐p,𝑗

𝜕𝑡
(𝑥, 𝑡) =  

3

𝑟p

𝑘eff,𝑗

𝐹acc,𝑗𝜀P
 (𝑐b,𝑗(𝑥, 𝑡) − 𝑐p,𝑗(𝑥, 𝑡)) −

1 − 𝜀P
𝐹acc,𝑗𝜀P

𝜕𝑞v,𝑗

𝜕𝑡
(𝑥, 𝑡) (123) 

where 𝜀P [-] is defined as the particle porosity and the solute adsorbed on the 

particles stationary phase as 𝑞v [molm-3]. The pore accessibility factor:  

 𝐹acc,𝑗 =
𝜀P,𝑗

𝜀P
 (124) 

ranges from (0,1] and accounts for size exclusion effects due to lower protein 

porosity 𝜀P,𝑗 compared to that of salt under non-binding conditions. However,  

𝐹acc,𝑗 [-] was fixed for all protein species 𝑗 to avoid inconsistencies when using 

binding models. 

5.2.2.1 Capture chromatography 

For the capture chromatography model, the elution behavior under varying pH 

[-] can be described by a Langmuir based binding model. The binding model in 

Eq. (125) was originally developed by Lane and Przybycien for Protein A 

affinity chromatography [123,124]: 

 𝜕𝑞v,𝑖
𝜕𝑡

= 𝑘kin,𝑖 (𝑞max

𝑘eq,𝑖𝑐p,𝑖

(1 + 10p𝐾a
′−𝑝𝐻)(1 + 10p𝐾a

′′−𝑝𝐻)
(1 −∑

𝑞v,𝑖
𝑞max

𝑛

𝑖=1

)

− 𝑞v,𝑖) 

(125) 

where the protein bound to the resin skeleton volume 𝑞v,𝑖 [molm-3] depends on 

the solutions pH. The effective pH where the interaction complex of the ligand 

protein (p𝐾a
′) and target protein (p𝐾a

′′) changes is represented by effective p𝐾𝑎 

[-] parameters. The maximum achievable binding capacity is given by 𝑞max 

[molm-3], the equilibrium coefficient by 𝑘eq,𝑖 [m3mol-1], and the kinetic 

parameter by 𝑘kin,𝑖 [s]. For model calibration, the parameters 𝑞max, 𝑘eq,𝑖, p𝐾a
′ 

and p𝐾a
′′s were estimated on experimental data. 

5.2.2.2 Ion-exchange chromatography 

To describe the binding behavior of a protein on an ion-exchange adsorber 

surface the colloidal particle adsorption (CPA) model was applied [45]. This 
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model assumes the protein to be a perfect sphere with radius 𝑎𝑗 [m] which binds 

to the resin skeleton volume by: 

 𝜕𝑞v,𝑖
𝜕𝑡

=  𝑘kin,𝑖(𝐾v,𝑖𝑐p,𝑖 − 𝑞v,𝑖)  (126) 

with the kinetic parameter:  

 
𝑘kin,𝑖 = 𝑘kin,𝑖

∗ 1

2
(
𝑢A,𝑖(𝛿m,𝑖)

𝑘b𝑇
)

2
1

cosh (
𝑢A,𝑖(𝛿m,𝑖)

𝑘b𝑇
) − 1

  
(127) 

which contains the Boltzmann constant 𝑘b [JK-1], the temperature 𝑇 [K], and 

the fitting parameter 𝑘kin,𝑖
∗  [s-1]. The function 𝑢A,𝑖(𝛿m,𝑖) [J] in Eq. (70) represents 

the minimum of the interaction energy between the colloid and the adsorber 

surface given at the distance 𝛿m,𝑖 [m]. This interaction energy depends on the 

fitting parameter protein charge 𝑍𝑖, the ionic strength 𝐼 and pH. The 

equilibrium coefficient 𝐾v,𝑖 [-] in Eq. (69) is given by: 

 
𝐾v,𝑖 = Δ𝑖𝐵𝑖(Θ)

𝑘b𝑇

𝑢A,𝑖(𝛿m,𝑖)
exp (−

𝑢lat,𝑖
𝑘b𝑇

)(1 − exp (−
𝑢A,𝑖(𝛿m,𝑖)

𝑘b𝑇
))   (128) 

The fitting parameter Δ𝑖[-] represents the boundary layer thickness in which 

electrostatic interaction is enabled. The lateral interaction energy is 

represented by 𝑢lat,𝑖 [J] and depends on the fitting parameter lateral charge 

𝑍lat,𝑖 [-]. The equilibrium coefficient further includes the available surface 

function 𝐵𝑖(Θ) [-]: 

 
𝐵𝑖(Θ) = (1 − Θ) exp(−

𝜋𝑎𝑖
2∑ 𝑞𝑗𝑁A𝑗 + 2𝜋𝑎𝑖 ∑ 𝑎𝑗𝑞𝑗𝑁A𝑗  

(1 − Θ)

−
𝜋𝑎𝑖

2(∑ 𝑎𝑗𝑞𝑗𝑁A𝑗 )
2
 

(1 − Θ)2
)  

(129) 

which accounts for steric hindrance at high protein concentration. The term 𝑁A 

represents the Avogadro number and 𝑞𝑗 [molm-2] is the protein bound to the 

adsorber surface. The surface coverage Θ [-] in Eq. (129) is given by: 

 Θ =  π𝑁A∑𝑎𝑖
2
𝑞v,𝑖
𝐴s,𝑖

 (130) 

which depends on the specific adsorber surface 𝐴s,𝑖 [m-1] and is estimated on 

experimental data. The derivation of the model and a more detailed description 

can be found in previous publications [42,44,45]. 
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5.2.3  Pool adjustment model 

The adjustment model considers a system of mixed ion solution and a sphere 

protein of outer radius 𝑎 [m] in electroneutral equilibrium. To determine the 

pH of the solution with changing ion composition, the influence of ionic 

strength, buffer components, protein concentration, and protein charge, which 

is itself a function of pH, need to be described. Therefore, a Wigner-Seitz cell 

(WS) model was used [58,125].  

 

Figure 28: Schematic illustration of the Wigner Seitz Cell which is divided into a Stern 

layer and a diffuse layer. 

This model allows to reduce the problem to a single cell as illustrated in Figure 

28. The radius 𝑅WS [m] of the WS cell can be directly related to the molar 

protein concentration in the bulk by: 

 

𝑅WS = (
3

4π𝑁A𝑐b
)

1
3
 (131) 

The double layer between the protein surface and the WS cell is divided into a 

Stern and a diffuse layer as presented in Figure 28. The basic Stern model [77] 

discussed in previous work [58,119] is used to describe the electric potential 

within the charge-free Stern layer by a linear relation given by the Stern 

capacitance: 
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 𝐶S =
𝜎

𝜓0 − 𝜓D
 (132) 

where 𝜎 [Cm-2] represents the charge density at the protein surface, 𝜓0 [V] 

represents the potential at the protein surface, and 𝜓D [V] is the potential at 

the origin of the diffuse layer. Inside the diffuse layer the potential is described 

by the following Poisson Boltzmann (PB) equation: 

 𝜕2𝜓

𝜕𝑟2
(𝑟) +

2

𝑟

𝜕𝜓

𝜕𝑟
(𝑟)

= −
𝑒𝑁A
𝜀𝜀0

∑∑𝑧𝑖,𝑗𝑐𝑖,𝑗(pH̅̅ ̅̅ ) exp (−𝑧𝑖,𝑗
𝑒

𝑘b𝑇
(𝜓(𝑟) − 𝜓))

𝑗𝑖

 
(133) 

with the first boundary condition ensuring a vanishing electric potential for the 

closed stirred tank system: 

 𝜓(𝑟 = 𝑅WS) = 0 (134) 

and the second boundary condition ensuring electroneutrality within the WS: 

 𝜕𝜓

𝜕𝑟
(𝑟 = 𝑎) = −

𝜎

𝜀𝜀0
. (135) 

For the second boundary condition 𝜀0 [CV-1m-1] denotes for the vacuum 

permittivity and 𝜀 [-] represents the relative permittivity for water of 78.3. The 

index 𝑖 represents a solute component and 𝑗 the ionization states of the solute. 

The average ion component concentration 𝑐𝑖,𝑗 [molm-3] in the diffuse layer for a 

certain  pH can be calculated by their p𝐾a values according to Ladwig et al. 

[59,119]. The average electric potential 𝜓 [V] inside the WS cell as required for 

the PB equation is given by: 

 
𝜓 =  −

𝑘b𝑇

𝑒𝑧𝑖,𝑗
ln (

3

(𝑅WS
3 − 𝑎3)

∫ exp(−𝑧𝑖,𝑗
𝜓(𝑟)

𝑘b𝑇
𝑟2𝑑𝑟)

𝑅WS

𝑎

) (136) 

and the protein surface charge by:  

 𝜎 =
𝑒

4𝜋𝑎2
∑𝑁𝑘((𝜁𝑘 − 1)[1 + 10p𝐾𝑘−pH0]−1 + 𝜁𝑘[1 + 10pH0−p𝐾𝑘]−1)

𝑘

 (137) 

which is required for the second boundary.  The protein surface charge depends 

on the number of charged amino acids 𝑁𝑘 [-] in the primary sequence, 𝜁 [-] the 

charge of the protonated side chain 𝑘, and the p𝐾𝑘 [-] of the side chain. The pH 

at the protein surface in Eq. (76) relates to the average pH by: 
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pH0 = pH̅̅ ̅̅ +

1

ln(10)

e

𝑘b𝑇
(𝜓0 − 𝜓) (138) 

Finally, the presented equation system Eq. (131) – Eq. (138) needs to be solved 

iteratively to obtain a pH that meets the electroneutrality condition given by: 

 

0 =∑∑𝑧𝑖,𝑗𝑐𝑖̅,𝑗(𝑝𝐻̅̅ ̅̅ ) 𝑒𝑥𝑝 (𝑧𝑖,𝑗
𝑒𝜓̅

𝑘b𝑇
)

𝑗𝑖

 (139) 

A more detailed description of the approach can be found in previously 

published work [58,119]. 

5.2.4 Filtration models    

The downstream process described in Sec. 5.2.1 consists of multiple filtration 

steps including sterile filtration, depth filtration (Unit III), virus filtration 

(Unit IX), and tangential flow filtration (Unit X). Sterile filtration can normally 

be considered non-critical in process development and is not addressed in this 

study. 

5.2.4.1 Depth filtration 

Depth filtration is used for clarification and impurity removal subsequent to 

virus inactivation. The material is composed of cellulose or polypropylene fibers 

and a filter aid (e.g. diatomaceous earth). In contrast to other filtration 

technologies, retention occurs through the entire depth of the filter pore volume 

due to size and surface interactions [31,32]. However, it was assumed that 

blocking can be approximated by simple blocking mechanisms. 

For filter blocking mechanism, previous work has shown that there can be a 

transition in fouling behavior during filtration [30,126–128]. In this study, the 

depth filtration was simulated using a combined-pore blockage model 

introduced by Ho et al. [48]. The model provides a smooth transition from pore 

blockage to cake filtration. Under the assumption of a uniform resistance of the 

protein layer over the fouled surface of the membrane, the filtrate flow 𝑄 [m³s-

1] is given by:  

 𝑄 = 𝑄open + 𝑄blocked

= 𝑄0 (exp (−
𝛼∆𝑃𝐶b
𝜇b𝑅m

𝑡)

+
𝑅m

𝑅m + 𝑅p
(1 − exp (−

𝛼∆𝑃𝐶b
𝜇b𝑅m

𝑡))) 

(140) 

where 𝑄open [m³s-1] is the flow through open pores and 𝑄blocked [m³s-1] the flow 

through blocked pores which relates to cake filtration. The initial volumetric 
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flowrate is represented by 𝑄0 [m³s-1], the transmembrane pressure by ∆𝑃 [Pa], 

the solution viscosity by 𝜇b [Pas], and the bulk protein concentration by 𝐶b [gL-

1]. The pore blockage parameter 𝛼 [m²kg-1] is equal to the membrane area 

blocked per unit mass of protein and needs to be determined by fitting the 

model to experimental data. The resistance of the clean membrane can be 

determined during equilibration and is represented by 𝑅m [m-1], whereas the 

resistance of a growing deposit is given by: 

 

𝑅p = (𝑅m + 𝑅p) = √1 +
2𝑓′𝑅′∆𝑃𝐶b

𝜇b(𝑅m + 𝑅p0)²
𝑡 − 𝑅m (141) 

In Eq. (141) the fraction of protein that contributes to deposit growth 𝑓′ [-] and 

the specific protein layer resistance 𝑅′ [mkg-1] are combined to the fitting 

parameter 𝑓′𝑅′ [mkg-1]. The third and last parameter that needs to be 

determined is the resistance of a single protein aggregate 𝑅p0 [m-1].  

5.2.4.2 Virus filtration 

Virus filters are used for size-based viral clearance and can be performed in 

constant flow or constant pressure mode [30,129]. Flux decline has been 

analyzed in various studies [129–131]. However, in this study due to negligible 

fouling effects, the following Darcy relation: 

 
𝑄 = 𝐿p𝐴m

∆𝑃

𝜇b
 

 

(142) 

was sufficient to describe the filtrate flow. The membrane hydraulic 

permeability is given by 𝐿p [m] and the membrane area by 𝐴m [m²]. The virus 

clearance is ensured in separate virus clearance studies and not in the scope of 

this study. 

5.2.4.3 Tangential flow filtration 

5.2.4.3.1 System description 

The UF/DF system can be considered a perfectly mixed stirred tank reactor of 

volume 𝑉 [L] which includes the reservoir and dead volume. A system of 

ordinary differential equations (ODE) was used to describe the concentration 

and volume within the system. The volume is described by: 

 𝑑𝑉(𝑡)

𝑑𝑡
= 𝐹in + 𝐹buffer − 𝐹permeate 

 

(143) 

where 𝐹in [Ls-1] represents the protein solution inflow,  𝐹buffer [Ls-1] the buffer 

inflow, and 𝐹permeate [Ls-1] the permeate flow. For the protein concentration 

given by: 
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𝑑𝑐b(𝑡)

𝑑𝑡
=
(𝐹in𝑐b,in − 

𝑑𝑉(𝑡)
𝑑𝑡

𝑐b(𝑡))

𝑉
 

 

(144) 

a fully retentive membrane is assumed. For the concentration of a salt ion 

component 𝑖 the concentration in the system is given by: 

 𝑑𝑐s,𝑖(𝑡)

𝑑𝑡

=
(𝐹in𝑐s,𝑖,in + 𝐹buffer𝑐s,𝑖,buffer − 𝐹permeate𝑐s,𝑖,permeate − 

𝑑𝑉(𝑡)
𝑑𝑡

𝑐s,𝑖(𝑡))

𝑉
 

 

(145) 

where 𝑐s,𝑖,buffer [molm-3] represents the diafiltration buffer and 𝑐s,𝑖,permeate 

[molm-3] the ion concentration in the permeate. 

5.2.4.3.2 Donnan model 

Due to a charged protein retained by a semipermeable membrane used in 

UF/DF processes, an electrical potential difference between retentate and 

permeate may occur, especially at high protein concentrations. This difference 

can lead to undesirable variations in the ion composition and pH of the final 

pool, known as the Donnan effect. It was assumed, that the electrostatic 

equilibrium is reached immediately. Therefore, the Donnan effect was included 

by the permeate concentration by: 

 𝑐s,𝑖,permeate =
𝑐s,𝑖

(1 − Θ) exp (−𝑧𝑖,𝑗
𝑒𝜓̅
𝑘b𝑇

)

 

 

(146) 

where the denominator denotes for the Gibbs-Donnan coefficient [58]. The 

same WS cell approach as described in Section 5.2.3 was used to solve for the 

electric potential. In contrast to the adjustment model in Section 5.2.3, the first 

boundary condition is replaced by: 

 𝜕𝜓

𝜕𝑟
(𝑟 = 𝑅WS) = 0 (147) 

in accordance with Gauss’ law. The volume exclusion effect due to the spherical 

protein in Eq. (96) is considered by the cell volume given by: 

 
Θ =

4

3
𝜋𝑎3𝑐b𝑁A (148) 

 

5.2.4.3.3 Permeate flow model 

The concentration during ultrafiltration can lead to a strong decline of 𝐹permeate. 

This flux decline can be described by a resistance in series model. The 
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resistance in series model applied in this study for a membrane of area 𝐴m [m²], 

length 𝐿 [m], and 𝑥 ∈ [0,L] is given by: 

 

𝐹permeate = 𝑀n𝐴m10
−3(

𝐽lim𝑥

𝐿

+
𝐽lim
2 𝑅∗ 

𝐿p
𝜂0
𝛥𝑃(𝑥)

log(
𝐽lim𝑅

∗ + 𝐽0 −
𝐿p
𝜂0
𝛥𝑃(𝑥)

𝐽lim𝑅∗ + 𝐽0
))   

 

(149) 

where 𝑀n [-] represents the number of membrane modules, 𝜂0 the dynamic 

viscosity of water [Pas], and 𝑅∗ [-] represents a resistance fitting parameter. 

Eq. (104)  takes into account the flow limitation due to concentration 

polarization and membrane resistance. The flow limitation due to 

concentration polarization is given by: 

 
𝐽lim = 𝑘0 (

𝜂b
𝜂0
)

1
3
∫ (

𝑀p

𝑅𝑇
) (
𝜂0
𝜂
) (
𝑑Π

𝑑𝐶
)
𝑑𝐶

𝐶
 

𝐶w

𝐶b

 

 

(150) 

where 𝐶w [gL-1] is the concentration at the membrane wall, 𝐶b [gL-1] the protein 

concentration in the bulk, 𝑀p [gmol-1] is the proteins’ molar concentration, Π 

[Pas] is the osmotic pressure, and the fitting parameter 𝑘0 [ms-1] represents the 

mass transfer coefficient. 

The filtrate flow at the entrance of the membrane is given by: 

 
𝐽0 =

𝐿p

𝜂0
(𝑃feed − 𝑃permeate − ΔΠ)  

 

(151) 

where 𝑃feed [Pa] is the feed pressure and 𝑃permeate [Pa] the permeate pressure.  

The pressure drop in the feed channel required for Eq. (104) can be described 

by a Darcy Forchheimer approach: 

 
Δ𝑃(𝑥) =

𝑥

103𝐴cs
(
𝜂b
𝑘p

(𝐹feed − 𝑎p𝐹permeate)

+
𝜌

103𝑘l𝐴cs
(𝐹feed − 𝑎p𝐹permeate)

2
) 

 

(152) 

where 𝜌 [kgm-3] represents the solution density, 𝑘p [m²] the Forchheimer 

permeability coefficient, 𝐴cs [m²] the cross-sectional area, and 𝑘l [m] the 

additional loss coefficient. The fitting parameter 𝑎p [-] accounts for the 

membrane specific influence of the permeate flow on the pressure drop. 
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The viscosity was included by a Mooney equation Eq. (106) which was first 

introduced by Ross and Minton [107]: 

 
𝜂

𝜂0
= exp(

𝑏𝐶b

1 − (
𝐶b
𝐶max

)
) 

 

(153) 

where the 𝑏 [-] and 𝐶max [gL-1] are fitting parameter. The osmotic pressure was 

included as commonly applied with three virial coefficients: 

 Π = 𝑅𝑇(𝐵1𝐶b + 𝐵2𝐶b
2 + 𝐵3𝐶b

3)  
 

(154) 

5.2.4.4 Diafiltration model 

The diafiltration phase was approximated by averaging the model outputs of 

the UF1 and UF2 model based on the mixture of the buffer condition 𝑥DF [-]. 

For the permeate flow this leads to: 

 𝐹permeate,DF = (1 − 𝑥DF)𝐹permeate,UF1 + 𝑥DF𝐹permeate,UF2  

 

(155) 

and similarly for the pressure drop to: 

 Δ𝑃DF = (1 − 𝑥DF)Δ𝑃UF1 + 𝑥DFΔ𝑃UF2   
 

(156) 

A more detailed description of the UF/DF model can be found in previous 

publications [132].  
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5.3 Materials and methods 

5.3.1 Protein and buffers 

The biopharmaceutical protein (Boehringer Ingelheim Pharma GmbH &Co. 

KG, Biberach an der Riß, Germany) used in this study is a Fab fragment and 

has a molecular weight of approximately 50 kDa. All chemicals in this study 

were from Merck Millipore (Burlington, USA). 

5.3.2  Resins, filters, and systems 

The capture chromatography step was performed with the KappaSelect 

(Cytivia, Uppsala, Sweden) resin. The resin used for AEX was Q Sepharose FF 

(Cytiva) and for CEX Poros 50 HS (Thermo Fisher Scientific, Waltham, 

Massachusetts, USA). Depth filtration was performed using a Zeta PlusTM 

60ZB05 (3M, Saint Paul, Minnesota, USA) combined with a Zeta PlusTM 

30ZB05 (3M) as prefilter. The virus filter used was a Planova 20N (Asahi Kasai, 

Tokyo, Japan) and the UF/DF membrane an Ultracel Pellicon® 3 C-Screen 

cassette (Merck Millipore, Burlington, USA). The lab-scale chromatography 

and depth filtration experiments were conducted on an ÄktaTM avant 25 system 

(Cytiva). Lab-scale virus filtration was performed on an inhouse controlled 

filtration system and UF/DF experiments on the ÄKTAcrossflow (Cytiva). 

5.3.3 Column experiments 

The capture column used for calibration and validation experiments listed in 

Table 10 was of 15 cm length and 1 cm diameter. A linear pH gradient elution 

was achieved with a citrate buffer mixture.  The load material for experiment 

Capture_C5 was buffer exchanged in the first wash buffer to enable a UV signal 

during the breakthrough curve (BTC). Prior to isotherm parameter estimation, 

a system characterization was performed. Therefore, column and particle 

porosities, axial dispersion and effective mass transfer coefficients were 

estimated via non-binding protein pulses, salt and dextran pulses at varying 

flowrates (86-300 cm/h). The linear velocity 𝑢 [mms-1] dependency of the axial 

dispersion is described by the following quadratic approximation: 

 𝐷AX(𝑢) =  𝐷AX,0 + 𝐷AX,1𝑢 + 𝐷AX,2𝑢
2 (157) 

The isotherm parameters were estimated based on the experiments 

Capture_C1-5. The experiments used for AEX and CEX chromatography 

modeling can be found in Rischawy et al. [119]. The model parameters can be 

found in the Appendix. 
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Table 12: Overview of calibration and validation experiments for the capture 

chromatography model. 

Experiment Elution 

buffer 

Elution pH Loading density 

[g/L] 

Flow [cm/h] 

Capture_C1 25 mM citrate Gradient pH 6.0 – 2.35 in 

10 CV 

10 196 

Capture_C2-4 25 mM citrate Gradient pH 6.0 – 2.35 (5, 

10, 20 CV) 

1 196 

Capture_C5 50 mM 

elution buffer 

component 

2.5 BTC 196 

Capture_V1 50 mM 

elution buffer 

component 

2.5 13.5 196 

5.3.4 Filtration experiments 

Depth filtration experiment conditions are listed in Table 13. The control mode 

was either the transmembrane pressure or the filtrate flow. The filter area for 

all lab-scale experiments was 3.8 cm². Due to the strong pH dependency of the 

neutralization turbidity, a pH extension to the model was introduced by fitting 

a second order polynomial to parameter estimates of 𝑓′𝑅′ at three pH values. 

For pressure-controlled experiments, the pressure drop measurement was 

taken as model input. For the DF_V5* constant flow experiment, the pressure 

increase was simulated by iteratively determining the pressure to keep the 

filtrate flow constant over time.  

Table 13: Model calibration and validation experiment conditions for depth filtration. 

The listed experiments were pressure controlled, except for DF_V5* which was 

controlled by flow.  

Experiment Protein 

concentration 

[g/L] 

pH [-] Controlled ∆𝑃 [bar] or 

flow* [L/min/m²] 

Load [L/m²] 

DF_C1 8.7 6.0 1.5 275 

DF_C2 6.5 7.0 1.5 275 

DF_C3 8.7 8.0 1.5 275 

DF_V1 6.5 6.0 1.0 550 

DF_V2 6.5 8.0 2.0 550 

DF_V3 6.5 6.0 1.0 550 

DF_V4 6.5 8.0 2.0 550 

DF_V5* 6.5 7.0 46* 550 

 

The virus filtration experiment was performed with a filter area of 0.12 m². For 

a summary of all UF/DF experiments, we refer to a previous publication [132]. 

In addition, the Donnan effect model was embedded in the pressure-flow 
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UF/DF model as described in Section 5.2.4.3. The parameters required for the 

electrostatic interaction used in the Donnan and adjustment model are listed 

in Table 2 and Table 15. The ion analytics during UF/DF was performed by an 

inhouse routine. The chloride ion concentration was analyzed by a LCK311 

photometric assay (Hach Company, Loveland, CO, USA) according to the 

manufacturer’s instructions. Acetate concentration in the supernatant of 

precipitated protein solution was analyzed by a reverse phase 5 μm 4 × 250 

mm Acclaim OA column (Thermo Fisher Scientific) with 100 mM Na2SO4 pH 

2.7 as mobile phase and a flowrate of 0.6 mL/min at 30°C. 

Table 14: pH adjustment model parameters. 

Parameter Value 

Stern capacitance 𝐶S [Fm-2] [58] 0.2 

Protein radius 𝑎 [nm] 2.35 

Relative permittivity of water 𝜀 [-] 78.3 

Molecular weight 𝑀P [kDa] ~ 50 

Temperature 𝑇 [K] 298.15 

 

Table 15: Average residual 𝑝𝐾 values of side chains [80]. 

Residual p𝐾𝑘 𝜁𝑘 

N-terminal 7.5 1 

Glutamic acid 4.4 0 

Aspartic acid 4.0 0 

Tyrosine 9.6 0 

Lysine 10.4 1 

Arginine 12.0 1 

Histidine 6.3 1 
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5.3.5 Software 

All chromatography models were solved using the Chromatography Analysis 

and Design Toolkit (CADET) (Research Center Jülich, Germany)[133]. The 

default solver parameters provided by Cadet were used. In addition, the 

column discretization was set to at least 60 finite elements, the relative 

tolerance and absolute tolerance was set to 1e-6, with an initial integrator step 

size of 0.01 seconds. The mechanistic process model as well as filtration and 

adjustment models were all solved and plotted in the MATLAB 2019b (The 

Mathworks Inc., Natick, MA, USA) environment. The applied solvers are listed 

in the supplementary Table 16. For parameter estimations, a least square 

minimization problem with the MATLAB nonlinear programming solver 

fmincon was solved. The solver converged with default solver parameters. 

Table 16 Overview of CMPM models, parameters, solver, and software. The process 

output parameters of one unit operation are the inputs of the following unit operation. 

Unit Model Software/Solver: Model Para-

meters 

estimated 

on process 

data 

Pre-

determined 

parameters 

Input 

process 

parameter 

Output 

process 

parameter 

I Capture 

• Cadet: Langmuir 

based model 

• Matlab: Cadet 

interface, result 

evaluation 

𝑘kin 

𝑞max 

𝑘eq 

p𝐾a
′ 

p𝐾a
′′ 

𝐷ax 

𝑘eff 

𝜀v 

𝜀P 

𝑐s,𝑖 

𝑐b,𝑖 

𝑉 

𝑝𝐻 

𝑐s,𝑖 

𝑐b,𝑖 

𝑉 

𝑝𝐻 

II, 

IV, 

VI, 

VIII 

Adjust-

ment 

• Matlab bvp5c: 

Poisson 

Boltzmann 

• Matlab Bisection 

method: 

Electroneutrality 

condition 

− 𝑎 

III 

Depth 

filtratio

n 

• Matlab: 

Combined pore 

blockage model 

𝑓′𝑅′(𝑝𝐻) 

𝑅p0 

Α 

𝐿p 

− 

V, 

VII 

AEX, 

CEX 
• Cadet: CPA 

𝑘kin
∗  

Δ 

𝑎 

𝐴𝑆,0 
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• Matlab: Cadet 

interface, result 

evaluation 

𝐴s 

𝑍lat 

𝑍(𝑝𝐻ref) 

𝛬𝐼𝐸𝑋 

𝐷ax 

𝑘eff 

𝜀v 

𝜀P 

IX 

Virus 

filtratio

n 

• Matlab: Darcy 

relation model 
− 𝐿p 

X UF/DF 

• Matlab ODE15s: 

UF/DF tank 

model 

− − 

𝑐s,𝑖 

𝑐b,𝑖 

𝑉 

𝐹permeate 

𝑐s,𝑖,permeate 

𝑐s,𝑖 

𝑐b,𝑖 

𝑉 

𝑝𝐻 

• Matlab: 

Permeate flow, 

Pressure drop 

𝑘0 

𝑎p 

𝑘p 

𝑘l 

𝐿p 

𝜂 

Π 

𝑐b,𝑖 𝐹permeate 

• Matlab bvp5c & 

bisection method: 

Donnan model 

− − 

𝑝𝐻 

𝑐s,𝑖 

𝑐b,𝑖 

𝑐s,𝑖,permeate 

 

5.4 Results and discussion 

5.4.1  Capture chromatography model 

The capture chromatography step was calibrated based on pH gradients and a 

breakthrough curve under the conditions listed in Table 10. The non-binding 

protein pulses performed under low pH condition revealed a size exclusion 

effect, which was approximated by a reduced particle porosity for the protein 

compared to salt [45]. The kinetic parameter was fixed to a high value of 1e6 s, 

which assumes an immediate equilibrium state. Furthermore, although the 

p𝐾a
′′ for the ligand and target protein (p𝐾a

′) have physical relevance, they are 

structurally indistinguishable. Thus, a single effective p𝐾a
∗ was assumed 

without observing drawbacks in model performance. As shown in Figure 3, the 
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elution behavior of the size variants proved to be indifferent, so that a common 

set of parameters was found to be sufficient to describe the elution profile. In 

Figure 29 the overlay of model to measurement data of all experiments listed 

in Table 10 is shown. The binding model was able to describe the elution 

chromatogram of varying loading and pH conditions and predicted a step 

elution. In the following the estimated parameters listed in Table 17 are 

discussed.  

 

 

Figure 29: Capture model experiments. The measurement data is presented in dashed 

lines and the simulation in solid lines. The conditions of experiments are listed in Table 

10: Capture_V1 (a), Capture_C2-4 (b), Capture_C1 (c), Capture_C5 (d). Calibration 

expe iments h ve the suffix “_C”  nd the v lid tion expe iment “_V”. The UV 

measurement signal of the loading phase is caused by cell media additives which was 

not included in the model. 
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Figure 30: Zoom to Capture_V1 (Figure 29 (a)) pH step elution used for model 

validation. The measurement data of size variants is represented by scatter points and 

reveal co-elution behavior of variants. 

In the following the estimated model parameters are discussed. The resin 

manufacturer provides a ligand density estimate of the KappaSelect resin 

slurry of approximately 5 mg/mL and a molecular weight of the ligand of 

approximately 13 kDa [134]. This can be calculated to a ligand density of 0.385 

mol/m³ resin or a theoretical 𝑞max based on the estimated resin backbone 

volume of 7.54 mol/m³. The estimated 𝑞max of 6.94 mol/m³ was approximately 

in the same order of magnitude which shows that the value is realistic, 

assuming that the ligand number is limiting for protein binding. However, due 

to the high influence of minor changes in the parameter an inverse parameter 

was inevitable. Furthermore, the amino acids involved in the ligand to Fab 

interaction of KappaSelect are not completely understood based on literature. 

For affinity chromatography with Protein A the ligand interaction is known to 

depend on histidine residue interaction [135]. However, the p𝐾a of histidine can 

be a function of the local environment leading to p𝐾a shifts [136]. Due to p𝐾a 

shifts and the general lack of understanding on a molecular level of the binding 

interaction with the KappaSelect ligand, the p𝐾a
′′ of the ligand interacting 

amino acids and the p𝐾a
′ of the protein interacting amino acids were lumped to 

an effective p𝐾a
∗. In addition, the two parameters are structurally 

indistinguishable. The single effective p𝐾a
∗ could be assumed without observing 

drawbacks in model performance. The final model was tested on the step 

elution experiment Capture_V1 in Figure 29 and showed a good agreement 

with the measurement data. 
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Table 17: Chromatography column parameters for Capture, AEX, and CEX [13]. 

Parameter Capture AEX [119] CEX [119] 

Column volume 𝑉C [mL] 11.78 12.10 10.00 

Column length 𝐿C [cm] 15.00 15.40 10.00 

Void fraction 𝜀v [-] 0.35 0.34 0.40 

Particle porosity  𝜀p [-] 0.91 0.78 0.54 

Bead radius 𝑟p [µm] 37.5 45 25 

Protein particle porosity 𝜀p,𝑗 [-] 0.50 0.78 0.41 

Axial dispersion coefficient 𝐷AX,0 [mm²s-1] -0.13 -0.14 0 

Axial dispersion coefficient 𝐷AX,1 [mm] 0.35 0.25 0.20 

Axial dispersion coefficient 𝐷AX,2 [s] 0 0 0.45 

Effective mass transfer coefficient 𝑘eff,non−protein 

[mms-1] 

1.25e-2 1.50e-2 0.83e-2 

Effective mass transfer coefficient 𝑘eff,protein 

[mms-1] 

0.90e-3 0.52e-2 0.83e-2 

Maximum binding capacity 𝑞max [molm-3] 6.94 - - 

Ionic capacity ΛIEX [M] - 1.50 0.31 

Total available adsorber surface 𝐴S,0 [m²m-3] - 4.80e8 1.40e8 

 pecific adsorber surface 𝐴S [m-1] - 3.60e8 6.25e7 

Ligand density ΓL = ΛIEX AS,0-1 [molm-2] - 3.12e-6 2.19e-6 

Equilibrium coefficient 𝑘eq,𝑖 [m3mol-1] 3.13e3 - - 

Effective acidic dissociation constant p𝐾a
∗ [-] 4.50 - - 

Kinetic 𝑘kin,𝑖 [s] 1e6 - - 

5.4.2 Virus inactivation 

Virus clearance is ensured in separate virus clearance studies and not in the 

scope of this study. However, neutralization after virus inactivation can lead 

to increasing turbidity of the protein solution [16] which can affect the depth 

filtration performance regarding the flux decline as discussed in Sec. 5.4.3.1. 

Figure 31 shows the pH course when titrating 6.71 g/L protein solution with 1 

M Tris. The turbidity peaked at pH 5.5 - 7.0 (data not shown) which could be 
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related to aggregation and precipitation of HCPs close to their typical pI range 

of 4.5 - 7.5 [137]. Above the typical pI, HCPs start being polar and solubilized 

again resulting in reduced turbidity measures.  The observed turbidity course 

was in very good agreement with data presented by Chollangi et al. [137]. The 

load pool ion analytic resulted in an ion concentration of 31 mM sodium ions, 

42 mM chloride ions, 37.8 mM elution buffer component and 2 mM phosphate 

carryover ions. The resulting titration curve was predicted by the adjustment 

model based on ions, protein structural information, and protein concentration.  

 

Figure 31: Neutralization of virus inactivation pool by titration with 1 M Tris solution. 

Measurements are presented as scatter points and the adjustment model prediction by 

a solid line.  

5.4.3 Filtration 

5.4.3.1 Depth filtration 

As discussed in section 5.4.2, the turbidity highly depends on the pH and thus 

potentially affect filtration behavior during depth filtration. The depth filter 

model was calibrated using experiments DF_C1-3 (Figure 32 a-c) at three 

different pH values (pH 6.0, pH 7.0, and pH 8.0) and a transmembrane 

pressure of 1.5 bar. The model parameters 𝑓′𝑅′, 𝑅𝑃0, and 𝛼 were estimated 

based on the single experiment DF_C2. In order to add a pH dependency, the 

𝑓′𝑅′ parameter was estimated on DF_C1 and DF_C3. This is consistent with 

the expected pH dependency of protein layer resistance 𝑅′ caused by changes 

in intermolecular interactions [48]. Parameter estimates are listed in Table 18. 

The membrane resistance of 1.15e11 m varied by ± 10 % with changing 

membranes between runs and was therefore determined based on equilibration 

data for each individual run.  
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Table 18: Model parameter estimates for depth filtration. The 𝑓′𝑅′ estimates were 

connected by a second order polynomial to approximate the pH dependency. 

Parameter Depth filtration model estimates 

Protein resistance growth parameter 𝑓′𝑅′ [mkg-1]  𝑓′𝑅′ = (53.52 − 9.48pH + 0.36pH2)1𝑒10 

Resistance of a single protein aggregate 𝑅p0 [m-1] 4.0e10 

Pore blockage parameter α [m²kg-1] 2.0 

 

The predictive power of the model was tested under varying input variations 

regarding transmembrane pressure, protein loading, and pH as presented in 

Figure 32 (d-h).  The simulation in Figure 32 (h) demonstrates the capability 

of the model to predict the pressure in a flow control experiment. In summary, 

the depth filtration model was shown to have extrapolation capabilities of 

changing pressures, protein loading, pH, and control mode. The size variances 

were not changed by the filtration step, except for variant 1, which was 

constantly reduced to approximately 11.2 % of the load proportion in lab-scale 

experiments. 
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Figure 32: Depth filtration experiments used for model calibration and validation. 

Measurement data is presented by thick dashed lines and simulation data as solid 

lines. The conditions of experiments are listed in Table 13. Experiments (a-c) were used 

for model calibration and experiments (d-h) for model validation.  Experiment (h) was 

performed in flow control while all other experiments are performed in pressure control 

mode. Thus ∆𝑃 is not an input but a simulation output, represented by a solid line. The 

open and blocked filtrate contributions were included as thin dashed lines for 

demonstration purposes. 

5.4.3.2 Virus filtration 

The virus filtration in this study was performed as dead-end filtration and 

showed no time dependent filtrate flow decline caused by a blocking 

mechanism. Therefore, the model presented in section 5.2.4.2 was found to be 

sufficient to describe the experimental data by estimating the membrane 

hydraulic permeability of 1.987e-13 m as presented in Figure 33. However, for 

other proteins and membranes this simplification might not hold due to 

possible membrane blocking [129–131]. 
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Figure 33: Experiment used for estimation of the virus permeability. Measurement data 

is represented in dashed lines and the simulation in solid lines. The filtration was 

found to be purely dominated by filter permeability and revealed no blocking 

mechanism.  

5.4.3.3 Ultrafiltration/Diafiltration 

The UF/DF model used in this study is presented in detail in previous work 

[132]. In the present study, model complexity was further increased by adding 

the Donnan effect [58]. The model prediction is presented in Figure 34. The 

model for the permeate flow and Donnan model throughout all UF/DF phases 

was in good alignment with the measurement data. The model was calibrated 

on UF experiments and viscosity data. Combining the results of the UF1 and 

UF2 models based on buffer exchange allowed an approximation of the flow 

and pressure behavior during DF phase. Moreover, the Donnan model predicts 

the pH shift at UF2 and acetate buffer concentration of acetate without the 

need to estimate any model parameters. 
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Figure 34: Model prediction of UF/DF process in lab scale. The upper figure shows the 

model result for filtrate and pressure. The bottom figure shows the prediction of the 

Donnan model for ion concentration and pH. 

5.4.4  Mechanistic process model 

The presented models were connected to the CMPM and applied to 

manufacturing conditions. A connected mechanistic process model uses the 

output of one unit as input for the following unit. In this study, process 

parameters transferred between models were protein concentration, volume, 

size variant composition, ion concentration, and pH. To accomplish this, 

assumptions had to be made to define the downstream starting conditions, 
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which is discussed below. First, for the capture step the ion concentration data 

of the manufacturing runs were not available and were therefore approximated 

to be the same as the elution buffer concentration for elution buffer component. 

The concentrations of additional sodium, chloride, and phosphate were adopted 

from the small-scale experiment measurements. The pH measurements of the 

capture pool were used to approximate the ion composition for the input of the 

virus inactivation (Unit II) model. Dilution and changes in ion concentration 

caused by rinse volumes, e.g., during filtration washes, were included by mass 

balancing. In addition, the first data for size variants were available for the 

capture pool. Therefore, the starting material was assumed to match the given 

composition of the capture elution pool measurements. Except for the 

chromatography column dimension, all column parameters of each 

chromatography step were considered constant during scale-up.  

With the assumptions made, the models work together as a mechanistic 

process model and were tested using online and offline manufacturing data. 

The prediction of the mechanistic model is presented in Figure 35 and 

demonstrates the predictivity of the model for runs of strongly deviating titers. 

The scale-up prediction of the model underlines the scale independence of the 

CMPM and estimated parameters. However, minor assumptions were included 

for modeling the large-scale system. First, the ∆𝑃 during depth filtration was 

reduced by a pressure loss caused by the filter module design itself which is a 

well-known effect in manufacturing. This pressure drop was estimated based 

on filter equilibration data. The filtration was therefore not limited by the 

pressure alone as in the lab-scale experiment, but by the pressure loss of the 

filter module. In this context, scale-effects could arise with change in the 

number of capsules [138] which was not the case in this study. In addition, the 

𝑅M membrane resistance parameter was increased by 20 % to meet the 

filtration start. With the assumptions made, the model described the filtrate 

flow trend of the manufacturing depth filtration. For the virus filtration a 

constant pressure loss was included based on equilibration data. For AEX a 

preceding stirred tank reactor (STR) was included to simulate back-mixing in 

the bubble trap. The UF/DF model membrane permeability estimated on 

equilibration data was reduced to meet the permeate flow at the start of UF1. 

Furthermore, the pressure drop parameter 𝑘P was decreased to account for the 

underprediction of the pressure drop along the membrane. This is discussed in 

more detail in a previous publication [132]. In conclusion, the discussed 

assumptions demonstrate that starting conditions of filtration units were 

difficult to predict and filtration could not be linearly scaled. However, the 

pressure losses of the filters might be systematic and therefore transferable to 

processes of other biologics. This needs to be investigated in future studies. The 
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chromatography and adjustment step model prediction were in good agreement 

with the manufacturing scale online data.  

 

Figure 35: Mechanistic process model online data prediction of two manufacturing 

downstream processes. The model simulation is represented by solid lines and the 

online measurement data by dashed lines. The offline data for pH is represented by 

scatter points. For illustration purposes, the y axes are chosen based on the main control 

and output parameter of the unit. Hence, for filtration pressure and flow, for 

adjustments pH and conductivity, for IEX conductivity and UV absorbance, and for 

capture chromatography pH and UV absorbance. The run of high titer is represented 

in solid colors and the low titer run is represented in transparent colors. Due to 

confidentiality, the y axes were scaled. 

Regarding the model depth chosen in this study. Each model presented is at 

the forefront of mechanistic modeling in the biopharmaceutical downstream 

process. The laboratory and scale up to manufacturing scale data for model 

discrimination were intentionally challenging. Reducing the model depth is 

expected to cause the model to not respond like the real counterpart when 

process inputs change. If the model is not able to describe, for example, a 

chromatography breakthrough curve, the question arises whether and when 

the extrapolation results are trustworthy. On the other hand, due to the 

timeliness of the selected models, an increase in model depth is not readily 

possible, but is part of further studies. Model extensions, as applied to hybrid 

modeling, can be a helpful option to bridge model limitations. However, the 

focus of this study was not on comparing models but can be an interesting topic 

for future studies.  
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5.4.5 Manufacturing variability 

The model presented in the previous section demonstrated the prediction of 

data for an entire downstream process sequence at manufacturing scale. An 

application of such model could be a cross-unit in silico study at manufacturing 

scale to investigate the robustness of the target condition and control strategy. 

This can be particularly valuable when robustness despite upstream 

variability needs to be ensured which is usually difficult to be addressed 

experimentally with a limited number of cell culture batches. For such in silico 

studies the initial starting conditions and process parameter variabilities need 

to be known or approximated based on historical data. To demonstrate that the 

CMPM responds like the real manufacturing process and can be applied to 

investigate process robustness, the model was tested on the real initial 

measured manufacturing variability of 23 manufacturing runs. The output 

variability of the model is compared to measured output variability distribution 

in form of boxplots presented in Figure 36.  

 

Figure 36: Comparison of model vs. manufacturing variability: Grey boxplots represent 

the measurement variability of 23 manufacturing runs and white boxplots represent 

the model output. The medians are connected by a dashed line. In this figure only first 

cycles of chromatography units were included for the sake of clarity. Measured buffer 

variability regarding pH and ion composition was included. Due to confidentiality, the 

y axes were scaled to the maximum value. 
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The results demonstrate that the lab-scale calibrated model can predict the 

range and median of volume, concentration, yield, titrant volume, and size 

variants across unit operations solely based on the initial input variability. 

Minor deviations of model to measurement can be caused by unknown 

sampling volumes between units, measurement errors, and model 

assumptions. Such systematic errors could have been easily adjusted based on 

an initial manufacturing run. However, this was not performed on purpose in 

this study to demonstrate the model capability prior to deviation correction. 

Buffer pH and concentration variability were included based on measurement 

data. When the CMPM is applied to novel processes, the historical pH 

variability range or normal operating ranges might be used to approximate the 

potential process response throughout the downstream sequence. As shown in 

Figure 36, the model prediction of the titrant volume variability was in good 

agreement with the measurement data. The primary influence of this 

variability was found to be the input pH variability. A minor offset in titrant 

volume was observed which could be the result of model limitations and 

requires further investigation. In summary, the model was found to react to 

input variability similarly to the real manufacturing process behavior. The lab-

scale CMPM could be used to scale-up and act as a foundation for further model 

improvements and scale investigations. Furthermore, the CMPM could lead to 

a paradigm shift from a unit operation-based process development towards a 

holistic process understanding considering the propagation of process 

variability through the entire biopharmaceutical downstream process.  

5.5 Conclusion 

In this study mechanistic models for every process unit of a downstream 

sequence were connected referred to as CMPM. The existing models have 

demonstrated their extrapolation capability in laboratory-scale validation 

experiments and their scalability when applied at production scale. All model 

equations and parameter estimations converged without issues. The presented 

CMPM allows for a high degree of flexibility, which is required during process 

development of new drug candidates. For example, when changing the CEX 

operation mode from step to gradient elution the holistic cause and effect of 

process changes can be investigated and compared. It has been further 

demonstrated that a major part of the manufacturing process variability can 

be described by the model based on the measured input variability. Therefore, 

a good theoretical estimate on process performance might be made based on 

historical normal operating ranges for concentration, pH, flow rates, and 

material attributes. Application of the model to production data shows the 

potential for better understanding scale related topics through mechanistic 
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modeling and the use in process transfer issues. In general, development 

experiments will remain indispensable. In the future, however, they may only 

serve to confirm the optimal and robust process conditions and not to find them 

in first place. Of course, the presented CMPM has its limitations - here the 

authors appeal strongly to the community to consider the model as a starting 

point for further developments. 
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6 Discussion and conclusion 

The biopharmaceutical industry aims to reduce the time to market which 

requires a lean process development. However, the drug safety is of highest 

priority and must be ensured. Due to limited fundamental process knowledge, 

extensive experimentation is required for each new drug candidate's process to 

eliminate any risk of quality deviations. The development and implementation 

of new technologies could lower the experimentation effort required without 

the need to accept any additional risks. 

This dissertation presents a mechanistic model, referred to as CMPM, that 

connects mechanistic models for every process unit of a downstream sequence. 

The results contribute to the applicability of mechanistic models in 

biopharmaceutical process development. For the very first time, it has been 

shown that mechanistic models can reliably describe the downstream unit 

operations operated at real-world conditions and, when combined, can describe 

an entire downstream process. A major challenge was to find models reliably 

reacting to input parameters like the real system, also referred to as model 

discrimination. Here, the strategy was to start with the simplest model and 

increase complexity if required. This resulted in a final set of models that are 

at the forefront of mechanistic process modeling. This set of models described 

all chromatography, filtration, and adjustment steps in the process. However, 

the models cannot describe every aspect of a downstream process. The 

advantages and limitations of mechanistic models are discussed below. 

6.1 Advantages and limitations of mechanistic models 

Although the model describes the main effects such as pressure/flow 

dependence during filtration or pH/salt dependence during chromatography, 

other parts remained untouched and are not easily described by mechanistic 

models. This includes e.g. stabilities with respect to freeze-thaw or pH 

instabilities, which are complex to be predicted mechanistically and are 

probably easier to be determined experimentally and preferably in 

miniaturized form. Still, homology modeling can be applied to derive general 

trends for the aggregation propensity of a protein based on aggregation-prone 

regions, which is of particular interest in early phase development to design 
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stable antibodies [139]. However, mechanistic process modeling is perceived as 

a balanced approach for downstream development, considering its complexity 

and applicability. When compared with more complex molecular dynamic 

simulations, the computational effort required is significantly high, leading to 

impracticality in terms of time and complexity. Pure statistical modeling, on 

the other hand, requires extensive experimental investigation of all 

interrelationships, which is both cost and time-intensive, and is not feasible for 

all process parameters. 

Mechanistic models offer the advantage of having prior knowledge embedded 

in the equations, requiring limited or even no specific data to describe the 

process. As demonstrated in this dissertation, these models provide simulated 

online measurement outputs, such as chromatograms or pressure/flow 

diagrams, enabling direct comparison with process data. Statistical models, as 

the commonly used method in biopharmaceutical process development, do not 

offer this advantage. Nevertheless, statistical approaches have their own 

merits. The application of regression models to describe experimental outputs 

can be fitted virtually to any outcome, thereby invariably providing a result. 

This, however, can also be a disadvantage as it could potentially obscure 

theoretical or experimental errors, which may be incorporated into the 

evaluation unknowingly. This feature, however, can also pose a disadvantage, 

as potential theoretical or experimental inaccuracies may go unnoticed and 

inadvertently be incorporated into the assessment. To illustrate, consider a 

scenario where a malfunctioning blue filter in the UV cell leads to a reduction 

in the UV signal. The resultant effect would affect the cutting criteria and 

decrease the overall yield. In the absence of a theoretical chromatogram 

provided by a mechanistic model for comparison, such a systematic error is 

likely to be overlooked. Consequently, the integration of models, as outlined in 

the previous chapters, can be an essential as a precautionary step to identify 

anomalous process behavior. 

However, this requires the model to be accurate and the process to be well 

comprehended. In this context, the pH-dependent behavior of processes in 

chromatography and filtration exhibits a complex nature, which this study has 

largely addressed via empirical correlations within an appropriate pH range. 

For instance, this was necessary for determining the 𝑓′𝑅′ parameter in depth 

filtration or the pH dependency of the CPA model via a pH correlation of the 

protein charge. The latter was accomplished by means of low-loading linear 

gradient experiments at different pH values [81]. Describing the correlation by 

means of the sequence has been extensively studied and was found to correctly 

reproduce the trend [44,140]. However, the accuracy and reliability are 

currently not considered sufficient. Nevertheless, a combination of mechanistic 
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approaches and regression models for not completely understood phenomena 

is a common approach in industrial applications. 

In terms of model errors, the total error can be described as the sum of model 

error, measurement error, and model parameter error. In previous studies the 

model parameter uncertainty was of interest [88,143]. In this study, the 

strategy involved challenging the models with experimental conditions and 

scales. The primary challenge was to describe the experiments using a model 

in the first place. It was often not possible to describe the process behavior for 

any combination of parameters. For example, the standard polarization model 

could not describe the TFF experiments under varying conditions and was 

replaced by a more complex modified polarization model (Chapter 4). Similarly, 

the SMA isotherm was not capable to describe the CEX experiments for any 

parameter combination (Chapter 3). In conclusion, the focus was set to 

minimize the model error. However, parameter uncertainty is of interest in 

future studies to further refine the estimation strategy.  

Another aspect that needs to be considered is error propagation. In a 

concatenation of models, it could be assumed that error propagation is a 

problem. However, it was observed in Section 5.4.5 that the errors do not 

extensively propagate through the process. First, the model error compared to 

the measurement was not large, and second, unit operations and process 

control can work against the error propagation. For example, an increased 

volume for the same amount of protein has an identical elution peak in the 

CEX. Thus, a volume error would be compensated during the process sequence. 

A similar case, for such non-passing variability, was observed for the size 

variants. Size variant impurities were found to be partially strongly bound to 

the resin. The CEX process was robust against impurity level changes on the 

input, which greatly reduced the variability of the CEX. In addition, pH 

deviations in manufacturing were always captured in the adjustment steps by 

the operator. Although the error propagation was not predominant in this 

study, a less robust process might significantly add to the error across units. 

In general, this study has initiated the journey towards a comprehensive 

downstream process description using mechanistic models. The effort to 

understand and describe the process in depth has led to a significant increase 

in knowledge and confidence. As different groups work on models, they improve 

over time, and process development that uses mechanistic models will stay 

current. Even if real process data could be described with mechanistic models, 

this in itself is valuable information. It reveals a knowledge gap or even a 

material or operator error. In addition, this approach encourages developers to 

not only focus on discrete measurements like yield and purity but also to 

become more sensitive to interpreting deviations in the chromatogram or the 
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pressure/flow curve during filtration. Having the theory ready, troubleshooting 

ideas can be derived in a systematic manner at both lab scale and commercial 

scale.  

It should be emphasized that describing every aspect of downstream process of 

biopharmaceuticals mechanistically is a highly ambitious goal. The physical 

phenomena involved in filtration and chromatography are often complex and 

not entirely comprehensible. Nevertheless, in this work, the knowledge about 

the downstream process could be applied collectively and main effects in a 

single downstream process could be described. Since the physical process does 

not change fundamentally, one could assume that other downstream processes 

could now be described in the same way. However, this is hardly the case. The 

complexity can increase drastically as the process conditions change. Take the 

example of having a mixed mode resin in process sequence. Multiple 

interaction principle would require a unified description of not only ionic 

exchange, but also hydrophobic interaction. To date, there is no mathematical 

model available, which would come with the same level of precision covering 

the simulation of broad experimental conditions. Also, frontal chromatography 

might be challenging for chromatography modeling due to complex 

displacement effects in highly nonlinear region [141]. The complexity in terms 

of modeling can also depend on the process condition itself. A fully loaded 

column can be expected to be more difficult to describe than a low loaded 

column. Likewise, a process with a small operating window as it is the case in 

weak partitioning will make modeling more difficult due to an increased 

sensitivity to input changes. However, in the course of this work, another factor 

has been identified to be challenging. In biopharmaceutical development 

several analytical methods are used to ensure product quality. To be able to 

replace real experiments, the model must provide information about all CQAs. 

As shown in Figure 37, the protein solution typically is divided into different 

proportions depending on the analytics. In this study, the analytical methods 

included capillary gel electrophoresis (cGE), high-performance size exclusion 

chromatography (HP-SEC), and high-performance weak-cation-exchange 

chromatography (HP-WCX). The method to first take the HP-SEC data and 

from there divide the “Main” species into charge variants, as applied in 

previous studies, was not possible [81,88]. This was mainly because the size 

variant 5 with 14.8% in the cGE analysis and 9.6% in the HP-SEC analysis, 

accounts for a significant proportion of the CQAs. In addition, the two methods 

(cGE, HP-SEC) were used to analyze size variants. However, HP-SEC analyses 

the size variants in its native state, whereas cGE separates the protein under 

denaturing conditions by using sodium dodecyl sulfate (SDS). This can lead to 

an increased percentage of light chain and decreased aggerate levels for the 
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cGE analysis, as presented in Figure 37. Since the mass balance could not be 

reconciled, a model for each analytical method would have been necessary.  

  

Figure 37: The composition of the CEX loading material measured by analytical 

capillary gel electrophoresis (cGE), high-performance size exclusion chromatography 

(HP-SEC), and high-performance weak-cation-exchange chromatography (HP-WCX). 

The different analytical methods divide the same protein mixture into different parts. 

Regarding HCPs as impurities, a similar issue was observed. The loaded HCPs 

level could not be balanced in the wash, elution, and regeneration fractions. 

This was attributed to the analytical method. The HCP immunoassays are 

known to have high standard deviations and to be sensitive to the composition 

of the HCPs. This is especially pronounced in low HCP concentration levels 

where specific HCPs are enriched or depleted. Moreover, the HCPs are a 

heterogenous protein group. The chromatography models are designed to 

describe the interaction with the resin for a pure protein solution. It was 

attempted to divide the HCPs into a strong and weak binding group which, 

however, was unsuccessful. In depth filtration, the HCPs break throughs were 

investigated (data not shown). However, difficulties in mass balancing and 

assay changes to the manufacturing data did not allow to reliably model HCPs 

as impurity. For the mentioned reasons, the analytic included in this study 

focused on the HP-SEC size variants. An additional issue was observed for the 

CEX model regarding the ionic capacity. The model was tested on different 

columns with minor changes in ionic capacity measures. However, if the ionic 

capacity change was included in the model, the sensitivity of the model was 

stronger than experimentally observed. In fact, leaving the ionic capacity and 

chromatography column parameters constant, resulted in optimal results. 

Thus, despite the promising results of the presented CEX model, the theory 

seems to be uncompleted with the current CPA model. Motivated by the 

finding, an extensive study with varying ionic capacities would be beneficial for 

future model development. 
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The next aspect relates to the ion composition in the process. In this study, the 

titration curves of various adjustment steps were predicted. However, the ion 

composition of the capture elution pool did not match the elution buffer 

composition. Instead, unexpected sodium ions were measured, which 

seemingly co-elute from the affinity chromatography resin. In theory, sodium 

ions can bind to negatively charges under neutral pH. The ions can be repelled 

by the protonation of the negative charges under low pH, as applied during 

elution conditions. Although the theory is common knowledge a reliable 

mechanistic description of this effect is not available yet. 

With regards to TFF, the membrane permeability is an important model 

parameter. Despite the theoretical relevance, the model was found to be more 

sensitive to varying permeability measures compared to the real filtration 

process. A possible explanation might be, that the increased permeability 

immediately leads to a blocking. This results in a permeate flow compared to 

membranes of lower permeabilities. In contrast, when adjusted to match the 

initial flow the course of filtration was well predicted. Hence, a more reliable 

parameter might be required. Another aspect concerns the scalability of 

filtration processes. The filtrate flow per membrane area was found to be 

significantly lower than in lab-scale experiments at similar pressure settings. 

In general, this was observed due to pressure losses in manufacturing scale. 

The pressure losses could be added to the model, however, the cause for the 

loss requires further investigations. In summary, the following challenges were 

observed during the studies:  

• Mass balance issues arise from the use of multiple analytical methods 

• During elution in capture chromatography, certain ions were observed 

to either bind or co-elute. 

• The TFF membrane permeability exhibited stronger sensitivity in the 

model than during filtration experiments. 

• The ionic capacity sensitivity in CEX modeling was observed to be 

stronger in the model than during experimentation. 

• The use of e.g. mixed-mode resins and challenging process conditions 

may increase complexity for process modeling. 

• The mass balance for host cell proteins (HCPs) proved to be particularly 

challenging. 
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6.2 Outlook 

The work presented represents the initial step, or perhaps only the first 

attempt, in a significant journey that lies ahead. Knowledge about the process 

in form of mechanistic equations combined with protein properties, such as the 

charge, viscosity, and amino acid sequence led to the description of an entire 

downstream sequence by the introduced CMPM. In general, using mechanistic 

models to describe a process gives the development team the confidence to 

fundamentally understand and predict downstream process behavior. This is 

expected to reduce the number of experiments typically conducted to cover 

process eventualities. For filtration e.g., a single experiment can be sufficient 

to identify the blocking mechanism. Whereas the adjustment model does not 

have any unknown parameters to estimate. Once a model was demonstrated to 

give reliable results there is no good reason to not include the model during 

development phases. Thus, the use of reliable models presented here is 

expected to sustainably accelerate development and troubleshooting activities. 

Despite the advantages of the presented CMPM, the limitations suggest 

further model development. Suggestions and potential for improvement were 

already listed in the previous section. It was mentioned that some aspects are 

not suited to be tackled by mechanistic models. Therefore, a combined approach 

of high-throughput screenings (HTS) and mechanistic modeling might be 

reasonable. This is demonstrated below as an example for CEX. The model 

calibration of a CEX model requires specifically designed wet-lab experiments 

including low and high load linear gradients. In addition, the pH dependency 

of the binding isotherm is an approximation and only valid for a narrow range. 

Thus, it would be time consuming to build a model for each resin candidate 

rather than using a resin screening in advance, such as a Kp-Screening [142]. 

The screening would help determine the optimal resin and pH conditions. From 

there, it would be difficult to derive the finer details such as robust cutting 

criteria and a control strategy based on the screening data alone. Conversely, 

a model can be used to find an optimal and robust process point for a selected 

optimal resin and pH set point. Once this is achieved, confirmation 

experiments are required to rule out model error. This could be embedded in a 

DoE for process characterization. This example demonstrates that combining 

technologies such as HTS, mechanistic models, and wet lab experiments can be 

beneficial. Clearly, direct calibration of the model using plate screening data or 

even amino acid sequence of proteins is of interest. However, this is still an 

area of research. 

Another long-term goal should be to reduce the number of assisting model 

parameters and replace them by physical meaning. This is especially 
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demanded for pH relations in chromatography as discussed earlier. Similarly, 

the current TFF model showed promising results, however, the assisting 

parameter 𝑏∗ should be aimed to be replaced in the future. This requires 

extensive experimentation with changing proteins and conditions to reveal and 

derive novel theories. In addition, the CMPM workflow needs to be tested on 

additional processes. It is expected that this will allow to better understand 

filtration scale effects and help to identify general trends. In addition, process 

variability originating from upstream could be addressed in this study with 

real measured data. However, these data are usually not available during the 

process development phases. For future projects, it would be favorable to 

expand the CMPM with upstream models to estimate the expected input 

variability for downstream. 

Overall, the CMPM serves as a promising tool for describing the 

biopharmaceutical downstream process. It provides a valuable foundation for 

future studies to build upon and refine our understanding of the process. 

Although the model is an approximation of reality, the model sets a benchmark 

for the current state of knowledge in biopharmaceutical downstream process 

modeling. However, it is important to acknowledge that this knowledge is not 

yet complete and will continue to evolve through ongoing research in this area.
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Abbreviations 

AC Affinity chromatography 

AcOH Acetic acid 

AEX Anion-exchange chromatography 

CEX Cation-exchange chromatography 

cGE Capillary gel electrophoresis 

CHO Chinese hamster ovary 

CPA Colloidal particle adsorption 

CPA Colloidal particle adsorption 

CPP Critical process parameter 

CQA Critical quality attribute 

CV Column volume 

DNA Deoxyribonucleic acid 

DoE Design of experiments 

DV Diafiltration volume 

EDM Equilibrium-dispersive model 

EMA European Medicines Agency 

FDA U.S. Food and Drug Administration 

GRM General rate model 

HCCF Harvest cell culture fluid 

HCLF High concentrated liquid formulation 

HCP Host cell protein 

HIC Hydrophobic interaction chromatography 

HP-SEC High performance size-exclusion chromatography (analytic) 

HP-WCX High performance weak-cation-exchange chromatography 

(analytic) 

HTS High-throughput screening 

ICH International conference on harmonization of technical 

requirements for registration of pharmaceuticals for human use 

IEX Ion-exchange chromatography 

iSEC Inverse size exclusion chromatography 

LHS Latin hypercube sampling 

LRM Lumped rate model 

mAb Monoclonal antibody 

MMC Mixed-mode chromatography 

NWP Normalized water permeability 

ODE Ordinary differential equation 

PB Poisson-Boltzmann 

PDE Partial differential equation 

PES Polyethersulfone 

pI Isoelectric point 

PSE Process system engineering 

PVDF Polyvinylidene fluoride 
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QbD Quality by design 

RT Room temperature 

SDS Sodium dodecyl sulfate 

SEC Size exclusion chromatography 

SMA Steric mass action 

SPT Scaled particle theory 

SPTFF Single-pass tangential flow filtration 

TDM Transport-dispersive model 

TFF Tangential flow filtration 

TMP Transmembrane pressure 

UF/DF Ultrafiltration/Diafiltration 

WS Wigner-Seitz 
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Symbols 

Symbol Unit  Description 

𝐽v̅ ms-1 Average permeate flux 

𝑁̇bound mols-1 Molar material flow leaving the liquid phase due to 

adsorption 

𝑁̇convection mols-1 Molar material transport by convection 

𝑁̇diffusion mols-1 Molar material transport by diffusion 

𝑁̇trans mols-1 Molar material transported through the particle film 

resistance layer 

𝑁ṗ mols-1 Molar flow of protein 

pH̅̅ ̅̅  - Average pH which can be measured 

ΛIEX molL-1 Ionic capacity per liter resin backbone 

𝐴C m² Column cross-section area 

𝐴cs m² Feed channel cross-sectional area 

𝐴int m² Interstitial cross-section area of the chromatography 

liquid phase 

𝐴m m² Membrane area 

𝐴S,0 m²m-3 Total available surface area 

𝐴s m-1 Specific adsorber surface per skeleton volume 

𝐴P,cross m² Resin particle cross-section area 

𝐴P m² Resin particle surface area 

𝐵1 kgmol-1 First virial coefficient 

𝐵2 molm3kg-2 Second virial coefficient 

𝐵3 mol²m6kg-4 Third virial coefficient 

𝐶b gL-1 Bulk protein concentration for filtration 

𝐶S Fm-2 Stern capacitance 

𝐷AX m²s-1 Axial dispersion coefficient 

𝐷m cm2s-1 Molecular diffusion coefficient 

𝐷pore m²s-1 Pore diffusion coefficient 

𝐹acc - Pore accessibility factor 

𝐹buffer Ls-1 Inflow buffer 

𝐹in Ls-1 Inflow feed 

𝐹permeate Ls-1 Permeate flow 

𝐼m molm-3 Ionic strength 

𝐽lim ms-1 Limiting local permeate flux 

𝐽membr ms-1 Membrane limited local permeate flux 

𝐽v ms-1 Permeate flux 

𝐾v - Equilibrium coefficient 

𝐾𝑎
′  molL-1 Protein acid dissociation constant 

𝐾𝑎
′′ molL-1 Ligand acid dissociation constant 

𝐿C m Column length 

𝐿p ms-1Pa-1 Membrane hydraulic permeability 

𝑀n - Number of membranes 

𝑀p gmol-1 Molar mass of protein 

𝑁A mol-1 Avogadro’s constant 

𝑃feed Pa Feed side pressure in TFF processes 

𝑃permeate Pa Permeate pressure in TFF processes 

𝑃retentate Pa Retentate side pressure in TFF processes 

𝑄0 m3s-1 Initial volumetric flow 

𝑄blocked m³s-1 Flow through blocked pores 

𝑄open m³s-1 Flow through open pores 
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𝑅∗ - Resistance parameter 

𝑅m m-1 Clean membrane resistance 

𝑅p m-1 Resistance of a growing deposit 

𝑅p0 m-1 Resistance of a single protein aggregate 

𝑅WS M Radius of the Wigner-Seitz cell 

𝑉C m³ Column volume 

𝑉p,liquid m³ Resin particle liquid phase volume 

𝑉p,solid m³ Resin particle solid phase volume (resin backbone) 

𝑉p m³ Resin particle volume 

𝑉t LL-1 Titrant volume 

𝑍lat - Characteristic lateral charge 

𝑎M m Protein outer radius 

𝑎p - Membrane specific pressure drop parameter 

𝑐 molm-3 Ion concentration 

𝑐0 molm-3 Ion concentration of the fully protonated state 

𝑐b molm-3 Bulk concentration in TFF cassette or 

chromatography column interstitial volume 

𝑐in molm-3 Column inlet concentration 

𝑐M molm-3 Protein concentration during adjustment steps 

𝑐max gL-1 Mooney equation concentration at which viscosity 

becomes infinite 

𝑐p molm-3 Molar concentration in the resin particles liquid 

phase 

𝑐s molL-1 Salt concentration 

𝑐t molm-3 Titrant concentration 

𝑐total molm-3 Total ion concentration 

𝑐w molm-3 Wall concentration of TFF membrane 

𝑑p m³ Resin particle diameter 

𝑘0 ms-1 Mass transfer coefficient of the modified 

concentration polarization model 

𝑘ads s-1 Adsorption rate constant 

𝑘b JK-1 Boltzmann constant 

𝑘b s-1 Pore blockage constant 

𝑘c sm-6 Cake filtration constant 

𝑘des s-1 Desorption rate constant 

𝑘eff ms-1 effective mass transfer coefficient 

𝑘film ms-1 Film transfer coefficient 

𝑘i m-3 Intermediate blockage constant 

𝑘kin s-1 Adsorption kinetic parameter 

𝑘kin
∗  s-1 Kinetic constant (fitting parameter) 

𝑘l m Forchheimer additional loss coefficient 

𝑘m - TFF membrane pressure constant 

𝑘P m-3 Pore constriction constant 

𝑘p m² Forchheimer permeability coefficient 

𝑘pore ms-1 Pore transfer coefficient 

𝑞𝑚𝑎𝑥 molm-3 Maximum achievable concentration on the resin 

backbone 

𝑟C m Column radius 

𝑟P m Resin particle radius 

𝑢A J Interaction free energy 

𝑢eff ms-1 Effective crossflow 

𝑢int ms-1 Linear interstitial flow 

𝑢lat J Lateral protein-protein interaction energy 

𝑢lat J Lateral interaction energy 

𝑥DF - Diafiltration-exchange parameter 
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𝑧c - Charge of adsorbed protein 

𝛤L molm-2 Ligand density 

𝛿∗ m Thickness of the boundary layer 

𝛿m m Minimum interaction free energy 

𝜀0 C²N-1m-1 Vacuum permittivity 

𝜀int - Chromatography interstitial volume fraction 

𝜀p - Particle porosity 

𝜁 - Charge of protonated side chain 

𝜂0 Pas Buffer viscosity 

𝜂p Pas Protein viscosity 

𝜇b Pas Bulk solution viscosity 

𝜌𝑒 Cm-3 Charge density 

𝜎A Cm-2 Surface charge density 

𝜓 V Average electric potential 

𝜓0 V Electric potential at the proteins surface 

∆ - Thickness of the interaction boundary layer 

∆𝑃TMP Pa Transmembrane pressure difference in TFF processes 

∆𝑃 Pa Pressure difference 

pH0 - pH at the proteins surface 

pHref - Reference pH 

p𝐾a
′ - Protein acid dissociation constant in log10 

p𝐾a
′′ - Ligand acid dissociation constant in log10 

𝑞c molm-2 Counter-ions per adsorber surface 

𝑍 - Protein charge 

Δ - Interaction boundary layer thickness 

Θ - Surface coverage 

Π Pa Osmotic pressure 

𝐵 - Available surface function 

𝐷 m2s-1 Diffusion coefficient 

𝐾 m Partitioning coefficient 

𝑄 m3s-1 Volumetric flow rate 

𝑅 Jmol-1K Ideal gas constant 

𝑉 m³ Filtrate volume 

𝑎 m Colloid radius 

𝑏 Lg-1 Mooney equation coefficient 

𝑐 molm-3 Molar concentration 

e C Elementary charge 

𝑓′𝑅′ mkg-1 Deposit growth and the specific protein layer 

resistance 

𝑘 s-1 General blocking constant 

𝑛 - Filter blocking exponent 

𝑞 molm-3 Concentration bound per resin backbone volume 

𝑢 ms-1 Linear flow 

𝑧 - Charge of ion 

𝛹 V Electric potential 

𝛼 m²kg-1 Pore blockage parameter 

𝛿 m Polarization boundary layer thickness 

𝜀 - Relative permittivity 

𝜂 Pas Dynamic viscosity 

𝜇 Jmol-1 Chemical potential 
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Appendix A Supplementary material 
The steric mass action isotherm 

Ion-exchange chromatography binding behavior can be described by the steric 

mass action isotherm (SMA) introduced by Brooks and Cramer [37]. The theory 

is based on an equilibrium state given by: 

  𝑐p,𝑖(𝑥, 𝑡) + 𝑣𝑖 ∙ 𝑞̅𝑠(𝑥, 𝑡)  

𝑘ads,𝑖
→   

𝑘des,𝑖
←   

  𝑞𝑖(𝑥, 𝑡) + 𝑣𝑖 ∙ 𝑐p,s(𝑥, 𝑡) 
( 158 ) 

 

where an equilibrium is assumed between protein concentration in solution 

and counter-ions (named salt) bound to the resin 𝑞̅s [molm-3], with protein 

bound to the resin and salt in the particles liquid phase 𝑐p,s [molm-3]. The 

characteristic charge 𝑣𝑖 [-] of the protein balances the protein charge which is 

assumed to be deviate from the salt charge of 1. The equilibrium rates are 

represented by the adsorption rate 𝑘ads [m³mol-1s-1] and desorption rate 𝑘des 

[m³mol-1s-1]. The change of bound protein can be described by the adsorption 

and desorption rate as: 

 
 
𝑑𝑞𝑖(𝑥, 𝑡)

𝑑𝑡
= 𝑟̇ads(𝑥, 𝑡) − 𝑟̇des(𝑥, 𝑡)

= 𝑘ads,𝑖𝑞̅𝑠
𝑣𝑖(𝑥, 𝑡)𝑐p,𝑖(𝑥, 𝑡) − 𝑘des,𝑖𝑞𝑖(𝑥, 𝑡)𝑐p,s

𝑣𝑖 (𝑥, 𝑡). 

( 159 ) 

 

Inserting the rearranged electroneutrality condition on the stationary phase 

defined as: 

 𝑞̅𝑠(𝑥, 𝑡) = Λ −∑(𝑣𝑖 + 𝜎𝑖)𝑞𝑖(𝑥, 𝑡)

𝑛

𝑖=1

 
( 160 ) 

 

in Eq. ( 160 ) leads to: 

 
𝑑𝑞𝑖(𝑥, 𝑡)

𝑑𝑡
= 𝑘ads,𝑖 (Λ −∑(𝑣𝑖 + 𝜎𝑖)𝑞𝑖(𝑥, 𝑡)

𝑛

𝑖=1

)

𝑣𝑖

𝑐𝑖 − 𝑘des,𝑖 𝑞𝑖𝑐p,𝑠
𝑣𝑖  

( 161 ) 

 

where the available ionic capacity is represented by Λ [molm-3] and charges 

sterically shielded (non-interacting) by the protein by parameter 𝜎𝑖 [-]. Eq. ( 

161 ) can be transformed into a kinetic formulation by dividing 𝑘des,𝑖: 

 𝑘kin
𝑑𝑞𝑖(𝑥, 𝑡)

𝑑𝑡
= 𝐾eq,𝑖 (Λ −∑(𝑣𝑖 + 𝜎𝑖)𝑞𝑖(𝑥, 𝑡)

𝑛

𝑖=1

)

𝑣𝑖

𝑐𝑖 −  𝑞𝑖𝑐𝑠
𝑣𝑖 

( 162 ) 

 

where 𝑘kin,𝑖 [molm-3] is defined as the inverse of 𝑘des,𝑖 and the equilibrium 

coefficient 𝐾eq,𝑖 [-] is defined as the ratio of 𝑘ads,𝑖 and 𝑘des,𝑖. 


