
Certificate-based OpenSSH for
Federated Identities

Master’s Thesis
submitted by

Lukas Brocke
to the KIT Department of Informatics,

Steinbuch Centre for Computing (SCC),
Department Data Analytics, Access and Applications (D3A)

Reviewer: Prof. Dr. Achim Streit
Second Reviewer: Prof. Dr. Bernhard Neumair
Advisors: Dr. Diana Gudu, Dr. Marcus Hardt

29. March 2023 – 29. September 2023

KIT – The Research University in the Helmholtz Association www.kit.edu

I declare that I have developed and written the enclosed thesis completely by myself and
have not used sources or means without declaration in the text.

Karlsruhe, 29.09.2023

. .
(Lukas Brocke)

iv

Abstract

Despite being the most widely used Secure Shell Protocol (SSH) implementation, OpenSSH
only supports a very limited number of authentication mechanism including passwords,
public keys, and Kerberos. The extension of OpenSSH with support for authentication
using federated identities addresses the security risks associated with password-based
authentication, prevents cumbersome management of public keys, and streamlines user
management by enabling Single Sign-On (SSO) capabilities across diverse systems and
platforms. We present oinit, a collection of programs extending OpenSSH to support
any OpenID Connect identity provider for authentication. Our certificate-based solution
integrates seamlessly with standard OpenSSH and does not require any changes in users’
existing workflows or used programs.

i

Zusammenfassung

Trotz der weiten Verbreitung als Secure Shell Protocol (SSH) Implementierung unterstützt
OpenSSH nur eine sehr begrenzte Anzahl von Authentifizierungsmechanismen, darunter
Passwörter, öffentliche Schlüssel und Kerberos. Die Erweiterung von OpenSSH mit Au-
thentifizierung mittels föderierter Identitäten adressiert die Sicherheitsrisiken von pass-
wortbasierter Authentifizierung, verhindert die umständliche Verwaltung von öffentlichen
Schlüsseln und optimiert die Benutzerverwaltung, indem Single Sign-On (SSO) Funk-
tionalitäten über verschiedene Systeme und Plattformen hinweg ermöglicht werden. Wir
präsentieren oinit, eine Sammlung von Programmen zur Erweiterung von OpenSSH um
Authentifizierung mit OpenID Connect Identity Providern. Unsere zertifikatsbasierte Lö-
sung integriert sich nahtlos in das Standard-OpenSSH und erfordert keine Änderungen in
den bestehenden Arbeitsabläufen oder verwendeten Programmen der Benutzer.

ii

Contents

1 Introduction 1

2 Foundations 3
2.1 Secure Shell Protocol (SSH) and OpenSSH 3
2.2 Hypertext Transfer Protocol (HTTP) . 4
2.3 Representational State Transfer (REST) 4
2.4 JSON Web Token (JWT) . 4
2.5 Federated identities . 6
2.6 OpenID Connect . 6
2.7 oidc-agent . 8
2.8 motley_cue and mccli . 8

3 Related Work 9

4 Problem analysis 11
4.1 Goals and limitations . 11
4.2 Considerations . 12
4.3 Authentication methods . 13

4.3.1 Password . 13
4.3.2 Keyboard-interactive . 14
4.3.3 Generic Security Service API (GSSAPI) 15
4.3.4 Public key . 16
4.3.5 Host-based . 17
4.3.6 Certificate . 17

4.4 Obtaining OpenSSH certificates . 23
4.5 Dynamic usernames . 25

5 Implementation 27
5.1 Design decisions . 27
5.2 Architecture . 29
5.3 Two-step process . 31

5.3.1 Preparation . 32
5.3.2 Connection . 33

5.4 Certificate authority . 34
5.4.1 API endpoints . 35
5.4.2 Configuration . 38

5.5 Command-line client . 38
5.5.1 Adding and deleting hosts . 39
5.5.2 Connecting to hosts . 39

iii

iv CONTENTS

5.6 User switching . 40
5.6.1 setuid bit and dropping privileges 40
5.6.2 Unix tools . 41
5.6.3 Secure Shell Protocol (SSH) command 42

5.7 User workflow . 43

6 Evaluation 45
6.1 Testing . 45
6.2 Latency . 46
6.3 Security . 46

6.3.1 Service user interactive access . 46
6.3.2 TTY injection . 47

6.4 Verification of goals . 49
6.5 Limitations . 51
6.6 Installation . 52

7 Conclusion 53
7.1 Summary . 53
7.2 Future work . 53

Bibliography 55

Appendix 59

Introduction

The Secure Shell Protocol (SSH) is still the most used network protocol for login and
execution of commands on remote servers, with OpenSSH being the most prominent and
widespread implementation [1, 2]. Several authentication and authorization protocols like
OAuth [3], OpenID [4], Kerberos [5, 6] and SAML [7] exist and are used for Internet
services today. However, OpenSSH still only offers a limited number of authentication
methods including passwords, public keys, and Kerberos [8]. Passwords are known to
suffer from security problems like low entropy and re-use. Public key-based authentication
is cumbersome at large scale, is missing feature like key expiration and introduces new
challenges to users, e.g., private key loss and compromise. While Kerberos can be used
with OpenSSH, its configuration is complex and is difficult to set up between multiple
realms or organizations. Other solutions like LDAP [9] suffer from similar limitations.

At the same time, authenticating to services with an existing account has become
normal in the world wide web. Users are used to being able to log in to external services
and websites using their existing Google, Apple, or university account [10, 11, 12]. This
is especially true in the context of federated services deployed at research institutions,
where a single existing home account at any institution grants a user access to services of
partnering institutions. For example, students and researchers at universities in Baden-
Württemberg benefit from access to services like data storage (bwSync&Share1) and com-
putation resources (bwCloud2) hosted across different institutions and cities. Similarly,
federated services are a core concept in distributed and grid computing like the World-
wide LHC Computing Grid (WLCG)3 project, where collaboration between numerous
institutions and data centers worldwide is necessary.

Our goal is to extend OpenSSH with support for authentication using federated iden-
tities, based on the established OpenID Connect protocol. This brings advantages of
federated identities including Single Sign-On (SSO), scalability and interoperability to
OpenSSH. It thus allows users to conveniently use federated identities for authentica-
tion, while the burden of user management and authentication is offloaded to their home
organizations. We limit ourselves to OpenSSH and rely on existing programs for com-
munication with OpenID Connect identity providers (oidc-agent) and user provisioning
(motley_cue). Our aim is to seamlessly integrate into users’ existing SSH workflows,
while at the same time not requiring any changes to the OpenSSH source code.

1https://www.scc.kit.edu/en/services/bwSyncAndShare.php
2https://www.bw-cloud.org
3https://wlcg.web.cern.ch

1

https://www.scc.kit.edu/en/services/bwSyncAndShare.php
https://www.bw-cloud.org
https://wlcg.web.cern.ch

2 CHAPTER 1. INTRODUCTION

This thesis is structured as follows. Chapter 2 (Foundations) introduces protocols and
programs we build upon, while chapter 3 (Related Work) discusses existing approaches
for this problem. In chapter 4 (Problem analysis), we define our goals and limitations.
Further, we detail the analysis of OpenSSH and possibilities for an integration of OpenID
Connect. Chapter 5 (Implementation) describes the architecture and realization of our
solution. We evaluate our implementation regarding security and our defined goals in
chapter 6 (Evaluation). The thesis completes with and mentions possible further work in
chapter 7 (Conclusion).

Foundations

2.1 Secure Shell Protocol (SSH) and OpenSSH

The Secure Shell Protocol is a network protocol intended for login and the execution of
commands on remote computers. As the name implies, SSH provides cryptography to
allow secure connections on insecure or untrusted networks. SSH is designed as a client-
server architecture [13] and is based on the Transmission Control Protocol (TCP). The
original SSH protocol version 1, referred to as SSH-1, was developed by Tatu Ylönen
at the Helsinki University of Technology in 1995. The cryptographically improved but
incompatible version 2 of the protocol (SSH-2) was developed and later standardized by
the Internet Engineering Task Force (IETF) in 2006. It is preferred today by most im-
plementations, and SSH-1 is only supported by some clients for backwards-compatibility.

OpenSSH [8] is a suite of programs and today’s most popular implementation of the Se-
cure Shell Protocols, however support for SSH-1 was dropped in version 7.61 (03.10.2017)
[1, 2]. Started as a fork of Ylönen’s SSH-1 implementation, it was originally developed for
the OpenBSD operating system, however a version called OpenSSH Portable is available
and installed by default on most Linux distributions, Microsoft Windows, Apple macOS
as well as various other operating systems. Next to the OpenSSH daemon sshd (server)
and the remote login client ssh, OpenSSH includes programs such as scp (secure file
copy), sftp (secure file transfer) and ssh-agent (authentication agent).

The OpenSSH authentication agent (implementing the agent protocol [14]) is a service
program able to store private keys for authentication in memory. This allows a user to
(temporarily) add keys to the agent and then use them multiple times, without the need
to re-enter additional information such as a passphrase for decryption. OpenSSH also
supports forwarding of this agent via the login client ssh, allowing stored keys to be used
on a remote computer without the need to transmit or store private information there.
Port forwarding can be used to forward TCP connections via ssh, allowing other network
protocols not implementing encryption themselves to benefit from SSH’s cryptography.
While a common use case of SSH is to login to a remote computer and opening a shell
for interactive access, SSH can also directly execute remote commands [15]. Multiple
popular command-line programs such as git and rsync can make use of this, effectively
using SSH as a transport protocol.

OpenSSH supports multiple core and extension authentication methods. These meth-

1https://www.openssh.com/releasenotes.html#7.6

3

https://www.openssh.com/releasenotes.html#7.6

4 CHAPTER 2. FOUNDATIONS

ods include password-based authentication [16], a generic challenge-response method
(keyboard-interactive) [17], GSSAPI authentication/key-exchange [18] for Kerberos,
host-based as well as public-key authentication including OpenSSH certificates [16]. Sec-
tion 4.3 describes these authentications methods in detail.

2.2 Hypertext Transfer Protocol (HTTP)

The Hypertext Transfer Protocol (HTTP) is a communication protocol used to exchange
hypermedia information between clients and servers [19], originally developed by Tim
Berners-Lee at CERN [20]. Like SSH, most versions operate over TCP, while only the most
recent iteration HTTP/3 is based on QUIC and therefore User Datagram Protocol (UDP)
instead. It makes use of Transport Layer Security (TLS) for encrypting connections.

HTTP is the fundamental building block of the World Wide Web, used by clients
to request websites from servers, usually in the form of HyperText Markup Language
(HTML), Cascading Style Sheets (CSS), JavaScript and media files. To request and
send data, clients make use of HTTP methods such as GET and POST. The server then
responds with a status code and the requested data or a confirmation. Today, HTTP is not
just used for websites but also as building block for Application Programming Interfaces
(APIs) and other communication protocols such as REST, Simple Object Access Protocol
(SOAP) and WebDAV.

2.3 Representational State Transfer (REST)

REST is an architectural style for designing web-based APIs. It defines constraints and
conventions for building web services, emphasizing the use of standard HTTP methods
such as GET, POST, PUT, and DELETE to perform operations on resources represented
as URLs. Communication in REST is stateless, meaning each request from a client to
a server must contain all the information needed to understand and process it. This ar-
chitectural style has gained widespread adoption due to its compatibility with the World
Wide Web’s infrastructure and its ability to facilitate loosely coupled, scalable, and in-
teroperable systems. As REST is an architectural style rather than a protocol, no official
standard but only classification models based on fulfillment of REST principles exist.

2.4 JSON Web Token (JWT)

JSON Web Token (JWT) is a proposed data format standard based on the JavaScript
Object Notation (JSON) format, intended to be used in web contexts [21]. JWTs can be
signed by its issuer, allowing them to be verified by another party.

As shown in figure 2.1, a JWT consists of three parts: a header, payload, and signature.
The header defines the type of token and the algorithm used for generating the signature,
for example RS256 for Rivest-Shamir-Adleman (RSA) using the SHA-256 hash function.

2.4. JSON WEB TOKEN (JWT) 5

The payload contains multiple JSON fields called claims. While some claim names are
registered in the RFC (such as iss for the issuer and exp the expiration time), the payload
may also contain any custom claims defined by the JWT issuer. The signature part is
generated by the defined algorithm and based on the header and payload.

The three parts can be individually base64url-encoded [22] and concatenated using
a period, resulting in a compact string that can be used in Uniform Resource Locators
(URLs), HTTP headers and other contexts.

$ echo $TOKEN
eyJhb[...]trIn0.eyJle[...]R1In0.Ly20G[...]6mOJw # cut in length here

header
$ jq -R 'split(".") | .[0] | @base64d | fromjson' <<< $TOKEN
{

"alg": "RS256",
"typ": "JWT",
"kid": "o6XzGhu2PQJHB0XAoRFkdw4gwq3f3B8Li7LAe4yqhKk"

}

payload
$ jq -R 'split(".") | .[1] | @base64d | fromjson' <<< $TOKEN
{

"exp": 1693580042
"iat": 1693578600,
"auth_time": 1692781200,
"jti": "832a5af1-a6b2-41ab-b95e-774bd14387b8",
"iss": "https://oidc.scc.kit.edu/auth/realms/kit",
"sub": "ea1b8e21-3654-4178-bd04-98c6adf58951",
"typ": "Bearer",
"azp": "7b3b85df-1965-41b9-b4e2-476f0eb0d5df",
"session_state": "43aa4866-945c-4a60-b61f-ca1810e2e690",
"acr": "1",
"scope": "openid offline_access profile base",
"sid": "43aa4866-943c-4a60-b61f-ca1710f2e690",
"eduperson_scoped_affiliation": [

"member@kit.edu",
"student@kit.edu"

],
"preferred_username": "uelri",
"eduperson_principal_name": "uelri@student.kit.edu"

}

Figure 2.1: Example of encoded and decoded JWT.

6 CHAPTER 2. FOUNDATIONS

2.5 Federated identities

Federated identities or federated identity management refers to the concept of enabling
user authentication and authorization across multiple services/applications using a single
set of credentials. Instead of registering and authenticating at a service provider directly,
a user is registered at and managed by an identity provider. To use a service, the user logs
in at an identity provider, who sends the user’s identity information to the service provider
for an authorization decision. This concept therefore relies on mutual trust relationships
between identity and service providers.

The use of federated identities is convenient for users, as a single set of credentials can
be used for multiple services. This is often combined with SSO. For service providers, the
use of federated identities can reduce administrative burdens, as no user and credential
management is necessary. Due to the use of interoperable protocols, a service provider
can also allow authentication using multiple different identity providers without additional
cost or scalability problems.

Federated identity management is heavily used in research communities due to the
increasing need to share research data and services across collaborators from different in-
stitutions across the world [23]. To standardize federated identity management systems for
research based on existing technologies, attempts such as the AARC Blueprint Architec-
ture have been developed [24]. It is based on widely used protocols such as SAML, OAuth
2.0, and OpenID Connect, defines user attributes used for authentication/authorization
and defines a protocol translation layer that integrates a proxy, discovery service and
means to translate identity tokens between different technologies.

2.6 OpenID Connect

OpenID Connect is the third generation of OpenID, an authentication protocol intended
for web and mobile applications [4]. It is based on the OAuth 2.0 framework, defines a
REST API and uses JWTs.

OpenID Connect allows users registered at an identity provider (or OpenID provider)
to authenticate themselves (e.g., via username and password), resulting in an identity
token as well as an access token that can be given to a relying party. Optionally, a
refresh token can be used to re-request expired identity/access tokens. An identity token,
encoded as a JWT, contains signed information such as a name or email address in the
form of claims2. A relying party, such as a website, can use this information to reliably
authenticate users without the need to store login information (usernames, passwords, ...)
itself. In contrast, access tokens (usually also encoded as JWT, however not required by
the OpenID Connect protocol) do not contain personal information but rather allow a
relying party to access some resource on behalf of the user. Access tokens are often used
as Bearer tokens in the context of REST APIs.

OpenID Connect supports multiple possible authentication flows, which define how a

2https://openid.net/specs/openid-connect-core-1_0.html#StandardClaims

https://openid.net/specs/openid-connect-core-1_0.html#StandardClaims

2.6. OPENID CONNECT 7

1. Start

RP IdP

User

Resource

2. Authorization request

3. Authentication request

4. Authentication & authorization

5. Auth code

6. Auth code
7. Access/identity/refresh token

8. Access
token

9. Verify token

10.
Resource

Figure 2.2: OpenID Connect authorization code flow to obtain an access token, which is
used to access a protected resource.

user authenticates him-/herself using an OpenID Connect client. Examples include the
password flow (send password to identity provider), the authorization code flow (login at
identity provider website, redirect back to client application) and device flow (use second
device with browser). Figure 2.2 shows the basic functionality of the OpenID Connect
authorization code flow. The user starts the authorization code flow using a relying party
(RP), such as a web browser (1). This RP requests an authorization code from the identity
provider (2), which has to authenticate the user first (3). Usually, this means that a set
of credentials (username & password) must be entered. After successful authentication of
the user and authorization of the RP (4), an auth code is generated and sent back to the
RP (5). This auth code can then be used to obtain access, identity, and refresh tokens
from a different IdP endpoint (6, 7). To access some protected resource, the access token
is included in a request (8). After verification of the token signature, validity date and
other claims (9), access is granted and the resource sent back to the RP (10).

Many popular service providers such as Google ("Sign In with Google")3 and Ap-
ple ("Sign In with Apple")4, as well as universities such as the Karlsruhe Institute of
Technology5 implement OpenID Connect as identity provider.

3https://developers.google.com/identity/openid-connect/openid-connect
4https://developer.apple.com/documentation/sign_in_with_apple/sign_in_with_apple_

rest_api
5https://www.scc.kit.edu/en/services/openid-connect.php

https://developers.google.com/identity/openid-connect/openid-connect
https://developer.apple.com/documentation/sign_in_with_apple/sign_in_with_apple_rest_api
https://developer.apple.com/documentation/sign_in_with_apple/sign_in_with_apple_rest_api
https://www.scc.kit.edu/en/services/openid-connect.php

8 CHAPTER 2. FOUNDATIONS

2.7 oidc-agent

oidc-agent is a collection of programs that help requesting and managing OpenID
Connect access tokens from the command-line [25]. The project follows the design of
ssh-agent in that a central agent service called oidc-agent communicates with OpenID
Connect identity providers and stores received access tokens in memory.

The included oidc-gen program generates account configurations with information
about the provider, authentication flow, scopes and more. The oidc-add program can
load account configurations into the agent, the client program oidc-token can then be
used to request access tokens for these account configurations. Securely stored refresh
tokens are automatically used to request new access tokens if expired, without the need
to re-authenticate at the identity provider.

The oidc-agent offers an Inter-Process Communication (IPC) API via Unix sockets
that can be used to load account configurations and request access tokens [26]. Libraries
for C, Python and Go are available that make use of this API.

2.8 motley_cue and mccli

motley_cue is a program to (de-)provision Linux user accounts given OpenID Connect
access tokens after previous authorization [27]. It can be configured to accept tokens
from different identity providers and supports multiple user backends including local Unix
accounts, LDAP and bwIDM6. Authorization decisions are based on levels of assurance
and various access tokens claims, such as virtual organization or group memberships.
Multiple strategies considering different token claims (name, given name, email address,
memberships, ...) can be used to map OpenID Connect identities to account usernames
and groups. motley_cue offers a REST API to deploy, suspend and manage accounts
given an OpenID Connect access token as Bearer token.

An integration with SSH is possible by installing a Pluggable Authentication Module
(PAM)7 and configuring the OpenSSH daemon to offer challenge-response authentication
(keyboard-interactive) [28]. This will prompt users of the ssh command to enter
an access token instead of a password. A modification of OpenSSH source code is not
necessary.

mccli is a small wrapper program around ssh that aims to make SSH access to
servers using motley_cue easy [29]. It can request an OpenID Connect access token via
oidc-agent, call the motley_cue REST API to provision a local user account and then
invoke the ssh program with the correct username and arguments. Additionally, mccli
also offers an identical wrapper for the scp program. Like motley_cue, it does not require
a modification of OpenSSH source code.

6https://www.bwidm.de/ (german)
7https://github.com/EOSC-synergy/pam-ssh-oidc-packaging

https://www.bwidm.de/
https://github.com/EOSC-synergy/pam-ssh-oidc-packaging

Related Work

Several different approaches for an integration of federated identity authentication into
OpenSSH already exist.

In the COmanage open-source project, developed by the Internet2 Middleware Initia-
tive, users can authenticate themselves using a chosen OpenID Connect identity provider
at a web-based registry [30]. After approval of a newly registered account, a SSH public
key can then by uploaded by the user. It is stored in a LDAP server, which SSH servers
such as the OpenSSH daemon can be configured to use as user database. To authenticate
in a SSH connection, the SSH client uses a corresponding private key and fixed username
determined based on his federated identity. A similar approach is taken in the Token
Translation Service (WaTTS) developed at the Karlsruhe Institute of Technology (KIT)
for the INDIGO Data Cloud project [31, 32]. Using a WaTTS SSH plugin, users can
generate or upload a SSH key pair after OpenID Connect authentication [33]. The public
key is then deployed to SSH servers, at which the user can authenticate using his/her
private key. These approaches require multiple interaction steps by the user, who must
authenticate in a web browser before uploading a manually generated SSH key. The SSH
connection is then based on a pre-determined username, and uploaded public keys do not
expire. A variety of other similar approaches exist, which often rely on a LDAP server as
user backend.

To integrate OpenID Connect authentication into the SSH connection itself, several
approaches based on Linux Pluggable Authentication Modules (PAMs) exist. E. Bonelo
developed a custom PAM module based on the CYCLONE platform [34, 35]. When con-
necting to a SSH server using keyboard-interactive authentication, the PAM module
starts a HTTP server and prompts the user to visit a URL. After authentication with
an OpenID Connect identity provider in the browser, the PAM module obtains a JWT
access token for validation and requests further user info from the identity provider. If the
obtained federated identity e-mail address is listed in a user’s personal configuration file
inside the home directory, authorization is granted. This approach requires an existing
Unix account that has been configured with allowed e-mail addresses.

A similar PAM module was developed by UK Research and Innovation (UKRI) based
on previous work by M. Univerzita [36, 37]. It allows users to authenticate using the
OAuth 2.0 device flow after visiting a generated URL in a browser. SSH clients must
specify a username to use, which is compared with a configurable attribute from the
OAuth user info for authorization.

motley_cue is a mapper service for OpenID Connect identities, developed by D. Gudu

9

10 CHAPTER 3. RELATED WORK

at KIT [27]. It can be used alongside PRACE-LAB’s PAM module to integrate into SSH,
where the user is then prompted for an access token instead of a password [28]. The PAM
module authorizes users based on OpenID Connect user info (such as preferred username)
or by calling motley_cue, which considers virtual organizations/group memberships listed
in the access token. A command-line wrapper program called mccli can be used on the
client side to obtain OpenID Connect access tokens (via oidc-agent), deploy a user
on-demand, and pass tokens to ssh automatically.

Attempts at modifying the OpenSSH source code to include other authentication
methods have been made as well. This includes GSI-OpenSSH, a patched version of
OpenSSH that supports authentication using Globus GSI (Grid Security Infrastructure)
[38]. The project has been discontinued in 2018 and since mostly replaced with a PAM-
based solution called Globus Auth SSH, later renamed XSEDE OAuth SSH [39, 40].
Next to the PAM module, it relies on client wrapper programs oauth-ssh-token and
oauth-ssh to obtain and use OAuth tokens from Globus Auth. Identities are mapped to
remote Unix usernames using a unique suffix per identity provider or a text-based map
file. The SciToken SSH PAM module was later developed by Y. A. Gao et al. to overcome
some limitations of XSEDE OAuth SSH [41].

Some commercial solutions focused on the use in corporate environments have also
been developed in recent years, with some parts made available open-source. These in-
clude Smallstep SSH and Teleport, which are based on SSH certificates for authentication
[42, 43]. Smallstep offers a client command-line program to obtain access tokens from
OpenID Connect identity providers (called provisioners) [44]. A self-hostable CA issues
SSH certificates that are then used for authentication. Remote user accounts must be cre-
ated manually, whereas the usernames must match the e-mail address local part used to
authenticate at the access token provisioner. Similarly, Teleport by Gravitational Inc. of-
fers a command line client to authenticate at different OpenID Connect providers. Based
on received access tokens, certificates for multiple services (Kubernetes, PostgreSQL, ...)
including SSH can be obtained and used for authentication. Alternatively, Teleport offers
a PAM module that can create user accounts on-demand, if a username was specified by
the SSH client [45].

Problem analysis

In this chapter, we address the challenges to overcome when integrating OpenID Connect
authentication into OpenSSH. First, we define several goals that a viable implementation
should fulfill.

4.1 Goals and limitations

G1: No change in users’ workflows
Users must not be required to change their existing workflow but be able to use the
program and other SSH-based programs as common. This means that wrapper programs
must not be required and SSH-based programs like git and rsync must work without
any configuration. Additionally, no SSH built-in functionality such as the execution of
remote commands, agent forwarding or jump servers should be broken. Integration into
the ssh program should be tight, so that no manual user intervention such as copying or
inserting tokens is required.

G2: Multiple OpenID Connect identity providers
A SSH server must be able support multiple OpenID Connect identity providers for au-
thentication, which the SSH client can select from.

G3: Retain the benefits of federated identities
Advantages of federated identities and OpenID Connect, including SSO capabilities, in-
teroperability, token expiry and revocation must be retained. At the same time, a solution
must not suffer from the same drawbacks as existing authentication methods. This in-
cludes re-use of password or risk of private key loss/compromise.

G4: Dynamic usernames based on federated identity
User accounts must be deployed on-demand, that is on first SSH connection. The user-
name used for connecting must be allowed to be chosen by the SSH server and not the
user. This implies that users must be able to connect via SSH without knowing their,
possibly yet to be deployed, username.

G5: No source code changes
It must not be required to change the source code of the SSH implementation, as this
poses additional challenges such as distribution of the modified code. Additionally, it
requires gaining trust of users and system operators in running that modified software,
which may be used to give users access to security-critical systems.

11

12 CHAPTER 4. PROBLEM ANALYSIS

G6: Secure and tamper-proof
The system must be secure, meaning that the SSH connection must not be tampered
with. It must not be possible to abuse the system to gain SSH access without permission,
or to impersonate another user account without adequate rights.

We limit our integration efforts to work with OpenSSH, as it is the most widely used
implementation for client and server [1, 2]. Supporting other SSH implementations such
as Dropbear SSH [46] may require completely different approaches and is therefore of
scope for this thesis. Our program must be able to run on Unix-like operating systems,
including popular Linux distributions and Apple macOS. Support for other operating
systems, especially Microsoft Windows, may be considered but often proves to be difficult
due to fundamental differences in architecture and available features.

As the intention of our integration is to extend and work alongside existing solutions
without necessarily replacing them, we may base our solution on existing work to prevent
re-implementations without benefits. This holds true for motley_cue, which supports
user authorization and account provisioning for multiple backends and provides a REST
API for interaction. For retrieval of access token from OpenID Connect providers, we
may use oidc-agent and its libraries.

4.2 Considerations

To integrate federated identity authentication using OpenID Connect into OpenSSH,
several aspects must be considered:

1. User identity mapping: It is necessary to map federated identities to Unix ac-
count names based on claims contained in the JWT. Claims differ between identity
providers and unique values across identity providers are not guaranteed. Addition-
ally, valid Unix account names are usually limited to 32 ASCII characters, which is
a smaller space than all possible federated identity IDs.

2. Technology harmonization: OpenID Connect is based on the exchange of to-
kens, whereas OpenSSH authentication uses passwords or asymmetric cryptogra-
phy. Therefore, it is necessary to either extend OpenSSH, transport tokens via
existing authentication mechanisms, or to exchange a token with credentials usable
by OpenSSH.

3. Authentication and authorization: While authentication is done by a chosen
identity provider, authorization decisions based on virtual organization/group mem-
berships or other JWT claims must be made before a SSH connection.

4. Account provisioning: After authentication and authorization, user accounts
need to be provisioned automatically and on-demand. Group memberships of the
federated identity must be respected as well. The newly generated username must
then be propagated back to OpenSSH.

4.3. AUTHENTICATION METHODS 13

5. Credentials management: Any used OpenID Connect and OpenSSH credentials
must be securely stored and accessible for use. Also, it is necessary to consider
expiration and possible revocation of any credentials.

6. User experience: All benefits of OpenID Connect, such as the ability to use
different identity providers and SSO need to be integrated into OpenSSH.

7. Security: The security of OpenSSH authentication must not be broken. Addition-
ally, some form of logging for audits should be possible.

Some of these aspects can be addressed using existing tools, such as oidc-agent for
OpenID Connect authentication/credential management and motley_cue for user identity
mapping, some authorization decisions and account provisioning. Therefore, we focus on
the remaining un-covered aspects as well as the seamless integration of all tools. In the
following sections, we present our analysis of OpenSSH to address the transport/exchange
of access tokens (section 4.3), the seamless integration into OpenSSH (section 4.4) and
the dynamic user provisioning (section 4.5), while combining everything into a seamless
user experience.

4.3 Authentication methods

As we do not want to change OpenSSH source code and do not wish to change users’
SSH workflows, we must analyze OpenSSH’s built-in authentication methods to evaluate
their possible use for federated identity authentication. Apart from the none authentica-
tion method, the most recent version of OpenSSH supports authentication via password,
keyboard-interactive, GSSAPI (gssapi-with-mic), publickey, hostbased and cer-
tificate [16, 17, 18].

4.3.1 Password

In password-based authentication, the user is prompted to enter a password, which is then
transferred to the OpenSSH daemon in clear text (the packet containing the password
is encrypted at transport level). The daemon uses the transmitted password to compare
against a password database such as the /etc/passwd file or another PAM backend.
Figure 4.1 shows how password authentication looks from the perspective of a user. On
first connection to an unknown host, the user is asked to confirm the connection by
verifying the presented fingerprint (out-of-band). Further connections will not ask for
confirmation, as the host and its fingerprint are added to a known_hosts file. This
security principle is called Trust On First Use (TOFU), which OpenSSH relies on for most
authentication methods. If the entered password is accepted by the OpenSSH daemon,
the user will get access to an interactive login shell.

Unfortunately, OpenSSH only allows to enter the password interactively or via the -p
argument of ssh. It is not possible to enter a password via the standard input (stdin),
environment variables or the configuration file ~/.ssh/config. We therefore could not

14 CHAPTER 4. PROBLEM ANALYSIS

$ ssh user@example.com
The authenticity of host 'example.com (93.184.216.34)' can't be established.
ECDSA key fingerprint is SHA256:OhzHBV6tWS.../.../...
This key is not known by any other names
Are you sure you want to continue connecting (yes/no/[fingerprint])? yes
Warning: Permanently added 'example.com' (ECDSA) to the list of known hosts.
user@example.com's password: *************

Figure 4.1: Example of a SSH connection using password-based authentication.

find a way to transport an access token as password, without requiring the user to copy
and paste the token. A small wrapper program calling ssh with the -p argument is
possible (such as sshpass1), that would mean however that users must use the wrapper
program instead of ssh directly.

4.3.2 Keyboard-interactive

The keyboard-interactive authentication method is a generic, multi-round challenge-
response procedure. It allows the OpenSSH daemon to request arbitrary pieces of text-
based information from the client, while specifying their prompt (e.g., "token:" instead
of "password:") and secrecy (secret input will be masked with asterisks). keyboard- ⌋

interactive authentication is intended to be used with a PAM backend on the server side.
Uses of this method include requesting security tokens or one-time passwords from users.
Like password authentication, keyboard-interactive relies on the TOFU principle.

Due to the configurable nature and the ability to use PAM, keyboard-interactive
authentication may be used to transport OpenID Connect access tokens. In fact, the
mccli wrapper uses this method to transport a previously obtained access token to the
OpenSSH daemon, who validates it with a custom PAM backend [28]. mccli calls the
motley_cue REST API before passing the access token to the ssh command by simulating
user input. Figure 4.2 shows the demonstration server2 prompting for an access token
when connecting with the ssh command directly, as well as the mccli command necessary
to automate the input of an access token.

$ ssh ssh-oidc-demo.data.kit.edu
(user@ssh-oidc-demo.data.kit.edu) Access Token:

$ mccli ssh ssh-oidc-demo.data.kit.edu --oidc kit

Figure 4.2: Example of a ssh and mccli command used to connect to a demonstration
server with keyboard-interactive authentication enabled.

While transporting an access token via SSH to a custom PAM is possible, we identified
1https://sourceforge.net/projects/sshpass/
2https://ssh-oidc-demo.data.kit.edu/

https://sourceforge.net/projects/sshpass/
https://ssh-oidc-demo.data.kit.edu/

4.3. AUTHENTICATION METHODS 15

two problems. Without requiring the user to actively copy and paste an access token
into the ssh prompt, a wrapper program like mccli or sshpass is always necessary.
Additionally, input to keyboard-interactive has a maximum length of 1023 characters,
which access tokens can exceed. This is mentioned by the mccli developers3, however no
workaround exists.

4.3.3 Generic Security Service API (GSSAPI)

The Generic Security Service Application Program Interface (GSSAPI) is a standardized
API that provides authentication and security services for client-server network commu-
nication protocols [47]. It enables developers of security applications to offer a GSSAPI
library, which developers can then use to integrate into their applications without the
need to implement complex security mechanisms themselves. The GSSAPI is comparable
to Simple Authentication and Security Layer (SASL) used in SMTP, IMAP and LDAP.
It is most prominently used in the Kerberos authentication protocol [6, 48]. OpenSSH
implements the GSSAPI mechanisms to support Kerberos authentication, as defined in
RFC4452 [18]. A proposed standard for integrating OpenID into GSSAPI exists, but is
not supported by OpenSSH [49].

To evaluate the possible use of a custom GSSAPI-based library for transportation of
an OpenID Connect access token, it is important to understand how to integrate such
a new authentication mechanism into OpenSSH. The support of Kerberos via GSSAPI
in the ssh client is implemented by dynamically linking to the GSSAPI library. When
compiling from source, the required C header files gssapi_krb5.h and gssapi.h must
be present4. The compiled ssh binary then relies on the Kerberos GSSAPI library to be
installed on the users operating system (e.g., libgssapi_krb5.so.2 in the case of GNU
Debian GNU/Linux5).

Integrating another GSSAPI-based authentication mechanism into ssh therefore re-
quires linking against a different library by adapting the Makefile [50]. While other
SSH clients such as PuTTY allow the user to specify multiple GSSAPI libraries at run-
time6, OpenSSH does not. A patch for enabling dynamic runtime loading of GSSAPI
libraries in ssh has been proposed by Aaron Sowry in 2013, however was not accepted
by the OpenSSH Portable maintainer7. In his reply, Damien Miller reasoned this by
being concerned by "a number of potential problems", including binary incompatibility,
and changing library paths between different computers. We found no evidence of fur-
ther work relating to his comment about future plans to moving OpenSSH’s supported
authentication methods into helper programs.

Another approach to circumvent OpenSSH’s limitation of only supporting one GSSAPI
implementation at the same time was implemented by the Massachusetts Institute of
Technology (MIT) and the University of Illinoi’s National Center for Supercomputing

3https://ssh-oidc-demo.data.kit.edu/faq.html
4https://packages.debian.org/bookworm/amd64/libkrb5-dev/filelist
5https://packages.debian.org/bookworm/amd64/libgssapi-krb5-2/filelist
6https://the.earth.li/~sgtatham/putty/0.79/htmldoc/Chapter4.html#

config-ssh-auth-gssapi
7https://bugzilla.mindrot.org/show_bug.cgi?id=2121

https://ssh-oidc-demo.data.kit.edu/faq.html
https://packages.debian.org/bookworm/amd64/libkrb5-dev/filelist
https://packages.debian.org/bookworm/amd64/libgssapi-krb5-2/filelist
https://the.earth.li/~sgtatham/putty/0.79/htmldoc/Chapter4.html#config-ssh-auth-gssapi
https://the.earth.li/~sgtatham/putty/0.79/htmldoc/Chapter4.html#config-ssh-auth-gssapi
https://bugzilla.mindrot.org/show_bug.cgi?id=2121

16 CHAPTER 4. PROBLEM ANALYSIS

Applications (NCSA). NCSA distributes a patch for OpenSSH allowing the simultaneous
use of Kerberos and GSI authentication via GSSAPI [38], built on top of MIT’s mechglue
library8. However, this requires applying the provided patch to OpenSSH, changing the
source code. Also, the patch was last updated in 2015 for OpenSSH 7.0p1. NCSA
proposed adding their GSI authentication implementation to OpenSSH in 2015, however
the patch was also denied in 2020 with Damien Miller stating that there are no plans for
integrating any other GSSAPI-based authentication methods9.

We found source code modifications to be necessary for the OpenSSH daemon as
well, which we want to avoid (see G5). The auth2-gss.c source file implements generic
GSSAPI calls for use with the gssapi-with-mic authentication mechanism. However,
gss-serv.c lists supported GSSAPI mechanisms, which currently only contains Ker-
beros. Adding another mechanism therefore requires changes to OpenSSH’s source code.
The developers explain this by the need to translate GSSAPI identities into local Unix
accounts, which is specific to the used mechanism10. This is confirmed by the presence of
gss-serv-krb5.c, which implements this translation.

4.3.4 Public key

Authentication using asymmetric cryptography is often preferred over passwords, as it
requires the possession of some key compared to only the knowledge of a password. For
this authentication method, users are first required to generate a private/public key pair
using the ssh-keygen program. Two files in an OpenSSH-specific format are created in
the user’s ~/.ssh/ directory by default, for example ~/.ssh/id_ed25519 (private key file)
and ~/.ssh/id_ed25519.pub (public key file). An example key pair is shown in figure 4.3.
Several key types such as RSA and Edwards-curve Digital Signature Algorithm (EdDSA)
are supported. The generated public key file content then must be transferred to the
OpenSSH server and stored in a file accessible to sshd, by default in the user’s home
directory at ~/.ssh/authorized_keys. The private key needs to remain on the client
computer accessible only to the user itself, enforced by strict file permissions. It can also
optionally be protected with a passphrase. To authenticate against the OpenSSH daemon
in a SSH connection, the client must proof ownership of the private key. This is done by
providing a cryptographic signature to the daemon, which can verify it using the public
key present in ~/.ssh/authorized_keys. Like all previously presented authentication
methods, public key authentication also relies on the TOFU principle.

Unfortunately, a private/public key pair generated by ssh-keygen does not contain
any customizable data, which information related to a federated identity needed for au-
thentication (e.g., OpenID Connect access token, username) could be embedded in. A
custom comment can be passed to ssh-keygen on creation; however, it is just stored in
plain-text alongside the actual key in the generated file. The manual states that it can
be used for key identification but is never transferred to or used by the OpenSSH daemon
[51].

8https://web.mit.edu/kerberos/krb5-1.12/doc/plugindev/gssapi.html
9https://bugzilla.mindrot.org/show_bug.cgi?id=2495#c2

10https://marc.info/?l=openssh-unix-dev&m=153574004725602&w=2

https://web.mit.edu/kerberos/krb5-1.12/doc/plugindev/gssapi.html
https://bugzilla.mindrot.org/show_bug.cgi?id=2495#c2
https://marc.info/?l=openssh-unix-dev&m=153574004725602&w=2

4.3. AUTHENTICATION METHODS 17

$ cat id_ed25519
-----BEGIN OPENSSH PRIVATE KEY-----
b3BlbnNzaC1rZXktdjEAAAAABG5vbmUA...
-----END OPENSSH PRIVATE KEY-----

$ cat id_ed25519.pub
ssh-ed25519 AAAAC3Nz...a083z This is a comment

Figure 4.3: Example of an ed25519 (EdDSA algorithm with SHA-512 and Curve25519)
OpenSSH private (id_ed25519) and public key (id_ed25519.pub).

4.3.5 Host-based

Compared to the public key authentication, host-based authentication uses a private/public
key pair specific to an entire computer instead of a single user. A user authenticating
to an OpenSSH daemon therefore reads a computer-wide private key (usually stored in
/etc/ssh/) to generate a signature, which the daemon verifies using a public key. While
this authentication method is useful in some scenarios, such as in a closed computing
cluster, it is difficult to securely configure and differentiation between individual users is
no longer possible. We therefore find this method unsuited for our use case.

4.3.6 Certificate

While OpenSSH certificates were introduced with version 5.3 in 2010, they are still rel-
atively unknown to most users. Compared to X.509 certificates, they are stored in a
custom, simpler format and only consist of a public key, some identity information, a list
of principals as well additional permissions. Interestingly, certificates do not specify their
own authentication mechanism name but instead also use publickey. The ssh-keygen
program can generate and sign OpenSSH certificates using a private/public key pair called
certification authority (CA) [51].

Figure 4.4 shows the contents of an example OpenSSH certificate. The type of a
certificate is either n user or host certificate. Additionally, it specifies which algorithm
the certificate is based on. Public key and Signing key specify the OpenSSH public key
that the certificate is based on and signed with (CA) respectively. The manual describes
the Key ID field as an identifier logged by sshd when used for authentication. It is
also used in a key revocation list when wanting to revoke certificates. Similarly, the 64-
bit Serial number serves as identification for revoking certificates. It is intended to be
used to distinguish certificates signed with the same CA key and identical Key ID but
is set to 0 by default. Certificates are either valid forever (by default) or can specify a
time range (validity interval) in the Valid field. A certificate is not accepted by sshd
before its start time or after its end time. The Principals field lists one or multiple
Unix usernames for which the certificate is valid. For host certificates, this field contains
valid hostnames instead. Additionally, OpenSSH certificates contain optional Critical
Options and Extensions. The manual lists force-command as the only possible Critical

18 CHAPTER 4. PROBLEM ANALYSIS

Options, which forces the execution of a command by sshd instead of executing a user-
specified command or spawning an interactive shell. Extensions allow and disallow certain
OpenSSH features including PTY allocation as well as agent, port and X1111 forwarding.

$ ssh-keygen -L -f user-key-cert.pub
user-key-cert.pub:

Type: ssh-ed25519-cert-v01@openssh.com user certificate
Public key: ED25519-CERT SHA256:rkSKv...
Signing CA: ED25519 SHA256:xw9aV... (using ssh-ed25519)
Key ID: "user@example.com"
Serial: 0
Valid: from 2023-09-01T14:30:00 to 2023-09-02T14:30:00
Principals:

user
Critical Options:

force-command whoami
Extensions:

permit-X11-forwarding
permit-agent-forwarding
permit-port-forwarding
permit-pty
permit-user-rc

Figure 4.4: Example of an OpenSSH user certificate.

Compared to public keys, OpenSSH certificates include some benefits and solve some
security problems:

• Certificates are issued for specific users or hostnames, whereas a private/public key
pair can be re-used by different users and hosts.

• Certificates can include an optional validity interval, which means they can auto-
matically expire. Public keys do not support this and must be manually revoked if
desired.

• Certificates can include restrictions, such as disallowing port or agent forwarding.
For public keys, this is only possible by modifying the ~/.ssh/authorized_keys
file and making sure the user itself cannot modify this file.

• Certificates can contain a custom forced command. Like restrictions, public keys
only support this by modifying the ~/.ssh/authorized_keys file.

• Certificates do not rely on the TOFU principle. Instead, the ssh client also verifies
the signature of a certificate presented by the OpenSSH daemon.

11Forwarding of graphical applications via the X Window System

4.3. AUTHENTICATION METHODS 19

ssh (User) sshd (Host)CA

user-key
user-key.pub

user-ca
user-ca.pub

host-ca
host-ca.pub

host-key
host-key.pub

user-key-cert.pub host-key-cert.pub

/etc/ssh/sshd_config:
HostKey host-key
HostCertificate host-key-cert.pub
TrustedUserCAKeys user-ca.pub

~/.ssh/knows_hosts:
@cert-authority example.com ↩
 ssh-ed25519 AAAAC3Nz...

(contents of host-ca.pub)

$ ssh example.com
using user-key and user-key-cert.pub
from ~/.ssh/ or ssh-agent

Figure 4.5: Example steps and configuration of an OpenSSH certificate authentication
setup (using separate user and host CA key pairs).

• Certificates fields such as Key ID, Serial, Principals and even the Critical Options
and Extension can contain arbitrary values. As the certificate can be signed, these
fields cannot later be modified without breaking the signature.

It must be noted that using OpenSSH certificates for authentication requires some
configuration of both the OpenSSH daemon as well as clients. Figure 4.5 illustrates the
steps and configuration necessary for certificate authentication. This example uses the
recommended setup of two separate key pairs for the user CA and host CA, however
it is possible to use a single key pair. Also, this setup implies a CA instance separate
from the OpenSSH server. This way, it is possible to issue host certificates for multiple
independent OpenSSH servers based on the same host CA key pair. For scenarios with a
single OpenSSH server, the same server can also take on the tasks of the CA.

The illustrated setup is based on four OpenSSH private/public key pairs: a user key
pair, user CA and host CA key pairs as well as a host key pair. The ssh-keygen commands
to generate all key pairs and certificates are listed in the appendix. To authenticate itself
against clients, the sshd requires a host certificate. This certificate is issued by the CA
by signing the public host key with the host CA private key. sshd needs to be configured
to present this certificate to clients using the HostKey and HostCertificate keyword in
its configuration file /etc/ssh/sshd_config. Additionally, it is necessary to specify that
user certificates signed by the user CA should be accepted (with the TrustedUserCAKeys
keyword). Like the host certificate, a user certificate is issued by signing the user’s public
key with the user CA private key. To let ssh known which host certificates to trust, the
contents of the host CA public key must be added to ~/.ssh/known_hosts with a special
@cert-authority directive. A connection to the OpenSSH daemon then uses the issued
user certificate as well as the user’s private key. If either the user or host certificate were
issued with a limited validity, they must be re-issued manually after their expiry.

When a client authenticates to an OpenSSH daemon, both parties exchange certificates

20 CHAPTER 4. PROBLEM ANALYSIS

which are validated by the other side. A ssh client verifies the received host certificate
using the listed principals and by validating its signature against the CA public key listed
in the local ~/.ssh/known_hosts file. The sshd daemon verifies the user certificate by
checking the listed principals and signature using the user CA public key configured with
TrustedUserCAKeys. If both sides accept the certificate, authentication succeeds. sshd
also checks allowed connection features listed in the extensions and executes the force-
command critical option, if specified. Compared to all previously presented authentication
mechanisms, certificate authentication does not rely on TOFU by asking the user to
verify a fingerprint presented by the OpenSSH daemon. Rather, the user must trust a
host CA to only issue host certificates to trusted servers. Similarly, the OpenSSH server
administrators must trust a user CA to only issue certificates to trusted users.

OpenSSH certificates are interesting for our use case, as some fields allow custom
content to be specified when issued. Therefore, embedding an OpenID Connect access
token inside a certificate might be possible. We ruled out the Serial field, as it can only
contain 64-bit numbers, in which access token do not fit. Similarly, we ruled out the
Principals field as it is evaluated by sshd to contain the correct username or hostname.
Embedding an access token as additional principal creates security problems, as forging
usernames is very easy. Therefore, we found the fields Key ID and the force-command
critical option to be possible candidates, which we evaluate in the following sections.

KeyID field

The Key ID field can contain any string with arbitrary length. Embedding an OpenID
Connect access token is therefore possible. The challenge is finding a way to extract this
token in or by sshd.

The OpenSSH daemon configuration supports an AuthorizedPrincipalsCommand
keyword, which specifies a command to execute when a connection using OpenSSH cer-
tificates is received by sshd [52]. This command is supposed to return a list of allowed
principals, which are then compared with the principals listed in the received user certifi-
cate. Because sshd can pass certain tokens to this command via arguments, including the
Key ID field of the certificate (with the %i placeholder), we found that it might be possible
to abuse this command by extracting the access token from the Key ID field to run some
user account generation. However, we found no way to propagate a created username
back to sshd. Using AuthorizedPrincipalsCommand, it is only possible to allow a con-
nection by returning at least one username that is present in the certificate’s Principals
field. Returning a freshly created new username that is not listed in the certificate will
always deny the connection attempt.

We also identified a security problem with this approach. sshd invokes the command
listed in AuthorizedPrincipalsCommand by creating a new subprocess (via fork & exec).
All arguments given to this command, such as an OpenID Connect access token extracted
from the Key ID field, are therefore publicly visible for all users on the system12. While
access tokens are usually valid only for a few minutes, any user with access to the system
is still able to steal tokens by observing AuthorizedPrincipalsCommands being run by

12In process viewers such as top/htop or directly from the /proc/ directory.

4.3. AUTHENTICATION METHODS 21

sshd. Attempts at not passing the Key ID field via argument but another technique also
failed. sshd did not accept modified commands such as

AuthorizedPrincipalsCommand TOKEN=%i /usr/bin/extract-token
(environment variable)

or

AuthorizedPrincipalsCommand /usr/bin/extract-token
<(TOKEN=%i printenv TOKEN)

(temporary file descriptor)

as the provided command is strictly parsed to only allow a certain syntax (an absolute
path to a file, followed by whitespace-separated arguments without special characters) for
security reasons. Other techniques such as the use of pipes:

AuthorizedPrincipalsCommand TOKEN=%i printenv TOKEN |
/usr/bin/extract-token

result in a shell being invoked with the entire command passed as argument to -c, resulting
in a subprocess which again leaks the token to every user:

bash -c "TOKEN=<access token> printenv TOKEN | /usr/bin/extract-token"

Additionally, the ssh-keygen manual states that the contents of Key ID are logged by
sshd, which is not desirable for access tokens. Embedding into and extracting an access
token from another certificate field than Key ID, such as custom Extensions results in
the same security problem. We conclude that with this approach, only public and non-
sensitive contents should be embedded in an OpenSSH certificate, which rules out personal
access tokens.

force-command option

Like the Key ID field, the force-command critical option can be specified when issuing
OpenSSH certificates. The ssh-keygen manual states that force-command can include
a custom command to be run by sshd as the connecting Unix user after successful au-
thentication. This command overrides the invocation of a login shell or the execution of
a command that might have been specified by the user with

ssh example.com "some-command <args>".

It is therefore possible to embed a custom command and pass an OpenID Connect access
token as program argument. While an AuthorizedPrincipalsCommand can allow or deny
a connection, the difference is that the force-command is only executed after the user was
already authenticated and a successful SSH connection has been established. This allows

22 CHAPTER 4. PROBLEM ANALYSIS

USER Command
root sshd: /usr/sbin/sshd -D [listener] 0 of 10-100 startups
root sshd: user [priv]
user sshd: user@pts/0
user bash -c 'TOKEN=... /usr/bin/extract-token'

Figure 4.6: Extract of process tree showing force-command being executed in a shell sub-
process. Note that in this exact case, bash replaces itself with /usr/bin/extract-token
shortly after startup.

running a custom program by sshd to handle the passed OpenID Connect access token,
without tampering with the SSH connection itself. Exiting the custom program also
automatically closes the SSH connection.

Unfortunately, we identified an identical security problem as to the previous approach.
sshd creates a shell subprocess via fork & exec to execute the given force-command. Any
arguments to this command, like an OpenID Connect access token, are therefore visible
to any user. Again, adapting the command the use an environment variable instead of a
program argument (force-command="TOKEN=... /usr/bin/extract-token") or other
tricks are not possible, as everything is passed to the shell via the -c argument and
therefore publicly visible (shown in figure 4.6). Some shells, including bash, replace
themselves via exec directly instead of forking first when no pipes, stdin/stdout/stderr
redirection or logical operators are present in the command passed, to not waste system
resources. While this happens at shell startup and takes only a short time, it is still
possible to observe the original arguments including the token before replacement. A
custom shell suffers from the same problem and does not solve this security problem.

To conclude, we find that OpenSSH’s built-in authentication mechanisms all come
with certain limitations when wanting to transport OpenID Connect access tokens. The
password and keyboard-interactive mechanisms require manual interaction by the user,
which we want to avoid (see G1). Additionally, keyboard-interactive is limited to a
character length problematic for access tokens. A custom GSSAPI-based authentication
mechanism requires changes to the source code of at least sshd, which we also want to
prevent (see G5). Host-based authentication is not suited for our use-case due to the
difficulty of differentiating between multiple users on the same client system. Public keys
do not offer the ability to transport custom content such as an access token, therefore
they can only be used as temporary grant in exchange for a token. To retain the benefits
and features of federated identities (see G3), this however requires additional work such
as revocation of keys. OpenSSH certificates with their built-in features such as expiration
and custom force-commands seem like a possible option for the idea of this thesis, however
it is only possible to embed non-sensitive content due to possible security problems when
extracting it. In the sections, we evaluate how certificates could still be used for OpenID
Connect authentication, even with the limitation of not being able to embed an access
token directly.

4.4. OBTAINING OPENSSH CERTIFICATES 23

1 Host *
2 SendEnv LC_* LANG
3

4 Host example.com
5 Port 1234
6 User user
7 IdentityFile ~/.ssh/id_ed25519

Figure 4.7: Extract of an example ssh user configuration file (~/.ssh/config).

4.4 Obtaining OpenSSH certificates

As our research shows that OpenSSH certificates might be usable four our thesis idea, it is
necessary to find a way to prepare certificate-based authentication while at the same time
not requiring any changes to users’ workflows (see G1). This especially means that ssh
commands executed by users should work as expected, and no wrapper program around
ssh must be required. First, it is necessary to invoke a custom external program handling
the generation/issuing of a user certificate when a ssh is run, however without the user
noticing. Second, the certificate must then be stored or prepared to be automatically used
by the SSH connection.

The ssh manual describes that after interpretation of command line options given
to the command, both a user’s local (~/.ssh/config) and system-wide configuration file
(/etc/ssh/ssh_config) are read [53]. A variety of configuration keywords are supported,
separated into sections by the Host keyword. Using this syntax, configuration options can
be applied to specific hosts only. Figure 4.7 shows an example configuration, where a non-
standard port, a fixed user and private key file should be used for connections the host
example.com. Additionally, some locally set environment variables are sent in connections
to each host by making use of the Host keyword’s pattern matching support.

The configuration file supports the ProxyCommand and ProxyJump keywords, which
are intended to be used for configuring a custom proxy used by ssh when connecting to a
host. As the command configured in this keyword is run before the actual SSH connection,
it is possible to execute a custom program that generates/request an OpenSSH certificate
before opening the actual proxy and allowing the SSH connection to work. A drawback
of this approach for our use case is the need to configure the ProxyCommand keyword
separately for every host the client wants to connect to, resulting in multiple Host sections.
Also, running a local proxy (like nc13) presents a small overhead, while the proxy is not
actually necessary and only abused to run a custom program before the SSH connection.

In addition to the Host keyword, the ssh configuration also support as Match key-
word alongside some conditions. Apart from some built-in conditions like canonical and
final, the exec condition allows the specification of an external command to run. This
command must return an exit code of 0 to indicate a match, while any non-zero exit code
means no match. Like the ProxyCommand, this command is executed before the actual

13netcat is a utility program for network-related tasks, including proxy support.

24 CHAPTER 4. PROBLEM ANALYSIS

1 Match exec "/bin/get-certificate %h %p"
2 User user

Figure 4.8: Example use of the Match keyword.

SSH connection and therefore allows to run custom code like generation of an OpenSSH
certificate. Figure 4.8 shows how Match exec can be used to realize this. The specified
command/program can also accept tokens (such as %h for hostname and %p for port),
which are replaced with actual values by ssh when invoked. If the command returns 0,
the Match block is considered true and all configured keywords like User are applied to
the connection. Compared to the ProxyCommand keyword, this approach does not require
any local proxy to run. In addition, only a single Match block is necessary, as the custom
command can decide based on the hostname/port whether a host supports OpenID Con-
nect authentication in the first place. If not, a non-zero exit code can be returned, which
skips the entire Match block. As configuration files are read top to bottom and keywords
defined in matching Host/Match sections override any later matching sections, this Match
exec should be placed on top of the ssh configuration file.

We found only one pitfall of this approach, which is that in a ssh configuration, the use
of a CanonicalizeHostname or Match final keyword results in the entire configuration
to be re-parsed. Therefore, it must be considered that the custom command/program
may be executed multiple times before a single ssh connection.

With the ability to execute an external program to generate or request an OpenSSH
certificate, it is necessary to store this certificate and instruct ssh to use it. While each
certificate could be written into their own file, it is difficult to then tell ssh which file to
use. It is not possible to pass additional command-line arguments like -i14 to ssh from
the configuration file. Writing the certificate file location into the ssh configuration file
also is not possible, as it has already been parsed at that point. Sharing a single, fixed
file path instead results in problems if multiple OpenSSH certificates are present at the
same time (for example if the user connects to two separate OpenSSH servers).

Instead, it is possible to load a certificate and its corresponding private key into the
ssh-agent. The SSH connection will then automatically select an appropriate certificate
from the agent. Additionally, the ssh-agent can be instructed to delete certain certificates
and private keys after some lifetime. Therefore, expired certificates can be automatically
removed.

In conclusion, we find that the ssh configuration file can be modified to include a Match
exec keyword. This allows the execution of an external program which can generate or
issue a certificate before the actual SSH connection. Loading this certificate into the
ssh-agent enables ssh to use it directly after for authentication.

14This option instructs ssh which identity (private key, public key, certificate) to use for the connection.

4.5. DYNAMIC USERNAMES 25

4.5 Dynamic usernames

In G4, we outlined that a viable implementation should support dynamic usernames.
That is, a user should be able to connect to an OpenSSH server without knowledge
of his/her username, but then be presented with an interactive login shell (by default)
running as a personal user account. Different OpenID Connect access tokens belonging
to the same federated identity should result in the same personal user account.

The SSH authentication protocol defines that a username must be included with au-
thentication requests [16]. Further, the RFC requires that "if the ’user name’ does not
exist, the authentication request MUST NOT be accepted.". Therefore, not specifying
a username and letting sshd decide on which account to use is not possible. While ac-
cording to the specification the username field can be left empty (empty string), it is up
to sshd on how to handle this15. When enabled in the configuration file, the OpenSSH
daemon can make use of PAM for authentication. However, OpenSSH does not imple-
ment user switching via PAM1617. In addition, PAM authentication is only supported for
the password, keyboard-interactive and Kerberos (GSSAPI) authentication methods
but not for public keys and certificates18. Trying multiple authentication methods with
different usernames (first method to deploy user, second method to authenticate) also is
not possible, as sshd does not allow this in accordance with the authentication protocol
specification19.

In addition to the protocol preventing non-specification or changing of usernames,
we found no way to implement this behavior without source code changes, as both the
ProxyCommand and Match exec keywords are unable to do so. The username used by ssh
is already determined based on the local username, command line options or some User
keyword in the configuration file, before either of the commands are invoked. As it is not
possible to change the username before the authentication attempt (on the client side)
or during the authentication attempts (via PAM), we conclude that switching usernames
can only happen after successful authentication.

In our previous research (section 4.3.6), we showed that the force-command critical
option embedded in OpenSSH certificates is executed after authentication. This command
can therefore be used to switch to a personal user account, based on either a custom
program or existing Unix tools such as su. This approach implies two consequences:

1. Due to security problems outlined before, the force-command should only contain
non-sensitive information. Instead of embedding an access token in the certificate,
we therefore apply the idea of embedding the final username in the certificate. This
requires obtaining a username before the actual SSH connection, which must then
be switched to after a successful authentication.

2. As sshd requires an existing username for the SSH connection, another fixed service
15https://groups.google.com/g/comp.security.ssh/c/EzvfhfpMVPw
16https://bugzilla.mindrot.org/show_bug.cgi?id=1215#c22
17https://listman.redhat.com/archives/pam-list/2011-June/msg00010.html
18https://bugzilla.redhat.com/show_bug.cgi?id=1492313
19https://security.stackexchange.com/a/121312

https://groups.google.com/g/comp.security.ssh/c/EzvfhfpMVPw
https://bugzilla.mindrot.org/show_bug.cgi?id=1215#c22
https://listman.redhat.com/archives/pam-list/2011-June/msg00010.html
https://bugzilla.redhat.com/show_bug.cgi?id=1492313
https://security.stackexchange.com/a/121312

26 CHAPTER 4. PROBLEM ANALYSIS

1 Match exec "/bin/get-certificate %h %p"
2 User service

Figure 4.9: Example configuration of service user combined with the Match exec keyword.

user must be used. This user is only used for the SSH connection itself before
switching to a personal user account specified in the certificate force-command. It
must not be overwritten by the user using command-line options or a configuration
section.

For the service user to be used, it must be configured in the ssh configuration file.
Figure 4.9 shows how a user named service can be configured, combined with the pre-
viously presented Match exec approach for invoking an external program (section 4.4).
Using this configuration, only a single Match section is required to work for all OpenSSH
hosts supporting OpenID Connect-based authentication.

It must be noted that a similar approach can also be implemented using public keys
instead of OpenSSH certificates, as OpenSSH’s ~/.ssh/authorized_keys file (or other
files configured with AuthorizedKeysFile) also allows the specification of a command
to be executed for every public key [54]. However, this approach requires constant mod-
ification and growth of the file, as new (temporary) public keys are added to a service
user’s authorized keys. In comparison, the use of OpenSSH certificates does not require
modification of any files, including the sshd configuration (apart from configuration nec-
essary for certificate authentication itself). Certificates also include other benefits such
as optional expiration and not relying on TOFU.

Implementation

In this chapter, we describe the implementation of a suite of programs to extend OpenSSH
with support for OpenID Connect authentication. We base our architecture and design
decisions on research presented in the previous chapter.

5.1 Design decisions

To integrate OpenID Connect authentication into OpenSSH, we decided to use the fol-
lowing approach.

On the client, the ssh configuration file is modified to invoke an external program
using Match exec whenever ssh is executed. The external program obtains an OpenID
Connect access token by calling oidc-agent. The access token is transferred to a cer-
tificate authority, which calls motley_cue to deploy and return a username if the user is
authorized. An OpenSSH certificate is issued, in which the username is embedded via the
force-command critical option. This certificate is transferred back to the client, where it
is loaded into the local ssh-agent. The ssh client authenticates itself at the OpenSSH
daemon using certificate-based authentication and a fixed service user. After successful
authentication, the force-command is executed by sshd to switch from the service user to
the personal user account deploy by motley_cue.

We chose to use Match exec to invoke an external program during a SSH connection,
as this allows the user to keep his/her ssh workflow. No wrapper script is required and
all built-in ssh features work as expected. At the same time, no manual user intervention
such as inserting access tokens is required, which we outlined in G1. Compared to the
ProxyCommand-based approach, no locally running proxy is required and a single Match
section in the ssh configuration file is sufficient.

For obtaining OpenID Connect access tokens, we decided to make use of oidc-agent.
It supports arbitrary identity providers (G2) and includes SSO-like capabilities by being
able to load configurations into a running background process (G3). Additionally, it can
be easily integrated into other programs due to its IPC API.

motley_cue is used to deploy user accounts, as it can be configured to support more
than one OpenID Connect identity provider at the same time (G2). Multiple user back-
ends and strategies for user creation are supported, therefore no re-implementation is
necessary. Basing user creation on motley_cue also means that the use of mccli is also
still possible simultaneously.

27

28 CHAPTER 5. IMPLEMENTATION

To prevent any changes to OpenSSH source code (G5), we decided to make use of a
built-in authentication mechanism. Even though some configuration of ssh and sshd are
required, we chose to use OpenSSH certificates because of their benefits compared to pub-
lic key authentication. These include improved security (no TOFU), optional expiration
(G3) and the ability to embed custom content. Exchanging access tokens with temporary
private/public key pairs instead would also be possible, however key expiration and revo-
cation must then be implemented manually using e.g., sshd’s AuthorizedKeysCommand
and RevokedKeys configuration keywords. By using an existing authentication mecha-
nism, we also make sure that the SSH connection is not tampered with and still secure
(G6).

To store any received OpenSSH certificates along with private keys on the client, we
chose to make use of the ssh-agent. This allows ssh to automatically select and use
the correct certificate. No modification of the configuration file is required and expired
certificates can automatically be removed from the ssh-agent. Also, not writing any key
or certificate to disk reduces the risk of compromise.

Due to restrictions of the OpenSSH authentication protocol, we make use of the
OpenSSH certificate force-command critical option to switch to a personal user account
after successful authentication (G4). By embedding this command inside certificates, no
further configuration of sshd is necessary. This also means that the SSH protocol is not
tampered with in any way (G6).

By choosing this approach, we address all aspects mentioned in section 4.2:

1. User identity mapping: motley_cue is used to map federated identities to local
Unix accounts based on multiple JWT claims. It is integrated using the provided
REST API.

2. Technology harmonization: OpenID Connect access tokens are exchanged with
custom OpenSSH certificates which are then used for authentication.

3. Authentication and authorization: oidc-agent handles authentication at the
identity provider once, then stores a refresh token to request access tokens. An ac-
count configuration is loaded into memory and only needs to be unlocked once after
reboot. We rely on motley_cue for authorization decisions, which is configurable
to use different attributes of a federated identity. Only if access to the OpenSSH
server is granted, a certificates is issued for the client allowing a SSH connection.

4. Account provisioning: A certificate authority is responsible for provisioning user
accounts on-demand by calling motley_cue. Generated usernames are embedded
in an OpenSSH certificates and later used by a custom force-command to switch to
the personal user account.

5. Credentials management: All OpenID Connect credentials are managed by
oidc-agent, whereas OpenSSH credentials (certificate and private key) are loaded
into ssh-agent for use by ssh.

6. User experience: Our approach integrates seamlessly into the ssh command and
allows the selection of an identity provider. oidc-agent provides SSO functionality

5.2. ARCHITECTURE 29

by keeping loaded account configurations in memory and requesting new access
tokens using a stored refresh token.

7. Security: By relying on a built-in OpenSSH authentication mechanism, we retain
OpenSSH’s security guarantees. Issued certificates and authorization decisions are
logged by the CA and sshd respectively, allowing audits.

However, this approach also includes two implications:

1. As including OpenID Connect access tokens inside a certificate results in the risk of
exposing them when extracted, the final username must be embedded instead. Due
to the nature of some username generation strategies, motley_cue does not support
reserving usernames. Therefore, user accounts cannot be deployed by sshd via the
force-command. Instead, the CA must deploy the user in exchange for an access
token and embeds the resulting username in the issued OpenSSH certificate. User
creation is not usually a task of a certificate authority; however, this is necessary
to not leak access tokens to other users. This necessary design decision does not
impact the authentication process and is not noticeable by the user.

2. Due to the OpenSSH authentication protocol, a fixed service user is required for
the SSH connection, before sshd switches to the previously deployed personal user
account. This is configured once in the ssh configuration file, but not noticed by the
user otherwise. When executing ssh, the user must not specify a custom username
to use. This however can be detected and displayed as an error to the user.

5.2 Architecture

Figure 5.1 shows the architecture we decided on for our solution. Next to the existing
SSH client and server, we introduce a certificate authority. This CA takes over tasks of
the OpenSSH certificate authority required due to the use of OpenSSH certificates (see
4.3.6). Additionally, it is responsible for communication with one or multiple motley_cue
instances running on OpenSSH servers.

Based on this architecture, we identified the need to implement three separate pro-
grams, described below.

• A certificate authority issuing OpenSSH certificates (called oinit-ca).

• A command-line program to use alongside ssh (called oinit).

• A program responsible for user switching on the server, extending sshd’s function-
ality (called oinit-switch).

This suite of programs is referred to as oinit. While functionally completely different,
this name was chosen in reference to the kinit program which is used to obtain a ticket
for Kerberos authentication in SSH.

30 CHAPTER 5. IMPLEMENTATION

Client

DNS

Server(s)

CA

ssh

Matc
h e

xec

Socket Socket

Socket

DNS

REST
(HTTPS) REST

(HTTPS)

HTTP

HTTP

SSH

force-command

sshd

oinit

oidc-
agent

ssh-
agent

reverse
proxy

oinit-ca

reverse
proxy motley_cue

oinit-switch

Figure 5.1: Architecture of oinit.

On the client, the oinit command-line interface allows the user to enable OpenID
Connect authentication for specific OpenSSH servers. The Domain Name System (DNS)
is used to determine the CA responsible for an OpenSSH server, for which authentication
should be enabled and prepared. This process is described in detail in the following
section (5.3). oinit is invoked via the Match exec configuration keyword whenever the
user issues a ssh command. Communication with oidc-agent and ssh-agent is realized
with Unix sockets. For communication with the CA, REST via HTTPS is used.

The oinit-ca offers a REST API via HTTP and runs behind a reverse proxy which
supports HTTPS. The CA issues user and host certificates for multiple clients and OpenSSH
servers. For this, it can be configured with URLs of multiple motley_cue instances.
oinit-ca uses motley_cue’s REST API to request supported providers and to deploy
user accounts. The CA is designed to be able to operate separately from any OpenSSH
server. Due to its REST API, it is loosely coupled and independent from any SSH con-
nection. For simpler scenarios with a single OpenSSH server, oinit-ca however can also
be operated on the same physical or virtual server as sshd and motley_cue.

On all servers supporting OpenID Connect authentication, motley_cue is deployed
behind a reverse proxy for HTTPS support. The OpenSSH daemon is configured to
accept user certificates issued by the CA, however no further custom configuration is
required. After successful authentication of a client, sshd calls oinit-switch as it is
embedded in user certificates with the force-command critical option.

We decided to implement all programs in the Go programming language, mainly be-

5.3. TWO-STEP PROCESS 31

cause of three reasons:

• crypto/ssh package: The built-in crypto/ssh package implements a SSH client
and server and therefore supports, among other things, generation and parsing of
keys, as well as creation and signing of certificates. In addition, the package imple-
ments the agent protocol [14], which allows direct interaction with the authentication
agent without the need to rely on installed programs such as ssh-add. A drawback
of this implementation is the limitation to Unix sockets, therefore some operating
systems such as Microsoft Windows are not supported.

• oidc-agent library: An official library for interacting with oidc-agent called
liboidcagent-go1 is available. The library communicates with the agent via Unix
sockets and supports requesting access tokens directly from Go code. Like the
crypto/ssh package however, it currently does not support the Microsoft Windows
operating system.

• Typed, compiled, cross-platform language: Go is a typed language which com-
piles to statically linked binaries, which means that users do not need to have any
dependencies such as an interpreter installed, as is the case with e.g., Python pro-
grams. The language can compile to programs for all major operating systems and
CPU architectures, for this it includes features for easy cross-platform development
such as build constraints and build configuration via environment variables2.

Like OpenSSH Portable, all programs are part of a single code repository which al-
lows the same code to be shared between multiple programs. The repository follows the
Standard Go Project Layout3, a non-official but widely recognized project structure. The
implementation of oinit-ca, oinit and oinit-switch is described in sections 5.4, 5.5
and 5.6.

5.3 Two-step process

The oinit command-line program must allow the user to enable certificate-based authen-
tication for specific OpenSSH servers that support it. Additionally, some configuration
of ssh is required to enable OpenSSH certificate authentication (as outlined in section
4.3.6). Therefore, the first SSH connection to an OpenSSH server is preceded by a one-
time preparation step described in section 5.3.1. After that, any SSH connection to this
server can use authentication based on certificates and follows the same steps describe in
section 5.3.2. Figure 5.2 shows in which step certificate generation and ssh configuration
take place.

1https://github.com/indigo-dc/liboidcagent-go/tree/master
2https://pkg.go.dev/cmd/go
3https://github.com/golang-standards/project-layout

https://github.com/indigo-dc/liboidcagent-go/tree/master
https://pkg.go.dev/cmd/go
https://github.com/golang-standards/project-layout

32 CHAPTER 5. IMPLEMENTATION

ssh (User) sshd (Host)CA

user-key
user-key.pub

user-ca
user-ca.pub

host-ca
host-ca.pub

host-key
host-key.pub

user-key-cert.pub host-key-cert.pub

/etc/ssh/sshd_config:
HostKey host-key
HostCertificate host-key-cert.pub
TrustedUserCAKeys user-ca.pub

~/.ssh/knows_hosts:
@cert-authority example.com ↩
 ssh-ed25519 AAAAC3Nz...

(contents of host-ca.pub)

$ ssh example.com
using user-key and user-key-cert.pub
from ssh-agent

Figure 5.2: Steps undertaken in preparation and later connection steps. Uncolored steps
are configured manually before when oinit-ca is installed and the OpenSSH daemon is
configured.

5.3.1 Preparation

Figure 5.3 shows the steps undertaken in preparation. When enabling OpenID Con-
nect authentication for an OpenSSH server (host), the oinit-ca responsible for that
server must be found first. The user might specify the HTTP URL manually, if not
DNS is used to determine it. For this, the OpenSSH host administrator must pub-
lish a TXT record containing the CA URL beforehand. If the OpenSSH host address
is login.example.com, oinit will search for a TXT record publish for the domain
_oinit-ca.login.example.com or _oinit-ca.example.com. Additionally, users can en-
able OpenID Connect authentication for multiple servers using a wildcard pattern like
*.example.com, which matches all subdomains of example.com.

As the ~/.ssh/known_hosts file must be modified to support certificate authentica-
tion (see section 4.3.6), the OpenSSH host CA public key must be determined. For this,
oinit calls oinit-ca via its REST API and appends the received public key to the known
hosts.

oinit also writes the CA URL and OpenSSH host address to its own ~/.ssh/ ⌋

oinit_hosts file. This is necessary to distinguish between hosts with and without OpenID
Connect authentication enabled. Additionally, this way the CA URL must not be deter-
mined again every time oinit is invoked.

Lastly, the preparation step also modifies the ssh configuration file at ~/.ssh/config.
A Match exec section is added to invoke oinit automatically every time a ssh command
is run. This is only done once and only if the configuration does not already contain
oinit’s Match exec section.

5.3. TWO-STEP PROCESS 33

Preparationsd

«Executable»
oinit

«Service»
DNS

«Service»
oinit-ca

«File»
known_hosts

«File»
oinit_hosts

«File»
ssh config.

[not given]

CA URL

Get host information
«HTTP»

Host CA public key

Host CA public key, host address
«Write»

CA URL, host address
«Write»

"Match exec" section
«Write»

Exit

Find TXT record
«DNS»

Find CA URLopt

Figure 5.3: Sequence diagram of steps undertaken in preparation process. Note that the
reverse proxy in front of oinit-ca is not displayed.

5.3.2 Connection

As shown in figure 5.4, oinit is automatically invoked via the Match exec section
added in the preparation process whenever a ssh command is run. oinit first reads
its ~/.ssh/oinit_hosts to determine whether the targeted host has OpenID Connect
authentication enabled. If not, oinit exists with a non-zero status code to indicate that
ssh shall continue with evaluation of the remaining configuration file. Otherwise, a pro-
cess with the end goal of obtaining an OpenSSH certificate is started.

First, oinit makes sure that no certificate is already present in the agent. If it is,
then the user has already connected to this host before and received a certificate that is
still valid. oinit can therefore exit and does not need to request a new certificate.

Next, an OpenID Connect access token is required. The user might have given a
token via environment variables to oinit, in which case this step is skipped. oinit first
requests a list of supported identity providers and required scopes from oinit-ca. As the
CA knows motley_cue’s address and port, it forwards this request. The received list of
providers and scopes is then forwarded back to oinit. The user is then prompted to select
a provider. Already configured and loaded accounts in oidc-agent are considered and

34 CHAPTER 5. IMPLEMENTATION

presented to the user in this step. Additionally, an optional pre-selection of a provider via
environment variables is supported. After a selection is made by the user, oidc-agent is
called to obtain an access token.

oinit then requests an OpenSSH certificate from oinit-ca using the obtained access
token and the public key of a freshly generated SSH key pair. oinit-ca uses then access
token to request deployment of a user account from motley_cue. If a user account for
the federated identity belonging to the access token already exists, no new account is
generated. With the returned username from motley_cue, oinit-ca then generates a
new OpenSSH certificate based on the given public key. It is signed with the user CA
private key and sent back to oinit, which loads both the certificate and the previously
generated private key into ssh-agent. oinit exists with a status code of zero, which
indicates to ssh that the Match exec section matches, and defined keyword must be
applied to the SSH connection. This include the defined service user "oinit", which is
used for the connection.

ssh automatically selects the freshly received certificate and private key from ssh-agent
to authenticate at sshd. After successful authentication, the force-command is exe-
cuted and invokes oinit-switch. With the username generated by motley_cue before,
oinit-switch prepares the user environment and switches to the personal user account.
Any SSH command which might have been specified by the user is run, otherwise an
interactive shell is presented. When the executed command or the shell exits, the SSH
connection is closed as usual.

5.4 Certificate authority

oinit-ca is responsible for three tasks:

1. Offering public information about multiple OpenSSH servers (host CA public key,
supported providers & scopes)

2. Deploying users in exchange for OpenID Connect access tokens by calling motley_cue

3. Issuing OpenSSH certificates containing oinit-switch and the deployed username
as force-command

oinit-ca is implemented as a standalone executable that offers a REST API built
using the Gin framework4. For communication with motley_cue, a simple API client is
implemented. Otherwise, only built-in Go packages such as crypto/ssh are used.

As oinit-ca only implements unencrypted HTTP, however transferred data contains
sensitive information such as OpenID access tokens, a reverse proxy such as nginx, traefik,
Caddy or the Apache web server that terminates HTTPS should be used.

4https://github.com/gin-gonic/gin

https://github.com/gin-gonic/gin

5.4. CERTIFICATE AUTHORITY 35

Connectionsd

«Executable»
ssh

«Executable»
oinit

«File»
oinit_hosts

«Service»
ssh-agent

«Service»
oidc-agent

«Service»
oinit-ca

«Service»
motley_cue

«Service»
sshd

«Executable»
oinit-switch

[Host address not found]

[Cert. already present]

[Not given]

Configuration

«Read»

Match exec
«Exec»

Find host address
«Read»

CA URL

Exit 1

Check if running, get certificate
«Socket»

Certificate

Exit 0

Get supported providers, scopes
«HTTP»

Get supported
providers, scopes

«HTTP»

Providers, scopesProviders, scopes

Prompt for provider

Get access token from provider
«Socket»

Access token

Generate key pair

Request cert. with public key, access token
«HTTP»

Deploy user account
«HTTP»

Username

Issue certificate

Certificate

Load certificate, private key
«Socket»

Exit 0

Get identities
«Socket»

Identities
Read known_hosts

Connect with certificate
«SSH»

force-command
«Exec»

Exit
Close connection

Exit

Check if managedalt

Check certificateopt

Obtain access tokenopt

Figure 5.4: Sequence diagram of steps undertaken in connection process. Note that the
reverse proxies in front of oinit-ca and motley_cue are not displayed.

5.4.1 API endpoints

Three REST endpoints covering all CA tasks are implemented in oinit-ca. All request
and response bodies are formatted in JSON. JSON is commonly used for REST APIs,

36 CHAPTER 5. IMPLEMENTATION

Figure 5.5: oinit-ca Swagger documentation.

follows a simple specification and has widespread support in major programming lan-
guages. Figure 5.5 shows the Swagger UI based on the OpenAPI specification5 generated
and included in oinit-ca. A small API client for oinit-ca is also implemented for use
in the oinit command line client.

Get API version

The GET /version endpoint returns the API version supported by the oinit-ca instance
(currently 1.0.0). This is useful for future revisions of the API, as clients such as oinit
can dynamically change their behavior based on available endpoints.

Get host information

For a given OpenSSH host address (such as login.example.com), the GET /{host} end-
point returns both the host CA public key and supported providers (along with required
scopes). The host CA public key is requested by oinit in the preparation process (see
section 5.3.1) and added to ~/.ssh/known_hosts. The list of supported providers is used
in the connection process (see section 5.3.2) and displayed to the user for selection. For
this information, oinit-ca calls the motley_cue instance running on the OpenSSH host.
A small API client supporting required motley_cue endpoints is implemented for this.
To improve performance, the response by motley_cue is cached for a configurable time
(10 minutes by default).

5https://www.openapis.org

https://www.openapis.org

5.4. CERTIFICATE AUTHORITY 37

Generate SSH certificate

The POST /{host}/certificate endpoint is used by oinit in the connection process
(section 5.3.2). Given an OpenID Connect access token and OpenSSH public key, oinit-ca
calls motley_cue to deploy a personal user account. If the user is authorized to use the
service (configured in motley_cue based on e.g., levels of assurance, virtual organiza-
tion/group memberships), a new OpenSSH certificate is generated based on the given
public key. This certificate is then signed with the according user CA private key and
returned as serialized string.

An example OpenSSH user certificates issued by oinit-ca is shown in figure 5.6. The
Public key field contains the public key given in the API request, while Signing CA is a
signature created using the user CA private key. The Key ID field is set to oinit@<host
address> with the host address being the address of the OpenSSH server. This field is
used by oinit to determine which host a certificate was issued for (and therefore whether
requesting a new certificate is required or not), as OpenSSH certificates do not offer this
information by default. A Serial number is not used and therefore set to the default value
of 0. The certificate validity interval is set according to the oinit-ca configuration (see
section 5.4.2). The list of principals includes both the "oinit" service user used by SSH
connections, as well as the username generated by motley_cue. While not necessary,
this allows the user to connect using his personal user account instead of the service
user, if known. Special care is taken in oinit-switch to account for this. The force-
command is set to the oinit-switch program along with the generated username as
program argument. Lastly, the Extensions are reduced to only two permissions compared
to the default list for security reasons. The default list includes permission for port and
X11 forwarding, which we do not expect to be required in most scenarios. oinit-ca can
be easily extended to allow a configuration of these extensions.

$ ssh-keygen -L -f example-user-key-cert.pub
example-user-key-cert.pub:

Type: ssh-ed25519-cert-v01@openssh.com user certificate
Public key: ED25519-CERT SHA256:rkSKv...
Signing CA: ED25519 SHA256:xw9aV... (using ssh-ed25519)
Key ID: "oinit@login.example.com"
Serial: 0
Valid: from 2023-09-01T14:30:00 to 2023-09-02T14:30:00
Principals:

oinit
user

Critical Options:
force-command oinit-switch user

Extensions:
permit-agent-forwarding
permit-pty

Figure 5.6: Example of an OpenSSH user certificate issued by oinit-ca.

38 CHAPTER 5. IMPLEMENTATION

5.4.2 Configuration

oinit-ca supports a configuration file that specifies which OpenSSH hosts are managed
by the CA. In addition, the configuration file contains the required motley_cue REST
API URLs for all hosts. Figure 5.7 shows an example configuration file in the INI file
format. The configuration file is separated into host groups via INI sections, such as
[example.com]. The host group name itself is not used and rather helpful for adminis-
trators. A host group contains an arbitrary number of OpenSSH hosts along with their
motley_cue API URLs, which the oinit-ca instance supports and issues certificates for.
The figure shows the definition of two hosts, one of which makes use of wildcard matching
to match any OpenSSH host with a domain ending in .pool.example.com. All hosts in
a host group share the same configuration options which include the host and user CA
public key pair used for OpenSSH certificates, a duration for which motley_cue responses
are cached, and the validity of issued user certificates. Validity intervals start with the
current time/date and can be configured to end after either a fixed duration or to inherit
the end time from the OpenID Connect access token.

An arbitrary number of host groups with unique names can be configured. Addition-
ally, all mentioned configuration options can be defined on top of the file (outside any
host group) to act as default values for all host groups.

1 [example.com]
2 # <host address> = <motley_cue API URL>
3 login.example.com = https://login.example.com:8443
4 *.pool.example.com = https://login.pool.example.com:8443
5

6 host-ca-privkey = /etc/oinit-ca/host-ca
7 host-ca-pubkey = /etc/oinit-ca/host-ca.pub
8 user-ca-privkey = /etc/oinit-ca/user-ca
9 user-ca-pubkey = /etc/oinit-ca/user-ca.pub

10 cache-duration = 600 # in seconds
11 cert-validity = token # inherit from access token

Figure 5.7: Example oinit-ca configuration file.

5.5 Command-line client

The oinit command-line program must allow the user to enable OpenID Connect au-
thentication for specific OpenSSH servers. In addition, it is also invoked by ssh to prepare
said authentication. Therefore, oinit implements multiple sub-commands including add,
list, delete and match.

5.5. COMMAND-LINE CLIENT 39

5.5.1 Adding and deleting hosts

The oinit list sub-command lists all OpenSSH servers for which OpenID Connect
authentication is currently enabled. This includes servers added by the user (to ~/.ssh/ ⌋

oinit_hosts), as well as a system-wide configuration (/etc/ssh/oinit_hosts). While
the system-wide configuration can only be manually modified by a system administrator,
it is useful for multi-user systems or computer pools.

To add new hosts, users can run the oinit add <host address> [CA URL] sub-
command. If no CA URL is given, it is automatically determined using DNS. The oinit
add sub-commands implements the preparation process described in section 5.3.1. It calls
oinit-ca to receive a host CA public key, which is written to ~/.ssh/known_hosts using
a special @cert-authority syntax (see figure 5.2). The enabled host address alongside
the CA URL is written to the custom ~/.ssh/oinit_hosts file shown in figure 5.8. Note
that this is not the motley_cue API URL, which is unknown to oinit. Additionally,
the ~/.ssh/config is modified once to include a Match exec section invoking the oinit
match sub-command (see figure 5.9).

OpenID Connect authentication can also be disabled again using the oinit delete
sub-command, which removes the host address from ~/.ssh/oinit_hosts as well as
existing certificates from the ssh-agent.

$ cat ~/.ssh/oinit_hosts
login.example.com:22 https://login.example.com

Figure 5.8: Example ~/.ssh/oinit_hosts file.

$ cat ~/.ssh/config
This 'Match' block was added by oinit.
#
Please make sure it stays positioned on top of your ssh config
file, assuring it will be applied before other 'Host' or 'Match'
blocks that may interfere with oinit.
Match exec "oinit match %h %p"

User oinit

... (remaining configuration)

Figure 5.9: ssh configuration file with oinit’s Match exec section.

5.5.2 Connecting to hosts

The oinit match <host> <port> sub-command is invoked by ssh with host and port
replaced by actual values of the target OpenSSH server. This sub-command implements
the connection process described in section 5.3.2.

40 CHAPTER 5. IMPLEMENTATION

The crypto/ssh package is used for communication with ssh-agent, as well as gener-
ation of an OpenSSH key pair and de-serialization of received certificates. For communi-
cation with oidc-agent, the liboidcagent-go library is used. A simple API client is used
to interact with oinit-ca. Otherwise, only built-in Go packages are used.

A notable detail is that everything written to the standard output (stdout) is not dis-
played to the user, but rather hidden by the sshd process. To circumvent this, especially
because oinit match must prompt the user for an identity provider to use, the program
writes to the attached Teletypewriter (TTY) directly.

5.6 User switching

The oinit-switch program is invoked by OpenSSH, due to it being embedded in the
issued certificates as force-command option. It is responsible for transparently switching
to the correct Unix user (referred to as target user here), setting up the user environment
and invoking a shell. Additionally, oinit-switch must be able to execute commands
directly instead of starting an interactive login session in case a command was given to
OpenSSH.

When oinit-switch is invoked, the username of the target user is given as program
argument. As all connections to OpenSSH use the oinit user, the program is executed
as that user. The oinit user is set up without any special permissions or access to the
sudo6 command, the challenge therefore is to find a way to allow switching to target users
without further input such as a password.

5.6.1 setuid bit and dropping privileges

As switching to or executing programs as an arbitrary other user without prompting for a
user password requires root permissions, our first approach was to make use of the setuid
kernel feature. By setting the setuid bit on executable file (with the command chmod
u+s), the file is executed as the user owning the file, instead of as the user issuing the
command to execute it. This results in the spawned Linux process having its effective
uid (euid) set to the executable owner’s id, while the process uid (uid) remains as the one
of the issuing user. The setuid bit is used in many programs in a default Linux-based
operating system. For example, the passwd program allows any user to change his/her
own password after a prompt for the current password. For it to be allowed to write
the new hashed password to the /etc/passwd file (for a local Unix account), which is
owned and only writable by the root user, the passwd program has the setuid bit set and
is therefore executed with permissions of the root user. By using root as the owner of
the oinit-switch program and setting the setuid bit, the program is therefore executed
with root permissions. When run by OpenSSH, this allows the program to then make
use of the similarly named setuid system call to drop its root privileges and instead
be executed with the uid and euid of the target user. Any further interaction of the

6Short for superuser do or substitute user do; a common program used on Unix operating systems to
execute commands as the super user (root user).

5.6. USER SWITCHING 41

program with the operating system or kernel is therefore executed as the target user,
re-gaining root permissions is not possible. To prevent any already logged in user from
exploiting the oinit-switch program to switch to an arbitrary user, the program makes
sure that the user executing the program is oinit by checking the uid. After switching to
the target user, oinit-switch then prepares the environment by changing to the target
users’ home directory and setting appropriate values for environment variables such as
HOME, SHELL, USER and PATH. Variable values such as the user’s home directory
and preferred shell are read from the /etc/passwd file. oinit-switch then continues to
spawn an interactive login shell or execute a command directly, if given to OpenSSH.

While this approach does work for local Unix accounts, any other source of users con-
figured on the system (such as LDAP, which motley_cue supports) will not. Additionally,
this sketched approach does not yet consider the /etc/shadow file, which contains aging
information about local Unix accounts. This is problematic, as motley_cue writes a past
date into the account expiration date field when suspending local Unix users. By not
respecting this file, oinit-switch still allows suspended users access to the system. Also,
so far little attention has been paid to the configuration of the user environment. While
the minimal required environment variables HOME, SHELL, USER and PATH are set to
sensible values, no system configuration files such as /etc/login.defs are considered.

5.6.2 Unix tools

Because the extension of oinit-switch to reliably support PAM/Name Service Switch
(NSS) and various system configuration files (including but not limited to /etc/shadow
and /etc/login.defs) is out of scope for this thesis, error-prone and a re-implementation
in Go does not yield a conceivable benefit, we instead opted to rely on existing and well-
established Unix tools. In our research of well-established and commonly available Unix
tools suited for use in oinit-switch, we considered runuser, su and sudo. While the
manual page of runuser states that it is intended to be used by the root user, using
the setuid bit on the oinit-switch executable file and then setting the process uid to
0 at runtime allows us to use the program anyway. However, the manual page also
explains that most versions of runuser (like on Debian GNU/Linux) do use PAM for
session management, however no authentication information are read from PAM, which
disqualifies it for use in oinit-switch.

In contrast, the su program (from whose source code runuser is compiled with re-
duced features) is intended to be used by any user and does support PAM authentication
information. su also considers system login configurations (such as the /etc/login.defs
and /etc/shadow files) for local Unix accounts. Access to suspended or limited accounts
is therefore not granted. Additionally, the program can be configured in a dedicated
PAM configuration file (usually /etc/pam.d/su). This enables a configuration based on
the pam_succeed_if.so module that allows a certain user to switch to arbitrary users
without being prompted for the target user password (see figure 5.10). This also elim-
inates the need for the setuid bit on the oinit-switch executable. su is part of the
util-linux package, which is installed by default on all major Linux distributions. We
therefore decided to use su in oinit-switch.

42 CHAPTER 5. IMPLEMENTATION

1 # Allow 'su <target>' without password if executing user is named oinit
2 auth [success=ignore default=1] pam_succeed_if.so use_uid user = oinit
3

4 # However, target user must not have uid 0 (root user)
5 auth sufficient pam_succeed_if.so uid ne 0

Figure 5.10: Extract from configuration file /etc/pam.d/su which allows user oinit to
switch to an arbitrary user (except root) without being prompted for a password.

We also considered the commonly used program sudo. Like su, it does support switch-
ing to and the execution of commands as another user (with the -u argument). As it also
considers any PAM authentication configuration and can be configured to allow password-
less execution for certain users, sudo is a viable alternative. We however decided against
it, as its configuration file (/etc/sudoers) does not allow excepting root as target user for
password-less execution, which poses a security risk if not handled carefully. In addition,
it is not always installed on Linux-based operating systems by default and therefore offers
not benefit compared to su in our use case.

5.6.3 SSH command

In addition to switching users, oinit-switch must also consider that a user might
have passed a command to execute, instead of requesting an interactive shell. Nor-
mally, the OpenSSH daemon sshd detects the passed command and executes it auto-
matically. Due to the use of the force-command option in the oinit authentication flow
however, any command specified by the user is overwritten and ignored. Because of this,
oinit-switch must manually check for a possibly given command to execute. Accord-
ing to the sshd manual page, the original command is however always preserved in the
SSH_ORIGINAL_COMMAND environment variable [54]. oinit-switch is therefore
able to check if the variable is set and then execute it.

After some preparation and error checking, oinit-switch executes the su command
with the correct arguments. Instead of making use of Go’s Output() or Run() helper
functions from the os/exec package, oinit-switch directly executes the execve system
call, provided via the Exec() function from package syscall. This approach was chosen
because Go’s os/exec package uses follows a fork 7 & execve approach. The use of fork
results in an additional sub-process as a copy of itself, which is then immediately replaced
by the su command. As the oinit-switch process only waits for its sub-process (the
su command) to exit and then exits itself, it is unnecessary and wastes system resources
such as memory. The direct use of the execve system call without a fork/clone prevents
this additional process.

Figures 5.11 and 5.12 show the difference between these approaches. Note that in the
latter figure, the oinit-switch process replaced itself with su and is no longer visible.
The seemingly duplicate sshd: oinit@pts/0 process executed as user oinit is explained

7fork is the standard C library libc function name, the actual system call is named clone.

5.7. USER WORKFLOW 43

USER Command
root sshd: /usr/sbin/sshd -D [listener] 0 of 10-100 startups
root sshd: oinit [priv]
oinit sshd: oinit@pts/0
oinit oinit-switch user
root su - user
user -bash

Figure 5.11: Extract of process tree for an interactive ssh login using the os/exec package
(fork & execve).

USER Command
root sshd: /usr/sbin/sshd -D [listener] 0 of 10-100 startups
root sshd: oinit [priv]
oinit sshd: oinit@pts/0
root su - user
user -bash

Figure 5.12: Extract of process tree for an interactive ssh login using execve directly.

by a privilege separation technique employed by sshd8. One can also observe that the su
process follows the fork & execve approach instead of replacing itself via execve directly.
This is explained by su needing to do PAM-related clean up tasks after the exit of its
child process9.

5.7 User workflow

After installation and configuration of all oinit programs, as well as motley_cue and sshd,
ssh is ready to use OpenID Connect authentication for specific OpenSSH servers. First,
the desired OpenSSH server must be added with the oinit add sub-command (figure
5.13). oinit list shows that the added host is now managed by oinit. Opening a
SSH connection (without specifying a username) invokes oinit automatically. The user
is asked to select from a list of supported OpenID Connect identity providers. Configured
and loaded accounts in oidc-agent are also shown to the user.

After selection, the user may be asked for a passphrase by oidc-agent. If an iden-
tity provider is selected, for which no oidc-agent configuration exists, it is dynamically
created10. This may include opening one or multiple windows (not shown), after which
focus is returned to the terminal.

The user is informed that a temporary OpenSSH certificates was received, after which

8https://serverfault.com/a/585782
9https://github.com/util-linux/util-linux/issues/325#issuecomment-227398119

10Since oidc-agent version 5.

https://serverfault.com/a/585782
https://github.com/util-linux/util-linux/issues/325#issuecomment-227398119

44 CHAPTER 5. IMPLEMENTATION

$ oinit add example.com
i Determined CA from DNS: https://ca.example.com
+ example.com:22 was added.

$ oinit list
i The following hosts are managed by oinit:

example.com:22

$ ssh example.com
[1] https://aai-dev.egi.eu/auth/realms/egi
[2] https://aai.egi.eu/auth/realms/egi
[3] https://accounts.google.com
[4] https://iam.deep-hybrid-datacloud.eu
[5] https://login-dev.helmholtz.de/oauth2 (Accounts: helmholtz)
[6] https://oidc.scc.kit.edu/auth/realms/kit (Accounts: kit)
[7] https://wlcg.cloud.cnaf.infn.it
? Please select a provider to use [1-7]: 6
+ Received a certificate which is valid until 2023-09-01 14:30:00 +0200 CEST
nogroup001@example.com:~$ whoami
nogroup001

$ scp test.txt example.com:~
test.txt 100% 50KB 549.6KB/s 00:00

$ ssh example.com "whoami && ls -l *.txt"
nogroup001
-rw-r--r-- 1 nogroup001 nogroup 5 Aug 9 15:54 test.txt

Figure 5.13: Output of oinit add, oinit list and a subsequence SSH connection.
nogroup001 is the username generated by motley_cue.

he/she is presented with an interactive login shell, running as a personal user account.
Programs relying on SSH, such as rsync and git or scp (shown in figure) work as ex-
pected. Commands directly specified by the user are also executed as the personal user
account.

Evaluation

In this chapter, we evaluate our implementation regarding correctness, performance, se-
curity, and the achievement of the self-defined goals.

6.1 Testing

To verify the correctness of individual functions throughout all oinit programs, we imple-
mented unit test cases. We make use of Go’s built-in testing capabilities (the testing
package and go test command) as well as the widely used toolkit testify1. All unit tests
are run as part of a Continuous Integration (CI) pipeline in the source code repository.

As the correct interaction of all oinit programs among themselves as well as ssh, sshd,
ssh-agent, oidc-agent, and motley_cue is critical, we also run an integration test on
three different operating systems. This test simulates an entire workflow by installing and
configuring all programs, enabling OpenID Connect authentication for a local OpenSSH
daemon and finally executing a command via SSH, verifying that authentication and
command execution succeeded.

To evaluate the oinit-ca REST API, we ran a collection of fuzzing tools2 randomly
testing all routes with different HTTP request headers and bodies. While no problems
directly related to oinit could be found, we followed recommendations of changing some
HTTP response status codes to better suited ones. The fuzzing tool was able to force some
HTTP 500 response codes3 for excessively long request headers, however these errors are
known limitations of Go’s built-in HTTP implementation, therefore not related to oinit
directly and do not represent a problem for real-world scenarios.

To get notified about bugs, performance issues and possible security vulnerabilities,
we also regularly run the static analysis programs staticcheck4, go vet and GitHub’s
CodeQL Go analyzer as part of the CI pipeline.

1github.com/stretchr/testify
2https://endava.github.io/cats/
3This code indicates an internal server error
4https://staticcheck.dev

45

github.com/stretchr/testify
https://endava.github.io/cats/
https://staticcheck.dev

46 CHAPTER 6. EVALUATION

6.2 Latency

To offer a good user experience, authentication using the oinit programs should be fast
with as little latency as possible. As oinit does not implement any computationally
intensive algorithms but rather interconnects multiple services across multiple servers,
the network latency plays a major role in the perceived performance. Based on the
sequence diagrams shown in 5.3, we aimed to reduce the number of network requests.

First, whenever oinit add is run to enable OpenID Connect authentication for an
OpenSSH host, the automatically determined oinit-ca/reverse proxy URL is perma-
nently stored in ~/.ssh/oinit_hosts. This prevents DNS requests every time a connec-
tion to the enabled server is made. If the CA URL does change at some point, users are
required to delete and add the host via oinit del/oinit add again.

Second, we introduced a temporary cache for the request of supported providers from
oinit-ca to motley_cue. This prevents a chained HTTP request, for which the SSH
client must wait. We do not expect the supported providers to change regularly for a
motley_cue instance, therefore the first response is cached for a configurable time. By
caching the motley_cue response at the CA and not the oinit client program, all clients
communicating with the CA benefit from decreased response times.

We found that all remaining network requests are necessary and cannot be cached.

6.3 Security

As defined in G6, authentication using oinit must be secure and tamper-proof. By using
HTTPS for all communication between REST APIs, we make sure that no sensitive data
(e.g., access tokens) can be read by a third party. For the SSH connection itself, oinit
relies on standard OpenSSH certificate authentication without modifications, we therefore
rely on OpenSSH’s security guarantees.

Still, we identified two possible security problems related to the use of certificate
authentication and user switching. As an OpenSSH administrator delegates authorization
decisions to a certificate authority, he/she must trust the CA to correctly issue user
certificates with the embedded force-command. Section 6.3.1 describes the problem and
mitigation of a missing force-command. On the OpenSSH server, we rely on oinit-switch
to securely switch to a personal user account. A security problem we identified due to the
use of su is described in section 6.3.2.

6.3.1 Service user interactive access

While the oinit service user has no administrative rights, it is allowed via PAM to switch
to other user accounts without requiring their password. Interactive shell access to the
oinit user therefore poses an opportunity for abuse, which must be prevented.

By default, the user is created without a password and without any configured au-
thorized public keys for SSH access. Nobody except system administrators is therefore

6.3. SECURITY 47

able to directly access the oinit user. However, as this service user is used for all SSH
connections before switching to the correct target user (see section 5.6), oinit relies on the
execution of the force-command present in certificates to not grant interactive access. For
example, a force-command set to force-command: 'oinit-switch example' instructs
the OpenSSH daemon to execute /bin/bash -c 'oinit-switch example' as the oinit
user5. If the daemon would not execute the force-command, for example due to a bug,
interactive shell access as the oinit user would be granted. Similarly, the oinit certificate
authority could mistakenly issue a certificate without the force-command being set, which
would also result in interactive access. While this should never happen, we still want to
prevent this attack vector.

To mitigate these unlikely but possible scenarios, we implement a custom shell to
replace /bin/bash for the oinit user. This program, called oinit-shell, must prevent
interactive access however still allow the execution of the oinit-switch force-command
for user switching to work. To achieve this, oinit-shell carefully checks its arguments
to only allow the execution of /usr/bin/oinit-shell -c 'oinit-switch ...' but no
other command. Passing no arguments also results in an error to prevent interactive
access. This approach is inspired by git-shell6, a shell restricting SSH access to only a
few commands required for the git program to work. After validating its arguments, the
passed oinit-switch command is executed via the execve system call, which replaces
the currently running process and initializes a new stack and heap. Without prior forking,
this hides the custom shell in the process tree.

To enable oinit-shell, it must be configured as the default shell for the oinit user
at creation time or later using the chsh command.

6.3.2 TTY injection

In Unix based operating systems, the Teletypewriter subsystem is a core concept of inter-
action with processes. It stems from the early days of computers when physical typewriters
were used to interact with computers. In modern kernels such as Linux, the TTY is a
subsystem responsible for handling user input including line editing commands such as
backspace, clear and reprint. The concept of pseudo terminals (pty) with a master and
slaves (pts) was introduced to allow terminal emulation in userland. A single so-called
TTY device7 can be attached to multiple Linux processes at the same time. While one
process receives its input from the device (stdin) and outputs to it (stdout), the other
processes run in the background.

The ioctl system call allows interaction with the TTY subsystem and pseudo termi-
nals. Problematic is its TIOCSTI command, which can insert arbitrary input to a process’s
attached TTY. Figure 6.1 shows that by default, the su command used in oinit-switch
for user switching (see section 5.6) is vulnerable to an attack enabled by the TIOCSTI

5This assumes GNU Bash (Bourne Again SHell : https://www.gnu.org/software/bash/) as the
default shell, however this behavior is equivalent for all shells.

6https://git-scm.com/docs/git-shell
7A TTY device is the TTY driver plus a so-called line discipline configuration, residing as a file in the

/dev directory (e.g., /dev/pts/0).

https://www.gnu.org/software/bash/
https://git-scm.com/docs/git-shell

48 CHAPTER 6. EVALUATION

command. A malicious user could stop the -bash process using SIGSTOP8 and then make
use of the ioctl system call to send input to the parent su process as if entered by hand,
which is run as the root user9.

USER TTY Command
root (no tty) sshd: /usr/sbin/sshd -D [listener] 0 of 10-100 startups
root (no tty) sshd: oinit [priv]
oinit (no tty) sshd: oinit@pts/0
root pts/0 su - user
user pts/0 -bash

Figure 6.1: Extract of process tree showing su’s default behavior. Note the identical
pts/0 pseudo terminal for both su and the bash subprocess.

While the TIOCSTI command can be optionally disabled since Linux 6.210, we expect
most Linux based operating systems to still be vulnerable to this attack. In its manual
page, the authors of su state that the --pty/-P argument can be used to protect against
terminal injection using the ioctl system call [55]. The attack is mitigated by creating
a separate pseudo terminal slave for the subprocess of su, which can be seen in figure
6.2. This is a simple mitigation which we decided to use in oinit-switch for interactive
sessions.

USER TTY Command
root (no tty) sshd: /usr/sbin/sshd -D [listener] 0 of 10-100 startups
root (no tty) sshd: oinit [priv]
oinit (no tty) sshd: oinit@pts/0
root pts/0 su - user --pty
user pts/1 -bash

Figure 6.2: Extract of process tree showing su with --pty argument. Note the different
pts/1 pseudo terminal for the bash subprocess.

However, we found that using the --pty argument with su breaks some non-interactive
SSH sessions. This includes programs relying on SSH, such as scp, git and rsync. We
identified the cause being that ssh by default does not request a TTY device from the
OpenSSH daemon when executing command directly. In our case, that means that the
oinit-switch or its replacing su process is started without an attached TTY. The use
of su --pty for ioctl TIOCSTI mitigation however results in a pseudo terminal device
being created for the subprocess, nonetheless. This device sets some default input/output
related terminal configuration including column/row counts, line break and end of line
(EOL) characters. Due to this, the text-based data exchanged by programs such as

8A signal sent from the kernel to a process to stop it.
9https://www.errno.fr/TTYPushback.html

10https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=
83efeeeb3d04

https://www.errno.fr/TTYPushback.html
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=83efeeeb3d04
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=83efeeeb3d04

6.4. VERIFICATION OF GOALS 49

scp, git and rsync with a respective process on the OpenSSH server via SSH contains
unexpected line breaks, resulting in errors.

While we experimented with manual TTY configuration, we found no easy way to
prevent this behavior. As we also did not intend to change the source code of programs
relying on SSH to be compatible again, we decided to not use su’s --pty argument
for non-interactive commands. However, as ssh allows forcing TTY creation from the
OpenSSH daemon even for non-interactive access, users aware of this decision could gain
access to an interactive session without any mitigation. For example, a user running ssh
-tt example.com /bin/bash would gain access to an interactive shell process without
the su --pty mitigation and could therefore run an ioctl TIOCSTI attack.

To fix this issue, an option is to whitelist certain commands and allow them to be
run without the mitigation. We decided against this, as this requires extensive knowledge
of all programs that users might want to run via SSH and updating the oinit-switch
source code for every new command. Instead, we decided to modify oinit-switch to not
allow any TTY to be present when executing commands. This does break the legitimate
use case of requesting a TTY for directly running interactive commands, such as ssh -tt
example.com htop11. However, we expect the number of users aware of the ssh -tt
argument to be small in the first place. Additionally, normal interactive access is still
always possible by first connecting via ssh example.org and then executing htop via
the interactive shell on the server.

6.4 Verification of goals

In section 4.1, we defined six goals that, according to our own opinion, should be fulfilled
by an OpenID Connect authentication mechanism for OpenSSH. These goals are aimed
towards a secure implementation and a good user experience. We verify if and how our
chosen approach and implementation fulfills these goals.

G1: No change in users’ workflows
oinit integrates seamlessly into any ssh command, which can be used as always. No wrap-
per script or program is required to authenticate at the OpenSSH server using OpenID
Connect. Users are only required to enable the oinit workflow for one or multiple servers
(using wildcards) once. Therefore, users are not required to change their existing work-
flows, with the one notable exception being that the remote username must not be spec-
ified, as this will overwrite the service username used by oinit and prevent successful
authentication.

All built-in OpenSSH functionalities such as jump hosts, agent forwarding, and the
execution of commands are supported with OpenID Connect authentication. External
programs relying on SSH, such as scp, git and rsync can also be used without problems.
Due to the mitigation of a security problem, the only built-in functionality not working
correctly is the request of a TTY when executing commands, as described in section 6.3.2.

No manual intervention in the form of inserting or copying access token is required

11htop is an interactive process viewer.

50 CHAPTER 6. EVALUATION

from the user. The user is only prompted to select from a list of supported OpenID
Connect identity providers, which can be prevented by a pre-selection using environment
variables, if desired.

We conclude that no change in users’ workflows is necessary in most cases.

G2: Multiple OpenID Connect identity providers
When a connection to an OpenID Connect authentication-enabled OpenSSH server is
made, the user is prompted to select from a list of supported identity providers. This
list stems from the configuration of motley_cue, which can support multiple OpenID
Connect identity providers. We therefore conclude that oinit fulfills this goal.

It must be noted that in its current implementation, oinit always uses an OpenSSH
certificate for a given server if present. If a user wants to connect to the same server
using a different identity provider, the existing certificate can be manually removed from
ssh-agent. Unfortunately, ssh does not support explicitly selecting a ssh-agent identity
to use when connecting to a server, therefore using two different identity providers for a
single OpenSSH server simultaneously without removing an identity is not possible.

G3: Retain the benefits of federated identities
oinit makes use of oidc-agent, which enabled SSO-like capabilities by loading so-called
configurations into memory. That means that no password or other form of unlocking
is necessary after the first time. As oinit supports any OpenID identity provider that
oidc-agent and motley_cue are configured for and only forwards access tokens, interop-
erability is also granted. Additionally, credential expiry is retained as certificates issued
by the oinit CA expire after a configurable time (or at the same time as the OpenID Con-
nect access token). Revocation of credentials is also supported, as oinit does not allow
access after user accounts are suspended or limited by motley_cue.

As oinit is based on OpenSSH certificates, drawbacks of other authentication methods
including passwords and private keys are prevented. The issued certificates are only valid
for a limited time and therefore not re-usable limitlessly. As all certificates are signed by a
trusted OpenSSH certification authority, forging them is also very difficult. Additionally,
the risk of any credential compromise is reduced by never storing any key or certificate
on disk. The required OpenSSH private/public key pair is generated and held in memory
only, as is any received OpenSSH certificate that is only loaded into ssh-agent and never
written to file.

G4: Dynamic usernames based on federated identity
Personal user accounts are deployed when a SSH connection is first made to an OpenSSH
server. While the user accounts are deployed by an HTTP call preceding the actual
SSH connection, this is a design decision reasoned by security reasons (see section 5) and
not noticed by the user. Usernames are generated by motley_cue based on the claims
contained in the access token (which is a JSON Web Token) and therefore chosen by the
server. We conclude that user accounts are indeed deployed on-demand, which allows
users to connect without knowledge of their personal account username.

G5: No source code changes
oinit extends OpenSSH’s functionality by automatically modifying configuration files and
making use of built-in features, especially the certificate force-command critical option.

6.5. LIMITATIONS 51

No changes to the OpenSSH source code are therefore required. The built-in features
oinit relies on (especially certificates and EdDSA keys) have been introduced years ago,
therefore no recent version is required.

G6: Secure and tamper-proof
oinit relies on the security of OpenSSH certificates and does not tamper with the SSH
connection itself. As discussed in section 6.3, oinit deploys mitigation techniques to
prevent unwanted service user interactive access and TTY injection attacks, that could
be used to impersonate other user accounts.

We conclude that our implementation mostly fulfills the defined goals, therefore oinit is
a viable solution to extend OpenSSH with OpenID Connect authentication. However, the
taken design decisions imply some limitations, which we discuss in the following section.

6.5 Limitations

oinit is based on some OpenSSH-specific features, including OpenSSH certificates and
ssh’s Match exec configuration keyword. Therefore, oinit can only be used with the
OpenSSH implementation of SSH. While other implementations do support some of
OpenSSH’s features (for example, PuTTY supports OpenSSH certificates since 2022),
they cannot be used as a drop-in replacement for ssh or sshd in our architecture. We
already outlined this limitation alongside the defined goals in section 4.1.

Regarding operating systems, oinit is limited to Unix systems including Linux dis-
tributions and Apple macOS. For the oinit client program, this is because the used
crypto/ssh Go package only supports Unix sockets for communication with ssh-agent.
Similarly, the liboidcagent-go library only supports Unix sockets as well. While both
ssh-agent and oidc-agent are available for non-Unix operating systems such as Win-
dows, missing Go packages/libraries supporting Windows’ named pipes make an integra-
tion difficult. For the OpenSSH server, oinit is limited to Linux distributions only, as
motley_cue currently is limited to Linux.

The use of OpenSSH certificates for oinit also introduces additional complexity and
limitations. By default, an OpenSSH daemon is not configured to accept certificates and
some configuration is necessary (see section 4.3.6). Also, because sshd only supports
one certification authority simultaneously, the use of oinit prevents the use of OpenSSH
certificates for authentication of unrelated users. The same user CA could be used for oinit
and authentication of unrelated users, however that requires the possession of the user
CA private key which implies the oinit CA being hosted on the same server as OpenSSH.

In general, the use of OpenSSH certificates introduces multiple trust relationships.
OpenSSH server administrators give away the user authentication decision to the CA and
must trust it to only issue user certificates to trusted users. Similarly, SSH users must
trust the CA to not issue host certificates to untrusted servers. In comparison, password
and public key authentication rely on Trust On First Use (TOFU). For oinit, this means
that if a separate, trusted CA is not desired or possible, the CA must be hosted on the
same server as the OpenSSH server.

52 CHAPTER 6. EVALUATION

6.6 Installation

All oinit source code is open source, hosted on GitHub and licensed under the MIT
license12. The repository also includes documentation for the installation and configu-
ration of all programs13. All four oinit binaries oinit, oinit-ca, oinit-switch and
oinit-shell can be compiled from the same repository using standard Go tools. Alter-
natively, Linux packages with pre-built binaries are available for Debian- and RPM-based
distributions14. A Docker container image containing oinit-ca is available from the
GitHub Container Registry15 as well.

When installed, the Linux packages install configuration files, create a system user,
generate OpenSSH key pairs and set up systemd. However, a few manual configuration
steps like the generation of a host CA public key for every desired OpenSSH server are
still required. These steps are mentioned in the documentation.

12https://github.com/lbrocke/oinit
13https://github.com/lbrocke/oinit/wiki
14https://repo.data.kit.edu
15https://github.com/lbrocke/oinit/pkgs/container/oinit-ca

https://github.com/lbrocke/oinit
https://github.com/lbrocke/oinit/wiki
https://repo.data.kit.edu
https://github.com/lbrocke/oinit/pkgs/container/oinit-ca

Conclusion

In this chapter, we summarize the presented thesis and give suggestions for possible future
work to extend oinit.

7.1 Summary

The goal of this thesis was to extend standard OpenSSH with support for authentication
using federated identities. For this, we opted to rely on the established OpenID Connect
protocol, which includes benefits such as SSO, scalability and interoperability. Our goals
included to prevent any source code changes, while at the same time to provide a seamless
integration into standard OpenSSH. We did not want users to be required to change any
of their existing workflows. Additionally, we wanted to allow the usage of any OpenID
Connect identity provider, for which user accounts are deployed dynamically and on-
demand.

In this thesis, we presented our analysis of OpenSSH, including its existing authen-
tication mechanisms and configuration options. Based on this research, we presented
a concept and architecture on how to integrate OpenID Connect authentication into
OpenSSH without any source code changes. We described the implementation of four in-
dividual programs, which interact with OpenSSH as well as oidc-agent and motley_cue
to achieve this thesis’ goal. Also, we outlined multiple security problems and our approach
of their mitigation. As a result, we present a suite of programs called oinit, that fulfills
the goals we outlined for ourselves.

All oinit programs are publicly available under the MIT license, we additionally provide
Linux packages and documentation for easy installation. For OpenSSH administrator and
users, oinit provides a simple way to extend SSH with OpenID Connect authentication.
It can be used alongside other solutions, such as mccli, depending on use case and
environmental restrictions.

7.2 Future work

oinit is fully usable on Unix operating systems such as Linux distributions and Apple
macOS. However, due to limitations of libraries and packages oinit is based on, other op-
erating systems are not supported. This includes Microsoft Windows, for which OpenSSH

53

54 CHAPTER 7. CONCLUSION

and oidc-agent are available. To make oinit available for more users, the implementation
of named pipes for support of ssh-agent and oidc-agent are desirable.

In its current implementation, the oinit certificate authority does allow the configura-
tion of issued OpenSSH certificates. This includes the OpenSSH user CA to sign certifi-
cates with, as well as the certificate validity. CA administrators may want to restrict or
extend issued certificates even more, for example by making use of the certificate exten-
sions feature to allow/restrict the use of agent/port/X11 forwarding or TTY allocation.
Therefore, the oinit CA could be extended to allow for further configuration.

Our research and implementation of oinit is limited to OpenSSH, as it is the most
widely used implementation of SSH. Due to the use of some OpenSSH-specific feature,
other implementations such as Dropbear SSH and PuTTY cannot be used as a drop-in
replacement. In future work, attempts at adapting oinit to support other SSH implemen-
tations could be made.

Bibliography

[1] 7th Zero. Results: SSH Statistics Gathering Project. https : / / 7thzero . com /
blog/ssh- statistics- gathering- project- 2017- results. [Online; accessed
04-September-2023]. 2017.

[2] Oliver Gasser, Ralph Holz, and Georg Carle. “A deeper understanding of SSH:
Results from Internet-wide scans”. In: 2014 IEEE Network Operations and Manage-
ment Symposium (NOMS). 2014, pp. 1–9. doi: 10.1109/NOMS.2014.6838249.

[3] D. Hardt. The OAuth 2.0 Authorization Framework. RFC 6749. http://www.rfc-
editor.org/rfc/rfc6749.txt. RFC Editor, Oct. 2012. url: http://www.rfc-
editor.org/rfc/rfc6749.txt.

[4] OpenID Foundation. How OpenID Connect Works - OpenID Foundation. https:
//openid.net/developers/how- connect- works/. [Online; accessed 30-July-
2023]. 2023.

[5] C. Neuman et al. The Kerberos Network Authentication Service (V5). RFC 4120.
http://www.rfc-editor.org/rfc/rfc4120.txt. RFC Editor, July 2005. url:
http://www.rfc-editor.org/rfc/rfc4120.txt.

[6] MIT. Kerberos: The Network Authentication Protocol. https://web.mit.edu/
kerberos/. [Online; accessed 04-September-2023]. 2023.

[7] Cantor S. et al. Assertions and Protocols for the OASIS Security Assertion Markup
Language (SAML) V2.0. OASIS Standard saml-core-2.0-os. http://docs.oasis-
open.org/security/saml/v2.0/saml-core-2.0-os.pdf. OASIS, Mar. 2005.
url: http://docs.oasis-open.org/%20security/saml/v2.0/saml-core-2.0-
os.pdf.

[8] The OpenSSH contributors. OpenSSH. https://www.openssh.com. [Online; ac-
cessed 18-July-2023]. 2023.

[9] J. Sermersheim. Lightweight Directory Access Protocol (LDAP): The Protocol. RFC
4511. http://www.rfc-editor.org/rfc/rfc4511.txt. RFC Editor, June 2006.
url: http://www.rfc-editor.org/rfc/rfc4511.txt.

[10] Ruti Gafni and Dudu Nissim. “To Social Login or not Login? Exploring Factors
Affecting the Decision”. In: Issues in Informing Science and Information Technology
11 (Jan. 2014), pp. 57–72. doi: 10.28945/1980.

[11] LoginRadius. Consumer Digital Identity Trend Report 2022. https://www.loginradius.
com/resource/consumer-digital-identity-trend-report-2022. [Online; ac-
cessed 04-September-2023]. 2022.

55

https://7thzero.com/blog/ssh-statistics-gathering-project-2017-results
https://7thzero.com/blog/ssh-statistics-gathering-project-2017-results
https://doi.org/10.1109/NOMS.2014.6838249
http://www.rfc-editor.org/rfc/rfc6749.txt
http://www.rfc-editor.org/rfc/rfc6749.txt
http://www.rfc-editor.org/rfc/rfc6749.txt
http://www.rfc-editor.org/rfc/rfc6749.txt
https://openid.net/developers/how-connect-works/
https://openid.net/developers/how-connect-works/
http://www.rfc-editor.org/rfc/rfc4120.txt
http://www.rfc-editor.org/rfc/rfc4120.txt
https://web.mit.edu/kerberos/
https://web.mit.edu/kerberos/
http://docs.oasis-open.org/ security/saml/v2.0/saml-core-2.0-os.pdf
http://docs.oasis-open.org/ security/saml/v2.0/saml-core-2.0-os.pdf
http://docs.oasis-open.org/%20security/saml/v2.0/saml-core-2.0-os.pdf
http://docs.oasis-open.org/%20security/saml/v2.0/saml-core-2.0-os.pdf
https://www.openssh.com
http://www.rfc-editor.org/rfc/rfc4511.txt
http://www.rfc-editor.org/rfc/rfc4511.txt
https://doi.org/10.28945/1980
https://www.loginradius.com/resource/consumer-digital-identity-trend-report-2022
https://www.loginradius.com/resource/consumer-digital-identity-trend-report-2022

56 BIBLIOGRAPHY

[12] janrain and Blue Research. The Value of Social Login - Solving the Engagement
Gap. https://paperform.co/ebook/Industry-Research-Value-of-Social-
Login-2013.pdf. 2014.

[13] T. Ylonen and C. Lonvick. The Secure Shell (SSH) Protocol Architecture. RFC 4251.
http://www.rfc-editor.org/rfc/rfc4251.txt. RFC Editor, Jan. 2006. url:
http://www.rfc-editor.org/rfc/rfc4251.txt.

[14] Damien Miller. SSH Agent Protocol. Internet-Draft draft-miller-ssh-agent-04. IETF
Secretariat, Dec. 2019.

[15] T. Ylonen and C. Lonvick. The Secure Shell (SSH) Connection Protocol. RFC 4254.
http://www.rfc-editor.org/rfc/rfc4254.txt. RFC Editor, Jan. 2006. url:
http://www.rfc-editor.org/rfc/rfc4254.txt.

[16] T. Ylonen and C. Lonvick. The Secure Shell (SSH) Authentication Protocol. RFC
4252. http://www.rfc-editor.org/rfc/rfc4252.txt. RFC Editor, Jan. 2006.
url: http://www.rfc-editor.org/rfc/rfc4252.txt.

[17] F. Cusack and M. Forssen. Generic Message Exchange Authentication for the Secure
Shell Protocol (SSH). RFC 4256. RFC Editor, Jan. 2006.

[18] J. Hutzelman et al. Generic Security Service Application Program Interface (GSS-
API) Authentication and Key Exchange for the Secure Shell (SSH) Protocol. RFC
4462. RFC Editor, May 2006.

[19] HTTP Documentation. HTTP Working Group. https://httpwg.org/specs/.
[Online; accessed 03-September-2023]. 2023.

[20] Tim Berners-Lee. The HTTP Protocol As Implemented In W3. https://www.
w3.org/Protocols/HTTP/AsImplemented.html. [Online; accessed 03-September-
2023]. 1991.

[21] M. Jones, J. Bradley, and N. Sakimura. JSON Web Token (JWT). RFC 7519. http:
//www.rfc-editor.org/rfc/rfc7519.txt. RFC Editor, May 2015. url: http:
//www.rfc-editor.org/rfc/rfc7519.txt.

[22] S. Josefsson. The Base16, Base32, and Base64 Data Encodings. RFC 4648. http:
//www.rfc-editor.org/rfc/rfc4648.txt. RFC Editor, Oct. 2006. url: http:
//www.rfc-editor.org/rfc/rfc4648.txt.

[23] Christopher John Atherton et al. Federated Identity Management for Research Col-
laborations. Version 2.0. June 2018. doi: 10.5281/zenodo.1307551. url: https:
//doi.org/10.5281/zenodo.1307551.

[24] AARC Community members and AppInt members. AARC Blueprint Architecture
2019 (AARC-G045). Nov. 2019. doi: 10.5281/zenodo.3672785. url: https:
//doi.org/10.5281/zenodo.3672785.

[25] Gabriel Zachmann and contributors. Introduction - oidc-agent. https://indigo-
dc.gitbook.io/oidc-agent/. [Online; accessed 30-July-2023]. 2023.

[26] Gabriel Zachmann and contributors. API - oidc-agent. https : / / indigo - dc .
gitbook.io/oidc-agent/api. [Online; accessed 30-July-2023]. 2023.

[27] Diana Gudu and contributors. motley cue. https://motley-cue.readthedocs.
io/en/latest/. [Online; accessed 30-July-2023]. 2023.

https://paperform.co/ebook/Industry-Research-Value-of-Social-Login-2013.pdf
https://paperform.co/ebook/Industry-Research-Value-of-Social-Login-2013.pdf
http://www.rfc-editor.org/rfc/rfc4251.txt
http://www.rfc-editor.org/rfc/rfc4251.txt
http://www.rfc-editor.org/rfc/rfc4254.txt
http://www.rfc-editor.org/rfc/rfc4254.txt
http://www.rfc-editor.org/rfc/rfc4252.txt
http://www.rfc-editor.org/rfc/rfc4252.txt
https://httpwg.org/specs/
https://www.w3.org/Protocols/HTTP/AsImplemented.html
https://www.w3.org/Protocols/HTTP/AsImplemented.html
http://www.rfc-editor.org/rfc/rfc7519.txt
http://www.rfc-editor.org/rfc/rfc7519.txt
http://www.rfc-editor.org/rfc/rfc7519.txt
http://www.rfc-editor.org/rfc/rfc7519.txt
http://www.rfc-editor.org/rfc/rfc4648.txt
http://www.rfc-editor.org/rfc/rfc4648.txt
http://www.rfc-editor.org/rfc/rfc4648.txt
http://www.rfc-editor.org/rfc/rfc4648.txt
https://doi.org/10.5281/zenodo.1307551
https://doi.org/10.5281/zenodo.1307551
https://doi.org/10.5281/zenodo.1307551
https://doi.org/10.5281/zenodo.3672785
https://doi.org/10.5281/zenodo.3672785
https://doi.org/10.5281/zenodo.3672785
https://indigo-dc.gitbook.io/oidc-agent/
https://indigo-dc.gitbook.io/oidc-agent/
https://indigo-dc.gitbook.io/oidc-agent/api
https://indigo-dc.gitbook.io/oidc-agent/api
https://motley-cue.readthedocs.io/en/latest/
https://motley-cue.readthedocs.io/en/latest/

BIBLIOGRAPHY 57

[28] PRACE-LAB. PRACE-LAB / pam. https : / / git . man . poznan . pl / stash /
projects/PRACELAB/repos/pam/. [Online; accessed 30-July-2023]. 2023.

[29] Diana Gudu and contributors. mccli. https : / / mccli . readthedocs . io / en /
latest/. [Online; accessed 30-July-2023]. 2023.

[30] Internet2 Middleware Initiative. COmanage. https://spaces.at.internet2.edu/
display/COmanage/Home. [Online; accessed 16-September-2023]. 2023.

[31] INDIGO. Introduction - Token Translation Service. https://indigo-dc.gitbook.
io/token-translation-service/. [Online; accessed 16-September-2023]. 2018.

[32] INDIGO. indigo-dc/tts: WaTTS - the INDIGO Token Translation Service. https:
//github.com/indigo-dc/tts. [Online; accessed 16-September-2023]. 2018.

[33] Bas Wegh and Lukas Burgey. indigo-dc/tts_plugin_ssh: a simple ssh plugin for
WaTTS. https://github.com/indigo- dc/tts_plugin_ssh/tree/master.
[Online; accessed 16-September-2023]. 2018.

[34] Erik Berdonces Bonelo. “OpenID Connect Client Registration API for Federated
Cloud Platforms”. English. Master’s thesis. Aalto University. School of Science, 2017,
p. 62. url: http://urn.fi/URN:NBN:fi:aalto-201706135534.

[35] Yuri Demchenko et al. “CYCLONE: A Platform for Data Intensive Scientific Appli-
cations in Heterogeneous Multi-cloud/Multi-provider Environment”. In: 2016 IEEE
International Conference on Cloud Engineering Workshop (IC2EW). 2016, pp. 154–
159. doi: 10.1109/IC2EW.2016.46.

[36] Jarosław Surkont et al. PAM module for OAuth 2.0 Device flow. [Computer Soft-
ware] https://doi.org/10.11578/dc.20220727.6. Aug. 2020. doi: 10.11578/
dc.20220727.6. url: https://doi.org/10.11578/dc.20220727.6.

[37] UK Research and Innovation (UKRI). slaclab/pam_oauth2_device: PAM module
OAuth2 Device flow. https://github.com/slaclab/pam_oauth2_device. [Online;
accessed 16-September-2023]. 2022.

[38] National Science Foundation et al. GSI-Enabled OpenSSH. http://grid.ncsa.
illinois.edu/ssh/. [Online; accessed 28-August-2023]. 2019.

[39] Jason Alt et al. “OAuth SSH with Globus Auth”. In: Practice and Experience in Ad-
vanced Research Computing. PEARC ’20. Portland, OR, USA: Association for Com-
puting Machinery, 2020, pp. 34–40. isbn: 9781450366892. doi: 10.1145/3311790.
3396658. url: https://doi.org/10.1145/3311790.3396658.

[40] Extreme Science and Engineering Discovery Environment (XSEDE). XSEDE/oauth-
ssh: SSH with Globus Auth. https://github.com/XSEDE/oauth-ssh. [Online;
accessed 16-September-2023]. 2022.

[41] You Alex Gao, Jim Basney, and Alex Withers. “SciTokens SSH: Token-Based Au-
thentication for Remote Login to Scientific Computing Environments”. In: Practice
and Experience in Advanced Research Computing. PEARC ’20. Portland, OR, USA:
Association for Computing Machinery, 2020, pp. 465–468. isbn: 9781450366892.
doi: 10.1145/3311790.3399613. url: https://doi.org/10.1145/3311790.
3399613.

https://git.man.poznan.pl/stash/projects/PRACELAB/repos/pam/
https://git.man.poznan.pl/stash/projects/PRACELAB/repos/pam/
https://mccli.readthedocs.io/en/latest/
https://mccli.readthedocs.io/en/latest/
https://spaces.at.internet2.edu/display/COmanage/Home
https://spaces.at.internet2.edu/display/COmanage/Home
https://indigo-dc.gitbook.io/token-translation-service/
https://indigo-dc.gitbook.io/token-translation-service/
https://github.com/indigo-dc/tts
https://github.com/indigo-dc/tts
https://github.com/indigo-dc/tts_plugin_ssh/tree/master
http://urn.fi/URN:NBN:fi:aalto-201706135534
https://doi.org/10.1109/IC2EW.2016.46
https://doi.org/10.11578/dc.20220727.6
https://doi.org/10.11578/dc.20220727.6
https://doi.org/10.11578/dc.20220727.6
https://doi.org/10.11578/dc.20220727.6
https://github.com/slaclab/pam_oauth2_device
http://grid.ncsa.illinois.edu/ssh/
http://grid.ncsa.illinois.edu/ssh/
https://doi.org/10.1145/3311790.3396658
https://doi.org/10.1145/3311790.3396658
https://doi.org/10.1145/3311790.3396658
https://github.com/XSEDE/oauth-ssh
https://doi.org/10.1145/3311790.3399613
https://doi.org/10.1145/3311790.3399613
https://doi.org/10.1145/3311790.3399613

58 BIBLIOGRAPHY

[42] Inc. Smallstep Labs. Smallstep SSH — Single Sign-On SSH With Zero Key Manage-
ment. https://smallstep.com/sso-ssh/. [Online; accessed 16-September-2023].
2023.

[43] Gravitational Inc. Using Teleport with OpenSSH in agentless mode | Teleport Docs.
https://goteleport.com/docs/server- access/guides/openssh/. [Online;
accessed 16-September-2023]. 2023.

[44] Inc. Smallstep Labs. step-cli | Automate Certificates & Common Cryptography Prim-
itives. https://smallstep.com/cli/index.html. [Online; accessed 16-September-
2023]. 2023.

[45] Gravitational Inc. Configure SSH with Pluggable Authentication Modules | Teleport
Docs. https : / / goteleport . com / docs / server - access / guides / ssh - pam/.
[Online; accessed 16-September-2023]. 2023.

[46] Matt Johnston. Dropbear SSH. https://matt.ucc.asn.au/dropbear/dropbear.
html. [Online; accessed 05-September-2023]. 2023.

[47] J. Linn. Generic Security Service Application Program Interface Version 2, Update
1. RFC 2743. RFC Editor, Jan. 2000.

[48] L. Zhu, K. Jaganathan, and S. Hartman. The Kerberos Version 5 Generic Secu-
rity Service Application Program Interface (GSS-API) Mechanism: Version 2. RFC
4121. http://www.rfc-editor.org/rfc/rfc4121.txt. RFC Editor, July 2005.
url: http://www.rfc-editor.org/rfc/rfc4121.txt.

[49] E. Lear et al. A Simple Authentication and Security Layer (SASL) and Generic
Security Service Application Program Interface (GSS-API) Mechanism for OpenID.
RFC 6616. RFC Editor, May 2012.

[50] OpenSSH contributors. Portable OpenSSH. https://github.com/openssh/openssh-
portable. [Online; accessed 30-July-2023]. 2023.

[51] Tatu Ylonen et al. ssh-keygen(1) — OpenSSH authentication key utility. July 2023.
url: https://man.openbsd.org/ssh-keygen.1.

[52] The OpenSSH contributors. sshd_config(5) - OpenBSD manual pages. https://
man.openbsd.org/sshd_config. [Online; accessed 29-August-2023]. 2023.

[53] The OpenSSH contributors. ssh_config(5) - OpenBSD manual pages. https://
man.openbsd.org/ssh_config. [Online; accessed 29-August-2023]. 2023.

[54] The OpenSSH contributors. sshd(8) - OpenBSD manual pages. https : / / man .
openbsd.org/sshd. [Online; accessed 29-August-2023]. 2023.

[55] util-linux contributors. su(1) - Linux manual page. https://man7.org/linux/man-
pages/man1/su.1.html. [Online; accessed 29-August-2023]. 2023.

https://smallstep.com/sso-ssh/
https://goteleport.com/docs/server-access/guides/openssh/
https://smallstep.com/cli/index.html
https://goteleport.com/docs/server-access/guides/ssh-pam/
https://matt.ucc.asn.au/dropbear/dropbear.html
https://matt.ucc.asn.au/dropbear/dropbear.html
http://www.rfc-editor.org/rfc/rfc4121.txt
http://www.rfc-editor.org/rfc/rfc4121.txt
https://github.com/openssh/openssh-portable
https://github.com/openssh/openssh-portable
https://man.openbsd.org/ssh-keygen.1
https://man.openbsd.org/sshd_config
https://man.openbsd.org/sshd_config
https://man.openbsd.org/ssh_config
https://man.openbsd.org/ssh_config
https://man.openbsd.org/sshd
https://man.openbsd.org/sshd
https://man7.org/linux/man-pages/man1/su.1.html
https://man7.org/linux/man-pages/man1/su.1.html

Appendix

Commands used in example OpenSSH certificate setup

Generate user key pair
$ ssh-keygen -t ed25519 -f user-key -C user-key

Generate host key pair
$ ssh-keygen -t ed25519 -f host-key -C host-key

Generate CA key pairs
$ ssh-keygen -t ed25519 -f host-ca -C host-ca
$ ssh-keygen -t ed25519 -f user-ca -C user-ca

Issue host certificate 'host-key-cert.pub'
$ ssh-keygen -h -I example.com -n example.com -V +1w -s host-ca host-key.pub

Issue user certificate 'user-key-cert.pub'
$ ssh-keygen -I user@example.com -n user -V +1d -s user-ca user-key.pub

59

List of Acronyms

API Application Programming Interface

CSS Cascading Style Sheets

DNS Domain Name System

EdDSA Edwards-curve Digital Signature Algorithm

HTML HyperText Markup Language

HTTP Hypertext Transfer Protocol

IETF Internet Engineering Task Force

IPC Inter-Process Communication

JSON JavaScript Object Notation

JWT JSON Web Token

LDAP Lightweight Directory Access Protocol

NSS Name Service Switch

PAM Pluggable Authentication Module

REST Representational State Transfer

RSA Rivest-Shamir-Adleman

SASL Simple Authentication and Security Layer

SOAP Simple Object Access Protocol

SSH Secure Shell Protocol

SSO Single Sign-On

TCP Transmission Control Protocol

TLS Transport Layer Security

TOFU Trust On First Use

60

61

TTY Teletypewriter

UDP User Datagram Protocol

URL Uniform Resource Locator

List of Figures

2.1 Example of encoded and decoded JWT. 5
2.2 OpenID Connect authorization code flow. 7

4.1 Example of a SSH connection using password-based authentication. 14
4.2 Example of ssh and mccli with keyboard-interactive authentication. . 14
4.3 Example of an ed25519 OpenSSH private and public key. 17
4.4 Example of an OpenSSH user certificate. 18
4.5 Example steps and configuration of OpenSSH certificate authentication. . . 19

5.1 Architecture of oinit. 30
5.2 Steps undertaken in preparation and later connection steps. 32
5.3 Sequence diagram of steps undertaken in preparation process. 33
5.4 Sequence diagram of steps undertaken in connection process. 35
5.5 oinit-ca Swagger documentation. 36
5.6 Example of an OpenSSH user certificate issued by oinit-ca. 37
5.7 Example oinit-ca configuration file. 38
5.8 Example ~/.ssh/oinit_hosts file. 39
5.9 ssh configuration file with oinit’s Match exec section. 39
5.10 Extract from configuration file /etc/pam.d/su. 42
5.11 Extract of process tree for an interactive ssh login using the os/exec package. 43
5.12 Extract of process tree for an interactive ssh login using execve directly. . 43
5.13 Output of oinit add, oinit list and a subsequence SSH connection. . . 44

6.1 Extract of process tree showing su’s default behavior. 48
6.2 Extract of process tree showing su with --pty argument. 48

62

	Introduction
	Foundations
	Secure Shell Protocol (SSH) and OpenSSH
	Hypertext Transfer Protocol (HTTP)
	Representational State Transfer (REST)
	JSON Web Token (JWT)
	Federated identities
	OpenID Connect
	oidc-agent
	motley_cue and mccli

	Related Work
	Problem analysis
	Goals and limitations
	Considerations
	Authentication methods
	Password
	Keyboard-interactive
	Generic Security Service API (GSSAPI)
	Public key
	Host-based
	Certificate

	Obtaining OpenSSH certificates
	Dynamic usernames

	Implementation
	Design decisions
	Architecture
	Two-step process
	Preparation
	Connection

	Certificate authority
	API endpoints
	Configuration

	Command-line client
	Adding and deleting hosts
	Connecting to hosts

	User switching
	setuid bit and dropping privileges
	Unix tools
	SSH command

	User workflow

	Evaluation
	Testing
	Latency
	Security
	Service user interactive access
	TTY injection

	Verification of goals
	Limitations
	Installation

	Conclusion
	Summary
	Future work

	Bibliography
	Appendix

