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Kurzfassung

Die automatische Navigation von Fahrzeugen hat das Potenzial, Leben zu retten
und den Verkehr effizienter zu gestalten. Ein zentraler Bestandteil algorithmis-
cher Lösungen ist die Wahrnehmung der relevanten Umgebung des automa-
tisierten Fahrzeugs. Die gewünschte Repräsentation enthält Informationen über
Verkehrsteilnehmer, deren semantischen Zustand und deren Bewegungszustand.
Zusätzlich müssen Beobachtbarkeit, Freiraum und Fahrbarkeit bekannt sein,
um das Fahrzeug sicher zu navigieren. Um Messungen zu sammeln, aus denen
diese Informationen abgeleitet werden können, sind automatisierte Fahrzeuge
mit heterogenen Sensoren wie LiDARe, Kameras und RaDARe ausgestattet.

In dieser Arbeit wird eine Methode zur Umgebungswahrnehmung vorgestellt,
die zur Lösung dieser Aufgaben entwickelt wurde. Die erzeugte Repräsentation
ist eine mehrschichtige Top-View Grid Map, bei der die Unsicherheit mittels Evi-
denztheorie modelliert wird. Im Vergleich zur bisherigen Forschung auf diesem
Gebiet führt diese Arbeit die folgenden Neuerungen ein: Der Belegungszustand-
sraum, der traditionell aus den Hypothesen belegt und frei besteht, wird durch
ein hybrides Evidenzmodell ersetzt, das den semantischen und den dynamischen
Zustand der Belegung enthält. Außerdem wird der semantische Zustand des
Bodens separat modelliert. Im ersten Verarbeitungsschritt wird die Grid Map-
Darstellung für jeden Sensor separat geschätzt. Wir verarbeiten LiDAR- und
Kamera-Messungen, die als Bilder vorliegen, und leiten daraus Belegungsdaten
ab, indem wir die Oberflächenorientierung für jede Sensorreflexion analysieren.
Dies macht die Schätzung eines parametrischen Bodenmodells, das für konkur-
rierende Methoden notwendig ist, überflüssig. Für die Sensordatenfusion wird
eine gewichtete Kombination der sensorspezifischen Evidenzen vorgeschlagen,
welche nachweislich zu einer besseren Auflösung von Konflikten führt als die in
anderen Veröffentlichungen verwendeten Kombinationsregeln. Schließlich wer-
den die fusionierten Gitterkarten in ein temporäres Fusionsmodul eingespeist,
das rekursiv evidenzbasierte Grid Maps aktualisiert und dabei Informationen
über die Bodensemantik, sowie den semantischen und dynamischen Zustand
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der Zellbelegungen akkumuliert. Hier werden Evidential Networks für die
Aktualisierung der Evidenzverteilungen auf den Hypothesenmengen genutzt.
Dies ermöglicht es, Abhängigkeiten zwischen semantischen und dynamischen
Zuständen explizit zu modellieren.

Die Vorteile der vorgeschlagenen Methodik werden in realen Verkehrsszenarien
anhand von Messungen von einem LiDAR und einer Stereo Kamera demonstri-
ert.
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Abstract

The automatic navigation of vehicles has the potential to save lives and make
traffic more efficient. A central component of algorithmic solutions is the
perception of the environment in the relevant surroundings of the automated
vehicle. The desired representation contains information about road users,
their semantic state and their state of motion. In addition, observability, free
space and drivability must be known in order to safely navigate the vehicle. To
collect measurements from which this information can be derived, automated
vehicles are equipped with heterogeneous sensors such as LiDARs, Cameras
and RaDARs.

In this thesis, we present an environment perception method developed to solve
these tasks. The representation generated is a multi-layer top-view grid map
where uncertainty is modeled using evidence theory. Compared to previous
research in this area, this work introduces the following innovations: The
occupancy state space, which traditionally consists of the hypotheses occupied
and free, is replaced by a hybrid evidential model that includes the semantic
and dynamic states of cell occupancy. Furthermore, the semantic state of
the ground is modeled separately. In the first processing step, the grid map
representation is estimated for each sensor separately. We process LiDAR and
camera measurements, available as images, and derive occupancy evidence by
analyzing the surface orientation for each sensor reflection. This eliminates the
need to estimate a parametric ground model, which is necessary for competing
methods. For sensor data fusion, weighted evidential reasoning is proposed,
which is shown to resolve conflicts better than the combination rules used
in other publications. Finally, the fused grid maps are fed into a temporal
fusion module that recursively updates evidential grid maps accumulating
information about occupancy semantics, ground semantics and the dynamics of
occupied grid cells. Here, evidential networks are exploited for updating belief
mass distributions on the hypotheses sets. This allows dependencies between
semantic and dynamic states to be explicitly modeled.
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The advantages of the proposed methodology are demonstrated in real traffic
scenarios using LiDAR and stereo camera measurements.
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1 Introduction

Considering the history of mobility where safety and efficiency have been
continuously improved, the automation of transportation systems towards full
autonomy is a logical next step. The successive automation of subtasks already
started in the 1950s with the introduction of anti-lock braking systems (ABS).
Over the last decades, driver assistance systems (ADAS) designed to support
the driver have been installed in production vehicles, enabling automation
levels 1 and 2 according to the SAE standard [On-21]. However, 38,824
traffic fatalities were counted in the United States alone in 2020, many of them
involving human choice situations such as speeding and alcohol consumption,
see [Ste22]. The full automation of all driving components has the potential to
prevent a majority of those accidents. Besides a significant reduction of fatal
traffic accidents, the automation of transportation systems also aims to make
mobility more efficient. Robo-taxis could revolutionize mobility by improving
accessibility in rural areas and reducing the space required for parking lots in
cities. Furthermore, traffic congestion may be reduced by cooperative speed
adaption and vehicle-to-everything (V2X) communication.

Environment
Perception

Navigation

Self Perception

Calibrated Sensor 1

Calibrated Sensor k

Calibrated Sensor k+1

Calibrated Sensor n

Action 1

Action 2

Action m

Figure 1.1: The environment perception module in context with a simplified software stack for
automated vehicles. A more detailed consideration of a full software architecture can
be found e.g. in [MM15].
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1 Introduction

A simplified software scheme for intelligent vehicles is shown in Figure 1.1.
Input to the processing chain is a set of measurements recorded by 𝑛 calibrated
sensors. That means that the intrinsic sensor specifications and the extrinsic
calibration are known. Extrinsic calibration refers to the pose estimation
of a sensor with respect to a common coordinate system. The calibration
can be conducted offline by solving an optimization problem based on sensor
measurements recorded in a clearly defined scenario such as described in [BS18;
Küm20]. As the mounting pose of the sensor may change slightly over time,
online calibration methods as in [Xu+19] have also been proposed recently.
The state of the ego vehicle is estimated in the self perception module using the
sensor measurements from the calibrated sensors 1 to k. This state consists of
at least the pose of the ego vehicle with respect to an ego motion compensated,
or a map-fixed coordinate system. The ego motion compensation is usually
done with inertial measurement units (IMU). Localization in a map can be
obtained with GPS or by matching map features with features observed during
the drive, as described in [Son20]. The estimated pose of the ego vehicle as well
as measurements from sensors observing the environment, such as cameras,
RaDARs and LiDARs, are fed into the environment perception module. The
calculated environment model is sent to the scene understanding, behavior
generation, planning and control which are combined here in the navigation
module. Finally, the actions generated by the navigation module are sent to the
vehicle’s actuators.

1.1 Environment Perception for Automated
Vehicles

The environment perception module calculates an environment model based
on measurements recorded by sensors mounted on the vehicle. There are
several ways how the collected information on the local environment may be
represented. An overview of models with different levels of abstraction is given
in [Sch18]. Here, they are grouped into two categories:

1. Set of sparse features: Independent of the level of abstraction, the
environment model may consist of a list of entities indicating the presence
of potentially interfering traffic participants. This information could
be represented by unordered sets of point detections, bounding box

2



1.1 Environment Perception for Automated Vehicles

detections of objects, surface reconstructions or tracked extended object
states. Note that this representation only provides indicators for the
presence of entities in the environment but no explicit cues on the
absence.

2. Volumetric representations: The region of interest is partitioned into sub
volumes and a state is estimated for each of them. The state attached to
the sub volumes may include information on the presence of obstacles but
also on free space and occlusions. This representation enables deducing
information on arbitrary subsets of the region of interest.

Schreier proposed in [Sch18] an environment model consisting of a list of
extended object states for potentially moving traffic participants and a two-
dimensions top-view grid. The latter is included to represent the static part
of the environment in a volumetric fashion. In fact, when considering recent
publications on motion planning both a highly abstracted list of tracked extended
objects states representing traffic participants and volumetric information on
sensor visibility, free space and occlusions are desired, see e.g. [Nau20].

In case multiple sensors are used to estimate the environment model, sensor data
fusion may be applied to obtain one common representation. This potentially
reduces uncertainty and makes the calculated environment representation more
detailed and complete. Sensor data fusion methods can be grouped according

Low Level

High Level

Intermediate
Level

O
utput

Se
ns

or
D

at
a

(a) The three different sensor data fusion levels.

Complementary
Fusion

Competitive
Fusion

Cooperative
Fusion

(b) The different fusion configurations by
[Dur90] for one sensor with a 360°
observation area (blue) and one with a smaller
field of view pointing to the right (red).

Figure 1.2: The groups of sensor data fusion concepts.

to the fusion level in the processing chain, see Figure 1.2a, as follows:
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1 Introduction

1. Low Level Fusion: The measurements from all sensors are combined
at the beginning of the processing chain into a common representation
which is subsequently abstracted into the output representation. An
example is the accumulation of point detection sets from multiple range
sensors.

2. Intermediate Level Fusion: For each sensor, the measurements are
transformed into intermediate feature representations that are fed into
a fusion operator. The fused state is then abstracted into the output
representation. An example is grid mapping with subsequent object
detection on a fused grid.

3. High Level Fusion: For each sensor, the measurements are processed
individually until a late stage in the processing chain is reached. The
state of each sensor is thereafter fused into the output representation. An
example is sensor specific object detection with data fusion on object
level.

Instead of considering the fusion level, Durrant-White defined in [Dur90] the
following fusion configurations, see Figure 1.2b:

1. Complementary Fusion: Complementary sensors provide information
about different aspects of the environment for instance by observing
different areas. An example for complementary fusion is image stitching.

2. Competitive Fusion: Competitive sensors provide information about the
same aspects of the environment. The collected information is redundant
and can be combined to improve quality and confidence. An example
is the combination of distance measurements of the same object from
different sensors.

3. Cooperative Fusion: Cooperative sensors provide different information
that are combined to infer new information about the environment. The
information from all sources is required for doing the inference. An
example for cooperative fusion is stereo disparity calculation based on
two images in a stereo camera setup.

When working on multi-sensor environment perception tasks, developers face
the following challenges:
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1.2 Contributions of this Work

• Sensor redundancy: To increase the area where meaningful information
can be estimated, competitive sensor fusion approaches should be pre-
ferred whenever possible. Cooperative fusion approaches are limited to
overlapping visibility areas and fail in case of sensor malfunction.

• Conflict handling: Combining measurements from competitive sensors
does not necessarily improve quality. Applied fusion methods must be
able to deal with highly conflicting information provided by the respective
sensors. In order to handle conflicts reasonably, a meaningful uncertainty
quantification is needed.

• Computational complexity: For online applications the processing time
as well as memory consumption is limited and should be kept as low as
possible to reduce the accumulated time delay. Therefore, an acceptable
trade off between quality and efficiency must be found.

1.2 Contributions of this Work

The goal of this work is to develop a generic competitive sensor data fusion
method. We expect the following prerequisites to be met regarding the
information provided to the methods presented:

• All sensors are calibrated with respect to each other and to a vehicle-fixed
rig coordinate system.

• The sensor measurements are assigned accurate time stamps so that
they can be combined within a sliding time window. More advanced
spatio-temporal measurement alignment techniques are not covered by
this work.

• The pose of the ego vehicle consisting of a three-dimensional (3D)
translation and a 3D rotation is known at all measurement time points.

• Pixel-wise semantic labeling, disparity and depth estimation are used,
but the respective algorithms are outside the scope of this work.

The method proposed in this work is meant to calculate an intermediate
grid-based top-view representation that contains extensive information on
the presence of obstacles, semantics, dynamics, occlusion and free space
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1 Introduction

with uncertainties. An example for the estimated representation is shown in

-20 0 20

-40

-20

0

20

40

Street Sidewalk Ground other
Car Immobile Occupied

(a) Semantics.

-20 0 20

-40

-20

0

20

40

Moving Stationary Occupied
Free Passable Unknown

(b) Dynamics.

-20 0 20

-40

-20

0

20

40

(c) Motion direction.

Figure 1.3: Visualizations of the grid-based environment representation estimated with the method
presented in this work.

Figure 1.3. Uncertainty is modeled in an evidential framework by estimating
belief assignments for three hypotheses sets that are introduced in Chapter 2.
The first two are extensions of the classical occupancy frame consisting of the
two hypotheses occupied and free. One divides the hypothesis occupied into
semantic properties and the second into moving and stationary occupancy. The
third hypotheses set models the semantic property of the ground. This hybrid
grid map representation combines information on heterogeneous aspects of a
traffic scene relevant for automated vehicles and enables further abstraction
of object instances. Methods to detect and track extended object states based
on such a grid-based representation have been proposed by Steyer in [STW17;
Ste+20; Ste21] and Wirges in [Wir+18; Wir+19b; Wir+20].
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1.2 Contributions of this Work

Measurement
Sensor 1

Measurement
Sensor n

Grid Map
Sensor 1

Grid Map
Sensor n

Grid Map
Fused

Grid Map
Filtered

Grid Map
Filtered

Chapter 3

Chapter 3

Chapter 4 Chapter 5

𝑡

𝑡 − 1

Figure 1.4: The grid mapping framework proposed in this thesis. It is separated into three
submodules presented in the Chapters 3 to 5. First, grid maps are estimated based on
sensor measurements for each sensor separately. Those grid maps are then fused in a
common grid map thus containing measurements from all sensors. Finally, the fused
grid map updates the filtered grid map recursively.

The presented grid mapping framework consists of the three submodules

1. sensor measurement grid mapping, where sensor measurements such as
LiDAR range estimates and vision-based depth estimates are mapped
into the evidential grid map representation (Chapter 3),

2. sensor measurement grid map fusion (Chapter 4), and

3. the temporal fusion of the fused measurement grid maps (Chapter 5).

The data flow is illustrated in Figure 1.4.

This work focuses on sensors providing measurements on a high resolution grid
such as images from cameras and range images from LiDAR. The input image
is projected into a sensor dependent measurement grid to enable a meaningful
modeling of spatial uncertainty. Here, the neighborhood information in the
scan image is used to infer information on the orientation of the reflecting
surface which allows distinguishing blocking surfaces from passable areas. The
proposed ray casting utilizes the 3D ray geometry to obtain an accurate and
intuitive quantification of free space evidences based on the ray permeability.

The sensor measurement grid maps are transformed into a common Cartesian
coordinate system so that evidential combination rules are applicable on cell
level. This approach enables competitive and complementary data fusion where
the belief assignments are combined to increase the visibility area, accuracy
and confidence. Here, the semantic estimates that may be used in the sensor
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1 Introduction

measurement grid map estimation are redundant by design. In case no semantic
estimates are provided to the method, the representation natively reduces to
a classical occupancy grid map. We show that applying evidential reasoning
(ER) instead of the combination rules used in past publications significantly
improves the resolution of sensor measurement conflicts.

In the temporal fusion part, the evidential grid map is recursively updated
by the fused measurement grid map. Classical temporal grid map fusion
assumes the world to be fully static which results in occupied/free conflicts
when observing moving entities, see e.g. [DRN14]. In order to mitigate
this, the dynamic grid mapping framework based on a low level particle filter
presented e.g. in [Nus+16; Rum+17; STW18] is adopted. In contrast to
those publications, however, the method presented in this thesis enables the
inclusion of semantic estimates and recursively updates belief assignments on
three hypotheses sets, namely the ground semantics, the occupancy semantics
and the occupancy dynamics in each grid cell. The presented temporal grid
map fusion is based on evidential networks and the belief update depends on
the vertical ray permeability for better conflict resolution. The data-driven
parameter estimation presented in this thesis is demonstrated to significantly
outperform competing methods in challenging scenarios.
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2 Evidential Grid Mapping

In this chapter1, the hybrid evidential grid map model containing information
on the ground semantics, the occupancy semantics and the occupancy dynamics
is presented.

2.1 Fundamentals

We start with the fundamentals on evidence theory needed in this work and
give a formal introduction to grid maps.

2.1.1 Evidence Theory

Evidence theory, also referred to as Dempster–Shafer theory of evidence, was
formally introduced by Shafer in [DS76]. As an extension of Bayes theory
it provides a framework to model uncertainty and combine evidence degrees
from independent sources. Let Ω be a set consisting of mutually excluding
hypotheses of interest called FoD and P(Ω) its power set containing all subsets
𝐴 ⊆ Ω including the empty set ∅. The mapping

m: P(Ω) → [0, 1] , m(∅) = 0,
∑︁

𝐴∈P(Ω)
m(𝐴) = 1 (2.1)

is called basic belief assignment (BBA) and assigns a degree of evidence to all
possible combinations of hypotheses. The intention behind introducing another

1 Parts of this chapter have been submitted to IEEE for possible publication and have been made
available to the public via arXiv [Ric+22a; Ric+22b].
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2 Evidential Grid Mapping

framework in addition to the well established probability theory is to explicitly
handle ignorance. The additivity property

Pr(𝐴) =
∑︁
𝑋∈X

Pr(𝑋), 𝐴 =
¤⋃

𝑋∈X
𝑋 (2.2)

of a probability measure Pr(·) over a partitionX of 𝐴 implies that Pr(·) provides
redundant information for all hypotheses 𝐴 with |𝐴| > 1. This property is
dropped for evidential BBAs in favor of assigning degrees of ignorance to
those hypotheses. Degrees of evidence m(𝐴) assigned to hypotheses 𝐴 ≠ Ω

with |𝐴| > 1 are called local ignorance and m(Ω) is called global ignorance.
Consider the FoD Ω = {𝐴, 𝐵} and the maximal entropy distributions shown
in Table 2.1 indicating that there is no evidence pointing to either of the two
hypotheses. In addition to the fact that both hypotheses are equally likely, the

𝐴 𝐵 Ω

Pr( ·) 0.5 0.5 1
m( ·) 0 0 1

Table 2.1: Comparison of the BBA with the probability distribution assuming maximal entropy.

BBA m(·) explicitly tells us that there is no evidence pointing to the hypotheses
which is a fundamentally different statement than m(𝐴) = m(𝐵) = 𝑐 ∈ (0, 0.5].
Naturally, every discrete probability distribution given by the probability
measure Pr(·) induces a BBA m(·) by setting

m(𝐴) := Pr(𝐴) for all 𝐴 ∈ Ω. (2.3)

Vice-versa, every BBA without local and global ignorance induces the proba-
bility measure

Pr(𝐴) := m(𝐴) for all 𝐴 ∈ Ω. (2.4)

In general, Shafer defined the following lower and upper bounds for the
probability mass Pr(·) of the hypotheses 𝐴 ∈ P(Ω):

bel(𝐴) ≤ Pr(𝐴) ≤ pl(𝐴), (2.5)

where
bel(𝐴) =

∑︁
𝐵⊆𝐴

m(𝐵), pl(𝐴) =
∑︁
𝐵∩𝐴≠∅

m(𝐵) (2.6)

10



2.1 Fundamentals

are denoted as belief and plausibility of 𝐴 given the BBA m(·), respectively.
In order to derive a probability measure from a general BBA, Smets [Sme90]
proposed the pignistic transformation

Pr(𝐴) =
∑︁
𝐵⊆Ω

|𝐴 ∩ 𝐵 |
|𝐵| m(𝐵). (2.7)

When dealing with multiple FoDs, it might be necessary to model dependencies
between the corresponding BBAs. Let Ω and Θ be two frames of discernment.
The functions

bel( · | 𝜃) : P(Ω) → [0, 1], (2.8)
pl( · | 𝜃) : P(Ω) → [0, 1] (2.9)

are called conditional belief function and conditional plausibility on Ω given
𝜃 ⊆ Θ. The conditional belief/plausibility represents the belief/plausibility
under the assumption that 𝜃 ⊆ Θ is true similar to conditional probabilities.
More information can be found e.g. in [XS96].

Analogously to Shannon’s entropy measure for probabilistic random variables,
similar measures in evidence theoretical contexts have been desired. Yager
[Yag08] presented the two measures

𝑒(m) = −
∑︁
∅≠𝐴⊆Ω

m(𝐴) ln(pl(𝐴)), 𝑠(m) =
∑︁
∅≠𝐴⊆Ω

m(𝐴)
|𝐴| (2.10)

denoted as entropy 𝑒(m) and specificity 𝑠(m) of the BBA m. Deng investigates
evidential uncertainty measures such as Yager’s entropy and other concepts in
[Den20] based on a set of five desired properties. He came up with the entropy
measure

eD (m) = −
∑︁
∅≠𝐴⊆Ω

m(𝐴) log2

(
m(𝐴)

2 |𝐴| − 1

)
, (2.11)

that can be written as the sum of the nonspecificity

nsD (m) =
∑︁
∅≠𝐴⊆Ω

m(𝐴) log2

(
2 |𝐴| − 1

)
(2.12)
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2 Evidential Grid Mapping

and the discord

dD (m) = −
∑︁
∅≠𝐴⊆Ω

m(𝐴) log2 (m(𝐴)) . (2.13)

The nonspecificity nsD (m) is a measure for the ignorance contained in the
BBA and increases with BBA masses assigned to non singleton hypotheses
𝜔 ⊆ Ω, |𝜔| > 1. The discord dD (m) is a measure for the indecision between
several focal elements. The upper and lower bound of Deng’s entropy are the
BBA m1 assigning all the evidence mass m1 (𝜔) = 1 to one singleton hypothesis
𝜔 ⊂ Ω, |𝜔 | = 1 and the distribution of total ignorance m2 (Ω) = 1:

eD (m1) = 0 ≤ nsD (m) ≤ log2

(
2 |Ω | − 1

)
= eD (m2) < |Ω|. (2.14)

nsD (m) dD (m) eD (m)
m(𝐴) = 0, m(𝐵) = 0 log2 (3) 0 log2 (3)
m(𝐴) = 1, m(𝐵) = 0 0 0 0

m(𝐴) = 0.5, m(𝐵) = 0.5 0 1 1

Table 2.2: Deng’s entropy measures for different BBA distributions. In the first row, there is a full
global ignorance m(Ω) = 1 leading to a maximal nonspecificity nsD (m) = log2 (3) .
The BBA in the second row only supports the hypothesis 𝐴which yields the minimal
entropy eD (m) = 0. In the last row the BBA supports both 𝐴 and 𝐵 leading to the
discord dD (m) = 1.

In Table 2.2, three exemplary BBA distributions with corresponding Deng
entropy measures are shown for the FoD Ω = {𝐴, 𝐵}.

2.1.2 Grid Maps

Grid mapping is the task of estimating a state 𝑥 in the state space 𝑋 for each
cell in a regular grid. Therefore, a grid map g is a mapping

g: G → 𝑋 (2.15)

assigning an element in the state space 𝑥 ∈ 𝑋 to each grid cell 𝐶 ∈ G. The state
space 𝑋 may encode any formalizable information on the local environment.
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A general regular grid G is a tesselation of the 𝑛-dimensional Euclidean space
R𝑛 in congruent disjoint subsets. In most of the literature the term grid mapping
refers to the case 𝑛 = 2 where the 3-dimensional case is referred to as voxel grid
mapping. Throughout this work, different kinds of tessellations in 2D spaces
are introduced for intermediate representations depending on the measurement
sources. For cell-wise fusing information from different sources a common
grid representation is needed. The 2D Cartesian grid G𝑥𝑦 = P1 × P2 on the
rectangular region of interest R = 𝐼1 × 𝐼2 ⊂ R2, where

P𝑖 = {𝐼𝑖,𝑘 , 𝑘 ∈ {0, . . . , 𝑠𝑖 − 1}},
𝐼𝑖,𝑘 = [𝑜𝑖 + 𝑘 𝛿𝑖 , 𝑜𝑖 + (𝑘 + 1) 𝛿𝑖), 𝑖 ∈ {1, 2}

forms a partition of the interval 𝐼𝑖 with equidistant length 𝛿𝑖 ∈ R, origin 𝑜𝑖 ∈ R
and size 𝑠𝑖 ∈ N. Hence, each grid cell 𝐶 ∈ G𝑥𝑦 is a rectangle with side lengths
(𝛿1, 𝛿2).

In this work, two coordinate systems are considered:

1. The vehicle coordinate system is located at a fixed position with respect
to the ego-vehicle. The x-axis is pointing to the front of the vehicle, the
y-axis to the left and the z-axis to the top.

2. The reference coordinate system is defined by the vehicle coordinate
system at the first update time point 𝑡0 of the system. Hence, this
coordinate system is independent of the ego-vehicle’s motion.

For fusing grid maps temporally, the grid is defined with respect to the reference
coordinate system. The region of interest R𝑡 is translated by whole grid cells
in 𝑥- and 𝑦-direction to follow the ego vehicles movement. This avoids the
interpolation of cell states when combining the BBAs from different time points.
As opposed to a local grid in vehicle coordinates, the region of interest is not
aligned with the ego motion direction. In practical applications, however, a
region of interest covering a larger area in front of the vehicle may be desired.
This can be achieved by dynamically localizing the ego vehicle on a circle
centered in the current region of interest as proposed e.g. by Eraqi et al.
[EHZ18]. The radius 𝑟𝑡 at time 𝑡 can be chosen based on different cues as
the ego velocity or the current traffic scenario. The concept is sketched in
Figure 2.1. In this work this method is applied to define the grid G𝑡 as the
global G restricted to the current region of interest R𝑡 .
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R𝑡0

𝑟𝑡0

R𝑡1

𝑟𝑡1

R𝑡2

𝑟𝑡2

G

Figure 2.1: The location of the local grid G𝑡 at time 𝑡 on the global grid G at three not necessarily
adjacent time points 𝑡0, 𝑡1 and 𝑡2. The region of interest R𝑡 moves with the ego motion
over the global grid by whole grid cells. The ego vehicle is located in the local grid
with a radial offset 𝑟𝑡 to the grid center.

2.2 Related Work

We give an overview on grid-based environment models that have been proposed
in past publications.

Classical grid maps divide the environment into occupied and free cells and
were introduced by Moravec et al. [ME85]. Whereas initially two grids were
used to model free and occupied cells it was proposed in later publications to
only use one grid for the occupancy probability [Mor89; Elf89]. Instead of a
probabilistic model, Yi et al. [Yi+00] proposed using an evidential framework
to reduce uncertainties resulting from specular reflections in a temporal filter.
Yang et al. [YA06] further elaborated this showing that the evidential framework
has advantages in dealing with uncertainties compared to the classical Bayesian
framework.

Although occupancy grid maps are widely used, the term occupancy lacks a
formal definition in literature. In a vast majority of the early publications, it
was assumed that a range measurement supports the hypothesis occupied at
its location and the hypothesis free along the ray between the sensors and the
measurement’s location. In the context of automated vehicles this assumption
is not necessarily applicable. When considering range sensors such as RaDAR,
Sonar and LiDAR with a low vertical field of view mounted in parallel with
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a planar ground surface, reflections in fact are mostly caused by surfaces of
obstacles. Using camera systems and LiDAR sensors with a higher vertical
field of view, however, adds the challenge of classifying reflections as they may
also occur on passable surfaces as the ground surface. The interpretation what
parts of the environment are considered occupied ranges from “obstacles with a
certain height” ([YCB14]) over “obstacles and curbs” ([HRL15]) to “everything
except drivable areas” ([BVF15]) and seems to depend on the proposed estimator
instead of being predefined. Depending on this consideration, the classification
problem can be solved by either directly classifying each reflection based on
semantic or geometric properties or by relating the detection coordinate to an
estimated ground surface. Among others, Yu et al. [YCB14] did the latter by
considering every reflection above a certain height above ground to be caused
by obstacles. They applied their method to a Velodyne HDL64E LiDAR sensor
and assumed a planar ground surface, but more complex models have been
published, see [Rum+17; Wir+21]. Harms et al. [HRL15] used disparity and
orientation images from Stereo Vision to build up a two-layer grid map where
one layer contains occupancy probabilities for obstacles and one for curbs. Their
orientation images contain the pixelwise deviation of the local normal vector
from the global height axis and was used to determine the curb occupancy layer.

Besides occupancy, grid maps have also been used to model geometric and
semantic properties. Geometric properties of interest are mostly limited to the
height modeled in elevation maps, see e.g. [Sti+17; FBH18]. An evidential
occupancy grid map with a refinement of the occupied hypothesis into the
semantic hypotheses vehicle, building, vegetation and sidewalk was proposed
by Bernardes Vitor et al. [BVF15]. Instead of including the semantic hypotheses
in the evidential framework, they treat them as meta-knowledge of the occupied
hypothesis. In recent years deep neural networks have been used to predict
semantic top-view grid maps, see [Bie+20; Che+20a; Fei+21]. All those
methods can only predict a single semantic class per grid cell thus neglecting
uncertainties.

In [Ric+19], we introduced a novel evidential framework incorporating both
occupancy and semantic estimates. As opposed to other publications, the
semantic hypotheses were integrated in the evidential framework instead of
assigning one semantic label to a grid cell only. The resulting semantic
evidential grid mapping method was applied to LiDAR, RaDAR and Stereo
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Vision measurements and further developed and applied to different Vision
setups in [Ric+20] and [Ric+21].

2.3 Hybrid Evidential Representation

In this work, a hybrid semantic evidential state space that consists of the
ground state and two occupancy states refining the classical occupancy space
is proposed. The definition of the occupancy state is based on geometric
constraints and two possibilities are proposed followed by a short comparison.

We define the driving corridor between the ground height and the maximal
height above ground 𝑑𝑧,max to be the height area that is relevant for the ego-
vehicle. This excludes high obstacles such as bridges and tree branches that do
not interfere with the automated vehicle. Let the surface of a traffic scene be
implicitly given as 𝑓𝑆 (𝑥, 𝑦, 𝑧) = 0 where 𝑥, 𝑦 and 𝑧 are Cartesian coordinates in
the vehicle coordinate system.

Definition 2.1. Let 𝑓𝐺 : R2 → R be a function describing an approximation of
the ground height and

𝐷𝐶 = {𝑧 − 𝑓𝐺 (𝑥, 𝑦) | (𝑥, 𝑦) ∈ 𝐶 : 𝑓𝑆 (𝑥, 𝑦, 𝑧) = 0} (2.16)

be the set containing all distances between ground surface and traffic scene
surface in grid cell 𝐶 ∈ G. The grid cell is called occupied, if the traffic scene
surface intersects with the driving corridor, i.e.

sup (𝐷𝐶 ) > 0 ∧ inf (𝐷𝐶 ) < 𝑑𝑧,max, (2.17)

where the supremum sup(𝐴) is the smallest upper bound and the infimum
inf (𝐴) is the largest lower bound of an ordered set 𝐴. If one of the two
conditions in Equation (2.17) is not fulfilled the cell is called free.

The second definition of the term occupancy is based on the unit normal vector
of the surface 𝑓𝑆 (𝑥, 𝑦, 𝑧) = 0. It can be shown that this normal vector 𝑛 is given
by the gradient of 𝑓𝑆:

(𝑛1, 𝑛2, 𝑛3)𝑇 =
∇ 𝑓𝑆
|∇ 𝑓𝑆 |

. (2.18)

16



2.3 Hybrid Evidential Representation

(a) (b) (c)

Occupied Free Void

Figure 2.2: The two formalizations of the term occupancy presented in this work: (b) shows the
occupancy pattern based on Definition 2.1 when observing the car shown in (a) and (c)
shows the pattern when modeling occupancy based on Definition 2.2. In (b), all grid
cells covered by the vehicle are considered occupied whereas in (c) only the cells at the
car’s border are occupied.

Definition 2.2. A grid cell 𝐶 ∈ G is called

• occupied, if the angle difference between the surface normal and the
z-axis in the vehicle coordinate system exceeds a given threshold 𝑏𝑇 , i.e.

arccos(𝑛3) > 𝑏𝑇 , (2.19)

and the traffic scene surface corresponding to the grid cell is not fully
above the driving corridor, i.e. inf (𝐷𝐶 ) < 𝑑𝑧,max.

• free, if the ego vehicle can enter the underlying area in space, i.e. the
complete driving corridor is free, or

• void, if it is neither free nor occupied.

The cell state void is attained in grid cells covered by obstacles where the surface
is non-blocking. This is mainly limited to areas that are separated from the ego
vehicle by blocking surfaces such as the roof of a car. Figure 2.2 sketches the
two definitions of the term occupancy.

In this work, the occupancy classification based on Definition 2.2 is used.
The reason is that the condition “sup (𝐷) > 0” that is only contained in
Definition 2.1 is more critical than the condition “inf (𝐷) < 𝑑𝑧,max” contained
in both Definitions 2.1 and 2.2. For the former, the ground surface estimation
must be very accurate to exclude all the measurements reflected on the ground.
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For the latter, however, a rough estimation is sufficient in most cases as there
usually is a larger margin above the driving corridor that is free of obstacles.
Hence, a small tolerance margin 𝛿𝐺 > 0 is added in some publications such
as [Wir+21] so that the condition becomes “sup (𝐷) > 𝛿𝐺”. This, however
increases the likelihood of missing low obstacles such as curb stones.

Furthermore, ground surface estimation is a hard task. When estimating the
ground surface it is desirable to exclude any obstacle detections in the estimation
process. However, this is not possible in cases where the ground estimation is
performed in order to make this separation in the first place. This can be tackled
by estimating the ground surface based on all detections and adding smoothness
priors to the ground surface model as e.g. in [Wir+21]. Nevertheless, it
cannot be guaranteed that the resulting ground surface model is not significantly
influenced by obstacle detections.

Next, the hybrid semantic representation containing ground semantics, occu-
pancy semantics and occupancy dynamics is introduced. We consider the
semantic estimates occupied by “car”, “two-wheeler”, “pedestrian”, “other
mobile entities” or “immobile entities” and the ground hypotheses “street”,
“sidewalk” and “other ground”. Classical occupancy grid mapping is based on
the general differentiation between occupied and free leading to a FoD consisting
of those two excluding elementary hypotheses only. The considered semantic
hypotheses, however, are not necessarily pairwise contradicting. For example
both hypotheses "street" and "car" can hold for a grid cell as the car is just
placed on top of the street. This fact violates the requirement that all elementary
hypotheses in an evidential FoD must be contradicting. Therefore, ground
semantics and occupancy semantics are modeled in two separate FoDs. In
addition to the semantic state, the detection of moving parts of the environment
is desired so that their motion can be estimated. Therefore, occupancy dynamics
are estimated in a third layer completing our hybrid evidential representation.

Ground Semantics. The semantic state of the ground is classified by the
hypotheses street (𝑠), sidewalk (𝑠𝑤) and other ground (𝑜𝑔). This yields the
ground semantics FoD

Ω𝑔 := {𝑠, 𝑠𝑤, 𝑜𝑔}. (2.20)
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Occupancy Semantics. The occupancy semantics describe the semantic
state of cell occupancy in a rectangular cuboid on top of the considered grid
cell. The size of the cuboids footprint is given by the grid cell and the cuboids
height interval [0, 𝑑𝑧,max] is defined by the driving corridor. This cuboid can
either be free of obstacles or occupied by an entity with assigned semantic class.
In particular, the occupancy semantics FoD

Ω𝑠 := {𝑐, 𝑐𝑦, 𝑝, 𝑜𝑚, 𝑛𝑚, 𝑓 , 𝑣} (2.21)

consists of the hypotheses listed in Table 2.3. Here, the hypothesis void 𝑉𝑠 is

Semantic class Set Letter
Occupied by a car {𝑐} 𝑂car
Occupied by a two-wheeler {𝑐𝑦} 𝑂tw
Occupied by a pedestrian {𝑝} 𝑂ped
Occupied by another mobile object {𝑜𝑚} 𝑂om
Occupied by an immobile object {𝑛𝑚} 𝑂im
Occupied by an object with unknown class {𝑐, 𝑐𝑦, 𝑝, 𝑜𝑚, 𝑛𝑚} 𝑂su
Free { 𝑓 } 𝐹𝑠
Void, i.e. neither occupied nor free, {𝑣} 𝑉𝑠

Table 2.3: Valid hypotheses induced by the occupancy semantics FoD Ω𝑠 .

needed to partition the whole environment into cell occupancy states based on
Definition 2.2. In the remainder of this work, we refer to the hypothesis 𝑂su
as semantically unclassified occupancy. Note that this FoD can be partitioned
into semantically unclassified occupancy 𝑂su and free 𝐹𝑠 as

Ω𝑠 \𝑉𝑠 = 𝑂su ¤∪ 𝐹𝑠 (2.22)

which is the separation used in classical occupancy grid mapping.

Occupancy Dynamics. In order to distinguish moving from stationary
occupancy in the evidential context, this work follows Steyer et al. [STW18]
and introduces the occupancy dynamics FoD

Ω𝑑 = {𝑚, 𝑛𝑚, 𝑓 , 𝑣} (2.23)

containing the valid hypotheses listed in Table 2.4. We refer to the hypothesis
𝑂du as dynamically unclassified occupancy. Considering the hypotheses
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Description Set Letter
Occupied by a moving object {𝑚} 𝑂mov
Occupied by a stationary object {𝑛𝑚} 𝑂stat
Occupied by an object with unknown dynamic state {𝑚, 𝑛𝑚} 𝑂du
Free { 𝑓 } 𝐹𝑑
Passable, i.e. free or occupied by a moving object { 𝑓 , 𝑚} 𝑃

Void, i.e. neither occupied nor free, {𝑣} 𝑉𝑠

Table 2.4: Valid hypotheses induced by the occupancy dynamics FoD Ω𝑑 .

passable 𝑃 enables memorizing free space in cells that have been observed as
free but are not observable anymore and thus might be occupied by a dynamic
entity.

Note that some occupancy dynamics hypotheses 𝜃 ⊆ Ω𝑑 depend on the semantic
state 𝜔 ⊆ Ω𝑠. This will be formalized in Section 5.3.2 where the occupancy
dynamics are inferred in a recursive temporal estimator under consideration of
the occupancy semantics.

The hybrid evidential representation is sketched in Figure 2.3. It is based on
the assumption that in traffic scenes each obstacle is placed on top of ground
implying that every combination of occupancy semantics 𝜃1 ∈ Ω𝑠 and ground
semantics 𝜃2 ∈ Ω𝑔 are non contradicting and can thus happen simultaneously.
Note that the real world might be composed of several overlapping ground
layers as e.g. at freeway exit ramps or bridges. However, even in those
scenarios the region of interest can be limited to the ground layer as there is no
direct interaction between traffic participants on different ground layers. The
simplification of considering one occupancy layer only is justified by the fact
that two objects placed on top of each other may be considered as one entity in
the navigation module. The person sitting on a bicycle is considered as one
entity represented by the hypotheses “occupied by a two-wheeler”.

The BBA m on P(Ω𝑖), 𝑖 ∈ {𝑠, 𝑔, 𝑑} is then represented by the multi-layer grid
map

g𝑖 : G𝑥𝑦 × P(Ω𝑖) → [0, 1] . (2.24)
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(a)

0m

Ω𝑠 , Ω𝑑

Ω𝑔

𝑑𝑧,max

𝐶 ∈ G𝑥𝑦

Ground

Occupancy(b)

Ω𝑔 Ω𝑠 Ω𝑑(c)

Street Sidewalk Ground other
Car Two-wheeler Pedestrian

Other mobile Immobile Free
Moving Stationary Free

Figure 2.3: The hybrid evidential grid-based environment representation: (a) shows a traffic scene
with three parking cars on the side of the road, two passing vehicles on the road and
two walking pedestrians. (b) shows the subspace of the environment that is represented
in a grid cell 𝐶 ∈ G𝑥𝑦 . Occupancy is modeled in the cuboid above the grid cell up to
the maximal height 𝑑𝑧,max. In (c), the three grid layers for the ground semantics FoD
Ω𝑔 , the occupancy semantics FoD Ω𝑠 and the occupancy dynamics FoD Ω𝑑 with
corresponding color codings are depicted for the traffic scene in (a).

2.4 Datasets and Evaluation Metrics

We use the KITTI-360 dataset [LXG21] and the SemanticKITTI dataset
[Beh+19] to estimate a reference representation. This reference representation
is used later to evaluate the estimated representation.

KITTI-360. The 3D semantic bounding primitives and the semantic point
cloud in the KITTI-360 dataset are used to generate a reference semantic
evidential grid map, see Figure 2.4. The color map applied in Figure 2.4a
shows both ground semantics and occupancy semantics and is a combination of
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(a) For occupancy semantics Ω𝑠 and ground
semantics Ω𝑔 .
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(b) For occupancy dynamics Ω𝑑 .

Figure 2.4: The reference grid map gref for a frame in the first evaluation sequence in the
KITTI-360 dataset.

the occupancy probability gray value map and a color coding of the semantic
classes. It was generated based on the following rules:

• If both a BBA for ground semantics and an occupancy semantics have
been assigned a high BBA, the object BBA is visualized.

• The color saturation scales with the assigned BBA.

• Above ground, a lower brightness indicates a low BBA for free.

KITTI-360 accumulates LiDAR measurement chunks containing over 300
frames. Each frame includes LiDAR reflections with a distance of at most
30m. The accumulated point clouds were semantically annotated and used to
fit bounding primitives representing object instances and infrastructural entities
such as buildings, poles and streets. The labeled bounding primitives and the
accumulated point clouds were used to generate the reference evidential grid
map gref based on the following rules:

• The BBA for traffic participants as cars, two-wheelers and pedestrians as
well as for street and sidewalk is estimated by projecting the bounding
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primitives into the Cartesian grid. We set gref (𝐶, 𝜔) = 1 in grid cell 𝐶
located within the bounding primitive where𝜔 is the semantic hypotheses
attached to the primitive.

• The BBA for other ground and immobile occupancy is estimated by
mapping the accumulated LiDAR points with corresponding ground
truth labels into the Cartesian grid.

• The BBA for the hypothesis free was set to one in grid cells belonging
to street and sidewalk primitives where no object primitive is located.
In order to avoid penalizing curbstone detections, those regions were
removed from the free area using morphological erosion in the grid layers
containing the BBA for street and sidewalk. In areas covered by other
ground labels, no reference BBA for free is derived as those areas cannot
be assumed to be non-occupying according to Definition 2.2.

• Moving and stationary bounding primitives are provided separately in
the KITTI-360 dataset. However, it is not guaranteed that the moving
primitives are moving during the whole time they are observed. In
order to detect the frames where the primitives are actually moving
the velocity 𝑣 is estimated based on its location in two consecutive
frames. In the reference BBA on the occupancy dynamics Ω𝑑 , we then
set gref (𝐶, 𝜔) = 1, where

𝜔 =


𝑂mov, if 𝑣 > 1.5 m/s
𝑂stat, if 𝑣 < 0.01 m/s
𝑂du, else.

(2.25)

For stationary bounding primitives and immobile detections in the
accumulated point cloud we directly set gref (𝐶,𝑂stat) = 1.

• Furthermore, it was observed that the object primitives tend to overesti-
mate the object dimensions significantly. This is probably due to the fact
that they were generated based on accumulated sensor measurements
where small errors in the ego pose accumulate over time. This would lead
to a punishment of correctly estimated BBA for free in those regions in
the evaluation process. Therefore, in the outermost 30cm of each object
bounding box the BBA was assigned to the total ignorance m(Ω) = 1.
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2 Evidential Grid Mapping

After applying the above-mentioned modifications preventing wrong BBA
assignments it is possible to do a cell-wise evaluation of the estimated evidential
grid maps.

We separate the KITTI-360 dataset into subsequences used for evaluation and
training as shown in Table 2.5. The evaluation sequences consist of 1000 frames

Seq. Frames Scenario Image

evaluation

0 2001 - 3000

Drive through a suburban
area with buildings
and parking cars on
the side of the road.

2 4901 - 5900
Drive through a suburban

area with ongoing
and oncoming traffic.

3 31 - 1031
Drive on a country
road with ongoing

and oncoming traffic.

training 10 501 - 1000
Drive through an urban

area with heavy
traffic.

Table 2.5: The data sequences from the KITTI-360 dataset used in this work.

and the sequence used for training consists of 500 frames. This is enough data
for the parameter tuning applied in this thesis. The sequences were selected
so that diverse traffic scenarios are covered including as many moving traffic
participants as possible.

SemanticKITTI. Besides the bounding primitives and accumulated point
clouds from KITTI-360, we also use the semantic LiDAR point cloud labels
from the SemanticKITTI dataset [Beh+19] for evaluation. It contains semantic
annotations for each detection in the LiDAR point clouds contained in the Kitti
odometry benchmark [GLU12]. Using this data, we estimate reference grid
maps containing single semantically annotated LiDAR scans.
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Evaluation metrics. In order to quantify the differences between the reference
grid map and the estimated grid map, the evidential intersection over union
(eIoU) is defined as

eIoU𝜔 =
eTP𝜔

eTP𝜔 + eFP𝜔 + eFN𝜔

. (2.26)

It uses the evidential true positive rate

eTP𝜔 =
∑︁

𝐶∈G𝑥𝑦

∑︁
𝜓⊆𝜔

gref (𝐶, 𝜓) g (𝐶, 𝜔) , (2.27)

the false positive rate

eFP𝜔 =
∑︁

𝐶∈G𝑥𝑦

∑︁
𝜓∩𝜔=∅

gref (𝐶, 𝜓) g (𝐶, 𝜔) , (2.28)

and false negative rate

eFN𝜔 =
∑︁

𝐶∈G𝑥𝑦

∑︁
𝜓∩𝜔=∅

gref (𝐶, 𝜔) g (𝐶, 𝜓) . (2.29)

Note that the eIoU reduces to the classical intersection over union used for pixel
wise semantic labeling if the BBAs are binary, i.e. gref (𝐶, 𝜓) = 1, g (𝐶, 𝜔) = 1
for 𝜓, 𝜔 ⊂ Ω.
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3 Sensor Measurement Mapping in
Evidential Grid Maps

The first step of the grid-based environment model estimation presented in
this work is the calculation of the sensor measurement grid maps.1A sensor
measurement grid map contains the BBA on the occupancy semantics Ω𝑠 and
the ground hypothesesΩ𝑔 estimated using measurements from one sensor. After
giving a brief introduction to LiDAR and cameras, related work is presented in
Section 3.2. Then, a generic sensor measurement grid map estimation pipeline is
presented in Section 3.3. Subsequently, the framework is specified for mapping
point set measurements in Section 3.3.1. The main focus of this work is to
utilize the organized structure of measurements obtained by imaging sensors
such as cameras and LiDAR scanners. The sensor measurement grid mapping
with images is described in Section 3.3.2. It is subsequently applied to LiDAR
and stereo camera sensory by modeling the sensor modalities in Section 3.3.3.
Finally, the sensor measurement grid mapping pipeline is validated qualitatively
and quantitatively in experiments using real sensor measurements in Section 3.4.

3.1 Fundamentals

3.1.1 LiDARs

LiDAR sensors measure the distance to surrounding surfaces by firing laser
beams and measuring the time until the reflected light returns. In order to obtain
a map of the local environment different imaging strategies can be applied. Here,
a brief overview is given, and the reader is referred to [RB19] for more details.

1 A short version of this chapter has been submitted for publication in Transactions on Intelligent
Transportation Systems and has been made available to the public via arXiv [Ric+22a].
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3 Sensor Measurement Mapping in Evidential Grid Maps

In general, imaging strategies can be grouped into scanners and detector arrays.
In scanners, one or multiple laser beams are incrementally repositioned to
sweep over surfaces in the environment and measure distances. Detector arrays
illuminate the whole scene and a detector matrix receives reflecting signals for
subsections of the observed area. This work focuses on mechanical scanners as
they are most commonly used in automotive applications. Although different
scanning patterns exist, most scanners consist of multiple lasers that rotate in
parallel resulting in parallel scan lines. Those scan lines can be combined
vertically defining the sensor grid G𝑢𝑣 . At each laser position a beam is fired

LiDAR

𝑚2𝑚1

Figure 3.1: Measurement beam of a scanning LiDAR reflected at two distances. The footprint of
the LiDAR beam covers two walls, each providing a range measurement according to
its distance to the LiDAR sensor.

that diverges horizontally and vertically, see e.g. [Vel19]. Consequently, the
laser beam footprint can be approximated by a circle with increasing diameter.
The range measurement is the distance between the ray origin and a point
within this circular laser beam footprint. Depending on how the driver software
is implemented, LiDAR scanners not only provide the distance to the point
with the highest reflectivity, but potentially further reflections, which is called
multiple returns. Figure 3.1 shows the LiDAR scanner ray geometry in a
scenario were a single LiDAR beam might return two reflections.
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3.1 Fundamentals

3.1.2 Cameras

Camera setups usually consist of one or multiple digital cameras where single
cameras are called monocular cameras and two cameras with overlapping
image planes are called stereo cameras. In this work, the recorded images are
assumed to be rectified according to a suitable camera model and defined on
the sensor grid G𝑢𝑣 where 𝑢 corresponds to the horizontal and 𝑣 to the vertical
pixel index. For each pixel, incoming light along rays intersecting with the
pixel area is measured on the camera sensor. Therefore, one measurement
element corresponds to an area on the reflecting surface instead of a point. In
contrast to LiDAR scanners cameras do not measure the distance to reflecting
surfaces directly. Instead, depth estimates must be provided based on the sensor
readings by utilizing Computer Vision algorithms. In general, range estimates
can be obtained with monocular cameras and stereo cameras. Stereo cameras
enable the deduction of range estimates by finding corresponding pixels using
epipolar geometry and calculated disparity values, see e.g. [Hir08; MR11]. The
disparity is the pixel distance between matched pixels in the respective images.
Those disparity values are then used to infer 3D pixel coordinates. In recent
years, deep neural networks have also been trained to predict range information
based on monocular [Qia+21; Yua+22] or stereo images [Zha+19; Che+20b].

3.1.3 Sensor Measurement Modeling on Grids

When modeling a sensor measurement 𝑚 in a grid cell 𝐶, spatial uncertainty is
modeled by the inverse sensor model given by the conditional probability

Pr(𝑥 ∈ 𝐶 |𝑥𝑚), (3.1)

where 𝑥𝑚 is the measured position projected to the top-view grid and 𝑥 is the
random variable representing the real position. In the remainder of this thesis,
we write Pr(𝐶 |𝑚) for short. While the final presentation is usually defined
on a Cartesian grid, the inverse sensor model may be calculated in different
coordinate systems such as Polar, u/distance or u/disparity grids. The choice of
the coordinate system depends on the sensor modalities and is made so that the
grid can be aligned with the sensor measurement rays.

29



3 Sensor Measurement Mapping in Evidential Grid Maps

3.2 Related Work

We review past publications on how sensor measurements are interpreted to
obtain probabilistic or evidential grid maps containing information about the
presence and absence of obstacles.

3.2.1 Grid Mapping with Range Sensors

Elfes [Elf89] proposed to model a range measurement recorded by a Sound
Navigation and Ranging (Sonar) sensor by a 2D Gaussian inverse sensor model
where the two dimensions correspond to range and angle. Based on the inverse
sensor model he derived an occupancy profile that is recursively fused in a
Bayesian framework. Yguel et al. [YAL08] applied a simplified one-dimensional
inverse sensor model to LiDAR range measurements in a Polar grid. They
further focus on formulating the problem of switching coordinates from Polar
to Cartesian mathematically and propose a suitable approximation that can be
efficiently implemented on the graphics processing unit (GPU). Homm et al.
[Hom+10] follow up on this and use a one-dimensional Gaussian sensor model
in a Polar grid. Besides applying their method to LiDAR measurements, they
further include RaDAR measurements for lane boundary detection and present
an efficient GPU implementation. The early grid-based sensor models for range
sensors were modeled for sensors providing measurements from one rotating
laser scanner. In order to provide richer information on reflecting surfaces
in the environment, LiDAR sensors used on automated vehicles consist of
multiple lasers that may provide conflicting measurements. Yu et al. [YCB14]
handle conflicting measurements by first collecting reflections above a given
height threshold in a Polar grid and subsequently transform the measurement
counts into a BBA. They treat ground detections as sources of evidence for
the hypothesis free and apply backward extrapolation to propagate free space
evidence to neighboring grid cells. Porębski [Por20] presented a customizable
inverse sensor model to calculate occupancy grid maps. In order to be able to
compute accurate probabilities in each grid cell, they proposed a cell selection
process and apply either a Gaussian or an exponential distribution to compute
the inverse sensor model. They also investigate the capability of handling sensor
conflicts compared to past publications. Recently, Van Kempen et al. [Van+21]
proposed an evidential occupancy grid mapping framework using end-to-end
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learning. They generate synthetic LiDAR point clouds based on simulated
scenarios and train a deep neural network that is able to generate BBA layers
for the hypotheses occupied and free successfully modeling uncertainty.

3.2.2 Grid Mapping with Cameras

Badino et al. [BF07] computed an occupancy grid map based on stereo disparity
images and used the resulting grid representation to infer free space areas. They
compared Gaussian inverse sensor models on a Cartesian, Polar and u/disparity
grid, respectively. Yu et al. [YCB15] modeled free space in a v/disparity grid
and occupancy separately in a u/disparity grid based on stereo measurements
and subsequently combine both in an evidential occupancy grid map. Valente
et al. [VJF18] utilized a ground segmentation in a v/disparity grid and project
obstacles into a u/disparity grid. They apply a 2D Gaussian inverse sensor model
explicitly modeling errors in the stereo matching. The vast amount of semantic
segmentation frameworks in Computer Vision suggests including semantic
estimates in Vision-based grid maps. Bernardes Vitor et al. [BVF15] added an
occupancy refinement value denoting the semantic state as meta information to
their grid map representation. Thomas et al. [Tho+19] incorporated semantic
hypotheses in an evidential framework in order to estimate a geometric road
model. Their inverse sensor model considers confidences of the pixelwise
semantic segmentation model and pixel location probabilities.

None of the above-mentioned publications models occupancy and semantic
estimates in a joint evidential context such as the one introduced in Section 2.3.
In [Ric+19; Ric+20; Ric+21] a sensor grid mapping pipeline was presented
estimating a BBA on a FoD containing ground and occupancy hypotheses for
range sensors and cameras. In this thesis, an advancement of this work for the
evidential model in Section 2.3 is presented. Besides the modified evidential
model, the main advancement is that the occupancy classification of the sensor
measurement is incorporated in the estimation process instead of relying on an
external ground surface estimation. This is achieved by utilizing the organized
data structure of measurements obtained from imaging sensors.
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3.3 Sensor Measurement Grid Mapping

Let 𝑍 be a sensor measurement consisting of individual measurement elements
𝑚 ∈ 𝑍 with attached semantic label 𝜔𝑚 ∈ P(𝑂su) ∪ P(Ω𝑔). We present a
generic framework for transforming the sensor measurement 𝑍 to a sensor
measurement grid map g𝑍 . The outline of the methodology described in this
chapter is sketched in Figure 3.2.

Section 3.3.1

Section 3.3.2

Section 3.3.3

Point Set

Image

Sensor Modalities

Figure 3.2: The methodology described in this chapter. The sensor measurement grid map
estimation is presented for point sets and images. The latter is applied to specific
sensors considering their modalities.

Occupancy estimation

Each measurement element 𝑚 provides an evidence for occupancy 𝜔 ⊆ 𝑂su
or ground 𝜔 ⊂ Ω𝑔 depending on the attached semantic label 𝜔𝑚. The sensor
measurement grid map for hypothesis 𝜔 in the Cartesian grid cell 𝐶 ∈ G𝑥𝑦 is
modeled as

g𝑍 (𝐶, 𝜔) = 1 −
∏
𝑚∈𝑍

Pr(𝑚 ↛ 𝜔,𝐶), (3.2)
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Figure 3.3: Tree visualizing the calculation of Pr(𝑚↛ 𝜔, 𝐶 ) for 𝜔 ⊆ Ω𝑠 which accumulates the
probabilities of the events 𝐴,𝐵,𝐶 and 𝐷.

The probability Pr(𝑚 ↛ 𝜔,𝐶) that the measurement element 𝑚 is not relevant
for hypothesis 𝜔 in grid cell 𝐶 is visualized in the tree diagram in Figure 3.3
for hypotheses 𝜔 ⊆ 𝑂su indicating that the grid cell is occupied.

It is calculated by considering the following four nested binary queries:

1. Is the measurement element 𝑚 a true positive? The false positive rate
𝑝FP is a sensor dependent design parameter quantifying the likelihood of
obtaining ghost detections.

2. Was the measurement element 𝑚 recorded on an occupying surface?
Methods to calculate the according occupancy probability 𝑝occ are
discussed in Sections 3.3.1 and 3.3.2.

3. Does the semantic label 𝜔𝑚 assigned to the measurement element 𝑚
match with the considered hypothesis 𝜔? The according probability 𝑝𝜔
may be obtained from the confidences provided by the pixelwise semantic
labeling algorithm. If no such information is available, 𝑝𝜔 may be set to
one if 𝜔𝑚 = 𝜔 and zero otherwise.

4. Does the measurement element 𝑚 provide any evidence for grid cell 𝐶
based on its spatial uncertainty? The according probability is given by
the inverse sensor model Pr(𝐶 |𝑚), presented in Section 3.3.3.
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3 Sensor Measurement Mapping in Evidential Grid Maps

Consequently, the calculation reads

Pr(𝑚 ↛ 𝜔,𝐶) =Pr(𝐴) + Pr(𝐵) + Pr(𝐶) + Pr(𝐷)
=𝑝FP

+ (1 − 𝑝FP) · (1 − 𝑝occ)
+ (1 − 𝑝FP) · 𝑝occ · (1 − 𝑝𝜔)
+ (1 − 𝑝FP) · 𝑝occ · 𝑝𝜔 · (1 − Pr(𝐶 |𝑚)) . (3.3)

For ground semantics 𝜔 ⊆ Ω𝑔 the calculations are done analogously where the
second query is negated as ground surfaces are assumed to be non-occupying.

Free space estimation

A grid cell is free, if no obstacles are present in a defined free space corridor.
The free space corridor is limited by the values 𝑓𝑧,min, 𝑓𝑧,max ∈ R denoting
the distance to the ground, where 0 ≤ 𝑓𝑧,min < 𝑓𝑧,max ≤ 𝑑𝑧,max. This relation
ensures that the free space corridor is part of the driving corridor. The reason
for defining another corridor specifically for the free space estimation is to allow
traversing measurement parts of the driving corridor without providing free
space evidence. For instance, rays might traverse grid cells below cars. The free
space corridor is the height interval where it is very unlikely to have traversing
measurements, if the cell is not free. Evidence for the absence of obstacles is
provided by measurement rays traversing the grid cell. The free space evidence
deduced from each traversing measurement ray is quantified as the ray height
relative to the height of the free space corridor. The ray permeability

𝜌 =
𝑑𝑧

𝑓𝑧,max − 𝑓𝑧,min
. (3.4)

is then calculated as the ratio between the height portion 𝑑𝑧 covered by traversing
measurement rays and the overall height of the free space corridor. Furthermore,
evidence for a cell not being free is obtained by any measurement that provides
occupancy evidence. The BBA

m(𝐹𝑠) = 𝜌 ·
(
1 −

∑︁
𝜓≠𝐹𝑠

𝑚(𝜓)
)

(3.5)
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for free space 𝐹𝑠 is then calculated as the product of the ray permeability 𝜌 and
the part of the BBA mass that has not been assigned to any of the occupancy
hypotheses 𝜔 ⊆ 𝑂su.

3.3.1 Grid Mapping with Point Sets

Let the sensor measurement 𝑍 be a point set, i.e. a measurement element
𝑚 ∈ 𝑍 is a detection coordinate indicating the presence of a reflecting surface
with attached semantic label 𝜔𝑚. Note that other information such as LiDAR
intensities or RaDAR Doppler measurements are omitted here as they are
not considered in Equation (3.3). Point set measurements may be obtained
from range sensors such as RaDARs. In point sets, no neighborhood relations
between the coordinates can be deduced from the data structure. The calculation
of surface normal vectors used in Definition 2.2 requires finding neighboring
elements which is computational expensive. Therefore, occupancy is modeled
according to Definition 2.1 which means that the detection point set is segmented
into obstacle and ground detections based on a ground surface model such as
presented in [Wir+21]. In Equation (3.3), the occupancy probability 𝑝occ is
then set to one if 𝑚 was classified as occupying and to zero otherwise.

The ray permeability 𝜌 used for the BBA estimation for the hypothesis free 𝐹𝑠
is approximated as

𝜌 ≈ ℎmax − ℎmin

𝑓𝑧,max − 𝑓𝑧,min
, (3.6)

where ℎmin, ℎmax ∈ R are the minimal and maximal measured heights of travers-
ing measurement rays within the driving corridor. Note that this approximation
may differ from the real ray permeability significantly around obstacles not
connected to the ground.

This grid mapping framework for point sets has the disadvantage that a ground
surface estimation or an external ground segmentation module is required to
estimate the occupancy probability 𝑝occ. This occupies additional computational
resources and may introduce errors.
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3.3.2 Grid Mapping with Images

In this section, the generic grid mapping pipeline is put into concrete terms for
measurements given as images. The measurement images may be provided by
different sensor types in different forms such as range images from LiDARs or
depth/disparity images from cameras.

Outline of the processing steps

Throughout the processing steps, the representation is transformed to grids
defined in different coordinate systems. In particular, the following grids are
considered:

• Sensor Grid. The sensor grid G𝑢𝑣 represents the measurement pattern of
the sensor. One sensor reading on G𝑢𝑣

𝑍 = {frange : G𝑢𝑣 → R ∪ {unknown},
fsem : G𝑢𝑣 → S ∪ {unknown}},

consists of a range measurement given by the mapping frange and poten-
tially semantic estimates given by the mapping fsem. Here, S = 𝑂su ∪Ω𝑔
is the set containing all singleton semantic hypotheses. One sensor
element 𝑚 ∈ 𝑍 is identified by the 3-tuple (𝐶, 𝑟𝑚, 𝜔𝑚) consisting of the
sensor grid cell 𝐶 ∈ G𝑢𝑣, the range measurement 𝑟𝑚 ∈ R>0 and the
semantic measurement 𝜔𝑚 ∈ S. The meaning of the range measurement
𝑟𝑚 depends on the sensor and may be the measured distance for LiDAR
sensors or the pixel disparity for stereo cameras. Note that the sensor
reading 𝑍 marks the entry point of the estimation pipeline presented in
this work and that there might be preprocessing steps required to obtain
that information from the raw sensor measurements such as disparity
calculation or pixelwise semantic labeling.

• Measurement Grid. The measurement grid G𝑢𝑟 consists of the horizontal
sensor grid index 𝑢 in the first dimension and discretizes the range
measurements interval of interest in the second dimension. When
collecting measurements from the sensor grid in the measurement grid,
an orthographic projection along the upright Cartesian coordinate axis in
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Input

Sensor Grid
G𝑢𝑣
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Figure 3.4: The processing blocks for calculating the BBA on the Cartesian grid based on input
images.

the sensor coordinate system is performed. An example for a measurement
grid is a grid in Polar coordinates.

• Cartesian Grid. The final sensor measurement grid map is defined on a
Cartesian top-view grid G𝑥𝑦 . It is defined on the reference coordinate
system.

To indicate the corresponding coordinate system, the considered region of inter-
est is subscripted analogously as R𝑢𝑣 , R𝑢𝑟 and R𝑥𝑦 , respectively. Furthermore,
the mappings

T 𝑢𝑟𝑢𝑣 : R𝑢𝑣 → R𝑢𝑟 , T 𝑥𝑦𝑢𝑟 : R𝑢𝑟 → R𝑥𝑦

are introduced for transforming coordinates from one system to another.

The individual processing blocks for calculating the sensor measurement
grid map g𝑍 are depicted in Figure 3.4. The extrinsic and intrinsic sensor
calibrations as well as the 6-dimensional ego pose consisting of the 3D position
and orientation are assumed to be known. The first processing layer contains
image processing steps on the sensor grid G𝑢𝑣 . First, the surface normal vector
is calculated for each measurement element based on the sensor calibration
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and the input range image. Given the surface normal vectors, the occupancy
probability 𝑝occ from Equation (3.3) can be computed. Subsequently, each
pixel is assigned a height above ground by propagating the heights of ground
detections along each image column. This information is later used for the
free space estimation based on the vertical sensor ray coverage. In the second
processing layer a change of coordinates is applied from the sensor grid G𝑢𝑣
to the top-view measurement grid G𝑢𝑟 . This coordinate system is chosen
according to the sensor characteristics, so that noise can be handled reasonably,
and individual rays can be traced efficiently. Here, individual sensor reflections
are mapped into the measurement grid map h𝑍 where evidence for occupancy
and free space is accumulated. Finally, the sensor measurement grid map g𝑍 is
calculated based on the measurement grid map h𝑍 in a common Cartesian grid
G𝑥𝑦 . In the following, the calculation steps on the three grids are explained in
detail.

Sensor Grid

On the sensor grid G𝑢𝑣 , a surface analysis determining pixelwise occupancy
probabilities 𝑝occ and a ground analysis approximating the height above ground
in each pixel are performed.

The surface at the reflection locations is analyzed to identify measurement
elements that stem from occupying surfaces according to Definition 2.2. The
decision if a measurement element stems from an occupying surface is made
based on the surface normal vector at that location. Instead of providing a
binary classification of each measurement element into occupying and non-
occupying, we calculate the probability 𝑝occ ∈ [0, 1] that the surface reflecting
the measurement element is occupying. This occupancy probability 𝑝occ can
scale the resulting BBA whereas a binary classification results in a loss of
information.

Following [New+11], a bilateral filter is applied to the measurement elements
to eliminate noise while preserving edges. Here, the geometric context plays an
important role. Averaging applied in the bilateral filter provides desired results
if the measurement elements used for calculating the average have similar
sources with zero-mean disturbances. In order to increase the likelihood for this,
the range image frange is transformed to images fheight and fdistXY representing
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(a) (b) (c) (d)

Figure 3.5: Pixel-wise surface normal vector calculation based on neighboring pixels: (a) an
except of a range image with foreground (blue) and background (blue-orange), (b) the
color map on the unit sphere used to visualize surface normal vectors, (c) naive normal
vector calculation, (d) normal vector calculation using nearest neighboring pixels.

the height of the measurement element relative to the sensor origin and the
distance to the sensor origin projected to the XY-plane. This selection is based
on the assumption that environments in traffic scenes can be separated into
sub-planes that are mostly oriented along the XY-plane or perpendicular to
it. This holds for the ground surface as well as many objects as buildings and
traffic participants. The bilateral filter is then applied to fheight and fdistXY with
parameters 𝜎𝑟 ,height and 𝜎𝑟 ,distXY denoting the range standard deviation and
𝜎𝑑,height and 𝜎𝑑,distXY denoting the spatial standard deviation.

Based on the filtered images f̃height and f̃distXY, the surface normal vector can be
approximated for each measurement element. Here, the image representation
has strong advantages over other representations such as unordered point sets
as it implicitly defines a neighborhood. The selection of neighboring pixels
used for approximating the surface normal can be crucial. When considering
the same neighborhood in each measurement element, the considered values
might represent surfaces of different entities and the surface normal calculation
will be erroneous, see Figure 3.5c. To minimize this effect, the considered
neighborhood is adapted based on the range measurements. To find the
horizontally adjacent pixel 𝐶ℎ, the next pixel to the left and to the right are
considered and the one that has the smaller Euclidean distance in the 3D
Cartesian space to the measurement elements is chosen. For the vertically
adjacent pixel 𝐶𝑣 , the next pixel below and above are considered. In case no
direct neighbors can be found, the second next pixels are considered and so forth
until a maximal neighborhood size is reached. This might be necessary in case
no reliable measurements were recorded at neighboring locations. The selection
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3 Sensor Measurement Mapping in Evidential Grid Maps

of adjacent pixels used for the normal vector calculation is demonstrated in
Figure 3.5d.

Given the filtered images f̃height and f̃distXY, the sensor calibration K and the
pixels 𝐶,𝐶ℎ, 𝐶𝑣 ∈ G𝑢𝑣 , the Cartesian coordinates 𝒑, 𝒑ℎ, 𝒑𝑣 ∈ R3 can be
calculated and the normal vector 𝒏 can be determined by computing and
normalizing the corresponding cross product

𝒏 = (𝑛1, 𝑛2, 𝑛3)𝑇 =
( 𝒑ℎ − 𝒑) × ( 𝒑𝑣 − 𝒑)
∥( 𝒑ℎ − 𝒑) × ( 𝒑𝑣 − 𝒑)∥ . (3.7)

Based on the surface normal vector 𝒏, an occupancy weight 𝑤occ is calculated.
A logistic function centered around 𝜋

4 is applied to arccos(𝑛3), i.e. the angle
between 𝒏 and the North Pole (0, 0, 1)𝑇 as

𝑤occ =
1

1 + exp(−𝑘 (arccos(𝑛3) − 𝜋
4 ))

, (3.8)

where 𝑘 ∈ R>0 is a scaling factor. The logistic function is parametrized so
that we have 𝑤occ = 0.5 for arccos(𝑛3) = 𝜋

4 which is based on the geometric
consideration that a surface is considered blocking if its slope exceeds 45°.

The credibility of the calculated surface normal vector depends on the distance
between the measurement element and its neighbors. If the distance is small
it might be dominated by inaccurate range measurements and the resulting
normal vector might be disturbed. Therefore, we apply another logistic function
to model a normal vector confidence value

conf𝒏 =
1

1 + exp(−𝑘 ′ (min(∥ 𝒑ℎ − 𝒑∥, ∥ 𝒑𝑣 − 𝒑∥) − 𝜎range))
(3.9)

quantifying if the minimal distance to the neighboring pixel coordinates is
smaller or larger than the standard deviation 𝜎range of the range measurement.
The constant 𝑘 ′ is another scaling factor. Finally, the occupancy probability is
calculated as

𝑝occ = conf𝒏 · 𝑤occ. (3.10)

The algorithm transforming the input range image frange to an image focc contain-
ing the occupancy probabilities for each measurement element is summarized
in Algorithm 3.1.
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ALGORITHM 3.1: Calculate occupancy cell weights.
Input : frange, K /* Range image and calibration */
Output : focc /* Image with occupancy cell weights */

1 fheight ← computeHeight(frange, K) /* Height relative to sensor */
2 fdistXY ← computeDistXY(frange, K) /* Distance projected to XY-plane */
3 f̃height ← bilateralFilter(fheight ) /* Denoising */

4 f̃distXY ← bilateralFilter(fdistXY ) /* Denoising */
5 for 𝐶 in G𝑢𝑣 do

/* Find adjacent pixel indices likely to be on same plane */
6 𝐶ℎ ← adjazentHorizontal(frange, K , 𝐶 )
7 𝐶𝑣 ← adjazentVertical(frange, K , 𝐶 )

/* Calculate 3D coordinates */

8 𝒑 ← toCoordinate( f̃height , f̃distXY, K , 𝐶 )
9 𝒑ℎ ← toCoordinate( f̃height , f̃distXY, K , 𝐶ℎ )

10 𝒑𝑣 ← toCoordinate( f̃height , f̃distXY, K , 𝐶𝑣 )
/* Compute normal vector (Equation (3.7)) */

11 𝒏 ← surfaceNormal(𝒑, 𝒑ℎ , 𝒑𝑣 )
/* Compute occupancy weight (Equation (3.8)) */

12 𝑤occ ← occupancyWeight(𝒏, 𝑘 )
/* Compute normal vector confidence (Equation (3.9)) */

13 conf𝒏 ← surfaceNormalConfidence(𝒑, 𝒑ℎ , 𝒑𝑣 , 𝜎range )
/* Compute occupancy probability (Equation (3.10)) */

14 focc (𝐶 ) ← conf𝒏 · 𝑤occ

15 return focc

Besides the image focc containing the occupancy probabilities, the distance to
ground is estimated for each measurement element. This information is needed
to exclude measurements outside the considered driving corridor and to clip
measurement rays that intersect with the free space corridor boundaries. One
option is to explicitly estimate a ground surface using a parametric model such
as a plane or a 2D B-spline in the Cartesian space as in [Wir+21]. However,
estimating a parametric model often comes along with solving an optimization
problem with computationally time-consuming numerical solvers. Instead,
we estimate the distance to ground directly for each measurement element.
Therefore, measurement elements that belong to measurement rays hitting the
ground surface are classified, and the measured height is assigned directly. Then
the missing regions, i.e. rays that have been reflected by objects, have to be
filled. One best guess for this is to traverse the measurement image column-wise
and propagate the last known ground height. The corresponding algorithm is
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3 Sensor Measurement Mapping in Evidential Grid Maps

ALGORITHM 3.2: Calculate pixel wise ground height.
Input : fnormals, fheight /* Blocking probability and detection height */
Output : fground /* Image containing pixel wise ground height */

1 hit ← False
2 for 𝐶 in G𝑢𝑣 do
3 𝒏 ← fnormals (𝐶 )
4 if isGround (n) AND (hit == False) then
5 fground (𝐶 ) ← fheight (𝐶 )
6 ℎlast ← fheight (𝐶 )
7 else if isGround (n) AND (hit == True) AND (fheight (𝐶 ) < ℎlast) then
8 fground (𝐶 ) ← fheight (𝐶 )
9 ℎlast ← fheight (𝐶 )

10 else
11 fground (𝐶 ) ← ℎlast
12 hit ← True

13 return fground

formulated in Algorithm 3.2. The function isGround classifies measurement
elements into ground and obstacle detections based on the following heuristic
considerations: Let 𝐶𝑢𝑣 ∈ G𝑢𝑣 be the current measurement element. In case
𝐶𝑢𝑣 is not located in the bottom row, let 𝐶−1

𝑢𝑣 ∈ G𝑢𝑣 be the element located
below 𝐶𝑢𝑣 . Based on similar geometric considerations as in the calculations
of the occupancy weight 𝑤occ (Equation (3.8)), the measurement element is
classified as obstacle, if

• the angle between the surface normal vector 𝒏 and the North Pole
(0, 0, 1)𝑇 exceeds 45°, i.e. arccos(𝑛3) > 𝜋

4 , or

• 𝐶𝑢𝑣 is located in the bottom row and the vertical component of the
detection coordinate minus the sensor height exceeds a given threshold,
or

• 𝐶𝑢𝑣 is not located in the bottom row and the Euclidean distance in the
3D Cartesian space to the measurement in 𝐶𝑢𝑣 ∈ G𝑢𝑣 is smaller than the
distance to the measurement in 𝐶−1

𝑢𝑣 ∈ G𝑢𝑣 .

After the first obstacle detection was found in a column, subsequent elements
are only classified as ground, if the upper conditions are not fulfilled and the
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3.3 Sensor Measurement Grid Mapping

measured height has decreased compared to the measurement in 𝐶−1
𝑢𝑣 . This is

crucial to prevent classifying horizontal surfaces on obstacles as ground.

Measurement Grid

On the measurement grid G𝑢𝑟 , measurement elements are assigned to the
occupancy hypotheses 𝜔 ⊆ Ω𝑠 and ground hypotheses 𝜔 ⊆ Ω𝑔 and spatial
uncertainty is models by applying the inverse sensor model. The multi-layer
grid map

h𝑍 : G𝑢𝑟 ×
(
P(Ω𝑔) ∪ P(Ω𝑠)

)
→ R (3.11)

accumulates measurement elements for each hypothesis 𝜔 ⊆ Ω𝑠 and 𝜔 ⊆ Ω𝑔,
respectively, in the corresponding grid layer h𝑍 ( · , 𝜔). Based on Equations (3.2)
and (3.3), the logarithms of the probabilities Pr(𝑚 ↛ 𝜔,𝐶) are accumulated as

h𝑍 (𝐶, 𝜔) =
∑︁

𝐶𝑢𝑣∈G𝑢𝑣
log(Pr(𝑚 ↛ 𝜔,𝐶)) (3.12)

in grid cell 𝐶 ∈ G𝑢𝑟 for the hypotheses 𝜔 ∈ P(Ω𝑔) ∪ P(Ω𝑠) \ 𝐹𝑠 .

For the free space hypothesis 𝐹𝑠 ⊂ Ω𝑠, the ray permeability 𝜌 defined in
Equation (3.4) is estimated. Therefore, we calculate

h𝑍 (𝐶𝑢𝑟 , 𝐹𝑠) = 𝜌𝐶𝑢𝑟
. (3.13)

For this purpose, a 3D ray casting is applied based on the sensor intrinsics. The
rationale behind this is that the portion of space covered by a measurement
ray between the reflecting surface and the sensor origin provides free space
evidence. Each measurement ray contributes to the observed height where the
contribution is defined by the ray divergence as sketched in Figure 3.6. For
this purpose, we approximately model the vertical ray coverage to be dense,
i.e. it is assumed that there are no gaps between the rays. This is justified by
the high vertical resolution of the sensors used in this work due to which only
insignificant entities may be missed at full ray coverage. Consequently, the ray
permeability 𝜌𝐶𝑢𝑟

in grid cell 𝐶𝑢𝑟 ∈ G𝑢𝑟 is computed as

𝜌𝐶𝑢𝑟
=

𝑑𝑧

𝑓𝑧,max − 𝑓𝑧,min
, 𝑑𝑧 =

∑︁
𝐶𝑢𝑣∈G𝑢𝑣

z(𝑟𝑚), (3.14)
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𝑟max𝐶𝑢𝑟

𝑑𝑧

𝑓𝑧,min

𝑓𝑧,max

Figure 3.6: Calculation of the ray permeability 𝜌𝐶𝑢𝑟 in a measurement grid cell 𝐶𝑢𝑟 ∈ G𝑢𝑟 . The
rays are clipped according to the minimal height 𝑓𝑧,min, the maximal height 𝑓𝑧,max
and maximal range 𝑟max.

where z is a function calculating the height of a measurement ray at range 𝑟𝑚.
Each measurement ray is clipped according to 𝑓𝑧,min, 𝑓𝑧,max as only parts of
the ray that traverse the defined free space corridor contribute to the free space
estimation. Positive and negative ray heights are mapped into the underlying
grid cells to mark end and start points of the clipped measurement rays. The
missing gaps can then be filled by simply computing the running sum and
correcting the ray heights to account for the ray divergence. Algorithm 3.3
summarizes the steps to fill h𝑍 (𝐶, 𝐹𝑠) with the accumulated height intervals
observed by measurement rays.

Cartesian Grid

After calculating the measurement grid map h𝑍 , the second change of coor-
dinates from the measurement grid G𝑢𝑟 to the Cartesian grid G𝑥𝑦 is applied.
Therefore, cell values h𝑍 (𝐶, 𝜔) must be transformed properly into the Cartesian
representation h𝑥𝑦 (𝐶, 𝜔). For all hypotheses 𝜔 ≠ 𝐹𝑠 except free space, this is
done by integrating h𝑍 over T 𝑢𝑟𝑥𝑦 (𝐶) ⊂ R𝑢𝑟 as

h𝑥𝑦 (𝐶, 𝜔) =
∫

T𝑢𝑟
𝑥𝑦 (𝐶 )

h𝑍 (𝑥, 𝜔) d𝑥. (3.15)
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ALGORITHM 3.3: Calculate accumulated observed height h𝑍 (𝐶, 𝐹𝑠)
Input : frange, fground, K
Output : h𝑍 (𝐶, 𝐹𝑠 )
/* Map measurement elements */

1 for 𝐶 in G𝑢𝑣 do
2 𝐶𝑢𝑟 ← computeSensorGridCell(frange, K , 𝐶 )
3 [𝐶start , 𝐶end ] ← clipRay(K , 𝐶, fground, 𝑓𝑧,min, 𝑓𝑧,max )

/* Compute ray heights */
4 ℎstart ← z(frange, K , cellStart)
5 ℎend ← z(frange, K , cellEnd)
6 h𝑍 (𝐶start , 𝐹𝑠 ) ← h𝑍 (𝐶start , 𝐹𝑠 ) − ℎstart
7 h𝑍 (𝐶end, 𝐹𝑠 ) ← h𝑍 (𝐶end, 𝐹𝑠 ) + ℎend

/* Cast rays */
8 for 𝑢 in [uMin, . . . , uMax] do
9 acc ← 0 /* Running sum */

10 ℎlast ← z(frange, K , (𝑢, 𝑟last ) )
11 for 𝑟 in [rMax, . . . , rMin] do
12 ℎ ← z(frange, K , (𝑢, 𝑟 ) )
13 acc ← ℎ/ℎlast ∗ acc + hObs( (𝑢, 𝑟 ) )
14 hObs( (𝑢, 𝑟 ) ) ← acc
15 ℎlast ← ℎ

16 return hObs

For free space 𝜔 = 𝐹𝑠 , the average over T 𝑢𝑟𝑥𝑦 (𝐶) is calculated as

h𝑥𝑦 (𝐶, 𝐹𝑠) =
1

𝜇
(
T 𝑢𝑟𝑥𝑦 (𝐶)

) ∫
T𝑢𝑟
𝑥𝑦 (𝐶 )

h𝑍 (𝑥, 𝜔) d𝑥. (3.16)

Here, 𝜇( · ) denotes the 2D Lebesgue-measure which calculates the area of
T 𝑢𝑟𝑥𝑦 (𝐶).

The Cartesian grid map h𝑥𝑦 is subsequently transformed to a consistent BBA
represented by the sensor measurement grid map g𝑍 . Following Equations (3.2),
(3.3) and (3.5), it is computed as

g𝑍 (𝐶, 𝜔) =


𝑘 (1 − exp(h𝑥𝑦 (𝐶, 𝜔))), if 𝜔 ⊆ Ω𝑠 or 𝜔 ∈ Ω𝑔,(
1 −

∑︁
𝜓≠𝐹𝑠

g𝑍 (𝐶, 𝜓)
)

h𝑥𝑦 (𝐶, 𝜔), if 𝜔 = 𝐹𝑠 ,

0, else,
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Figure 3.7: The measurement grid G𝑢𝑟 on the left and the transformed Polar, u/distance and
u/disparity grid T𝑥𝑦

𝑢𝑟 (G𝑢𝑟 ) . Matching grid cell colors indicate the same grid cell in
the source grid and the warped target grid.

where

𝑘 =

1 − exp
( ∑
𝜔⊆Ω𝑠

h𝑍 (𝐶, 𝜔)
)

∑
𝜔⊆Ω𝑠

1 − exp (h𝑍 (𝐶, 𝜔))
(3.17)

is a normalization factor distributing BBA masses equally to conflicting hy-
potheses.

3.3.3 Grid Mapping Considering Sensor Modalities

Up to this point, the inverse sensor model Pr(𝐶 |𝑚) and the measurement grid
G𝑢𝑟 were not specified as they depend on the sensor modalities. In this section,
the measurement grids designed for LiDARs, monocular cameras and stereo
cameras and two inverse sensor models are presented.

The measurement grid G𝑢𝑟 used for LiDAR is defined in Polar coordinates,
i.e. the horizontal index 𝑢 corresponds to the angle location of the spinning
laser and the range measurement is the measured distance projected to the
xy-plane. For measurements obtained from a monocular camera where the
distance was estimated directly in each pixel, an u/distance grid is used. In case
disparity estimates obtained from a stereo camera are mapped, an u/disparity
grid is used. Figure 3.7 shows the relation between the measurement grid G𝑢𝑟
and the Cartesian grid G𝑥𝑦 for all three measurement grids used in this work.
The cell values in the measurement grid map h𝑍 are transformed to Cartesian
coordinates using Equations (3.15) and (3.16).
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(b) The pseudo PDF for the interval inverse
sensor model.

Figure 3.8: The (pseudo) PDFs of the range 𝑟 used in the two presented inverse sensor models.

The inverse sensor model is calculated in the measurement grid G𝑢𝑟. Let a
measurement grid cell𝐶 = 𝐼𝑢× 𝐼𝑟 ∈ G𝑢𝑟 be divided into its 𝑢 and 𝑟 components.
We model the measurement 𝑚 to be uniformly distributed in 𝐼𝑢. Hence, the
inverse sensor model simplifies to

Pr(𝐶 |𝑚) = Pr(𝑟 |𝑟𝑚) =
∫
𝑟∈𝐼𝑟

f𝑟𝑚 (𝑟) d𝑟, (3.18)

where f𝑟𝑚 is the probability density function (PDF) of the range 𝑟 given the
range measurement 𝑟𝑚. In this work, two options for f𝑟𝑚 are presented:

1. The Gaussian Model: We model the range to be normally distributed
with mean 𝑟𝑚 and standard deviation 𝜎𝑟 , i.e.

fN,𝑟𝑚 (𝑟) =
1

√
2𝜋 𝜎𝑟

exp

(
−1

2

(
𝑟 − 𝑟𝑚
𝜎𝑟

)2
)
. (3.19)

In the remainder of this thesis, we refer to this model as Gaussian inverse
sensor model PrN (𝐶 |𝑚). It is sketched in Figure 3.8a with standard
deviation 𝜎𝑟 = 0.1𝑟 .
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2. The Interval Model: The measurement element 𝑚 covers the whole
interval [𝑟𝑚, 𝑟𝑚′ ], i.e.

f𝐼,𝑟𝑚 (𝑟) =
{

1
𝛿𝑟
, if 𝑟 ∈ [𝑟𝑚, 𝑟𝑚′ ]

0, else,
(3.20)

where 𝛿𝑟 is the length of the range interval 𝐼𝑟 of one grid cell 𝐶 ∈ G𝑢𝑟
and 𝑟𝑚′ is the range measurement in the sensor grid cell 𝐶′ = (𝑢, 𝑣 + 1)
that is vertically adjacent to the considered measurement element 𝑚 in
𝐶. Note that f𝐼,𝑟𝑚 (𝑟) is normalized so that it integrates to one over the
range interval 𝐼𝑟 of a fully supported grid cell. This model is based on
the assumption that the measurement 𝑍 partitions the measured surface
which means that there are no gaps between areas on the world surface
covered by rows in the sensor grid G𝑢𝑣 . In the remainder of this thesis,
we refer to this model as interval inverse sensor model Pr𝐼 (𝐶 |𝑚). It is
sketched in Figure 3.8b.

We apply f𝐼,𝑟𝑚 only in the calculation of the BBA on the ground hypotheses Ω𝑔
as the model assumption is violated for occupying surfaces. Furthermore, we
propose using it only for camera measurements and not for LiDAR measurements
as LiDAR scan lines are usually not adjacent. In comparison, the gaps between
pixel rows in camera sensor used in automotive applications are negligible.

3.4 Experiments

Our proposed grid mapping framework is validated using the Kitti Vision
Benchmark [GLU12] and the semantic LiDAR point cloud labels from the
SemanticKITTI dataset extension [Beh+19]. They contain measurements from
a Velodyne HDL-64E LiDAR scanner with surround view, one RGB and one
grayscale stereo camera setup pointing to the front, the sensor calibrations and
6D ego pose annotations. In this work, the measurements from the Velodyne
HDL-64E and the stereo RGB camera setup are processed with the presented
grid mapping pipeline. The sensor coverage of this sensor setup is shown in
Figure 3.9.
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Velodyne HDL-64E

Stereo camera

Figure 3.9: The sensor setup consisting of a 360° LiDAR scanner and a stereo camera pointing to
the front.

3.4.1 Qualitative Results

In the sensor grid, surface normal vectors are calculated based on the range esti-
mates and occupancy probabilities are deduced as described in Algorithm 3.1.

Figure 3.10a shows the image processing steps for a range image of a KITTI-360
measurement taken from the Kitti dataset. Note that the intrinsic calibration
is already applied here meaning that rotational position and distance of each
reflection was corrected according to the intrinsic calibration parameters. The
gaps in the range image result from shadows caused by sensors and antennas on
top of the test vehicle or missing reflections due to surfaces with low reflectivity.
The latter tends to occur on surfaces at high distances larger than 100m or on
dark surfaces such as black cars or windows. In order to obtain one single image
containing the range measurements, multiple returns are omitted in this work
meaning that only the lowest range measurement is stored in the range image.
Figure 3.10b contains the semantic labels assigned to each LiDAR detection in
the SemanticKITTI dataset extension. Figure 3.10c shows the image containing
the surface normal vectors calculated in Algorithm 3.1 colorcoded according
to Figure 3.5b and Figure 3.10d shows the resulting image focc containing
the occupancy probabilities. Recall that the occupancy probabilities in focc
scale with the orientation of the reflecting surface and thus do not segment the
environment in objects and ground. Consequently, there are areas on objects
with low occupancy probability on horizontal surfaces such as the hood or the
rooftop of cars.
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(a) The LiDAR range image frange in meters.
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(b) The semantic segmentation image fsem.
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(c) The surface normal vector image fnormals.
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(d) The occupancy probability image focc.

Figure 3.10: Impressions of the sensor grid processing chain for a LiDAR sensor reading.

Figure 3.11 shows the image processing results for an image pair of the stereo
camera in the Kitti Tracking dataset. The image view, see Figure 3.11a, shows
the center part of the LiDAR range image shown in Figure 3.10. The disparity
image depicted in Figure 3.11b was estimated using the guided aggregation
net for stereo matching presented by Zhang et al. [Zha+19]. This is a well
performing stereo disparity estimator generating dense disparity maps that
comes along with a real-time capable implementation running at 15-20 frames
per seconds. The pixelwise semantically labelled image in Figure 3.11c was
obtained by feeding the RGB image recorded by the left camera into the network
presented by Zhu et al. [Zhu+19]. The inference on this network is not real-time
capable, but similarly performing, real-time capable alternatives haven been
proposed e.g. in [Hon+21]. Figure 3.11d visualizes the surface normal vectors
fnormals and Figure 3.11e the corresponding occupancy probability image focc.
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(a) The RGB image recorded by the left stereo
camera.

20 40 60 80

pixels

(b) The stereo disparity image in pixels.

Street Sidewalk Ground other Car
Two-wheeler Pedestrian Other mobile Immobile

(c) The semantic segmentation image fsem.

(1, 0, 0)𝑇 (0, 1, 0)𝑇 (0, 0, 1)𝑇

(d) The surface normal vector image fnormals.
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(e) The occupancy probability image focc.

Figure 3.11: Impressions of the sensor grid processing chain for a stereo camera sensor reading.

Figure 3.12 shows the final BBA for the hypotheses occupied and free based on
a LiDAR scan and stereo camera images, respectively. It can be seen that the
proposed estimation process accounts for the different sensory characteristics
and their effect to the measurement uncertainty. This becomes visible in the
BBAs for occupied shown in Figure 3.12b. The uncertainty of the range
estimate leads to blurry occupancy patterns. The sensor measurement grid
map of the stereo camera shows increasing blurriness and thus increasing range
estimate uncertainty with higher distances to the sensor origin. In the LiDAR
sensor measurement grid map on the other hand, this uncertainty is independent
of the distance. This is due to the fact that stereo measurement elements are
mapped in an u/disparity grid where the discretization becomes coarser at larger
distances. Recall that the BBA of the hypothesis free in Figure 3.12c models
the 3D ray geometry as depicted in Figure 3.1. That means that it shows the
percentage of the height interval of interest that can be observed. It can be seen
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(a) Image taken by the front left color camera.
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(c) The BBA of the hypothesis free m(𝐹𝑠 ) .

Figure 3.12: Resulting BBA for the hypotheses occupied 𝑂su and free 𝐹𝑠 in the Cartesian grid
G𝑥𝑦 using LiDAR and stereo camera measurements without semantic estimates.

that no-returns caused by low reflectivity or rays reflected by the sensor setup
on the ego vehicles rooftop lower the free space evidence masses. Additionally,
it is visible that cells very close to the sensor origin cannot be observed.

Figure 3.13 visualizes the sensor measurement grid maps estimated with the
same measurements. First, no semantic estimates are included, i.e. only the
360° LiDAR scan and the stereo disparity map are processed. Figure 3.13a
shows the occupancy probability after applying the pignistic transformation
(Equation (2.7)). Here, the gray values transition from white for zero to
black denoting an occupancy probability of one. In Figures 3.13b and 3.13c
the resulting sensor measurement grid map is visualized when additionally
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(a) Sensor measurement grid maps without semantic estimates.
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(b) Sensor measurement grid maps with semantic estimates using the Gaussian inverse sensor
model PrN (𝐶 |𝑚) for both ground semantics Ω𝑔 and occupancy semantics Ω𝑠 .
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(c) Sensor measurement grid maps with semantic estimates using the Gaussian inverse sensor
model PrN (𝐶 |𝑚) for occupancy semantics Ω𝑠 and the interval inverse sensor model
Pr𝐼 (𝐶 |𝑚) for ground semantics Ω𝑔 .

Figure 3.13: Resulting BBA visualizations in the Cartesian grid G𝑥𝑦 using LiDAR (left) and
stereo camera measurements (right) with and without semantic estimates.
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3 Sensor Measurement Mapping in Evidential Grid Maps

processing the semantic estimates shown in Figures 3.10b and 3.11c. The
results clearly show the differences in modelling ground detections with the
Gaussian inverse sensor model PrN (𝐶 |𝑚) in Figure 3.13b and with the interval
inverse sensor model Pr𝐼 (𝐶 |𝑚) in Figure 3.13c. Whereas the BBA estimation
for the hypothesis street is sparse using the Gaussian model, evidence for the
whole area of the street covered by the sensor grid is obtained when using the
interval model.

3.4.2 Quantitative Evaluation

One of the key tasks in the sensor measurement grid map estimation is the
deduction of occupancy evidence based on the measurements. We demonstrate
the differences when applying the presented framework to point sets and images.
Recall that two ways of defining the term occupied in a geometric manner
were presented where Definition 2.1 is used for point sets and Definition 2.2
for images. To make the evaluation representable, a subsequence of the Kitti
odometry benchmark is chosen that was recorded on challenging terrain with
altering height. The BBA for the hypothesis occupied is calculated with one of
the following three methods:

1. Flat world model. Derive evidence for occupancy according to Defini-
tion 2.1 as described in Section 3.3.1. The ground surface is modeled
as a xy-plane {(𝑥, 𝑦, 𝑧) | 𝑧 = 0} in vehicle coordinates and the tolerance
margin is set to 𝛿𝐺 = 0.3m. The resulting BBA is denoted as mflat.

2. B-spline model. Derive evidence for occupancy according to Defini-
tion 2.1 as described in Section 3.3.1. The ground surface is represented
by the uniform B-spline model proposed by Wirges et al. [Wir+21] and
the tolerance margin is set to 𝛿𝐺 = 0.3m. The resulting BBA is denoted
as mspline.

3. Surface normals. Derive evidence for occupancy according to Defini-
tion 2.2 as described in Section 3.3.2. The resulting BBA is denoted as
mnormals.

To evaluate the resulting BBA for a cell being occupied the following BBAs
are calculated:
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• The reference BBA mref calculated using Equation (3.2) where the
occupancy probability is set to

𝑝occ =

{
1, if 𝜔ref ⊆ 𝑂su,
0, else,

where 𝜔ref is the semantic label added in the SemanticKITTI dataset
extension.

• The BBA mall containing all detections, i.e. the occupancy weight is
𝑝occ = 1.

• The three estimated BBAs mflat, mspline and mnormals calculated as de-
scribed above.

Note that the reference BBA mref is not a ground truth classification based on
the same geometric cues as used in the estimation. As opposed to defining
occupancy based on geometric constraints as in Definitions 2.1 and 2.2, the
reference BBA deduces occupancy based on semantic constraints. In order
to create a ground truth BBA based on geometric constraints, a complete 3D
surface model of the environment would be required. However, the comparison
considered here still yields interpretable information on the performance of the
BBA estimation. Based on mref , mall and m𝑖 , 𝑖 ∈ {flat, spline, normals}, the
confusion metrics

𝜉TP,𝑖 = m̃𝑖 (𝑂su) m̃ref (𝑂su)mall (𝑂su),
𝜉FP,𝑖 = m̃𝑖 (𝑂su) (1 − m̃ref (𝑂su))mall (𝑂su),
𝜉FN,𝑖 = (1 − m̃𝑖 (𝑂su)) m̃ref (𝑂su)mall (𝑂su),
𝜉TN,𝑖 = (1 − m̃𝑖 (𝑂su)) (1 − m̃ref (𝑂su))mall (𝑂su)

are defined per grid cell 𝐶 ∈ G𝑥𝑦 , where

m̃𝑖 (𝑂su) =
m𝑖 (𝑂su)
mall (𝑂su)

, 𝑖 ∈ {flat, spline, normals, ref} (3.21)
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Figure 3.14: Confusion rates 𝜉 𝑗,𝑖 for the occupancy BBAs mflat, mspline and mnormals. The height
of the road surface with respect to a global reference coordinate system is visualized
in gray behind the plots for the six metrics.

is the part of mall (𝑂su) that was classified as occupied. The confusion rates on
the whole grid G𝑥𝑦 are then calculated as

𝜉 𝑗 ,𝑖 =

∑
𝐶∈G𝑥𝑦

𝜉 𝑗 ,𝑖 (𝐶)∑
𝑗∈𝐽

∑
𝐶∈G𝑥𝑦

𝜉TP,𝑖 (𝐶)
, (3.22)

where 𝑗 ∈ 𝐽 = {TP, FP, FN,TN}. A high false positive rate 𝜉FP,𝑖 indicates that
measurement elements 𝑚 with attached semantic label 𝜔ref ∈ Ω𝑔 contributed
to a high BBA m(𝑂su) whereas a high false negative rate 𝜉FN,𝑖 indicates that
measurement elements with semantic label 𝜔ref ∈ 𝑂su had little contribution
to m(𝑂su). Figure 3.14 shows the confusion metrics 𝜉 𝑗 ,𝑖 for one traffic scene
consisting of 200 consecutive frames in the SemanticKITTI dataset. Here, all
grid cells with assigned ground label other ground, i.e. everything but street and
sidewalk are excluded as occupancy derived from semantic properties might
differ significantly from the geometric occupancy on terrain like meadows and
other vegetation. Including those areas would distort the evaluation results. It
can be seen that the false positive rate 𝜉FP,flat of the flat world model is heavily
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influenced by uneven terrain violating the flat world assumption. In most of the
frames, the false positive rate 𝜉FP,spline is reduced to approximately zero for the
B-spline model. However, between frame 2510 and 2540, a significant rise of
𝜉FP,spline can be observed. The false positive rate 𝜉FP,normals for the proposed
surface normal vector-based method, on the other hand, stays almost constant
close to zero in the whole test sequence. As in the proposed method, occupancy
evidence is not deduced for horizontal surfaces on objects such as car roofs,
the false negative rate 𝜉FN,normals is the highest almost throughout the whole
sequence. The false negative rate 𝜉FN,spline indicates that the largest number of
detections reflected on object surfaces were not missed in the B-spline model.
However, it should be emphasized that this is due to the differences between the
two underlying occupancy concepts in Definition 2.1 and Definition 2.2. The
qualitative results presented in the remainder of this section show that missing
detections in mnormals are in fact almost entirely located within objects and thus
are negligible in top-view object shape estimation.

𝜉FP,normals 𝜉FN,normals 𝜉TP,normals + 𝜉TN,normals excluded

-40 -20 0 20 40
-20
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20

Figure 3.15: Visualization of the confusion rates 𝜉 𝑗,normals for the occupancy BBAs mnormals.

Figure 3.15 visualizes the confusion metrics for one frame in the Kitti odometry
benchmark based on the proposed mapping algorithm using surface normal
vectors. In each grid cell, the false positive rate 𝜉FP,normals is visualized in blue,
the false negative rate 𝜉FN,normals in red and the true positive rate 𝜉TP,normals
in black. Black grid cells visualize the sum of the two rates 𝜉TP,normals and
𝜉TN,normals, i.e. the estimated classification coincides with the reference. Grid
cells without any detection are white and grid cells with detections that have
been excluded from the evaluation are shown in gray. As mentioned, it can be
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3 Sensor Measurement Mapping in Evidential Grid Maps

seen that red grid cells mainly occur on horizontal surfaces on objects such as
the rooftop of cars whereas the object boundaries are estimated as occupied.

(a) Image taken by the front left color camera.
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(b) The maximal detected height of all LiDAR detections located in a specific grid cell.

Figure 3.16: The frame that is indicated by the vertical line in Figure 3.14.

Figure 3.16 shows a specific frame in the same sequence as shown in Figure 3.14.
The ego vehicle enters a street with a significant incline that leads to a crossing
on rather flat terrain. The frame is marked by a gray vertical line in Figure 3.14.
The camera image of the front left camera in Figure 3.16a shows that there is a
significant change in the gradient of the ground surface in the vicinity of the
ego vehicle. This is further highlighted in Figure 3.16 that shows the maximal
detected height of all LiDAR detections located in a grid cell. Here, the LiDAR
detections were transformed into the vehicle coordinate system.

In Figure 3.17, the advantages of the surface normal-based occupancy classifi-
cation compared to a classification based on a ground model are demonstrated.
Figure 3.17a depicts the mapping result when applying grid mapping with
point sets using the flat world model. In the area around the junction there are
many ground detections that are classified as obstacles contributing to a high
occupancy mass in those grid cells. On challenging terrain as in this scenario
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(b) Ground surface estimation with [Wir+21].
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(c) Proposed method.

Figure 3.17: Comparison of the occupancy BBA estimation on challenging terrain.
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this is expected as the ground model cannot capture the actual ground geometry.
Figure 3.17b shows the results when applying grid mapping with point sets
using the B-spline model. The fact that the uniform B-spline is able to capture
the real surface significantly better leads to fewer grid cells falsely classified
as occupied. However, there are still some grid cells on the ground that are
classified as occupied. This can be resolved when applying the proposed surface
normal vector model. The results are shown in Figure 3.17c where a high BBA
for the hypothesis occupied is mostly obtained in areas where obstacles are
assumed to be present. One exception are curb stones. As opposed to the other
two models, the surface normals model classifies grid cells located at curb
stones as occupied. They are visualized in blue in Figure 3.17c as curb stones
are labeled as sidewalk in the SemanticKITTI labels and thus no occupancy
evidence is deduced in the calculation of the reference BBA mref .
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4 Sensor Data Fusion in Evidential
Grid Maps

After estimating the sensor measurement grid map based on measurements in a
defined time window, they are combined in the fused measurement grid map.
Similarly as the sensor measurement grid map, the fused measurement grid map
contains the BBAs on the occupancy semantics Ω𝑠 and the ground hypotheses
Ω𝑔. Combining estimates from all sensors in a joint model simplifies the further
processing steps as they only have to be done once instead of applying the
calculations for each sensor. Moreover, it may help to reduce measurement
noise and missed detections by resolving measurement conflicts. Recall that
a competitive sensor data fusion is desired in this work which means that
information from more sensors may improve the accuracy, but is not required
for estimating the output representation. This is achieved here as the input
representation is the same as the output representation.

Let g1, . . . g𝑛 be sensor measurement grid maps computed based on measure-
ments from 𝑛 independent sensor sources. Mathematically, all grid maps are
combined in the sensor data fusion as

g1,...,𝑛 = f (g1, . . . g𝑛), (4.1)

where the fusion operator f is to be specified. The sensor data fusion is sketched
in Figure 4.1. In the remainder of this chapter1, we restrict this to the fusion
of two sensor measurement grid maps assuming that this can be generalized
to an arbitrary number of sensor measurement grid maps e.g. by evaluating
the fusion operator recursively. Recall that all sensor measurement grid maps

1 A short version of this chapter has been submitted for publication on the 25th International
Conference on Information Fusion (FUSION) and has been made available to the public via
arXiv [Ric+22b].
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sensor measurement grid maps

g1

g𝑛

fused measurement grid map

g1,...,𝑛 = f (g1, . . . g𝑛 )

Figure 4.1: In the sensor data fusion, sensor measurement grid maps g1, . . . g𝑛 from 𝑛 sensors are
combined in one fused measurement grid map g1,...,𝑛.

are defined on the same Cartesian grid G𝑥𝑦 , so that the fusion can be applied
cell-wise.

4.1 Fundamentals

Conditional probabilities Pr(𝑜 |𝑧1) and Pr(𝑜 |𝑧2) can be combined with the
binary Bayes filter as

Pr(𝑜 |𝑧1, 𝑧2) =
Pr(𝑜 |𝑧1)Pr(𝑜 |𝑧2)

Pr(𝑜 |𝑧1)Pr(𝑜 |𝑧2) + (1 − Pr(𝑜 |𝑧1)) (1 − Pr(𝑜 |𝑧2))
, (4.2)

see [Bon08].

In the evidential context, Dempster’s rule of combination was introduced in
[Dem67]. Here, two BBAs m1 and m2 from independent sources are combined
as

(m1 ⊕ m2) (𝐴) =
1

1 − 𝐾
∑︁

𝑋∩𝑌=𝐴
m1 (𝑋)m2 (𝑌 ). (4.3)

The normalization constant 1
1−𝐾 distributes the conflicts

𝐾 =
∑︁
𝑋∩𝑌=∅

m1 (𝑋)m2 (𝑌 ) (4.4)
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equally to all focal elements. Dempster’s rule satisfies desired properties as
commutativity and associativity. Furthermore, Nuss derived in [Nus17] the
following relation to the binary Bayes filter: Let the FoD Ω = {𝐴, 𝐵} and two
independent BBAs m1 and m2 be given where

m1 (Ω) = m2 (Ω) = 0, m𝑖 (𝑋) > 0 for all 𝑖 ∈ {1, 2}, 𝑋 ∈ Ω. (4.5)

Then combining the pignistic transformations (Equation (2.7)) of m1 and m2
with the binary Bayes filter leads to the same result as applying the pignistic
transformation to m1 ⊕ m2. Although Dempster’s rule is frequently used in
literature, it has also been criticized. Zadeh showed in [Zad79] that combining
highly conflicting BBAs with Dempster’s rule leads to counterintuitive results.
This effect is also known as Zadeh’s paradox. Table 4.1 shows such an example.
Although both m1 and m2 hold high evidences masses against hypothesis 𝐵,
Dempster’s rule yields (m1 ⊕ m2) (𝐵) = 1 ignoring the conflict mass 𝐾 = 0.99.

𝐴 𝐵 𝐶 Ω

m1 0.9 0.1 0 0
m2 0 0.1 0.9 0

m1 ⊕ m2 0 1 0 0

Table 4.1: Two BBAs m1 and m2 on Ω = {𝐴, 𝐵, 𝐶 } combined with Dempster’s rule
(Equation (4.3)).

Different combination rules have been proposed aiming at resolving this
counterintuitivity that all address different ways of dealing with conflicts. Yager
[Yag87] defined the conjunctive rule of combination given as

(m1 ⃝∩ m2) (𝐴) =


∑
𝑋∩𝑌=𝐴

m1 (𝑋)m2 (𝑌 ), if 𝐴 ≠ Ω

m1 (Ω)m2 (Ω) +
∑

𝑋∩𝑌=∅
m1 (𝑋)m2 (𝑌 ), if 𝐴 = Ω.

(4.6)

Note that it merely drops the normalization constant and assigns the conflict
mass 𝐾 to Ω compared to Dempster’s rule in Equation (4.3) which is why it is
also referred to as unnormalized Demster’s rule. Table 4.2 shows the results
when applying the conjunctive rule to the example introduced in Table 4.1.
Compared to Dempster’s rule the conjunctive rule assigns the conflict mass 𝐾 to
(m1⃝∩ m2) (Ω) indicating a high degree of uncertainty. Although the conjunctive
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𝐴 𝐵 𝐶 Ω

m1 0.9 0.1 0 0
m2 0 0.1 0.9 0

m1 ⃝∩ m2 0 0.01 0 0.99

Table 4.2: Two BBAs m1 and m2 on Ω = {𝐴, 𝐵, 𝐶 } combined with the conjunctive rule
(Equation (4.6)).

rule gives a more intuitive result in this example it discards a significant amount
of information by assigning the whole conflict mass to Ω. Other examples for
modified combination rules are Duboi’s and Prade’s rule presented in [DP88]
and the partial conflict redistribution (PCR) rules introduced in [SD06]. All of
them are based on Yager’s rule (Equation (4.6)) and assign conflict masses in
different ways.

Yang et al. [YX13] propose another approach to dealing with conflicts when
combining BBAs. They discuss the mathematical properties of different
evidential combination rules. All the above-mentioned modified rules lose
some of the mathematically interpretability that holds for Dempster’s original
rule. Dempster’s rule is the only one that is a probabilistic reasoning process
meaning that the combination of two BBAs that can be represented as a
probability distribution can again be represented as a probability distribution.
Yang et al. therefore presented an alternative approach to evidential reasoning.
Given the FoD Ω, they consider sources of evidence {𝑒𝑖 , 𝑖 = 1, . . . , 𝑛} with
weight 0 ≤ 𝑤𝑖 ≤ 1 and reliability 0 ≤ 𝑟𝑖 ≤ 1 each providing a BBA m𝑖 . The
weight models the relative importance of the source of evidence, whereas
the reliability models the information quality. The BBA m𝑖 of the source of
evidence 𝑒𝑖 is modified based on the weight 𝑤𝑖 and the reliability 𝑟𝑖 as

m̃𝑖 (𝐴) =
{

0, if 𝐴 = ∅,
1

1+𝑤𝑖−𝑟𝑖 m𝑖 (𝐴), if 𝐴 ∈ P(Ω) \ ∅.
(4.7)

Two independent sources of evidence 𝑒1 and 𝑒2 with reliabilities 0 ≤ 𝑟1, 𝑟2 ≤ 1
and modified BBAs m̃1 and m̃2 are then combined as

m1,2 (𝐴) =
{

0, if 𝐴 = ∅,
m̃1,2 (𝐴)∑

𝐵∈P(Ω) m̃1,2 (𝐵) , if 𝐴 ∈ P(Ω) \ ∅, (4.8)

64



4.2 Related Work

where

m̃1,2 (𝐴) = (1 − 𝑟2) m̃1 (𝐴) + (1 − 𝑟1) m̃2 (𝐴)

+
∑︁

𝐵∩𝐶=𝐴

m̃1 (𝐵) m̃2 (𝐶). (4.9)

Note that for 𝑤1 = 𝑤2 = 𝑟1 = 𝑟2 = 1, Equation (4.8) reduces to Dempster’s
rule. In the remainder of this dissertation, Equation (4.8) will be referred
to as evidential reasoning (ER) rule. Yang et al. further stated the following
properties of the ER rule:

• The combination of 𝑛 > 2 sources of evidence can be evaluated recur-
sively, see [YX13, Corollary 4].

• Similar as Dempster’s rule, it forms a probabilistic reasoning process.

The two reliability parameters 𝑟1, 𝑟2 influence the combination results sig-
nificantly. Table 4.3 shows the results when combining the two BBAs from

𝐴 𝐵 𝐶 Ω

m1 with 𝑟1 = 0.7 0.9 0.1 0 0
m2 with 𝑟2 = 0.3 0 0.1 0.9 0

m1 ⃝∩ m2 0.67 0.11 0.22 0

Table 4.3: Two BBAs m1 and m2 on Ω = {𝐴, 𝐵, 𝐶 } combined with the ER rule (Equation (4.8)).

Tables 4.1 and 4.2 with the ER combination rule where the reliabilities were
set to 𝑟1 = 0.7 and 𝑟2 = 0.3 and 𝑤1 = 𝑤2 = 1. Due to the higher reliability
assigned to m1, the conflict between 𝐴 and 𝐶 is mostly assigned to 𝐴.

In summary, evidential reasoning with the ER combination rule (Equation (4.8))
provides a mathematical framework for dealing with differently credible sources
of evidence without losing the mathematical properties of Dempster’s original
combination rule.

4.2 Related Work

When combining BBAs from independent sensor sources in grid maps, Demp-
ster’s rule is usually applied [Nus+14; TW17]. However, because of the
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above-mentioned shortcomings of this rule, other combination operators haven
been explored as well: Moras et al. [MDP15] applied the PCR6 to the fusion
of evidential occupancy grid maps. They tested their method with simulated
LiDAR data that they fuse over time and showed an improved conflict resolution
compared to Dempster’s rule. Li et al. [LLZ20] adapt the BBA obtained from
LiDAR and stereo cameras by adding a similarity factor and apply Dempster’s
rule to the adapted BBAs. Compared to applying Dempster’s rule to the original
BBAs, they obtain a reduced entropy and a higher specificity in their fused
BBA. Ullah et al. [UYH21] proposed a new uncertainty measure based on
Deng’s entropy and combine their entropy measures using Dempster’s rule. By
doing so, they could increase the accuracy of the fusion results compared to
Dempster’s rule and apply to using Deng’s original entropy.

The critical cases when fusing heterogeneous sensor data in top-view grid maps
occur if the BBAs obtained from the individual sensors are highly conflicting
similar to the example demonstrated in Tables 4.1 and 4.2. The inclusion of
information on the credibility of the individual sensors may help to resolve those
conflicts correctly. This is not covered in all the above-mentioned publications.

4.3 Combining Evidential Grid Maps with
Evidential Reasoning

We apply the ER combination rule presented by Yang et al. [YX13] to sensor
measurement grid maps and model the reliability 𝑟𝑖 of sensor sources to improve
conflict resolution. The importance weights 𝑤𝑖 are set to one modeling all
sources to be equally important. Given two sensor measurement grid maps
g1 and g2 calculated as described in Chapter 3 using measurements from
two independent sensors 𝑠1 and 𝑠2, the combination g1,2 is computed. The
two sensors 𝑠1 and 𝑠2 are interpreted as sources of evidence with reliabilities
0 ≤ 𝑟1, 𝑟2 ≤ 1. In a fixed grid cell 𝐶 ∈ G, the BBAs g1 (𝐶, · ) and g2 (𝐶, · ) are
then combined to the BBA g1,2 (𝐶, · ) using the ER rule.
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4.3.1 Conflict Adaptive Evidential Reasoning

The reliability of a source of evidence should be chosen carefully. Let m1 and
m2 be two BBAs to be combined. We propose to model the reliabilities 𝑟𝑖 as a
function of the conflict mass

𝐾 =
∑︁
𝑋∩𝑌=∅

m1 (𝑋)m2 (𝑌 ) (4.10)

and the credibility coefficient 𝑏𝑖 as

𝑟𝑖 = f𝑟 (𝐾, 𝑏𝑖) = 1 − (1 − 𝑏𝑖) 𝐾. (4.11)

The coefficient 0 ≤ 𝑏𝑖 ≤ 1 models the credibility of a source of evidence in
light of a conflict. If 𝐾 = 0, then 𝑟1 = 𝑟2 = 1 and the ER rule reduces to
Dempster’s rule. The higher the conflict mass 𝐾, the more unintuitive the
combination result with Dempster’s rule becomes as shown in Table 4.1 and
the combination rule is adapted. If 𝐾 = 1, we have 𝑟𝑖 = 𝑏𝑖 and the credibility
coefficient fully serves as reliability value.

4.3.2 Parameter Estimation

When combining LiDAR and stereo camera sensor measurement grid maps
with the ER rule, the sensor credibility coefficients 𝑏𝑙 for the LiDAR and 𝑏𝑠 for
the stereo camera need to be specified. In this work, a data-driven approach
assigning the values 𝑏𝑙 , 𝑏𝑠 resulting in the best fusion performance in terms of a
quantitative evaluation is presented. The performance is quantified by the eIoU
(Equation (2.26)) for the hypotheses occupied 𝑂su ⊆ Ω𝑠 . More specificity, we
apply the ER rule to LiDAR and stereo camera sensor measurement grid maps
based on measurements in the KITTI-360 [LXG21] training sequence (see
Table 2.5) for credibility values

{(𝑏𝑙 , 𝑏𝑠) | 𝑏𝑙 , 𝑏𝑠 ∈ 0.1 · N≤10}.

In this context, all the occupancy evidence is assigned to the superset𝑂su as the
individual semantic hypotheses are not considered in the analysis. The results
are shown in the table in Figure 4.2. Each entry contains the eIoU averaged
over all cell states in every tenth frame of the training sequence. Therefore,
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Figure 4.2: The eIoUs of the hypotheses occupied for different combinations of credibility
coefficients (𝑏𝑙 , 𝑏𝑠 ) . The highest eIoU is achieved for 𝑏𝑙 = 1 and 𝑏𝑠 = 0.

a total of 50 frames were used for each configuration. It can be seen that
the eIoU increases with increasing LiDAR credibility 𝑏𝑙 , independent of the
stereo camera credibility. Furthermore, the eIoUs increases for decreasing
stereo camera credibilities. The highest eIoU is measured for the LiDAR
credibility 𝑏𝑙 = 1 and the stereo camera credibility 𝑏𝑠 = 0. For this combination
of credibility values, the eIoU is 0.41 percentage points higher compared to
applying Dempster’s rule and 2.9 percentage points higher than with 𝑏𝑙 = 𝑏𝑠 = 0.
This difference is quite significant considering that the sensor estimates are
not conflicting in the majority of the grid cells and both rules coincide in
those cases. Recall that 𝑏𝑠 = 0 does not mean that the BBA estimated with
the stereo camera is not regarded at all in the combination. It merely means
that in cases where the stereo camera provides a measurement that disagrees
with the LiDAR measurement, the LiDAR measurement shall be considered
more reliable. The eIoU-based analysis shows how close the fusion result
is to the reference grid map gref based on the semantic labels and bounding
box primitives in the KITTI-360 dataset. As those labels were annotated
using the LiDAR measurements this result does not really come as a surprise.
However, this demonstrates that the sensor fusion results can be tuned as desired
by adapting the credibility coefficients in the ER rule. As we consider the
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annotations in the KITTI-360 dataset to be accurate in this work, we therefore
set 𝑏𝑙 = 1 and 𝑏𝑠 = 0 for the remainder of this dissertation. This is sensible as
in fact, LiDAR scanners provide more accurate depth estimates compared to
the disparity-based depth estimation with stereo cameras.

4.4 Experiments

We evaluate the fusion results qualitatively and quantitatively based on Velodyne
HDL-64E LiDAR and stereo camera measurements in the KITTI-360 evaluation
sequences (see Table 2.5).

4.4.1 Qualitative Results

We show qualitative results for the fusion of sensor measurement grid maps
from Velodyne HDL-64E LiDAR scans without semantic estimates with sensor
measurement grid maps from disparity maps from stereo images with semantic
estimates.

Figure 4.3 shows the grid maps for one frame. In the sensor grid map based
on LiDAR measurements that is depicted in Figure 4.3a, BBA estimates are
only available for the hypotheses free and occupied by unknown object type.
The grid map based on stereo camera measurements depicted in Figure 4.3b
contains BBA estimates for the individual semantic hypotheses based on the
semantic labeling provided by the neural network. It can be seen that the spatial
uncertainty is higher in the stereo camera grid map indicated by a more blurry
occupancy pattern. The result of combining the two sensor grid maps with the
ER rule is shown in Figure 4.3c. The semantic estimates provided by the stereo
camera is successfully included in the occupancy pattern obtained from the
LiDAR scanner.

In order to demonstrate the effect of using different evidential combination rules
in case of conflicting sensor BBAs, the same sensor grid maps are combined
using Dempster’s rule (Equation (4.3)), Yager’s rule (Equation (4.6)) and the
ER rule (Equation (4.8)) in Figure 4.4. In this example, the distance of an
observed car was underestimated by the stereo pipeline leading to an occupied-
free conflict in front of the car. With Dempster’s rule, conflicting BBAs are
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Car Two-wheeler Pedestrian Other mobile Immobile Occupied Free

-40 -20 0 20 40
-20

0

20

(a) Sensor measurement grid map using LiDAR
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(c) The fused measurement grid map..

Figure 4.3: Resulting evidential grid map for the fusion of LiDAR measurements without and
stereo camera measurements with semantic estimates using the ER rule.

distributed equally over all focal elements. Hence, large parts of the conflict
mass are assigned to the hypothesis car. Yager’s rule assigns all conflict masses
to Ω, thus leading to a low BBA for both hypotheses free and car. The ER rule
on the other hand is able to correctly assign large parts of the conflict masses to
the hypothesis free due to the lower credibility coefficient 𝑟𝑠 assigned to the
stereo camera.
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Stereo C. LiDAR Dempster Yager proposed

Sensor Grid Map Fused Grid Map

Figure 4.4: Results for fusing LiDAR grid maps with stereo camera grid maps using different
combination rules. A subarea is highlighted where a vehicle is located. The
measurement conflict between the BBAs provided by the two sensors is resolved
differently. Only the proposed method resolves the conflict correctly in most of the grid
cells.

4.4.2 Quantitative Evaluation

We evaluate the accuracy of the BBA by calculating the eIoU for the fused grid
maps and comparing it to the results obtained for the sensor measurement grid
maps. The hypotheses occupied by immobile object 𝑂im and occupied by other
mobile object 𝑂om are not considered here as the reference BBA for the former
was found to be not credible, and the latter is barely observed in the evaluation
dataset.

Figure 4.5 shows the results for the FoD Ω𝑠 in the described sensor setup.
Because no semantic estimates are included in the LiDAR-based estimation
chain, the eIoU values are zero for all 𝜔 ⊊ 𝑂su. As expected, it can be seen
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Figure 4.5: The eIoUs in % for five hypotheses in the FoD Ω𝑠 . For each hypothesis, the bar plots
show the eIoUs measured in the grid map based on LiDAR measurements, stereo
camera measurements and for the fused measurement grid map. The BBA from the
stereo camera contains estimates for the semantic occupancy hypotheses whereas the
LiDAR-based BBA only contains evidence for the hypotheses occupied by unknown
object type𝑂su and free 𝐹𝑠 .

that the LiDAR scanner leads to a more accurate BBA estimation than the
stereo camera for the hypotheses estimated by both sensors. Furthermore, the
metrics show that the accuracy for the singleton hypotheses car, two-wheeler
and pedestrian can be significantly improved by fusing the occupancy semantics
estimation obtained from the stereo camera with the occupancy information
obtained from the LiDAR. Although no further semantic estimates are added
in the fusion process the eIoU can be relatively improved by 6.2% for cars,
by 8.8% for two-wheelers and by 21.3% for pedestrians. This is due to the
improved conflict resolution when applying the ER combination rule as verified
in Figure 4.4.

In addition to the comparison with reference BBA maps, the uncertainty
incorporated in the estimated BBA is evaluated based on Deng’s entropy
measures defined in Equations (2.11) to (2.13). Figure 4.6 shows Deng’s
nonspecificity, discord and entropy averaged over all frames in the evaluation
sequences for LiDAR, stereo camera and fused measurements. For each grid
map, either all grid cells within a distance of 30 m to the ego vehicle (360°
view) or the grid cells that are additionally withing the viewing are of the
stereo camera (camera view), respectively, are taken into account. In the 360°
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Figure 4.6: Nonspecificity and discord for LiDAR, stereo camera and fused grid maps.

view shown in Figure 4.6a, we observe that the average entropy is highest in
the stereo camera grid maps. This is expected as the stereo camera does not
provide measurements outside the stereo camera view. After applying the
proposed sensor data fusion, the entropy is reduced by 4.1% compared to the
LiDAR grid map. The competitive part of the sensor data fusion is evaluated
in the overlapping viewing areas of the sensors. The corresponding entropy
measures are plotted in Figure 4.6b. Here, the entropy in the LiDAR grid
map is higher than the entropy in the stereo camera. Again the best result is
obtained after applying the proposed sensor data fusion. Due to a significant
reduction of the nonspecificity, the entropy in the fused grid map is reduced
by 8.9% compared to the stereo camera grid map. This demonstrates that the
introduced fusion operator successfully aggregates information from different
sources while keeping the discord at a constant level.
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5 Temporal Fusion in Evidential
Grid Maps

When perceiving the environment for automated vehicles, it is desired to not only
depend on the sensor measurements acquired at a moment but to incorporate
all past measurements into the estimation. By doing so, the estimated model
is more complete and the system may be able to detect and resolve erroneous
measurements. Furthermore, the motion state of other traffic participants can
be estimated by setting consecutive measurements into context.

However, this task is non-trivial. As the ego vehicle moves relatively to the
static part of the environment, the ego motion needs to be compensated. Next,
all dynamic parts whose motion state is to be estimated using temporally consec-
utive measurements move independently themselves. Finally, the dynamic parts
need to be separated from the static parts of the environment as not all sensor
modalities offer inherent information about the dynamics of a measurement.

In this chapter, a temporal fusion framework in evidential grid maps is proposed.
After presenting a grid mapping framework for heterogeneous sensor data in
Chapter 3 estimating the BBA on the ground semantics (Equation (2.20)) and
occupancy semantics (Equation (2.21)), and the subsequent sensor data fusion
in Chapter 4, it is the third and last processing block presented in this thesis.
Besides accumulating estimates on the ground and occupancy semantics, we
infer the dynamics in the environment and estimate the BBA on the occupancy
dynamics (Equation (2.23)) as well.

Formally, temporal fusion in grid maps is the estimation of a state in the
grid map g(𝑡 ) at time 𝑡 by combining two or more grid maps estimated at
different time points. This can be done by either combining a batch of grid map
measurements g(𝑡0 )

𝑍
, . . . , g(𝑡𝑘 )

𝑍
in a potentially noncausal fashion

g(𝑡 ) = f𝑏
(
g(𝑡0 )
𝑍
, . . . , g(𝑡𝑘 )

𝑍

)
, (5.1)
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or by recursively updating based on the current measurement grid map g(𝑡 )
𝑍

g(𝑡 ) = f𝑟
(
g(𝑡−1) , g(𝑡 )

𝑍

)
. (5.2)

As it has advantages in computational efficiency and lower memory consumption,
this work focuses on the recursive estimation.

After giving the fundamentals needed for the proposed methodology and a
summary of related work, our framework combining measurement grid maps
recursively to estimate ground semantics, occupancy semantics and occupancy
dynamics in a joint model is presented in Section 5.3. In contrast to competitive
methods, our proposal contains a data-driven parameter estimation which
leads to a significant performance boost. This is demonstrated by presenting
qualitative results and a detailed quantitative evaluation in Section 5.4.

5.1 Fundamentals

The proposed temporal grid mapping pipeline is based on the concepts of
random finite set statistics and evidential networks which are introduced in this
section.

5.1.1 Random Finite Sets

A random finite set (RFS) 𝑋 , formally introduced e.g. by Mahler [Mah14], is a
set of real-valued random variables

𝑋 = {𝑋1, . . . , 𝑋𝑛}, (5.3)

where the cardinality 𝑛 is random and finite. The distribution of a RFS is given
by the cardinality distribution 𝜌(𝑛), 𝑛 ∈ N and a set of PDFs

{f1 (𝑥1), f2 (𝑥1, 𝑥2), . . . , f𝑛 (𝑥1, . . . , 𝑥𝑛), 𝑛 ∈ N | 𝜌(𝑛) > 0}, (5.4)
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each representing the PDF given a fixed cardinality 𝑛 ∈ N. The PDF f𝑋 of a
RFS 𝑋 is defined as

f𝑋 (𝑋 = {𝑥1, . . . , 𝑥𝑛}) =
{
𝜌(0), if 𝑋 = ∅
𝑛! · 𝜌(𝑛) · f𝑛 (𝑥1, . . . , 𝑥𝑛), else.

(5.5)

In object tracking applications, multi-Bernoulli RFSs are frequently considered.
A multi-Bernoulli RFS is defined by the parameter set {(𝑝1, f1), . . . , (𝑝𝑁 , f𝑁 )}
where 𝑁 is the maximal possible cardinality, 𝑝𝑖 is the existence probability and
f𝑖 is the PDF over the state of the i-th entity. For 1 ≤ 𝑛 ≤ 𝑁 , the cardinality
distribution is then given as

𝜌(𝑛) =
𝑁∏
𝑖=1
(1 − 𝑝𝑖)

∑︁
𝜋∈Π𝑛

𝑛∏
𝑗=1

𝑝𝜋 ( 𝑗 )

1 − 𝑝𝜋 ( 𝑗 )
, (5.6)

where Π𝑛 is the set containing all permutations 𝜋 : {1, . . . , 𝑛} → {1, . . . , 𝑛} of
indices 1, . . . , 𝑛. For 𝑛 = 0 this reduces to

𝜌(0) =
𝑁∏
𝑖=1
(1 − 𝑝𝑖). (5.7)

The probability hypothesis density (PHD) of a RFS is defined as the first
statistical moment

fPHD (𝑥) = E
(∑︁
𝑤∈𝑋

𝛿(𝑥 − 𝑤)
)

(5.8)

where 𝛿( · ) is the Dirac delta measure defined by the property

∞∫
−∞

f (𝑥) 𝛿(𝑥) d𝑥 = f (0) for all real-valued continuous functions f. (5.9)

Integrating over a PHD yields the expected number of objects of an RFS

𝑛̂ =

∫
𝑥∈𝑋

fPHD (𝑥) d𝑥. (5.10)
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5.1.2 Evidential Networks

Shafer et al. [SSM87] were the first who generalized Bayesian networks [KN09]
to the evidential context and proposed to propagate beliefs in directed networks.
As opposed to specifying the dependencies in the network by joint belief
functions as in the early publications of Shafer et al., Xu et al. [XS96] proposed
to give the dependencies in the form of conditional belief functions:

Definition 5.1. An evidential network with conditional belief functions (ENC)
is a directed acyclic graph (𝑉, 𝐸) where each node 𝑋𝑖 ∈ 𝑉 represents a variable
with domain Ω𝑋𝑖

and each edge (𝑋𝑖 , 𝑋 𝑗 ) ∈ 𝐸, 𝑖 ≠ 𝑗 represents a conditional
dependency between the variables 𝑋𝑖 and 𝑋 𝑗 . The dependency denoted by the
edge (𝑋𝑖 , 𝑋 𝑗 ) is defined by the conditional belief function bel

(
𝑋 𝑗 |𝑋𝑖

)
.

ENCs are closely related to Bayesian Networks. As opposed to their probabilistic
counterpart, however, each edge in an ENC models the dependency between
source and target node independently of the dependency to other adjacent nodes.
The ENC depicted in Figure 5.1a for instance has two dependencies defined
by the conditional belief functions bel(𝑋3 |𝑋1) and bel(𝑋3 |𝑋2). A Bayesian
Network represented by the same graph on the other hand would be defined
by the conditional probability Pr(𝑋3 |𝑋1, 𝑋2). In order to represent conditional

𝑋3

𝑋2𝑋1

(a) Two given variables.

𝑋3

𝑋2𝑋1

(b) Merged given variables.

Figure 5.1: Example of an ENC with three variables.

beliefs bel(𝑋 |𝑋1, . . . , 𝑋𝑛) given multiple variables 𝑋1, . . . , 𝑋𝑛, Xu proposed
to merge the nodes of the given variables as shown in Figure 5.1b. The merging
step is concluded by calculating the so-called ballooning extension for each
child node and combining them by applying the conjunctive rule of combination,
see [XS96] for details.
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Yaghlane et al. [YSM03] proposed to extend the concept of ENCs to allow
relations between any number of nodes. Let the set of parent nodes of a node 𝑋
in a directed graph be denoted as 𝑃𝑋.

Definition 5.2. A directed evidential network with conditional belief functions
(DEVN) is a directed acyclic graph (𝑉, 𝐸) where each node 𝑋𝑖 ∈ 𝑉 represents
a variable with domain Ω𝑋𝑖

. For each root node 𝑋𝑟𝑖 , an a priori belief function
bel(𝑥), 𝑥 ⊆ 𝑋𝑟𝑖 is given and for the other nodes 𝑋𝑖 ∈ 𝑉, ∅ ≠ 𝑃𝑋𝑖

⊂ 𝑉 ,
dependencies are modeled by the conditional belief function bel

(
𝑥 | 𝑃𝑋𝑖

)
.

In [YM08], Yaghlane et al. demonstrate in detail how beliefs of latent variables
in DEVNs are inferred. The conditional belief functions modeling the depen-
dencies between states are either determined based on expert knowledge or
are learned from data. Ben Hariz et al. present in [BB14] a method to learn
the conditional beliefs in DEVNs. They generalize the maximum likelihood
estimation to the evidential context and learn the parameters based on evidential
databases.

5.2 Related Work

Related work on temporal grid map fusion can be separated into methods
assuming a static world and methods explicitly modeling the dynamics of
moving entities in the environment.

In static grid mapping all entities occupying grid cells are assumed to be
stationary. Hence, the prediction of the grid map g(𝑡−1) from the last time point
is limited to the compensation of the ego motion. The evidential or probability
masses either stay constant or are discounted based on a time-dependent fading
factor to model possible state switches.

Dietmayer et al. [DRN14] applied the binary Bayes filter (Equation (4.2)) to
the hypothesis occupied and free in the grid map update step. The grid map
is updated by a probabilistic measurement occupancy grid map that can be
calculated using range measurements from LiDAR and RaDAR.

Rummelhard et al. [RNL15] presented the Conditional Monte Carlo Dense
Occupancy Tracker (CMCDOT) where they estimate the static part in an
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occupancy grid map and model the dynamic part by moving particles. The
separation into stationary and moving areas is done by introducing stationary and
moving occupancy states in the filtering process. Instead of using an evidential
framework, they use a Bayesian network to model state dependencies. They
model the transition between stationary and moving occupancy by assigning a
fixed percentage of one state to the other in the prediction process.

Nuss et al. [Nus+16] proposed to model the grid cell states as a RFS. Based
on this formulation, they motivate a probabilistic filter and deduce a real-
time capable approximation based on evidence theory. Instead of separating
occupancy into static and dynamic parts, they model all occupancy masses
by a particle filter. By fusing LiDAR and RaDAR measurements they achieve
accurate cell velocity estimates. The modeling of static occupancy by particles,
however, leads to a fast decay of occupancy masses in unobserved cells.

Tanzmeister et al. [TW17] were the next who adapted the idea to base a dynamic
grid mapping framework on a particle filter. They model their evidential
grid map with a FoD containing the elementary hypotheses free, occupied by
a stationary entity and occupied by a moving entity. This prevents the fast
decay of unobserved static occupancy as it is modeled explicitly and not solely
deduced from the particle weights. In collaboration with the authors, Steyer
et al. [STW18] presented an advancement of their approach. They got rid of
static particles and only simulate particles in dynamic cells which significantly
improves the computational efficiency. By doing so, they could further reduce
the rate of falsely classified grid cells as dynamic in partially occluded static
areas.

Vatavu et al. [Vat+20] focused on improving the particle-based velocity esti-
mation. Instead of managing one set of particles for the whole grid map, they
spawn several independent particle filters called tracklets. Particle weights are
updated based on a two-layer measurement grid where the first layer contains
the BBA on a classical occupancy frame and the second holds the most likely
semantic class. They further pass on the cell independence assumption and
update particle states based on their distance to tracklet landmarks on object
boundaries. Especially in grid cells within large objects, they achieve improved
velocity estimations and could reduce both false positive and false negative
rates.

All the above-mentioned publications have two disadvantages:
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1. Semantic estimates are either not handled at all or are not contained in
the evidential context but treated separately ([Vat+20]). Incorporating
this information in a joint framework has the potential to stabilize the
dynamic state estimation.

2. Only the occupancy information projected to the top-view is used.
Incorporating 3D information in the 2D grid representation might help
to better resolve temporal conflicts while keeping the computational
complexity at a minimum.

In consequence, they are not able to handle occupancy provided by very low
obstacles as curb stones as the cells might easily be estimated as being free
in the measurement grid and newly observed free space tends to wipe out
historically observed occupancy. The method proposed in this work tackles
those shortcomings.

In recent years, researchers started to apply learning of optical flow to top-view
grid maps. Wirges et al. presented a self-supervised approach using a fully
convolutional neural network in [Wir+19a]. By applying motion and spatial
consistency regularization, they are able to both estimate the odometry and
per-cell object velocities. Lee et al. combined in [Lee+20] a Pillar Feature
Network with a flow estimation network to estimate the dynamics in LiDAR-
based top-view grid maps. Input to their network are two consecutive LiDAR
point clouds. They showed an improved performance both in computational
performance and quality when feeding their velocity estimates into an object
tracking module.

As apposed to the presented recursive estimators, however, those networks
only estimate the flow of currently observed detections. Hence, no filtering is
applied, and no uncertainty is given in the output representation. Furthermore,
no semantic estimates are considered in the estimation process.

5.3 Semantic Evidential Grid Mapping and
Tracking

We propose a recursive temporal grid map fusion that estimates the current grid
map state g(𝑡 ) based on the measurement grid map g(𝑡 )

𝑍
and the grid map g(𝑡−1)
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Dempster’s Rule

Ego Motion
Compensation

g(𝑡 )
𝑍

Grid Map
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Update
X (𝑡 )X̂ (𝑡 )X (𝑡−1)

g(𝑡 )

Particle Tracking (Section 5.3.1)

Evidential Network
(Section 5.3.2)g(𝑡−1) ĝ(𝑡 )

Figure 5.2: The temporal grid map fusion proposed in this chapter: Input to the recursive estimator
is the internal grid map state g(𝑡−1) from the last time point and the current
measurement grid map g(𝑡 )

𝑍
. Moving occupancy is modeled by the RFS 𝑋 (𝑡 )

𝑂mov
whose

PHD is estimated by the particle population X (𝑡 ) , see Section 5.3.1. The BBA on the
ground semantics Ω𝑔 is updated with the measurement grid map by applying
Dempster’s rule whereas the occupancy semantics Ω𝑠 and the occupancy dynamics
Ω𝑑 are updated in the evidential network presented in Section 5.3.2.

from the last update time point 𝑡 − 1. Here, the grid map state g(𝑡 ) represents
the BBA on the ground semantics Ω𝑔, the occupancy semantics Ω𝑠 and the
occupancy dynamics Ω𝑑 introduced in Section 2.3. The measurement grid
map g(𝑡 )

𝑍
represents the BBA on the ground semantics Ω𝑔 and the occupancy

semantics Ω𝑠 and is estimated using the sensor measurement grid mapping
presented in Chapter 3 and the sensor data fusion from Chapter 4. The temporal
fusion framework is sketched in Figure 5.2. It can be separated into a grid
map prediction step estimating the predicted grid map ĝ(𝑡 ) by propagating the
last grid map state to the current measurement time point 𝑡 and an update step
combining the predicted grid map with the measurement grid map g(𝑡 )

𝑍
. In the

following, we also use the notation m(𝑡 )
𝐶

= g(𝑡 ) (𝐶, ·) referring to the BBA in
the grid cell 𝐶 ∈ G𝑥𝑦 at time 𝑡.
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Grid map prediction. The BBA for the ground semantics 𝜔 ⊆ Ω𝑔 remains
unchanged in the prediction process. Hence, for predicting the grid map, only
the ego motion is compensated. Recall that the grid is translated by whole grid
cells Δ𝐶 (𝑡 ) between two update time points so that the grid cell 𝐶 = 𝐶′ +Δ𝐶 (𝑡 )
is the grid cell at time 𝑡 representing the same area in space as 𝐶′ at time 𝑡 − 1.
Then we have

m̂(𝑡 )
𝐶
(𝜔) = g(𝑡−1) (𝐶′, 𝜔), 𝜔 ⊆ Ω𝑔, (5.11)

i.e. the BBA remains unchanged.

Because the prediction of moving occupancy is handled differently than the
prediction of stationary occupancy, the prediction is modeled jointly on the
occupancy dynamics Ω𝑑 and occupancy semantics Ω𝑠 . Let

m̂(𝑡 )
𝐶
(𝜔, 𝜃) : P(Ω𝑠) × P(Ω𝑑) → [0, 1] (5.12)

be the predicted BBA for occupancy dynamics and occupancy semantics. By
estimating this predicted BBA, the occupancy semantics 𝜔 ⊆ 𝑂su can be
predicted separately for moving and stationary parts.

The BBA for stationary occupancy𝑂stat and dynamically unclassified occupancy
𝑂du remains unchanged during prediction. We compensate for ego motion and
set for occupancy semantics 𝜔 ⊆ 𝑂su

m̂(𝑡 )
𝐶
(𝜔, 𝜃) = 𝑘 m(𝑡−1)

𝐶′ (𝜔), 𝜃 ∈ {𝑂stat, 𝑂du}, (5.13)

where the additional factor

𝑘 =
m(𝑡−1)
𝐶′ (𝜃)

bel(𝑡−1)
𝐶′ (𝑂du)

(5.14)

ensures that only the part of the occupancy belief bel(𝑡−1)
𝐶′ (𝑂du) that was

assigned to the BBA of the considered occupancy dynamics, i.e. m(𝑡−1)
𝐶′ (𝜃),

is assigned here. Following a conservative design, no free space BBA is
propagated in the prediction step. Instead, the BBA of the hypotheses that a
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grid cell is either free 𝐹𝑑 or occupied by a moving entity 𝑂mov, represented by
the hypotheses passable 𝑃 is predicted. It is calculated as

m̂(𝑡 )
𝐶
(Ω𝑠 , 𝑃) =

(
1 −

∑︁
𝜔⊆𝑂du

m̂(𝑡 )
𝐶
(𝜔,𝑂mov)

)
𝑚𝑃 , (5.15)

with

𝑚𝑃 =

(
g(𝑡−1) (𝐶′, 𝑃) + g(𝑡−1) (𝐶′, 𝐹𝑑) + g(𝑡−1) (𝐶′, 𝑂mov)

)
, (5.16)

i.e. the part that was not predicted as moving 𝑂mov that was estimated passable
𝑃, free 𝐹𝑑 or moving 𝑂mov at the last update time point.

For moving occupancy 𝑂mov ⊂ Ω𝑑 , the BBAs must be propagated according to
the motion of the occupying objects. This is not possible with the information
contained in the hybrid evidential grid map representation. Therefore, we
follow past publications [Nus+16; STW18] and link a particle filter to the grid
map representation. This is explained in detail in Section 5.3.1.

Grid map update. For the ground semantics Ω𝑔, the grid map is updated by
applying Dempster’s rule (Equation (4.3)) to the predicted grid map ĝ(𝑡 ) and
the measurement grid map g(𝑡 )

𝑍
.

For the occupancy semantics Ω𝑠 and the occupancy dynamics Ω𝑑 , regular
evidential combination rule are not applicable as the measurement is only
available for Ω𝑠. Hence, a novel updating method using evidential networks
is presented in Section 5.3.2 that explicitly regards dependencies between
the occupancy semantics and occupancy dynamics FoDs. Past publications
either apply Dempster’s rule in a simpler occupancy model [Nus+16] or assign
conflicts manually based on hand selected parameters [STW18]. As opposed
to that, a data-driven estimation of the parameters introduced by the evidential
network is proposed in Section 5.3.3.
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5.3.1 Particle Filter

The particle filter used in this dissertation is a low-level cell velocity estimator
that is utilized to propagate moving cell occupancy. In this work, we adopt
the probability hypothesis density / multi-instance Bernoulli (PHD/MIB) filter
and its evidential approximation derived in detail in [Nus+16]. In their work,
Nuss et. al estimated the PHD of a RFSs representing all occupied grid cells.
Here, we adopt this filter to estimate the PHD of a RFS representing moving
occupancy similar as the particle representation presented by Steyer et al.
[STW18]. This way, fewer particles are required as they are only spawn in
a subset of occupied grid cells. Furthermore, the separation of occupancy
into moving and stationary parts based on evidential reasoning can make the
estimator more robust against falsely converging particles and thus falsely
detected cell dynamics. The occupancy semantics Ω𝑠 introduced in this work
further support this separation.

Mathematically, we model the grid map at time 𝑡 by the multi-Bernoulli RFSs
𝑋
(𝑡 )
𝑂mov

defined by the parameter set{ (
𝑝
(𝐶,𝑡 )
𝑋

, f (𝐶,𝑡 )
𝑋

) ��� 𝐶 ∈ G𝑥𝑦} , (5.17)

where 𝑝 (𝐶,𝑡 )
𝑋

is the existence probability of the Bernoulli RFS in grid cell 𝐶
and f (𝐶,𝑡 )

𝑋
its PDF. This way, grid cells occupied by objects that start moving

can be modeled by increasing the existence probability 𝑝 (𝐶,𝑡 )
𝑋

and objects that
stop moving by decreasing the existence probability. The state of one Bernoulli
RFS is given by

𝑥𝑂mov = ( 𝒑, 𝒗, 𝑙) , (5.18)

where 𝒑 ∈ R2 is the position in the reference coordinate system, 𝒗 ∈ R2 is the
velocity vector and 𝑙 ⊆ 𝑂su is the semantic label. The Bernoulli RFS in the
grid cell 𝐶 ∈ G𝑥𝑦 is linked to the grid map representation via its existence
probability 𝑝 (𝐶,𝑡 )

𝑋
as

g(𝑡 ) (𝐶,𝑂mov) = 𝑝 (𝐶,𝑡 )𝑋
, (5.19)
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i.e. the BBA of moving occupancy 𝑂mov represents the existence probability of
the RFS in the corresponding grid cell. The semantic label 𝑙 in the RFS state
further links the RFS to the BBA on the occupancy semantics 𝜔 ⊆ Ω𝑠 as

m𝐶 (𝜔, 𝜙 = 𝑂mov) = 𝑝 (𝐶,𝑡 )𝑋
Pr(𝐶,𝑡 )
𝑂mov
(𝜔), (5.20)

where Pr(𝐶,𝑡 )
𝑂mov
(𝜔) is the probability that the Bernoulli RFS instance 𝑋 (𝐶,𝑡 )

𝑂mov
has

the semantic label 𝜔. The task is to jointly estimate the multi-object state of
the multi-Bernoulli RFS 𝑋 (𝑡 )

𝑂mov
and the BBAs on the FoDs Ω𝑠 and Ω𝑑 .

The PHD of 𝑋 (𝑡 )
𝑂mov

is estimated with a particle filter based on the PHD/MIB
filter presented in [Nus+16]. Let a particle

𝜒 = ( 𝒑𝜒, 𝒗𝜒, 𝑙𝜒, 𝑤𝜒) ∈ X (5.21)

consist of the particle weight 𝑤𝜒 ∈ [0, 1] and the RFS state, i.e. the position
𝒑𝜒 ∈ R2, the velocity vector 𝒗𝜒 ∈ R2 and the semantic label 𝑙𝜒 ⊆ 𝑂su. The set
of particles located in the grid cell 𝐶 ∈ G𝑥𝑦 , i.e. 𝒑𝜒 ∈ 𝐶, is denoted as X𝐶 .
Figure 5.3 sketches the linkage between the evidential grid map representation
and the particle population. The existence probability of a RFS in a grid
cell is approximated by the sum of particle weights in that cell. Following
Equation (5.19), the BBA of moving occupancy 𝑂mov in grid cell 𝐶 ∈ G𝑥𝑦 is
thus approximated as

m𝐶 (𝑂mov) =
∑︁
𝜒∈X𝐶

𝑤𝜒 . (5.22)

The BBA of the occupancy semantic hypothesis 𝜔 ⊆ 𝑂su and the moving
occupancy hypothesis 𝑂mov is computed by approximating Equation (5.20) as

m𝐶 (𝜔,𝑂mov) = bel𝐶 (𝜔 |𝑂mov)m𝐶 (𝑂mov),

=
∑︁

𝜒∈X𝐶 : 𝑙𝜒=𝜔
𝑤𝜒, (5.23)

i.e. the accumulated particle weights in the grid cell with matching semantic
label.

The filter follows the typical particle filter scheme consisting of the three steps
particle prediction, particle weight update and particle resampling. In the
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∑
𝑤𝜒

m𝐶 (𝑂ped )m𝐶 (𝑂car )

∑
𝑤𝜒

∑
𝑤𝜒

X𝐶 : 𝑙𝜒 = 𝑂ped

X𝐶 : 𝑙𝜒 = 𝑂car

X𝐶

BBA occupancy dynamics Ω𝑑

BBA occupancy semantics Ω𝑠

m(𝑂car , 𝑂stat ) m(𝑂car , 𝑂mov ) m(𝐹𝑠 )m(𝑂ped , 𝑂mov ) m(𝑂ped , 𝑂stat )

m(𝐹𝑑 )m(𝑂mov )m(𝑂stat )

2

1

3

1 2

3𝐶 ∈ G𝑥𝑦

0 1

0 1

Particles

Figure 5.3: The linkage between the evidential grid map representation and the particle set X𝐶 :
The sketch shows a grid cell 𝐶 ∈ G𝑥𝑦 where the BBA on the occupancy semantics is
visualized on the top and the BBA on the occupancy dynamics is shown on the bottom.
The weights of all particles 𝜒 ∈ X𝐶 accumulate to the BBA of moving occupancy
m𝐶 (𝑂mov ) and the weights of particles with a specific semantic label 𝜔 ∈ Ω𝑠

accumulate to m𝐶 (𝜔,𝑂mov ) , here visualized for the hypotheses car 𝜔 = 𝑂car and
pedestrian 𝜔 = 𝑂ped.

following, the calculations steps of the particle filter and the interaction steps
with the grid-based BBA representation are explained.
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5 Temporal Fusion in Evidential Grid Maps

Particle prediction

Each particle state is predicted to the current time 𝑡 according to a constant
velocity motion model while adding 2D Gaussian noise 𝜎𝒑 ∼ N(𝜇𝒑 , Σ𝒑) to
the position and 𝜎𝒗 ∼ N(𝜇𝒗 , Σ𝒗) to the velocity components as

𝒑̂ (𝑡 )𝜒 = 𝒑 (𝑡−1)
𝜒 + Δ𝑡 𝒗 (𝑡−1)

𝜒 + 𝜎𝒑 , (5.24)

𝒗̂ (𝑡 )𝜒 = 𝒗 (𝑡−1)
𝜒 + 𝜎𝒗 . (5.25)

The particle weight is predicted as

𝑤̂
(𝑡 )
𝜒 = 𝑝pers 𝑤

(𝑡−1)
𝜒 , (5.26)

where the persistence probability 𝑝pers models the likelihood that a Bernoulli
RFS stays active until the next update time point. The semantic label 𝜒𝑙 stays
constant during prediction.

Link predicted particles to grid map

The predicted BBA for the moving part of the occupancy semantics is calculated
based on the predicted particle population X̂ (𝑡 ) as

m̂(𝑡 )
𝐶
(𝜔,𝑂mov) = min

©­­«
∑︁

𝜒∈X̂ (𝑡 )
𝐶

: 𝑙𝜒=𝜔

𝑤̂
(𝑡 )
𝜒 , 𝑝pers

ª®®¬ , (5.27)

where X̂ (𝑡 )
𝐶

is the set of particles predicted into grid cell 𝐶 ∈ G𝑥𝑦 . Note that the
predicted BBA cannot exceed the persistence probability 𝑝pers, because 𝑝pers

is an upper bound for the existence probability 𝑝 (𝐶,𝑡 )
𝑋

of the Bernoulli RFS
𝑋
(𝐶,𝑡 )
𝑂mov

.
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Particle weight update

Analogously to Nuss et al. [Nus+16], the updated moving BBA is separated
into persistent moving occupancy mass 𝑚 (𝑡 )

𝐶,pers and new moving occupancy

mass 𝑚 (𝑡 )
𝐶,new:

m(𝑡 )
𝐶
(𝑂mov) = 𝑚 (𝑡 )𝐶,pers + 𝑚

(𝑡 )
𝐶,new. (5.28)

Here, we apply [Nus+16, Equation (67)] to moving occupancy only, i.e.

𝑚
(𝑡 )
𝐶,new

𝑚
(𝑡 )
𝐶,pers

=

𝑝new

(
1 − m̂(𝑡 )

𝐶
(𝑂mov)

)
m̂(𝑡 )
𝐶
(𝑂mov)

(5.29)

between the updated persistent and new moving occupancy masses. Combining
Equations (5.28) and (5.29) results in the following two formulas for the updated
persistent and new moving occupancy mass:

𝑚
(𝑡 )
𝐶,new =

m(𝑡 )
𝐶
(𝑂mov) · 𝑝new ·

(
1 − m̂(𝑡 )

𝐶
(𝑂mov)

)
m̂(𝑡 )
𝐶
(𝑂mov) + 𝑝new ·

(
1 − m̂(𝑡 )

𝐶
(𝑂mov)

) (5.30)

𝑚
(𝑡 )
𝐶,pers = m(𝑡 )

𝐶
(𝑂mov) − 𝑚 (𝑡 )𝐶,new. (5.31)

The particle weights are updated proportionally to the persistent moving
occupancy mass as

𝑤
(𝑡 )
𝜒 =

𝑚
(𝑡 )
𝐶,pers

|X𝐶 |
. (5.32)

In the following, the set of persistent particles, i.e. updated particles predicted
at least once, is denoted by Xpers.

Particle resampling

Two sets of new particles are initialized to prevent particle deprivation, each
containing a fixed number of particles. A number of 𝑛new particles in the first
particle set Xnew are initialized in grid cells 𝐶 with new moving occupancy
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mass 𝑚 (𝑡 )
𝐶,new > 0. More specifically, the number of particles drawn in grid cell

𝐶 is set to

𝑛𝐶,new =

⌊
𝑛new

𝑚
(𝑡 )
new

𝑚
(𝑡 )
𝐶,new

⌋
, (5.33)

where
𝑚
(𝑡 )
new =

∑︁
𝐶∈G𝑥𝑦

𝑚
(𝑡 )
𝐶,new (5.34)

is the new moving occupancy mass accumulated over all grid cells 𝐶 ∈ G𝑥𝑦 .
Consequently, the weight of a new particle is calculated as

𝑤𝜒,new =
𝑚
(𝑡 )
𝐶,new

𝑛𝐶,new
. (5.35)

Up to this point, the update of persistent particles and the initialization of
new particles is based on the assumption that m(𝑡 )

𝐶
(𝑂mov) > 0. Hence, the

existence of moving occupancy can only be determined in the BBA update
step. In order to additionally derive moving occupancy based on converging
particle states a second set of 𝑛0 new particles X0 is initialized. The weight
is calculated analogously to Equation (5.35) but proportionally to the newly
gained BBA of dynamically unclassified occupancy Δ+m(𝑡 )

𝐶
(𝑂du). Note that the

calculation of Δ+m(𝑡 )
𝐶
(𝑂du) depends on the BBA update. It will be formalized

in Equation (5.65).

For each new particle, the position 𝒑𝜒 is drawn from a uniform distribution
defined on the current grid cell and the velocity 𝜒𝑣 is drawn from a uniform
distribution defined between a minimal and maximal velocity. The semantic
label 𝜒𝑙 is sampled from the measured BBA on Ω𝑠 . More specifically, label 𝜔
is drawn with the probability

𝑝𝜔 =
m(𝑡 )
𝐶,𝑍
(𝜔)∑

𝜃⊆𝑂su

m(𝑡 )
𝐶,𝑍
(𝜃)

. (5.36)
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Finally, 𝑛 particles are drawn out of the 𝑛 + 𝑛new + 𝑛0 updated and newly
initialized particles according to their particle weights. For particles sampled
from the sets Xpers and Xnew, the new weight is set to

𝑤𝜒 =
1
𝑛

∑︁
𝐶∈G𝑥𝑦

m(𝑡 )
𝐶
(𝑂mov). (5.37)

For particles drawn from the set X0, the weight is set to zero. This way, the
resampled particle set still approximates the PHD of the multi-Bernoulli RFS
representing moving occupancy 𝑂mov while at the same time zero-weight
particles have been added for potentially moving occupancy.

Statistical moments of the RFS

The mean velocity in grid cell 𝐶 ∈ G𝑥𝑦 can be calculated as

𝑣𝐶 =
∑︁
𝜒∈X𝐶

𝑤𝜒 𝒗𝜒 ∈ R2, (5.38)

i.e. the sum of the particles’ velocity component weighted by the updated
particle weights. Analogously, the velocity covariance matrix reads as

Σ𝐶 =

(
Σ𝑥𝑥 Σ𝑥𝑦

Σ𝑥𝑦 Σ𝑦𝑦

)
, (5.39)

where
Σ𝑎𝑏 =

1
𝑊𝐶

∑︁
𝜒∈X𝐶

𝑤𝜒
(
𝑣𝑎,𝜒 − 𝑣𝐶

) (
𝑣𝑏,𝜒 − 𝑣𝐶

)
, (5.40)

for 𝑎, 𝑏 ∈ {𝑥, 𝑦} and
𝑊𝐶 =

∑︁
𝜒∈X𝐶

𝑤𝜒 . (5.41)

5.3.2 Evidential Network Reasoning

As mentioned above, measurements are only available as BBAs on the occupancy
semantics Ω𝑠 whereas both the BBA on the occupancy semantics Ω𝑠 and
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the BBA on the occupancy dynamics Ω𝑑 is to be updated. Hence, basic
combinations rules such as Dempster’s rule are not applicable in the BBA
update step of this work. Therefore, the concept of DEVNs is utilized to model
the update of the BBAs on Ω𝑠 and Ω𝑑 jointly. This further enables modeling
dependencies between the two FoDs.
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𝐷
(𝑡−1)
𝐶1

𝐷
(𝑡−1)
𝐶𝑛

𝐷̂
(𝑡 )
𝐶𝑘

𝐷
(𝑡 )
𝐶𝑘

𝑆
(𝑡−1)
𝐶1

𝑆
(𝑡−1)
𝐶𝑛

𝑆̂
(𝑡 )
𝐶𝑘

𝑆
(𝑡 )
𝐶𝑘

Variable Meaning Values
𝐷
(𝑡 )
𝐶𝑘

dynamic state 𝜃
(𝑡 )
𝐶𝑘
⊆ Ω𝑑

𝑆
(𝑡 )
𝐶𝑘

semantic state 𝜔
(𝑡 )
𝐶𝑘
⊆ Ω𝑠

𝑆̃
(𝑡 )
𝐶𝑘

measured
semantic state 𝜔̃

(𝑡 )
𝐶𝑘
⊆ Ω𝑠

𝐷̂
(𝑡 )
𝐶𝑘

predicted
dynamic state 𝜃

(𝑡 )
𝐶𝑘
⊆ Ω𝑑

𝑆̂
(𝑡 )
𝐶𝑘

predicted
semantic state 𝜔̂

(𝑡 )
𝐶𝑘
⊆ Ω𝑠

Figure 5.4: The DEVN for the temporal fusion of the BBA on the occupancy semantics Ω𝑠 and the
occupancy dynamics Ω𝑑 . The color of the nodes indicates the underlying FoDs Ω𝑑

(green) and Ω𝑠 (red). The circled nodes 𝐷 (𝑡 )
𝐶𝑘

and 𝑆 (𝑡 )
𝐶𝑘

are the states linked to the
updated BBAs.

The evidential network modeling the dependencies in the temporal fusion on
the FoDs Ω𝑠 and Ω𝑑 is shown in Figure 5.4. The objective of the dynamic grid
mapping pipeline is to estimate the belief distributions of the dynamic state 𝐷 (𝑡 )

𝐶𝑘

and the semantic state 𝑆 (𝑡 )
𝐶𝑘

based on the predicted occupancy semantics 𝑆 (𝑡 )
𝐶𝑘

,
the predicted occupancy dynamics 𝐷̂ (𝑡 )

𝐶𝑘
and the measured occupancy semantics

𝑆
(𝑡 )
𝐶𝑘

. The conditional belief functions induced by the evidential network are

• the prediction of the dynamic and semantic state given the states in
neighboring grid cells 𝐶1, . . . , 𝐶𝑛 ∈ G𝑥𝑦 at time 𝑡 − 1 represented by the
conditional belief

bel
𝐷̂
(𝑡 )
𝐶𝑘

(
𝜃
(𝑡 )
𝐶𝑘
| 𝜃 (𝑡−1)
𝐶1

, . . . , 𝜃
(𝑡−1)
𝐶𝑛

)
, (5.42)

bel
𝑆̂
(𝑡 )
𝐶𝑘

(
𝜔̂
(𝑡 )
𝐶𝑘
|𝜔 (𝑡−1)

𝐶1
, . . . , 𝜔

(𝑡−1)
𝐶𝑛

)
, (5.43)
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• the conditional belief functions of the semantic state given the predicted
occupancy semantics 𝜔̂ (𝑡 )

𝐶𝑘
, the predicted occupancy dynamics 𝜃 (𝑡 )

𝐶𝑘
and

the measured occupancy semantics 𝜔̃ (𝑡 )
𝐶𝑘

bel
𝐷̂
(𝑡 )
𝐶𝑘

(
𝜔
(𝑡 )
𝐶𝑘
| 𝜔̂ (𝑡 )

𝐶𝑘
, 𝜃
(𝑡 )
𝐶𝑘
, 𝜔̃
(𝑡 )
𝐶𝑘

)
, (5.44)

• the conditional belief functions of the dynamic state given the predicted
occupancy semantics 𝜔̂ (𝑡 )

𝐶𝑘
, the predicted occupancy dynamics 𝜃 (𝑡 )

𝐶𝑘
and

the measured occupancy semantics 𝜔̃ (𝑡 )
𝐶𝑘

bel
𝐷̂
(𝑡 )
𝐶𝑘

(
𝜃
(𝑡 )
𝐶𝑘
| 𝜔̂ (𝑡 )

𝐶𝑘
, 𝜃
(𝑡 )
𝐶𝑘
, 𝜔̃
(𝑡 )
𝐶𝑘

)
. (5.45)

In the following, the super- and subscripts denoting the time 𝑡 and grid cell
𝐶𝑘 are omitted as they stay constant throughout the remainder of this section.
Furthermore, the abbreviation

𝑆𝐷̂𝑆 =

(
𝑆
(𝑡 )
𝐶𝑘
, 𝐷̂
(𝑡 )
𝐶𝑘
, 𝑆𝐶𝑘

)
is introduced. The inference in the DEVN is done in the following two steps:

1. Belief Prediction

Calculate the predicted semantic and dynamic state beliefs. This is
estimated in the grid map (Equations (5.13) and (5.15)) and using the
predicted particle population (Equation (5.27)), respectively.

2. Belief Update

Calculate the updated semantic and dynamic state beliefs:

bel𝑆 (𝜔) =
∑︁
𝜔̂, 𝜃 , 𝜔̃

bel𝑆
(
𝜔 | 𝜔̂, 𝜃, 𝜔̃

)
m𝑆̂𝐷̂𝑆̃

(
𝜔̂, 𝜃, 𝜔̃

)
, (5.46)

bel𝐷 (𝜃) =
∑︁
𝜔̂, 𝜃 , 𝜔̃

bel𝐷
(
𝜃 | 𝜔̂, 𝜃, 𝜔̃

)
m𝑆̂𝐷̂𝑆̃

(
𝜔̂, 𝜃, 𝜔̃

)
. (5.47)
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Note that the measured occupancy semantics 𝜔̃ (𝑡 )
𝐶𝑘

is independent of the predicted
states 𝜔̂ (𝑡 )

𝐶𝑘
and 𝜃 (𝑡 )

𝐶𝑘
. Thus, the joint BBA can be written as the product

m𝑆̂𝐷̂𝑆̃

(
𝜔̂, 𝜃, 𝜔̃

)
= m𝑆̂𝐷̂

(
𝜔̂, 𝜃

)
m𝑆̃ (𝜔̃) , (5.48)

where m𝑆̂𝐷̂ is known from the prediction step and m𝑆̃ is contained in the
measurement grid map.

The main objective of the belief update step is to estimate the conditional
belief functions for the semantic and the dynamic state given its ancestors
in the DEVN. This work proposes to model the conditional belief functions
based on three parameters 0 ≤ 𝜆𝑖 ≤ 1. To avoid the need for heuristic expert
knowledge and re-tuning for various domains, it is also shown how to learn
these parameters from data.

Some occupancy dynamics hypotheses 𝜃 ⊆ Ω𝑑 depend on the occupancy
semantics 𝜔 ⊆ Ω𝑠. For example, only the mobile types 𝑂car, 𝑂tw, 𝑂ped, 𝑂om
and semantically unclassified occupancy𝑂su might be moving. The dependency

𝑂car 𝑂tw 𝑂ped 𝑂om 𝑂im 𝑂su 𝐹𝑠 Ω𝑠

𝑂mov 0 / 1 0 / 1 0 / 1 0 / 1 0 / 0 0 / 1 0 / 0 0 / 1
𝑂stat 0 / 1 0 / 1 0 / 1 0 / 1 1 / 1 0 / 1 0 / 0 0 / 1
𝑂du 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 0 / 0 0 / 1
𝐹𝑑 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 1 / 1 0 / 1
Ω𝑑 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1

Table 5.1: The conditional beliefs and plausibilities bel𝐷 (𝜃 |𝜔)
/

pl𝐷 (𝜃 |𝜔) of the occupancy
dynamics 𝜃 ⊆ Ω𝑑 given the occupancy semantics 𝜔 ⊆ Ω𝑠 .

between the semantic and the dynamic states are formalized in Table 5.1. The
table shows the conditional beliefs and plausibilities bel𝐷 (𝜃 |𝜔) and pl𝐷 (𝜃 |𝜔)
of the occupancy dynamics 𝜃 ⊆ Ω𝑑 given the occupancy semantics 𝜔 ⊆ Ω𝑠 .

In the following, we state the conditional BBAs

m𝑋

(
𝑥 | 𝜔̂, 𝜃, 𝜔̃

)
=

∑︁
𝑦⊆𝑥
(−1) |𝑥 |− |𝑦 |bel𝑋

(
𝑥 | 𝜔̂, 𝜃, 𝜔̃

)
, 𝑋 ∈ {𝐷, 𝑆}, (5.49)

and assume
m𝑋

(
𝑥 | 𝜔̂, 𝜃, 𝜔̃

)
= 0, (5.50)
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if not stated otherwise. We distinguish between consenting dependent states,
occupancy/free switches and semantic conflicts.

Consenting states. Let the predicted occupancy semantics 𝜔̂ ⊆ Ω𝑠 and the
measured occupancy semantics 𝜔̃ ⊆ Ω𝑠 be consenting, i.e. 𝜔̂ ∩ 𝜔̃ ≠ ∅. For
occupancy semantics, the BBA is assigned to the intersecting hypothesis by
setting

m𝑆 (𝜔̂ ∩ 𝜔̃ | 𝜔̂, 𝜃, 𝜔̃) = 1. (5.51)

For occupancy dynamics, we aim to separate moving from stationary occupancy.
Here, we consider three categories of consenting states, namely

1. newly observed occupancy, i.e. unknown predicted states 𝜔̂ = Ω𝑠,
𝜃 = Ω𝑑 and measured occupancy semantics 𝜔̃ ⊆ 𝑂su,

2. newly observed free space, i.e. unknown predicted states 𝜔̂ = Ω𝑠 , 𝜃 = Ω𝑑
and measured free space 𝜔̃ = 𝐹𝑠 and

3. repeatedly observing occupancy, i.e. predicted occupancy 𝜃 ⊆ 𝑂du and
𝜔̂ ⊆ 𝑂su and measured occupancy 𝜔̃ ⊆ 𝑂su.

In the first category, newly observed occupancy, moving and dynamically
unclassified occupancy can be deduced. For moving occupancy 𝑂mov ⊂ Ω𝑑 ,
the conditional belief depends on the mobility of the observed entity that is
represented by the conditional plausibility pl𝐷 (𝑂mov | 𝜔̃) of moving occupancy
given the measured occupancy semantics 𝜔̃. We parametrize the conditional
belief for moving occupancy given that occupancy 𝜔̃ ⊆ 𝑂su was newly observed
as

m𝐷 (𝑂mov |Ω𝑠 ,Ω𝑑 , 𝜔̃) = 𝜆Ω𝑑→𝑂mov pl𝐷 (𝑂mov | 𝜔̃), (5.52)

where 0 ≤ 𝜆Ω𝑑→𝑂mov ≤ 1 is a parameter specifying the amount of newly
observed occupancy BBA assigned to moving occupancy 𝑂mov. As evidence
for moving occupancy 𝑂mov is gained, the belief of dynamically unclassified
occupancy 𝑂du ⊂ Ω𝑑 is reduced accordingly as

m𝐷 (𝑂du |Ω𝑠 ,Ω𝑑 , 𝜔̃) = 1 −m𝐷 (𝑂mov |Ω𝑠 ,Ω𝑑 , 𝜔̃). (5.53)

As opposed to occupied grid cell hypotheses that may be moving or stationary,
the free space hypothesis is not subdivided. Thus, in the second category of
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consenting states, newly observed free space is fully assigned to the free space
hypotheses as

m𝐷 (𝐹𝑑 |Ω𝑠 ,Ω𝑑 , 𝐹𝑠) = 1. (5.54)

The third category of consenting states, i.e. repeatedly observing occupancy,
implies a stationary dynamic state by setting

𝜔̂ ∩ 𝜔̃ ⊆ 𝑂su, 𝜃 ∈ {𝑂stat, 𝑂du} ⇒ m𝐷 (𝑂stat | 𝜔̂, 𝜃, 𝜔̃) = 1, (5.55)

if the predicted occupancy dynamics is stationary occupied𝑂stat or dynamically
unclassified occupied 𝑂du. Note that this does not consider that moving entities
might occupy the same grid cell at several consecutive update steps. However,
this is handled by assigning parts of newly observed occupancy to the moving
occupancy hypothesis 𝑂mov in Equation (5.52) so that it is not predicted to
dynamically unclassified occupancy 𝜃 = 𝑂du in the first place. For predicted
moving occupancy 𝑂mov, the belief remains at moving occupancy, i.e.

𝜔̂ ∩ 𝜔̃ ⊆ 𝑂su, 𝜃 ∈ {𝑂mov} ⇒ m𝐷 (𝑂mov | 𝜔̂, 𝜃, 𝜔̃) = 1. (5.56)

Occupied/free switches. For occupied/free switches, we distinguish be-
tween

1. grid cells previously observed free, i.e. predicted as passable 𝜃 = 𝑃 and
now observed occupied 𝜔̃ ⊆ 𝑂su,

2. grid cells previously observed moving 𝜃 = 𝑂mov or dynamically unclas-
sified occupied 𝜃 = 𝑂du and now observed free 𝜔̃ = 𝐹𝑠 , and

3. grid cells previously observed stationary occupied 𝜃 = 𝑂stat and now
observed free 𝜔̃ = 𝐹𝑠 .

The case that a grid cell is predicted as passable 𝜃 = 𝑃 and currently observed
as occupied 𝜔̃ ⊆ 𝑂su is technically not a conflict in the presented evidential
model. It intersects to the moving occupancy hypotheses𝑂mov ⊂ Ω𝑑 . However,
to prevent falsely deducing moving occupancy in case of noisy measurements
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the occupancy evidence is not fully assigned to moving occupancy 𝑂mov but
only partly based on the parameter 0 ≤ 𝜆𝑃→𝑂mov ≤ 1 as

m𝐷 (𝑂mov | 𝜔̂, 𝑃, 𝜔̃) =𝜆𝑃→𝑂mov pl𝐷 (𝑂mov | 𝜔̃)
+ (1 − 𝜆𝑃→𝑂mov ) 𝜆Ω𝑑→𝑂mov pl𝐷 (𝑂mov | 𝜔̃). (5.57)

Here, the part 𝜆Ω𝑑→𝑂mov of 1−𝜆𝑃→𝑂mov is assigned to moving occupancy𝑂mov
as well instead of assigning it to dynamically unclassified occupancy 𝑂du. The
residual part of the observed occupancy semantics 𝜔̃ ⊆ 𝑂su is assigned to
dynamically unclassified occupancy 𝑂du by setting

m𝐷 (𝑂du | 𝜔̂, 𝑃, 𝜔̃) = 1 −m𝐷 (𝑂mov | 𝜔̂, 𝑃, 𝜔̃). (5.58)

For occupancy semantics, the BBA is fully assigned to the measured occupancy
𝜔̃ ⊆ 𝑂su, i.e.

m𝑆 (𝜔̃ | 𝜔̂, 𝑃, 𝜔̃) = 1. (5.59)

Cells previously observed moving occupied 𝜃 = 𝑂mov or dynamically unclassi-
fied 𝜃 = 𝑂du and now observed free 𝜔̃ = 𝐹𝑠 are assumed to be free, that means
for 𝜔̂ ⊆ 𝑂su, the conditional beliefs read

m𝑆 (𝐹𝑠 | 𝜔̂, 𝑂du, 𝐹𝑠) = 1, m𝐷 (𝐹𝑑 | 𝜔̂, 𝑂du, 𝐹𝑠) = 1, (5.60)
m𝑆 (𝐹𝑠 | 𝜔̂, 𝑂mov, 𝐹𝑠) = 1, m𝐷 (𝐹𝑑 | 𝜔̂, 𝑂mov, 𝐹𝑠) = 1. (5.61)

Note that this overwrites potentially stationary occupancy contained in
the superset 𝑂du ⊃ 𝑂stat. The above modeling of the conditional belief
m𝐷 (𝐹𝑑 | 𝜔̂, 𝑂du, 𝐹𝑠) ensures that occupied/free conflicts are only resolved in
favor of the occupancy hypothesis, if stationary occupancy has been confirmed
even for immobile predicted occupancy semantics 𝜔̂ = 𝑂im.

Finally, we consider cells previously observed as stationary occupied 𝜃 = 𝑂stat
and now observed as free 𝜔̃ = 𝐹𝑠 . Here, we distinguish two cases:

1. The measured occupancy semantics is free due to missed detections. In
this case, the conflict should be resolved in favor of stationary occupancy
𝑂stat.

2. The predicted occupancy dynamics is stationary occupied due to false
detections in past measurements or because a stationary, mobile object
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starts moving. In those cases, the conflict should be resolved in favor of
the free space hypothesis 𝐹𝑑 .

Therefore, the belief is partially assigned to free space and stationary occupancy
based on the parameter 0 ≤ 𝜆𝑂stat→𝐹𝑑 ≤ 1 by setting

m𝑆 (𝐹𝑠 | 𝜔̂, 𝑂stat, 𝐹𝑠) = m𝐷 (𝐹𝑑 | 𝜔̂, 𝑂stat, 𝐹𝑠) = 𝜆𝑂stat→𝐹𝑑 , (5.62)
m𝑆 (𝜔̂ | 𝜔̂, 𝑂stat, 𝐹𝑠) = m𝐷 (𝑂stat | 𝜔̂, 𝑂stat, 𝐹𝑠) = 1 − 𝜆𝑂stat→𝐹𝑑 . (5.63)

Semantic conflicts. In case of conflicting occupancy semantics 𝜔̂, 𝜔̃ ⊆ 𝑂su
with 𝜔̂∩𝜔̃ = ∅, the BBA can be assigned to semantically unclassified occupancy
𝑂su ⊂ Ω𝑠 as

m𝑆 (𝑂su | 𝜔̂, 𝜃, 𝜔̃) = m𝐷 (𝑂du | 𝜔̂, 𝜃, 𝜔̃) = 1. (5.64)

This ensures that even in case of conflicting semantic estimates, the evidence
on cell occupancy is preserved.

5.3.3 Parameter Estimation

For modeling the conditional beliefs induced by the DEVN (Figure 5.4)
the parameters 𝜆Ω𝑑→𝑂mov for the initialization of moving occupancy, and
𝜆𝑃→𝑂mov , 𝜆𝑂stat→𝐹𝑑 for resolving occupied/free switches are introduced. We
propose ways to estimate those parameters.

Initialization of moving occupancy

The initialization of moving occupancy in previously unobserved grid cells
represented by the conditional belief bel𝐷 (𝑂mov | 𝜔̂,Ω𝑑 , 𝜔̃) is parametrized by
𝜆Ω𝑑→𝑂mov ∈ [0, 1] in Equations (5.52) and (5.53). We propose to estimate this
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parameter based on the predicted particle population X̂ (𝑡 ) . Recall that particles
initialized in newly observed occupancy 𝜔̃ ⊆ 𝑂su

Δ+m(𝑡 )
𝐶
(𝑂du) =

∑︁
𝜔̃⊆𝑂su

m𝐷 (𝑂du |Ω𝑠 ,Ω𝑑 , 𝜔̃)m𝑆̂𝐷̂ (Ω𝑠 ,Ω𝑑)m𝑆̃ (𝜔̃)

+m𝐷 (𝑂du |Ω𝑠 , 𝑃, 𝜔̃)m𝑆̂𝐷̂ (Ω𝑠 , 𝑃)m𝑆̃ (𝜔̃) (5.65)

have weight zero after the resampling step. Therefore, not all particles predicted
into a grid cell contribute to the predicted BBA for moving occupancy 𝑂mov.
The idea for estimating 𝜆Ω𝑑→𝑂mov is that all particles including those with
weight zero can be used to confirm measured occupancy as moving. Let

𝑚
(𝑡 )
𝜒 =

1
𝑛

∑︁
𝐶∈G𝑥𝑦

m(𝑡 )
𝐶
(𝑂mov) + Δ+m(𝑡 )𝐶 (𝑂du) (5.66)

be the BBA for moving and the newly gained BBA for dynamically unclassified
occupancy Δ+m(𝑡 )

𝐶
(𝑂du) per particle at time 𝑡. The sum of weights 𝑚 (𝑡−1)

𝜒 of
the predicted particle population in a grid cell represents moving and potentially
moving occupancy. Therefore, 𝜆Ω𝑑→𝑂mov is estimated as

𝜆Ω𝑑→𝑂mov =

���X̂ (𝑡 )
𝐶

��� 𝑚 (𝑡−1)
𝜒 , (5.67)

so that moving occupancy is initialized in previously unobserved grid cells
if it contains predicted particles and is observed as occupied in the current
measurement.

Occupied/free switches

Consider the parameters 𝜆𝑃→𝑂mov , 𝜆𝑂stat→𝐹𝑑 ∈ [0, 1] modeling occupied/free
switches.

Baseline parameterization. Note that the described DEVN is a generaliza-
tion of the manual conflict assignment based on Yager’s rule on the FoD Ω𝑑
presented by Steyer et al. [STW18]. This will serve as baseline for the now
following parameter estimation. A comparative evaluation of their parameteri-
zation and our parameterization described in the next section will be presented
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in Section 5.4. For reference, we state the corresponding parameterization used
by Steyer et al. [STW18] in Table 5.2.

𝜆𝑂stat→𝐹𝑑
0.5

𝜆𝑃→𝑂mov 0.4

Table 5.2: The parameterization proposed by Steyer et al. [STW18].

Data-driven parameterization. Instead of assigning the two parameters
𝜆𝑂stat→𝐹𝑑 and 𝜆𝑃→𝑂mov a constant value as in the baseline parameterization,
a data driven approach is introduced that estimates them based on observed
cues and statistical considerations. This might help to detect the causes for the
occupied/free switches and could thus lead to a more robust and accurate BBA
estimation.

Consider the conditional belief functions

1. bel𝐷 ( · |Ω𝑠 , 𝑃, 𝜔̃) for the case that a grid cell is predicted as passable 𝑃
and measured occupied, i.e. 𝜔̃ ⊆ 𝑂su, and

2. bel𝐷 ( · | 𝜔̂, 𝑂stat, 𝐹𝑠) for the conflict that a grid cell predicted as stationary
occupied 𝑂stat with occupancy semantics 𝜔̂ ⊆ 𝑂su was observed free 𝐹𝑠 .

Both conditional beliefs represent occupied/free switches as they either depend
on the grid cell to be free at an earlier point in time and observed occupied at
the current time point or the other way around. Those occupied/free switches
may be due to moving entities entering or leaving the grid cell. We model this
by defining binary classifiers for a moving entity to be present and estimate the
probability for this by applying a logistic regression.

For the conditional belief bel𝐷 ( · | 𝜔̂, 𝑃, 𝜔̃) with 𝜔̃ ⊆ 𝑂su, the grid cell may be
moving occupied in case the switch from free to occupied was caused by a
moving entity entering the grid cell. Hence, we define the binary classifier

𝑦𝑃→𝑂mov =

{
1, if a moving entity enters the cell,
0, else.

(5.68)
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𝐶𝑘

𝜌
(𝑡−1)
𝐶𝑘

𝜌
(𝑡 )
𝐶𝑘

Figure 5.5: Visualization of the permeability change for moving objects. The ego vehicle is on the
right and a passing vehicle is coming from the left. When the vehicle enters the
considered grid cell 𝐶𝑘 , parts of the driving corridor are blocked leading to a
permeability drop.

Other reasons for the state switch may be that the grid cell is still free and false
detections caused the current measurement or the grid cell was falsely estimated
as free in past update steps. Recall that in Equation (5.58) the part that is not
assigned to moving occupancy 𝑂mov is assigned to dynamically unclassified
occupancy 𝑂du following a conservative policy.

For the conditional belief bel𝐷 ( · | 𝜔̂, 𝑂stat, 𝐹𝑠), the grid cell may either be free
in case a moving entity has left the grid cell or still be stationary occupied
in case the occupying entity was missed by the sensor. Therefore, the binary
classifier

𝑦𝑂stat→𝐹𝑑 =

{
1, if a moving entity leaves the cell,
0, if cell remains occupied.

(5.69)

covers the two possible causes for the occupied/free conflict.

The higher the vertical portion of the driving corridor that is covered by the
obstacle the less likely it is to miss it. False and missed detections, however,
usually cover a small vertical portion of the driving corridor as they usually
occur for single measurement rays. The progression of the ray permeability
defined in Equation (3.4) over time provides a way to separate the presence of
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moving entities from missed or false detections as indicated in Figure 5.5. The
idea is that moving entities have a certain height, thus covering a large portion
of the driving corridor leading to large changes in the ray permeability when
entering or leaving a grid cell. On the other hand, low entities such as curb
stones that are likely to be missed detections and measurement noise can be
detected by small changes in the ray permeability.

In order to visualize the dependency between the ray permeabilities 𝜌 (𝑡−1) and
𝜌 (𝑡 ) at two consecutive update time points and the binary classifiers 𝑦𝑃→𝑂mov

and 𝑦𝑂stat→𝐹𝑑 , we collect reference classifications in permeability histograms.
The reference classification is generated based on the reference grid map gref
representing the BBA on the occupancy dynamics Ω𝑑 estimated using the
KITTI-360 dataset as described in Section 2.4. The histogram

h(𝑦ref,𝑃→𝑂mov | 𝐹𝑠 , 𝑂su) : G[0,1] → R≥0 (5.70)

counts the number of grid cells with reference classification 𝑦ref,𝑃→𝑂mov given
that the measured occupancy semantics BBA m(𝑡−1)

𝐶
(𝐹𝑠) at time 𝑡 − 1 and

m(𝑡 )
𝐶
(𝑂su) at time 𝑡 exceeded the threshold 𝜏 = 0.7. Analogously,

h(𝑦ref,𝑂stat→𝐹𝑑 |𝑂su, 𝐹𝑠) : G[0,1] → R≥0 (5.71)

counts the number of grid cells with reference classification 𝑦ref,𝑂stat→𝐹𝑑 given
that the measured occupancy semantics BBA m(𝑡−1)

𝐶
(𝑂su),m(𝑡 )𝐶 (𝐹𝑠) > 0.7.

The histogram bins are defined by a gridG[0,1] discretizing the unit square where
each cell 𝐶 ∈ G[0,1] represents pairs of ray permeabilities (𝜌 (𝑡−1) , 𝜌 (𝑡 ) ) ∈ 𝐶.
The statistics were collected in the KITTI-360 training sequence, see Table 2.5.

Figure 5.6 depicts the histograms representing moving entities entering or
leaving a grid cell, false and missed detections. Figures 5.6a and 5.6b show
the cases that a moving entity is either entering or leaving a grid cell. In both
cases, large changes in the ray permeability can be observed indicated by high
histogram counts either in the lower right (Figure 5.6a) or the upper left corner
(Figure 5.6b). In the case that a moving entity is entering a grid cell, the
permeability variance is higher than for entities leaving a grid cell as indicated
by 𝜌 (𝑡 ) in Figure 5.6a and 𝜌 (𝑡−1) in Figure 5.6b. This can be explained by the
fact that if the entity is a car, the front is observed in such cases that is lower
and thus leads to a higher ray permeability. For false detections visualized in
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(a) h(𝑦ref,𝑃→𝑂mov = 1 | 𝐹𝑠 , 𝑂su ): A
moving entity is entering the grid cell.
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(e) f𝑃→𝑂mov (𝜌(𝑡−1) , 𝜌(𝑡 ) ) representing
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Figure 5.6: Histograms on G[0,1] representing the ray permeabilities 𝜌(𝑡−1) , 𝜌(𝑡 ) ∈ [0, 1] at two
consecutive frames. The values in (a) - (d) are normalized between zero and the
maximal cell count.
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5 Temporal Fusion in Evidential Grid Maps

Figure 5.6c, the ray permeability remains unchanged mostly at a high level
indicated by high histogram counts in the upper right corner of G[0,1] . Missed
detections also lead to small changes in the ray permeability, see Figure 5.6d.
The average is reached for 𝜌 (𝑡−1) ≈ 1 and 𝜌 (𝑡 ) slightly below one. This is due
to the fact that missed detections are mostly observed at curb stones leading to
a small permeability drop according to their height.

Based on the statistics contained in the histograms, we can fit a logistic function

f
(
𝜌 (𝑡−1) , 𝜌 (𝑡 )

)
=

1
1 + exp

(
−

(
𝛽0 + 𝛽1 𝜌 (𝑡−1) + 𝛽2 𝜌 (𝑡 )

) ) (5.72)

to quantify the probability for the binary classifiers based on the ray permeabili-
ties 𝜌 (𝑡−1) and 𝜌 (𝑡 ) . The logistic regression problem is solved using the Python
library scikit-learn [Ped+11] using the coordinate descent algorithm presented
by Friedman et al. [FHT10] with 𝑙2 regularization in the cost function. To
account for an unbalanced number of samples for 𝑦 = 0 and 𝑦 = 1, the sample
weights are set inversely proportional to the sample frequencies. By solving the
logistic regression, we obtain the parameters for the logistic function f𝑃→𝑂mov

quantifying the probability for 𝑦𝑃→𝑂mov = 1 depicted in Figure 5.6e. The
probability for 𝑦𝑂stat→𝐹𝑑 is modeled by the logistic function f𝑂stat→𝐹𝑑 visualized
in Figure 5.6f.

Since the predicted BBAs for passable space 𝑃 and stationary occupancy 𝑂stat
might not only contain the measurement from the last time point 𝑡 − 1 but
also earlier measurements, we accumulate the ray permeability over time. As
the BBA is recursively updated for all hypotheses simultaneously, we do the
accumulation separately for the assumption that the grid cell is stationary
occupied and free, respectively. The ray permeability 𝜌 (𝑡 )

𝑂stat
at time 𝑡 given

that the grid cell is occupied by a stationary entity is recursively updated as
the weighted average between the value from the last time point 𝑡 − 1 and the
current measured permeability. More specifically, the weight is set to the BBA
for stationary occupancy 𝑂stat ⊆ Ω𝑑 , so that

𝜌
(𝑡 )
𝑂stat

= m(𝑡 )
𝐶
(𝑂stat) 𝜌 (𝑡 ) +

(
1 −m(𝑡 )

𝐶
(𝑂stat)

)
𝜌
(𝑡−1)
𝑂stat

. (5.73)
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Analogously, the ray permeability given that the grid cell is passable is updated
as the weighted average

𝜌
(𝑡 )
𝑃

= m(𝑡 )
𝐶
(𝐹𝑑) 𝜌 (𝑡 ) +

(
1 −m(𝑡 )

𝐶
(𝐹𝑑)

)
𝜌
(𝑡−1)
𝑃

(5.74)

based on the free space BBA.

Finally, the parameters 𝜆𝑃→𝑂mov and 𝜆𝑂stat→𝐹𝑑 are set based on the ray perme-
ability as

𝜆𝑃→𝑂mov = f𝑃→𝑂mov (𝜌
(𝑡−1)
𝑃

, 𝜌 (𝑡 ) ), (5.75)

𝜆𝑂stat→𝐹𝑑 = f𝑂stat→𝐹𝑑 (𝜌
(𝑡−1)
𝑂stat

, 𝜌 (𝑡 ) ) (5.76)

using the logistic functions f𝑃→𝑂mov and f𝑂stat→𝐹𝑑 .

5.4 Experiments

In the temporal fusion of the fused measurement grid map, the BBA on
the ground semantics Ω𝑔, the occupancy semantics Ω𝑠 and the occupancy
dynamics Ω𝑑 are estimated. In this section the BBAs are evaluated visually
and qualitatively. Furthermore, the quality of the particle-based cell velocity
estimation is investigated.

5.4.1 Particle Filter

The particle filter estimates the motion state of moving occupancy. We first
test the capability of the particle filter to converge towards occupancy motion
in simulated scenarios. For this purpose, extended object states are spawn
following motion patterns with a constant acceleration and constant turn rate
motion model. Based on those object states, a simple range sensor is simulated
by casting rays from a defined sensor location to the first intersection with the
object’s hull in Polar coordinates. Then the measurement BBA is calculated
by applying an inverse sensor model similar as described in Section 3.3.3. We
process the simulated measurements on a 60 m by 40 m large grid with a grid
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−20 0 20 40
−20

−10

0

10

20

8 10 12
−12

−11

−10

−9

6 8 10
−7

−6

−5

−4

−4 −2 0
13

14

15

16

(c) Frame 𝑡6.

Figure 5.7: Results of the particle filter after the resampling step in a simulated scenario. The first
row shows the whole grid map visualizing the occupancy probability and color-coded
velocity orientation. The other rows magnify one specific object of interest and
visualizes every 50th particles with non-zero weight with the same color-coding. Each
column corresponds to one of the three update time points 𝑡0, 𝑡2 and 𝑡6.

cell size of 10 cm by 10 cm. The number of particles 𝑛 is set to 100 000 and
the numbers of new particles 𝑛new, 𝑛0 is set to 10 000 each.

Figure 5.7 shows a simulated scenario where the ego vehicle is stopping, and
several other vehicles are passing. Furthermore, two stationary vehicles are
located on the left and on the right of the ego vehicle. In the first row, the
occupancy probability is shown where the direction of motion is additionally
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visualized in each grid cell 𝐶 ∈ G𝑥𝑦 by the hue component in the HSV color
space. Here the brightness is determined by the Mahalanobis distance

dMHD (𝑣𝐶 ) = 𝑣𝑇𝐶 Σ−1
𝐶 𝑣𝐶 ∈ R>0, (5.77)

where the maximal brightness is achieved for dMHD (𝑣𝐶 ) > 4 m/s. In the second,
third, and forth row, every 50th particle is visualized with the hue component of
the HSV color selected based on the direction of motion. Figure 5.7a shows the
state after receiving the first measurement where the view is magnified around
three objects. As the particles have only been sampled from the new particle
set X0, all particles have weight zero. After two further measurement updates,
more particles are sampled in cells occupied by moving objects, but they have
not yet converged to the correct cell velocities, see Figure 5.7b. Following
the survival-of-the-fittest principle, the vast majority of the samples eventually
have the correct velocity after six measurement updates, see Figure 5.7c. As
the particle filter only models moving occupancy, no particles are spawn in
stationary cell occupancy. This can be seen in the bottom row showing one of
the stationary objects where only a few particles are sampled in the occupied
grid cells.

For a scenario-based velocity evaluation, one observed vehicle is simulated in
the following scenarios:

1. Constant velocity scenario: The observed vehicle drives with a constant
velocity of 13 m/s with orientation of 0 rad.

2. Slalom scenario: The observed vehicle drives a slalom course with
orientation varying between -1 rad and 1 rad and a constant velocity of 5
m/s.

3. Start-stop scenario: The observed vehicle decelerates from 10 m/s to a
full stop and accelerates back to 10 m/s with orientation of 0 rad.

The evaluation of the velocity and orientation estimates of the particle filter in
the three simulated scenarios is shown in Figure 5.8. The results for the constant
velocity scenario is plotted in Figure 5.8a. Both the simulated velocity and the
orientation are estimated accurately for the whole simulated sequence. The
same applies for the highly dynamic slalom scenario depicted in Figure 5.8b.
Here, small orientation offsets can be seen at the turning points, i.e. at ±1
rad. In the start-stop scenario shown in Figure 5.8c the low-pass behavior
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(a) Constant velocity scenario.
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(b) Slalom scenario.

0 100 200

0

5

10

15

frame

ve
lo

ci
ty

[m
/s

]

ground truth estimation

0 100 200

−1

0

1

frame

ya
w

[r
ad

]

ground truth estimation

(c) Start-stop scenario.

Figure 5.8: Velocity and orientation estimates for one observed vehicle in simulated scenarios.
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of the particle filter can be observed. When the motion state changes from
acceleration or deceleration phases to a constant velocity phase, the particle
filter slowly converges towards the object’s velocity. Note that for stopping cell
occupancy, no cell orientation can be estimated as the orientation is exclusively
estimated based on the moving direction. This effect can be observed in the
yaw plot in Figure 5.8c for frames where the simulated velocity drops to 0 m/s.

5.4.2 Semantic State

Next, we consider the BBA on the occupancy semantics Ω𝑠 in the filtered grid
map. Here, a 100 m by 100 m large grid with a grid cell size of 10 cm by 10
cm is chosen. The number of particles 𝑛 is set to 500 000 and the numbers
of new particles 𝑛new, 𝑛0 is set to 50 000 each. With this setup and the GPU
implementation used in this work, the processing time for one cycle of the
temporal fusion pipeline is 20 ms on a NVIDIA GeForce RTX 2080 Ti.

Figure 5.9 shows the BBA on the occupancy semantics Ω𝑠 and the ground
semantics Ω𝑔 after applying temporal fusion in comparison to the sensor fusion
results in the current frame. In the current fused grid map, semantic estimates
are only available in the viewing area of the stereo camera, see Figure 5.9b.
In the filtered grid map semantic estimates are successfully accumulated and
fused with occupancy from LiDAR over time in the area behind the ego vehicle
as can be seen e.g. in areas labeled as street and sidewalk, see Figure 5.9c.
The vegetation on the right of the ego lane is correctly classified as immobile
occupancy and other ground. The advantage of dividing occupancy semantics
and ground semantics into two not necessarily excluding frames can be seen
behind the passing vehicle on the left. The evidence mass accumulated for the
hypothesis street is not overwritten by the passing car and thus stays in the
grid map. If ground semantics and occupancy semantics was modeled in a
common FoD, the BBAs for street would be moved to occupied and eventually
to unknown once the car has passed.

The eIoUs (Equation (2.26)) for the occupancy semantics Ω𝑠 are shown in
Figure 5.10. The statistics were computed for all frames in the KITTI-360
evaluation sequences, see Table 2.5. To demonstrate the performance evolution
at different stages of the pipeline the metrics are presented for the stereo
sensor measurement grid map, the grid map after additionally fusing LiDAR
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(a) Image of the traffic scene recorded by the left front camera.

Street Sidewalk Ground other Car Two-wheeler Pedestrian Other mobile Immobile Occupied Free
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(b) The BBA on the occupancy semantics Ω𝑠 and the ground semantics Ω𝑔 after fusing LiDAR
and stereo camera measurements.
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(c) The BBA on the occupancy semantics Ω𝑠 and the ground semantics Ω𝑔 after fusing LiDAR
and stereo camera measurements and temporal fusion.

Figure 5.9: Visualization of the BBA on the occupancy semantics Ω𝑠 and the ground semantics
Ω𝑔 .
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Figure 5.10: eIoU for the occupancy semantics Ω𝑠 .

measurements and the filtered grid map. In addition to the improvements in
the fused grid map compared to the stereo grid map, the eIoUs are once again
improved in the filtered grid map. For the hypothesis car, the eIoU improved
from 46.1% in the fused grid map to 58.8% in the filtered grid map. This is
a relative enhancement of 27.5% compared to the fused grid map and 35.5%
compared to the stereo grid map. For two-wheelers, pedestrians and free space,
the eIoU are slightly improved or stay at a similar level, respectively. In the
filtered grid map, the eIoU for semantically unclassified occupancy is reduced
from 91.4% in the fused grid map to 88.2%. This effect can be explained
by the fact that in many grid cells the BBA masses assigned to semantically
unclassified occupancy in the fused measurement grid map can be assigned to
one of the semantic hypotheses at some point in the temporal fusion. This is the
opposite effect to the increase of the eIoU for the other hypotheses such as car.

Figure 5.11 shows Deng’s non specificity and discord, see Equations (2.12)
and (2.13), for the occupancy semantics Ω𝑠 in the fused measurement grid
map and the filtered grid map. Recall that the nonspecificity is a measure for
the ignorance contained in the BBA whereas the discord is a measure for the
indecision between several hypotheses with non-zero BBA. In Figure 5.11a, all
grid cells within a distance of 30 m (360° view) are considered. In Figure 5.11b,
only grid cells are considered that are additionally within the visible area of the
stereo camera (camera view). In both cases, nonspecificity is slightly reduced,
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Figure 5.11: Nonspecificity and discord for fused and filtered grid maps on the occupancy
semantics Ω𝑠 .
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Figure 5.12: eIoUs for the ground semantics Ω𝑔 .

and the discord is slightly increased. This is expected when accumulating
information over time as more knowledge is gained that, however, might lead to
evidential conflicts. Overall, it can be stated that the temporal fusion proposed
in those work successfully reduces uncertainty which is demonstrated by a
reduced entropy, i.e. the sum of nonspecificity and discord.

Next, the BBA on the ground semantics Ω𝑔 after applying temporal filtering
is compared to the BBA in the fused grid map. Note that the latter coincides
with the BBA obtained from stereo measurements only as no evidences for the
ground hypotheses are obtained from LiDAR in this work’s evaluation setup.
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(b) After temporal fusion.

Figure 5.13: Confusion matrices for the ground state estimation. Rows correspond to the reference
state and columns to the estimation.

The eIoUs for the ground semanticsΩ𝑔 are depicted in Figure 5.12. Compared to
the BBA in the fused grid map, the eIoU is slightly reduced for the hypotheses
street and sidewalk and slightly improved for other ground after applying
temporal fusion. The reason behind this is that the true positive rate can be
improved by the temporal filter, however, the false positive rate is enhanced as
well.

This becomes visible when considering the confusion matrices in Figure 5.13.
Here, each entry 𝑒𝑖 𝑗 contains the percentage of the BBA with reference label 𝑖
assigned to the hypotheses 𝑗 . Both matrices are normalized so that the sum of
all entries is one. It can be seen that the relative false positive rate is higher for
all three hypotheses after applying temporal fusion. At the same time however,
the off-diagonal entries are higher as well indicating higher confusion between
the individual hypotheses. Those numbers are increased as a significantly lower
amount of the BBA is assigned to the hypothesis unknown. The overall amount
of the BBA assigned to unknown is reduced from 0.46 to 0.2. This reduction
of uncertainty can also be seen in Deng’s entropy.

Figure 5.14 shows nonspecificity and discord for the ground semantics Ω𝑔
in the fused and the filtered grid map for both the 360° and the camera view.
As opposed to the numbers for the occupancy semantics Ω𝑠 both values are
greatly reduced here after applying temporal filtering. Overall, Deng’s entropy
decreases by 39.4% in the 360° view and by 41.1% in the camera view.
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Figure 5.14: Nonspecificity and discord for fused and filtered grid maps on the ground semantics
Ω𝑔 .

5.4.3 Dynamic State

Finally, we consider the BBA on the occupancy dynamics Ω𝑑 .

Figures 5.15a and 5.15b show visualizations of the BBA on the occupancy
dynamics Ω𝑑 as well as the estimated cell velocities in the same traffic scene
that is shown in Figure 5.9. It can be seen that the curb stones on the sides of the
street behind the ego vehicle remain in the grid map as stationary occupancy.
This is achieved due to the advanced conflict resolution in the evidential network
using the data-driven parameterization. There are two cars driving on the
oncoming lane and four cars on the ongoing lanes indicated by a high BBA
for the hypothesis moving. The movement direction is correctly detected as
indicated by the color coded grid cells in Figure 5.15b.

Next we compare the data-driven parameterization presented in Section 5.3.3
with the baseline parameterization stated in Table 5.2. Recall that the baseline
parameterization is based on the manual conflict assignment proposed by Steyer
et al. [STW18] whereas the data-driven approach incorporates the temporal
progression of the ray permeability.

Figure 5.16 shows the results for the baseline parameterization compared to
the proposed data-driven parameterization. Figure 5.16a, in the left column,
shows the grid map containing the BBA on the occupancy dynamics Ω𝑑 and
two magnified subareas for the baseline parameterization. In Figure 5.16b
in the right column, the same results are shown for the proposed data-driven
parameterization. It can be observed that stationary occupancy stemming from
low obstacles such as curb stones cannot be tracked in the baseline configuration.
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(b) Occupancy grid map with color coded cell motion direction.

Figure 5.15: Visualizations of the estimated dynamic grid cell states on the Cartesian grid G𝑥𝑦 .

This is due to the fact that the occupied/free conflicts in those cells can only be
resolved correctly after adding the ray permeability to the evidential network.
This is especially visible in the lower arm of the T-crossing which is highlighted
in the middle column. It is crucial that the improved stationary occupancy
detection for low obstacle is not at the expense of a slower detection of moving
occupancy. In the right column, one of the passing cars that is moving from
the left to the right is magnified. Both configurations show similar results in
this example where moving occupancy is detected slightly better using the
proposed parameterization. Furthermore, the proposed parameterization fully
assigns the remaining occupancy masses behind the car on the left to the free
space hypothesis. When using the baseline method, however, small amounts
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(a) Baseline parameterization.
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(b) Proposed parameterization.

Figure 5.16: The occupancy grid map with color coded BBA on the occupancy dynamics Ω𝑑

using the baseline parameterization and our proposed parameterization.

of the BBA are still assigned to occupied in some grid cells to the left of the
car. This is due to the parameter 𝜆𝑂stat→𝐹𝑑 which regulates the amount of BBA
assigned to free, if the cell was observed as stationary occupied and is observed
free in the current measurement. Whereas in the baseline 𝜆𝑂stat→𝐹𝑑 is set to
0.5, it is estimated based on the ray permeability progression in the proposed
parameterization.

For a deeper investigation of the improved conflict resolution at low obstacles
such as curb stones and guard rails, the BBA progression is plotted in Figure 5.17
over 16 frames for a fixed location in the grid. This fixed location is at the curb
stone on the right side of the t-crossing from Figure 5.16. In Figure 5.17a, the
BBA in the fused measurement grid map is plotted. The BBA assigns significant
amounts to both the free space hypothesis 𝐹𝑠 and the occupancy hypotheses
𝑂su where the separation varies over time. The challenge is to correctly resolve
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(b) The BBA in the filtered grid map using the baseline parameterization.
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(c) The BBA in the filtered grid map using the proposed data-driven parameterization.

Figure 5.17: The progression of the estimated BBA on the occupancy dynamics Ω𝑑 over 16
frames in a grid cell located on a curb stone. The BBA in the fused measurement grid
map shown in (a) assigns significant amounts to both the free space hypothesis 𝐹𝑠
and the occupancy hypotheses𝑂su. The baseline method depicted in (b) is not able to
resolve this in favor of stationary occupancy𝑂stat. The proposed method on the other
hand correctly assigns the majority of the BBA mass to stationary occupancy𝑂stat.

the resulting conflicts in the temporal fusion in favor of stationary occupancy.
The baseline configuration, depicted in Figure 5.17b, generates a high discord
between the hypotheses free 𝐹𝑑 , moving occupancy𝑂mov, stationary occupancy
𝑂stat and dynamically unclassified occupancy 𝑂du. In contrast, the proposed
configuration based on the progression of the ray permeability is able to robustly
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resolve those conflicts in favor of stationary occupancy as demonstrated in the
BBA plotted in Figure 5.17c.
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Figure 5.18: Confusion matrices for the dynamic state estimation in occupied cells comparing our
proposed method with the baseline approach. Rows correspond to the reference state
and columns to the estimation.

The visual impression that moving occupancy can be better detected using the
proposed parameterization can be confirmed by the confusion matrix of all
occupancy masses in the dynamic state estimation. The confusion matrices for
the dynamic classification of occupancy are shown in Figure 5.18. The two rows
are normalized and represent the reference states stationary and moving occupied.
Each column corresponds to the estimated state and each entry on the diagonal
shows the recall of the corresponding hypothesis. For moving occupancy the
recall can be increased by 26.2%. This improvement can be achieved due to
assigning measured occupancy in grid cells previously observed as free to
moving occupancy based on the change of the ray permeability. The recall
for stationary occupancy is slightly lower for the proposed parameterization.
However, note that the reference grid map generated based on the labeled
bounding primitives contained in the KITTI-360 dataset (cf. Section 2.4) does
not contain occupancy BBA masses for curb stones. Hence, the improvements
made in these areas demonstrated in Figure 5.17 are not included in the confusion
matrices in Figure 5.18.

118



6 Conclusion

In this thesis, a generic evidential grid mapping framework for multi-sensor
environment perception in the context of automated driving was presented. A
novel hybrid evidential model was introduced in order to incorporate detailed
semantic information on occupancy and ground level. Sensor models for
cameras and LiDAR scanners were presented were spatial uncertainty is
modeled on sensor-specific grids. The proposed sensor data fusion uses ER
combination rules to explicitly model sensor credibility. Finally, an algorithm
for temporal fusion was presented were the update step of the BBA is modeled in
an evidential network. The resulting grid map representation contains evidence
masses on the ground semantics, the occupancy semantics and the occupancy
dynamics. The performance of the sensor measurement grid mapping, the
sensor data fusion and the temporal fusion was evaluated in challenging traffic
scenarios with measurements from a stereo camera and a LiDAR scanner.

6.1 Discussion

The whole grid mapping pipeline presented in this thesis including sensor
measurement grid mapping, the sensor data fusion and temporal fusion was im-
plemented in CUDA [NVF20] to utilize the massive parallelization capabilities
of GPUs. Hence, the presented framework can be processed with an update
frequency of at least 10 Hz on high performance GPUs such as the NVIDIA
GeForce RTX 2080 Ti.

To the author’s best knowledge, the proposed method is the first that estimates a
BBA on occupancy semantics in top-view grid maps with the presented level
of detail. The competitive sensor data fusion approach enables a redundant
inclusion of the semantic estimates reducing it to a classical occupancy mapper
in case no semantic estimates are available. Besides this unique characteristic,
the sensor grid mapping is more efficient as no parametric ground model is

119



6 Conclusion

needed to differ between ground and obstacle detections. The temporal fusion
shows advantages over competitive approaches in detecting the movement of
entities and tracking low obstacles such as curb stones. As demonstrated in the
experiments, both the sensor data fusion and the temporal fusion steps further
show significant improvements in resolving evidential conflicts.

Note that the proposed framework generalizes traditional methods in two ways:
First, the sensor data fusion based on ER reduces to Dempster’s rule if both
sensor reliabilities are set to one. Second, BBA combination rules used in past
publications can be formulated as evidential networks. In evidential networks,
however, more complex dependencies can be modeled which was utilized in
this work.

The grid mapping with images, proposed in Section 3.3.2 as one of the main
contributions, requires the measurement to be organized on a high-resolution
sensor grid. If this requirement is not fulfilled, grid mapping with point sets,
summarized in Section 3.3.1, may be applied. This is necessary for sensors
providing sparse detections such as RaDAR sensors. When applying the
proposed framework to camera data, the depth estimation quality is crucial.
Although uncertainty in depth or disparity estimation is incorporated in the
inverse sensor models, an appropriate quality level is required to infer reasonable
velocities in the occupancy tracker. The same holds for the pixelwise semantic
segmentation in the sensor grid. However, note that label confidences may be
incorporated in the BBA estimation if provided by the neural network. Besides
depth estimation for cameras and pixelwise semantic segmentation, sensor
calibration and ego motion estimation heavily influence the quality of the
mapping result.

As mentioned in the introduction of this thesis, the evidential multi-layer
top view representation is meant to be an intermediate representation in the
environment perception module and is subject to further abstraction. For
most applications, an object detection and tracking module will be attached
to represent traffic participants in a more compact and informative way. The
grid map layers representing the BBA for the hypotheses free and unknown may
form the basis for calculating confidence values for drivability and visibility
in different regions of interest obtained from the navigation module. The
evidential context makes this framework also well suited for self diagnostics.
An increasing average entropy in the estimated BBA might give a hint on
inaccurate sensor calibration or errors in the ego state estimated by the self
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perception module. A comparison of the estimated semantics with a high
resolution map could indicate localization errors or even facilitate localization
by matching the observations with the corresponding information in the map.

6.2 Outlook

Depending on the sensor setup used, the quality of the estimated evidential grid
map depends on the quality of pixel-wise semantic labeling, depth or disparity
estimation. Therefore, the presented pipeline profits from future improvements
in the respective Computer Vision tasks.

The main limiting factor of the described method is the assumption that the
BBAs can be estimated cell-wise independently of neighboring grid cells.
Especially for the temporal fusion, context information might be helpful for
a better detection of moving entities. This could be mitigated by adding a
dependency to the state in neighboring grid cells in the evidential network.
However, this makes an explicit parameter estimation impracticable so that it is
desirable to apply deep learning techniques with convolutional operators.

Last but not least, future research could address algorithms transforming the
presented semantic evidential grid map representation to a more abstract and
compact model. It would be interesting to evaluate how the object detection
and tracking pipeline presented by Steyer in [Ste21] benefits from the BBA on
the extended hypotheses set including semantic information. In this context, it
is desirable not to overfit object detection and tracking to specific sensor setups
so that the competitive fusion property can be retained.
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