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Abstract

Natural Language Software Architecture Documentation (NLSAD) and Software Archi-
tecture Model (SAM) provide information about a software systems design and qualities.
Inconsistencies between these artifacts can negatively impact the comprehension and
evolution of the system. ArDoCo is an approach that was proposed in prior work by
Keim et al. to find such inconsistencies and relies on Traceability Link Recovery (TLR)
between entities in the NLSAD and SAM. ArDoCo searches for Unmentioned Model
Elements (UMEs) in the model and Missing Model Elements (MMEs) in the text using
the linkage information. ArDoCo’s approach shows promising results but has room for
improvement regarding precision due to falsely identified textual entities. This work
proposes using informal diagrams from the Software Architecture Documentation (SAD)
to improve this. The approach performs an additional TLR between the textual entities and
the diagram entities. According to heuristics, the linkage of textual entities and diagram
entities is utilized to increase or decrease the confidence in textual entities. The Diagram
Text TLR and its impact on ArDoCo’s performance are evaluated separately using the
same data set as previous work by Keim et al. The data set was extended to include infor-
mal diagrams. The Diagram Text TLR achieves a good F1-score with Optical Character
Recognition (OCR) of 0.54. The approach improves the MME detection (0.77→0.94 accu-
racy) by lowering the amount of falsely identified textual entities (0.39→0.69 precision)
with a negligible impact on recall. The UME detection and ArDoCo’s NLSAD to SAM are
slightly positively impacted and continue to perform excellently. The results show that
using informal diagrams to improve entity recognition in the text is promising. Room for
improvement exists in dealing with issues related to OCR and diagram element processing.
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Zusammenfassung

Natürlichsprachige Softwarearchitekturdokumentation (NLSAD) und Softwarearchitektur-
modelle (SAM) enthalten Informationen über die Softwaresystemgestaltung undQualitäten.
Inkonsistenzen zwischen diesen Artefakten können das Verständnis oder die Evolution des
Systems negativ beeinträchtigen. ArDoCo ist ein Ansatz, der in einer vorherigen Arbeit
von Keim et al. vorgeschlagen wurde, um solche Inkonsistenzen zu finden und verwendet
Nachverfolgbarkeitsverbindungen zwischen Entitäten in der NLSAD und dem SAM. Dabei
sucht ArDoCo nach ungenannten Modellelementen (UMEs) im Modell und fehlenden
Modellelementen (MMEs) im Text mithilfe der Verbindungsinformationen. ArDoCos An-
satz zeigt vielversprechende Resultate, aber auch Raum für Verbesserungen in Bezug auf
die Präzision aufgrund von falsch identifizierten Textentitäten. Diese Arbeit schlägt die
Verwendung von informellen Diagrammen aus der Softwarearchitekturdokumentation
(SAD) vor, um das zu verbessern. Der Ansatz stellt zusätzliche Nachverfolgbarkeitsver-
bindungen zwischen den Textentitäten und den Diagrammentitäten her. Die Verbindung
zwischen Textentitäten und Diagrammentitäten wird genutzt, um die Konfidenz in eine
Textentität anhand von Heuristiken zu erhöhen oder zu verringern. Die Diagramm-zu-
Text-Nachvollziehbarkeitsverbindungen und ihr Einfluss auf ArDoCos Leistungsfähigkeit
werden separat mithilfe desselben Datensatzes wie in den vorherigen Arbeiten von Keim
et al. evaluiert. Der Datensatz wurde um informelle Diagramme erweitert. Die Diagramm-
zu-Text-Nachvollziehbarkeitsverbindungen erreichen ein gutes F1-Maß unter Verwendung
optischer Zeichenerkennung (OCR) in Höhe von 0.54. Der Ansatz verbessert die MME-
Detektion (0.77→0.94 Genauigkeit) durch Verringern der Menge an falsch identifizierten
Textentititäten (0.39→0.69 Präzision) mit einem vernachlässigbaren Einfluss auf die Sensiti-
vität. Die UME-Detektion und ArDoCos NLSAD-SAM-Nachvollziehbarkeitsverbindungen
werden leicht positiv beeinflusst und zeigen weiterhin eine exzellente Leistungsfähigkeit.
Wie man an den Resultaten erkennen kann, ist die Verwendung von informellen Dia-
grammen zur Verbesserung der Entitätserkennung im Text vielversprechend. Raum für
Verbesserungen herrscht im Umgang mit Problemen, die mit der OCR und dem Verarbeiten
der Diagrammelemente zusammenhängen.

iii





Contents

Abstract i

Zusammenfassung iii

1 Introduction 1

2 Foundations 3
2.1 Entity Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Similarity Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Traceability Link Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Architecture Documentation Consistency . . . . . . . . . . . . . . . . . . 8
2.5 Benchmark Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Approach 13
3.1 Diagram Text Traceability Link Recovery . . . . . . . . . . . . . . . . . . 13
3.2 Abbreviation Disambiguation . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Automated Diagram Extraction . . . . . . . . . . . . . . . . . . . . . . . 16

3.3.1 Diagram Coverage . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3.2 Homoglyphs and Confusables . . . . . . . . . . . . . . . . . . . . 17
3.3.3 Diagram Element Processing . . . . . . . . . . . . . . . . . . . . 17

4 Implementation 21
4.1 Utility Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 Diagram Gold Standard . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3 Diagram Recognition Module . . . . . . . . . . . . . . . . . . . . . . . . 30

4.3.1 Diagram Recognition . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3.2 Diagram Recognition Mock . . . . . . . . . . . . . . . . . . . . . 32
4.3.3 Diagram-Backed Text State Strategy . . . . . . . . . . . . . . . . 32

4.4 Diagram Connection Generator . . . . . . . . . . . . . . . . . . . . . . . 33
4.5 Diagram Inconsistency Checker . . . . . . . . . . . . . . . . . . . . . . . 34
4.6 Homoglyphs and Confusables . . . . . . . . . . . . . . . . . . . . . . . . 36

5 Evaluation 39
5.1 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2 Diagram-to-Sentence Trace Links . . . . . . . . . . . . . . . . . . . . . . 42
5.3 Gold Standard Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.4 Diagram Text Traceability Link Recovery . . . . . . . . . . . . . . . . . . 47
5.5 Impact on ArDoCo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.5.1 SAD to SAM Traceability Link Recovery . . . . . . . . . . . . . . 50

v



Contents

5.5.2 Missing Model Element Inconsistency Detection . . . . . . . . . 53
5.5.3 Unmentioned Model Element Inconsistency Detection . . . . . . 57

5.6 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6 RelatedWork 61

7 Conclusion And Future Work 63

Bibliography 65

vi



List of Figures

2.1 Part-Of-Speech tagged sentence . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Example matchings of strings . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 A Levensthein distance matrix for the two terms ABCD and ABECG . . . 5
2.4 Architecture Diagram of TeaStore (TS) [19] extended with an additional

Payment node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.5 Architecture Documentation Consistency (ArDoCo) Traceability Link Re-

covery (TLR) approach [17] . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.6 ArDoCo Inconsistency Detection approach [17] . . . . . . . . . . . . . . 9

3.1 Extended ArDoCo Pipeline [17] . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Abbreviation Dictionary . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Image to Diagram Element Visualization . . . . . . . . . . . . . . . . . . 18
3.4 Processing of a Diagram Element . . . . . . . . . . . . . . . . . . . . . . 19

4.1 AbbreviationDisambiguationHelper cache structure . . . . . . . . . . . . 23
4.2 Trace Link classes excerpt in UML . . . . . . . . . . . . . . . . . . . . . . 27
4.3 DiagramProject structure excerpt in UML . . . . . . . . . . . . . . . . . . 28
4.4 A block of confusables from the confusablesSummary file . . . . . . . . . 37

5.1 2G2 Confusion Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.2 Formulas for TP, FP, TN, and FN . . . . . . . . . . . . . . . . . . . . . . . 40
5.3 Diagram-to-sentence Trace Links . . . . . . . . . . . . . . . . . . . . . . 43
5.4 JSON schema in UML notation . . . . . . . . . . . . . . . . . . . . . . . . 45

vii





List of Tables

2.1 Text Entities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Diagram Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Established trace links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.1 Impact of homoglyphs on similarity . . . . . . . . . . . . . . . . . . . . . 17

5.1 Short description of the different trace types . . . . . . . . . . . . . . . . 46
5.2 Results for Diagram Text TLR with manually extracted Diagram Elements 48
5.3 Results for Diagram Text TLR with automatic Diagram Recognition . . . 48
5.4 Results for Architecture Document to Architecture Model TLR . . . . . . 52
5.5 Results for ArDoCo’s MissingModel Element (MME) Inconsistency Detection 56
5.6 Results for ArDoCo’s Unmentioned Model Element Inconsistency Detection 58

ix





1 Introduction

Software architecture embeds the earliest design decisions of software systems and is
vital in realizing and evolving the qualities of such systems [30]. A well-designed system
architecture is central to creating and evolving high-quality software products and should
therefore be the primary focus of software engineering [28].

Early manifestations of software architecture exist in the form of Software Architec-
ture Documentations (SADs). Due to the quick evolution of SADs during development,
inconsistencies between the different types of design documents can occur. Undetected
inconsistencies can be problematic and have been the subject of prior work where an
approach for Architecture Documentation Consistency (ArDoCo) was introduced [17].
So far, the implementation of this approach is limited to the detection of inconsistencies
between the formal Software Architecture Model (SAM) and Natural Language Software
Architecture Documentation (NLSAD). However, SADs can also contain informal di-
agrams, which do not adhere to more formal metamodels like the Unified Modelling
Language (UML). Such informal diagrams consist of basic geometric shapes like boxes,
lines, and text labels and contain information about the software architecture, including
components and relationships between them. To find inconsistencies, ArDoCo uses a
Traceability Link Recovery (TLR) approach to link model elements to the textual documen-
tation. This requires a form of Natural Language Processing (NLP) to process the NLSAD
and perform Entity Recognition (ER).

The motivation behind the proposed thesis is to investigate whether or not the informal
diagrams can be used to improve the existing ER and to evaluate how such a change
is reflected in the common TLR metrics that were used to evaluate the performance of
ArDoCo in prior work [17]. According to the existing evaluation, there is still room for
improvement regarding Missing Model Element (MME) inconsistencies [17]. A MME is
a textual entity that was recognized in the NLSAD but does not appear in the SAM as a
model element. The approach proposed by this work aims to improve the detection of
MMEs by eliminating falsely identified textual entities. Reducing the number of falsely
identified textual entities comes at the risk of reducing the number of correctly identified
textual entities. The approach aims to minimize this effect.

To programmatically process the information in the diagrams, preprocessing with
Optical Character Recognition (OCR) and Object Detection (OD) is required. The quality
and completeness of the extracted diagram elements are also concerns that need to be
evaluated. The existing prototype for the implementation goal of the proposed thesis is
called Linking Sketches and Software Architecture (LiSSA) [10]. The goal of this thesis
includes extending the current prototype to use the diagram elements that have been
extracted by LiSSA, possibly improving the extraction of the diagram elements in the first
place and linking them to the textual documentation that is extracted by ArDoCo.
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2 Foundations

The following chapter introduces the knowledge this work is based on. The thesis closely
relates to Traceability Link Recovery (TLR) and Entity Recognition (ER) automation prob-
lems. The Section 2.1 introduces the process of ER and gives an overview of established
approaches. The TLR in this work is based on Similarity Metrics and the approach uses
them for multiple processes. An overview of Similarity Metrics (SMs) is provided in
Section 2.2. Subsequently, the concept of TLR is explained using an example in Section 2.3.
This work builds on the inconsistency detection framework Architecture Documentation
Consistency (ArDoCo), which uses ER and similarity-based TLR methods to establish trace
links and entities to perform inconsistency detection. ArDoCo’s structure is explained
in Section 2.4. The data set that was previously used to evaluate ArDoCo is presented in
Section 2.5.

2.1 Entity Recognition

The identification of model elements in Natural Language Software Architecture Doc-
umentation (NLSAD) is a special Named Entity Recognition (NER) problem [17]. NER
is commonly used in Natural Language Processing (NLP) to extract proper nouns from
unstructured text [25]. Proper nouns are nouns that refer to the name of a person, place, or
thing [3]. NER can be broadly divided into three approaches: Rules and templates, Machine
learning, and Deep learning [25].

NER based on rules and templates uses a set of manually constructed rules, templates,
and heuristic algorithms [25]. Rules commonly use grammatical features with techniques
such as Part Of Speech (POS) tagging, orthographic features including capitalization, and
domain-specific dictionaries [26]. An example for a POS-tagged sentence is depicted
in Figure 2.1. Templates consist of a pattern of POS tags. For example, the template
“President NN ” can be used in simple pattern matching with phrases like the one depicted
to determine that “Eisenhower” is likely a proper noun. This approach can achieve high
accuracy but often requires domain experts to create and customize rule sets [25]. The
current ArDoCo implementation relies on such rule sets, which will be further explained
in Section 2.4.

painterThe late President Eisenhower was an avid
NNDT JJ NN NN VBZ DT JJ

Figure 2.1: Part-Of-Speech tagged sentence
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2 Foundations

Machine learning-based NER solves the issue of needing domain experts who manually
create large rule sets. Instead, the approach uses training data to extract features that can
be used to map real input data into feature space, where statistical methods can classify it
into entities. However, this approach is usually restricted to supervised machine learning,
which requires labeled training sets [26, 25]. This approach is made difficult by a lack of
training data [17]. Known machine learning approaches include Hidden Markov Model,
Conditional Random Field Model, Decision Trees, Maximum Entropy Models, as well as
Support Vector Machines. They have been shown to achieve excellent results in reference
to metrics such as F1in some circumstances [33, 4]. Deep learning is a machine learning
subfield that uses Artificial Neural Networks. Artificial Neural Networks can discover
complex features automatically but require large sets of training data [24].

2.2 Similarity Metrics

SMs compare arbitrary strings and calculate their similarity or distance (dissimilarity).
SMs are broadly divided into the three categories String-Based, Corpus-Based and
Knowledge-Based [13]. This is relevant to this work because the approach proposed in
ArDoCo creates trace links between RecommendedInstances and model elements that have
equal or similar names [17]. Therefore, the choice of similarity measures heavily impacts
the TLR metrics.

A B E C G

A B C D F GE

ABECG

ABCDEFG

(a) Unigram (1-gram) matchings

AB BC CD DE FGEF

AB BE EF FG

ABEFG

ABCDEFG

(b) Bigram (2-gram) matchings

Figure 2.2: Example matchings of strings

String-Based SMs compare strings on character-level or term-level. ArDoCo currently
uses Jaro-Winkler similarity, Levenshtein distance and N-gram similarity. Jaro-Winkler
similarity is calculated using the sum of normalized matching characters in each string, the
number of transpositions, and the length of a shared prefix [15]. A transposition occurs if
a matching character is out of order. The score is linearly adjusted upwards depending on
the length of a shared prefix [44]. An example is given in Figure 2.2a with five matches
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2.2 Similarity Metrics

and one transposition EC→CE. The Jaro similarity is calculated as:

< = 5 Matching characters
B1 = ����� )4A<�

B2 = ������� )4A<�

C = 1 Transpositions

9 =
1

3
( <|B1 |

+ <

|B2 |
+ < − C

<
) Jaro similarity

9 ≈ 0.84

?A4 5 8G = �� Shared longest prefix
9F = 9 + 0.1|?A4 5 8G | (1 − 9) Jaro-Winkler similarity
9F ≈ 0.87

The Levensthein distance allows the character operations insertion, deletion, and substi-
tution. It calculates the minimum number of operations needed to transform one string
into another. Figure 2.3 shows the Levensthein distances for ABCD and ABECG with a
calculated similarity of B8<; = 0.6 with B8<; = 1 − 34,5

<0G ( |B1 |,|B2 |) , B1 = ���� , B2 = ����� .
N-gram similarity works with substrings or terms of length N. N-grams define a family

of word similarity measures, and some metrics, including the Levensthein distance, can be
considered as special cases of this approach [23, 13]. As a mechanism, N-gram is capable
of taking context into account. Like Winkler’s approach, N-gram can take prefixes into
account to emphasize the importance of earlier segments [23]. Figure 2.2b shows an
example of bigram character matchings.

A B E C G

0 1 2 3 4 5

A 1 0 1 2 3 4

B 2 1 0 1 2 3

C 3 2 1 1 1 2

D 4 3 2 2 2 2

Figure 2.3: A Levensthein distance
matrix for the two terms
ABCD and ABECG

Corpus-Based SMs relies on the statistical dis-
tribution of words. It assumes that the semantic
properties of words occurring in corpora, which are
large text collections, can be inferred from the words
surrounding it [32, 13]. Vector representations are
commonly used with corpora to encode words ex-
plicitly or implicitly [32]. A modern approach for
creating implicit encodings is word embeddings us-
ing Artificial Neural Networks (ANNs). A popular
approach is called Word2Vec and consists of a two-
layer neural network. Word2Vec can generate word
and phrase embeddings and is available with pre-
trained models in different languages [32]. An alter-
native approach is GloVe, which does not use ANN
and performs similarly to Word2Vec using global co-
occurrence information [32]. Cosine similarity is
commonly used to determine the similarity between
the vectors of two words and is defined as B8<2>B ( ®0, ®1) = ®0·®1

‖ ®0‖‖ ®1‖
.

Knowledge-Based SMs rely on lexical knowledge resources that can be seen as graphs
where sets of synonyms are clustered, and edges represent semantic relations between

5



2 Foundations

them [13]. For example, the words “Program” and “Application” can have the same sense
and are therefore clustered. They are connected with a short path to “Software”, which
is semantically closely related. Popular lexical knowledge resources include WordNet,
adapted versions of Wikipedia or Wiktionary and BabelNet [32]. SMs working on lexical
knowledge resources are commonly based on the assumption that shorter paths between
senses indicate similarity [32]. In the use case of ArDoCo SEWordSim provides a more
accurate lexical knowledge resource than domain-unspecific resources like WordNet due
to being constructed in a software context [42].

Before a SM is applied, words can be preprocessed with methods such as stemming
and lemmatization. For example, the WordNet database is based on lemmas and removes
inflections from queries [34]. The SEWordSim database only contains stemmed words [42].
The process of stemming tries to determine the word stem of any given word by removing
common word suffixes such as “-ing” [31]. Lemmatization additionally takes inflections
and POS into account. This can lead to more accurate results compared to stemming [38].
The word “meeting”, as in a group of people socializing, might be stemmed to “meet” for
example. By analyzing the context, lemmatization determines the proper base form. This
base form is called lemma and keeps the sense of each word [38].

2.3 Traceability Link Recovery

Trace links can be used to discover the relationships and dependencies between different
software artifacts [39]. If two elements from different artifacts represent the same entity,
a trace link is established between them and indicates consistency [17]. Therefore, auto-
matically creating trace links helps determine the consistency of Software Architecture
Documentation (SAD). The following example illustrates TLR between text and a diagram.
It is based on the open source software project TeaStore (TS) [19].

Image-
Provider Auth Persistence Recommender

RegistryWebUI

Payment

Figure 2.4: Architecture Diagram of TS [19] extended with an additional Payment node
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2.3 Traceability Link Recovery

The TLR is performed on the diagram in Figure 2.4 and the following two text fragments.
The paper of Kistowski et al. [19] contains the first fragment. The second fragment
describes a fabricated Localization service. Underlined words represent recognized entities.

• “All services communicate with the Registry. Additionally, the WebUI service issues
calls to the Image-Provider, Authentication, Persistence and Recommender services.”

• Additionally, the WebUI service calls the Localization service.

Before trace links between this NLSAD fragment and the informal diagram can be
established, both artifacts must be processed to extract relevant elements. NER as described
in Section 2.1 can be used to extract the underlined entities from the sentence. The diagram
can be processed using a combination of Optical Character Recognition (OCR) and Object
Detection (OD) techniques.

Name Type

Authentication service
Image-Provider service
Localization service
Persistence service
Recommender service
Registry service
WebUI service

Name

Auth
Image-Provider
Payment
Persistence
Recommender
Registry
WebUI

Table 2.1: Text Entities Table 2.2: Diagram Elements

The tables 2.1 and 2.2 assume perfect NER and perfect diagram processing and are sorted
in ascending lexicographical order for readability. In the next step, the set of text entities is
compared to the set of diagram elements pairwise. This can be achieved by using various
heuristics that rely on word similarity metrics and comparing the resulting similarity
value towards predefined thresholds to determine an overall confidence. A trace link is
created if the overall confidence exceeds a threshold. For this example, ?0,1 is defined as
the longest prefix of the two words 0 and 1. The similarity is calculated using |?0,1 |

<0G ( |0 |,|1 |) .
Under real conditions, ER and diagram processing are imperfect, which adds additional
uncertainty to each element.

The text entity Localization constitutes a Missing Diagram Element (MDE) because it is
not part of a trace link. Similarly, the diagram element Payment does not appear in the
text, has no similarity to any other element, and is classified as an Unmentioned Diagram
Element (UDE). No trace links are established for these elements, which indicates that the
diagram and the text are inconsistent.

7



2 Foundations

Text Entity Diagram Element Similarity

Authentication Auth 0.29
Image-Provider Image-Provider 1.00
Persistence Persistence 1.00

Recommender Recommender 1.00
Registry Registry 1.00
WebUI WebUI 1.00

Table 2.3: Established trace links

2.4 Architecture Documentation Consistency

ArDoCo is an approach for inconsistency detection between the NLSAD and the Software
Architecture Model (SAM). ArDoCo builds on the NLSAD to SAM TLR approach SoftWare
Architecture Text Trace link Recovery (SWATTR), which was first introduced by Keim et
al. in 2021 [18, 17]. The approach detects inconsistencies using the linkage information
gained during TLR. The framework uses a pipeline divided into multiple stages. The
former SWATTR framework is integrated into ArDoCo’s pipeline as depicted in Figure 2.5.
NLSAD and a SAM are provided as input to ArDoCo and initially processed separately in
the Text Extraction and Model Provider stages. Each pipeline stage consists of Agents,
that run a variety of Informants to update the stage’s States. Because ArDoCo is based on
heuristics, elements are assigned confidence values, and configurable thresholds are used
to discard elements.

Traceability Link Recovery

Element
Connection

Element
Identification

Architecture
Documentation

Architecture
Model

Noun & Phrase
Mappings

Annotated
textText

Preprocessing
Text

Extraction

Model Extraction

Metamodel

Recommended
Instances

Instances

Recommended
Instances

Trace Links

Figure 2.5: ArDoCo TLR approach [17]

The Text Extraction stage extracts elements from the text and clusters their mentions.
The stage achieves this using various heuristics to extend the TextExtractionState. A rule-
and template-based approach is used to perform NER and clustering on the text. The
extracted information includes NounMappings and PhraseMappings. A NounMapping
contains a reference and clusters mentions from the text, which are similar to the reference.
A PhraseMapping consists of multiple consecutive words and represents a compound noun,
such as “cache layer”. PhraseMappings are n-grams as described in Section 2.2.

During theModel Provider stage, ArDoCo uses aModel Connector forModel Extraction.
This approach allows ArDoCo to handle different metamodels and to be expanded if no

8



2.4 Architecture Documentation Consistency

appropriate connector exists. Currently, Unified Modelling Language (UML) and Palladio
Component Model (PCM) in XML format, and a Java Code model in JSON are supported.
Element Identification is performed in the Recommendation Generator, as well as

the Connection Generator. Each element is represented by a RecommendedInstance. A
RecommendedInstance is equivalent to a candidate textual entity in this work. The creation
of RecommendedInstances is based on heuristics. The Recommendation Generator stage
uses the NounMappings and the metamodel. The Recommendation Generator stage
initially searches for Type NounMappings that have an adjacent Name-Or-Type (NORT ) or
Name mapping. If such a combination is found, an additional check is needed to confirm
that the Type is part of the metamodel. If that is the case, a recommended instance is
created. Subsequently, this process is repeated with PhraseMappings. For example, the
TS documentation mentions “Facade component” and “Component” is part of the PCM
metamodel. Thus, a recommended instance is created with Name “Facade” and Type
“Component” by ArDoCo.

The Connection Generator stage is responsible for creating the trace links between
RecommendedInstances and model elements using SMs to compare their names. In its
first step, it checks if any given text node is a Name or Type in the elements provided by
the Model Extraction. Any such node is added as a NounMapping of the corresponding
kind. Subsequently, RecommendedInstances are added for NounMappings similar to model
elements. In an additional step, RecommendedInstances that mention the project name are
removed because they are often mentioned in the NLSAD of the software and mistaken
for named entities, which lowers the overall Precision [17]. This finalizes the set of
RecommendedInstances proposed by ArDoCo. Trace links are now established by searching
for model elements that are similar to RecommendedInstances. The probability of the
RecommendedInstance is considered during trace link creation by comparison to a threshold.

Recommended
Instances

Trace Links

Inconsistency Detection

Filter

Probability

Occasion

Blacklist

MME
Detection

UME
Detection

Filtered
RIs

Inconsistencies

Figure 2.6: ArDoCo Inconsistency Detection approach [17]

ArDoCo’s Inconsistency Detection approach is depicted in Figure 2.6. Initially, the
Inconsistency Detection stage preprocesses the set of RecommendedInstances with dif-
ferent Filter heuristics. RecommendedInstances with a low probability are filtered out.
A RecommendedInstance is also filtered if it only appears once in the text or contains a
blacklisted word, such as computer- or software-related terminology. ArDoCo searches for
Unmentioned Model Element (UME) and Missing Model Element (MME) inconsistencies.
A Unmentioned Model Element (UME) inconsistency occurs if a model element has no cor-
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responding textual entity. Since textual entities are represented by RecommendedInstances
in this context, this is determined by whether a model element has at least one trace link
to a filtered RecommendedInstance. A MME inconsistency occurs if a textual entity is not
represented in the model. Missing Model Elements (MMEs) are found by searching the
filtered RecommendedInstances for RecommendedInstances with no trace link.

2.5 Benchmark Data Set

This section introduces the data set used to evaluate ArDoCo. The information in this
section originates from the paper in which the data set was published and the public
repository [12, 11]. The Benchmark was initially published by Fuchß et al. as a data set for
the research domain of Traceability Link Recovery (TLR) between Software Architecture
Documentations (SADs) and Software Architecture Models (SAMs). The data set is based
on the five projects MediaStore, TEAMMATES, BigBlueButton, TeaStore, and JabRef. The
projects TEAMMATES, BigBlueButton, TeaStore, and JabRef each consist of a Historical
and Non-Historical version. In this context, Historical refers to an older version of the
projects being used. Because the data set was created for TLR between SAD and SAM, it
contains a textual SAD, the SAMs, and a trace link gold standard for each project version.
A PCM model and a UML component model are provided. PCM was chosen because it
can provide different software architecture views. Additionally, UML component models
were created to increase compatibility. The original data set has since been extended with
an Unmentioned Model Element (UME) gold standard for each project version. A code
model with corresponding gold standards has been added for some projects. The code
model and code model-related gold standards are not further explained because this work
is only concerned with SAD SAM TLR and inconsistency detection.

Each model element in the data set is assigned a Unique Identifier (UID). For example,
the component “UI” with the UID “_1lMqsKESEeu-mYqkDskRow” is depicted in Listing 2.1.
The amount of components contained in the models ranges from 6 to 14. The SAD is
provided as a plain text file, where each line corresponds to a single sentence. Special
characters, tables, figures, and captions have been removed from the text. The length of
SAD ranges between 10 and 198 sentences.

The gold standards are saved as CSV files. For the SAD SAM TLR gold standards, the
columns are the model element UID and a sentence number. For example, consider the
first sentence from the TEAMMATES SAD text file: “Architecture contains UI Component,

< component s__Repos i to ry
x s i : t y p e = ” r epo s i t o r y :B a s i cComponen t ”
i d = ” _1lMqsKESEeu −mYqkDskRow”
ent i tyName=” UI ” >

. . .
< / component s__Repos i to ry >
Listing 2.1: Example of a PCM component from the TEAMMATES repository
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Logic Component, Storage Component, Common Component, Test Driver Component,
E2E Component, Client Component.” The sentence mentions the “UI” component from the
previous PCMexcerpt. Therefore, the gold standard for the SADSAMTLR of TEAMMATES
contains the row “_1lMqsKESEeu-mYqkDskRow,1”. For UMEs, the gold standard file only
needs to contain a list of model element UIDs.
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3 Approach

The chapter introduces the approach of this work called Entity Recognition in Software
Documentation Using Trace Links to Informal Diagrams (ERID). The thesis creates trace
links between informal diagrams and candidate textual entities from the Natural Language
Software Architecture Documentation (NLSAD). The process used to perform this linkage
is described in Section 3.1. Abbreviations are problematic for a similarity-based Traceability
Link Recovery (TLR) approach, especially for diagrams, where abbreviations may be more
frequent due to space constraints. Section 3.2 introduces a method for disambiguating
abbreviations. In a previous work called Linking Sketches and Software Architecture
(LiSSA), an automatic diagram recognition was built and integrated into Architecture
Documentation Consistency (ArDoCo). Section 3.3 describes how the approach adapts to
automatic diagram recognition and mitigates associated problems.

3.1 Diagram Text Traceability Link Recovery

The initial step will focus on TLR between manually extracted diagram elements and
textual entity candidates, represented by recommended instances. The approach currently
implemented by ArDoCo is used to establish the trace links. The text will be processed
by ArDoCo to extract recommended instances as described in Section 2.4. The diagram
elements are temporarily transformed into model elements to create these trace links. This
allows running ArDoCo’s TLR, which is already capable of creating trace links between
model elements and recommended instances. The Diagram Text TLR is encapsulated in
the Diagram Connection Generator stage as depicted in Figure 3.1.

Traceability Link Recovery

Element
Connection

Architecture
Documentation

Architecture
Model

Text
Preprocessing

Text
Extraction

Model Extraction

Metamodel

Recommended
Instances

Model
Instances

Recommended
Instances

Trace Links
Element Identification

Recommendation Generator

Diagram Connection Generator
Diagram Inconsistency Checker

Diagram
Instance

Diagram Extraction
(LiSSA)

Architecture
Diagrams

Figure 3.1: Extended ArDoCo Pipeline [17]
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The trace links between diagram elements and recommended instances are passed
along to the Diagram Inconsistency Checker. The Diagram Inconsistency Checker
is responsible for finding Missing Diagram Element (MDE) and Unmentioned Diagram
Element (UDE) inconsistencies using the linkage information. A MDE inconsistency
occurs if a textual entity candidate is not contained in the diagrams. In contrast, the UDE
inconsistency occurs if a diagram element has no corresponding textual entity candidate.
The idea behind this approach is that the diagrams are closely related to the text. Therefore,
actual textual entities are likely contained in the diagrams. If a textual entity candidate is
not included in the diagram, the approach considers it less probable that the candidate is a
textual entity.

Therefore, the Diagram Inconsistency Checker is responsible for affirming or dis-
affirming textual entity candidates, depending on whether they are consistent with the
diagrams. To perform the affirmation of consistent textual entity candidates and the
disaffirmation of inconsistent textual entities, the following heuristics are used:

H1 Negatively influence the probability of recommended instances contained in MDE
inconsistencies

H2 Positively influence the probability of recommended instances that are consistent
with the diagrams

The modified textual entity candidates are then passed along to the Connection Generator
stage, where the pipeline continues as described in Section 2.4. ArDoCo uses confidence
filters to remove recommended instances below a confidence threshold. Thus, the approach
is a prefiltering step to the later stages of ArDoCo. To evaluate the Diagram Text TLR
capabilities, the Benchmark data set presented in Section 2.5 is extended with diagrams
and a gold standard for trace links between diagram elements and sentences. The creation
of this gold standard is detailed in the evaluation chapter Section 5.3.

3.2 Abbreviation Disambiguation

In the context of this work, an abbreviation is a word that abbreviates an arbitrary amount
of meanings. Abbreviations are problematic because they are a distinct alternative repre-
sentation of their meaning. An abbreviation does not have to be used continuously. For
example, “DB” may be used in a diagram and “DataBase” in the text. This is an example of
discontinuous use of the “DB” abbreviation and can lead to no trace link between them.
This can happen because the similarity between a word and its corresponding abbreviation
may be low despite having the same meaning. For this reason, abbreviations should be
considered in similarity-based TLR heuristics.

The abbreviation dictionary allows the use of the information from intra-artifact abbre-
viation disambiguation in inter-artifact processes such as TLR. Before this work, ArDoCo
was incapable of any form of abbreviation disambiguation. The abbreviation disambigua-
tion was originally conceived for the diagram elements processing step to aid the TLR
between diagram elements and text entities. However, the Software Architecture Docu-
mentation (SAD) to Software Architecture Model (SAM) TLR suffers from the same issue.
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ArDoCo TLR

Populates

ERID TLR

Populates Populates
Considers Considers

Abbreviation
Dictionary

ModelDiagrams Text

Figure 3.2: Abbreviation Dictionary

Therefore, the approach implements the abbreviation dictionary as a global solution. The
abbreviation dictionary contains abbreviations and their associated meanings. Figure 3.2
shows how the dictionary is integrated into ArDoCo conceptually. It is a global dictionary
that can be accessed and populated by all ArDoCo stages and from all available artifacts.
Each entry consists of an abbreviation and an arbitrary amount of associated meanings.
The abbreviation and the meanings are both strings, but a meaning may consist of multiple
words. In some cases, the meaning of an abbreviation may be provided at its first use.
For example, if the text contains the phrase “the DataBase (DB)”, the abbreviation “DB”
with meaning “DataBase” is added to the dictionary during the Text Extraction stage as
displayed in Figure 3.2. If the model or a diagram also contains an element with the name
“DB”, the abbreviation dictionary can then disambiguate its name.

However, some abbreviations may be used without any further explanation. This is
especially the case for abbreviations that are common terminology in the application field.
An automated external dictionary lookup should be used to resolve such abbreviations,
ideally with a dictionary close to the application field. This work proposes using external
online abbreviation dictionaries as a fallback solution.

During the TLR processes, the abbreviation disambiguation can be used to improve the
similarity-based trace link creation outcome. The similarity metrics need to be adjusted
to consider abbreviations to achieve this. When comparing two terms )4A<� and )4A<� ,
the abbreviations are taken into account by abbreviating all known meanings inside the
terms. For example, assume that )4A<� = �0C010B4 , )4A<� = �� and “DB” is a known
abbreviation of “Database”. This pair of terms has a Jaro-Winkler Similarity 9F ≈ 0.59. Even
though they semantically refer to the same term, these terms will not be considered a match.
However, if all meanings are substituted with the correct corresponding abbreviation, a
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shared representation can be derived:

)4A<� = �0C010B4

)4A<�

��−−−−−−−→
�0C010B4

)4A<′
� Substitution

)4A<′
� = ��

)4A<� = ��

)4A<�

��−−−−−−−→
�0C010B4

)4A<′
� Substitution

)4A<′
� = ��

9F ()4A<�,)4A<�) ≈ 0.59

9F ()4A<′
�,)4A<

′
�) = 1

3.3 Automated Diagram Extraction

In the next step, the automatically generated diagram elements from theDiagram Extraction
are used. Currently, these diagram elements are extracted with Optical Character Recog-
nition (OCR) and Object Detection (OD) methods using the LiSSA prototype. Additional
heuristics are required to deal with the extracted elements. Subsection 3.3.1 introduces
a heuristic using the percentage of recommended instances covered by diagrams. The
following section explains the impact of homoglyphs and confusables on the Similarity
Metrics (SMs) and how to mitigate it. The last section covers how diagram elements are
processed.

3.3.1 Diagram Coverage

If the diagrams cover only few textual entity candidates from the SAD, confidence adjust-
ments need to be made to the heuristics used by the Diagram Inconsistency Checker.
For example, if we rely on heuristic H1 but have low diagram coverage, many Recommen-
dedInstances may be disqualified, which can lead to more False Positives (FPs) in ArDoCo’s
Unmentioned Model Element (UME) detection. However, if the diagrams cover a large
percentage of recommended instances, heuristic H1 can be used with more confidence.
To adjust to the diagram coverage, heuristic D1 will be implemented.

D1 The impact of Missing Diagram Elements (MDEs) depends on the percentage of
covered recommended instances

According to H1, the approach reduces the confidence in recommended instances,
affected by a MDE inconsistency. In this case, the heuristic increases the reduction if the
coverage is high. This is done because MDE inconsistencies are less common in the case of
high diagram coverage. In contrast, the reward for consistency is highest if the coverage
is low because it implies that the textual entity is particularly important.
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3.3.2 Homoglyphs and Confusables

Characters like homoglyphs and Unicode Confusables pose an additional problem. De-
pending on the fonts, these characters can hardly be distinguished in diagrams because
they are similar or identically looking [7]. This can cause a misread character by the OCR.
An example of homoglyphs and Unicode Confusables characters are the letters A (U+0041),
Α (U+0391), and А (U+0410), which look identical in the font of this document and many
other fonts. This is intentional because they represent the same letter in the Latin, Greek,
and Cyrillic alphabets. There are at least 7248 Confusables in Unicode1. The impact of such
characters can be high depending on the SM as illustrated by Table 3.1.

Text Entity Diagram Element Prefix Jaro-Winkler

Displayed Unicode Displayed Unicode

Authentication U+0041 Auth U+0041 Auth 0.86
Αuthentication U+0391 Auth U+0041 - 0.65

Table 3.1: Impact of homoglyphs on similarity

The Jaro-Winkler Similarity does not consider homoglyphs as matches. Because the
characters do not match at the beginning, there is no shared prefix, and the similarity is
merely based on the three matchings. This leads to a difference of 21 percentage points,
which can falsely prevent the creation of a trace link. Heuristic D2 is intended to reduce
this effect.

D2 Positively influence the similarity of homoglyphs and confusables

3.3.3 Diagram Element Processing

Diagram elements are required to perform the TLR. In the context of this work, a diagram
element is an element inside a diagram with a geometric shape. It may contain an arbitrary
amount of text grouped into text boxes according to color and proximity. Each text box has
a bounding box. However, a text box alone does not constitute a diagram element because
it is merely text without a geometric shape. The text box therefore belongs to its parent
diagram element or the diagram itself if it is not contained within any element. Diagram
elements can be nested, in which case the hierarchical information may also be used
during TLR. Boxes are primitive diagram elements with a box shape. These boxes can be
automatically extracted from images using LiSSA and are the focus of this thesis. However,
the heuristics used are not necessarily constrained to a box shape. Figure 3.3 shows two
nested diagram elements with box shapes. The outer diagram element contains the two
text boxes DBUtility and CRUD with different dominating colors. The inner diagram
element includes a single text box DBConnector.

Due to the informal nature of diagrams, an approach is required to extract useful
information from a diagram element before performing TLR. The TLR process is similarity-
based and therefore requires comparisons between the texts within diagram elements and
1See unicode.org/Public/security/latest/confusablesSummary.txt
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Figure 3.3: Image to Diagram Element Visualization

the references of textual entities. The diagram element text is searched for textual entity
references to achieve this. However, the text boxes may contain information not specific
to the diagram element, which can lead to FPs. An example of such information is the
CRUD text box of the outer element in Figure 3.3. Therefore, the approach tries to retain as
much useful text as possible while discarding as much useless text as possible. The textual
entity references are singular words or short phrases. For this reason, the text boxes need
to be broken up into similar-sized chunks. Overall, the text box preprocessing contains
the following steps:

• Splitting the text

• Disambiguating abbreviations in the text

• Filtering out computer- and software-related words

• Finding references to the model

Initially, the text needs to be split into possible references. This includes splitting the
text at enumeration separators and brackets. An enumeration is not a reference by itself
but may contain multiple textual entity references as items. Consider the text box with
the text “ConnectionManager, SQLiteConnector, QueryFactory” and the textual entity
with reference “SQLiteConnector”. If the approach were to compare the entire string to
the textual entity reference directly, a character-based SM would punish the similarity
score due to the unrelated preceding and subsequent terms. This would be opposed to the
goal of finding mentions of textual entities in the text box and, consequently, the parent
diagram element. Therefore, enumerations should be split up into their items. Brackets
are processed separately based on the assumption that they might contain an alternative
representation of the term before them.

Based on the assumption that a diagram in a SAD document only has limited space,
abbreviationsmight be used to reduce the size of the text. However, abbreviations introduce
ambiguity to a text and cause problems for the existing TLR approach as explained in
Section 3.2. Therefore, abbreviations need to be identified and disambiguated. The proposed
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heuristic to identify abbreviations in diagram elements is analyzing the letter case of
(sub-)words. For example, if a camelCase word contains a sequence of two or more
uppercase letters, they likely belong to an abbreviation. Occasionally, abbreviations
deviate from this pattern by containing lowercase letters (e.g., ArDoCo, DoS - Denial
of Service). This is mitigated by introducing a distance rule allowing up to = lowercase
letters between uppercase letters. The maximum distance has to be carefully chosen
to avoid falsely classifying ordinary words as abbreviations. This work will use = = 1.
The proposed method cannot resolve lowercase abbreviations, which is a possible area
for improvement in future work. The abbreviation disambiguation is stored in a global
abbreviation dictionary. Section 3.2 explains how the stored abbreviation is disambiguated.

DBUtility

DBConnector

CRUD

DBUtility

DBConnector

Filtering

Abbreviation
for DataBase

Initialism for Create,
Read, Update and Delete

Figure 3.4: Processing of a Diagram Element

The filtering step tries to remove unspecific computer- and software-related terminology
while preserving the specific parts of a text box. This step was introduced based on the
observation that diagrams often contain additional texts describing the general technology
used to implement some process. For example, the initialism CRUD in Figure 3.4 is a
common initialism used to describe the four basic database operations and is not specific
to the component DBUtility. Such words can be filtered using blacklists, which already
exist within ArDoCo. However, these blacklists are manually created, and additionally
considering the diagrams may cause considerable overhead for large projects. Therefore,
automatically extracting blacklists from the online database DBpedia is proposed.

As a final step, references to the model are searched in the text boxes. This is based
on the observation that a diagram element may be an informal representation of a model
instance. Similar model instances are found by applying ArDoCo’s similarity metrics to
the text box references and the model instance references. The most similar model instance
is chosen in conjunction with a similarity threshold. If no model instance is found, the
diagram element remains unmodified. However, if a model instance is found, all references
except the reference to the model instance are removed. This preserves the likely identity
of the diagram element and removes any additional text, which could help reduce FPs
during the diagram element to text TLR.
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This chapter presents the implementation of the conception. The shared functionality of
multiple stages, agents, and informants is implemented in utility classes. These classes
are listed and explained in Section 4.1. Section 4.2 explains the creation of the module
handling the parsing of the gold standard and how issues with the existing gold standard
were mitigated. The changes and extensions to the diagram recognition are detailed in
Section 4.3 and its subsections. Subsequently, Section 4.4 describes the states, informants,
and agents of the Diagram Connection Generator stage. The implementation of the Diagram
Inconsistency Checker stage is presented in Section 4.5. In Section 4.6, the implementation
of the homoglyphs and confusables is explained. Italic text refers to a class, record, enum,
or interface in this chapter.

4.1 Utility Classes

The implemented utility classes are enumerated and explained in this section. Utility
classes bundle functionality used by multiple stages, agents, informants, or globally. All
utility classes are implemented in ArDoCo’s common module.

FileBasedCache The two classes FileBasedCache and SerializableFileBasedCache are
implemented to allow caching. The FileBasedCache is an abstract class that implements a
cache backed by a single file. It provides functionality to retrieve content, cache content,
and reset the file. The cache file is saved to an arbitrary subdirectory in the user data
directory ArDoCo folder. The user data directory depends on the operating system. For
example, “AppData\Roaming” is the user data directory in the case of Windows. The
serialization and deserialization are delegated to implementing subclasses to allow for
flexibility. The FileBasedCache is an AutoCloseable and automatically writes the cache to a
file if changes occurred before closing it.

SerializableFileBasedCache SerializableFileBasedCache is an implementation of
FileBasedCache based on Java’s default serialization. This cache can be used with any
object that supports the default serialization and is used to store information that is not
required to be a humanly readable file. For example, the SerializableFileBasedCache can be
used to cache the results of a previous test or evaluation run, which allows for a direct,
in-depth comparison of the runs. ArDoCo can calculate metrics and provides text files
containing information about a run. However, comparing a run by comparing the metrics
gives little information about the cause and effect of a change. Comparing text files is
laborious and provides limited insight because not everything can be logged.

Data such as known abbreviations in a text or a list of computer- and software-related
words may be distributed as part of the Benchmark data sets. This is achieved by FileBased-
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Cache implementations using JSON files and JSON serialization. The two implementations
AbbreviationDisambiguationHelper and DBPediaHelper are based on a JSON FileBasedCache
and are explained below.

AbbreviationDisambiguationHelper The AbbreviationDisambiguationHelper con-
tains the abbreviations cache and abbreviation utility functions. The cache contains an
arbitrary amount of Disambiguation instances. A Disambiguation instance consists of an
abbreviation as a string and a set of associated meanings as strings. It is serialized into a
JSON file containing a JSON array of JSON objects, where each JSON object corresponds
to a Disambiguation. For example, Listing 4.1 shows the JSON file of an abbreviation cache
with the two known abbreviations “GAE” and “UI”, as well as associated meanings.

The AbbreviationDisambiguationHelper allows disambiguating an abbreviation using
the local cache and lookups in online abbreviation dictionaries. The cache is divided into a
persistent (file-based) cache and a transient cache. Figure 4.1 shows the division of the
cache. The persistent cache is populated using the online lookup. The transient cache
is populated from definitions in the Software Architecture Documentation (SAD). For
example, “..the Database (DB) is..” provides a definition of the abbreviation “DB” with
meaning “Database”.

1 [
2 {
3 ” a b b r e v i a t i o n ” : ”GAE” ,
4 ” meanings ” : [
5 ” Google App Engine ” , ” Galaxy Advanced Eng inee r ing ”
6 ]
7 } ,
8 {
9 ” a b b r e v i a t i o n ” : ”UI” ,

10 ” meanings ” : [
11 ” User I n t e r f a c e ” , ”Unemployment Insurance ”
12 ]
13 }
14 ]

Listing 4.1: Example of an abbreviation cache JSON file

As part of this work, the Text Extraction stage is extended with the capability of search-
ing for patterns such as Meaning (Abbreviation) and Abbreviation (Meaning) in the Natural
Language Software Architecture Documentation (NLSAD) and adding these disambigua-
tions to the transient cache. The transient cache is used because these disambiguations
are specific to a project and should not be saved between runs. This functionality is imple-
mented in the AbbreviationAgent and AbbreviationInformant. Potential abbreviations are
identified using the couldBeAbbreviation method of the AbbreviationDisambiguationHelper,
based on the percentage share of uppercase characters and a threshold. The neighboring
words are searched for the sequence of characters in the abbreviation to determine a
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meaning. Using the previous example, “Database” would be determined as a meaning for
the abbreviation “DB” because it contains the characters of the abbreviation in order.

The meaning of the abbreviation is allowed to stretch across multiple words until a
configurable distance limit is reached. This process can determine multiple candidate
meanings for an abbreviation if the sequence of characters occurs multiple times in the
neighboring words. The sequence distribution is irrelevant as long as it is in order. An
exception is the first character of the abbreviation, which has to be the first character of
any candidate meaning. To find the proper meaning, a heuristic calculates a score for each
candidate meaning. This heuristic compares the candidate meaning and the abbreviation.
It rewards the three features: Any match, case match, and initial match. For the previous
example “..the Database (DB) is..”, both “D” and “b” are rewarded for any match. “D” is
additionally rewarded for case match and initial match because its casing matches the
abbreviation, and the match is at the start of a word.

Uses

Persistent Cache Transient Cache

AbbreviationDisambiguationHelper

Populates

Online Abbreviation
Dictionaries

Populates

Software Architecture
Documentation

Similarity
Metrics

Figure 4.1: AbbreviationDisambiguationHelper cache structure

In addition to the previously mentioned couldBeAbbreviation method, the Abbrevia-
tionDisambiguationHelper provides a getAbbreviationCandidates method. This method
takes a string parameter and applies a regular expression to it that matches sequences
of uppercase characters with up to one lowercase character between them. The regu-
lar expression takes CamelCase into account. It uses a lookahead to support abbrevia-
tions at the word boundaries and abbreviations inside camel-cased phrases. For example,
getAbbreviationCandidates(“DBLoremDDoSIpsumID”) returns {��, ��>(, ��}, rather than
{��!, ��>(�, ��}.

If a potential abbreviation has to be disambiguated, the AbbreviationDisambiguation-
Helper first checks whether it is in the cache. If a matching Disambiguation exists, the
associated meanings are returned. The transient cache has precedence to ensure that avail-
able project-specific definitions are used. Alternatively, the two abbreviation dictionaries
abbreviations.com and acronymfinder.com are used for online lookup. The websites are
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crawled using the Java HTML parser jsoup. The lists of meanings for an abbreviation are
merged, and a Disambiguation is created and added to the persistent cache. Both sites
allow user participation to add abbreviations to the site. The file-based approach was
chosen to allow for reproducibility despite the volatility of the online sources. This allows
the distribution of abbreviation cache files with the Benchmark projects.

The AbbreviationDisambiguationHelper can ambiguate a text using the known abbre-
viations from the cache using ambiguateAll. This functionality is used by the Similarity
Metrics (SMs) as explained in Section 3.2. This is done by iterating over all disambiguations
and replacing occurrences of the meanings in the text with abbreviations.

DBPediaHelper The DBPediaHelper implements the automatic creation of blacklists
containing computer- and software-related terminology from the online ontology DBpedia.
DBPediaHelper implements a FileBasedCache. The file contains a list of programming
languages, markup languages, and software. Similarly to the AbbreviationDisambiguation-
Helper, this approach was chosen because it allows the distribution of blacklist files to
ensure reproducibility. If no file is provided, a file is loaded from the results of SPARQL
queries to the DBpedia SPARQL endpoint. The DBpedia ontology is a crowd-sourced
cross-domain ontology that contains information from multiple encyclopedias, including
Wikipedia. The format of entries is standardized, but the quality varies. Searching for
entries with properties associated with a specific category can be used to mitigate the
commonly observed problem of miscategorized information. An example is the query
used to retrieve the set of programming language labels from DBpedia in Listing 4.2. It
queries the programming language type derived from the Yago ontology and DBpedia’s
own programming language type. The DBpedia programming language type contains
many entries that are not programming languages. However, proper entries often have
the fields influenced and influencedBy. For example, the entry for Python contains the
programming languages GO and Cobra as values for influenced, and ABC as value influ-
encedBy. Requiring the existence of such fields reduces the amount of unrelated noise
retrieved by the query. The DBPediaHelper provides the three methods isWordProgram-
mingLanguage, isWordMarkupLanguage, and isWordSoftware. The methods require an
exact case-insensitive match to prevent words from being filtered too aggressively.

DiagramUtil DiagramUtil is a utility class that encapsulates shared functionality that
is related to diagrams and DiagramElements. DiagramUtil provides methods to calculate
the similarity between a Box DiagramElement and a RecommendedInstance or Box. Calcu-
lateSimilarityMap calculates a map containing the highest similarity of each word from
a RecommendedInstance and a Box. CalculateHighestSimilarity(Word, Box) calculates the
similarity of the Word to all Box references and returns the maximum. The overload Cal-
culateHighestSimilarity(NounMapping, Box) uses CalculateHighestSimilarity(Word, Box) to
find the maximum similarity of any of its contained words to the box. The similarity func-
tionality is primarily used to determine the confidence of LinkBetweenDeAndRi instances
in the Diagram Connection Generator stage and in the DiagramBackedTextStateStrategy.
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PREFIX rdf : < h t t p : / /www. w3 . org / 1 9 9 9 / 0 2 / 2 2 − rdf −syntax −ns#>
PREFIX rdfs : < h t t p : / /www. w3 . org / 2 0 0 0 / 0 1 / rdf −schema#>
PREFIX dbo : < h t t p : / / dbped ia . org / on to logy / >
PREFIX yago : < h t t p : / / dbped ia . org / c l a s s / yago / >

SELECT ? l a b e l
WHERE {

{
? p l dbo : a b s t r a c t ? a b s t r a c t .
? p l rdfs : l a b e l ? l a b e l .
? p l rdf : t ype yago : ProgrammingLanguage106898352 .
FILTER (LANG( ? a b s t r a c t ) = ’ en ’ ) .
FILTER (LANG( ? l a b e l ) = ’ en ’ )

}
UNION
{

? p l dbo : a b s t r a c t ? a b s t r a c t .
? p l rdfs : l a b e l ? l a b e l .
? p l dbo : i n f l u e n c e d ? i n f l u e n c e d .
? p l dbo : i n f l u en c edBy ? i n f l u en c edBy .
? p l rdf : t ype dbo : ProgrammingLanguage .
FILTER (LANG( ? a b s t r a c t ) = ’ en ’ ) .
FILTER (LANG( ? l a b e l ) = ’ en ’ )

}
}
GROUP BY ? l a b e l

Listing 4.2: SPARQL query for a set of programming language labels
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4.2 Diagram Gold Standard

The gold standard, as described in Section 5.3, is accessible by an implementation in the
test-resources module. The following classes are used for loading the gold standard:

• DiagramFromGoldStandard

• DiagramElement

• TextBox

• BoundingBox

The DiagramFromGoldStandard class encapsulates the information related to a diagram
and is an implementation of the Diagram interface provided by Linking Sketches and
Software Architecture (LiSSA). The information consists of DiagramElements, TextBoxes,
DiaGSTraceLinks, and parts of the diagram metadata (e.g., diagram resource name, diagram
file handle, and name and file handle of the gold standard). DiagramElement is the
superclass of all geometric shapes in a diagram. Each DiagramElement is identifiable by
theDiagram it belongs to and its BoundingBox. ADiagramElement may contain an arbitrary
amount of TextBox instances. The class also provides functionality for calculating sub-
elements within its BoundingBox. DiagramElement currently has one subclass Box. The Box
class provided by LiSSA represents a DiagramElement instance with a box shape. TextBox
and BoundingBox already existed prior to this work. The TextBox class contains bounding
box coordinates, text as a String, and a confidence value. The original BoundingBox
record was extended with methods to calculate intersection, union, and intersection over
union with another bounding box. These classes are sufficient for the manually extracted
diagram element gold standard GS3. For the trace link gold standard GS4, the classes
DiaTexTraceLink, DiaGSTraceLink, and DiaWordTraceLink were implemented. An excerpt
of the implementation is depicted in Figure 4.2.

DiaTexTraceLink is the superclass of both DiaGSTraceLink and DiaWordTraceLink. A Di-
aTexTraceLink represents a trace link between a DiagramElement and a Sentence. Sentences
are extracted from the text file associated with a project from the Benchmark as described
in Section 2.5. The DiaGSTraceLink and DiaWordTraceLink subclasses were implemented
to allow distinguishing between trace links generated from the gold standard and trace
links generated from the approach, as well as to encapsulate additional properties that each
may have depending on their origin. A DiaGSTraceLink stores a reference to the textual
gold standard it was derived from. This is necessary because some benchmark projects
contain multiple different text files. Architecture Documentation Consistency (ArDoCo)
operates on a single text file basis. Therefore, it is necessary to filter the gold standard
trace links according to the text input. The DiaWordTraceLink class was created to reflect
that ArDoCo’s TLR approach works on a word and phrase basis. This type of trace link
additionally stores a reference to the Word instance it can be traced back to. This informa-
tion is useful for debugging because it provides more comprehensible information about
the origin of a trace link than a sentence with a potentially large number of irrelevant
words. The information may also be used for heuristics in the future.
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DiagramConnectionGenerator

DiaTexTraceLink

+ getDiagramElement(): DiagramElement
+ getSentence(): Sentence
+ getSentenceNo(): int
+ equalDEAndSentence(DiaTexTraceLink): boolean

DiaGSTraceLink

+ getGoldStandard(): String
+ getTraceType(): TraceType

DiaWordTraceLink

+ getWord(): Word
+ getConfidence(): double

DiagramLink

1..*

«Enum»
DiagramProject

1..*

Figure 4.2: Trace Link classes excerpt in UML

The gold standard is used by various stages and should be usable regardless of any
specific stage implementation. Therefore, parsing the JSON gold standard to createDiagram
instances is delegated to the module containing the gold standard. ArDoCo encapsulates
functionality to access the gold standard using the enum Project. Project enumerates all
projects in the gold standard and contains functionality for accessing the associated files.
The gold standard files were originally located in the tests module as test/resources. This
was problematic for a variety of reasons:

• The tests module, as well as its submodules, were not deployed, preventing their
usage outside of cloning the main repository

• Even if the modules were deployed, test/resources are not deployed byMaven, further
preventing access

• The files were referred to using relative paths, preventing use outside of tests parent
module

This issue was initially circumvented by moving the gold standard into a new test-
resources module and moving the files to main/resources. The enum DiagramProject
was created to enumerate all existing Project enum instances, which were extended with
diagrams. The Project enum and various stages rely on file handles when accessing the gold
standard. Therefore, the DiagramProject enum must also support file handles. However,
since the module test-resources was supposed to mitigate the aforementioned issues, it
needed to be deployable. After deploying as a JAR, accessing the resources as files is no
longer possible. This issue was resolved by creating temporary files when accessing a gold
standard resource. After consultation a solution based on this approach was implemented
for ArDoCo, release 0.13.0 with the files now residing in the module test-base and the test
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modules being deployed to the public maven repository. However, the DiagramProject
enum and related classes still reside within test-resources.

«Enum»
DiagramProject

MEDIASTORE; TEASTORE; TEAMMATES; 
BIGBLUEBUTTON; TEASTORE_HISTORICAL; 
TEAMMATES_HISTORICAL; 
BIGBLUEBUTTON_HISTORICAL

+ getFromName(String): Optional<DiagramProject>
+ getHistoricalProjects(): List<DiagramProject>
+ getNonHistoricalProjects(): List<DiagramProject>
+ getMetamodel(): Metamodel
+ getArchitectureModelType(): ArchitectureModelType

«Interface»
GoldStandardProject

+ getResourceNames(): Set<String>
+ default getSourceFilesVersion(): long

«Interface»
GoldStandardDiagrams

+ getDiagramsResourceName(): String
+ getDiagramsGoldStandardFile(): File
+ getDiagrams(): Set<DiagramGS>

«Interface»
GoldStandardDiagramTLR

+ getDiagramTraceLinks(List<Sentence>): Set<DiaGSTraceLink>
+ getDiagramTraceLinksAsMap(List<Sentence>):
    Map<TraceType, List<DiaGSTraceLink>>
+ getExpectedDiagramTraceLinkResults(): ExpectedResults

«Interface»
GoldStandardDiagramsWithTLR

Figure 4.3: DiagramProject structure excerpt in UML

Because enums can not be extended in Java, a different structure is required to depict
DiagramProject ’s relation to Project. Figure 4.3 shows the structure’s implementation. The
functions defined in Project are moved to the GoldStandardProject interface with their
default implementation residing in Project. However, these methods are not depicted in
the figure to reduce clutter. This structure has the advantage that the interfaces can be
referenced in declarations rather than referencing Project or any related enum directly.
This provides more flexibility since interfaces can be extended and implemented by an
arbitrary number of classes.
GoldStandardProject The GoldStandardProject interface is implemented by Project

and all related gold standard enums. As previously explained, the default implementa-
tion of all functions refers to the Project enum. The interface provides functionality to
access the name of each independent resource and file handles for each resource. Get-
ResourceNames provides a list consisting of all the resource names associated with an
instance. This function is required for the default implementation of getSourceFilesVersion.
getSourceFilesVersion reads all resources associated with the instance and calculates a MD5
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checksum for each. If the checksum deviates from the known checksum or no checksum
was established previously, the source files version is updated. If caching is performed in
a stage, this function may be used to invalidate caches if the source files changed.
GoldStandardDiagrams This interface provides functionality that reflects a gold

standard containing diagram elements (The DiagramElements of a diagram can be accessed
from the DiagramFromGoldStandard instance). GetDiagramsResourceName returns the
resource name of the diagrams gold standard file. If a file handle is required instead,
getDiagramsGoldStandardFile can be used. As previously explained, file handles can be
problematic in the context of JAR packaging. However, the existing Diagram interface
requires a file handle.

GoldStandardDiagramTLR The GoldStandardDiagramTLR interface contains func-
tionality for retrieving DiaGSTraceLink trace links from the gold standard. The getDiagram-
TraceLinksmethod retrieves all trace links from the gold standard file. The trace links are ini-
tialized with their corresponding sentence during retrieval. getDiagramTraceLinksAsMap
retrieves a map of trace links according to their TraceType.
GoldStandardDiagramsWithTLR This interface extends GoldStandardDiagrams,

as well as GoldStandardDiagramTLR. Therefore, it represents a gold standard capable of
retrieving DiagramElements and DiaGSTraceLink trace links. The approach of providing
separate interfaces and a combined interface was chosen to avoid limiting the imple-
mentation to a shared DiagramElement and trace links gold standard. For example, this
allows stages to specify that they only require a gold standard project with access to
DiagramElements, but do not require the linkage information.

DiagramProject This gold standard implementation implements the GoldStandardDi-
agramsWithTLR interface backed by a JSON file containing theDiagramsFromGoldStandard,
DiagramElements, TextBoxes, BoundingBoxes, and DiaGSTraceLinks. The static getFrom-
Name method retrieves an Optional containing the DiagramProject instance with the given
name or an empty Optional. This can be useful because ArDoCo only stores project names
during execution. Get(Non)HistoricalProjects returns the list of (non-)historical enum in-
stances, which is useful for parameterized testing. GetMetamodel returns the Metamodel
enum instance of the project. The Metamodel determines whether the project provides
an architecture model or code model. The getArchitectureModelType method returns the
ArchitectureModelType enum instance of the project, which determines whether a Palladio
Component Model (PCM) or Unified Modelling Language (UML) model is provided by the
source files. The gold standard is parsed from JSON using Jackson1. It is parsed using the
following classes:

• DiagramsFromGoldStandard - Contains an array of DiagramFromGoldStandard, as
well as the name of the JSON schema used by the gold standard.

• DiagramFromGoldStandard - Implements the LiSSA Diagram interface and is respon-
sible for parsing the boxes contained in the diagram.

• BoxFromGoldStandard - Extends the existing Box implementation of LiSSA. It keeps
a list of sub-boxes that corresponds to the nesting of boxes in the JSON file and a set
of TraceLinkFromGoldStandard.

1See FasterXML/jackson
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• TraceLinkFromGoldStandard - Record representing the trace links associated with
the parent box. It contains the name of the text gold standard it references and
the sentence number of each trace link. Additionally, it contains a potentially
empty set of TypedTraceLinkFromGoldStandard. The toTraceLinks function creates
DiaGSTraceLinks from the data.

• TypedTraceLinkFromGoldStandard - A set of trace links with a specific TraceType.
Depending on the TraceType, the specified links do not necessarily constitute True
Positives (TPs) but can be used for debugging purposes to identify potential sources
of False Positives (FPs) and False Negatives (FNs). They are automatically converted
by their TraceLinkGS parent, if toTraceLinks is called and added to the collection of
DiaGSTraceLinks.

• TraceType - See Section 5.3 for a detailed explanation of possible values.

• BoundingBoxDeserializer & TextBoxDeserializer - Custom Jackson deserializer for
LiSSA’s BoundingBox and TextBox.

4.3 Diagram Recognition Module

This section is about the adjustments and extensions to the implementation in the diagram-
recognition module. The module contains the Diagram Recognition stage, which was
implemented as part of LiSSA and a new Diagram Recognition Mock stage. The changes
and extensions to the Diagram Recognition stage are detailed in Subsection 4.3.1. The
implementation of the Diagram Recognition Mock stage is depicted in Subsection 4.3.2.
Subsection 4.3.3 details the implementation of a TextStateStrategy, which uses the Dia-
gramElements in its word clustering process.

4.3.1 Diagram Recognition

The Diagram Recognition stage is responsible for transforming the pictures of informal
diagrams into a representation that can be used programmatically. The stage and corre-
sponding module diagram-recognition was created as part of LiSSA. This work extends
the stage with two additional agents, two informants, caching, and improvements to the
TextBox assignment. The module now also contains the DiagramBackedTextStateStrategy,
which can be used by the Text Extraction stage. As described in Section 3.3, diagram-
related stages should positively influence the similarity of homoglyphs and confusables.
To achieve this, a custom Character Match Function can be set in ArDoCo’s WordSimUtils
class, which determines whether two characters are considered a match. Because of this,
the Diagram Recognition stage and all other diagram-related stages are adjusted to tem-
porarily change the Character Match Function to a function that also matches homoglyphs
and confusables. The implementation of this function is detailed in Section 4.6.

DiagramRecognitionAgent Adjustments The Diagram Recognition stage uses Ob-
ject Detection (OD) and Optical Character Recognition (OCR) processes in an external
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docker container. These processes take up most of the time required for a run and must run
for each project. To avoid performing the same OD and OCR process every time ArDoCo
runs a Benchmark project, a cache is added to the Kotlin DiagramRecognitionAgent agent.
This cache is implemented as a SerializableFileBasedCache. A cache file containing a
SketchRecognitionResult is created for each diagram picture. If the diagram was processed
in a previous run, the SketchRecognitionResult is deserialized, and the diagram is skipped.
Otherwise, the diagram is processed, and the SketchRecognitionResult is serialized and
cached for the subsequent runs.

The DiagramRecognitionAgent agent also struggled with TextBoxes in nested DiagramEle-
ments. This is because the image processing creates DiagramElements and TextBoxes sepa-
rately at first. Afterwards, the TextBoxes are combined and assigned to a DiagramElement
based on the Intersection over Union metric. For nested DiagramElements, the assignment
breaks because a TextBox may be contained within the boundary box of multiple Dia-
gramElements. To fix this, theDiagramElements now implement a parent-child relationship,
where the parent is calculated by finding the smallest DiagramElement, which entirely
contains the child’s bounding box. The DiagramRecognitionAgent implementation is ad-
justed to utilize the parent-child relationship by performing a depth-first search approach.
If the TextBox is assigned to a child, it can no longer be assigned to a parent. This solves
the issue above.

DiagramDisambiguationInformant The DiagramDisambiguationInformant infor-
mant iterates over all TextBoxes in the diagrams. The informant uses the getAbbreviation-
Candidates function of the AbbreviationDisambiguationHelper utility class to determine
the set of possible abbreviations in the TextBox. Afterwards, it uses the disambiguate
function of the utility class to try and disambiguate each candidate. The meanings are
retrieved from the cache if the candidate is a known abbreviation. Otherwise, an online
lookup is performed as described in Section 4.1. A new Disambiguation instance is created
for each resolved abbreviation and added to the DiagramRecognitionState. The informant
is executed by the DiagramDisambiguationAgent. The agent is executed penultimate,
followed by the DiagramReferenceAgent.

DiagramModelReferenceInformant The DiagramModelReferenceInformant is re-
sponsible for calculating references for DiagramElements. References are used to compare
DiagramElements to text. The Diagram Connection Generator utilizes this to perform a
similarity-based Traceability Link Recovery (TLR). The DiagramModelReferenceInformant
is called by the DiagramReferenceAgent. The agent and informant are executed after all
other agents to ensure that the DiagramElements are final before references are calculated.
The references are calculated for each DiagramElement of each diagram.

The informant first calculates the references for each TextBox. The text of a box is
split at brackets and enumerations (e.g. “Lorem(ipsum),dolorSit”→“Lorem”,“ipsum”,“dolor-
Sit”). Afterwards, CamelCase is split up to produce split and decameled references (e.g.
“dolorSit”→“dolor”,“Sit”). Both splits are performed using regular expressions. The results
are combined and filtered using the DBPediaHelper to remove computer- and software-
related terminology. An additional reference is added by joining the split and decameled
references. This implementation intentionally creates many references because they are
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filtered afterwards. After the TextBox references are calculated, the first filter is applied.
This filter checks whether references with uppercase characters exist. If this is the case,
the lowercase references are discarded. Otherwise, the lowercase references are preserved.

After all TextBox references have been calculated, the DiagramModelReferenceInformant
calculates the TextBox that is most similar to a model instance. This is done because a
DiagramElement may directly correspond to a model instance. If this is the case, the proper
reference of the DiagramElement is assumed to be similar to the model instance. In this
case, the other TextBoxes are considered to be supplemental. Therefore, if the similarity
between a TextBox and a DiagramElement is above a configurable threshold, all references
from other TextBoxes are discarded.

4.3.2 Diagram Recognition Mock

Because the first implementation phase focuses on the TLR between manually extracted
DiagramElements, a stage is required that provides these elements. The purpose of this stage
consists of retrieving the Diagrams from the gold standard and subsequently making them
accessible to later pipeline stages. To ensure a seamless transition between manual and
automatic extraction in later project stages, the stage is implemented to replace theDiagram
Recognition stage. The LiSSA Diagram Recognition stage is responsible for automatic
diagram recognition and was already implemented in Kotlin before this work. It provides
a DiagramRecognitionState data structure. The data structure offers access to the set of
extracted Diagrams and the DiagramElements, TextBoxes, and BoundingBoxes they consist
of. The Diagram Recognition Mock stage uses the same data structure as output. To comply
with ArDoCo’s existing project structure, the Diagram Recognition Mock stage resides
in the maven module diagram-recognition as a submodule of the stages parent module.
Because the gold standard is independent of a specific stage implementation, parsing the
raw JSON files is delegated to the gold standard implementation. The Diagram Recognition
Mock receives a GoldStandardDiagramsWithTLR gold standard project instance as input.
This gold standard project instance can parse the gold standard described in Section 4.2.
The stage’s task consists of saving the parsed Diagrams to the DiagramRecognitionState
data structure during state initialization. The stage can be run independently and has no
other pipeline data structures as a prerequisite.

4.3.3 Diagram-Backed Text State Strategy

The DiagramBackedTextStateStrategy extends ArDoCo’s OriginalTextStateStrategy. A
TextStateStrategy is responsible for the creation and merging of NounMapping instances.
The strategy used by the Text Extraction can be set before executing the Text Extraction stage.
This allows changing the composition of NounMapping instances without modifying the
Text Extraction and its agents directly. The DiagramBackedTextStateStrategy differs from
the original strategy by incorporating the relation between Words and DiagramElements
into the NounMapping. The NounMappingImpl is extended by the DiagramBackedNoun-
MappingImpl class. A DiagramBackedNounMappingImpl has the same functionality as the
original implementation but keeps a reference to a DiagramElement. The DiagramBacked-
TextStateStrategy creates these mappings by searching for the DiagramElement with the
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highest similarity to the Words of the mapping. The calculateHighestSimilarity function of
DiagramUtil is used to calculate the similarity of the mapping with each DiagramElement.
If it surpasses a configurable threshold, the DiagramElement with the highest similarity is
chosen. The original strategy tries to find a similar mapping before adding a NounMapping
to the text state. If such a mapping is found, the mappings are merged. In contrast, the
DiagramBackedTextStateStrategy merges the mappings if they are similar and backed by
the same DiagramElement. This prevents falsely clustering Words that are unlikely to
belong to the same entity.

4.4 Diagram Connection Generator

The Diagram Connection Generator stage implements the trace link creation between
DiagramElement instances and RecommendedInstances. The stage is implemented by the
DiagramConnectionGenerator class in the stages submodule diagram-connection-generator.
The stage uses a single agent that is explained after the states.

The stage is made up of the two data structures DiagramConnectionStates and Diagram-
ConnectionState. The DiagramConnectionStates data structure contains a DiagramConnec-
tionState for each Metamodel. This is necessary because different RecommendedInstances
are extracted for different metamodels. The DiagramConnectionState stores LinkBetween-
DeAndRi instances. The LinkBetweenDeAndRi class represents a trace link between a
DiagramElement and a RecommendedInstance. The confidence that the link is correct is
determined using the confidence map, which contains confidence values for each Word
associated with the RecommendedInstance. To reduce this map to a singular confidence
value, LinkBetweenDeAndRi provides multiple static mapping lambda functions, which
can be passed as a parameter to the getConfidence method. Maximum, minimum, average,
and median are currently available for this purpose. The class also provides toTraceLinks
to convert a LinkBetweenDeAndRi to a set of DiaWordTraceLink instances. This is achieved
by creating a DiaWordTraceLink for each entry of the confidence map. Conversions are
performed on demand because DiaWordTraceLink is only used for evaluation purposes in
this work. The DiagramConnectionState offers the following four conversion methods:

• getWordTraceLinks(): Set<DiaWordTraceLink> - Converts all LinkBetweenDeAndRi
instances and joins the results. Removes low confidence DiaWordTraceLink instances
according to a configurable threshold.

• getTraceLinks(): Set<DiaWordTraceLink> - Set of trace links reduced to unique
DiagramElement and Sentence combinations based on getWordTraceLinks.

• getMostSpecificWordTraceLinks(): Set<DiaWordTraceLink> - Set of trace links re-
duced to highest confidence Diagram and Word combinations based on getWord-
TraceLinks. If multiple links share the highest confidence for a combination, all of
them are retained.

• getMostSpecificTraceLinks(): Set<DiaWordTraceLink> - Set of trace links reduced to
the highest confidence Diagram, DiagramElement and Word combinations based on
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getMostSpecificWordTraceLinks. Guarantees that each combination of DiagramEle-
ment and Sentence is unique.

GetMostSpecificTraceLinks is the function used to retrieve the Predicted Positives for
evaluation. It reduces duplicate trace links pointing to the same Word due to ambiguous
DiagramElements names. This is especially relevant for package diagrams because the
names of packages and sub-packages deviate only slightly.

The DiagramConnectionGenerator implements the DiagramConnectionAgent, which is
responsible for the creation of LinkBetweenDeAndRi instances. The DiagramConnection-
Agent manages the creation, enabling, and disabling of informants, but apart from that,
it contains no logic by itself. The agent uses the informants DiagramAsModelInformant,
DiagramTextInformant and LinkBetweenDeAndRiProbabilityFilter, which are explained in
the following paragraphs.

DiagramAsModelInformant The DiagramAsModelInformant creates temporary
ModelInstances for each DiagramElement. This allows using ArDoCo’s TLR process to find
trace links between the RecommendedInstances and the temporaryModelInstances. For each
trace link between a RecommendedInstance and a temporary ModelInstance, a LinkBetween-
DeAndRi is created for the original DiagramElement and the RecommendedInstance. The
conversion is performed by creating a new ModelInstanceImpl for each DiagramElement
reference with the reference as a name.

DiagramTextInformant This informant iterates over all TextBoxes and Recommen-
dedInstances. It aims to find initialisms in the DiagramElements, which can be resolved to
the name of a RecommendedInstance. For each TextBox, the text is compared to the name
of the RecommendedInstance using the isInitialismOf function from the AbbreviationDis-
ambiguationHelper.

LinkBetweenDeAndRiProbabilityFilter The LinkBetweenDeAndRiProbabilityFilter
iterates over all LinkBetweenDeAndRi instances that were found. For each link, the confi-
dence is calculated from the confidence map using an aggregation function that calculates
the maximum value contained in the map. The link is removed from the state if this
confidence is below a configurable threshold. This filter is very forgiving because it pro-
motes a higher recall. This is important to prevent the approach from falsely disaffirming
RecommendedInstances in the later stages.

4.5 Diagram Inconsistency Checker

The Diagram Inconsistency Checker stage is responsible for finding Missing Diagram
Element (MDE) and Unmentioned Diagram Element (UDE) Inconsistencies between the Di-
agramElements and RecommendedInstances. It is implemented in the diagram-inconsistency-
checker submodule of the stages module in the DiagramInconsistencyChecker class. The
stage has the two agents DiagramInconsistencyAgent and RecommendedInstancesConfi-
denceAgent, which are executed in this order and explained after the states below.
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The stage contains the states DiagramInconsistencyStates and DiagramInconsistencyState.
Similarly to the previously explained DiagramConnectionStates state, the state is used to
provide a DiagramInconsistencyState for each Metamodel. The DiagramInconsistencyState
stores a set of Inconsistencies that can be extended with addInconsistency. To retrieve the
set of Inconsistencies, the getInconsistencies functionality is provided. The function allows
specifying which type of Inconsistency should be returned.

The MDE and UDE Inconsistencies are implemented as MDEInconsistency and UDEIn-
consistency. These classes implement the Inconsistency interface that ArDoCo uses for
the Unmentioned Model Element (UME) and Missing Model Element (MME) Inconsisten-
cies. The Inconsistencies are implemented as Java records. A MDEInconsistency record
is a wrapper for a single RecommendedInstance, which does not have a corresponding
DiagramElement. In contrast, a UDEInconsistency record is a wrapper for a single Dia-
gramElement, which does not have a corresponding RecommendedInstance. Apart from
basic methods that allow printing the Inconsistency record to a text file, the record contains
no logic.

The states are populated by DiagramInconsistencyAgent. This agent is responsible
for creating MDEInconsistency and UDEInconsistency instances and adding them to the
DiagramInconsistencyState. To do this, the informants MDEInconsistencyInformant and
UDEInconsistencyInformant are implemented. After the DiagramInconsistencyAgent is
finished, the RecommendedInstancesConfidenceAgent is executed to change the confidence
of each RecommendedInstance affected by an Inconsistency. The InfluenceByInconsisten-
ciesInformant is implemented to achieve this.

MDEInconsistencyInformant This informant creates MDEInconsistency instances.
The informant iterates over all available Metamodels and gets the corresponding Recom-
mendationState, DiagramConnectionState and DiagramInconsistencyState. It then retrieves
all RecommendedInstances from the RecommendationState and all LinkBetweenDeAndRi
instances from the DiagramConnectionState. Afterwards, the informant determines all
RecommendedInstances which are not endpoints of a LinkBetweenDeAndRi instance. Each
of these RecommendedInstances is wrapped in a MDEInconsistency instance and added to
theDiagramRecognitionState.

UDEInconsistencyInformant The UDEInconsistencyInformant is structured like
the MDEInconsistencyInformant, but instead of getting the RecommendationState, it gets
the DiagramRecognitionState from the DataRepository. The informant retrieves all Dia-
gramElements from the DiagramRecognitionState. Afterwards, the informants determine
all DiagramElements which are not an endpoint of a LinkBetweenDeAndRi instance. A
UDEInconsistency instance is created and added to the DiagramRecognitionState for each.

InfluenceByInconsistenciesInformant This informant influences the confidence
in each RecommendedInstance affected by an Inconsistency. Like the previous informants,
the informant iterates over all available Metamodels and retrieves the corresponding
RecommendedInstances, LinksBetweenDeAndRi, and Inconsistencies from the states. To
comply with heuristic D1 in Section 3.3, the informant calculates what percentage of
RecommendedInstances is contained in a LinkBetweenDeAndRi instance. The coverage is
calculated by dividing this number by the amount of total RecommendedInstances.
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Afterwards, the function punishInconsistency is used to reduce the confidence of Re-
commendedInstances affected by an MDEInconsistency. The confidence reduction depends
on a configurable maximum punishment, the coverage, and the number of Claimants.
In ArDoCo, a Claimant class claims a result. Each RecommendedInstance has a set of
Claimants that claim its existence with a certain confidence. ArDoCo aggregates the
confidences to give the overall confidence in a RecommendedInstance. For a higher amount
of Claimants, the amount of punishment by the informant should be less severe. This
prevents the InfluenceByInconsistenciesInformant from overruling an unreasonable amount
of other Claimants. To determine the confidence punishment, the coverage is used to scale
the configurable maximum punishment. This is proportional based on the assumption
that a higher coverage indicates that a MDEInconsistency should be less likely.

The rewardConsistency function operates similarly to the punishInconsistency function.
Each RecommendedInstance covered by a LinkBetweenDeAndRi gets a confidence reward
based on a configurable maximum reward, the coverage and amount of Claimants. How-
ever, in this case, the coverage is inversely proportional to the reward. If only a few
RecommendedInstances are covered, the informant assumes that the covered instances are
particularly important and should be rewarded more.

4.6 Homoglyphs and Confusables

The text file “confusablesSummary” containing the Unicode confusables is publicly avail-
able and was chosen as a basis for implementing the ConfusablesHelper class. To use
the confusables, the file had to be parsed and saved in a data structure. Because the
confusables impact the similarity calculation in multiple stages, a global utility class Con-
fusablesHelper was implemented in the common module. The ConfusablesHelper loads
the “confusablesSummary” file from resources and parses it line-by-line. The file consists
of blocks of confusables as depicted in Figure 4.4. The first row of the block contains
the sequence of confusable characters and always begins with a hash symbol. After the
initial row, a row for each confusable is appended. These rows contain the symbol, its
code point in hexadecimal notation, and a descriptive name of the character. Each block
is surrounded by a single new line and adheres to the same structure. The confusable
Unicode characters are extracted from the first row and added to a map, where each key
contains a list of confusables and itself. This implementation uses a key-value pair for
every UnicodeCharacter of each line, which requires more memory than only keeping a
single list for each set of confusable UnicodeCharacter instances. However, performance
was the primary concern in this case because the list of UnicodeCharacter instances need
to be retrieved on a per-character basis, and this allows accessing the list of confusables
for a character in $ (1), rather than having to search all lists to find which one contains
the character.

A confusable impacts the Similarity Metrics (SMs) by causing a mismatch for characters
that should match in a visual context. Therefore, the approach of including knowledge
about confusables in the calculation performed by the character-based SMs was chosen.
This was achieved by forcing the SMs to use a Character Match Function rather than
comparing characters directly. A Character Match Function compares two characters and
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Figure 4.4: A block of confusables from the confusablesSummary file

returns a boolean value to indicate whether they are considered a match. The default
Character Match Function UnicodeCharacter.EQUAL is set in ArDoCo’s WordSimUtils class
and performs an equality check. WordSimUtils can also be set to an optional Character
Match Function EQUAL_OR_HOMOGLYPH, which considers two characters a match if
they are equal or homoglyphs according to the ConfusablesHelper. The benefit of this
implementation is that it is configurable because stages can set the appropriate function
before stage execution and reset it after stage execution. Therefore, this feature is isolated
from stages, which do not require homoglyphs to be considered equal.

During implementation, an existing design flaw in the implementation of the character-
based SMs was discovered. Java natively provides the String and Character class, as well
as the corresponding primitive char for text. However, these classes were initially created
before the Unicode extension beyond 16-bit2. A Character can only cover the Basic Multi-
lingual Plane from U+0000 to U+FFFF. The Unicode characters above U+FFFF are referred
to as supplementary characters and can not be represented by a single Character. This
can lead to unintuitive behavior for basic text operations relying on Characters internally.
For example, the String 𝘂 has length two and consists of two separate characters. String
operations such as substring, split, et cetera do not consider this and can break Unicode
characters apart. This issue also affects the ConfusablesHelper class because many confus-
ables are not part of the Basic Multilingual Plane. To handle Unicode inputs, the classes
UnicodeCharacter and UnicodeCharacterSequence were implemented to replace String and
Character (char) where suitable. A UnicodeCharacter consists of an Integer representing the
code point in the Unicode code space and a String containing the representation. The class
also provides functionality for conversion between Strings and UnicodeCharacter instances
and includes the Character Match Functions. The UnicodeCharacter class is designed to
cover the entire Unicode code space. The problems concerning Strings are based on the
fact that Strings are implementations of CharSequence in Java. Therefore, a corresponding
UnicodeCharacterSequence was implemented. The UnicodeCharacterSequence provides the
same functionality as CharSequence but relies on UnicodeCharacter instances rather than
Java’s char primitive. The class also provides conversion functionality for conversion
between Strings and the corresponding UnicodeCharacterSequence.

ArDoCo currently uses the character-based Jaro-Winkler and Levenshtein SMs. Before
this work, both SMs were imported from an external Apache Commons module. In
compliance with their licensing, the source code of the SMs was moved to the common

2See Oracle’s Supplementary Characters in the Java Platform
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4 Implementation

module and adapted to use the UnicodeCharacter, UnicodeCharacterSequence classes, as
well as the selected Character Match Function.

38



5 Evaluation

This chapter contains the evaluation of Entity Recognition in Software Documentation
Using Trace Links to Informal Diagrams (ERID). The evaluation aims to evaluate goals and
questions established using the Goal Question Metric approach [2]. The initial Goal (G1)
is to create trace links between textual entities and diagram elements. The second goal
(G2) of this work is to find Unmentioned Diagram Element (UDE) and Missing Diagram
Element (MDE) inconsistencies. The third goal (G3) and fourth goal (G4) are about the
integration into Architecture Documentation Consistency (ArDoCo). G3 is to create trace
links between textual entities and diagram elements extracted using Optical Character
Recognition (OCR) and Object Detection (OD). G4 is to reduce the falsely identified textual
entities. The goals are examined by answering the following collection of questions:

Q1 How well can the approach detect trace links between textual entities and manually
extracted diagram elements?

Q2 How well can the approach detect trace links between textual entities and diagram
elements extracted using OCR and OD?

Q3 To what degree does ERID affect ArDoCo’s performance?

The following sections present the evaluation of the approach. The evaluation metrics
are detailed in Section 5.1. The Diagram Text Traceability Link Recovery (TLR) is evaluated
in regard to sentence numbers rather than textual entities. This requires a conversion
between the LinkBetweenDeAndRi instances to a representation that can be used for
the evaluation. This is further explained in Section 5.2. Section 5.3 explains how the
two additional gold standards for the evaluation were created. These gold standards are
used in Section 5.4 to evaluate the Diagram Text TLR. The impact on ArDoCo’s overall
performance is evaluated in Section 5.5. Lastly, Section 5.6 explains the threats to validity.

5.1 Metrics

The evaluation uses the same metrics that were used in prior work about ArDoCo by Keim
et al. [17] to allow comparison to their previous results. This is especially relevant for
question Q3 because ArDoCo’s performance was evaluated using these metrics in the
paper. The metrics are Precision (P), Recall (R), F1-score, Accuracy (Acc), Specificity (Spec)
and the normalized Φ coefficient Φ# . These metrics are defined in reference to True
Positive (TP), True Negative (TN), False Positive (FP), and False Negative (FN).

The evaluation consists of multiple binary classification problems. A binary classification
is the most basic classification. It is the task of classifying an input into one of two classes:
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Positive and Negative [22]. For example, a (potentially imperfect) medical test for a specific
illness may classify a test subject as infected (Positive) or not infected (Negative). This
test is a binary classifier, and the condition that represents each class is arbitrary but
fixed. Assume that an oracle exists, which is a perfect binary classifier. When comparing
a binary classifier to an oracle, the classification of an input by the binary classifier is
referred to as Predicted Outcome, and the classification of the oracle is referred to as
Actual Value. The Positive and Negative classes of the binary classifier are referred to
as Predicted Positives (PPs) and Predicted Negatives (PNs) in this context. The oracle’s
classes are referred to as (Actual) Positives (APs) and (Actual) Negatives (ANs). The
intersection of these classes is represented by True Positives (TPs), False Positives (FPs),
True Negatives (TNs), and False Negatives (FNs). This is commonly visualized in a 2G2
confusion matrix [22]:

TP FP

FN TN

AP AN
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Actual Value
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Figure 5.1: 2G2 Confusion Matrix

The results can be used to determine the classifier’s performance with the performance
metrics. To determine the confusion matrix, a classifier is tasked with classifying inputs
with known classes. In the context of this evaluation, these inputs are derived from the
gold standards. The classes are introduced for each classification problem in the following
(sub-)sections. To determine the values of TP, FP, TN, and FN, the following formulas can
be used by interpreting each class as a set:

)% = |%% ∩�% |
�% = |%% −�% |
�# = |�% − %% |
)# = )>C0; − ()% + �% + �# )

where:
)>C0; is the amount of classified inputs

Equation 5.2: Formulas for TP, FP, TN, and FN
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The equations in 5.2 have the advantage that neither the Predicted Negatives (PNs) nor
Actual Negatives (ANs) are needed in the calculations. The evaluation relies on metrics
commonly used in TLR research [17]. The metrics are listed and explained below.

Precision (P) Precision is the fraction of true positive predictions to all positive
predictions [5]. It gives information aboutwhat percentage of reported positives is correctly
classified. Precision ranges from 0, indicating that all positive predictions are false, to 1,
indicating all positive predictions are true. Precision can not be assessed without positive
predictions. A high Precision indicates that any given positive prediction is likely to be
true. The Precision can be calculated using:

% =
true positive predictions
all positive predictions

=
)%

)% + �%

Recall (R) Recall, or True Positive Rate, is the fraction of true positive predictions to
all actual positives in a classification [5]. It gives information about what percentage of
actual positives is correctly classified. Recall ranges from 0, indicating that no positive
element was predicted as positive, to 1, indicating that all positive elements were predicted
as positive. Recall can not be assessed if no positive elements exist. A high Recall indicates
that any given positive element is likely to be predicted as positive. The Recall can be
calculated using:

' =
true positive predictions

actual positives
=

)%

)% + �#

F1-score The F1-score is used to combine the metrics P and R using the harmonic
mean [37]. The F1-score is a member of the family of metrics defined by the FU -score,
which weighs R U times as much as P. For U = 1, the F1-score weighs R and P equally. The
F1-score ranges from 0 to 1, with higher numbers indicating better. It can be calculated
using:

�U = (1 + U) ∗ % ∗ '
U ∗ % + '

�1 = 2 ∗ % ∗ '
% + '

Accuracy (Acc) Accuracy is the ratio of correct predictions to total predictions. The
metric is essential in defining how much confidence can be placed in a set of predictions.
It is a combination of Precision and the Trueness (Bias), which relates to the non-random
systematic error of the classification [29]. The metric ranges from 0 to 1, with 0 indicating
that all predictions are false predictions and 1 indicating that all predictions are true
predictions. It can be calculated using the formula:

�22 =
true predictions
all predictions

=
)% +)#

)% + �# + �% +)#
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Specificity (Spec) TheSpecificity, or True Negative Rate, is the fraction of true negative
predictions to all actual negatives in a classification [17]. Therefore, Specificity is the
counterpart to Recall. It ranges from 0 to 1. A value of 0 indicates that all negatives are
falsely predicted as positive. A value of 1 indicates that all negatives are correctly predicted
as negative. The Specificity is calculated using:

(?42 =
true negative predictions

actual negatives
=

)#

)# + �%

Φ coefficient The Φ coefficient, also referred to as Matthews correlation coefficient
[27], measures how the predictions of a binary classification relate to the observed values.
The Φ coefficient ranges from values of -1 to +1. According to Matthews, a value of 0 is
comparable to random predictions. A value of +1 indicates perfect agreement between
the predictions and the observation, with -1 indicating total disagreement [27]. However,
these values can usually not be obtained [6]. Values of unity can be achieved by calculating
the maximum value Φ<0G and applying it to Φ. The Φ and the normalized Φ# are calculated
using the following equations, which are adapted from a paper by Keim et al. [17]:

%% = )% + �%

�% = )% + �#

%# = )# + �#

�# = )# + �%

'1 =
√
%% ∗�#

'2 =
√
�% ∗ %#

Φ =
)% ∗)# − �% ∗ �#

'1 ∗ '2

Φ<0G =

{
'1/'2 �% ≥ %%

'2/'1 >Cℎ4AF8B4

Φ# = Φ/Φ<0G

5.2 Diagram-to-Sentence Trace Links

A definition of a trace link is required to answer the evaluation questions and create the
gold standard. In the context of this thesis, the trace links used for evaluation consist
of a linkage between a sentence contained in the Natural Language Software Architec-
ture Documentation (NLSAD) and a diagram element from an informal diagram. The
internal representation of the trace links is called DiaTexTraceLink and is introduced in
Section 4.2. This representation is analogous in structure to the SadSamTraceLink that
exists in ArDoCo for the evaluation of its Software Architecture Documentation (SAD) to
Software Architecture Model (SAM) TLR capabilities.

Each trace link recovered by the approach consists of a linkage between exactly one
sentence and one diagram element as shown in Figure 5.3. The trace link represents an
explicit mention of a diagram element in a sentence. For the trace links created by the
approach, a trace link is tied to the existence of a RecommendedInstance that contains the
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Figure 5.3: Diagram-to-sentence Trace Links

sentence. As part of the approach, the existence (or absence) of a trace link increases (or
decreases) the confidence in the RecommendedInstance in later stages of ArDoCo. Initially,
coarse LinkBetweenDeAndRi trace links are constructed between RecommendedInstances
and diagram elements as described in Section 4.4. Diagram-to-sentence trace links are
subsequently extracted from the created LinkBetweenDeAndRi by creating a diagram-to-
sentence trace link for each sentence covered by the RecommendedInstance endpoint.

For the diagram-to-sentence trace links in the gold standard, the existence of a Recom-
mendedInstance is not required. They only need the information about which sentence
and diagram element they link. Because every project has one text file, a sentence number
is enough to identify the sentence. To identify the diagram element, its bounding box
coordinates and the name of the diagram resource are sufficient.

Gold standard and approach diagram-to-sentence trace links are compared by their
sentence numbers and bounding boxes. The OD provides the bounding boxes of diagram
elements from the approach. However, due to imprecision, these bounding boxes do not
exactly match the bounding boxes from gold standard trace links. To determine if two
diagram elements are the same, the metric Intersection over Union is used. The metric
is calculated by dividing the area of the intersection by the area of the union [35]. The
evaluation assumes an Intersection over Union score above 0.7 for bounding boxes to be
considered matches.
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5.3 Gold Standard Creation

As explained in the previous section, the possible endpoints must be known to evaluate a
set of diagram-to-sentence trace links. Additionally, a list of diagram-to-sentence trace
links between endpoints needs to exist. The endpoints, as previously described in Fig-
ure 5.3, require a list of sentences and a list of diagram elements. This thesis relies on and
extends the ArDoCo Benchmark data set [11], which includes the sentences of all projects.
Therefore, only the two additional gold standards GS3 and GS4 for the diagram elements
and the links themselves were created and added to the ArDoCo Benchmark data set:

GS1 Set of expected trace links between Sentences and Model Elements

GS2 Set of expected Unmentioned Model Elements

GS3 Set of manually extracted Diagram Elements

GS4 Set of expected trace links between Sentences and Diagram Elements

The benchmark data set contains nine project versions in total. Each project includes
files representing its NLSAD and its SAM. The data set was extended with informal
diagrams sourced as closely as possible to the original sources. Six different diagram
sources were added, covering seven of the nine project versions. The JabRef (JR) project
versions are not used for the evaluation, because no diagrams exist. Each diagram file
contains a single diagram consisting of an arbitrary amount of elements and is saved in
a standard image format (e.g., PNG, JPEG). For the projects with SAD on a website like
Teammates and BigBlueButton, the diagrams were extracted directly from the web page.
JSON was chosen as a file format because it is readable for humans and can be parsed
using Java libraries such as Jackson1. A JSON schema2 was created to ensure that the
files, as well as future extensions, provide a consistent structure to programs parsing the
data set. Because the gold standard for the diagram-to-sentence trace links depends on
the endpoints’ gold standards, the diagram element and diagram-to-sentence trace link
gold standard are combined in a single JSON structure. The structure of a gold standard
JSON file is depicted in Figure 5.4 and explained below. A combination of attributes and
relationship arrows shows the hierarchy and multiplicity due to space constraints.
GoldStandard Each file contains a GoldStandard object. The diagrams property of

this object contains an array of Diagram objects. The array contains at least one Diagram
as an element because the gold standard file should only be present if the project has
corresponding diagrams.
Diagram A Diagram is identified by its path property, which contains the relative

file path to its diagram image file as a string. The boxes property contains an array of Box
objects. A Diagram needs to have at least one Box, because Box is considered to be the most
generic diagram element, and empty diagrams are not considered. If this interpretation of
diagrams changes in the future, this restraint may be relaxed to zero instead.

1See FasterXML/jackson
2See JSON-schema.org
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5.3 Gold Standard Creation

GoldStandard

+ diagrams: Diagram[1..*]

Diagram

+ path: string

+ boxes: Box[1..*] Box

+ boundingBox: BoundingBox

+ textBoxes:  TextBox[0..*]

+ subBoxes: Box[0..*]

+ traceLinks: TraceLinkSet[0..*]

TextBox

+ text: string

+ boundingBox: BoundingBox

BoundingBox

+ x: integer

+ y: integer

+ width: integer

+ height: integer

TraceLinkSet

+ name: string

+ typedTraceLinks: TypedTraceLink[0..*]

TypedTraceLink

+ sentences: integer[0..*]

+ traceType: TraceType

«enumeration»
TraceType

ENTITY
ENTITY_COREFERENCE
OTHER_ENTITY
COMMON_NOUN
SHARED_STEM
UNCERTAIN

Figure 5.4: JSON schema in UML notation

Box A Box is the most generic form of diagram element contained by the gold standard.
The Box is identified by its BoundingBox object, which semantically denotes the position
and size of the element in theDiagram it is associated with. A Box may contain an arbitrary
amount of TextBox objects and an arbitrary amount of Box sub-boxes that are contained
within its BoundingBox. The subBoxes property was created to reflect the hierarchy that
can be found in diagrams with nested elements. At last, the Box also contains an array of
TraceLinkSet objects that describe the trace links that link to the Box as diagram element
endpoint.

TextBox The TextBox object contains its text as a string, and the BoundingBox of its
text. When compared with other TextBox objects from the same Diagram, it is uniquely
identified by the BoundingBox of its text. Semantically, a TextBox contains only its diagram
text and is part of the innermost Box surrounding it. A TextBox is descriptive and provides
information about its parent diagram element. Therefore, a TextBox does not constitute a
diagram element by itself.
TraceLinkSet A TraceLinkSet contains information about the trace links contained

by its parent diagram element. The sentence numbers of the trace link refer to the gold
standard text file with the given name. It is structured as the path to the file relative to
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the gold standard project folder, e.g., “text_2018/teastore_2018_AB.txt” for a file from
TeaStore-Historical. The typedTraceLinks property holds a set of TypedTraceLink objects.

TypedTraceLink The TypedTraceLink object contains trace links with a textual end-
point of a specific TraceType. The sentences property contains an array of integers. Each
integer is the sentence number of a sentence from the file denoted in name. Sentence
number indexing starts at one. As described previously, a diagram-to-sentence trace link
is represented by the sentence number and the parent Box. The traceType property holds a
string from the TraceType enum.
TraceType The TraceType enum is used to provide context to a trace link’s textual

endpoint. Table 5.1 provides an overview of the types. The ENTITY type semantically
describes a trace link where the textual endpoint contains the same entity as the diagram
element excluding coreferences. Coreferences are covered by the ENTITY_COREFERENCE
type instead. All other types represent negatives and are not used directly in calculating
the metrics but solely for debugging. If the sentence contains an entity with a similar
name to the diagram element entity, the OTHER_ENTITY type is used. If we consider an
ambiguously named entity “test”, it becomes evident that entity names can be similar or, in
some cases, identical to common nouns or other words that do not necessarily refer to the
entity. Such ambiguities can lead to false positives in similarity-based TLR. Some of these
negatives are added to the gold standard with the corresponding COMMON_NOUN and
SHARED_STEM types to allow easier identification of the source of potential false positives.
UNCERTAIN marks a potential trace link for discussion. ENTITY and ENTITY_COREFER-
ENCE denote positives. OTHER_ENTITY, COMMON_NOUN and SHARED_STEM denote
possible false positives. UNCERTAIN is used as a marker.

TraceType Description

ENTITY Trace link between a textual entity and a diagram element
excluding coreferences

ENTITY_COREFERENCE Trace link from a diagram element to a coreference of a
textual entity

OTHER_ENTITY False trace link between a diagram element and a different
entity

COMMON_NOUN False trace link between a diagram element and a non-
entity noun

SHARED_STEM False trace link between a diagram element and a non-
entity word

UNCERTAIN Mark a trace link for discussion

Table 5.1: Short description of the different trace types

The GoldStandard, Diagram, BoundingBox, Box and TextBox schemata cover the gold
standard GS3 as defined previously. GS4 is covered by the extension with TraceLinkSet,
TypedTraceLink and TraceType.
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5.4 Diagram Text Traceability Link Recovery

After achieving goal G1, the question Q1 concerning the Diagram Text TLR was evaluated.
In the context of this section, trace link always refers to diagram-to-sentence trace links as
described in Section 5.2 unless explicitly stated otherwise. The projects MediaStore (MS),
TeaStore (TS), TEAMMATES (TM), BigBlueButton (BBB), as well as the corresponding
historical projects, were used for the evaluation. JR was excluded from this and all other
parts of the evaluation because there were no diagram sources for the project. For this
part of the evaluation, no prior work exists. Therefore, the evaluation focuses solely on the
metrics and is not comparative. All metrics introduced in Section 5.1 were used for this
part of the evaluation. The metrics rely on the concept of TP, TN, FP, and FN, which need
to be defined for this context before they can be applied. Two trace links are considered
equal if they have matching endpoints. TP can thus be defined as the number of trace
links contained in the gold standard that match with trace links generated by the approach.
Subsequently, FP is the number of trace links generated by the approach that are not
contained in the gold standard. FN is calculated as the number of trace links from the
gold standard GS4 not included in the set of trace links generated by the approach. The
calculation of TN is based on the previous variables and the number of possible endpoint
combinations a trace link can have. The values can be calculated using the equations 5.2
with the following variable assignment:

%% = )!� Set of trace links reported by the approach
�% = )!�(4 Set of trace links in gold standard GS4

)>C0; = #(4=C4=24B ∗ ���(3
where:

#(4=C4=24B is the amount of sentences in the SAD
���(3 is the set of diagram elements in gold standard GS3

The average and weighted average were calculated for all metrics as in previous work
[17]. The weight is directly proportional to each project’s number of expected trace links,
i.e.,)!�(2. Table 5.2 shows the evaluation result for each project with the historical version
being annotated “-H”. The results for Precision (P) can be classified as excellent on both
weighted and unweighted averages using the classification of Hayes et al. [14]. The only
noticeable outlier is TM and TEAMMATES-Historical (TM-H) with a high amount of FP. A
qualitative assessment of the FP trace links shows that the approach struggles with textual
entities named after commonly used words. For example, one of the diagram elements of
TM is called “test”. It also struggles with determining the proper entity if multiple entities
share the same prefix. This is especially the case for sub-packages in package diagrams
due to naming conventions.

According to the classification scheme of Hayes, the Recall (R) is excellent on average
and good when considering the weighted average. TM and TM (Historical) again feature
the worst results. The trace links are created assuming multiple diagram elements cannot
refer to the same entity in the text unless the diagram elements are identical. This can
cause a FP to overshadow a positive, leading to a FN, which reduces the Recall.
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Project P R F1 Acc Spec Φ Φ#

MS 0.87 0.93 0.90 0.99 0.99 0.89 0.92
TS 1.00 0.74 0.85 0.97 1.00 0.85 1.00
TM 0.60 0.67 0.63 0.98 0.99 0.62 0.66
BBB 0.79 0.72 0.75 0.97 0.99 0.74 0.77
TS-H 1.00 0.92 0.96 0.99 1.00 0.95 1.00
TM-H 0.63 0.71 0.66 0.98 0.99 0.66 0.70
BBB-H 0.73 0.91 0.81 0.98 0.98 0.80 0.90
Average 0.80 0.80 0.79 0.98 0.99 0.79 0.85
w. Average 0.72 0.76 0.74 0.98 0.99 0.73 0.78

Table 5.2: Results for Diagram Text TLR with manually extracted Diagram Elements

The F1-score is excellent for both the weighted and unweighted average in reference
to the lowest Precision and Recall scores classified as excellent by Hayes et al. Both
Accuracy (Acc) and Specificity (Spec) are within 3pp of 1.00 for all projects. The Φ#

coefficient suggests a strong positive correlation for both the average and weighted average,
according to Dancey and Reidy [1]. In summary, the performance ranges from good to
excellent but suffers from ambiguously named diagram elements. This answers evaluation
question Q1.

Project P R F1 Acc Spec Φ Φ#

MS 0.81 0.93 0.87 0.98 0.98 0.86 0.92
TS 0.65 0.74 0.69 0.93 0.95 0.65 0.71
TM 0.37 0.25 0.30 0.97 0.99 0.29 0.36
BBB 0.76 0.61 0.67 0.97 0.99 0.66 0.74
TS-H 0.77 0.92 0.84 0.96 0.96 0.82 0.91
TM-H 0.51 0.39 0.44 0.98 0.99 0.43 0.50
BBB-H 0.69 0.77 0.73 0.97 0.98 0.71 0.75
Average 0.65 0.66 0.65 0.97 0.98 0.63 0.70
w. Average 0.57 0.52 0.54 0.97 0.98 0.53 0.59

Table 5.3: Results for Diagram Text TLR with automatic Diagram Recognition

After goal G3was achieved, the Diagram Text TLRwas evaluated using the automatically
extracted diagram elements from the Diagram Recognition stage to answerQ2. The process
for calculating the metrics was identical to the previous process. The weighted and
unweighted average Precision (P) decreased by 15pp. According to the classification
scheme, the achieved Precision is still considered excellent. The reduced Precision is
caused by an increased amount of FPs, as well as an increased amount of FNs. Based on
observation, the recognition misreads labels, including cases of truncated words, spelling
errors, or missed labels. These errors can only be partially resolved by the similarity-based
approach. A single truncated word can lead to many FPs. For example, consider the TS
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component “Image-Provider”. The component name contains a line break in the diagram
due to space restrictions. If the second part of the word is missed, a component “Image” is
identified, which will lead to a FP every time the common word “Image” is mentioned in
the text.

The average Recall (R) decreased by 14pp, and the weighted average Recall decreased by
24pp. The Recall decreased by 42pp for TM and by 32pp for TM-H in particular. A misread
label can push the similarity low enough to prevent a trace link, which subsequently
lowers Recall as observed. Both versions feature colored diagrams with nested diagram
elements, complex shapes, and low contrast. These variables seem to negatively impact
the OCR and OD. This causes some diagram elements and labels to be missed. When
comparing the Recall to the classification scheme, one result is acceptable, two are good,
and two are excellent. The TM results are below acceptable. Overall, the results for Recall
are acceptable on average and below acceptable on weighted average.

The F1-score is excellent on average and good for the weighted average. Φ# suggests
moderate correlation according to the classification scheme. In summary, the combined
approach can resolve reasonable spelling mistakes, but further work is required to improve
the OCR, OD, and robustness. However, it was expected that the approach would perform
worse than ArDoCo’s SAD SAM TLR when viewed in isolation.

5.5 Impact on ArDoCo

In this part of the evaluation, ArDoCo’s End-to-End performance is evaluated to answerQ3.
Similar to the evaluations in prior work, a twofold evaluation is performed to determine
ArDoCo’s SAD to SAM TLR capabilities, as well as its Inconsistency Detection capabil-
ities. The SAD to SAM TLR is evaluated in Subsection 5.5.1. The impact on ArDoCo’s
Missing Model Element (MME) detection capabilities is evaluated in Subsection 5.5.2.
Subsection 5.5.3 describes the Unmentioned Model Element (UME) detection evaluation.
All evaluated versions are based on ArDoCo release 0.22 to ensure comparability. The
evaluation is performed using the existing evaluation implementation with modifications
to allow running a different pipeline configuration. The baseline is denoted ArDoCo in
the tables. The tables include ArDoCo (Altered) as an altered version of ArDoCo, which
does not use diagrams but includes all changes made to other stages or globally. This
configuration is evaluated to determine how much of the impact can be traced back to the
diagrams and to ensure that the changes do not negatively impact ArDoCo for projects
without diagrams. The approach is named ERID in the tables and combines the changes
from ArDoCo (Altered) with the use of diagrams as described in Chapter 3. Additionally,
the evaluation distinguishes between ERID (Mock) and ERID. The distinction is made
because ERID (Mock) eliminates all inaccuracies introduced by the diagram recognition
by using the gold standard DiagramElements. Therefore, ERID (Mock) is more akin to
a best-case scenario and shows the capabilities of the approach independent from the
diagram recognition implementation. A Bold result is best for a specific project and
metric. Generally, greater can be considered better for all metrics used. To prevent bias the
comparison of metrics is between<8=(ERID (Mock), ERID) and ArDoCo (Altered) unless
otherwise indicated.
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5.5.1 SAD to SAM Traceability Link Recovery

This subsection focuses on comparing the approach’s impact on ArDoCo’s Software Ar-
chitecture Documentation (SAD) to Software Architecture Model (SAM) Traceability Link
Recovery (TLR) capabilities. The results are depicted in Table 5.4. TP, FP, TN, and FN are
defined by comparing a reported trace link to the trace links contained in the gold standard
GS1. The endpoints of a SAD to SAM trace link are a sentence number and a model
element. A reported trace link is a true positive if a trace link with the same endpoints is
contained in the gold standard. It is considered a false positive if no corresponding trace
link with the same endpoints exists in the gold standard. If the approach does not report a
trace link from the gold standard, it is considered a false negative. Every possible trace
link, which is neither reported nor contained in the gold standard, is a true negative. TN
is calculated by calculating the amount of possible endpoint combinations and subtracting
TP, FP, and FN. The values can be calculated using the equations 5.2 with the following
variable assignment:

%% = )!� Set of trace links reported by the approach
�% = )!�(1 Set of trace links in gold standard GS1

)>C0; = #(4=C4=24B ∗#">34;�;4<4=CB

where:
#(4=C4=24B is the amount of sentences in the SAD
#">34;�;4<4=CB is the amount of model elements in the SAM

ArDoCo’s SAD to SAM trace links consist of a model element unique identifier (UID)
and a sentence number in the evaluation. For example, consider the text with ten sen-
tences ( = {1, .., 10} and the model elements � and � where the trace links are formatted
as tuples. The gold standard contains the model element UID sentence number tuples
�% = {(�, 1), (�, 7)}. The approach reports the tuples %% = {(�, 1), (�, 3)}. The amount
of classified inputs is )>C0; = |( | ∗ |{�, �}| = 20. TP is the number of tuples contained by
both �% and %% , which is only | (�, 1) | = 1. The trace link from � to sentence 3 is not part
of the actual positives, so | (�, 3) | = 1 is the number of false positives. The trace link (�, 7)
is part of the gold standard but not reported and constitutes a false negative. Therefore,
�# = 1. TN can then be calculated as )# = 20 − (1 + 1 + 1) = 17.

Each project is weighted by the amount of Actual Positives from the gold standard
to calculate the weighted average. This is to prevent projects with few trace links from
disproportionately affecting the overall results. An averagewhere every project is weighted
equally is provided for comparison. According to prior work, ArDoCo outperforms similar
TLR approaches and performs excellently [17]. ArDoCo’s TLR as a baseline has excellent
Precision (P), Recall (R), and F1-score. Therefore, the approach was not expected to
noticeably improve the overall TLR results. This is consistent with the results from
Table 5.4. However, changes are visible for some individual projects.

For MS Precision worsened by 23pp from the ArDoCo baseline. Due to the implemen-
tation of abbreviation disambiguation, ArDoCo is now capable of resolving some of the
abbreviations in the MS project, such as “DB” meaning “Database”. However, this disam-
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biguation has adverse side effects. “Database” is used as both a common word and the
name of a component in the MS text. ArDoCo cannot differentiate between the use as a
common word and a component. Because of this, a trace link is created between the “DB”
model element and every mention of “Database”. The additional TPs increase the Recall of
MS by 17pp (+24%). However, this also leads to the creation of FPs for sentences using the
common word. The F1-score of MS, the harmonic mean of both metrics, is not negatively
impacted and improves by 1pp. This is because Recall was relatively low compared to
Precision, so the overall change to both metrics is considered an improvement by the
metric. The results for ERID (Mock) and ERID are identical to ArDoCo (Altered) for MS.
This is to be expected because there is no mechanism by which the approach impacts
ArDoCo’s capability to differentiate between the common use of a word and the use as a
component. For the other projects, the changes between ArDoCo and ArDoCo (Altered)
are negligible.

In the case of TM and TM-H, a large amount of FPs negatively impacts the Precision of
the baseline. Many of these FPs are because of computer- or software-related words, which
are falsely identified as textual entities. The approach disaffirms many of these textual
entities because they are not contained in the diagrams. This leads to the observed reduction
in FPs. For TM Precision improves by 18pp (+32%), which subsequently improves the F1-
score by 12pp (+17%). TM-H’s Precision increased by 13pp (+22%) with a F1improvement
of 7pp (+10%).

TS and TeaStore-Historical (TS-H) had a perfect precision score for all configurations.
This leaves MS, BBB, and BigBlueButton-Historical (BBB-H) for possible improvements
to the precision. All three projects have a precision above 0.77 for ArDoCo (Altered). As
previously explained, the approach cannot mitigate the worsening of Precision for MS.
Similarly to MS, BBB’s false positives stem from words, which have different meanings
depending on the context in which they are used. The BBB-H project is an outlier in
general because of the large version gap between the BBB-H model and the text. The text
is from 2015, but the Palladio Component Model model is from 2021. Conceptually, the
approach affirms RecommendedInstances that are part of the diagrams and disaffirms those
that are not. Therefore, the approach is not beneficial for diagrams that are inconsistent
with the model and may even be counterproductive. BBB-H is the only project where
Precision worsened. Precision decreased by 3pp (-4%), which negatively impacts the
F1-score by 1pp (-2%).

The approach does not impact Recall (R) for any of the projects. Accuracy (Acc) and
Specificity (Spec) remain within 2pp of 1.00. The impact on Φ# slightly improves for
the weighted average and is still interpreted as a strong correlation [1]. In summary,
the approach performs as expected. The approach is capable of improving the Precision
of projects that have low Precision due to falsely identified RecommendedInstances with
negligible impact on all other projects. All metrics have improved or remained equal for
the weighted average.
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Project Configuration P R F1 Acc Spec Φ Φ#

ArDoCo
ArDoCo (Altered)
ERID (Mock)

MS

ERID

1.00
0.77
0.77
0.77

0.62
0.79
0.79
0.79

0.77
0.78
0.78
0.78

0.98
0.97
0.97
0.97

1.00
0.99
0.99
0.99

0.78
0.77
0.77
0.77

1.00
0.78
0.78
0.78

ArDoCo
ArDoCo (Altered)
ERID (Mock)

TS

ERID

1.00
1.00
1.00
1.00

0.74
0.74
0.74
0.74

0.85
0.85
0.85
0.85

0.99
0.99
0.99
0.99

1.00
1.00
1.00
1.00

0.85
0.85
0.85
0.85

1.00
1.00
1.00
1.00

ArDoCo
ArDoCo (Altered)
ERID (Mock)

TM

ERID

0.56
0.56
0.74
0.74

0.88
0.88
0.88
0.88

0.68
0.68
0.80
0.80

0.97
0.97
0.99
0.99

0.98
0.98
0.99
0.99

0.69
0.69
0.80
0.80

0.88
0.88
0.88
0.88

ArDoCo
ArDoCo (Altered)
ERID (Mock)

BBB

ERID

0.88
0.88
0.88
0.88

0.83
0.83
0.83
0.83

0.85
0.85
0.85
0.85

0.99
0.99
0.99
0.99

0.99
0.99
0.99
0.99

0.84
0.84
0.84
0.84

0.87
0.87
0.87
0.87

ArDoCo
ArDoCo (Altered)
ERID (Mock)

TS-H

ERID

1.00
1.00
1.00
1.00

0.93
0.93
0.93
0.93

0.97
0.97
0.97
0.97

1.00
1.00
1.00
1.00

1.00
1.00
1.00
1.00

0.96
0.96
0.96
0.96

1.00
1.00
1.00
1.00

ArDoCo
ArDoCo (Altered)
ERID (Mock)

TM-H

ERID

0.52
0.57
0.73
0.69

0.70
0.76
0.76
0.76

0.60
0.65
0.74
0.72

0.97
0.98
0.98
0.98

0.98
0.98
0.99
0.99

0.59
0.65
0.74
0.71

0.68
0.75
0.75
0.75

ArDoCo
ArDoCo (Altered)
ERID (Mock)

BBB-H

ERID

0.81
0.81
0.78
0.78

0.62
0.62
0.62
0.62

0.70
0.70
0.69
0.69

0.98
0.98
0.98
0.98

0.99
0.99
0.99
0.99

0.70
0.70
0.68
0.68

0.80
0.80
0.77
0.77

ArDoCo
ArDoCo (Altered)
ERID (Mock)

Average

ERID

0.82
0.80
0.84
0.84

0.76
0.79
0.79
0.79

0.77
0.78
0.81
0.81

0.98
0.98
0.98
0.98

0.99
0.99
0.99
0.99

0.77
0.78
0.81
0.80

0.89
0.87
0.86
0.86

ArDoCo
ArDoCo (Altered)
ERID (Mock)

weighted
Average

ERID

0.81
0.79
0.84
0.84

0.79
0.81
0.81
0.81

0.78
0.79
0.82
0.82

0.98
0.98
0.99
0.99

0.99
0.99
0.99
0.99

0.76
0.77
0.82
0.81

0.78
0.80
0.83
0.82

Table 5.4: Results for Architecture Document to Architecture Model TLR
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5.5.2 Missing Model Element Inconsistency Detection

This part of the evaluation focuses on detecting textual entities that should be contained in
the Software Architecture Model (SAM) but are not. Such entities are classified as Missing
Model Element (MME). The evaluation of ArDoCo’s Missing Model Element (MME)
Inconsistency Detection capabilities was performed using the same benchmark data set as
previous work. The results in Table 5.5 use the same metric and format as the evaluation
in the last subsection. The approach to find MMEs is the same approach used in previous
work [17]: Each project is run |{">34;�;4<4=CB (%A> 942C)}| times. A single model element
is removed before every run. The existing trace links to the removed model element
subsequently indicate MME inconsistencies in the run. This allows using all projects
from the data set, despite none of the projects containing any MMEs by default, and
allows reusing ArDoCo’s TLR gold standard to determine MMEs. In this subsection, True
Positives (TPs) are MME inconsistencies, which cover a sentence that mentions a removed
model element. False Positives (FPs) are inconsistencies that cover sentences that do
not mention the removed element. False Negatives (FNs) are indicated by a sentence
mentioning a model element but not being covered by a MME inconsistency. Lastly, each
sentence that does not mention the removed element and is not contained by any MME
constitutes a TN. The values can be calculated for a run using the equations 5.2:

"� = model element
'" = removed model element

%% = |
=⋃
8=1

( (%""�8) |

�% = |(�(1('") |
)>C0; = #(4=C4=24B

where:
#(4=C4=24B is the amount of sentences in the SAD
%""�8 is the i-th reported MME (of n) in the run
'" is the removed model element
( (%""�8) are the sentences containing the reported MME
(�(1("�) sentences in gold standard GS1 linking to model element

As an example, consider a text with ten sentences ( = {1, .., 10} and a single model ele-
ment�with (�(1(�) = {1, 2}. In the first run '" = � is removed. TwoMMEs are reported
with ( (%""�1) = {1, 2} and ( (%""�2) = {7}. Then %% = {1, 2, 7} and �% = {1, 2}.

Since a singular result is required for each project, a weighted average is calculated over
the runs. The weight of each run is directly proportional to the number of sentences in the
text where the removed model element is mentioned normalized by the sum of all weights.
Additionally, an overall average and a weighted average are calculated over all runs from
all projects. The weights for the overall weighted average are calculated as previously
described by using the total weight of all runs combined for normalization.
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Compared to ArDoCo as a baseline, the approach achieves equal or improved precision
for six out of seven projects, with BBB-H being an outlier. However, BBB-H is an outlier
in general, with the lowest scores across all metrics for both the approach and the baseline.
The reasons for this are explained in Subsection 5.5.1. However, the overall metric changes
for BBB-H are negligible relative to the already poor performance of the baseline.

TM and TM-H are the largest projects contained in the data set, and while the baseline
achieves high Recall (R), both projects suffer from low Precision (P). The approach greatly
increases the Precision for both projects. The MME detection is based on the SAD to
SAM TLR, which improved for both projects. It is also affected by the MDE detection
because a MDE lowers the confidence of a RecommendedInstance. This can lead to the
RecommendedInstance being filtered out. The Precision increases by 44pp from 18% to 62%
for TM independent of whether the mock was used. For TM-H, an increase of 14pp is
achieved using the mock. A 29pp increase is observed when using ERID. The discrepancy
is due to mistakes in the automatic diagram extraction, which coincidentally disaffirms
some RecommendedInstances that were responsible for False Positives (FPs). This result
demonstrates the importance of evaluating with and without the mock.

Regarding Precision, the change between the baseline and ArDoCo (Altered) is negligible
for all projects except MS. The altered version achieves more than twice as high Preci-
sion with an increase of 31pp. As previously explained in Subsection 5.5.1, MS contains
abbreviations in its model, which the baseline can not resolve. For example, the Recom-
mendedInstance for “Database” is falsely detected as a MME in the baseline, despite the
existence of the corresponding “DB” model element. This is not the case in the altered ver-
sion. The approach increases the Precision further by 40pp, leading to a total improvement
of 69pp (or about 328%).

Overall, Precision increased by 28pp (+66%) on average and by 31pp (+79%) on weighted
average. Precision can be increased by increasing the amount of TPs or reducing the
amount of FPs. Trying to reduce FPs may lead to the reduction of TPs, which negatively
impacts the Recall. However, the approach reduces Recall by only -3pp (-6%) on average
and -3pp (-5%) on weighted average, which is a negligible change when compared to the
overall Precision improvement. The approach achieves the highest Precision increase for
TS-H with 84pp (+525%) while retaining its excellent recall with a decrease of -6pp (-6%).
This result and the overall result show that the approach can reduce the amount of FPs
without affecting the TPs disproportionately.

The overall improvement of the F1-score further corroborates the previous statement.
The F1-score increases by 12pp (+36%) on average and 20pp (+55%) on weighted average.
BBB is the only project with a reduced F1-score of -3pp (-10%). BBB has a relatively high
Precision and low Recall compared to the other projects. Therefore, the negative effect on
Recall affects BBB relatively strongly with a relatively weak positive effect on Precision,
which in sum has a negative effect on the F1-score.

Accuracy (Acc) increased or remained equal for all projects except BBB-H. In the case
of BBB-H, the approach identifies slightly more TPs but suffers from more FPs (↔ less
TNs). This negatively impacts the accuracy by -7pp (-9%). The Specificity (Spec) of BBB-H
decreased by -8pp (-9%) for the same reason. However, the approach achieves an overall
increase of 9pp (+10%) on average and 15pp (+18%) on weighted average, pushing the
Accuracy over 90% in both cases. The Specificity, or True Negative Rate, increases by 11pp
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(+12%) on average and by 17pp (+21%) on weighted average. In both cases, the overall
Specificity is 96%.

The Φ# -coefficient decreases by 0.02 on average but improves by 0.03 on weighted
average. However, the changes are too small to affect the interpretation of Φ# [1].

In summary, the approach positively affects Precision, F1-score, Accuracy, and Specificity
with negligible changes to Recall and Φ# .
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Project Configuration P R F1 Acc Spec Φ Φ#

ArDoCo
ArDoCo (Altered)
ERID (Mock)

MS

ERID

0.21
0.50
0.90
0.90

0.79
0.72
0.72
0.72

0.33
0.57
0.68
0.68

0.70
0.91
0.95
0.95

0.69
0.92
0.96
0.96

0.23
0.51
0.72
0.72

0.68
0.69
0.74
0.74

ArDoCo
ArDoCo (Altered)
ERID (Mock)

TS

ERID

0.96
0.96
1.00
0.96

0.70
0.70
0.70
0.70

0.79
0.79
0.80
0.79

0.96
0.96
0.96
0.96

1.00
1.00
1.00
1.00

0.81
0.81
0.83
0.81

0.95
0.95
1.00
0.95

ArDoCo
ArDoCo (Altered)
ERID (Mock)

TM

ERID

0.18
0.18
0.62
0.62

0.75
0.75
0.71
0.71

0.28
0.28
0.54
0.54

0.85
0.85
0.97
0.97

0.85
0.85
0.97
0.97

0.29
0.29
0.58
0.58

0.70
0.70
0.69
0.69

ArDoCo
ArDoCo (Altered)
ERID (Mock)

BBB

ERID

0.89
0.89
0.94
0.94

0.46
0.46
0.38
0.38

0.43
0.43
0.39
0.39

0.96
0.96
0.96
0.96

0.99
0.99
0.99
0.99

0.54
0.54
0.55
0.55

0.65
0.65
0.82
0.82

ArDoCo
ArDoCo (Altered)
ERID (Mock)

TS-H

ERID

0.16
0.16
1.00
0.84

0.98
0.98
0.92
0.92

0.28
0.28
0.92
0.88

0.38
0.37
1.00
0.98

0.29
0.28
1.00
0.99

0.15
0.14
0.95
0.87

0.94
0.94
1.00
0.91

ArDoCo
ArDoCo (Altered)
ERID (Mock)

TM-H

ERID

0.17
0.19
0.31
0.46

0.63
0.70
0.70
0.70

0.26
0.29
0.42
0.50

0.86
0.87
0.94
0.96

0.87
0.88
0.94
0.96

0.26
0.30
0.44
0.54

0.57
0.65
0.67
0.68

ArDoCo
ArDoCo (Altered)
ERID (Mock)

BBB-H

ERID

0.09
0.09
0.07
0.07

0.18
0.18
0.21
0.21

0.11
0.11
0.11
0.11

0.81
0.81
0.74
0.74

0.87
0.87
0.79
0.79

0.02
0.02
-0.00
-0.00

0.04
0.04
-0.01
-0.01

ArDoCo
ArDoCo (Altered)
ERID (Mock)

Average

ERID

0.37
0.42
0.70
0.68

0.56
0.55
0.52
0.52

0.28
0.33
0.45
0.45

0.80
0.84
0.93
0.93

0.81
0.85
0.96
0.96

0.27
0.31
0.44
0.44

0.53
0.55
0.53
0.54

ArDoCo
ArDoCo (Altered)
ERID (Mock)

weighted
Average

ERID

0.36
0.39
0.70
0.69

0.66
0.67
0.64
0.64

0.33
0.36
0.56
0.56

0.77
0.79
0.94
0.94

0.76
0.79
0.96
0.96

0.23
0.24
0.47
0.48

0.57
0.58
0.61
0.61

Table 5.5: Results for ArDoCo’s Missing Model Element (MME) Inconsistency Detection
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5.5.3 Unmentioned Model Element Inconsistency Detection

A model element is classified as Unmentioned Model Element (UME) if no corresponding
textual entity exists. This subsection focuses on the evaluation of ArDoCo’s UME detection
capabilities using the different configurations. The results are depicted in Table 5.6. UME
detection is performed by running ArDoCo’s Inconsistency Detection once per project
and comparing the reported UMEs to the UME gold standard GS2. UMEs are uniquely
identified by their model element UID. A UME is classified True Positive (TP) if its model
element is contained in the set of model elements from the gold standard. If this is not the
case, it is considered False Positive (FP). If a model element is part of the gold standard,
but no UME with a matching model element is reported, the absence of a UME for the
model element is classified as False Negative (FN). The number of True Negatives (TNs)
is the number of model elements without a reported UME, which are neither reported
nor contained in the gold standard and is calculated using the equations 5.2 with variable
assignment:

%% = *"�� Set of reported Unmentioned Model Elements
�% = *"��(1 Set of Unmentioned Model Elements from GS2

)>C0; = #">34;�;4<4=CB #">34;�;4<4=CB is the amount of model elements

The metrics in Table 5.6 show that the values did not change for all projects except
MediaStore (MS). The approach is designed to adjust the confidence in textual entities
depending on whether they are present in the diagrams. Reducing the confidence in a
RecommendedInstance can only impact the UME if it is a falsely identified textual entity
that coincidentally covers an unrelated model element. This scenario does not occur in the
data set. By increasing the confidence in a RecommendedInstance, a textual entity that was
falsely filtered due to low confidence may be preserved, which could prevent a UME FP in
theory. However, this scenario does not occur in the data set either. In general, ArDoCo
performs excellently at detecting UMEs, with five projects achieving a perfect score on all
metrics. The two projects that do not have perfect scores are MS and BBB-H.

MS has perfect Recall (R), but falsely reports “DB” and “FileStorage” as UME, when
using the ArDoCo baseline. The approach can not impact the “FileStorage” UME because
the naming is inconsistent between the model and text. “FileStorage” is referred to as
“DataStorage” in the text and diagrams. The approach affirms the “DataStorage” Rec-
ommendedInstance but can not resolve the inconsistent naming. The falsely reported
“DB” UME is no longer reported by ArDoCo (Altered), ERID (Mock), and ERID because
the abbreviation disambiguation is capable of identifying the corresponding “Database”
RecommendedInstance in the text. This improves the Precision by 13pp (+19%) and the
F1-score by 9pp (+11%) without affecting other metrics.

Due to its large version gap, the BBB-H project has the worst metrics of all projects for
UME detection. As explained in Subsection 5.5.1, the approach cannot resolve this issue.
In summary, the approach performs as expected and does not negatively impact the UME
detection capabilities of ArDoCo. Furthermore, the abbreviation disambiguation that was
implemented positively affects the UME detection for MediaStore.
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Project Configuration P R F1 Acc Spec Φ Φ#

ArDoCo
ArDoCo (Altered)
ERID (Mock)

MS

ERID

0.67
0.80
0.80
0.80

1.00
1.00
1.00
1.00

0.80
0.89
0.89
0.89

0.95
0.97
0.97
0.97

0.94
0.97
0.97
0.97

0.79
0.88
0.88
0.88

1.00
1.00
1.00
1.00

ArDoCo
ArDoCo (Altered)
ERID (Mock)

TS

ERID

1.00
1.00
1.00
1.00

1.00
1.00
1.00
1.00

1.00
1.00
1.00
1.00

1.00
1.00
1.00
1.00

1.00
1.00
1.00
1.00

1.00
1.00
1.00
1.00

1.00
1.00
1.00
1.00

ArDoCo
ArDoCo (Altered)
ERID (Mock)

TM

ERID

1.00
1.00
1.00
1.00

1.00
1.00
1.00
1.00

1.00
1.00
1.00
1.00

1.00
1.00
1.00
1.00

1.00
1.00
1.00
1.00

0.00
0.00
0.00
0.00

1.00
1.00
1.00
1.00

ArDoCo
ArDoCo (Altered)
ERID (Mock)

BBB

ERID

1.00
1.00
1.00
1.00

1.00
1.00
1.00
1.00

1.00
1.00
1.00
1.00

1.00
1.00
1.00
1.00

1.00
1.00
1.00
1.00

1.00
1.00
1.00
1.00

1.00
1.00
1.00
1.00

ArDoCo
ArDoCo (Altered)
ERID (Mock)

TS-H

ERID

1.00
1.00
1.00
1.00

1.00
1.00
1.00
1.00

1.00
1.00
1.00
1.00

1.00
1.00
1.00
1.00

1.00
1.00
1.00
1.00

1.00
1.00
1.00
1.00

1.00
1.00
1.00
1.00

ArDoCo
ArDoCo (Altered)
ERID (Mock)

TM-H

ERID

1.00
1.00
1.00
1.00

1.00
1.00
1.00
1.00

1.00
1.00
1.00
1.00

1.00
1.00
1.00
1.00

1.00
1.00
1.00
1.00

1.00
1.00
1.00
1.00

1.00
1.00
1.00
1.00

ArDoCo
ArDoCo (Altered)
ERID (Mock)

BBB-H

ERID

0.50
0.50
0.50
0.50

0.75
0.75
0.75
0.75

0.60
0.60
0.60
0.60

0.94
0.94
0.94
0.94

0.96
0.96
0.96
0.96

0.58
0.58
0.58
0.58

0.73
0.73
0.73
0.73

ArDoCo
ArDoCo (Altered)
ERID (Mock)

Average

ERID

0.86
0.88
0.88
0.88

0.96
0.96
0.96
0.96

0.88
0.90
0.90
0.90

0.98
0.98
0.98
0.98

0.98
0.99
0.99
0.99

0.88
0.90
0.90
0.90

0.95
0.95
0.95
0.95

ArDoCo
ArDoCo (Altered)
ERID (Mock)

weighted
Average

ERID

0.84
0.87
0.87
0.87

0.95
0.95
0.95
0.95

0.86
0.88
0.88
0.88

0.98
0.98
0.98
0.98

0.98
0.99
0.99
0.99

0.84
0.86
0.86
0.86

0.90
0.90
0.90
0.90

Table 5.6: Results for ArDoCo’s Unmentioned Model Element Inconsistency Detection
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5.6 Threats to Validity

To assess threats to validity, the guidelines for conducting and reporting case study
research in software engineering by Runeson and Höst [36] are used in this section. The
four separate evaluation parts imply multiple threats to validity.

Construct Validity Construct validity concerns whether the measures represent what
the researcher intended to measure. The evaluation is backed by quantitative measures
commonly used in TLR [17]. The evaluation is performed using the same process as
previous work. By comparing to the gold standards, the results are quantified without
requiring a subjective interpretation. This reduces bias and the possibility of misinter-
preting a construct. To ensure that measures are not distorted by changes to the general
functionality of ArDoCo outside of the approach, these changes are separated into the
different configurations used by the evaluation.

Internal Validity Common threats to the Internal Validity are History , Maturation and
Instrumentation [43]. The threats are related to ArDoCo, the various gold standards, and
the approach. ArDoCo is an evolving software that received multiple updates during
this work. This affects the program itself (ArDoCo Core), as well as the data set and gold
standards. AHistory effect occurs if ArDoCo’s capabilities changed outside of the approach
between the separate versions used to compare the capabilities. To prevent this, ArDoCo
0.22 is used as a shared baseline version in the evaluation. Without countermeasures
Maturation of ArDoCo’s Benchmark data set and the contained gold standards may also
affect the evaluation outcome. This can occur because the gold standard is updated to add
missing information or remove wrong information. During the duration of this work, the
gold standard was integrated into the ArDoCo Core project, expanded with code models,
and its file structure was restructured. However, because it is now integrated into ArDoCo
Core and all evaluations share the same baseline, they all share the same Benchmark data
set baseline.

The Instrumentation effect can occur if the way measurements of metrics are performed
changes between evaluations. A shared measurement process is used to mitigate this effect
where possible. This is achieved by using the same evaluation test suite across all versions
in the case of the End-to-End evaluation in Section 5.5. The evaluation test suite is adapted
to use the custom pipelines and extended projects for the different configurations evaluated
by this work. However, the adaption does not change how the metrics are calculated. The
evaluation of the Diagram Text Traceability Link Recovery is not comparative because
prior work could not perform Diagram Text TLR. Still, the same formulas are used to
calculate the metrics.

The creation of the GS3 and GS4 by the author is a threat to the Internal Validity of
the evaluation because it may introduce a bias. To prevent this bias, the gold standard
creation described in Section 5.3 was performed at the beginning of the implementation.
If uncertainty about the validity of an entry to the gold standard arose, it was discussed.
The selection of diagrams was determined with the primary advisor, and all diagrams
are sourced from the original data set sources. The diagram element gold standard GS3
contains all diagram elements and their associated text boxes, irrespective of whether
or not they are relevant to the approach. This includes information detrimental to the
approach, such as text boxes containing software terminology. If a corresponding model
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element to a diagram element exists, the model element trace links are used as a baseline
to mitigate the bias for the Diagram Text TLR.
External Validity Whether the results achieved by the approach are valid under dif-

ferent circumstances is a threat to validity. This is referred to as External Validity and
transferability [9]. The informal diagrams cover shapes like hexagons, boxes, and packages,
ranging from monochrome to colored. However, the implementation of the approach
does not rely on color or a particular geometric shape. Therefore, the approach should
be able to work for any diagram element containing text. However, not every shape can
be detected due to the limitations of the diagram recognition. This could be improved,
but the OD algorithm is not the subject of this work. The overall transferability also
depends on the transferability of ArDoCo. The projects from the Benchmark data set differ
in architecture style, age, and size to reduce bias [17]. This promotes transferability by
mitigating overfitting the approach to a particular project’s circumstances.
Reliability The Reliability is the extent to which different researchers can reproduce

the results of the same study under the same conditions. The results of the approach
depend solely on the project version and the Benchmark version. Measures are taken
programmatically to ensure that each project’s result is deterministic and reproducible.
ArDoCo’s Benchmark data set is embedded in the project, which allows any researcher
to reproduce the results as long as they have access to the repository and can run the
program on their machine.
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Using informal diagrams to aid in textual Entity Recognition (ER) is a novel approach to
the best of our knowledge. However, the task is related to the research domain of Soft-
ware Architecture Documentation (SAD), Traceability Link Recovery (TLR), and informal
diagrams in general. This section contains an overview of related work in these domains.

Ding et al. evaluate different Open Source Software (OSS) sources in a survey to deter-
mine how OSS communities use SAD. They evaluate 2,000 OSS projects and find that SAD
is scarce in OSS, with only 108 projects having any SAD. The survey differentiates between
Freelance, Industry, and Research projects. Freelance projects are the most common type of
OSS projects, but also the least likely type to provide SAD with only 3.8%. Nonetheless,
the observed format and architectural language distribution are relevant to this work.
According to Ding et al., the most prevalent architectural language is natural language,
with 88.9% presence. The next most prevalent languages are informal diagrams (41.7%)
and Unified Modelling Language (17.6%). These three architectural languages are also
popular in industry. The architectural information conveyed by the diagrams is most
commonly about the model and system components. Ding et al. observe that natural
language and diagrams are popular in agile OSS development because they are the simplest
architectural languages. Another observation is that the most common formats for SAD
in OSS are HTML and pictures. The survey affirms that the prerequisites of the approach,
natural language, and informal diagrams, are prevalent in documented OSS. The survey
also affirms the need for optical processing of pictures in SAD and that the perception
of diagrams conveying information regarding the model and components of a system is
consistent with their use in practice. This agrees with the assumptions made by this work.

Shaw and Clements [8] classify software architecture styles to formalize commonly
recognized styles of problem classes. They observe that software architectures are usually
expressed in diagrams consisting of lines and boxes and informal prose. They identify
components and connectors as the primary constituents of architecture. According to
Shaw and Clements, not every style suits every problem, but specific problems can be
depicted using distinct styles. Even though informal diagram styles do not adhere to
formal constraints, they appeal to common knowledge or intuition and are repeatedly
used by system builders. The observations by Shad and Paul are relevant to this work
because they propose that common styles are reused in informal diagrams. We can use
this information to determine the styles of informal diagrams that may be of interest to our
approach and to determine limitations. However, it is observed that the style of informal
diagrams is often a combination of aspects from multiple styles in practice.

Jongeling et al. [16] propose an approach to turn informal diagrams into flexible blended
models. They identify the lack of defined semantics and a workable representation as
problems. Their approach bisects diagrams into a model part with defined syntax and
semantics and a preserved remainder that can not be resolved. Transformers are used to
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translate the informal diagram into this bisection or back, creating a blended modeling
loop. An approach for diagram recognition is presented, where an additional legend can
be supplied to define the metamodel used in the diagram. This approach was used with
a script for consistency checking in an evaluative case study. A flexible blended model
could be used to determine important entities in an informal diagram, which could be
used to perform Diagram Text TLR as proposed by this work. However, the approach by
Jongeling et al. is not fully automatic, requires capturing the diagram’s metamodel, and
was not evaluated quantitatively.

In a paper by Kleffmann et al. [20], TLR is used between informal diagram sketches to
discover inconsistencies between sketches in collaborative sketching. They create trace
links by observing the behavior of stakeholderswhenworkingwith different artifacts in situ
and additionally analyze extracted textual information using the Similarity Metrics (SMs)
Levenshtein distance and Latent Semantic Indexing. To counter difficulties with poor
handwriting, they modify the Levenshtein distance to be less punishing for similarly
looking characters. Sketches are regarded as documents, and Latent Semantic Indexing
is used with a query word. Results surpassing a threshold will be used to create a trace
link. Inconsistencies are discovered using impact analysis. The paper’s approach was
evaluated in an additional paper by Kleffmann et al. [21]. Latent Semantic Indexing was
replaced with Vector Support Machine, which is faster and better for small document sizes.
The approach achieved a Precision of 0.93 and a Recall of 0.90. However, the trace links
are between different diagrams or a diagram and an entire document. In comparison, the
approach proposed by this work is not in situ. The approach also needs to create trace
links between finer endpoints than informal diagrams and entire documents. The in situ
approach by Kleffmann et al. uses a mix of prospective and retrospective TLR methods
but our scenario is limited to retrospective methods. Kleffmann et al. propose using a
modified Levenshtein distance, where homoglyphs are not counted as errors but rewarded
less than an exact match. Our approach relies on multiple SMs, and not all artifacts are
affected by homoglyphs. Therefore, this work proposes using a configurable character
match function for flexibility instead.

Spanoudakis et al. [40] present an approach to automatically generate traceability
relations between textual requirements and object models expressed in Unified Modelling
Language (UML). Similarly to Architecture Documentation Consistency (ArDoCo), the
TLR uses heuristic rules based on grammar to match syntactically related terms in the
text to object models. This is achieved by automatically processing the text with Part Of
Speech (POS) and applying traceability rules. The system calculates belief functions to
determine its certainty in the correctness of traces and rules. In a preliminary case study,
Spanoudakis et al. demonstrate that the belief functions can be used to adjust the rule
deployment. In contrast to this work, the object model used in the paper adheres to the
formal UML metamodel. The approach was revised in 2004 but is still limited to object
models specified in UML and thus not applicable to informal diagrams [41].
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This work presented an approach to improve the Entity Recognition (ER) in Software
Architecture Documentation (SAD). The SAD artifact contains Natural Language Software
Architecture Documentation (NLSAD), which is often accompanied by informal diagrams.
Informal diagrams consist of geometric shapes and text and do not adhere to a formal
metamodel. The Entity Recognition in Software Documentation Using Trace Links to
Informal Diagrams (ERID) approach uses the informal diagrams to perform a Traceability
Link Recovery (TLR) between candidates for textual entities and diagram elements. ERID
adds the two stages Diagram Connection Generator and Diagram Inconsistency Checker
to the Architecture Documentation Consistency (ArDoCo) framework. The Diagram
Connection Generator stage uses the result of the Diagram Recognition stage provided by
Linking Sketches and Software Architecture (LiSSA) to perform the TLR. The trace links
are subsequently used in the Diagram Inconsistency Checker stage to adjust the confidence
in candidates for textual entities. The adjustment is based on heuristics and depends on the
diagram coverage. The confidence reward for being covered is inversely proportional to the
number of covered candidates. The confidence punishment is proportional to the number
of covered candidates. Changes are performed outside of the ERID stages to facilitate the
approach. A process is integrated into the Diagram Recognition to calculate references for
diagram elements that can be used for similarity-based comparisons. A global abbreviation
disambiguation is implemented to allow resolving abbreviations that may occur due to
space constraints or convenience in both the model and informal diagrams. A good F1-
score of 0.54 is achieved for the Diagram Text TLR using the automatic diagram element
extraction from images of informal diagrams.

The approach can identify and punish candidates of textual entities not contained in
the diagrams. However, ERID has the limitation that it can not differentiate between
the common use of a word and the use as a named entity. Another limitation is that the
approach can only eliminate computer- and software-related terminology from text boxes
but not supplemental text in general. This is a problem because supplemental text can
lead to the creation of false diagram element references. The approach is based on the
assumption that the informal diagrams contain information about entities described by
the text. Nonetheless, the approach proves effective across a data set containing seven
project versions spanning four projects of different architecture styles and project sizes.

The approach can be useful for tasks requiring Named Entity Recognition (NER) in a text
accompanied by informal diagrams. This is shown by the integration of the approach into
ArDoCo to reduce the number of falsely identified textual entities. ERID is inserted after
the model and text are processed separately and candidate textual entities are created. The
approach then adjusts the confidences of the candidate textual entities, which serves as a
prefiltering step to the inconsistency detection based on the textual entities and linkage
information. This improves Precision (P) from 0.39 to 0.70 with a negligible 0.67 to 0.64
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decrease to Recall. F1 (0.36→0.56), Accuracy (0.79→0.94) and Specificity (0.79→0.96) also
benefit from this.

The approach is affected by the optical processing of informal diagrams. In the evaluation
of the Diagram Text TLR, a worsening of F1 from 0.74 to 0.54 was observed when relying
on the automatic optical processing. A qualitative assessment pointed to issues pertaining
to misread labels, complex nested hierarchies, and the process of creating diagram element
references. The robustness of the approach needs to be further investigated to determine
whether these issues can be mitigated independent of the optical processing. If this
is not the case, future work could include improvements to the Object Detection (OD)
and Optical Character Recognition (OCR) used in the Diagram Recognition. ArDoCo
is currently being extended to include Code Traceability. Therefore, the impact of the
approach on tasks such as SAD Code TLR and SAD SAM Code TLR could be the subject
of future work. Currently, the approach considers neither the shape nor the color of
informal diagrams. This information could be used to develop heuristics considering the
relevancy of a particular diagram element or text box in future work. For example, if a
diagram element contains multiple text boxes and a text box has low contrast relative
to its background color, the text from the text box may be less relevant. Another aspect
that could be considered is the connections between diagram elements and positional
information. Currently, only parent-child relationships are considered. Additionally,
the approach primarily impacts the confidence of candidate textual entities. Integrating
the information from informal diagrams into the clustering process could improve the
creation of candidate textual entities. The information is already present in the form of
diagram-backed noun mappings but is not used when they are further clustered as of
now.
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