
X =1.00
X =0.01
perf

lossSD
Software Design and Quality

Token-based Plagiarism Detection for
Statecharts

Bachelor’s Thesis of

Jonas Strittmatter

at the Department of Informatics
KASTEL – Institute of Information Security and Dependability

Reviewer: Prof. Dr. Ralf H. Reussner
Second reviewer: Prof. Dr.-Ing. Anne Koziolek
Advisor: M.Sc. Timur Sağlam
Second advisor: M.Sc. Jan Wittler

28. November 2022 – 5. April 2023

Karlsruher Institut für Technologie
Fakultät für Informatik
Postfach 6980
76128 Karlsruhe

This document is licensed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0): https://creativecommons.org/licenses/by/4.0/deed.en

https://creativecommons.org/licenses/by/4.0/deed.en

I declare that I have developed and written the enclosed thesis completely by myself. I
have submitted neither parts of nor the complete thesis as an examination elsewhere. I
have not used any other than the aids that I have mentioned. I have marked all parts of
the thesis that I have included from referenced literature, either in their original wording
or paraphrasing their contents. This also applies to �gures, sketches, images and similar
depictions, as well as sources from the internet.

Karlsruhe, April 5, 2023

. .
(Jonas Strittmatter)

Abstract

In the �eld of software engineering, existing plagiarism detection systems have primarily
focused on detecting cases of plagiarism in code. However, other artifacts, such as models,
also play a crucial role in the development process. Statecharts, in particular, are used to
model the behavior of a system. This thesis investigates the applicability and challenges
of applying token-based plagiarism detection systems to statecharts. We extend the
plagiarism detector JPlag to support detecting cases of plagiarism in statecharts. Our
approach is evaluated using a dataset of student assignments from a modeling course,
where we generate plagiarized statecharts by adopting common obfuscation attacks. We
study the e�ects of the token-extraction strategy, sorting techniques, and the minimum
token match parameter. The results suggest that an approach tailored to the speci�c kind
of model, such as statecharts, works better than a generic solution for models.

iii

Zusammenfassung

Im Bereich der Softwaretechnik haben existierende Plagiatserkennungssysteme haupt-
sächlich darauf abgezielt, Fälle von Plagiaten in Code zu erkennen. Allerdings spielen
auch andere Artefakte, wie Modelle, eine entscheidende Rolle im Entwicklungsprozess.
Insbesondere werden Zustandsdiagramme verwendet, um das Verhalten eines Systems zu
modellieren. Diese Arbeit untersucht die Anwendbarkeit und Herausforderungen bei der
Anwendung von Token-basierten Plagiatserkennungssystemen auf Zustandsdiagramme.
Wir erweitern das Plagiatserkennungssystem JPlag, um die Erkennung von Plagiatsfällen
in Zustandsdiagrammen zu unterstützen. Unser Ansatz wird anhand eines Datensatzes
bestehend aus studentischen Abgaben aus einem Modellierungskurs evaluiert, wobei wir
durch Anwendung gängiger Verschleierungsmethoden plagiierte Zustandsdiagramme
generieren. Wir untersuchen die Auswirkungen der Token-Extraktionsstrategie, Sortie-
rungstechniken und der minimalen Token-Länge. Die Ergebnisse legen nahe, dass ein auf
die spezi�sche Art von Modell, wie Zustandsdiagramme, zugeschnittener Ansatz besser
funktioniert als eine generische Lösung für Modelle.

v

Contents

Abstract iii

Zusammenfassung v

1. Introduction 1

2. Foundations 3
2.1. Plagiarism . 3
2.2. Plagiarism Detection . 3

2.2.1. JPlag . 3
2.2.2. Minimum Token Match . 4

2.3. Statecharts . 4
2.3.1. Itemis CREATE . 5
2.3.2. SCXML . 5

3. RelatedWork 9
3.1. Clone Detection . 9

4. Analysis 11
4.1. Di�erences between Models and Code . 11
4.2. Applying Obfuscation Attacks to Statecharts 11
4.3. Immunity Against Selected Obfuscation Attacks 13

4.3.1. Sorting of Model Objects . 13
4.3.2. Recursive Sorting Algorithm . 13
4.3.3. Simple Sorting Algorithm . 15

5. Token-Based Plagiarism Detection for Statecharts 17
5.1. Architecture . 17
5.2. Parsing . 17

5.2.1. Parsing SCXML �les . 18
5.2.2. Parsing Create �les . 18

5.3. Token Extraction . 19
5.3.1. Simple Token Extraction . 20
5.3.2. Handcrafted Token Extraction . 21
5.3.3. Implementation . 23

5.4. Visualization . 24

6. Evaluation 27
6.1. QGM Plan . 27

vii

Contents

6.2. Methodology . 27
6.3. Results and Discussion . 30

6.3.1. Impact of Minimum Token Match 30
6.3.2. Impact of the Token Extraction Strategy 31
6.3.3. Impact of Sorting . 34
6.3.4. Comparison of the SCXML and Create language modules 36

6.4. Threats to Validity . 37
6.5. Limitations . 38

7. Future Work 41

8. Conclusion 43

Bibliography 45

A. Appendix 49
A.1. Evaluation . 49

A.1.1. Impact of Minimum Token Match 49

viii

1. Introduction

Software plagiarism is an issue that many academics have to deal with when teaching
programming courses [11]. With an increasing number of assignments the task of detecting
plagiarism by hand quickly becomes unfeasible. Numerous tools have been created over
the years that are able to detect possible cases of plagiarism. Currently, the majority
of existing plagiarism detection systems work directly on the source code of students’
submissions.
In recent years, a di�erent approach in software development has gained popularity:

model-driven software engineering (MDSE). Models can be thought of as an abstraction
of reality. A model can emerge from the observation of multiple objects that share some
commonalities. It reduces the set of properties of the original object which makes it easier
to reason about it [9].

Statecharts, as a speci�c kind of models, are visual formalisms to represent the behavior
of complex systems. As such, they are applied across di�erent industries such as the auto-
motive, aerospace or telecommunications industries [34, 8, 22]. In academia, statecharts
are used to teach MDSE. For example, students are asked to create statecharts from natural
language requirements to model a system. The statecharts are then used to generate
executable code that simulates the behavior of the system [10].

Established token-based plagiarism detection systems for programming languages such
as Java or C++ have been in use for many years. In contrast, the application of the same
techniques in the realm of models has not been well-studied and extensively evaluated in
practice. For instance, the popular plagiarism detector JPlag only recently added support
for metamodels [28].

In this thesis we extend JPlag with a new language module for statecharts. Since there
are multiple formats to specify statecharts, each focusing on di�erent aspects, we develop
two independent language modules. The �rst module supports statecharts in the format
used by itemis CREATE [3], a toolkit for creating and simulating statecharts. The second
module can be applied to statecharts in a more general XML-based format (SCXML).
For each module, two token extraction strategies with di�erent levels of granularity are
developed and compared.

Obfuscation attacks are a type of plagiarism technique in which an individual modi�es
a submission in such a way as to hide the fact that the work was copied from someone else.
The goal is to evade detection by plagiarism detection tools. We adapt common obfuscation
attacks to be applied to statecharts and develop a program that can automatically generate
modi�ed statecharts from existing ones.
This program is applied to a real-world dataset of statecharts to generate a set of

plagiarized statecharts. Using these plagiarized statecharts, the ability of both language
modules to detect plagiarisms is compared to that of an existing language module that
supports general instances of models created with the Eclipse Modeling Framework (EMF)

1

1. Introduction

[27]. It is demonstrated that our specialized language modules perform better than a
generic approach for models. Further, the importance of sorting of statechart elements is
discussed as a measure against certain obfuscation attacks.

2

2. Foundations

2.1. Plagiarism

Plagiarism is commonly de�ned as the act of copying someone else’s work and presenting
it as one’s own without giving credit to the original author [19]. Plagiarized programs
represent a particular point of interest. Novak et al. analyzed 150 papers on plagiarism
detection and found out that the most used de�nition on what constitutes plagiarism in
software is the following: "A plagiarized program can de�ned as a program which has
been produced from another program with a small number of routine transformations."
[24]

2.2. Plagiarism Detection

Among the widely used plagiarism detection tools today are Moss [5, 35] and JPlag [18].
This thesis shall focus on JPlag for the simple reason that it is an established and open-
source program. The source code of Moss, on the other hand, is not accessible to the public
and can only be used as a web-service hosted on Stanford servers, making it challenging
to contribute our work implemented in this thesis.

2.2.1. JPlag

The following section provides a brief overview of some of the characteristics of JPlag
relevant for this thesis. JPlag has been developed in 1995 at the University of Karlsruhe
[25]. In 2000 when the �rst technical report on JPlag was written, only four programming
languages were supported: Java, C, C++ and Scheme [26]. Today, JPlag supports plagiarism
detection for many more languages (albeit with varying levels of maturity). Recently (in
June 2022), a language module for EMF metamodels has been added [28].
JPlag works in four main steps: �rst, the language module for the selected language

parses (for languages such as Java) or scans (for languages such as C++) the input programs.
Existing language modules are typically structured as seen in Figure 2.1. Next, an abstract
syntax tree (AST) is created that describes the structure of a program.
The Parser class takes in a set of �les that it parses and turns them into a list of

tokens which form an abstraction from the underlying language. In the case of the Java
language module, a statement such as if (s == null) return -1; is turned into the three tokens
J_IF_BEGIN, J_RETURN and J_IF_END. This step entails �ltering out certain semantical
information such as types of variables or method signatures.

As a last step, to �gure out the similarity between two programs, a pair-wise comparison
of the two token streams is performed. JPlag uses an optimized version of Michael Wise’s

3

2. Foundations

Figure 2.1.: The basic structure of a JPlag language module

Greedy String Tiling algorithm [36]. The algorithm outputs a list of matching sections
found within the two token streams with the additional constraint that the matches must
have a minimal length (the following subsection discusses this parameter).
The �nal output is a similarity score that depends on the number of tokens matching.

Additionally, JPlag can show the matching sections side by side. This makes it easy for
reviewers to con�rm cases of plagiarism.

2.2.2. Minimum Token Match

Minimum token match (also sometimes referred to as minimum matching token length) is
an important parameter in JPlag that can be set via the command line parameter t. When
JPlag internally compares the token streams of two submissions, only sections of at least
this size contribute to an increase in the similarity value of the submission pair. It allows
users to control the sensitivity of the system for plagiarism.
There is no optimal value for this parameter, as it highly depends on the selected

language, the granularity of the token set that is used and the structure of the submissions
(e.g. in the case of models such as statecharts the size of the reference lists, or in the case of
Java code the size of method blocks). A value that is too small leads to many false positives
since almost all sections can be found in both submissions resulting in a high similarity
value. Conversely, choosing a value that is too large results in many false negatives as
there is a smaller amount of matching sections within submission pairs.

2.3. Statecharts

Harel statecharts [16] (created by the computer scientist David Harel) are a commonly used
formalism for describing complex reactive systems. They were created as an extension of
state diagrams by introducing concepts such as super-states, orthogonality and actions
which make it possible to model hierarchies, concurrency and communication within a
system.

4

2.3. Statecharts

A slightly modi�ed version of statecharts has since become part of the Uni�ed Modeling
Language (UML) speci�cation [1].
The most fundamental statechart concepts are states, transitions and events. A state

represents the condition of an object or process. When an action occurs in the world, an
event may be triggered that causes a transition to be taken, subsequently changing the
active state. A transition is only possible if all preconditions, called guards, are satis�ed.
Regions are used to group together a set of states and transitions.

2.3.1. Itemis CREATE

Itemis CREATE [4] (formerly YAKINDU Statechart Tools), which shall be referred to as
Create in this thesis, has been developed by the German consulting company itemis AG that
specializes in model-driven development [3]. The software is based on the development
environment Eclipse and contains a visual editor for creating statecharts as well as a
simulation engine. It also provides a code generation feature that allows users to turn a
model into executable code for e.g. the Java, C or C++ programming languages.

Figure 2.2 shows an example of a statechart created with Create. The featured statechart
demonstrates several important statechart elements such as states, transitions and events.
In the de�nition section of the statechart there is an interface user with a press_button
event as well as an integer variable t. As the event user.press_button is �red, the statechart
transitions from the initial state Start to the composite state Blinking. The initial state
of this composite state is a so-called shallow history state. That means the state will
remember in what substate it was in when it is being exited and resume from this state
upon reentering.

Every time the Blinking state is entered, the code following the entry directive is executed.
Similarly, there is an exit directive that is run when the state is left. In the example, the
variable t is reset to zero. The blinking state contains the two states Light and Dark that it
alternates between every second. Once the Light state has been entered �ve times without
exiting, the graph reenters the Start state. This is modeled by using the guard condition [t
== 5].

2.3.2. SCXML

SCXML, short for State Chart extensible Markup Language, is a language created for
specifying state machines that has been standardized by the World Wide Web Consortium
(W3C) [31]. It is XML-based and can therefore be parsed with existing XML parsers. There
are several tools that can be used to create statecharts in the SCXML format. An example
includes the statechart editor that is part of the cross-platform software development
platform Qt [13].

Using Create, a statechart created in the .ysc format can be exported to SCXML.
The remainder of the section provides an overview of how some fundamental statechart

elements are represented in SCXML (using the concrete example of the statechart in
Figure 2.2).

5

2. Foundations

Figure 2.2.: An example statechart created with Create

States and transitions

The following SCXML code is generated for the transition from the Start state to the
Blinking state:

<state id="Start">

<transition event="user.press_button" target="Blinking">

</transition>

</state>

The <initial> element is used to denote the initial state of a region / state. Regions do
not exist as separate entities in SCXML, they are instead represented using nested <state>
elements.

<state id="main_region">

<initial>

<transition target="Start" type="internal">

</transition>

</initial>

...

It is possible to execute some operations when entering or exiting a state or upon
transitioning from one state to another as part of the transition. The statement t++ is
converted to an assign element:

<onentry>

<assign location="t" expr="t + 1"/>

</onentry>

6

2.3. Statecharts

ModelObject

type: String

0..*

referenceLists

EObject

1

ReferenceList

type: String

0..*

modelObjects

object

Figure 2.3.: The model object as an abstraction on top of EObjects

Transitions can also contain guard conditions as a separate attribute. Here is the SCXML
code for the t == 5 condition from the example:

<transition cond="t == 5" target="Start">

</transition>

Executable content

Executable content is used to modify a statechart’s data model or to interact with external
entities. The data model enables the modi�cation of the statechart’s internal state by
reading or writing to variables. The SCXML speci�cation does not specify any particular
language that must be used for simple expressions or <script> elements (see the Data
Models section in [31]). This decision is instead left to the implementation. For example,
Create uses a custom statechart language.
Other executable content includes raise to raise events, if / else or elseif to execute

actions conditionally, script to run script code, or assign to modify the data model.

Terminology

In this section we introduce some terminology that is used in the thesis. Figure 2.3 shows
an abstraction on top of the EObject class (and its subclasses) used in EMF. We shall refer
to any EObject within the containment tree of an instance of the statechart model as a
model object. A model object can contain any number of reference lists, each of which
contains a list of other model objects. If a model object contains at least one reference list,
it shall be referred to as nested.

7

3. RelatedWork

Systems for detecting plagiarisms have been around for at least three decades. At the
beginning, rather simple techniques that compared certain metrics of the input programs
(e.g. the number of lines or the number of if statements) [24] were used. Later, the focus
shifted towards approaches that look at the structure of the programs. A method used for
detecting plagiarisms between Pascal programs developed by Jankowitz parses the input
�les and creates two static execution trees that represent the interconnections between
di�erent procedures of each program. These trees are then checked for similarities between
di�erent branches [17].
Today, most plagiarism detectors work in a similar way by �rst parsing the program

into an intermediate representation. All these plagiarism detectors work directly on the
source code of the programs.
The �rst work specially created for the task of detecting plagiarisms in the domain of

modeling is described in a paper by Martínez et al. [20]. Their approach is based on a
modi�ed version of the Locality Sensitive Hashing (LSH) technique [6]. Given a set of =
points % = ?1, . . . , ?= and a point @ 2 - in a metric space & , LSH approximates the nearest
neighbor ? 2 % of @.

Martínez et al. apply LSH to a repository of models in order to group them into a series
of buckets in a process called clustering. Models that are similar to each other are mapped
to the same bucket. Their approach is computationally e�cient because no pairwise
comparisons of model instances takes place.

3.1. Clone Detection

Clone detection [12] is related to the �eld of plagiarism detection. It deals with �nding
model fragments that are similar with respect to some de�nition of similarity.
While both plagiarism detection and clone detection for models can be used to detect

duplicate or highly similar parts of models, clone detection looks at the problem from a
software engineering standpoint. When it is known where duplicate parts are present in a
model, it can indicate potential ways for refactoring in order to improve the quality of the
software [7].
Recent years have seen some contributions to the �eld of clone detection for models,

most notably by Babur et al. In their paper, the authors extend the statistical analysis of
models (SAMOS) framework, in order to facilitate clone detection of (meta-)models, in
particular Ecore models created with EMF. They use the type information and names of
the metamodel identi�ers and apply sophisticated techniques such as natural language
processing (NLP) in order to cluster the models based on their similarity [7].

9

3. Related Work

Approaches towards plagiarism detection can be assigned to two kinds: lexical and
structural.

Lexical or linguistic approaches include techniques based on NLP [15] that is employed
to calculate similarities between statecharts based on attributes such as state names or
transitions. Inter-semantic similarity measures are used to compute similarity measures
across di�erent graphs [2] that can also be applied to statecharts.

Nejati et al. [22] propose a Match operator for statecharts. This operator can be used to
�nd correspondences between individual states that are part of a pair of input statecharts.
The method uses a combination of static (lexical) and behavioral heuristics to measure
similarities. The static approach looks at attributes such as element names while the
behavioral approach assigns a similarity value to two states depending on how similarly
they behave. Although not discussed in their paper, their research has the potential
to be employed for plagiarism identi�cation by computing matching sections between
statecharts.

Regarding structural approaches, one possibility is to consider a statecharts as a directed
graph. A metric such as the graph edit distance (GED) can then be used to compute a
similarity score between two graphs. The GED was originally formalized by Sanfeliu et al.
[29] in 1983. It is calculated based on the number of modi�cations required to transform
one input graph into another.

Clone detection approaches cannot be directly employed to detect plagiarisms because
an attacker can attempt to conceal plagiarism. In the domain of statecharts, this may be
achieved by changing attributes such as names of statechart elements. Creating plagiarized
models in this way can be performed fully automatically (see section 6.2). This makes
lexical similarity measures less useful in the area of plagiarism detection.

Sağlam et al. are the �rst to propose a token-based plagiarism detection system for EMF
models [28]. A language module for generic EMF model instances has since been added
to JPlag [27] though there is no published research on this approach yet. This language
module works by �rst reading in one or more .ecore �les that are the metamodels to
the input models. The token set is dynamically constructed based on the EClass of the
encountered EObjects in the containment tree of the model instances.

10

4. Analysis

4.1. Di�erences between Models and Code

Existing token-based plagiarism detection systems such as JPlag mainly support plagiarism
detection for code. It is therefore useful to discuss di�erences between models and code.
The aim is to gain an understanding for potential issues before implementing a token-based
system for statecharts.
One inherent di�erence is that code generally has a linear structure, while models or

model instances generally adhere to a more nested and arguably more complex structure.
For example, a statechart can be represented as a directed graph where the root is the
whole statechart and the nodes are child elements such as states. Mapping this structure
to a one-dimensional token stream as used in token-based systems inevitably involves a
loss of information. In code, each statement typically maps to exactly one token where the
token type is often determined by the grammar of the language. For models, there is no
such obvious way to extract tokens since each model object may contain several attributes
and references to other model objects.
Another aspect is that speci�c kinds of models such as statecharts can be de�ned and

stored in di�erent ways. These various notations include SCXML or the format used by
Create depending on the application. This makes it harder to compare statecharts across
multiple formats. While one format can be converted into another, this is not always
possible since some concepts are unique to a speci�c application such as Create.

There are many semantically equivalent ways to specify the textual representation of a
statechart by simply reordering elements on the same levels of the containment tree. In
contrast, reordering lines of code cannot be achieved as easily since the order of statements
is often important for the semantics of the code.

This di�erence betweenmodels and code has to be accounted for when extracting tokens.
If the tokens are simply extracted in the same order as the model objects are de�ned in
the input �le, the resulting token streams for each permutation di�er signi�cantly.

4.2. Applying Obfuscation Attacks to Statecharts

Obfuscation attacks in the context of plagiarism detection refer to the deliberate mod-
i�cation or manipulation of software artefacts where the speci�c aim is to conceal the
act of plagiarism. A successful obfuscation attack exists if the similarity of the original
submission and the plagiarized submission are su�ciently low to avoid detection of the
presence of plagiarism (e.g., by a human).

A common classi�cation scheme for model clones de�ned in the literature [7, 33], is the
following:

11

4. Analysis

• Type A (exact): identical except for secondary notation and internal modi�ers

• Type B (modi�ed): small changes to names or attributes plus a small amount of
insertion / deletion of model parts

• Type C (renamed): large amount changes to names or attributes plus insertion /
deletion of model parts

• Type D (semantic): semantically equivalent models (they may have a completely
di�erent structure but behave the same as the original model)

For types A, B and C the distinction between few and many changes to the attributes
(renaming attacks) is less relevant for this work since token-based systems are inherently
resilient against attacks that do not change the structure of the models. For the sake
of completeness, we still take a look at the rename attack in the evaluation (chapter 6).
Type D clones are also not considered here as it is expected that all statecharts within
each dataset behave similarly since they are created as part of the same task. Common
obfuscation attacks that cover this classi�cation include renaming, insertion, deletion,
moving and swapping of model elements [28, 7]. The attacks can be further subdivided to
only consider certain types of elements within the model.
However, models often have certain constraints that need to be ful�lled for the model

to be considered valid. This imposes restrictions on the types of obfuscation attacks that
can be applied.

For example, a transition in a statechart can only be inserted into compatible reference
lists, and not into any other parts of the model. Apart from structural constraints, if
the semantics of the model are to be validated as well, there are even more conditions
that apply to the kinds of attacks that can be performed. Of course there are multiple
de�nitions of what constitutes an invalid statechart. Create, for instance, enforces that
each state within the statechart must be reachable (i.e. there has to exist at least one
incoming transition to this state).
More precisely, Create performs a series of checks to validate a statechart as the state-

chart diagram is edited or before conversions to other formats [37]. The error messages
are de�ned in the STextValidationMessage class while the actual tests are performed in
STextValidator.

Some attacks, like the move attack (which Babur et al. de�ne as “simply moving a model
element elsewhere” [7] in their work on clone detection for metamodels) can be seen as a
combined attack of a deletion plus an insertion operation. Thus, the same restrictions as
for the individual attacks apply. In our work we shall de�ne the move operation slightly
di�erently, namely as an operation that moves a model object within the same reference
list. This makes the attack more restrictive than a regular move attack or the similar
moveSimilarContainer proposed by Babur et al. An implication of our de�nition is that a
move attack does not change the semantics of the statechart at all since only the order of
model elements on the same level of the containment tree is changed (see the discussion
in section 4.1 on the properties of models).

In SCXML, multiple <onentry> or <onexit> elements may be present in an element such
as <state> [31] (W3C SCXML speci�cation, section 3.3). However, there is no functional

12

https://github.com/Yakindu/statecharts/blob/master/plugins/org.yakindu.sct.model.stext/src/org/yakindu/sct/model/stext/validation/STextValidationMessages.java
https://github.com/Yakindu/statecharts/blob/master/plugins/org.yakindu.sct.model.stext/src/org/yakindu/sct/model/stext/validation/STextValidator.xtend

4.3. Immunity Against Selected Obfuscation Attacks

di�erence between a state that has a single onentry element versus a state with several
onentry elements, provided that the combined executable contents in all of them are the
same. An attacker could use this property to change the token sequence by changing the
number of existing onentry or onexit elements. A token-based system should therefore
account for this possibility by extracting the same tokens in all cases.
The above considerations are important when evaluating the resistance of plagiarism

detection systems for statecharts against obfuscation attacks. As such, they are again
referenced in the evaluation section (section 6.2) when discussing the automatic generation
of plagiarized statecharts.

4.3. Immunity Against Selected Obfuscation Attacks

For code, token-based plagiarism detection systems are inherently immune against certain
obfuscation attacks such as renaming of variables. This is due to the fact that the token
types only depend on the type of syntactic constructs (e.g., a variable declaration) but not
on other properties such as variable names. The same bene�ts are inherited for models as
well (here renaming refers to the modi�cation of identi�er names such as the name of a
state in a statechart).

4.3.1. Sorting of Model Objects

As explained in section 4.1, statechart �les can be written in many di�erent ways without
changing the behavior. In a naive implementation of a token-based system, an attacker can
employ the move attack to obfuscate cases of plagiarism. The following section describes
sorting of model objects as a way to defend against such attacks.

Note that the sorting procedure does not need to be performed as a separate step before
the token extraction but can instead take place at the same time, requiring only a single
recursive iteration.
Two possible sorting algorithms are discussed: the �rst is able to achieve resistance

against any number of move attacks. The second algorithm is simpler yet performs better
for other kinds of attacks.

4.3.2. Recursive Sorting Algorithm

This section describes a novel sorting algorithm that, when performed on input statecharts
before the token extraction step, avoids susceptibility against the reordering of model
elements on the same level of the containment tree in the input �le. In other words, it
avoids a targeted modi�cation of the token sequence using the move attack.
This procedure sorts all model objects within each reference list of a model in a deter-

ministic manner, considering their reference lists and other attributes. Sorting is achieved
by comparing model objects using a token sequence obtained by iterating over each object
and its child objects. This particular token sequence is solely used during the sorting step
and does not contribute to the �nal token sequence for the statechart. Model objects are
then sorted lexicographically by mapping each token type to an integer. Those with a

13

4. Analysis

Region

Exit Entry

[18] [14]

State

r1: Region r2: Region

Transition Transition

4 4

[0, 4, 1]

Transition

4

[0, 4 ,4, 1]

[8, 0, 4, 1, 0, 4, 4, 1, 22]

[0, 14, 18, 8, 0, 4, 1, 0, 4, 4, 1, 22, 1]

vertices

regions

transitions

(a) Model object before recursive sorting

Region

ExitEntry State

r1: Regionr2: Region

TransitionTransition Transition

vertices

regions

transitions

[0, 14, 18, 8, 0, 4, 1, 0, 4, 4, 1, 22, 1]

[8, 0, 4, 1, 0, 4, 4, 1, 22][18][14]

[0, 4 ,4, 1][0, 4, 1]

4 44

(b) Model object after recursive sorting

Figure 4.1.: Recursive sorting of a Region model object

higher depth in the containment tree are sorted �rst as sorting occurs recursively. At
some point in the iteration, a visited model object no longer contains child elements,
which breaks the recursion. As a result, two statecharts containing identical model objects
in equal quantities at each level of the containment tree are normalized into the same
statechart. This, in turn, produces equivalent token sequences as tokens are extracted.
The algorithm is explained in more detail in the following paragraphs.

Sorting a list of model objects requires a priority to be assigned to each of the possible
permutations. Each permutation can be uniquely identi�ed by the list of tokens extracted
from the model object. We say that token t1 is smaller than t2 if the ordinal of its type is
smaller than that of the type of token t2. The ordinal of a token type is its �xed position
within the enumeration of all token types.

Consider the lists of token types [A, B], [B] and [B, A], in this order. Assuming A < B,
these lists are sorted lexicographically since the �rst element of the �rst list is smaller
than that of both other lists and the second list contains fewer elements than the third
while their �rst elements are equal to each other.

In the base case, i.e. when comparing non-nested model objects, the order only depends
on the tokens extracted for that model object since such model objects do not contain
any child elements. For example, when sorting vertices within a state object, vertices of
type Entry are placed before Exit vertices. This is because the extracted tokens of type
ENTRY are smaller than EXIT tokens due to the de�nition of the token type enum. In the
recursive case, all of the reference lists are sorted in a �xed order before extracting tokens.
Following this procedure ensures that the extracted tokens do not depend on the order of
the references, nor on the order of model objects within each reference list.

Figure 4.1 depicts an example for a region model object assumed to be part of a statechart.
The region comprises Entry, Exit and State vertices. Within the state, two regions r1 and
r2 are contained in this order, with the �rst region containing two transitions and the
second one containing a single transition. The ordinal 4 of the associated TRANSITION

14

4.3. Immunity Against Selected Obfuscation Attacks

Region

State

Transition

[0, 8, 4, 4, 22, 8, 16, 20, 22, 1]

[8, 4, 4, 22]

[4]

State

[8, 16, 20, 22]

Transition

[4]

Entry

[16]

Exit

[20]

Figure 4.2.: A region model object with two states

token type is displayed beneath the transition model objects located at the bottom of the
diagram. Below the transition model objects at the bottom of the diagram the ordinal 4 of
the associated TRANSITION token type is shown. Underneath each sorted model object
one can see the resulting token sequence that is obtained by visiting the model object
itself followed by the sorted reference lists. For example, for region r2 the extracted tokens
are REGION, TRANSITION and END_REGION identi�ed by their ordinals 0, 4 and 1. The
ordinals for the END_VERTEX token is 22 which is why it is placed at the end of the token
sequence for the state model object.

Figure 4.1a shows how the model object looks like after sorting all elements recursively
by comparing the list of extracted token types. In particular, r2 is placed before r1 in the
regions reference list because its token type sequence is smaller than that of r1. Starting
from the leaves, on each level of the tree the smallest model object is placed on the left while
the largest is placed on the right. One can obtain the �nal token sequence by appending
the token lists from bottom to top, left to right of the diagram; end tokens separate nested
model objects.

4.3.3. Simple Sorting Algorithm

While the proposed recursive sorting procedure achieves resistance against a speci�c
kind of attack, sorting the model objects in this way has drawbacks. The fundamental
problem is that when applying this procedure, deleting or inserting model objects now
has a non-local e�ect on the token sequence.
This is demonstrated in Figure 4.2, which depicts one region with two states. After

sorting, the resulting token sequence for this region is [0,8,4,4,22,8,16,20,22,1] (since the
token sequence for the state on the right is smaller than that for the left one). Inserting a
single new transition into the second state results in a token sequence of [8,4,4,4,22] for the
second state. This causes the token sequences of both states to swap their relative order

15

4. Analysis

since the second state is now placed after the �rst when sorting them lexicographically.
As a result, the token sequence for the whole region is [0,8,16,20,22,8,4,4,4,22] which is
signi�cantly di�erent from the original token sequence.
A similar behavior can be observed when a model object is deleted. Deleting the Exit

element from the �rst state changes the token sequence from [0,8,4,4,22,8,16,20,22,1] to
[0,8,16,22,8,4,4,22,1].
The algorithm described in the last section sorts model objects based on the complete

token sequence that results from recursively iterating over all child elements. In contrast,
the proposed simple algorithm only inspects the token type extracted for the root element.
This way, the token order will not change when a child element is modi�ed making it
more resistant to deletion or insertion attacks.

16

5. Token-Based Plagiarism Detection for
Statecharts

There are a number of steps required to implement a token-based system for detecting
plagiarized statecharts. In our work, we choose to extend the open-source Java-based
framework JPlag, described in detail in subsection 2.2.1. Since statecharts can be stored
in a number of di�erent formats, an implementation needs to �rst read in or parse the
statecharts, ideally by using existing frameworks (section 5.2). Section 5.3 details how
individual elements in the statechart are turned into a list of tokens. Two di�erent strate-
gies are proposed to demonstrate the e�ect of extracting tokens with varying degrees
granularity.

A sorting step is discussed that ensures immunity against a certain type of attack. Next,
a way to visualize matching sections of statecharts in JPlag is described. Finally, limitations
of applying a token-based plagiarism detection system to statecharts are discussed.

5.1. Architecture

Both language modules are structured similarly. JPlag’s Language interface de�nes com-
mon methods that must be implemented for all language modules. These methods include
the su�xes, viewFileSu�x, minimumTokenMatch and parse methods.
The su�xes method returns the possible �le extensions of the statechart �les that can

be loaded with the language module. The extensions are { “.scxml” } for the SCXML
module and { “.sct”, “.ysc” } for the Create module. The extensions for view �les used for
visualization are chosen as .scxmlview and .createview, respectively. The default minimum
token match is set to 10 in both cases based on the evaluation results (see subsection 6.3.1
for a discussion on the choice of this parameter).

The result of the parse method is a list of tokens that JPlag then uses as an input into its
greedy string tiling algorithm (see subsection 2.2.1 for details).

5.2. Parsing

A parser class is proposed that is responsible for extracting relevant properties from a
statechart into a prede�ned class structure. This structure makes the statechart easier to
traverse than the raw input document. Further, it delegates to an instance of the selected
token strategy to turn this intermediate representation into a list of tokens.

17

5. Token-Based Plagiarism Detection for Statecharts

5.2.1. Parsing SCXML files

In the case of the SCXML language module, the parser maps raw XML elements and their
attributes to Java objects. For example, a transition like <transition event="user.press_button"
target="Blinking"> (see Figure 2.2) is mapped to an instance of a Transition class that has
two attributes event and target.

Parsing takes place in two steps:
1. Parsing of the XML �le: statecharts are parsed using a custom SCXML parser

built on top of the XML parsing capabilities provided by Javax 1. We use the Javax DOM
(Document Object Model) parser instead of a SAX (Simple API for XML) parser that is
also part of Javax. The DOM parser is better suited for our use case as it allows random
access to any element of the XML document and has a very simple API.

2. Construction of the statechart: Having obtained the document root node, all nodes
are visited recursively in two passes: In the �rst pass, only <initial> elements are visited
and the target attributes of their outgoing transitions are collected. An <initial> element
indicates the default state of a compound state to enter [31] (W3C SCXML Speci�cation,
section 3.6). Initial elements can be de�ned prior to the target state they are referencing
which explains the necessity of this �rst pass. This referenced target state is now considered
an initial state. Omitting it would result in di�erent token sequences depending on the
relative order of an <initial> element and its target state within the document.
In the second pass, the whole document is visited again and a Statechart object is

constructed based on the encountered XML elements and their attributes. Figure 5.2 shows
the classes that are part of a statechart. The classes are named after the XML elements in
the SCXML speci�cation while the attributes are parsed from the XML attributes.
Some classes additionally contain methods. These include isTimed and isGuarded for

transitions, isInitial and isRegion for states. A transition is guarded if its condition attribute
is not null. A state is a region if it has at least one substate.
Since timed transitions are not part of the SCXML speci�cation, more e�ort has to be

made to identify them. To determine whether a transition is timed, the Entry, Transition
and Exit as well as their child elements Send (for Entry and Transition) and Cancel (for
Exit) are examined. If all three elements contain matching IDs, the transition is marked as
timed. An example of a timed transition is shown in Figure 5.1.

The SCXML parser performs some basic assertions as the statechart elements are visited.
For example, each state element in the XML �le must contain an id attribute which is
necessary to complete the �rst pass. If an assertion fails, a ParsingException is thrown and
the parsing is aborted.

5.2.2. Parsing Create files

Create uses .ysc �les to store statecharts. This �le is continuously modi�ed as the user
updates the diagram using the graphical editor. It contains all kinds of information about a
statechart including model elements such as states or transitions, but also their appearance
1https://docs.oracle.com/javase/8/docs/api/index.html?javax/xml/parsers/package-summary.

html

18

https://docs.oracle.com/javase/8/docs/api/index.html?javax/xml/parsers/package-summary.html
https://docs.oracle.com/javase/8/docs/api/index.html?javax/xml/parsers/package-summary.html

5.3. Token Extraction

<onentry>

<send event="Start_t_1_timeEvent_0" delay="1s"/>

</onentry>

<onexit>

<cancel sendid="Start_t_1_timeEvent_0" />

</onexit>

<transition event="Start_t_1_timeEvent_0" target="Start">

</transition>

Figure 5.1.: How a timed transition can be modelled in SCXML

and position that is part of the visual representation of the state graph. Since these visual
attributes are not relevant for understanding the semantics of a model, it is discarded while
the statechart is loaded.
The Create language module utilizes EMF’s resource loading capabilities to load the

.ysc �les. First, the supported �le extensions are registered. Then, the statechart object is
obtained from the loaded resource.

5.3. Token Extraction

The next step is to perform the actual token extraction. For each language module, two
separate token extraction strategies are proposed, simple and handcrafted. The simple
strategy focuses on the general structure of statecharts while the handcrafted strategy is
more specialized. Tokens are extracted based on the model elements of statecharts.
To extract tokens, the statechart is traversed starting from the root element, followed

by the respective child elements in a �xed order. Apart from the token type, each token
contains information about the �le and the StatechartElement / EObject associated with it.
As it is appended to the list of extracted tokens, each token is enhanced with additional
information required for visualization such as line and column numbers of the view �le
(see section 5.4).

For both strategies, we follow these general rules:

• R1: extract a distinct token for each class within the containment tree

• R2: for a nested model object, extract a token for the root object followed by tokens
for each model object in its references lists

• R3: after extracting tokens for a nested model object, append a special end token

These three rules shall ensure that the structure of the input statechart is at least partially
captured while mapping the model objects to a token stream.
The second and third rule make it possible to reconstruct the containment tree from

the token stream where each model object is terminated by an end token. Some model
objects of a certain type can contain references to other model objects of the same type.
Appending an end token ensures that the tokens for each model object are delimited from

19

5. Token-Based Plagiarism Detection for Statecharts

Statechart
+ name: String

State
+ id: String
+ parallel: boolean

+ isInitial(): boolean
+ isRegion(): boolean

ExecutableContent

Action

type
1
Type

OnEntry
OnExit

Assignment

Cancel
+ sendid: String

ElseIf
+ condition: String

Script
+ code: String

Send
+ event: String
+ delay: String

SimpleExecutableContent

type
1
Type

Raise
Else
Foreach
Log

If
+ cond: String

contents

0..* contents
0..*

elseIfs

0..*
_else

1

contents

0..*

transitions 0..*

actions
0..*

states

1..*

Handcrafted strategy only

Both simple and handcrafted strategiesTransition
+ target: String
+ event: String
+ cond: String

+ isTimed(): boolean
+ isGuarded(): boolean

Figure 5.2.: The classes in the model package of the SCXML language module, showing
which information is extracted as tokens for the two strategies

each other. In our case, omitting the end token would introduce ambiguities (meaning
that it is possible to generate the same token stream from distinct model objects).

For example, an instance of the Region class contains instances of the State class within
the vertices reference list. At the same time, a State instance can contain other regions.
Without the end token, two adjacent Region tokens can either be the result of a state
containing a region or the result of multiple regions within the same reference list.

5.3.1. Simple Token Extraction

The task of the TokenGenerator class is to visit all model elements recursively while ex-
tracting tokens. Figure 5.2 and Figure 5.3 shows models of statecharts for both language
modules. Simultaneously, these models are at the same time class diagrams constructed by
the parser which are subsequently used during token extraction. The simple token extrac-
tion strategy extracts a distinct token for each class in the models, which are highlighted
in green. The following subsection describes speci�cs of the SCXML language module.

SCXML languagemodule

All classes that represent parts of a statechart inherit from a common interface State-
chartElement (Figure 5.2). The reason why tokens are also extracted for the SimpleExe-

20

5.3. Token Extraction

cutableContent.Type enum is that SimpleExecutableContents can be seen as just another type
of ExecutableContent, therefore using separate classes to represent them is not necessary.

If a class has references to other objects (e.g. a Statechart contains multiple States), an
end token is extracted after extracting tokens for the child model objects.

Within one reference list, the child model objects are �rst sorted in a deterministic
manner (subsection 4.3.1 which discusses sorting). Some model objects contain multiple
references, e.g. If contains both ExecutableContents and ElseIfs. In that case, the tokens
for the reference lists are extracted in a �xed order. For the If model object, �rst the
ExecutableContents are visited, then the ElseIfs.

In section 4.2, an obfuscation attack is described whereby an attacker can change the
number of <onentry> or <onexit> attributes without a�ecting the behavior of the statechart.
The parser accounts for this by only extracting a single ENTRY or EXIT token even if there
are several actions of a given type. All executableContents within all actions are collected
into a single list and tokens are extracted in the order of appearance in the source �le. The
executable contents may not be reordered as that would change the behavior.

5.3.2. Handcra�ed Token Extraction

The previously described simple strategy only relies on the class of the model object to
extract tokens. However, there is other semantic information about a model object such as
speci�c attributes. To address this, the following handcrafted token extraction strategy is
proposed. It uses a larger token set than the simple strategy. The hope of introducing this
extended strategy is that the false positive rate is lowered by introducing more detail into
the token stream.

The additional tokens are extracted based on the values of Boolean attributes and values
of enums. These types of attributes can be easily mapped to tokens. Other attributes such
as names are not relevant for the purpose of detecting plagiarisms and thus there are
no tokens extracted for them. Tokens that are extracted include all tokens of the simple
strategy (shown in green) plus additional tokens (shown in purple).

Compared to the simple strategy, there are now more �ne-grained tokens for States
and Transitions as well as Choice and Entry model elements. For transitions, the extracted
tokens for timed and guarded transitions are now di�erent. For states, di�erent tokens
depending on the attributes of the states such as whether they are parallel states. A
special characteristic of the Create language module is that tokens for Choice elements are
extracted based on their kind (dynamic or static).

21

5. Token-Based Plagiarism Detection for Statecharts

ReactiveElementCompositeElement

Vertex

Transition

Reaction

State

+ orthogonal
+ composite

Statechart

Region

regions
0..*

FinalStateExit

ChoiceKind

dynamic
static

SynchronizationEntry

EntryKind

Initial
ShallowHistory
DeepHistory

Choice

kind
1

1

Trigger Effect

0..10..1

localReactions0..*

effecttrigger

vertices0..*

outgoingTransitions 0..*

Handcrafted strategy only

Both simple and handcrafted strategies

states
1..*

Figure 5.3.: An extract of the metamodel used for the Create language module, showing
which information is extracted as tokens for the two strategies

22

5.3. Token Extraction

5.3.3. Implementation

public class SimpleScxmlTokenGenerator extends AbstractScxmlVisitor {

protected ScxmlParserAdapter adapter;

protected Sorter sorter;

public AbstractStatechartVisitor(ScxmlParserAdapter adapter) {

this.adapter = adapter;

this.sorter = new SimpleSorter(this);

}

public List<Integer> peekTokens(StatechartElement element) {

ScxmlParserAdapter prevAdapter = this.adapter;

PeekAdapter peekAdapter = new PeekAdapter();

// Switch out the main adapter for the peek adapter

// so that the main token stream is not affected.

this.adapter = peekAdapter;

visit(element);

this.adapter = prevAdapter;

return peekAdapter.getTokenTypes();

}

@Override

public void visitStatechart(Statechart statechart) {

for (State state : sorter.sort(statechart.states())){

visitState(state);

}

}

// ...

}

Listing 5.1: Extract of the AbstractStatechartVisitor class showcasing the use of the Sorter
class as statechart elements are visited

Listing 5.1 shows a part of the SimpleScxmlTokenGenerator class that represents the
simple token extraction strategy for the SCXMLmodule. To alter the active sorting strategy,
the sorter variable must be set to a di�erent instance of Sorter.
The Sorter interface contains a single method that receives a list of StatechartElements

and returns a sorted list. The strategy pattern is used to represent the sorting method.
There are three implementations of Sorter : NoOpSorter, SimpleSorter and RecursiveSorter.
While NoOpSorter returns the input list unaltered, SimpleSorter and RecursiveSorter apply
the corresponding algorithm as described in subsection 4.3.1. The sort method is invoked
from within visit methods for each nested model object, such as the individual states of a
Statechart, as demonstrated in the example.
The sort method relies on peekTokens to obtain a list of token type ordinals associated

with the current model object. The token ordinals are then compared using the com-

23

5. Token-Based Plagiarism Detection for Statecharts

main region: Region {

Entry {

Transition (-> Start)

}

Start: State {

Transition (-> Blinking)

}

Blinking: Orthogonal & composite state {

blinking1: Region {

Shallow history {

Transition (-> Light)

}

Dark: State {

Transition (-> Start)

Transition (-> Light)

}

Light: State {

Transition (-> Dark)

}

}

blinking2: Region {

Dark: State {

Transition (-> Start)

Transition (-> Light)

}

}

Transition (-> Start)

}

}

(a) Visualization for the Create language module

main_region: Region {

Start: State {

Transition (-> Blinking) {

}

}

Blinking: Region {

OnEntry {

Assignment

}

Transition (-> Start) {

}

Dark: State {

Guarded transition (-> Start) {

}

Timed transition (-> Light) {

}

}

Light: State {

OnEntry {

Assignment

}

Timed transition (-> Dark) {

}

}

}

}

(b) Visualization for the SCXML language module

Figure 5.4.: Visualization of the example statechart

pareTokenTypeLists comparison function of PeekAdapter that lexicographically compares
two token ordinals. Inside peekTokens, the instance of the ScxmlParserAdapter class is
temporarily replaced with an instance of PeekAdapter. Then the visit method for the
current StatechartElement can be called without a�ecting the original token stream. Inside
the PeekAdapter class, the ordinals of the appended tokens are collected into a list which
is then returned by peekTokens.

5.4. Visualization

View �les are used by the online JPlag report viewer available at https://jplag.github.
io/JPlag/. It enables the comparison of matching sections within a submission pair.

24

https://jplag.github.io/JPlag/
https://jplag.github.io/JPlag/

5.4. Visualization

A hierarchical text-based representation is proposed. The format is inspired by the
textual format Emfatic that is employed to represent models [14]. Each extracted token
is mapped to a line in the view �le. A line contains the description of the corresponding
token type and optionally the name of the associated EObject / Statechart if applicable. For
transitions, the name of the target state is denoted in brackets to provide more context
to the viewer. To denote a nested model object, an opening curly brace { is appended
to emphasize the nested structure. Correspondingly, a closing curly brace denotes an
end token. Model objects that are children of the same nested model object are vertically
aligned, shown in the same column.

Figure 5.4 shows an example view �le for the Create language module on the left and for
the SCXML module on the right. The view �les are created from the example statechart
shown in Figure 2.2 in chapter 2. This example highlights the di�erent focus of the two
language modules.

25

6. Evaluation

6.1. QGM Plan

G1 Analyze the ability of the language modules to detect plagiarized statecharts
Q1.1 How does the minimum token match parameter in�uence the average simi-
larity values?
Q1.2 How does the choice of the token extraction strategy in�uence the average
similarity values?
Q1.3 How does sorting of model elements using di�erent algorithms in�uence the
average similarity values for di�erent kinds of obfuscation attacks?

Metric Compute the average similarities of original and plagiarized submission
pairs. Compare the distance between both similarity distributions.

6.2. Methodology

To evaluate the performance of the plagiarism detection system and ful�ll the goals
outlined in the GQM plan, a dataset of statechart �les is required. In our case, we were
generously provided with two sets of statechart assignments created by students at the
University of Antwerp. They were made in the context of the Master’s course Modelling of
Software-Intensive Systems in the years 2020 and 2021, respectively.
For the 2020 assignment, students are asked to create a dashboard that simulates the

behavior of employees working in a factory [30]. The task for the 2021 course is to model
the behavior of a personal rapid transport trolley that drives on a circular track [32]. For
the 2020 dataset, we note that the average model sizes are smaller than for the 2021 dataset
with a median number of model objects of 177 (min: 91, max: 248, avg: 177.38) vs. 151
(min: 133, max: 177, avg: 154.47). Table 6.1 shows the percentage of each of the six types
of model objects that occur on average in each dataset.

The assignments were created using Create and are available as .ysc �les. The dataset is
unlabeled in the sense that it is not clear how many cases of plagiarism are present or to
what degree any pair of statecharts is plagiarized.

This dataset is used to evaluate the system by applying a set of common obfuscation
attacks on all input statecharts. Before evaluating the SCXML language module, all .ysc
�les are �rst converted to the expected input format (.scxml) by using the conversion
feature of Create.

To perform the evaluation, we develop a program that can apply obfuscation attacks to a
given input statechart �le. Each statechart is loaded using EMF, yielding a Statechart object.

27

6. Evaluation

Model object 2020 (%) 2021 (%)
Transition 51.35 45.00
Exit 0.22 0.47
State 27.94 27.64
Entry 9.48 11.81
Choice 1.41 3.50
Region 9.61 11.39
FinalState - 0.19

Table 6.1.: Percentage of model elements per dataset

Then, a selected obfuscation attack is applied to the model and the modi�ed statechart is
exported.
As mentioned, Create performs several checks to validate a statechart. These checks

are also performed before a statechart is exported. If any of them fails, the generation
is aborted. This issue is critical since the same obfuscated statecharts need to be used in
order to evaluate the SCXML language module.
To address this issue, we propose a modi�ed set of attacks that generate only valid

statecharts. These statecharts can be exported without generating any errors in Create. In
the following description of the obfuscation attacks, some relevant invariants are explained
that need to hold for a statechart to be valid.

The swap attack is not implemented as two move operations have the same e�ect as one
swap operation. Note that for each attack listed, the term random reference list indicates
that a reference list is selected from a random model object anywhere in the containment
tree.

After running JPlag on pairs of original input �les and their plagiarized counterparts, as
well as on unrelated pairs of original statecharts, the similarity distributions are compared.

The �rst kind of submission pairs should yield much higher similarity values compared
to pairs that are unrelated assuming the dataset contains no plagiarized submissions.

Element Deletion (delete_n):

In this attack, n random model objects are removed from non-empty reference lists. The
attack is con�ned to only delete model objects of type Transition or ReactionProperty, both
of which are leaves (i.e., model objects that either do not contain any reference lists or all
of their reference lists are empty). The restriction of only deleting leaves is put in place to
avoid deleting large parts of the model with a single deletion operation.

If a transition is selected, it is �rst ensured that the transition can be safely deleted from
the model. A state’s incoming transition is only deleted if that state has other incoming
transitions originating from a di�erent state. Otherwise, an unreachable state would be
produced. Moreover, a singular transition from an Entry model object is not deleted since
each Entry must contain at least one transition.

Other leaf model objects are Entry and Exit. For Entry model objects, each Region model
object must include an Entry element (the variable for the error message Create uses is

28

6.2. Methodology

called TRANSITION_UNBOUND_DEFAULT_ENTRY_POINT), so it cannot be simply deleted.
Similarly, it must be ensured that for every state, each region within it contains a named
Exit model object (TRANSITION_NOT_EXISTING_NAMED_EXIT_POINT). Deleting any
of them would thus involve non-trivial checks to exclude the generation of an invalid
statechart. This fact leads to the decision not to implement them for the evaluation of this
work.

Element Insertion (insert_n):

This attack involves inserting n model objects to one or multiple references lists of the
model. We restrict our attack to only insert model objects where the underlying EObject
is either of type State or ReactionProperty.

If a State EObject is selected, a new State EObject is �rst created using the SGraphFactory
instance (which is generated by EMF) and assigned a random name. The created state
must be connected to the existing model to be reachable, so a transition that starts at a
random existing vertex and ends at the newly created state is created and inserted into
the model instance. The source vertex must neither be of type Entry nor of type Exit.
An additional condition for this transition is that its source and target vertices are not
orthogonal to each other. Therefore, a check that veri�es this condition is added and
the source vertex is reselected if the check fails. Once the source and target vertices are
selected, a guard condition is added to the transition by setting the speci�cation attribute
to be equal to "true". This achieves that Create no longer shows an error when trying
to convert the obfuscated statechart. Omitting this guard condition would produce a
transition that cannot be executed. If instead a ReactionProperty EObject is selected, a new
ReactionProperty EObject is created using the SGraphFactory instance, assigned a random
name and added to the containing transition. Finally, the created model object is inserted
into a compatible reference list at a random index.

Element Moving (move_n):

This attack involves moving model objects within a reference list. A random model object
is selected from a random reference list and moved to a di�erent random position. It is
possible that consecutive executions cancel each other out.

Element Renaming (rename_n):

The rename_n attack chooses n random model elements where the corresponding EObjects
are of type NamedElement, such as State or Region. Then, the name attribute of each
model element is set to a random new name using the setName method. The new name is
randomly generated from a combination of ten letters and digits. Only EObjects with a
non-null and non-empty name are considered, since that might break the semantics (e.g.
transitions within an Entry model object must always be null).

Following this approach does not always work: for instance, it breaks code generation
for a total of six statechart �les in the 2020 dataset since the attack does not rename model
objects consistently. More speci�cally, some speci�cation attributes of some EObjects of

29

6. Evaluation

type Speci�cationElement reference other NamedElements by their name which would
have to be updated to result in valid statecharts.

In the experiments in the next section that use the rename attack, these six statecharts
are removed from the input �les. This reduces the number of input statecharts for the
2020 dataset from 21 to 15.

6.3. Results and Discussion

This section presents the results of a set of experiments with each having di�erent goals:
The initial experiment delves into the e�ects of the minimum token match parameter t
and the general distribution of the dataset (d = 2020 or d = 2021) for both our custom
modules and the existing module for instances of EMF models. In the second experiment
we discuss the impact the token extraction strategy (s is either simple or handcrafted) has
on the distribution of the dataset and the modules’ ability in plagiarism detection. Lastly,
the impact of model object sorting on obfuscation attack resistance is examined in the
third experiment.

6.3.1. Impact of Minimum Token Match

In this �rst experiment, we evaluate the impact that the minimum token match has on
the similarity distribution for each language module. After varying the token extraction
strategy (simple vs. handcrafted, section 5.3) for both the SCXML and Create language
modules, we discuss �rst di�erences between the resulting similarity distributions.
The importance of the minimum token match parameter is emphasized in the foun-

dations section (subsection 2.2.2). As explained, this parameter has a large e�ect on the
number of false positives or false negatives that occur.
The properties of the parameter can also be observed in the case of our language

modules. Figure 6.1 shows the distribution of average similarity values for the SCXML
language module, varying the minimum token match. In the subdiagram on the left-hand
side, the simple token extraction strategy is used, while the similarity distribution for the
handcrafted one is displayed on the right.
In all �gures shown for this experiment, plagiarism tuples only comprise statecharts

obfuscated with the insert10 and delete5 attacks. To improve readability, plagiarisms
created using the remaining attacks move100 and rename100 have been omitted from the
diagram. This is because plagiarisms created with those attacks are 100% similar to the
original statecharts and would thus result in a maximum value of 100% for each boxplot
(see subsection 6.3.2).

First, we look at the results for the SCXML language module (Figure 6.1). As expected,
the average similarity for both the original tuples and the plagiarism tuples steadily
decreases as the minimum token match is increased. For a value of around 10 for the
minimum token match parameter, the median average similarity is su�ciently low (25.31%
for the simple strategy vs. 11.22% for the handcrafted one with t = 10) to expect few false
positives. Further, the range of the similarity distribution for the plagiarism tuples is also
not too high to risk an overlap with the distribution of the original tuples. Overlapping

30

6.3. Results and Discussion

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

0%

25%

50%

75%

100%

Minimum token match

Av
g.

 s
im

ila
rit

y

Original Tuples Plagiarism Tuples

(a) Simple strategy

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

0%

25%

50%

75%

100%

Minimum token match

Av
g.

 s
im

ila
rit

y

Original Tuples Plagiarism Tuples

(b) Handcrafted strategy

Figure 6.1.: Minimum token match vs. average similarity for the SCXML language module
(2020 dataset)

distributions should be avoided because a reviewer can no longer clearly distinguish all
potential instances of plagiarism from assignments that are not plagiarized.

The Create languagemodule shows signi�cant overlap of the two similarity distributions.
This suggests that it performs worse than the SCXML module for insertion and deletion
attacks. The module for EMF model instances shows low median similarity values for
the original tuples for a reasonable choice of t such as t = 10. However, as for the Create
module, there is an overlap of the similarity distributions.
This also holds for the 2021 dataset, see subsection A.1.1 in the appendix. Thus, we

propose to use a �xed value of t = 10 for later experiments.

6.3.2. Impact of the Token Extraction Strategy

In this section, we look at the impact of the token extraction strategy. For this experiment,
we run the SCXML and Create language modules on our original dataset and plot the
average similarity distributions, varying only the active token extraction strategy. The
EMF language module is also evaluated on the same dataset and shown in the diagram.
Figure 6.4 shows the similarity distribution for the 2020 dataset for each obfuscation

attack. The minimum matching token length is �xed at t=10 as before and the recursive
sorting strategy is used.

First, it is noted that the median similarity values are consistently lower when using the
simple token extraction strategy as compared to the handcrafted strategy when considering
the original tuples. This could already be seen in the �rst experiment where it holds for
other values of t as well.

One possible reason for this is that the handcrafted strategy is more �ne-grained than
the simple strategy, i.e. the token set is larger and some tokens are only extracted in the
handcrafted token set. This lowers the median average similarity since in this case some
sections in the token sequence that match when using the simple strategy do not match
any longer.

31

6. Evaluation

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

0%

25%

50%

75%

100%

Minimum token match

Av
g.

 s
im

ila
rit

y

Original Tuples Plagiarism Tuples

(a) Simple strategy

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

0%

25%

50%

75%

100%

Minimum token match
Av

g.
 s

im
ila

rit
y

Original Tuples Plagiarism Tuples

(b) Handcrafted strategy

Figure 6.2.: Minimum token match vs. average similarity for the Create language module
(2020 dataset)

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

0%

25%

50%

75%

100%

Minimum token match

Av
g.

 s
im

ila
rit

y

Original Tuples Plagiarism Tuples

Figure 6.3.: Minimum token match vs. average similarity for the EMF Model language
module (2020 dataset)

32

6.3. Results and Discussion

delete5 insert10

SCXML (sim
ple)

SCXML (handcra
fted)

Create (sim
ple)

Create (handcra
fted)

EMF Model

SCXML (sim
ple)

SCXML (handcra
fted)

Create (sim
ple)

Create (handcra
fted)

EMF Model
0%

25%

50%

75%

100%

Language module

Av
g.

 s
im

ila
rit

y

Original Tuples Plagiarism Tuples

(a) Similarity distribution for the insert and delete attacks

move100 rename100

SCXML (sim
ple)

SCXML (handcra
fted)

Create (sim
ple)

Create (handcra
fted)

EMF Model

SCXML (sim
ple)

SCXML (handcra
fted)

Create (sim
ple)

Create (handcra
fted)

EMF Model
0%

25%

50%

75%

100%

Language module

Av
g.

 s
im

ila
rit

y

Original Tuples Plagiarism Tuples

(b) Similarity distribution for the move and rename attacks

Figure 6.4.: Impact of the token extraction strategy on average similarity for the 2020
dataset (t = 10, recursive sorting enabled)

33

6. Evaluation

For example, in the case of the SCXML languagemodule, if the �rst assignment contained
a transition that was not timed and the other assignment contained a transition that was
timed, the extracted token would be of type TRANSITION both times. For the handcrafted
strategy, for the second assignment a TIMED_TRANSITION is extracted instead and the
two tokens are no longer the same which breaks the token sequence.
Further, in Figure 6.4b one can again observe that sorting the statecharts recursively

establishes immunity against attacks of type move. Also, it is expected that all approaches
are immune against renaming attacks since the name of a statechart element is not
considered as the tokens are extracted.

6.3.3. Impact of Sorting

This experiment is designed to gain insight into the e�ects of the two sorting procedures
described in detail in subsection 4.3.1.

As discussed in subsection 4.3.1, this extra step takes place during the token extraction.
The goal of the recursive sorting algorithm is to ensure immunity against move attacks
while the simple algorithm aims to perform better for deletion and insertion attacks.

Figure 6.5 depicts the average similarity distribution with di�erent con�gurations for
the sorting procedure using the 2020 dataset. Sorting is either turned o� entirely or the
simple or recursive algorithm is used. The EMF model language module does not perform
any kind of sorting of elements within a reference list, which is why it is not displayed
here. Similarly to previous experiments, the rename100 attack is omitted since it has no
e�ect on the extracted token sequence (as shall be demonstrated in the next subsection).
Parameters t = 10 and s = handcrafted are selected as discussed.

Looking at the diagram, a couple of observations can be made: �rst, the median average
similarity for the original tuples is lowest when sorting is disabled and highest when the
recursive sorting algorithm is used. The e�ect is most noticeable for the Create language
module. This can be explained by the fact that sorting increases the amount of possible
matching sections. Without sorting, if there are parts of two statecharts that consist of
the same types of model objects but in di�erent order the token streams would not match
completely. Sorting now allows these sections to match, leading to higher similarity values.

It can be seen that the choice of the sorting algorithm has a lower e�ect on the original
tuples for the SCXML module compared to the Create module. This may be due to the fact
that for the SCXML module, more token types are related to the data model (executable
contents), while the Create module makes use of more structural token types. Executable
contents cannot be reordered because that would change the behavior of the statechart so
overall there seem to be fewer elements that can be reordered.

Issues with the recursive sorting algorithm are presumed decreased resistance against
insertion and deletion attacks (subsection 4.3.2). While the e�ect appears not too strong
in the diagrams, the average similarity for tuples created from the insertion or deletion
attacks are actually lowest when using this algorithm.
As a further observation, it is noted that both systems manage to successfully achieve

(near) immunity against move attacks when the recursive sorting algorithm is used. For
both the Create and SCXML language modules, the similarity is at 100% for nearly all
plagiarized tuples, which reinforces the earlier claims of immunity against this speci�c type

34

6.3. Results and Discussion

delete5 insert10

SCXML (no so
rtin

g)

SCXML (sim
ple so

rtin
g)

SCXML (re
cursiv

e so
rtin

g)

Create (no so
rtin

g)

Create (sim
ple so

rtin
g)

Create (re
cursiv

e so
rtin

g)

SCXML (no so
rtin

g)

SCXML (sim
ple so

rtin
g)

SCXML (re
cursiv

e so
rtin

g)

Create (no so
rtin

g)

Create (sim
ple so

rtin
g)

Create (re
cursiv

e so
rtin

g)
0%

25%

50%

75%

100%

Language module

Av
g.

 s
im

ila
rit

y

Original Tuples Plagiarism Tuples

move10 rename10

SCXML (no so
rtin

g)

SCXML (sim
ple so

rtin
g)

SCXML (re
cursiv

e so
rtin

g)

Create (no so
rtin

g)

Create (sim
ple so

rtin
g)

Create (re
cursiv

e so
rtin

g)

SCXML (no so
rtin

g)

SCXML (sim
ple so

rtin
g)

SCXML (re
cursiv

e so
rtin

g)

Create (no so
rtin

g)

Create (sim
ple so

rtin
g)

Create (re
cursiv

e so
rtin

g)
0%

25%

50%

75%

100%

Language module

Av
g.

 s
im

ila
rit

y

Original Tuples Plagiarism Tuples

Figure 6.5.: Impact of sorting on average similarity to show the resistance against obfusca-
tion attacks (d = 2020, t = 10, s = handcrafted)

35

6. Evaluation

of attack. It should be noted that there are several outliers in the diagrams. As of the writing
of this thesis, it is not clear whether these are the result of a bug in the implementation of
the parsers or the token extraction strategy, or even caused by JPlag’s core code. Further
possible reasons include bugs in the code used to generate the obfuscation attacks or in
the code of Create that is used to generate the SCXML �les. Due to organizational reasons,
we choose not to investigate this further.

The above observations also hold for the 2021 dataset, see subsection A.1.1.

6.3.4. Comparison of the SCXML and Create languagemodules

We now look at aspects where the two modules di�er and explore how these variations
might account for the observed di�erences in performance.

1. Granularity and size of the token sets: Although the size of the token sets for
both language modules is the same at 23 (for the handcrafted strategy), the token
sets focus on di�erent aspects. For example, the SCXML token set does not contain
tokens that are related to the statechart language which is used by Create. In SCXML
there are special XML elements for the data model such as the <assign> or <script>
elements [31]. Special tokens for these are only extracted in the SCXML module,
making it more �ne-grained than the Create module in that regard.

2. Number of tokens extracted per statechart: The di�erent granularities of the
token sets can also be observed by looking at the number of tokens that are extracted
per statechart. For the original statecharts in the 2020 dataset, the median number of
tokens extracted per statechart is 144 for the Create module while it is at 272 for the
SCXML module (an increase of nearly 90%). While not as signi�cant, there is also an
increase in the median number of number of tokens for the 2021 dataset with 129
and 185, respectively (a di�erence of around 43%).

These values can explain why inserting or removing the same number of elements
into a statecharts has a smaller e�ect on the Create language module since disrupting
a shorter token sequence has a larger impact on the reduction of the similarity value.

3. Execution time:
Execution time is also a factor that becomes more important as the number of
submissions grows. While the execution time plays a subordinate role for a small
number of input �les, it becomes signi�cant when considering the practical use of
the language module in real-world applications, such as academia.

Figure 6.6 shows the execution time depending on the number of input statecharts
for both language modules. The experiment is run on a subset of the 2021 dataset.
The diagram shows the average number of milliseconds a call to JPlag.run takes over
the course of ten runs.

It is immediately evident that the execution time for the Create language module
is much larger compared to the SCXML module. For 21 input �les, the execution
times di�er by around a factor of 16 (1767 ms vs. 109 ms). Although the curves for

36

6.4. Threats to Validity

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●0

500

1000

1500

5 10 15 20
Number of input files

Ex
ec

ut
io

n
tim

e
in

 m
s

Language module
●

●

Create
SCXML

Figure 6.6.: Execution time per language module for the 2021 dataset

both language modules roughly follow a linear trend in this graph due to the low
number of submissions in the datasets, it can be assumed that the execution time
would approximate a quadratic curve if the number of input �les were to increase
further. This assumption is due to the fact that the number of comparisons JPlag
performs is

�=
2
�
= =2

2 � =
2 where = is the number of submissions.

The di�erences in execution time can be explained by the fact that the Create language
module uses EMF to read in the statechart �les which presumably is signi�cantly
slower than parsing the corresponding SCXML �les with a custom parser.

6.4. Threats to Validity

In this section, various threats to the validity of our evaluation are discussed. These can
be categorized into internal validity, external validity, construct validity, and threats to
statistical validity.
Our evaluation faces two main threats to internal validity. First, the dataset used in

our study is rather small, consisting of only 38 statecharts as part of two independent
modeling assignments in an academic setting. The small number of statecharts may
not be representative in other domains where statecharts are used such as in industrial
applications [21]. Second, the exact number of plagiarisms in the dataset is not known,
preventing us from showing the true-positive rate of our system. This limits our ability
to accurately evaluate its performance. It is worth noting that obfuscation attacks are
only applied to the statecharts in the .ysc format, rather than the SCXML �les directly.

37

6. Evaluation

Consequently, the SCXML module was evaluated on the SCXML �les generated from the
obfuscated .ysc �les. Since it is not clear how Create’s SCXML code generator works,
there is a possibility that some statecharts elements are rearranged during the conversion,
which may in�uence the results shown for the move attack.

Another aspect is that for the second and third experiments, the number of attacks
applied to a statechart varied within an experiment as well as across the experiments. For
example, 100 move and 100 rename attacks were used for the former while it were ten
for the latter. In the second experiment (subsection 6.3.2), the move and rename attacks
were updated to apply the obfuscation attacks ten times each to improve the comparison
within the experiment. Unfortunately, there was not enough time to rerun the evaluation
for the third experiment (subsection 6.3.3) with an equal number of attacks per statechart.
This reduces internal validity as it does not allow the comparison of results between
experiments. However, the experiments could be rerun with matching number of attacks
after generating the necessary obfuscated statecharts.
Regarding external validity, our approach focuses speci�cally on statechart models,

which may limit the generalizability of our �ndings to other types of models or domains.
However, we believe that some �ndings, such as the introduction of a sorting step, can be
applied to other kinds of models with similar properties.

A threat to construct validity in our evaluation is the exclusive use of statecharts created
with Create for testing the SCXML module. This approach does not consider the possibility
that SCXML-based statecharts created using other (future) tools may utilize di�erent
features of the SCXML speci�cation. Additionally, we might not have considered all
features in the SCXML or Create speci�cation.
Our evaluation encounters two threats to statistical validity. First, we use a program

that randomly generates plagiarisms from the input statecharts to evaluate the e�ects
of di�erent obfuscation attacks on our language modules. This method may not accu-
rately represent real-world obfuscation attacks, potentially limiting the relevance of the
evaluation to real-world scenarios. Second, in a real-world setting, it is possible that an
attacker develops more complex attacks that do not change the behavior of the statechart.
One example of such an attack is described in section 4.2 whereby an attacker changes
the number of <onentry> or <onexit> elements. While this speci�c attack is accounted
for in the implementation, there may be other such as semantics-preserving attacks that
an attacker can employ to change the token sequence. This limitation may lead to an
overestimation of the system’s performance in detecting real-world plagiarism.
Further, the described attacks are performed in such a way as to only generate valid

statecharts. This is done to increase the realism of the attacks under the assumption that
an attacker would only create valid statecharts that can actually be executed / simulated
by the modeling software. Refer to the next section on limitations (section 6.5) for further
details on this aspect.

6.5. Limitations

Statecharts have several attributes that make it harder to apply token-based plagiarism
detection systems to them compared to code:

38

6.5. Limitations

1. Dependence on the representation format: There are many di�erent ways to
store statecharts. Statecharts can be represented using various di�erent notations
including SCXML or the format used by Create depending on the application. This
makes it harder to compare statecharts across multiple formats. Of course, one
format can be converted into another. However, this is not always possible since
some concepts are unique to a speci�c application such as Create.

2. Di�culty to capture behavior: Two statecharts may behave similarly even if
they are structured di�erently. For example, states can be executed one after each
other or in parallel (by using orthogonal states). A token-based approach extracts
completely di�erent tokens in each of these cases because it exclusively examines the
constructs used in the de�nition of the statecharts while disregarding any similarities
in behavior.

3. Low resistance against speci�c kinds of attacks: In our implementation, only
rudimentary checks are performed during the parsing step (see subsection 5.2.1).
However, when allowing invalid statecharts, it becomes very easy for an attacker to
fool the plagiarism detection system. For example, an attacker can simply copy a
random state and insert it into every region element of the statechart. If this state is
unreachable (i.e. there exists no transition which contains this state as its target),
the attack does not change the behavior of statechart. Nevertheless, it signi�cantly
changes the token sequence as a result of the inserted state elements.

39

7. Future Work

Our implementation shall be added to the JPlag repository as a new language module
supporting plagiarism detection for statecharts. Based on the �ndings in the evaluation,
we will include only the SCXML module with the handcrafted token extraction strategy,
as this combination was found to perform the best. It remains to be seen how our system
performs when using it with more and larger datasets. Potentially, the implementation for
the token extraction has to be improved or extended to account for other SCXML elements
or concepts de�ned in the speci�cation.
This thesis introduced sorting algorithms that can be used to defend against certain

obfuscation attacks. Each of them performs better for certain cases of obfuscation attacks
than others. Ideally, it should be possible for the end user to toggle the sorting strategy to
be used from the command line to control this behavior. Related to this is that the SCXML
module currently uses Create-speci�c concepts such as timed transitions which do not
have a direct equivalent in the SCXML speci�cation. These should be made con�gurable
by the user as well.
To evaluate the resilience against a wider range of obfuscation attacks, our system

for automatically creating plagiarized statecharts should be expanded to support a wider
range of attacks.
In the future, our token-based approach should be compared with other techniques

including ones that are graph-based such as the work of Fauzan et al.

41

8. Conclusion

This thesis demonstrated the application of token-based plagiarism detection to state-
charts by extending the plagiarism detector JPlag. We created two language modules
for statecharts in di�erent formats and evaluated them using a real-world dataset of
statecharts.
The evaluation highlights several factors that in�uence the ability of a token-based

plagiarism detection system to detect possible cases of plagiarism. These include the
choice of the language module, the minimum token match parameter, the token extraction
strategy and the choice of the sorting strategy.

Our results showed that the SCXML language module outperforms the Create module
and a generic module for EMF models. Di�erent token extraction strategies for both
languagemodules were described and evaluated. The handcrafted token extraction strategy
with a larger token set proved to be more e�ective than the simple strategy, indicating the
importance of �ner-grained types of tokens that capture a larger part of the structure and
behavior of a statechart.
The choice of the sorting strategy represents a trade-o� between the sensitivity to

certain obfuscation attacks and the similarity distribution for original submission pairs.
Our novel recursive sorting algorithm achieves immunity against the move attack but
increases the e�ectiveness of an attacker to obfuscate cases of plagiarism by inserting or
deleting elements from the statechart.
Despite these results, the evaluation also revealed some limitations of token-based

plagiarism detectors when applied to statecharts. This suggests that further work is
required to compare the token-based approach with other techniques.

43

Bibliography

[1] Object Management Group (OMG). Uni�ed Modeling Language Speci�cation, Version
2.5.1. 2017, p. 305. ���: https://www.omg.org/spec/UML/2.5.1/PDF.

[2] A Review on Semantic Similarity Measures for Ontology - IOS Press. ���: https:
/ / content . iospress . com / articles / journal - of - intelligent - and - fuzzy -

systems/ifs18120 (visited on 03/27/2023).
[3] Itemis AG. YAKINDU Statechart Tools Documentation: Quick Reference. ���: https:

//www.itemis.com/en/yakindu/state-machine/documentation/user-guide/

quick_ref (visited on 11/08/2022).
[4] itemis AG. What is itemis CREATE? ���: https://www.itemis.com/en/products/

itemis-create/documentation/user-guide/overview_what_are_itemis_create_

statechart_tools (visited on 03/30/2023).
[5] Alex Aiken. A System for Detecting Software Similarity. ���: http : / / theory .

stanford.edu/~aiken/moss/ (visited on 11/22/2022).
[6] Approximate Nearest Neighbors | Proceedings of the Thirtieth Annual ACM Symposium

on Theory of Computing. ���: https://dl.acm.org/doi/abs/10.1145/276698.
276876 (visited on 11/20/2022).

[7] Önder Babur, Loek Cleophas, and Mark van den Brand. “Metamodel Clone Detection
with SAMOS”. In: Journal of Computer Languages 51 (Apr. 1, 2019), pp. 57–74. ����:
2590-1184. ���: 10.1016/j.cola.2018.12.002. ���: https://www.sciencedirect.
com/science/article/pii/S1045926X18301939 (visited on 11/22/2022).

[8] E. Benowitz, K. Clark, and G. Watney. “Auto-Coding UML Statecharts for Flight
Software”. In: 2nd IEEE International Conference on Space Mission Challenges for
Information Technology (SMC-IT’06). 2nd IEEE International Conference on Space
Mission Challenges for Information Technology (SMC-IT’06). July 2006, 5 pp.–417.
���: 10.1109/SMC-IT.2006.19.

[9] Sami Beydeda, Matthias Book, and Volker Gruhn, eds. Model-Driven Software Devel-
opment. Berlin, Heidelberg: Springer, 2005. ����: 978-3-540-25613-7 978-3-540-28554-
0. ���: 10.1007/3-540-28554-7. ���: http://link.springer.com/10.1007/3-540-
28554-7 (visited on 11/20/2022).

[10] Federico Ciccozzi et al. “How Do We Teach Modelling and Model-Driven Engineer-
ing? A Survey”. In: Proceedings of the 21st ACM/IEEE International Conference on
Model Driven Engineering Languages and Systems: Companion Proceedings. MOD-
ELS ’18. New York, NY, USA: Association for Computing Machinery, Oct. 14, 2018,
pp. 122–129. ����: 978-1-4503-5965-8. ���: 10.1145/3270112.3270129. ���: https:
//doi.org/10.1145/3270112.3270129 (visited on 03/29/2023).

45

https://www.omg.org/spec/UML/2.5.1/PDF
https://content.iospress.com/articles/journal-of-intelligent-and-fuzzy-systems/ifs18120
https://content.iospress.com/articles/journal-of-intelligent-and-fuzzy-systems/ifs18120
https://content.iospress.com/articles/journal-of-intelligent-and-fuzzy-systems/ifs18120
https://www.itemis.com/en/yakindu/state-machine/documentation/user-guide/quick_ref
https://www.itemis.com/en/yakindu/state-machine/documentation/user-guide/quick_ref
https://www.itemis.com/en/yakindu/state-machine/documentation/user-guide/quick_ref
https://www.itemis.com/en/products/itemis-create/documentation/user-guide/overview_what_are_itemis_create_statechart_tools
https://www.itemis.com/en/products/itemis-create/documentation/user-guide/overview_what_are_itemis_create_statechart_tools
https://www.itemis.com/en/products/itemis-create/documentation/user-guide/overview_what_are_itemis_create_statechart_tools
http://theory.stanford.edu/~aiken/moss/
http://theory.stanford.edu/~aiken/moss/
https://dl.acm.org/doi/abs/10.1145/276698.276876
https://dl.acm.org/doi/abs/10.1145/276698.276876
https://doi.org/10.1016/j.cola.2018.12.002
https://www.sciencedirect.com/science/article/pii/S1045926X18301939
https://www.sciencedirect.com/science/article/pii/S1045926X18301939
https://doi.org/10.1109/SMC-IT.2006.19
https://doi.org/10.1007/3-540-28554-7
http://link.springer.com/10.1007/3-540-28554-7
http://link.springer.com/10.1007/3-540-28554-7
https://doi.org/10.1145/3270112.3270129
https://doi.org/10.1145/3270112.3270129
https://doi.org/10.1145/3270112.3270129

Bibliography

[11] Georgina Cosma and Mike Joy. “Towards a De�nition of Source-Code Plagiarism”.
In: IEEE Transactions on Education 51.2 (May 2008), pp. 195–200. ����: 1557-9638.
���: 10.1109/TE.2007.906776.

[12] Florian Deissenboeck et al. “Model Clone Detection in Practice”. In: Proceedings of
the 4th International Workshop on Software Clones. IWSC ’10. New York, NY, USA:
Association for Computing Machinery, May 8, 2010, pp. 57–64. ����: 978-1-60558-
980-0. ���: 10.1145/1808901.1808909. ���: https://dl.acm.org/doi/10.1145/
1808901.1808909 (visited on 03/28/2023).

[13] Editing State Charts | Qt Creator Manual. ���: https://doc.qt.io/qtcreator/
creator-scxml.html (visited on 03/29/2023).

[14] Emfatic. ���: https://www.eclipse.org/emfatic/ (visited on 03/27/2023).
[15] Reza Fauzan et al. “An Automated Statechart Diagram Assessment Using Semantic

and Structural Similarities”. In: International Journal on Advanced Science, Engineer-
ing and Information Technology 11.6 (6 2021). ���: https://repository.poliban.
ac.id/id/eprint/910/ (visited on 03/27/2023).

[16] David Harel. “Statecharts: A Visual Formalism for Complex Systems”. In: Science
of Computer Programming 8.3 (June 1, 1987), pp. 231–274. ����: 0167-6423. ���:
10.1016/0167-6423(87)90035-9. ���: https://www.sciencedirect.com/science/
article/pii/0167642387900359 (visited on 11/16/2022).

[17] H. T. Jankowitz. “Detecting Plagiarism in Student Pascal Programs”. In: The Computer
Journal 31.1 (Jan. 1, 1988), pp. 1–8. ����: 0010-4620. ���: 10.1093/comjnl/31.1.1.
���: https://doi.org/10.1093/comjnl/31.1.1 (visited on 11/20/2022).

[18] JPlag: Token-Based Software Plagiarism Detection. ���: https://github.com/jplag/
JPlag (visited on 11/16/2022).

[19] Cynthia Kustanto and Inggriani Liem. “Automatic Source Code Plagiarism Detec-
tion”. In: 2009 10th ACIS International Conference on Software Engineering, Arti�cial
Intelligences, Networking and Parallel/Distributed Computing. 2009, pp. 481–486. ���:
10.1109/SNPD.2009.62.

[20] SalvadorMartínez, ManuelWimmer, and Jordi Cabot. “E�cient PlagiarismDetection
for Software Modeling Assignments”. In: Computer Science Education 30.2 (Apr. 2,
2020), pp. 187–215. ����: 0899-3408. ���: 10.1080/08993408.2020.1711495. ���:
https://doi.org/10.1080/08993408.2020.1711495 (visited on 11/20/2022).

[21] Raimundo Santos Moura and Luiz A�onso Guedes. “Simulation of Industrial Applica-
tions Using the Execution Environment SCXML”. In: 2007 5th IEEE International Con-
ference on Industrial Informatics. 2007 5th IEEE International Conference on Industrial
Informatics. Vol. 1. June 2007, pp. 255–260. ���: 10.1109/INDIN.2007.4384765.

[22] Shiva Nejati et al. “Matching and Merging of Statecharts Speci�cations”. In: 29th
International Conference on Software Engineering (ICSE’07). 29th International Con-
ference on Software Engineering (ICSE’07). May 2007, pp. 54–64. ���: 10.1109/
ICSE.2007.50.

46

https://doi.org/10.1109/TE.2007.906776
https://doi.org/10.1145/1808901.1808909
https://dl.acm.org/doi/10.1145/1808901.1808909
https://dl.acm.org/doi/10.1145/1808901.1808909
https://doc.qt.io/qtcreator/creator-scxml.html
https://doc.qt.io/qtcreator/creator-scxml.html
https://www.eclipse.org/emfatic/
https://repository.poliban.ac.id/id/eprint/910/
https://repository.poliban.ac.id/id/eprint/910/
https://doi.org/10.1016/0167-6423(87)90035-9
https://www.sciencedirect.com/science/article/pii/0167642387900359
https://www.sciencedirect.com/science/article/pii/0167642387900359
https://doi.org/10.1093/comjnl/31.1.1
https://doi.org/10.1093/comjnl/31.1.1
https://github.com/jplag/JPlag
https://github.com/jplag/JPlag
https://doi.org/10.1109/SNPD.2009.62
https://doi.org/10.1080/08993408.2020.1711495
https://doi.org/10.1080/08993408.2020.1711495
https://doi.org/10.1109/INDIN.2007.4384765
https://doi.org/10.1109/ICSE.2007.50
https://doi.org/10.1109/ICSE.2007.50

[23] Matija Novak, Mike Joy, and Dragutin Kermek. “Source-Code Similarity Detection
and Detection Tools Used in Academia: A Systematic Review”. In: ACM Transactions
on Computing Education 19.3 (May 2019). ���: 10.1145/3313290. ���: https://doi.
org/10.1145/3313290.

[24] A. Parker and J.O. Hamblen. “Computer Algorithms for Plagiarism Detection”. In:
IEEE Transactions on Education 32.2 (1989), pp. 94–99. ���: 10.1109/13.28038.

[25] Lutz Prechelt, Guido Malpohl, and Michael Philippsen. “Finding Plagiarisms among
a Set of Programs with JPlag”. In: Journal of Universal Computer Science 8.11 (2000),
pp. 1016–1038.

[26] Lutz Prechelt, Guido Malpohl, and Michael Philippsen. JPlag: Finding Plagiarisms
among a Set of Programs. University of Karlsruhe, Department of Informatics, 2000.

[27] Timur Sağlam. JPlag Language Module for EMF Model Instances. ���: https://
github.com/jplag/JPlag/tree/emf-model-new/languages/emf-model (visited on
04/01/2023).

[28] Timur Sağlam et al. “Token-Based Plagiarism Detection for Metamodels”. In: Pro-
ceedings of the 25th International Conference on Model Driven Engineering Languages
and Systems: Companion Proceedings. MODELS ’22. New York, NY, USA: Association
for Computing Machinery, Nov. 9, 2022, pp. 138–141. ����: 978-1-4503-9467-3. ���:
10.1145/3550356.3556508. ���: https://doi.org/10.1145/3550356.3556508
(visited on 11/22/2022).

[29] Alberto Sanfeliu and King-Sun Fu. “A Distance Measure between Attributed Rela-
tional Graphs for Pattern Recognition”. In: IEEE Transactions on Systems, Man, and
Cybernetics SMC-13.3 (May 1983), pp. 353–362. ����: 2168-2909. ���: 10.1109/TSMC.
1983.6313167.

[30] Speci�cation of Factory Dashboard Behaviour Using Statecharts. ���: http://msdl.
uantwerpen.be/people/hv/teaching/MoSIS/202021/assignments/Statecharts

(visited on 03/25/2023).
[31] State Chart XML (SCXML): State Machine Notation for Control Abstraction. ���:

https://www.w3.org/TR/scxml/ (visited on 11/08/2022).
[32] Statecharts Assignment. ���: http://msdl.uantwerpen.be/people/hv/teaching/

MoSIS/202122/assignments/Statecharts (visited on 03/25/2023).
[33] Harald Störrle. “E�ective and E�cient Model Clone Detection”. In: Software, Services,

and Systems: Essays Dedicated to Martin Wirsing on the Occasion of His Retirement
from the Chair of Programming and Software Engineering. Ed. by Rocco De Nicola and
Rolf Hennicker. Lecture Notes in Computer Science. Cham: Springer International
Publishing, 2015, pp. 440–457. ����: 978-3-319-15545-6. ���: 10.1007/978-3-319-
15545-6_25. ���: https://doi.org/10.1007/978-3-319-15545-6_25 (visited on
03/19/2023).

[34] Variability Mining of State Charts | Proceedings of the 7th International Workshop
on Feature-Oriented Software Development. ���: https://dl.acm.org/doi/abs/10.
1145/3001867.3001875 (visited on 04/03/2023).

47

https://doi.org/10.1145/3313290
https://doi.org/10.1145/3313290
https://doi.org/10.1145/3313290
https://doi.org/10.1109/13.28038
https://github.com/jplag/JPlag/tree/emf-model-new/languages/emf-model
https://github.com/jplag/JPlag/tree/emf-model-new/languages/emf-model
https://doi.org/10.1145/3550356.3556508
https://doi.org/10.1145/3550356.3556508
https://doi.org/10.1109/TSMC.1983.6313167
https://doi.org/10.1109/TSMC.1983.6313167
http://msdl.uantwerpen.be/people/hv/teaching/MoSIS/202021/assignments/Statecharts
http://msdl.uantwerpen.be/people/hv/teaching/MoSIS/202021/assignments/Statecharts
https://www.w3.org/TR/scxml/
http://msdl.uantwerpen.be/people/hv/teaching/MoSIS/202122/assignments/Statecharts
http://msdl.uantwerpen.be/people/hv/teaching/MoSIS/202122/assignments/Statecharts
https://doi.org/10.1007/978-3-319-15545-6_25
https://doi.org/10.1007/978-3-319-15545-6_25
https://doi.org/10.1007/978-3-319-15545-6_25
https://dl.acm.org/doi/abs/10.1145/3001867.3001875
https://dl.acm.org/doi/abs/10.1145/3001867.3001875

Bibliography

[35] Winnowing | Proceedings of the 2003 ACM SIGMOD International Conference on
Management of Data. ���: https://dl.acm.org/doi/abs/10.1145/872757.872770
(visited on 11/22/2022).

[36] Michael Wise. “String Similarity via Greedy String Tiling and Running Karp-Rabin
Matching”. In: Unpublished Basser Department of Computer Science Report (Jan. 1,
1993).

[37] YAKINDU Statechart Tools 3.x. YAKINDU, Mar. 13, 2023. ���: https://github.com/
Yakindu/statecharts (visited on 03/30/2023).

48

https://dl.acm.org/doi/abs/10.1145/872757.872770
https://github.com/Yakindu/statecharts
https://github.com/Yakindu/statecharts

A. Appendix

A.1. Evaluation

A.1.1. Impact of Minimum Token Match

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

0%

25%

50%

75%

100%

Minimum token match

Av
g.

 s
im

ila
rit

y

Original Tuples Plagiarism Tuples

(a) Simple strategy

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

0%

25%

50%

75%

100%

Minimum token match

Av
g.

 s
im

ila
rit

y

Original Tuples Plagiarism Tuples

(b) Handcrafted strategy

Figure A.1.: Minimum token match vs. average similarity for the SCXML language module
(2021 dataset)

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

0%

25%

50%

75%

100%

Minimum token match

Av
g.

 s
im

ila
rit

y

Original Tuples Plagiarism Tuples

(a) Simple strategy

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

0%

25%

50%

75%

100%

Minimum token match

Av
g.

 s
im

ila
rit

y

Original Tuples Plagiarism Tuples

(b) Handcrafted strategy

Figure A.2.: Minimum token match vs. average similarity for the Create language module
(2021 dataset)

49

A. Appendix

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

0%

25%

50%

75%

100%

Minimum token match

Av
g.

 s
im

ila
rit

y

Original Tuples Plagiarism Tuples

Figure A.3.: Minimum token match vs. average similarity for the EMF Model language
module (2021 dataset)

50

A.1. Evaluation

delete5 insert10

SCXML (sim
ple)

SCXML (handcra
fted)

Create (sim
ple)

Create (handcra
fted)

EMF Model

SCXML (sim
ple)

SCXML (handcra
fted)

Create (sim
ple)

Create (handcra
fted)

EMF Model
0%

25%

50%

75%

100%

Language module

Av
g.

 s
im

ila
rit

y

Original Tuples Plagiarism Tuples

(a) Similarity distribution for the insert and delete attacks

move100 rename100

SCXML (sim
ple)

SCXML (handcra
fted)

Create (sim
ple)

Create (handcra
fted)

EMF Model

SCXML (sim
ple)

SCXML (handcra
fted)

Create (sim
ple)

Create (handcra
fted)

EMF Model
0%

25%

50%

75%

100%

Language module

Av
g.

 s
im

ila
rit

y

Original Tuples Plagiarism Tuples

(b) Similarity distribution for the move and rename attacks

Figure A.4.: Impact of the token extraction strategy on average similarity for the 2021
dataset (t = 10, recursive sorting enabled)

51

A. Appendix

delete5 insert10

SCXML (no so
rtin

g)

SCXML (sim
ple so

rtin
g)

SCXML (re
cursiv

e so
rtin

g)

Create (no so
rtin

g)

Create (sim
ple so

rtin
g)

Create (re
cursiv

e so
rtin

g)

SCXML (no so
rtin

g)

SCXML (sim
ple so

rtin
g)

SCXML (re
cursiv

e so
rtin

g)

Create (no so
rtin

g)

Create (sim
ple so

rtin
g)

Create (re
cursiv

e so
rtin

g)
0%

25%

50%

75%

100%

Language module

Av
g.

 s
im

ila
rit

y

Original Tuples Plagiarism Tuples

move10 rename10

SCXML (no so
rtin

g)

SCXML (sim
ple so

rtin
g)

SCXML (re
cursiv

e so
rtin

g)

Create (no so
rtin

g)

Create (sim
ple so

rtin
g)

Create (re
cursiv

e so
rtin

g)

SCXML (no so
rtin

g)

SCXML (sim
ple so

rtin
g)

SCXML (re
cursiv

e so
rtin

g)

Create (no so
rtin

g)

Create (sim
ple so

rtin
g)

Create (re
cursiv

e so
rtin

g)
0%

25%

50%

75%

100%

Language module

Av
g.

 s
im

ila
rit

y

Original Tuples Plagiarism Tuples

Figure A.5.: Impact of sorting on average similarity to show the resistance against obfus-
cation attacks (d = 2021, t = 10, s = handcrafted)

52

	Abstract
	Zusammenfassung
	Introduction
	Foundations
	Plagiarism
	Plagiarism Detection
	JPlag
	Minimum Token Match

	Statecharts
	Itemis CREATE
	SCXML

	Related Work
	Clone Detection

	Analysis
	Differences between Models and Code
	Applying Obfuscation Attacks to Statecharts
	Immunity Against Selected Obfuscation Attacks
	Sorting of Model Objects
	Recursive Sorting Algorithm
	Simple Sorting Algorithm

	Token-Based Plagiarism Detection for Statecharts
	Architecture
	Parsing
	Parsing SCXML files
	Parsing Create files

	Token Extraction
	Simple Token Extraction
	Handcrafted Token Extraction
	Implementation

	Visualization

	Evaluation
	QGM Plan
	Methodology
	Results and Discussion
	Impact of Minimum Token Match
	Impact of the Token Extraction Strategy
	Impact of Sorting
	Comparison of the SCXML and Create language modules

	Threats to Validity
	Limitations

	Future Work
	Conclusion
	Bibliography
	Appendix
	Evaluation
	Impact of Minimum Token Match

