
Constrained Neural Networks for
Safety-Critical Environments—In the Context
of Automated Driving and Driver Assistance

Zur Erlangung des akademischen Grades eines

DOKTORS DER INGENIEURWISSENSCHAFTEN (Dr.-Ing.)

von der KIT-Fakultät für Wirtschaftswissenschaften
des Karlsruher Instituts für Technologie (KIT)

genehmigte

DISSERTATION

von

M.Sc. Mathis Brosowsky
geb. in Flensburg

Tag der mündlichen Prüfung: 14.11.2023

Hauptreferent: Prof. Dr.-Ing. Johann Marius Zöllner
Korreferent: Prof. Dr. techn. Gerhard Neumann

Abstract

Neural networks have been becoming a main driving factor for automated driving and
driver assistance and achieve state-of-the-art performance in highly relevant learning
tasks. Unfortunately, the black box character of neural networks impedes safety assurance
fundamentally and slows down the approval of systems towards higher levels of automa-
tion. For safety-critical environments, constraints are an established concept to prevent
unintended and hazardous behavior. However, embedding constraints in neural networks
is challenging and research is in an early stage.

In this thesis, the novel neural network architecture ConstraintNet is proposed, which en-
forces sample-specific output constraints by construction. The constraints allow a flexible
balancing between learning behavior implicitly from data and imposing explicit relation-
ships based on prior knowledge. ConstraintNet applies an input-dependent parametriza-
tion of the constrained output space as the final layer, the so-called constraint guard
layer. Furthermore, the input is extended for specifying the constraint. Thereby, a broad
class of parametrizable geometries is supported as constraints and almost no computa-
tional overhead is required. For constraints in the form of convex polytopes, a compact
parametrization based on the vertex representation is proposed. Constraint satisfaction,
the low computational costs, and a high performance are demonstrated on facial landmark
detection experiments. Furthermore, a general mathematical formalization is developed
and aims to reach researchers of different domains. In the experimental part of this thesis,
constrained neural networks including ConstraintNet are evaluated on two safety-relevant
tasks of automated driving and driver assistance: 1) Learning a vehicle following controller
to keep safe distances to vehicles ahead with deep reinforcement learning. 2) Learning a
joint vehicle trajectory and cut-in prediction for safe and predictive planning and control.
For the vehicle following controller, constraints on the control input, the safe sets, are
derived by extending the responsibility-sensitive safety model. The safe sets ensure the
avoidance of rear-end collisions formally and are imposed as hard output constraints on
the policy. Finally, the effectiveness of constrained neural networks is demonstrated with
regard to collision avoidance. The second task addresses safety by proposing an early, re-
liable, and interpretable behavior prediction for surrounding vehicles. The model’s output
is a bimodal distribution over trajectories and the modes are associated with a cut-in and
a passing maneuver. Soft and hard output constraints are leveraged to improve the lateral
separation between the cut-in and passing trajectory. In both tasks, the constraints prevent
unintended behavior and the design choices of ConstraintNet result in a high performance.

In conclusion, this thesis makes important contributions to the state-of-the-art of embed-
ding constraints in neural networks. In addition, the great potential of constrained neural
networks towards safe artificial intelligence for advanced driver assistance, automated
driving, and the dream of self-driving vehicles is demonstrated.

i

Zusammenfassung

Neuronale Netzwerke sind zu einer Schlüsseltechnologie für das automatisierte und assis-
tierte Fahren geworden und stellen den Stand der Technik in vielen relevanten Lernaufga-
ben dar. Leider verändert und erschwert der Black Box Charakter neuronaler Netzwerke die
Absicherung erheblich und verlangsamt die Zulassung von Systemen mit höheren Automa-
tisierungsstufen. In sicherheitskritischen Systemen sind Einschränkungen ein etabliertes
Konzept um unbeabsichtigtes und gefährliches Verhalten zu vermeiden. Allerdings ist das
Integrieren von Einschränkungen in neuronale Netzwerke nicht trivial und die Forschung
befindet sich noch in einem frühen Stadium.

In dieser Arbeit wird die neuartige neuronale Netzwerkarchitektur ConstraintNet vorge-
stellt um eingabespezifische Einschränkungen der Ausgabe per Konstruktion sicherzu-
stellen. Dadurch können aus Daten impliziert gelerntes Verhalten und a priori bekannte
explizite Zusammenhänge flexibel kombiniert werden. ConstraintNet wendet eine einga-
beabhängige Parametrisierung des eingeschränkten Ausgaberaumes als finale Schicht an.
Zudem ist die Eingabe erweitert um die Einschränkung zu spezifizieren. Dadurch wird
eine große Klasse von parametrisierbaren Geometrien unterstützt und der zusätzliche Re-
chenaufwand ist minimal. Für Einschränkungen in Form von konvexen Polytopen wird
eine kompakte Parametrisierung basierend auf der Vertex-Beschreibung vorgestellt. Die
Erfüllung der Einschränkungen, der geringe Rechenaufwand und eine hohe Performance
werden anhand von Experimenten zur Detektion von Markierungspunkten im Gesicht ge-
zeigt. Darüber hinaus wird eine präzise mathematische Formalisierung entwickelt mit dem
Ziel Anwender aus möglichst vielen Gebieten zu erreichen. Im anwendungsbezogenen Teil
der Arbeit werden neuronale Netzwerke mit Einschränkungen, inklusive ConstraintNet,
bezüglich zwei sicherheitsrelevanter Aufgaben für das automatisierte und assistierte Fah-
ren evaluiert: 1) Das Lernen eines Folgereglers mithilfe von Deep Reinforcement Learning
um sichere Abstände zu vorausfahrenden Fahrzeugen einzuhalten. 2) Das Lernen einer
Prädiktion von Fahrzeugtrajektorien und Einscher-Manövern um sichere und prädikti-
ve Planer und Regler zu ermöglichen. Für die Folgeregelung werden Einschränkungen
der Stellgröße durch Erweiterung des Responsibility-Sensitive Safety-Modells hergeleitet.
Die Einschränkungen garantieren die Vermeidung von Auffahrunfällen und werden dem
Regler als harte Ausgabeeinschränkungen auferlegt. Der Nutzen von neuronalen Netz-
werken mit Einschränkungen wird in Hinblick auf Kollisionsvermeidung gezeigt. Die
zweite Anwendung unterstützt Sicherheit durch eine frühe, zuverlässige und interpretier-
bare Verhaltensprädiktion für umgebende Fahrzeuge. Die Ausgabe ist als eine bimodale
Wahrscheinlichkeitsverteilung über Trajektorien modelliert und die Moden sind mit einem
Einscher- und einem Vorbeifahrmanöver assoziiert. Weiche und harte Ausgabeeinschrän-
kungen werden für eine verbesserte laterale Trennung der Einscher- und Vorbeifahrtrajek-
torie angewendet. In beiden betrachteten Anwendungen vermeiden die Einschränkungen
unbeabsichtigtes Verhalten und ConstraintNet erreicht eine hohe Performance.

iii

Zusammenfassung

Insgesamt leistet diese Arbeit wichtige Beiträge zum Stand der Technik von neuronalen
Netzwerken mit integrierten Einschränkungen. Zudem wird das große Potential von neu-
ronalen Netzwerken mit integrierten Einschränkungen für die Sicherheit von künstlicher
Intelligenz und für den Einsatz im automatisierten und assistierten Fahren aufgezeigt.

iv

Acknowledgments

First and primarily, I sincerely thank Prof. Dr. Johann Marius Zöllner for the continuous
and reliable supervision from day one, the detailed and lucid discussions, the pushing
towards rethinking and improving, the valuable suggestions, and the continuous feedback.
Furthermore, I enjoyed the always friendly and demanding atmosphere. This enabled me
to contribute to scientific research and helped me to develop myself further. I am very
grateful for this opportunity.

Moreover, special thanks go to Dr. Daniel Slieter for the excellent support, the frequent and
profound discussions, steady thinking about advancement, and being always motivating
with his passion regarding driver assistance and machine learning. I consider myself lucky
to had him as being always available and supporting no matter how busy he was.

I thank Dr. Eric Wahl for proposing the subject area Safe AI, which is both future-oriented
and challenging. In our frequent and regular discussions, he supported me in providing
room for creativity, encouraging theoretical work, sharing his experience, and guiding the
research towards industrial applications.

In addition, I thank the Porsche AG for the great opportunity and the environment to
do this research. Especially, I thank Dr. Sebastian Söhner for the overall coordination
of the Porsche Innovation Campus and the collaboration of the Porsche AG with the
Forschungszentrum Informatik (FZI). Thereby, I enjoyed an inspiring working environ-
ment and state-of-the-art equipment including a cutting-edge test vehicle. I thank the
full team of the Porsche Innovation Campus for detailed discussions, helping each other,
and having a great time together. Throughout developing this thesis, I collaborated with
talented, ambitious, and nice students. I thank Paul Orschau, Olaf Dünkel, Florian Keck,
Fabrizio Puzzo, and Jakob Ketterer for excellent support. Moreover, I thank Christian
Hubschneider for being a reliable contact person at FZI. Especially, I am thankful for his
valuable and detailed reviewing, which helped me to improve my work. Furthermore,
I thank Abhishek Vivekanandan and my colleagues from FZI for profound discussions
and separate calls regarding specific research topics. Additionally, I thank Dr. Görkem
Büyükyildiz for support and thinking together outside the box. Even though we worked
only for a short time together, I am grateful for the support of Dr. Michael Grimm and shar-
ing his technical expertise. I thank Dr. Benjamin Gutjahr for supporting me in finishing
the thesis while working at CARIAD.

Last but not least, I am grateful to my family who supported me throughout my whole
education. I appreciate the full freedom I received to follow my passion and skills. Special
thanks go to my parents, my grandparents, my wonderful grandma, and my sisters Jana,
Marie, and Anne.

v

Table of Contents

Acronyms and Mathematical Notation . xi

1 Introduction . 1
1.1 Motivation . 1
1.2 Advanced Driver Assistance and Automated Driving Systems 3

1.2.1 Levels of Driving Automation 3
1.2.2 Processing Chain of Driving Automation Systems 5

1.3 Contributions and Structure of the Thesis 6

2 Preliminaries . 9
2.1 Standards, Guidelines, and Methods for the Development of Safe Driving

Automation Systems . 10
2.1.1 Overview . 10
2.1.2 Safety of the Intended Functionality 13
2.1.3 Formal Methods for the Safety of the Intended Functionality of

Driving Policies . 18
2.2 Neural Networks . 22

2.2.1 Basics: Artificial Neurons, Layers, and Neural Networks 22
2.2.2 Optimization . 28
2.2.3 Bayesian Deep Learning . 33

2.3 Reinforcement Learning . 35
2.3.1 Basics and Intuition . 35
2.3.2 Markov Decision Process . 37
2.3.3 General Concepts for Solving Markov Decision Processes 39
2.3.4 Reinforcement Learning Algorithms 44

3 Sample-Specific Output Constraints for Neural Networks: Con-
straintNet . 49
3.1 Motivation . 50
3.2 Related Work . 54
3.3 ConstraintNet . 60

3.3.1 Sample-Specific Output Constraints for Neural Networks 60
3.3.2 Architecture and Construction 61
3.3.3 Constraint Guard Layer . 63
3.3.4 Training . 65
3.3.5 Supported Constraints and Generalizations 66

vii

Table of Contents

3.4 Facial Landmark Detection Experiments 68
3.4.1 Overview . 68
3.4.2 Output Constraints . 69
3.4.3 Training and Quantitative Results 72
3.4.4 Qualitative Results . 75

3.5 Conclusion . 79

4 Safe Reinforcement Learning with Constrained Neural Networks:
Vehicle Following Controller . 81
4.1 Motivation . 82
4.2 Related Work . 85

4.2.1 Safe Reinforcement Learning 85
4.2.2 Adaptive Cruise Control . 87

4.3 Methods . 88
4.3.1 Vehicle Following Controller 88
4.3.2 State-Specific Safe Sets . 90
4.3.3 Twin Delayed Deep Deterministic Policy Gradient Algorithm . . 98

4.4 Experiments . 100
4.4.1 Simulator and Reward Function 100
4.4.2 Training . 103
4.4.3 Results . 105

4.5 Conclusion . 108

5 Behavior Prediction for Safe Driving with Constrained Neural Net-
works: Joint Vehicle Trajectory and Cut-In Prediction 109
5.1 Motivation . 110
5.2 Related Work . 113
5.3 Methods . 116

5.3.1 Data Set and Automatic Scenario Detection 116
5.3.2 Model Input . 123
5.3.3 Encoder-Decoder Architecture 125
5.3.4 Soft and Hard Output Constraints 128
5.3.5 Loss . 129

5.4 Experiments . 131
5.4.1 Evaluation Metrics . 131
5.4.2 Preprocessing . 134
5.4.3 Training . 138
5.4.4 Results . 139

5.5 Conclusion . 148

6 Conclusion and Outlook . 151

List of Figures . 155

viii

Table of Contents

List of Tables . 157

Publications, Patents, and Supervised Theses 159

References . 161

ix

Acronyms and Mathematical Notation

Acronyms

1D One Dimensional
2D Two Dimensional
3D Three Dimensional
ACC Adaptive Cruise Control
ACC 4S Adaptive Cruise Control with State-Specific Safe Sets
AD Automated Driving
Adam Adaptive moment estimation
ADAS Advanced Driver Assistance System
ADS Automated Driving System
AEB Automatic Emergency Braking
AI Artificial Intelligence
ANN Artificial Neural Network
ASIL Automotive Safety Integrity Level
AV Automated Vehicle
BDL Bayesian Deep Learning
BRNN Bidirectional Recurrent Neural Network
CIPV Closest In-Path Vehicle
CLM Constrained Local Model
CMDP Constrained Markov Decision Process
CNN Convolutional Neural Network
CV Computer Vision
DAG Directed Acyclic Graph
DAS Driving Automation System
DDPG Deep Deterministic Policy Gradient
DL Deep Learning
DNN Deep Neural Network
DQN Deep Q Network
DRL Deep Reinforcement Learning
E/E Electrical and/or Electronical
FLMDE Final Lateral Mean Displacement Error
FMDE Final Mean Displacement Error
FuSa Functional Safety

xi

Acronyms

GCN Graph Convolutional Network
GNN Graph Neural Network
GRU Gated Recurrent Unit
HIL Hardware In the Loop
ID Identifier
IPM Interior Point Method
KKT Karush-Kuhn-Tucker
LiDAR Light Detection And Ranging
LMDE Lateral Mean Displacement Error
LSTM Long Short-Term Memory
MAP Maximum A Posteriori
MDE Mean Displacement Error
MDN Mixture Density Network
MDP Markov Decision Process
M-FLMDE Final Lateral Mean Displacement between Modes
MIL Model In the Loop
ML Machine Learning
MLE Maximum Likelihood Estimation
M-LMDE Lateral Mean Displacement between Modes
MPC Model Predictive Control
MSE Mean Squared Error
NLL Negative Log-Likelihood
NLP Natural Language Processing
NN Neural Network
ODD Operational Design Domain
QM Quality Management
QP Quadratic Program
RADAR RAdio Detection And Ranging
ReLU Rectified Linear Unit
RL Reinforcement Learning
RMSprop Root Mean Squared propagation
RNN Recurrent Neural Network
ROS Robot Operating System
RSS Responsibility-Sensitive Safety
SAE Society of Automotive Engineers
SFF Safety Force Field
SGD Stochastic Gradient Descent
SIL Software In the Loop
SOTIF Safety of the Intended Functionality
TD3 Twin Delayed Deep Deterministic Policy Gradient
TPE Tree-structured Parzen Estimator

xii

Mathematical Notation

UNECE United Nations Economic Commission for Europe
VLSS Vehicle Level Safety Strategy
V&V Verification and Validation
WTA Winner-Takes-All

Mathematical Notation

Lower Case Letters

𝑎 Acceleration

𝑏 Bias term of a model, a vector in general

𝑐 Index for entries of vectors/matrices/tensors, acceleration bound for vehicle
following controller

𝑑 Distance

𝑓\ (·), 𝑛\ (·) Model with parameters \

𝑔(·) Activation function of a neuron, tensor representation of a constraint in
ConstraintNet

ℎ Hidden state of a model, kernel of a convolution, index for time steps

𝑖 Index for training steps, index for samples in a data set

𝑗 Jerk (time derivative of the acceleration)

𝑘 Index for time steps, index for entries of vectors/matrices/tensors, variable
for number of incidents

𝑙 Index for time steps, index for entries of vectors/matrices/tensors

ℓ(·) Loss function

𝑜 Index for entries of vectors/matrices/tensors

𝑝(·) Probability density function

𝑟 (·) Reward function

𝑠 Length of a route, constraint parameter of ConstraintNet, scenario metadata

sig(·) Sigmoid function sig(𝑡) = 1/(1 + exp(−𝑡))

𝑡 Time point

𝑢 Control input, action

𝑣 Velocity, vertex of a polytope

𝑤 Weight of a model, weighting factor

𝑥 Input of a model

xiii

Mathematical Notation

𝑦 Output of a model, label

�̂� Prediction of a model

𝑧 Intermediate or latent variable

Capital Letters

𝐴 Matrix 𝐴∈R𝐾×𝑁

C Constrained set, set of safe actions

ℭ Class of output constraints

D Data set

𝐸 [·] Expectation value

𝐺𝑘 (·) Random variable for the return at time step 𝑘

𝐻, 𝐾, 𝐿 Number of elements in a sequence

𝐼 Identity matrix

𝐽 (·) Cost function, expected discounted return

K Set of time step indices

𝐿 (·) Loss

N Set of natural numbers

N0 Set of natural numbers including zero

𝑁 Number of samples in a data set

N(·, Σ) Gaussian distribution with covariance matrix Σ

O Sector of a circle

P Convex polytope

𝑃(·) Probability function

𝑄𝜋 (𝑥, 𝑢) Action-value function for policy 𝜋, state 𝑥, and action 𝑢

𝑅 Radius

𝑅(·) Regularization term, random variable for a reward

R Set of real numbers

S Set of constraint parameters

𝑇 Time interval

T Set of time points

U Action space

xiv

Mathematical Notation

𝑈 (·) Random variable for an action

𝑉𝜋 (𝑥) State-value function for policy 𝜋 and state 𝑥

𝑊 Weight matrix

X Domain of a function, state space

𝑋 (·) Random variable for a state

Y Range of a function

Z Range of an intermediate variable 𝑧

Greek Letters

𝛼 Tuning parameter for leaky ReLU, coefficients of a mixture model

𝛽 Factor for exponential decay

𝛾 Discount factor, confidence level for statistical hypothesis tests

𝜖 Small positive real number

[Learning rate

\ Parameters of a model

Θ Set of parameters

_ Weighting factor, parameter of a probability distribution

` Mean value

𝜋 Pi

𝜋(·) Policy

𝜌 Correlation coefficient of a 2D Gaussian distribution

𝜎 Standard deviation

𝜎(·) Softmax function

Σ Covariance matrix

𝜏 Time constant of a first-order lag, roll-out in reinforcement learning

𝜙(𝑧, 𝑠) Constraint guard layer of ConstraintNet applied on the intermediate variable
𝑧 and the constraint parameter 𝑠

𝜑 Angle

xv

Mathematical Notation

Operators

∇ Gradient
𝜕
𝜕𝑥

Partial derivative w.r.t. 𝑥

𝑓 ⊗ 𝑔 Cross-correlation of function 𝑓 and 𝑔

𝑓 ∗ 𝑔 Convolution of function 𝑓 and 𝑔

S (1) × S (2) Cartesian product of set S (1) and S (2)

⊙ Element-wise multiplication

𝐴−1 Inverse matrix 𝐴−1𝐴= 𝐴𝐴−1= 𝐼

𝑣⊺, 𝐴⊺ Transpose of a vector and transpose of a matrix

xvi

1 Introduction

1.1 Motivation

In the last decade, Automated Driving Systems (ADSs) and Advanced Driver Assistance
Systems (ADASs) have gained large attention beyond the automotive industry in research,
technology and software companies, the start-up sector, the judiciary, the society, and
politics. The attention on ADSs and ADASs—in the following referred to collectively as
Driving Automation Systems (DASs)—results from manifold and interconnected driving
factors.

From a customer and an economic perspective, new mobility concepts are expected and
fundamental transformations of the transport sector are conceivable [Stegmüller et al.,
2019]. In private mobility, many drivers already benefit from ADASs when facing un-
comfortable or time-consuming driving situations like long journeys, reversing into a
parking space, or traffic jams. However, until today car manufacturers have extended
mainly the functionality of ADASs, which always require the human driver as a fallback.
In comparison, in vehicles with activated ADSs the driver is allowed to do other activities
such as reading E-mails or even may be discharged from the driving task at all. In public
transport, highly automated shuttles could close the last mile between home and tram
[Barthelmes et al., 2022]. In freight transport, truck companies work on solutions for
Automated Driving (AD) between logistic centers—the so-called hub-to-hub transport
[Gernant et al., 2022].

From a technological perspective, synergies between AD and Artificial Intelligence (AI)
have been becoming a major driving factor. In recent years, Deep Learning (DL) achieved
major progress in different fields like Computer Vision (CV) [He et al., 2016] and Natural
Language Processing (NLP) [Vaswani et al., 2017]. On the one hand, these findings
contribute significantly to the state-of-the-art of AD [Grigorescu et al., 2020], e.g. in
perception, situation interpretation, and behavior prediction. On the other hand, safety
concerns of AI and DL slow down the development of systems with higher level of automa-
tion and extended operational domains. E.g. Neural Networks (NNs) are susceptible to
small input perturbations, out-of-distribution data, and domain-shifts [Stage et al., 2022;
Klingner and Fingscheidt, 2022]. These challenges are of fundamental importance as
safety is an indispensable prerequisite for the acceptance of AD.

Therefore, striving for improved road safety and reducing traffic accidents compared to
human driven vehicles is both a fundamental challenge and chance of AD. In Germany
alone, in 2021 2562 people died because of traffic accidents [Destatis, 2022, p.54] and
88.0% of the accidents with personal damage were caused by human failure [Destatis,
2022, p.49]. Already today, ADASs like Automatic Emergency Braking (AEB) actively

1

1 Introduction

Figure 1.1: Overview about research fields addressing the black box character of NNs.

prevent accidents. However, it remains a large potential when ADSs overcome weaknesses
of human drivers like susceptibility to tiredness, inattentiveness, distraction, or the limited
field of view.

Improving road safety with DASs requires systematic approaches for safety assurance.
Addressing this, international development standards, e.g. the Safety of the Intended Func-
tionality (SOTIF) [ISO21448, 2022], and regulatory frameworks [BGBl, 2017, 2021] have
been extended. Furthermore, white papers [SaFAD, 2019; Nistér et al., 2019], publications
[Shalev-Shwartz et al., 2017], and research projects [PEGASUS, 2019; KI-Absicherung,
2022] contribute to the state-of-the-art of safety assurance. A key challenge stems from
the use of AI and in particular NNs. The behavior of NNs is learned implicitly from data
and the decision-making process remains opaque [Rudin, 2019; Gilpin et al., 2018]. This
so-called black box character has fundamental implications for the safety assurance. In
comparison to classical development processes, the implementation and testing according
to detailed specifications must be rethought. Furthermore, identified functional insuffi-
ciencies are not explainable by default and retraining the NN may cause other unintended
behavior.

For assuring safe intended behavior of NNs, two classes of approaches can be distinguished.
The first class of approaches proposes to mitigate the risk by an appropriate model selection
and training process [ISO21448, 2022, p.172-175], [SaFAD, 2019, p.116-130]. This
includes carefully selecting the model, preparing the data set, performing the actual
training, and validating and verifying the trained models. Functional insufficiencies
are addressed by iteratively updating the data set, retraining, and changing the model
if required. The second class of approaches directly strives to reduce the black box
character of NNs. An overview about related research fields is visualized in Figure 1.1
and the following categories can be identified: a) NNs are susceptible to small input
manipulations [Szegedy et al., 2013] and defense algorithms against adversarial attacks
are an active research field, e.g. adversarial training methods [Madry, 2018]. b) The
decision-making of conventional NNs is not transparent. Thus, approaches addressing
the interpretability of NNs strive for representations and relations that are understandable
by humans, e.g. by generating saliency maps [Zeiler and Fergus, 2014; Simonyan et al.,
2014]. According to Gilpin et al. [2018], explainable AI includes interpretable AI but

2

1.2 Advanced Driver Assistance and Automated Driving Systems

requires additionally a sufficient detailed description of the NN behavior. c) Hybrid models
combine NNs with classical rule-based models, e.g. constrained local models with NNs
as detectors [Zadeh et al., 2017]. d) For assessing the reliability of NNs’ predictions,
well-calibrated estimations of uncertainty are important. Bayesian Deep Learning (BDL)
focuses on approaches to capture aleatoric and epistemic uncertainty in NNs [Gal and
Ghahramani, 2016]. e) Verification methods aim to prove the validity of formal properties
in NNs [Huang et al., 2017; Katz et al., 2017]. f) Other approaches incorporate prior
knowledge in NNs to combine the data-driven training with known explicit relationships.
This can be achieved by imposing constraints on NNs [Karpatne et al., 2017; Pham et al.,
2018].

In safety-critical tasks of DASs, constraints are an important concept to exclude hazardous
behavior. E.g. for the safety of driving policies, the Responsibility-Sensitive Safety (RSS)
model [Shalev-Shwartz et al., 2017] and the Safety Force Field (SFF) [Nistér et al.,
2019] provide control constraints with formal collision avoidance guarantees. However,
imposing constraints on NNs is challenging and existing approaches are limited in different
aspects, e.g. relaxed guarantees [Karpatne et al., 2017; Márquez-Neila et al., 2017] or
computational costs [Amos and Kolter, 2017; Agrawal et al., 2019]. Addressing this,
the goal of the thesis is twofold. First, an efficient methodology to embed hard output
constraints in NNs has to be proposed. Second, the performance and safety of conventional
and constrained NNs including NNs according to the proposed methodology have to be
evaluated on two safety-relevant learning tasks of DASs: 1) Learning a vehicle following
controller to keep safe distances to vehicles ahead with Deep Reinforcement Learning
(DRL). 2) Learning a joint vehicle trajectory and cut-in prediction for safe and predictive
planning and control of Automated Vehicles (AVs).

The remainder of the introduction is structured as follows. In Section 1.2, the six SAE-
Levels [SAE-J3016, 2021] and the processing chain of DASs are explained. In Section 1.3,
the contributions are stated and the structure of the thesis is outlined.

1.2 Advanced Driver Assistance and Automated Driving
Systems

1.2.1 Levels of Driving Automation

DASs support or automate the driving task on a sustained basis. According to the Society
of Automotive Engineers (SAE) [SAE-J3016, 2021], DASs are classified in six levels
depending on the automation of longitudinal and/or lateral control, the responsibility of
the driver, and the scope of the Operational Design Domain (ODD). The ODD describes
the well-defined environmental conditions for which the DAS is designed to operate, e.g.
certain road types and weather conditions. The taxonomy of automation levels ranges
from SAE-Level 0 (no driving automation) to SAE-Level 5 (full driving automation) and
is visualized in Figure 1.2. SAE-Level 0 includes also systems that do not control on
a sustained basis, e.g. automatic emergency braking. SAE-Level 1 (driver assistance)
and SAE-Level 2 (partial driving automation) support the driver in longitudinal and/or

3

1 Introduction

Figure 1.2: The six levels of driving automation according to SAE-J3016 [2021].

lateral control while the driver is still in charge to monitor the environment permanently.
Furthermore, the driver must be ready to take over control at any time. SAE-Level 1 refers
to systems that assist the driver either in longitudinal or lateral control. E.g. Adaptive
Cruise Control (ACC) controls the velocity to a set value and keeps a velocity-dependent
distance to a potential vehicle in front. In comparison, SAE-Level 2 systems support in
longitudinal and lateral control, e.g. lane centering in combination with ACC. For DASs
with SAE-Level 3 (conditional driving automation) or higher, the driver is no longer in
charge to supervise the driving task permanently if the system is engaged. The driver is
allowed do other activities. However, systems of SAE-Level 3 may request the driver to
take over control within a certain amount of time. On German roads, Mercedes-Benz AG

4

1.2 Advanced Driver Assistance and Automated Driving Systems

Figure 1.3: Sense-plan-act model and processing chain of DASs.

has approved the first SAE-Level 3 system with the DRIVE PILOT1. The DRIVE PILOT
operates in a strongly restricted ODD on highways up to 60 km h−1 and the driver must
be ready to take over control within 10 s. In comparison to SAE-Level 2 systems, car
manufacturers accept liability for collision caused by SAE-Level 3 systems. Thus, instead
of offering DASs with SAE-Level 3 many car manufacturer extend the functionality and
ODD of SAE-Level 2 systems, which are frequently called Level 2+ systems. DASs with
SAE-Level 4 (high driving automation) handle the driving task in certain ODDs without
any driver takeover. Finally, SAE-Level 5 (full driving automation) extends SAE-Level 4
by automatization of the driving task to unlimited conditions. In the remainder of the
thesis, the term ADASs is used for DASs up to SAE-Level 2 and the term ADSs refers
to DASs with SAE-Level 3 or higher. In Gesetz zum autonomen Fahren [BGBl, 2021],
an autonomous vehicle is defined as a vehicle with a certain technical equipment that is
capable of handling the driving task in a certain ODD without the necessity of a human
driver (corresponds to SAE-Level 4). However, in this thesis the term autonomous driving
and autonomous vehicle is avoided due to ambiguous definitions and discussions.

1.2.2 Processing Chain of Driving Automation Systems

DASs scan the environment with sensors, process the recorded data, compute action
commands like steering and braking, and finally execute them. There are approaches that
propose to apply NNs for this whole processing chain at once [Bojarski et al., 2016]. These
so-called end-to-end approaches compute the control input directly from the sensor raw
data. However, the trust in end-to-end approaches suffers from missing interpretability
and typically modular approaches are used instead. The sense-plan-act model [ISO21448,
2022, p.15] abstracts three modules on a coarse level. The module sense processes
sensor data and generates an environment model. Next, the module plan computes the
ego vehicle’s future trajectory or directly the control input from the environment model.
Finally, the module act executes the planned behavior. The sense-plan-act model can
be decomposed in further submodules as shown in Figure 1.3 [Amersbach and Winner,
2017]. For an accurate model of the environment, typically several sensors are installed
and perception algorithms extract semantic information like object detections from the

1 DRIVE PILOT of Mercedes-Benz https://group.mercedes-benz.com/innovation/case/auton
omous/drive-pilot.html, accessed on 10/10/2022

5

https://group.mercedes-benz.com/innovation/case/autonomous/drive-pilot.html
https://group.mercedes-benz.com/innovation/case/autonomous/drive-pilot.html

1 Introduction

raw data. Different sensor technologies may be combined to complement each other
or for redundancy. Furthermore, a localization module tracks the ego vehicle’s position
and motion and allows to enrich the environment model with map data. The sensor
fusion aggregates the information of the perception and localization and creates one
holistic model of the environment. The knowledge about the traffic situation is further
extended with the situation understanding and prediction module. This module extracts
high level information like expected maneuvers of surrounding vehicles. Given the holistic
environment model and the situational awareness, the planning module computes an
optimal trajectory. Finally, the control module computes commands regarding longitudinal
and lateral motion and the actuators execute them.

1.3 Contributions and Structure of the Thesis

In safety-critical tasks of DASs, modeling constraints and solving an objective w.r.t. these
constraints is a common approach to implement safety requirements. E.g. in trajectory
planning algorithms based on Model Predictive Control (MPC), constraints are leveraged
to ensure collision avoidance [Gutjahr, 2019, p.18]. However, research on constrained
NNs is in an early stage and existing approaches are limited in different aspects, e.g.
relaxed guarantees [Karpatne et al., 2017; Márquez-Neila et al., 2017] or computational
costs [Amos and Kolter, 2017; Agrawal et al., 2019]. Adressing this, the contributions of
the thesis are as follows.

First, the NN architecture ConstraintNet [Brosowsky et al., 2021a] is proposed, which is
capable of ensuring hard output constraints. ConstraintNet applies an input-dependent
parametrization of the constrained output space and requires almost no computational
overhead. This allows a flexible balancing between learning behavior implicitly from data
and imposing explicit relationships based on prior knowledge. In addition, conventional
and constrained NNs including ConstraintNet are evaluated on two tasks of DASs. The
first task is a controller for keeping safe distances to vehicles ahead. The control behavior
is learned with DRL. For avoiding rear-end collisions, the RSS model [Shalev-Shwartz
et al., 2017] is extended and the modeled output constraints are imposed on the policy
[Brosowsky et al., 2021b]. The second task is a prediction of surrounding vehicles’ behav-
ior based on the ego vehicle’s perception. A vehicle-wise bimodal trajectory prediction
with an interpretable passing and cut-in mode is proposed [Brosowsky et al., 2021c]. The
prediction is based on Long Short-Term Memorys (LSTMs) and intended for real-world
application on highways. Output constraints are modeled and analyzed for improving
the lateral separation of the cut-in and passing trajectory. An early and reliable behavior
prediction is crucial for safe and predictive planning and control of AVs.

To summarize, this thesis comprises a methodological and an experimental part. In the
methodological part, ConstraintNet—a novel NN architecture with embedded output con-
straints—is proposed and different types of constraints are modeled. In the experimental
part, conventional and constrained NNs are evaluated on two safety-relevant tasks of DASs.
This results in a structure of the thesis into the following three main chapters.

6

1.3 Contributions and Structure of the Thesis

Figure 1.4: Overview of the chapters in this thesis.

• Sample-Specific Output Constraints for Neural Networks: ConstraintNet [Brosowsky
et al., 2021a] (Chapter 3)

• Safe Reinforcement Learning with Constrained Neural Networks: Vehicle Following
Controller [Brosowsky et al., 2021b] (Chapter 4)

• Behavior Prediction for Safe Driving with Constrained Neural Networks: Joint
Vehicle Trajectory and Cut-In Prediction [Brosowsky et al., 2021c] (Chapter 5)

The structure of the thesis is visualized in Figure 1.4. In the following, the contributions
of each chapter are stated explicitly.

Sample-Specific Output Constraints for Neural Networks: ConstraintNet

• The novel NN architecture ConstraintNet is proposed, which enforces hard output
constraints by construction. The capability of imposing sample-specific output
constraints allows to incorporate prior knowledge in a flexible way. The more prior
knowledge exists, the more specific the constraints can be modeled and vice versa.

• For imposing the output constraints, an input-dependent parametrization of the con-
strained output space is leveraged. Thereby, the complete interior of the constrained
output space is covered and almost no additional computational costs are required.

• Multiple constraints for the same input are applicable. The output constraint is set in
each forward pass independently by specifying a tensor description of the constraint.

• ConstraintNet supports a broad class of constraints. For constraints in form of convex
polytopes, a compact parametrization based on the vertex representation is proposed.
Furthermore, a general mathematical formalization for output constraints of arbitrary

7

1 Introduction

parametrizable geometries including non-convex polytopes and unbounded regions
is provided and encourages the modeling of problem-specific constraints.

Safe Reinforcement Learning with Constrained Neural Networks: Vehicle
Following Controller

• State-specific sets of safe actions, the safe sets, are derived by building on the RSS
model. Collision avoidance is formally ensured by imposing the state-specific safe
set as hard output constraints on the vehicle following policy.

• The Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm [Fujimoto
et al., 2018] is leveraged to learn safe, accurate, and comfortable vehicle following
policies. For the policies, an unconstrained NN and three NNs with imposed safe
sets are applied. For the latter, ConstraintNet is leveraged and compared to two
clipping approaches: clipping as post-processing and with a projection layer.

• The effectiveness of the safe sets is validated by measuring a constant crash rate of
zero for all constrained policies.

• The training behavior and the performance of the unconstrained and constrained
policies are evaluated. Compared to the other approaches, ConstraintNet has the
most stable and fastest training behavior. Furthermore, the performances of the
evaluated policies are similar with slight advantages for ConstraintNet and the
approach with clipping as post-processing.

Behavior Prediction for Safe Driving with Constrained Neural Networks: Joint
Vehicle Trajectory and Cut-In Prediction

• For a probabilistic and interpretable behavior prediction, LSTM-based encoder-
decoder models are leveraged and the output is modeled as a bimodal distribution
over trajectories. The two modes of the distribution are semantically assigned to a
cut-in and a passing maneuver.

• Soft and hard output constraints are modeled for improving the lateral separation of
the cut-in and passing mode. The soft constraints are implemented with an additional
loss term and the hard constraints are imposed by applying ConstraintNet.

• Automatic labeling functions and a retrospective view are leveraged and a data
set with 1856 cut-in and an equal number of passing maneuvers is created. The
models depend only on the ego vehicle’s sensor measurements and are intended for
real-world application on highways.

• All LSTM-based models predict the cut-ins far before the physical baseline and
the lateral trajectory error is reduced by a factor of two over a constant velocity
model. It is shown that ConstraintNet achieves the best overall performance w.r.t.
cut-in prediction, trajectory accuracy, and mode separation. Furthermore, the lateral
and longitudinal uncertainties of the trajectory waypoints are well-interpretable and
increase with larger time horizons as expected.

8

2 Preliminaries

Contents

2.1 Standards, Guidelines, and Methods for the Development of Safe Driving
Automation Systems . 10

2.1.1 Overview . 10

2.1.2 Safety of the Intended Functionality 13

2.1.3 Formal Methods for the Safety of the Intended Functionality of
Driving Policies . 18

2.2 Neural Networks . 22

2.2.1 Basics: Artificial Neurons, Layers, and Neural Networks 22

2.2.2 Optimization . 28

2.2.3 Bayesian Deep Learning . 33

2.3 Reinforcement Learning . 35

2.3.1 Basics and Intuition . 35

2.3.2 Markov Decision Process . 37

2.3.3 General Concepts for Solving Markov Decision Processes 39

2.3.4 Reinforcement Learning Algorithms 44

Improving road safety is a main driving factor and a big challenge of DASs. Chapter 2.1
covers relevant standards, guidelines, and methods that have been developed to address the
safety of DASs. First, an overview is provided. Then, important concepts of the SOTIF
standard [ISO21448, 2022] are explained. The standard includes a chapter about consider-
ations for Machine Learning (ML) and for the design of safe driving policies [ISO21448,
2022, p.159-175]. In Chapter 2.2, the basic concepts of NNs are explained. This in-
cludes the training of NNs in a supervised manner. For modeling aleatoric and epistemic
uncertainty, a probabilistic interpretation is derived from Bayes’ Theorem. Chapter 2.3
provides an introduction to Reinforcement Learning (RL). Contrary to supervised learn-
ing, in RL agents learn purely from experience and interacting with the environment.
Mathematically, the problem can be formalized as a Markov Decision Process (MDP).
Finally, general concepts and specific classes of RL algorithms are presented to solve
MDPs approximately.

9

2 Preliminaries

2.1 Standards, Guidelines, and Methods for the
Development of Safe Driving Automation Systems

2.1.1 Overview

A major motivation of DASs is the goal to improve safety and to reduce the number
of accidents caused by human failure. Already today, assuring safety of DASs requires
an enormous development and approval effort. With increasing level of automation,
safety assurance becomes even more challenging. For the safety of DASs, a development
process and approval according to standards, regulations, and guidelines is required.
These frameworks are under continuous development and represent the state-of-the-art in
industry, law, and research. The following of this section serves as a general overview,
which highlights different aspects, dimensions, and perspectives of safety for DASs. First,
a general definition of safety is provided. Next, the status quo and the need of harmonised
regulations and standards for AD are explained. There exist essential differences between
safety assurance of ADASs and ADSs, which are highlighted. Furthermore, the common
categorization of safety and security in functional safety, SOTIF, and cybersecurity is
presented. Finally, existing guidelines towards trustworthy AI are explained. The next
Section 2.1.2 outlines important measures and methods for the SOTIF more specifically
as the crucial safety domain of AD. Section 2.1.3, in turn, is more specific about two
formal methods of the SOTIF for safe planning and control and summarizes the RSS
[Shalev-Shwartz et al., 2017] model and the SFF [Nistér et al., 2019]. These models can
be interpreted as a safety layer for ADSs.

Safety as an Acceptable Level of Risk

A common definition of safety is the reduction of risk to an acceptable level [Wachenfeld
and Winner, 2015, p.440 ff.]. Both terms, risk and acceptable level, require further expla-
nation. First, risk increases with the probability of damage and its severity. For ADASs,
the probability of damage, in turn, can be estimated by evaluating the exposure of the
corresponding hazardous behavior in combination with its controllability. In Wachenfeld
and Winner [2015, p.441], the following classes are used to categorize the accident sever-
ity with increasing order of harm: accidents with material damage, with slightly injured
people, with severely injured people, and with fatalities. An exact metric to combine the
probability and the severity of an accident to a number that represents the risk is controver-
sially discussed and is not part of this work. To approve DASs, an acceptable level of risk
must be ensured. For AD without a human driver as supervisor, this requires a difficult
balancing of diverse perspectives including expert assessments, societal acceptance, ethi-
cal questions, additional benefits of the technology, and legal foundations. One common
opinion is that the reduced risk due to automation needs to be greater than the additional
risk caused by it. Frequently, traffic and accident statistics provide the relevant data of
the status quo. Currently, the predominant proportion of traffic accidents is caused by
humans. In 2021, 88.0% of all accidents on German public roads with personal damage
were caused by misbehavior of drivers [Destatis, 2022, p.49]. Thus, reducing the number

10

2.1 Standards, Guidelines, and Methods for the Development of Safe Driving Automation Systems

and severity of accidents is one of the main driving forces for DASs. Driven by this goal,
the General Safety Regulation [EU2019/2144, 2019] defines mandatory safety features
and requirements. E.g. in the European Union, an intelligent speed assist is mandatory for
vehicle type approval since July 2022.

Demand of Harmonised Regulations and Standards for Automated Driving

Nowadays, many vehicles are equipped with ADASs and regulations (e.g. UN-R79 [2018])
and standards (e.g. ISO15622 [2018]) guide the development and approval. In comparison,
ADSs are still rarely in use. In December 2021, the DRIVE PILOT of Mercedes-Benz AG
has been approved in Germany as the first SAE-Level 3 system1 and the system has been
available for customers since 2022. On the one hand, higher automation levels require
still further technical progress. On the other hand, regulations and standards have to
be extended and guidelines developed to provide a solid framework for the development
and approval of ADSs. With increasing complexity of ADSs unified regulations, e.g. by
the United Nations Economic Commission for Europe (UNECE), become important. A
first step in this direction is the UN-R157 [2021] for Automated Lane Keeping Systems
with SAE-Level 3. However, international regulations and standards for ADSs have
deficits [Koller and Matawa, 2020]. Until harmonised regulations exist, the German
government passed laws for automated [BGBl, 2017] and autonomous driving [BGBl,
2021] in the form of modifications of the Straßenverkehrsgesetz (StVG). Furthermore, car
manufacturers work on additional guidelines like white papers, e.g. SaFAD [2019], to
address gaps of existing regulations and standards.

Safety Assurance for Automated Driving and Driver Assistance

A key factor for the difficulty of safety assurance of ADSs (≥ SAE-Level 3) is a significant
difference in the automation level compared to ADASs (≤ SAE-Level 2). For ADASs, the
human driver is in full charge. This requires that the driver continuously supervises the
driving task and must be prepared to take over control at any time. Contrary, ADSs do
not have the human fallback and the car manufacturer takes responsibility for safe driving
if the ADS is active. This fact implies significant differences for the safe development
and the approval of ADASs and ADSs. Approving the safety of an ADAS focuses on the
controllability and takeover by the driver and the reduction of the software and hardware
related failure rate. To evaluate controllability, test drives are performed and it is assumed
that the assessment of the test driver can be transferred to the customer. The reduction
of Electrical and/or Electronical (E/E) malfunction is addressed by the functional safety
[ISO26262, 2018]. For ADSs, the main challenge is to ensure a safe intended behavior
even under the assumption that no software and hardware malfunction occurs. This is
challenging due to the huge diversity of driving scenarios and the requirement that ADSs
must handle these scenarios safely on their own. Furthermore, not all scenarios can be

1 Type approval of DRIVE PILOT by Kraftfahrt-Bundesamt https://www.kba.de/DE/Presse/Pres
semitteilungen/Allgemein/2021/pm49_2021_erste_Genehmigung_automatisiertes_Fahr
en.html, accessed on 25/12/2022

11

https://www.kba.de/DE/Presse/Pressemitteilungen/Allgemein/2021/pm49_2021_erste_Genehmigung_automatisiertes_Fahren.html
https://www.kba.de/DE/Presse/Pressemitteilungen/Allgemein/2021/pm49_2021_erste_Genehmigung_automatisiertes_Fahren.html
https://www.kba.de/DE/Presse/Pressemitteilungen/Allgemein/2021/pm49_2021_erste_Genehmigung_automatisiertes_Fahren.html

2 Preliminaries

specified and a challenge is to reduce the risk of unknown and rare scenarios. These
aspects are part of the SOTIF [ISO21448, 2022], which includes foreseeable misuse by
persons as well.

Dimensions of Safety and Corresponding Standards

Main aspects of safety and security are covered by the standards for Functional Safety
(FuSa) [ISO26262, 2018], SOTIF [ISO21448, 2022], and cybersecurity [ISO/SAE21434,
2021]. Further, standards exist or are under development with more specific scopes, e.g.
for software updates ISO24089 [2023]. The cited standards relate to E/E systems within
road vehicles. Central parts of the FuSa are the identification of hazards due to E/E faults,
the assessment of these hazards into Quality Management (QM) and Automotive Safety
Integrity Level (ASIL) A to D, a concept to detect, to avoid, and to mitigate the hazards,
and Verification and Validation (V&V). The V&V process examines whether the system
meets the imposed requirements, e.g. a maximum permitted failure rate. Contrary, SOTIF
focuses on safety under the assumption that no malfunction occurs and the function works
as intended. The focus is on systems that require situational awareness and on foreseeable
misuse by persons. This includes the mitigation of risks due to performance limitations
and due to technological limitations of sensors and actors. ISO21448 [2022] distinguishes
a design and V&V phase. Finally, cybersecurity considers hazards that are caused by a
third party or intruder. The third party manipulates or attacks the systems.

Guidelines for Trustworthy Artificial Intelligence

A key technology for ADSs is AI, in particular ML and DL. ML algorithms and NNs
learn the behavior from data and are characterized by an opaque decision-making pro-
cess, the so-called black box character [Rudin, 2019]. This black box character implies
additional challenges for the SOTIF and cybersecurity. However, the corresponding stan-
dards [ISO21448, 2022; ISO/SAE21434, 2021] consider AI only partially. Therefore,
fundamental research (see Figure 1.1), additional guidelines, and extended standards and
regulations are required for trustworthy applying AI.

The white paper SaFAD [2019] draws attention to a lack of guidelines, standards, and
regulations for a responsible usage of AI. In the appendix of SaFAD [2019], an own
guideline for the integration of DL in ADSs is proposed. On the example of a Three
Dimensional (3D) object detection, safety requirements, measures and guidelines are
explained on a technical level. Good practices and state-of-the-art approaches are summa-
rized, structured, and assigned to the development steps 1) define, 2) specify, 3) develop
and evaluate, and 4) deploy and monitor. The focus is on a proper data set creation,
runtime monitoring, and on mechanisms for plausibilization, robustness, and uncertainty
estimation.

The European Commission announced a proposal for the first regulation of AI worldwide
[European-Commission, 2021]. The proposal categorizes systems according to the risk in
three classes: unacceptable risk, high risk, and low or minimal risk. Safety-critical systems
for ADSs are expected to be systems with high risk. These systems would need to comply

12

2.1 Standards, Guidelines, and Methods for the Development of Safe Driving Automation Systems

with AI requirements and undergo a conformity assessment. Central is the establishment of
a risk management system (Article 9) to identify, analyze, and evaluate risks and to adopt
appropriate measures. A post-market monitoring system should be used, it is referred
to state-of-the-art measures including harmonised standards, and test procedures shall be
consistently applied. Further requirements address high quality data (Article 10), technical
documentation (Article 11), record-keeping (Article 12), transparency and provision of
information to users (Article 13), human oversight (Article 14), and accuracy, robustness,
and cybersecurity (Article 15).

Conclusion

The presented overview indicates the high complexity of safety assurance for ADASs and
ADSs. The development of safe DASs requires state-of-the-art measures and practices,
should be treated holistically, covers the whole development process, relies on quantitative
and qualitative approaches, needs to be continuously adapted due to the fast dynamic in
the field of AD and AI, and must still be manageable in practice.

2.1.2 Safety of the Intended Functionality

The SOTIF [ISO21448, 2022] addresses the minimization of the residual risk to an
acceptable level and considers hazards caused by

• insufficiencies of the specification of the intended functionality at vehicle level and

• insufficiencies of the specification and performance limitations of E/E elements.

In particular, this includes systems that require a proper situational awareness. Further-
more, SOTIF covers reasonable foreseeable misuse, e.g. due to lack of driver attention
while using a SAE-Level 2 system. Hazards due to intentional misuse, lack of security
[ISO/SAE21434, 2021], and malfunction of the E/E system [ISO26262, 2018] are out of
scope of SOTIF. Moreover, ML-based algorithms have become important for safe DASs.
Compared to rule-based algorithms, essential differences need to be considered because
these algorithms learn complex and usually not interpretable representations from data. In
the appendix, the SOTIF standard addresses aspects for the safe development of ML-based
algorithms.

A central element of the SOTIF are scenarios to describe different use cases and foreseeable
misuse of the system. They can include triggering conditions for SOTIF-related hazardous
behavior. The scenarios are categorized into four categories: 1) known and not hazardous,
2) known and hazardous, 3) unknown and hazardous, and 4) unknown and not hazardous.
The goal of SOTIF is the maximization of known scenarios and the minimization of
hazardous scenarios to achieve an acceptable residual level of risk. This principle is
visualized in Figure 2.1 with a Venn diagram.

To achieve the SOTIF the standard proposes a process (Clauses 5-13 in ISO21448 [2022]),
which is visualized in Figure 2.2. The process includes the identification of hazards
and their evaluation w.r.t. the acceptable risk (Clause 6), the analysis of possible root

13

2 Preliminaries

Figure 2.1: The abstract goal of SOTIF activities is the minimization of known and unknown hazardous
scenarios and the maximization of known scenarios. The figure has been adapted from Figure 5
in ISO21448 [2022, p.13].

causes and triggering conditions (Clause 7), activities related to the specification and
design (Clause 5), V&V measures (Clause 9,10,11), the operation phase (Clause 13), the
evaluation of the residual risk for the SOTIF release (Clause 12), and modifications of the
functionality if necessary (Clause 8). In the following, essential aspects of the design and
the V&V phase are described. Finally, the suggestions of SOTIF for ML-based algorithms
are presented.

Safety by Design

The starting point of a SOTIF conform development is the specification and design phase
(Clause 5). This step includes the specification of the intended functionality and foresee-
able misuse at vehicle and subsystem level, the dependencies of the intended functionality
with interacting systems (e.g. driver, environment), the system design and architecture
to implement the intended functionality, and the performance targets. Furthermore, per-
formance limitations and countermeasures, a warning and degradation concept (e.g. by a
driver takeover strategy or minimal risk maneuvers), and a data collection system (e.g. to
record critical scenarios) should be considered. Safety is explicitly addressed by stating
requirements at vehicle-level to achieve SOTIF. The set of these requirements is called
Vehicle Level Safety Strategy (VLSS).

A crucial part of the development of ADSs is the design of a safe driving policy. ISO21448
[2022, p.159-168] proposes the analysis of different areas of concern to ensure the com-
pleteness of the VLSS and the definition of a safe driving policy. The areas of concerns can
be classified depending on whether they are derived from the AV operating environment
(e.g. ODD, road infrastructure), the interaction between the AV and the occupants of the
AV (e.g. driver takeover), or the interactions between the AV and other participants (e.g.
defensive driving policy). The RSS model [Shalev-Shwartz et al., 2017] and the SFF
[Nistér et al., 2019] are approaches to implement safe driving policies by taking other
traffic participants and the road infrastructure into account and cover thereby two areas of
concern. Both approaches are presented in Section 2.1.3 and impose sets of safe actions.

14

2.1 Standards, Guidelines, and Methods for the Development of Safe Driving Automation Systems

Figure 2.2: The SOTIF standard is structured according to the visualized process. The SOTIF activities
(rectangles) are described in Clauses 5-13 of ISO21448 [2022]. The corresponding clause of
each activity is denoted in the bottom right circle of each rectangle. The process starts with
a safe design of the system (Clause 5). Next, hazards are identified, evaluated (Clause 6) and
analyzed w.r.t. functional insufficiencies and initiating conditions (Clause 7). Either a functional
modification (Clause 8) is required or a V&V strategy (Clause 9,10,11) is applied to provide a
rationale that the residual risk is sufficiently low. If the V&V activities are successful the system
is ready for release (Clause 12) and operation phase activities (Clause 13) observe the SOTIF
after release. The figure has been adapted from Figure 5 in ISO21448 [2022, p.18].

The specification and design phase is closely related with other SOTIF activities and
should be understood as part of an iterative process. E.g. if a hazardous behavior with
unreasonable risk is detected (Clause 6) (e.g. a sudden braking request due to a false
positive detection of the perception can lead to a rear collision), the insufficiencies of
specification, performance limitations and triggering conditions need to be identified
(Clause 7), countermeasures (e.g. changing the sensor technology) identified and applied
(Clause 8) and the specification and design documents updated (Clause 8). The work
products of the specification and design phase are detailed documentations.

Verification and Validation

The goal of V&V (Clause 9,10,11) is providing evidence that the residual risk of hazards
due to functional insufficiencies is below an acceptable level. To evaluate the residual
risk, tests are performed on known hazardous (Clause 10) and unknown (e.g. randomly
generated or explored) potentially hazardous scenarios (Clause 11). For a successful
V&V, validation targets need to be achieved, which are derived from acceptance criteria
of identified risks (Clause 6).

15

2 Preliminaries

The V&V phase builds on the working products of previous SOTIF activities. The
hazard and risk analysis (Clause 6) identifies SOTIF-related hazards without specifying
the scenarios and the functional insufficiencies that cause them. For each hazard, the risk
is evaluated and an acceptable level of risk is defined. These acceptance criteria define
the validation targets. Next, the scenarios and conditions that trigger hazardous behavior
and functional insufficiencies (Clause 7) are identified and thereby the area of known
hazardous scenarios is extended. To transform known hazardous scenarios to known not
hazardous scenarios or to reduce the risk of known hazardous scenarios, an appropriate
functional modification (Clause 8) is derived and applied. After a functional modification,
the activities in Clause 6 and 7 must be adapted as well. If the SOTIF is considered
to be achievable, the verification procedures (Clause 10) comprise tests on the identified
known hazardous scenarios. It shall be demonstrated that the functionality at vehicle
and component level behaves as specified and that the residual risk is below the defined
acceptable level. The goal of validation is to provide a rationale that the residual risk of
unknown scenarios is acceptable and meets the validation targets. Unknown scenarios
can be generated by sampling scenario parameters, combining known scenarios, or by
exploring new scenarios in real-world testing. Comprehensive operation conditions are
important for sufficient scenario coverage. Common methods of V&V are Model In the
Loop (MIL), Software In the Loop (SIL), and Hardware In the Loop (HIL) testing as well
as real-world vehicle testing.

For demonstration, let us consider a statistical validation method [Wachenfeld and Winner,
2015, p.454-458]. The method is a hypothesis test with the null hypothesis that the DAS
performs worse than an accepted threshold. Given the null hypothesis, the probability to
observe less or equal a fixed number of incidents 𝑘0 during validation rides of length 𝑠0 is
evaluated. If the probability is small and indeed less or equal to 𝑘0 incidents are observed
during validation rides of length 𝑠0, the null hypothesis can be rejected in favor of the
alternative hypothesis that the DAS is better than the accepted threshold. In the context of
hypothesis testing, small means that the probability is smaller than 1−𝛾 with 𝛾 being a set
confidence, e.g. 𝛾=95%. The validation rides are intended to be performed in the ODD of
the DAS and the acceptance criterium is defined as a required minimum average distance
𝑠accepted between critical incidents (e.g. hazardous events or events with harm). For ADSs,
the value can be chosen as the corresponding distance for humans 𝑠human (e.g. from traffic
statistics) multiplied with a safety margin 𝑎safety ≥ 1: 𝑠accepted = 𝑠human ·𝑎safety. Next, for a
set confidence 𝛾 and a fixed maximally allowed number of incidents 𝑘0 (e.g. 𝑘0 = 0) the
distance 𝑠0 of the validation rides is determined. In the derivation, it is assumed that the
number of observed incidents 𝑘 is distributed according to the Poisson distribution:

𝑃_ (𝑘) =
_𝑘

𝑘!
exp(−_), (2.1)

with _ = 𝑠0/𝑠 the mean number of incidents and 𝑠 the unknown mean distance between
incidents of the DAS. Given the null hypothesis _ > 𝑠0/𝑠accepted, the probability for
observing less or equal to 𝑘0 incidents 𝑃_ (𝑘 ≤ 𝑘0) is evaluated:

∀_ > 𝑠0/𝑠accepted : 𝑃_ (𝑘 ≤ 𝑘0) < 1 − 𝛾. (2.2)

16

2.1 Standards, Guidelines, and Methods for the Development of Safe Driving Automation Systems

If the equation holds and indeed less or equal to 𝑘0 incidents are observed, the null
hypothesis can be rejected and the alternative hypothesis is assumed to be true. I.e. the DAS
is at least as good as the reference _ ≤ 𝑠0/𝑠accepted. Consequently, the minimum required
distance for the validation rides is the smallest distance 𝑠0 that fulfills Equation (2.2).

E.g. the required distance of validation rides that must be driven without observing any
incident (𝑘0 = 0) derives to 𝑠0 ≥ − log(1−𝛾)𝑠accepted. For 𝛾 = 95%, this is roughly three
times the reference distance 𝑠accepted. If the validation rides are designed to allow an
increasing number of incidents 𝑘0, the required distance increases too. However, the
validation is with a higher probability successful as well. Wachenfeld and Winner [2015,
p.456-458] pointed out that this statistics-based approach might prove impracticable if
no further considerations are included. In particular, hazards with high severity (e.g.
fatalities) and large demanded distances between occurrences require a huge validation
effort. To reduce the amount of validation kilometers, several measures are of interest.
The following examples summarize possible measures to accelerate validation.

• The functional behavior w.r.t. generated unknown scenarios can be validated par-
tially with MIL, SIL, HIL testing. However, real-world vehicle testing can not
be substituted because simulation always simplifies the environment, vehicle, and
sensors.

• Potentially, validation rides can be optimized by focusing on scenarios with higher
criticality. E.g. to analyze rear-end collisions, scenarios without surrounding ve-
hicles are not of interest and scenarios with short distances to a vehicle in front
should be stressed. The driving routes and simulations may be optimized to capture
scenarios of interest faster.

• The rate of hazardous behavior is typically significantly higher than the rate of
events with harm and requires consequently less validation effort. The conditional
probability of an event with harm given a hazardous behavior can be estimated and
the validation effort can be reduced accordingly.

• The validation effort can be reduced by analyzing the system architecture. E.g. if
a function is redundantly implemented, the subsystems can be validated with less
effort and combined [Shalev-Shwartz et al., 2017].

• Regression testing after functional modifications can potentially be reduced by
proper argumentation and referring to previous and transferable validation activities.

Considerations for Machine Learning-based Algorithms

The functionality of ML-based algorithms is not specified by the developer explicitly but
rather learned implicitly from data during training. The final model appears typically as a
black box. On the one hand, this black box character makes safety assurance significantly
more difficult. On the other hand, these algorithms achieve in many domains state-of-the-
art performance. Therefore, not applying these algorithms would be irresponsible as well.
In Appendix D.2 of ISO21448 [2022], this challenge is addressed by a first guidance and
additional considerations for ML-based algorithms.

17

2 Preliminaries

Despite the impracticability of specifying the functionality of ML-based algorithms on a
low level, the specification of use cases, scenarios, and the ODD is still the starting point
of the safety assurance process (Clause 5). The specification and design phase is also the
basis for the collection of an appropriate data set. Furthermore, ML techniques to reduce
the black box character can be a crucial part of the safety strategy (e.g. Bayesian Deep
Learning for uncertainty estimation) and the analysis of potential ML-specific limitations
is important. However, functional insufficiencies may be difficult to identify by analysis
(Clause 6 and 7). Therefore, the identification of relevant test cases and scenarios becomes
the main objective of Clause 6 and 7. The functional insufficiencies are mainly revealed by
V&V (clause 9,10,11) and operational phase activities (Clause 13). Identified functional
insufficiencies can be addressed with functional modifications (Clause 8) that involve
typically a retraining. The opaque decision-making process of ML-based algorithms
makes the comparison of the new model to the previous one typically impracticable. This
implies that previous tests are in general no longer valid and must be repeated. Moreover,
the SOTIF standard summarizes important guidelines for correctly performing the training
process as the crucial part to achieve a safe model behavior. E.g. data set annotations should
be checked, rare but critical scenarios appropriately represented, and training, validation,
and test sets collected with sufficient scenario diversity and coverage.

2.1.3 Formal Methods for the Safety of the Intended
Functionality of Driving Policies

In this section, two formal methods to ensure the SOTIF of driving policies are presented,
namely the RSS model [Shalev-Shwartz et al., 2017] and the SFF [Nistér et al., 2019].
The goal is the avoidance of collisions that are caused by the ego vehicle’s driving
policy. Addressing this, constraints are computed from the current state of the perceived
environment and imposed on the control input. The control input comprises demanded
accelerations and/or steering commands for controlling the lateral and longitudinal motion.
Delays for setting the control input are taken into account. In the following, the feasible
set of control commands that results from the constraints is referred to as safe set C. The
principle of deriving the control constraints from kinematic relations and imposing the
corresponding safe set is visualized in Figure 2.3. The RSS model and the SFF depend
on a perception that detects and localizes the surrounding actors and obstacles reliable
and accurately, as well as their states of movement. Additionally, the RSS model requires
a reliable detection of the road geometry because it builds on a lane-based coordinate
system. Contrary, the SFF argues that solely the movement and the inertia of the road-
users are fundamental for collision avoidance and static infrastructure is incorporated on a
secondary level of importance. The key challenges for methods for the SOTIF of driving
policies can be summarized as follows:

• Assumptions about the model of the environment must be balanced. Note, it
is impossible to achieve complete safety independently of the behavior of other
vehicles. E.g. if the ego vehicle is surrounded by other vehicles, a possibly necessary
evasive maneuver becomes impossible. Consequently, the RSS model and the SFF
propose to consider safety under a symmetry assumption. If all traffic participants

18

2.1 Standards, Guidelines, and Methods for the Development of Safe Driving Automation Systems

Figure 2.3: An approach for the SOTIF of the driving policy is the determination of a safe set C and imposing
it on the control input 𝑢. The common architecture of an AV according to the sense-plan-act
model is extended by a supervisor and a safe guard. The supervisor computes constraints on
the control input based on the perceived model of the environment 𝑥. The resulting feasible set
of safe control inputs is denoted as safe set C. Typically, the supervisor is a rule-based model
(e.g. RSS model or SFF) and incorporates the movement and the inertia of surrounding actors
among other information. The safe guard or safety layer ensures that the final control input 𝑢safe
is within the safe set C and corrects the original control input 𝑢 of the planning step if necessary.
This safety concept is designed to be independent of the prediction and planning logic.

obey the safety rules, zero accidents should be guaranteed. However, safety under
the symmetry assumption is not sufficient, e.g. crashes due to misbehavior of other
road-users shall be prevented in a reasonable extent as well.

• The safest driving policy is not moving at all. Obviously, an acceptable level of
traffic flow is required that passengers reach their destination in a reasonable time.
This requires balancing between safety and traffic flow.

• Formal safety models require a high-quality perception w.r.t. recall, confidence, and
accuracy. In particular, false negatives may lead to undetected dangerous scenarios.
Performance limitations in the perception can not be compensated fully on a later
stage. Thus, performance targets must be validated with an efficient concept.

Responsibility-Sensitive Safety Model and Safe Sensing

The RSS model derives so-called proper responses that overrule the control input if dan-
gerous situations are detected. If all road-users behave according to the proper responses,
collision avoidance is ensured under the assumption of no sensing errors. Furthermore,
the proper responses are extended for evasive maneuvers to react properly on improper
behavior of other road-users. On a high level, the RSS model implements the following
five common sense rules:

1. "Do not hit someone from behind."

2. "Do not cut-in recklessly."

3. "Right-of-way is given, not taken."

4. "Be careful of areas with limited visibility."

5. "If you can avoid an accident without causing another one, you must do it."

19

2 Preliminaries

These rules are cited literally from Shalev-Shwartz et al. [2017, p.6]. The proper responses
are formalizations of these rules with collision avoidance guarantees. However, the
guarantees rely on a perfect perception of the environment. This is non-realistic and in
practice typically a low probability of sensing errors is evaluated as acceptable. Thus,
Shalev-Shwartz et al. [2017] propose additionally a concept to achieve a high-quality
perception and to validate the performance efficiently.

The RSS model starts by introducing a lane-based coordinate system with well-defined
longitudinal and lateral axes. Then, lateral and longitudinal minimal safe distances are
defined and serve as thresholds for activating a proper response. In the longitudinal case,
the rear vehicle is responsible for collision avoidance even under a reasonable worst-case
scenario of the front vehicle. The rear vehicle needs to brake at least within a response
time after undershooting the longitudinal minimal safe distance (Rule 1). Contrary, in the
lateral case both vehicles are supposed to apply a symmetric proper response to reduce
the lateral velocity to zero. A vehicle that approaches another vehicle on the neighboring
lane is responsible to brake in lateral direction within a response time after undershooting
the minimal lateral distance (Rule 2). If the vehicle on the neighboring lane performs a
lane keeping maneuver with a lateral velocity of almost zero, it must not change its state of
movement except the cutting-in vehicle does not behave properly and Rule 5 is valid. Rule 5
states that an evasive maneuver is mandatory if other road-users do not respond properly
and if the evasive maneuver does not violate the proper response with respect to all other
road-users. For a scenario with multiple vehicles, the control constraints are computed for
each vehicle separately and then the minimum is taken. Thereby, all individual constraints
are satisfied. This method is referred to as star-shape computations in Shalev-Shwartz
et al. [2017]. Furthermore, the rules are extended for intersecting routes with a priority
concept (Rule 3) and a careful behavior for scenes with occlusion is defined (Rule 4). All
rules depend on parameters, which have to be chosen carefully. Shalev-Shwartz et al.
[2017] propose to use reasonable worst-case assumptions as a trade-off between safety
and traffic flow.

The RSS model provides explicit rules and formal guarantees for collision avoidance given
a perfect perception. However, for the application in AVs a high-quality sensing technology
and a validation of the performance is required. Shalev-Shwartz et al. [2017] address this as
well by introducing a scalable concept. A main difficulty is the validation of rare event rates,
which is here the rate of sensing errors. As demonstrated in Section 2.1.2, the validation
of rare events requires an enormous amount of test data. Thus, Shalev-Shwartz et al.
[2017] propose a redundant perception consisting of several subsystems. The subsystems
should be independently developed and should rely on different technologies. For the
redundant perception, a 𝑐-approximated independence assumption of sensing errors is
reasonable (𝑝(𝑥1, 𝑥2) ≤ 𝑐 · 𝑝(𝑥1) · 𝑝(𝑥2)). E.g. a sensing system with three 𝑐-approximated
independent subsystems, each with error rate 𝑒𝑖, results in a tremendously lower error
rate 𝑒 ≤ 3𝑐𝑒2

𝑖
after fusion, i.e. 𝑒𝑖 = 10−5 results in 𝑒 = 10−9 (𝑐 ≈ 3). Consequently, the

validation effort can be significantly reduced by a validation of the acceptable higher error
rates of the subsystems compared to a validation of the much lower error rate of the total
system. In particular, a complementary sensing system based on camera, Light Detection
And Ranging (LiDAR), and RAdio Detection And Ranging (RADAR) is suggested as

20

2.1 Standards, Guidelines, and Methods for the Development of Safe Driving Automation Systems

optimal. Furthermore, a mapping and localization system is recommended and called
Road Experiment Management.

The Safety Force Field

Similar to the RSS model, the SFF Nistér et al. [2019] defines so-called safety procedures,
which can overrule the control input if a dangerous situation is detected. If all road-users
behave accordingly, collision avoidance is ensured under the assumption of no sensing
errors. However, this is not sufficient and it is important to define proper behavior for
improper behavior of other road-users. Instead of defining exemption rules like in the
RSS model, the safety procedure is considered just as a baseline and fallback in favor of
finding a control policy that is at least as good or even better. A compact mathematical
expression is derived to compare another control policy against the safety procedure. This
capability improves the situational awareness of the approach and leads to a less defensive
driving policy. Furthermore and contrary to the RSS model, the SFF does not necessarily
require a lane-based coordinate system. Instead, the SFF focuses intentionally on a simple
as possible environment model, which includes at least the static and dynamic objects as
well as their state of movements. Thereby, the SFF depends less on complex external
structures, which are difficult to perceive reliably. Nistér et al. [2019] argue that this
is an important strength because the perception and its validation is a key challenge of
AD. On the one hand, the SFF is formulated general and is applicable to arbitrary safety
procedures and vehicle models. On the other hand, the implementation for reasonable
safety procedures and realistic vehicle models is not clear and Nistér et al. [2019] show
only the computations for a simplified example.

The core concept of the SFF can be summarized as follows. First, a safety procedure is
defined, which is typically the reduction of the lateral motion and a braking to standstill.
The safety procedure describes a family of trajectories, which cover a certain volume in
space-time. The volume is called claimed-set of an actor. The basic principle is that
all road-users perform their safety procedure or a better control policy just before and
whenever the claimed sets overlap. Thereby, collision avoidance is guaranteed if no errors
in the perception are assumed. A so-called safety potential is introduced for two actors
and serves as a soft indicator function for whether the claimed sets of the actors overlap or
not. The SFF of the ego vehicle induced by another road-user is defined as the negative
gradient of their safety potential w.r.t. the ego vehicle’s state. Intuitively, moving along the
SFF is beneficial because it repels the claimed sets from overlapping. This is formalized
mathematically as follows. If the dot product of the SFF and a control policy is greater
or equal than the dot product of the SFF and the safety procedure, the control policy is
called safe. A safe control policy inherits the collision avoidance guarantee from the safety
procedure and can even improve safety. This can be seen in the following example. If
another road-user violates the rules and approaches the ego vehicle from the side, moving
over is frequently a safe control policy and better than keeping straight driving according
to the safety procedure. For modeling of realistic conditions, the SFF is extended to take
limited visibility and delays in the perception and control into account. Traffic rules are
intended to be stacked on top of the model. This clearly separates collision avoidance
from complex dependencies on the environment.

21

2 Preliminaries

2.2 Neural Networks

In the last decades, Artificial Neural Networks (ANNs) have received significant attention
in research. Improvements in the architecture of ANNs [LeCun et al., 1998; He et al.,
2016; Vaswani et al., 2017], in optimization and regularization techniques [Kingma and
Ba, 2014; Srivastava et al., 2014], and in the increasing power of computer hardware
have been important factors for this development and the success of ANNs. Nowadays,
ANNs represent the state-of-the-art in many competitive learning challenges [Russakovsky
et al., 2015]. ANNs are used as flexible function approximators and successful training
algorithms have been developed in the field of supervised learning [LeCun et al., 1998],
unsupervised learning [Kingma and Welling, 2014], and RL [Mnih et al., 2015]. In this
chapter, the focus is on optimizing ANNs with supervised learning. Chapter 2.3 provides
a general overview of RL including DRL, i.e. RL algorithms that use ANNs as function
approximators.

2.2.1 Basics: Artificial Neurons, Layers, and Neural Networks

The term NN refers either to a network of biological or artificial neurons. Artificial neurons
are inspired by their biological counterparts but are strongly simplified in their behavior.
Despite the simplification, ANNs are able to perform complex tasks on high dimensional
data like object detection on images [Redmon et al., 2016] or language translation [Vaswani
et al., 2017]. For the remainder of the thesis, NNs refer to ANNs.

Artificial Neurons

An artificial neuron combines 𝐾 inputs {𝑥𝑘 } linearly and subsequently applies a non-linear
function, the so-called activation function 𝑔:

𝑦 = 𝑔

(
𝐾∑︁
𝑘=1

𝑤𝑘 · 𝑥𝑘 + 𝑏
)
, (2.3)

with 𝑦 the output and 𝑤𝑘 , 𝑏 the weights or parameters of the neuron. The parameter 𝑏
is called bias and the input of the activation function pre-activation score. An artificial
neuron is visualized in Figure 2.4 a). Common activation functions are:

• the Rectified Linear Unit (ReLU) 𝑔(𝑧)=max(0, 𝑧),

• the leaky ReLU 𝑔(𝑧)=max(𝛼 𝑧, 𝑧) with a small 𝛼 (0<𝛼≪1),

• the sigmoid function 𝑔(𝑧)=sig(𝑧)=1/(exp(−𝑧) + 1),

• and the hyperbolic tangent 𝑔(𝑧)= tanh(𝑧).

A predecessor of the artificial neuron is the perceptron [Rosenblatt, 1958]. The perceptron
can be considered as an artificial neuron with the Heaviside step function as activation

22

2.2 Neural Networks

Figure 2.4: In this figure, neurons are represented as circles, inputs as edges on the left side of neurons, and
outputs as edges on the right side of neurons. a) An artificial neuron generates the output by
applying a non-linear activation function 𝑔 to the weighted sum of the inputs 𝑥. Optionally, a
bias 𝑏 may be added as an additional parameter to the weights 𝑤𝑘 . b) An NN consists of several
layers (dashed rectangles). Here, a feedforward NN is shown and dense layers are arranged in
a sequence. The information is processed from the left to the right-hand side. Each neuron of
the first layer—the input layer—represents one element of the input 𝑥. Then hidden layers are
applied and generate intermediate representations. Finally, the output layer generates the output
𝑦 of the NN by taking the output of the last hidden layer as input.

function. By performing this thresholding, the perceptron becomes a binary classifier. In
other words, an artificial neuron is a generalization of the perceptron.

Layers

Layers represent the next higher building block of NNs and refer classically to a collection
of neurons in a certain arrangement. A common class of layers are dense layers (also called
fully-connected layers). These layers consist of 𝐽 neurons with individual weights. The
neurons process the same 𝐾-dimensional input 𝑥 in parallel and generate a 𝐽-dimensional
output vector 𝑦:

𝑦 𝑗 = 𝑔

(
𝐾∑︁
𝑘=1

𝑤 𝑗 ,𝑘 · 𝑥𝑘 + 𝑏 𝑗

)
(2.4)

⇔𝑦 = 𝑔 (𝑊𝑥 + 𝑏) = 𝑔
(
�̃�𝑥

)
.

The second line in Equation (2.4) shows the matrix and vector notation: (𝑊) 𝑗 ,𝑘 = 𝑤 𝑗 ,𝑘 ,
(𝑦) 𝑗 = 𝑦 𝑗 , (𝑥) 𝑗 = 𝑥 𝑗 , (𝑏) 𝑗 = 𝑏 𝑗 , and 𝑔 is applied element-wise. Frequently, an extended
input 𝑥 (𝑥0 =1 and 𝑥𝑘 = 𝑥𝑘) and an extended weight matrix �̃� (�̃� 𝑗 ,0 = 𝑏 𝑗 , �̃� 𝑗 ,𝑘 =𝑤 𝑗 ,𝑘) are
introduced to compute the pre-activation scores with a pure matrix multiplication.

A second important class of layers are convolutional layers, which build the core of many
state-of-the-art NN architectures, e.g. ResNet [He et al., 2016]. In Figure 2.5, a 2D
convolutional layer is illustrated. The input 𝑥 and output 𝑦 is a 3D tensor consisting of
multiple 2D feature maps. The index of a feature map is called channel. E.g. the three
color channels of a 2D RGB-image are a valid input for a 2D convolutional layer. Note, the

23

2 Preliminaries

Figure 2.5: A Two Dimensional (2D) convolutional layer is illustrated. For each output channel 𝑜, a channel-
specific kernel ℎ𝑜 is slid over the input tensor. The output value 𝑦𝑜, 𝑗 at the spatial location 𝑗 is
generated by computing the inner product of the kernel and the covered part of the input tensor
(red), adding an optional bias 𝑏𝑜, and applying an activation function 𝑔. Whereas different
output channels have separate kernel parameters, the kernel parameters within an output channel
are shared across locations.

number of channels of the input and output tensors can be chosen independently. For each
output channel 𝑜, a 3D kernel ℎ𝑜 with the same number of channels as the input tensor is
slid over the input tensor 𝑥 and the inner product of the kernel and the covered part of the
input tensor is computed. This can be formalized as a sum of discrete cross-correlations
(⊗) over the input channels 𝑐:∑︁

𝑐

(ℎ𝑜,𝑐 ⊗ 𝑥𝑐) (𝑗)=
∑︁
𝑐

∑︁
𝑘

ℎ𝑜,𝑐 (𝑘) · 𝑥𝑐 (𝑘 + 𝑗) =
∑︁
𝑐

∑︁
𝑘

ℎ𝑜,𝑐 (𝑘 − 𝑗) · 𝑥𝑐 (𝑘), (2.5)

with ℎ𝑜,𝑐 being a kernel slice, 𝑥𝑐 an input feature map, and 𝑘, 𝑗 2D spatial indices. In
Figure 2.5, the kernel is slid only over spatial locations 𝑗 in the interior of the input
tensor so that the kernel does not exceed the input tensor boundaries. Consequently, the
output tensor is smaller in the spatial dimensions. However, frequently the input tensor
is enlarged by padding in order to maintain the spatial dimensions. Common padding
operations are e.g. adding entries with zeros or mirroring the tensor at the boundary for
the additional entries. The final output 𝑦𝑜 of the channel 𝑜 is generated by adding an
optional and channel-specific bias 𝑏𝑜 and applying an activation function 𝑔:

𝑦𝑜 = 𝑔

(
𝑏𝑜 +

∑︁
𝑐

(ℎ𝑜,𝑐 ⊗ 𝑥𝑐)
)
. (2.6)

For an 𝑛-dimensional convolutional layer, the formula is still valid. However, in this
general case the input and output tensors are 𝑛+1 dimensional. Here, 𝑛 is the dimension
of the spatial indices and the additional dimension is for the channels. Although a
cross-correlation is applied in Equation (2.6), the term convolutional layer is justified by

24

2.2 Neural Networks

the fact that a cross-correlation is equivalent to a convolution (∗) with a flipped kernel
ℎ̃𝑜,𝑐 (𝑙) = ℎ𝑜,𝑐 (−𝑙):

(ℎ𝑜,𝑐 ⊗ 𝑥𝑐) (𝑗)
(2.5)
=

∑︁
𝑘

ℎ𝑜,𝑐 (𝑘 − 𝑗)𝑥𝑐 (𝑘) =
∑︁
𝑘

𝑥𝑐 (𝑘) ℎ̃𝑜,𝑐 (𝑗 − 𝑘) (2.7)

def
= (𝑥𝑐 ∗ ℎ̃𝑜,𝑐) (𝑗) = (ℎ̃𝑜,𝑐 ∗ 𝑥𝑐) (𝑗).

Convolutional layers share the parameters of the kernel between neurons. This can be
seen by substituting ℎ𝑜,𝑐 ⊗ 𝑥𝑐 in Equation (2.6) with Equation (2.5):

𝑦𝑜, 𝑗 = 𝑔

(
𝑏𝑜 +

∑︁
𝑐

∑︁
𝑘

(
ℎ𝑜,𝑐 (𝑘 − 𝑗) · 𝑥𝑐 (𝑘)

))
. (2.8)

Both neurons, the one generating the output 𝑦𝑜, 𝑗 and the one generating the shifted output
𝑦𝑜, 𝑗+𝑙 , share the same weight ℎ𝑜,𝑐 (𝑘− 𝑗) for the input 𝑥𝑐 (𝑘) and the shifted input 𝑥𝑐 (𝑘+𝑙),
respectively. Contrary, in a dense layer the weight of an input is not used by other
neurons (compare with Equation 2.4). The parameter sharing is an important property
of convolutional layers and reduces the number of learnable parameters significantly.
Furthermore, convolutional layers are equivariant w.r.t. translations. I.e. shifting the
input by 𝑙 and then applying the convolutional layer is equivalent to first applying the
convolutional layer to the original input and then shifting the output by 𝑙.

More generally, a layer can be defined as a differentiable function with optional learnable
parameters \ mapping an input 𝑥 to an output 𝑦. Differentiability is required for the
optimization and training of the NN (see Section 2.2.2). The more general definition
covers also special layers like differentiable optimization layers [Agrawal et al., 2019].
In these layers, the output is the solution of an optimization problem that is defined by
the input and optional learnable parameters. In a classical layer, the learnable parameters
comprise the parameters of the neurons. Shared parameters mean that the same parameters
are used by several neurons.

Neural Networks

NNs consist of interconnected layers and the resulting network of neurons represents a
flexible function approximator. Frequently, state-of-the-art performance requires NNs
with a sufficient number of layers, so-called Deep Neural Networks (DNNs) [He et al.,
2016; Vaswani et al., 2017]. However, theoretically an NN with only one hidden layer and
a sufficient large number of neurons is capable of approximating any Borel measurable
function to any degree of precision [Hornik et al., 1989].

In an NN, the non-linear activation functions of the neurons have an important role.
Without them, a neuron would be a linear function and a network of neurons would remain
linear. E.g. two dense layers without activation functions are equivalent to one linear layer

25

2 Preliminaries

Figure 2.6: Left: In RNNs, outputs of neurons are fed back as input of the same or previous layer. Thereby,
RNNs are able to process a sequence of inputs (𝑥1, . . . , 𝑥𝑘 , . . . , 𝑥𝐾) with variable length 𝐾 and
the recurrent connections allow to leverage the temporal context. Right: The RNN is unfolded
into an NN without cycles by taking a copy of the network at each time step. In the shown
architecture, the hidden state ℎ𝑘 at time step 𝑘 is part of the input in the next time step 𝑘+1 and
the output 𝑦𝑘 is generated with an additional layer from the hidden state ℎ𝑘 .

with weight matrix𝑊 =𝑊 (2)𝑊 (1) and bias vector𝑊 (2)𝑏 (1)+𝑏 (2) . In classification tasks, it
is common to apply the softmax function as final activation function:

𝑦 𝑗 = 𝜎𝑗 (𝑧) =
exp(𝑧 𝑗)∑
𝑖 exp(𝑧𝑖)

, (2.9)

with input 𝑧 (the so-called logits), output 𝑦, and the in- and output dimensions correspond
to the number of considered classes. Contrary to the previously introduced activation
functions, the input of the softmax function are pre-activation scores of several neurons
instead of a single one. The softmax function enforces normalized

∑
𝑗 𝑦 𝑗 =1 and positive

𝑦 𝑗 >0 output values by construction. Consequently, the output values are valid parameters
of a categorical distribution and the output components can be identified with class
confidences. Finally, the classification can be performed by just taking the class with
highest confidence. In regression tasks, it is common practice to apply a final activation
function that matches the problem-specific output range. E.g. positive outputs can be
enforced with a ReLU or an exponential activation function. An unconstrained output can
be implemented by using the identity function as activation function.

An NN that processes information in one direction without cycles is called feedforward
NN. The outputs of neurons are not fed back to neurons of the same or previous layers.
The counterpart are Recurrent Neural Networks (RNNs) [Rumelhart et al., 1986; Elman,
1990], which allow these cyclic connections.

A simple feedforward NN architecture is visualized in Figure 2.4 b). The first layer
represents just the input and is therefore called input layer. Then, a flexible number of
hidden layers can be applied. Each hidden layer computes an intermediate representation
by using the output of the previous layer as input. Finally, the output layer computes the
output of the NN by using the output of the last hidden layer as input.

A three-layer vanilla RNN is visualized in Figure 2.6. RNNs process an input sequence
(𝑥1, . . . , 𝑥𝐾) of variable length 𝐾 by using the output or parts of the output of a layer at
one time step as input of the same or previous layer in the next time step. Thereby, an

26

2.2 Neural Networks

internal state is passed from one time step to the next one and serves as memory. The
three-layer RNN in Figure 2.6 computes the hidden state ℎ𝑘 and output 𝑦𝑘 at time step 𝑘
according to:

ℎ𝑘 = 𝑔ℎ (𝑊 (𝑥ℎ) 𝑥𝑘 +𝑊 (ℎℎ) ℎ𝑘−1 + 𝑏 (ℎ)) ∀𝑘 ∈ {1, . . . , 𝐾}, (2.10)
ℎ0 = ℎinit,

𝑦𝑘 = 𝑔𝑦 (𝑊 (𝑦) ℎ𝑘 + 𝑏 (𝑦)) ∀𝑘 ∈ {1, . . . , 𝐾},

with 𝑔 for the activation functions,𝑊 for the weight matrices, and 𝑏 for the bias vectors. If
Equation (2.10) is applied on the input of the first time 𝑘 =1, the hidden state of the previous
time step ℎ0 is set to an initial value, e.g. all values are set to zero. In principle, vanilla
RNNs are able to consider long-term dependencies in the input sequence. However,
in practice gradient-based training suffers from the so-called vanishing and exploding
gradient problem [Bengio et al., 1994; Pascanu et al., 2013] (see Section 2.2.2). These
training difficulties limit the performance on data with patterns spanning larger time
intervals. Hochreiter and Schmidhuber [1997] introduced an RNN architecture, the LSTM,
to overcome this problem. LSTMs leverage gates to store information over short- and long-
term intervals (see Section 5.3.3). Further common and enhanced RNN architectures are
Gated Recurrent Units (GRUs) [Cho et al., 2014] and Bidirectional Recurrent Neural
Networks (BRNNs) [Schuster and Paliwal, 1997]. So far, RNNs are explained as models
that assign each element of an input sequence exactly one output. However, with small
modifications different RNN topologies can be created. Figure 2.7 visualizes an overview
of principle topologies.

Another important class of NNs are Convolutional Neural Networks (CNNs), which are
characterized as the name suggests by convolutional layers. Yann LeCun is considered a
pioneer of CNNs and created with LeNet [LeCun et al., 1998] one of the first modern CNN
architectures. Convolutions (compare Equation 2.7) extract the same features for multiple
spatial locations and are equivariant w.r.t. translations. Thereby, CNNs are particularly
suitable for image processing tasks, e.g. for semantic image segmentation [Ronneberger
et al., 2015]. In classical image processing, convolutional operations are performed with
manually engineered kernels, e.g. the Sobel filter for edge detection. The key difference of
convolutional layers is that the kernel weights are not set by expert knowledge but instead
learned from data. In many common CNN architectures like ResNet [He et al., 2016], the
number of channels increases and the width and height of the tensors decreases starting
from the first layer towards the output layer. The idea behind this approach is to extract
an increasing number of features with an increasing level of abstraction and a decreasing
spatial resolution. This is beneficial for tasks like image classification that require the
extraction of information from the whole image for a semantic decision. In convolutional
layers, so-called pooling layers and strides are common techniques to reduce the spatial
dimensions. Pooling layers merge the information of neighboring tensor entries with an
operation, e.g. taking the maximum or the average. Applying strides greater than one
means that the kernel is slid over the input tensor with the specified step size instead of
taking each spatial location. For the 2D case, a stride of two would mean that the output
tensor is computed for only every second spatial location in 𝑥- and 𝑦-direction.

27

2 Preliminaries

Figure 2.7: Visualization of different RNN topologies. The rectangles in the bottom represent the inputs,
the rectangles in the middle the processing by the RNN, the rectangles in the top the outputs, and
the arrows visualize the flow of information. a) many-to-many: This is the standard architecture,
which assigns each element in the input sequence one output, e.g. for a permanent drowsiness
detection of a driver from time series. b) many-to-one: A single output is generated from
an input sequence. This topology can be obtained by considering only the output of the last
time step and removing or discarding the output layers of the previous time steps. e.g. for a
sentiment classification of sentences. c) one-to-many: An output sequence is generated from a
single input. The output sequence can be generated by feeding back the output of the previous
time step as input for the next time step e.g. for image captioning. d) many-to-many: An
output sequence is generated from an input sequence. In comparison to a) the output length 𝐿
is not restricted to the input length 𝐻, e.g. for translating sentences into a different language.
A many-to-many model is typically implemented with an encoder-decoder architecture, which
combines b) and c). This figure is based on slide twelve of Stanford CS231n lecture notes
(http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture10.pdf, accessed
on 08/03/2022).

2.2.2 Optimization

Supervised Learning

The goal of supervised learning is the inference of a model from a set of inputs and
associated labeled outputs—the training data set D = {(𝑥𝑖, 𝑦𝑖)}𝑁𝑖=1. In this notation, 𝑁
is the number of in- and output pairs, 𝑥𝑖 the 𝑖th inputs and 𝑦𝑖 the intended output or
label for the input 𝑥𝑖. The model is a function 𝑓 : X → Y that maps inputs 𝑥 ∈ X to
outputs �̂�= 𝑓 (𝑥) ∈Y. In the following, models in form of NNs are considered, which are
parametrized functions 𝑓\ (𝑥) with parameters \. Contrary to Section 2.2.1, the output of
the NN is denoted with �̂� instead of 𝑦 to clearly distinguish between the prediction �̂� and
the label 𝑦.

Supervised learning algorithms fit a model 𝑓\ (𝑥) to the training data setD by minimizing
the errors between the model’s predictions {�̂�𝑖}𝑁𝑖=1 and the labels {𝑦𝑖}𝑁𝑖=1. For a specific
sample of the data setD, the error is evaluated by the loss function 𝓁, which compares the
model’s output �̂�𝑖 = 𝑓\ (𝑥𝑖) and the label 𝑦𝑖. For a regression task, an example for the loss
function is the absolute error 𝓁(𝑦, �̂�) = |𝑦 − �̂� |. The expected value of the loss function
on the distribution of the data (𝑥, 𝑦) ∼ 𝑝 is called risk 𝐸(𝑥,𝑦)∼𝑝 [𝓁(�̂�, 𝑦)]. However, this

28

http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture10.pdf

2.2 Neural Networks

quantity remains usually unknown and is approximated by the empirical risk, which is the
mean value of the loss function 𝓁 applied on all samples of the training data set D:

𝐿 (\) = 1
𝑁

𝑁∑︁
𝑖=1

𝓁(𝑦𝑖, �̂�𝑖) with �̂�𝑖 = 𝑓\ (𝑥𝑖). (2.11)

In the remainder of this thesis, the empirical risk is just called loss 𝐿 (\). In comparison,
the term loss function is used for 𝓁. For regression and classification tasks, common losses
and the corresponding loss functions are:

• the Mean Squared Error: 𝐿MSE = 1
𝑁

∑
𝑖 𝓁MSE(𝑦𝑖, �̂�𝑖) with 𝓁MSE(𝑦, �̂�) = (𝑦 − �̂�)2

(regression),

• the Mean Absolute Error: 𝐿MAE = 1
𝑁

∑
𝑖 𝓁MAE(𝑦𝑖, �̂�𝑖) with 𝓁MAE(𝑦, �̂�) = |𝑦 − �̂� |

(regression),

• the Cross-Entropy Loss: 𝐿CE = 1
𝑁

∑
𝑖 𝓁CE(𝑦𝑖, �̂�𝑖) with 𝓁CE(𝑦, �̂�) = −

∑
𝑗 𝑦 𝑗 log(�̂� 𝑗)

(classification), and

• the Focal Loss: 𝐿FL = 1
𝑁

∑
𝑖 𝓁FL(𝑦𝑖, �̂�𝑖) with 𝓁FL(𝑦, �̂�) = −

∑
𝑗 𝑦 𝑗 (1 − �̂� 𝑗)𝛾 log(�̂� 𝑗)

and 𝛾 >0 (classification).

For the cross-entropy 𝓁CE and focal loss function 𝓁FL, the indices 𝑗 are associated with the
possible classes, �̂� comprises the predicted class probabilities, and 𝑦 is the one-hot encoded
vector of a sample labeled with class index 𝑘 , i.e. 𝑦 𝑗 =1(𝑗 = 𝑘) (1 is the indicator function).
In comparison to the cross-entropy, the focal loss puts more emphasis on difficult samples
by multiplying the factor (1 − �̂� 𝑗)𝛾 [Lin et al., 2017].

Frequently, the loss is not directly minimized but instead a weighted sum of the loss 𝐿 (\)
and a regularization term 𝑅(\):

\∗ = arg min
\

𝐿 (\) + _𝑅(\)︸ ︷︷ ︸
𝐽 (\)

, (2.12)

with \∗ being the optimal model parameters, _ > 0 a weighting factor, and 𝐽 (\) the
final cost function. The regularization term 𝑅(\) penalizes overfitting and supports the
generalization capability of the model. As the name suggests, generalization refers to the
model’s performance for samples out of the training set. Contrary, overfitting describes the
phenomenon if a model predicts the outputs of samples within the training set precisely,
however, at the expense of the model’s generalization capability. Typically, very flexible
models with a large number of parameters like DNNs are prone to overfit. An approach to
reduce overfitting is the reduction of the model’s complexity by penalizing large parameter
values, e.g. with the following regularization terms:

• the squared Euclidean norm 𝑅(\)=∑
𝑗 \

2
𝑗

or

• the Manhattan norm 𝑅(\)=∑
𝑗 |\ 𝑗 |.

29

2 Preliminaries

Another effective method to reduce overfitting is dropout [Srivastava et al., 2014]. During
training, neurons are randomly switched off by setting a neuron’s output to zero with a
certain probability 𝑝. A neuron remains active with the probability 1−𝑝. In the latter case,
the output is upscaled with a factor of 1/(1− 𝑝) to ensure that the output’s expectation
value is not biased. During inference, dropout is not applied and all neurons remain active.
According to a common interpretation, dropout effectively samples many different thinned
NN architectures. Thus, predicting without dropout can be considered as an approximation
for averaging over this ensemble of different architectures.

Stochastic Gradient Descent

The question remains how to solve the optimization problem in Equation (2.12) in order
to find the optimal model parameters \∗. NNs 𝑓\ (𝑥) are non-linear functions and have
typically a large number of parameters \. Thus, it becomes quickly infeasible to solve
Equation (2.12) exactly. However, efficient supervised learning algorithms have been
developed that solve the optimization problem approximately. The most common learning
algorithms for NNs are different variants of gradient descent methods. These algorithms
are of fundamental importance for the success of NNs.

The original gradient descent algorithm solves the minimization problem:

arg min
\

𝐽 (\), (2.13)

iteratively by updating the parameters in the direction of the negative gradient of the cost
function −∇\𝐽 (\), i.e. in the direction with the steepest local decline of 𝐽. The cost
function 𝐽 includes the loss 𝐿, which is evaluated on the full training data set according
to Equation (2.11). The algorithm starts from a random initialization \0 and updates the
parameters with the following rule:

\𝑖+1 = \𝑖 − [∇\𝐽 (\𝑖), (2.14)

with learning rate [>0. The choice of the learning rate is important for the convergence
of the algorithm. Values that are too small or large can lead to slow convergence or to
overshooting of the minimum. Frequently, the performance is improved by reducing the
learning rate during training. This is called learning rate scheduling. The parameter update
rule in Equation (2.14) is applied until a stopping criterium is reached. In the beginning,
the loss decreases rapidly on the training set and on independent data. Independent but
identically distributed data is important to evaluate the generalization capability of the
NN and typically given by a separate validation data set. After a certain number of
iterations, the loss reaches a minimum on the validation set while the loss on the training
data continues to decrease. At this point of time, overfitting begins: The error of the NN
decreases on the training data at the expense of the NN’s generalization capability. The
procedure of monitoring the loss on the validation set and stopping the training already
when the loss on the validation set no longer decreases is called early stopping [Bishop,
2006, p.259].

30

2.2 Neural Networks

Stochastic Gradient Descent (SGD) can be considered as a stochastic approximation
of gradient descent. Instead of computing the gradient of the cost function exactly, the
gradient is approximated from only a single sample or a subset of randomly drawn samples,
the so-called mini-batch:

∇𝐽 (\) ≈ ∇𝐿batch(\) + _∇𝑅(\) with (2.15)

𝐿batch =
1
|𝐼batch |

∑︁
𝑖∈𝐼batch

𝓁(𝑦𝑖, �̂�𝑖) ≈ 𝐿 (\), (2.16)

with 𝐼batch the indices of the mini-batch. For the training of NNs, the number of samples
in the mini-batch is treated usually as a hyperparameter, e.g. |𝐼batch | = 8, 16, 32, . . . , 512.
SGD is computationally less expensive and requires less memory than gradient descent
because the gradient of the loss function must be computed only on a subset of the full
data set. Furthermore, the noise in SGD is known to have a positive effect on convergence
[Mertikopoulos et al., 2020] and generalization [Smith et al., 2020].

Several optimizers modify the parameter update rule in Equation (2.14) to address draw-
backs of standard gradient descent. The standard update rule is prone to get stuck in local
minima or saddle points, ravines in the loss landscape lead to oscillations, and applying
the same learning rate to parameters independently of their impact on the cost function is
suboptimal. A method, which is called momentum, addresses problems associated with
vanishing gradients at local minima or at saddle points and the challenge with oscilla-
tions in ravines. Momentum takes the gradients of previous time steps into account by
computing the moving exponential average:

\𝑖+1 = \𝑖 − [𝑚𝑖 with (2.17)
𝑚𝑖 = 𝛽1𝑚𝑖−1 + (1 − 𝛽1)∇\𝐽 (\𝑖),

with 0≤ 𝛽1 < 1 the factor for the exponential decay, e.g. 𝛽1 =0.9. Computing the average
gradient over subsequent time steps cancels oscillating components of the gradient out
and accumulates components in the same direction. Thereby, momentum speeds up
convergence significantly. Furthermore, it is beneficial to apply individual learning rates
for each of the parameters. Parameters with a frequent and high impact on the cost function
should be updated with a smaller learning rate than parameters with low impact on the cost
function. This can be achieved by rescaling the learning rate of a parameter individually
with the square root of the exponential average of the squared partial derivation of the cost
function w.r.t. this parameter:

\𝑖+1, 𝑗 = \𝑖, 𝑗 −
[

√
𝑣𝑖, 𝑗 + 𝜖

𝜕𝐽

𝜕\ 𝑗
(\𝑖) with (2.18)

𝑣𝑖, 𝑗 = 𝛽2𝑣𝑖−1, 𝑗 + (1 − 𝛽2)
(
𝜕𝐽

𝜕\ 𝑗
(\𝑖)

)2
,

with 0 ≤ 𝛽2 < 1 the factor for the exponential decay, e.g. 𝛽2 = 0.999, and 𝜖 > 0 a small
number for numerical stability. In the formula, the index 𝑖 is used to refer to a parameter
at a certain step and the index 𝑗 is used to point on an individual parameter of the

31

2 Preliminaries

parameter vector \. This adaptive learning rate schedule is called Root Mean Squared
propagation (RMSprop) [Tieleman and Hinton, 2012]. The optimizer Adaptive moment
estimation (Adam) [Kingma and Ba, 2014] combines momentum and RMSprop in one
parameter update rule:

\𝑖+1, 𝑗 = \𝑖, 𝑗 −
[√︁

�̂�𝑖, 𝑗 + 𝜖
�̂�𝑖, 𝑗 with (2.19)

�̂�𝑖, 𝑗 = 𝑚𝑖, 𝑗/(1 − (𝛽1)𝑖),
�̂�𝑖, 𝑗 = 𝑣𝑖, 𝑗/(1 − (𝛽2)𝑖).

The exponential moving average of the gradient and of the squared gradient are initialized
with zeros, i.e. 𝑚0 = 0 and 𝑣0 = 0. For unbiased estimates of the first moment �̂�𝑖 and
of the second raw moment �̂�𝑖 of the gradient, 𝑚𝑖 and 𝑣𝑖 are divided by the correction
term 1 − (𝛽1/2)𝑖. This explains the name Adam as abbreviation derived from Adaptive
moment estimation. In many experiments, Adam has proven to be state-of-the-art and is
a frequently applied optimizer.

Independently of the used optimizer, the core of the learning rule is the computation
of the cost function’s gradient w.r.t. the model’s parameters ∇\𝐽 (\). Backpropagation
is an algorithm to perform the required automatic differentiation (see Figure 2.8). The
cost function 𝐽 (\) is considered to be a nested function, which can be represented by a
Directed Acyclic Graph (DAG) with several roots and a single leaf. The roots represent
the parameters \ and the leaf is associated with the cost 𝐽. Except the roots, each node
𝑗 processes inputs given by the parent nodes to an output 𝑧 𝑗 by applying a differentiable
function. The output 𝑧 𝑗 of each of the roots is defined as the parameter \ 𝑗 that it represents.
From this graph-based representation of the cost function 𝐽, the automatic differentiation
∇\𝐽 (\) is performed in two steps: First, in the forward pass a topological order is defined
on the DAG and the node’s outputs {𝑧 𝑗 } 𝑗 are determined in the defined order. The order
ensures that the required inputs, which are the outputs of the parent nodes, have already
been computed in a previous step. Finally, the cost is obtained when the leaf of the DAG is
reached. Second, in the backward pass the partial derivations of the cost function w.r.t. a
node’s output 𝑧 𝑗 = 𝜕𝐽

𝜕𝑧 𝑗
are propagated in reverse order towards 𝜕𝐽

𝜕\ 𝑗
at the roots. The partial

derivations 𝑧 𝑗 are computed according to the chain rule:

𝑧 𝑗 =
𝜕𝐽

𝜕𝑧 𝑗
=

∑︁
𝑘

𝜕𝐽

𝜕𝑧𝑘

𝜕𝑧𝑘

𝜕𝑧 𝑗
=

∑︁
𝑘

𝑧𝑘
𝜕𝑧𝑘

𝜕𝑧 𝑗
, (2.20)

with 𝑘 being child nodes of node 𝑗 . 𝑧 𝑗 depends on
{
𝜕𝑧𝑘
𝜕𝑧 𝑗

}
𝑘
, which are easy to determine,

and on {𝑧𝑘 }𝑘 of the child nodes, which are known due to the execution in reverse order.
Furthermore, the results {𝑧 𝑗 } 𝑗 of the forward pass are required as arguments for evaluating
the partial derivations

{
𝜕𝑧𝑘
𝜕𝑧 𝑗

}
𝑘
. Finally, the backward pass terminates with

{
𝜕𝐽
𝜕\ 𝑗

}
𝑗

at the
roots, which are the components of the gradient ∇\𝐽 (\).

32

2.2 Neural Networks

Figure 2.8: In the backpropagation algorithm, the cost function 𝐽 (\) is considered as a nested function,
which can be represented with a DAG. The roots of the DAG are identified with the parameters
\, the leaf represents the assigned cost 𝐽, and the intermediate nodes are associated with the
nested functions 𝑧 𝑗 . From this graph representation, the gradient of the cost function ∇\ 𝐽 (\)
is computed in two steps: a) In the forward pass, the cost 𝐽 is determined by evaluating the
nested functions 𝑧 𝑗 in topological order from the roots towards the leaf. b) In the backward
pass, the partial derivations of the cost function w.r.t. the outputs of the nested functions 𝑧 𝑗 = 𝜕𝐽

𝜕𝑧 𝑗

are propagated in reverse order from the leaf towards the roots. The results of the forward pass
{𝑧 𝑗 } 𝑗 are required as arguments for evaluating the partial derivations. E.g. for 𝑧4 =

𝜕𝐽
𝜕𝑧4
(𝑧4, 𝑧5),

the arguments 𝑧4 and 𝑧5 are known from the forward pass. The backward pass terminates at the
leaves with the partial derivations of the cost function w.r.t. the parameters 𝜕𝐽

𝜕\ 𝑗
.

2.2.3 Bayesian Deep Learning

A more general interpretation of the training and the prediction of NNs is obtained
from a Bayesian perspective. Instead of a single prediction, in Bayesian Deep Learning
(BDL) [Gal, 2016] a whole distribution over outputs is modeled, which enables the
quantification of uncertainty. In general, two types of uncertainty are distinguished.
Epistemic uncertainty is caused by the uncertainty of the model’s parameters and can be
reduced by increasing the training data. In comparison, aleatoric uncertainty represents
the intrinsic uncertainty, which remains even in the limit of infinite data. In safety critical
applications, the quantification of uncertainty is an important capability towards self-
awareness. However, the training of well-calibrated models is challenging and an active
field of research.

In BDL, the dataD= {(𝑥𝑖, 𝑦𝑖)}𝑁𝑖=1 is assumed to be independent and identically distributed
and the model’s parameters \ are treated as random variables with the prior distribution
𝑝(\):

𝑝(D, \) =
𝑁∏
𝑖=1

𝑝(𝑦𝑖 |𝑥𝑖, \)𝑝(𝑥𝑖)𝑝(\). (2.21)

Typically, 𝑝(𝑦 |𝑥, \) is modeled as a distribution 𝑝(𝑦 |_= 𝑓\ (𝑥)) with parameters _ and the
distribution’s parameters are predicted by the model 𝑓\ (𝑥). E.g. if the output 𝑦 is assumed
to be Gaussian distributed, the model would predict the mean ` and variance 𝜎2, which

33

2 Preliminaries

are summarized in the parameter _= (`, 𝜎2). In DL, the model 𝑓\ (𝑥) is an NN. For given
data, the distribution over the model parameters is updated and given by the posterior:

𝑝(\ |D) = 𝑝(D, \)
𝑝(D) =

∏𝑁
𝑖=1 𝑝(𝑦𝑖 |𝑥𝑖, \)𝑝(𝑥𝑖)𝑝(\)∫ ∏𝑁
𝑖=1 𝑝(𝑦𝑖 |𝑥𝑖, \)𝑝(𝑥𝑖)𝑝(\)𝑑\

∝
𝑁∏
𝑖=1

𝑝(𝑦𝑖 |𝑥𝑖, \)𝑝(\). (2.22)

However, for NNs the integration over the parameters \ to obtain the evidence 𝑝(D) is
intractable. Instead, approximative methods exist to estimate the posterior 𝑝(\ |D), e.g.
variational inference with dropout [Gal and Ghahramani, 2016]. Finally, the posterior
captures the relevant information to compute the output distribution for a new input 𝑥:

𝑝(𝑦 |𝑥,D) =
∫

𝑝(𝑦, \ |𝑥,D)𝑑\ =
∫

𝑝(𝑥, 𝑦,D, \)
𝑝(𝑥,D) 𝑑\ =

∫
𝑝(𝑦 |𝑥, \)𝑝(\ |D)𝑑\.

(2.23)
In Gal and Ghahramani [2016], the mean and the variance of the predictive distribution
𝑝(𝑦 |𝑥,D) are estimated with Monte Carlo integration. It is shown that the required
samples can be generated with dropout during inference.

The conventional training of NNs, as described in Section 2.2.2, optimizes for a single
best model parameter \∗ by minimizing a cost function 𝐽 (\) (see Equation 2.12). In the
probabilistic framework, the minimization of the cost function can be interpreted as a
Maximum A Posteriori (MAP) approach or a Maximum Likelihood Estimation (MLE).
Instead of taking the full posterior 𝑝(\ |D) into account as in Equation (2.23), in the MAP
approach only the parameters that maximize the posterior are considered:

\∗ = arg max
\

𝑝(\ |D) = arg min
\

(− log 𝑝(\ |D)) (2.24)

(2.22)
= arg min

\

©«−
𝑁∑︁
𝑖=1

log 𝑝(𝑦𝑖 |𝑥𝑖, \))︸ ︷︷ ︸
=𝑝(𝑦𝑖 |_= 𝑓\ (𝑥𝑖))

− log 𝑝(\)
ª®®®¬ .

If the term − log 𝑝(\) is dropped, the MAP approach turns into the MLE. The cost
function 𝐽 (\) in Equation (2.12) is obtained (up to a scaling factor) by identifying
− log 𝑝(𝑦𝑖 |_ = 𝑓\ (𝑥𝑖)) with the loss function 𝓁 and − log 𝑝(\) with the regularization
term 𝑅(\). The loss associated with − log 𝑝(𝑦𝑖 |_ = 𝑓\ (𝑥𝑖)) is also called Negative
Log-Likelihood (NLL) loss. E.g. the Mean Squared Error (MSE) loss function 𝓁MSE
results from a Gaussian distribution 𝑝(𝑦 |_= 𝑓\ (𝑥))=N(𝑦 |`= 𝑓\ (𝑥), 𝜎2) with input-
dependent mean ` and constant isotropic variance 𝜎2 (homoscedastic case). In the
heteroscedastic case, additionally an input-dependent covariance matrix Σ is assumed, i.e.

34

2.3 Reinforcement Learning

𝑝(𝑦 |_= 𝑓\ (𝑥))=N(𝑦 | (`, Σ)= 𝑓\ (𝑥)). A 2D Gaussian with mean values, variances, and
correlation coefficient _= (`𝑥 , `𝑦, 𝜎𝑥 , 𝜎𝑦, 𝜌)⊺ has the following NLL loss:

ℓNLL(𝑦, _) = log
(
2𝜋𝜎𝑥𝜎𝑦

√︃
1 − 𝜌2

)
+ 1

2(1 − 𝜌2)

(
(𝑦𝑥 − `𝑥)2

𝜎2
𝑥

+
(𝑦𝑦 − `𝑦)2

𝜎2
𝑦

(2.25)

−
2𝜌(𝑦𝑥 − `𝑥) (𝑦𝑦 − `𝑦)

𝜎𝑥𝜎𝑦

)
.

In classification, it is reasonable to assume a categorial distribution for 𝑝(𝑦 |_ = 𝑓\ (𝑥))
and the negative logarithm turns out to be the cross-entropy loss function 𝓁CE. Further
loss functions can be derived analogously. Similarly, the regularization term 𝑅(\) follows
from the negative logarithm of the prior 𝑝(\). The squared Euclidean norm 𝑅(\)=∑

𝑗 \
2
𝑗

is obtained if a Gaussian prior 𝑝(\) with zero mean and isotropic variance is assumed.
Analogously, the Manhattan norm 𝑅(\)=∑

𝑗 |\ 𝑗 | is related to a Laplacian prior 𝑝(\).

A general modeling of 𝑝(𝑦 |_= 𝑓\ (𝑥)) can be achieved by using mixture models [Bishop,
1994]. Mixture models are able to capture multimodal data and can approximate any
density function with arbitrary accuracy if a large enough number of components is given
[McLachlan and Basford, 1988]. Bishop [1994] focuses on Gaussian mixture models with
𝑚 components:

𝑝(𝑦 |_ = 𝑓\ (𝑥)) =
𝑚∑︁
𝑖=1

𝛼𝑖 (𝑥)N (𝑦 |`𝑖 (𝑥), 𝜎2
𝑖 (𝑥)). (2.26)

The parameters of the mixture model _ = (𝛼1, . . . , 𝛼𝑚, 𝜎1
⊺, . . . , 𝜎𝑚

⊺, `1
⊺ . . . , `𝑚

⊺)⊺
comprise the mixing coefficient 𝛼𝑖, the variance 𝜎2

𝑖
, and the mean value `𝑖 of each

component. An NN is a flexible function approximator and thereby suitable to predict the
parameters _ = 𝑓\ (𝑥). In this setting, the NN is called Mixture Density Network (MDN)
[Bishop, 1994]. The MDN can be trained with stochastic gradient descent and the negative
logarithm of Equation (2.26) as loss function.

2.3 Reinforcement Learning

This chapter summarizes concepts of RL and the book Reinforcement Learning: An Intro-
duction [Sutton and Barto, 2018] has served as main source. For details and derivations,
it is referred to the great original work.

2.3.1 Basics and Intuition

A fundamental principle of human intelligence is the learning by interaction with the
environment. E.g. learning motor skills for table tennis requires many trials and failures.
Instead of learning from pure supervision, different actions must be explored and expe-
rience is gained by observing short- and long-term consequences. In the beginning of
the learning process, the responses of actions are pre-dominantly unknown and a typical
strategy is some kind of random exploration. In the example of table tennis, probably

35

2 Preliminaries

Figure 2.9: In RL, an agent interacts with the environment by choosing an action 𝑢𝑘 according to its policy
𝑢𝑘 ∼ 𝜋(𝑢𝑘 |𝑥𝑘) and depending on the state 𝑥𝑘 at time step 𝑘 . For the current state 𝑥𝑘 and
action 𝑢𝑘 , the environment samples the state 𝑥𝑘+1 of the next time step 𝑘 +1 according to a
transition probability distribution 𝑥𝑘+1 ∼ 𝑝(𝑥𝑘+1 |𝑢𝑘 , 𝑥𝑘) and determines the associated reward
𝑟 (𝑥𝑘 , 𝑢𝑘 , 𝑥𝑘+1). The figure has been adapted from Figure 3.1 in Sutton and Barto [2018, p.54].

the first trials look clumsy. Over time, the interactions become more goal-oriented and
promising behavior is optimized. However, there still might be even better but unknown
behavior patterns and exploration should be continued to a certain extend. E.g. a good
table tennis player should continue to learn new strokes.

In RL, the setting of learning from interaction is formalized in an idealized process with
discretized time steps as visualized in Figure 2.9. In each time step, an agent observes
the state of the environment and chooses an action according to its policy. The policy
can be deterministic or stochastic and the space of possible actions discrete or continuous.
The agent’s action results in a new state and the agent receives a real valued reward.
Both, the transition of the environment and the reward function, may be probabilistic or
deterministic. Finally, the objective is the optimization of the agent’s policy to maximize
the cumulative and discounted reward. Mathematically, the problem is described by a
Markov Decision Process (MDP) and RL studies methods to approximate the optimal
policy of the MDP. Analogously to humans, RL algorithms balance between exploring
unknown actions and optimizing promising behavior. This is known as exploration-
exploitation trade-off.

The output of the policy, the agent’s action, influences the future states and the future
states are fed back as inputs to the policy. This is analogously to closed-loop systems in
control theory and RL can be leveraged to learn control laws of discrete-time stochastic
control processes. If RL is applied on a control problem, the controller can be considered
as the agent, the plant describes the dynamic of the environment, and the reward function
defines the optimal behavior.

The remainder of this chapter is structured as follows. In Section 2.3.2, the objective of
RL is formalized by defining the MDP mathematically. In Section 2.3.3, general concepts
of RL algorithms are presented to solve MDPs. Many RL algorithms are based on the
greedy learning scheme general policy iteration and leverage value functions to estimate
the quality of policies. In Section 2.3.4, common classifications of RL algorithms are
presented.

36

2.3 Reinforcement Learning

2.3.2 Markov Decision Process

The picture of an agent interacting with an environment can be formalized with an MDP.
An MDP describes the dynamics with a sequence K = {0, 1, . . . } of random variables
𝜏 = {𝑋𝑘 ,𝑈𝑘 , 𝑅𝑘+1}𝑘∈K , with 𝑋𝑘 for the state of the environment, 𝑈𝑘 for the action of the
agent, and 𝑅𝑘+1 for the received reward. The sequence 𝜏 is also called roll-out or trajectory
and follows the joint probability distribution2:

𝑃(𝑋0,𝑈0, 𝑅1, 𝑋1,𝑈1, 𝑅2, . . .). (2.27)

The Markov in MDP stands for the Markov property and means that the next state 𝑋𝑘+1
and reward 𝑅𝑘+1 depends only on the current state 𝑋𝑘 and action𝑈𝑘 :

𝑃(𝑅𝑘+1, 𝑋𝑘+1 |𝑋𝑘 ,𝑈𝑘) = 𝑃(𝑅𝑘+1, 𝑋𝑘+1 |𝑋0,𝑈0, 𝑅1, 𝑋1,𝑈1, . . . , 𝑅𝑘 , 𝑋𝑘 ,𝑈𝑘) ∀𝑘 ∈ K .
(2.28)

In other words, the future states are independent of any states and actions of the history
before the current time step. Thus, the joint probability distribution can be written as
follows:

𝑃(𝑋0,𝑈0, 𝑅1, 𝑋1,𝑈1, 𝑅2, . . .) (2.29)
=𝑃(𝑋0)𝑃(𝑈0 |𝑋0)𝑃(𝑅1, 𝑋1 |𝑋0,𝑈0)𝑃(𝑈1 |𝑋0,𝑈0, 𝑅1, 𝑋1)
𝑃(𝑅2, 𝑋2 |𝑋0,𝑈0, 𝑅1, 𝑋1,𝑈1) · · · ,

(2.28)
= 𝑃(𝑋0)𝑃(𝑈0 |𝑋0)𝑃(𝑅1, 𝑋1 |𝑋0,𝑈0)𝑃(𝑈1 |𝑋0,𝑈0, 𝑅1, 𝑋1)𝑃(𝑅2, 𝑋2 |𝑋1,𝑈1) · · · ,

with 𝑃(𝑅𝑘+1, 𝑋𝑘+1 |𝑋𝑘 ,𝑈𝑘)=𝑃(𝑋𝑘+1 |𝑋𝑘 ,𝑈𝑘)𝑃(𝑅𝑘+1 |𝑋𝑘 ,𝑈𝑘 , 𝑋𝑘+1). In the following, stan-
dard MDPs with static state transition models are assumed:

𝑝(𝑥′|𝑥, 𝑢)=𝑃(𝑋𝑘+1=𝑥′|𝑋𝑘 =𝑥,𝑈𝑘 =𝑢) ∀𝑘 ∈K . (2.30)

Contrary, in time varying MDPs [Liu and Sukhatme, 2018] the transition probability
𝑃(𝑋𝑘+1=𝑥′|𝑋𝑘 =𝑥,𝑈𝑘 =𝑢) is not identical for different time steps 𝑘 and the state transition
model 𝑝𝑘 (𝑥′|𝑥, 𝑢) depends on 𝑘 .

In general and according to Equation (2.29), a policy is defined as a sequence 𝜋= {𝜋𝑘 }𝑘∈K
with 𝜋𝑘 being the conditional probability distributions𝑃(𝑈𝑘 |𝑋0,𝑈0, 𝑅1, . . . ,𝑈𝑘−1, 𝑅𝑘 , 𝑋𝑘).
The overall goal is the maximization of the expected discounted return by optimizing the
policy 𝜋. The expected discounted return is defined as:

𝐽𝜋 = 𝐸
[
𝐺0

]
= 𝐸

[∑︁
𝑘∈K

𝛾𝑘𝑅𝑘+1

]
, (2.31)

𝐺𝑘 =
∑︁
𝑘 ′∈K

𝛾𝑘
′
𝑅𝑘+𝑘 ′+1,

2 For compactness, the extensive notation 𝑃(𝑋0=𝑥0,𝑈0=𝑢0, 𝑅1=𝑟1, . . .) is used only if necessary.

37

2 Preliminaries

Figure 2.10: An MDP describes the states, actions, and rewards with a sequence of random variables
{𝑋𝑘 ,𝑈𝑘 , 𝑅𝑘+1}𝑘∈K , 𝑋𝑘 for the state, 𝑈𝑘 for the action, and 𝑅𝑘+1 for the reward at time step 𝑘
or 𝑘 + 1, respectively. The graphical model shows the conditional dependencies between the
random variables of an MDP with a Markovian policy 𝜋(𝑢 |𝑥)=𝑃(𝑈𝑘 =𝑢 |𝑋𝑘 =𝑥).

with 𝐺𝑘 the cumulative reward at time step 𝑘 and 𝛾 ∈ [0, 1] the discount factor. The
discount factor controls the weighting of short- and long-term goals. An optimal policy
is denoted with 𝜋∗ = arg max𝜋 𝐽𝜋. It can be shown that an optimal policy 𝜋∗ of standard
MDPs with infinite time horizon (K = N0) is within the class of stationary Markovian
policies:

Markovian policy: 𝑃(𝑈𝑘 |𝑋𝑘) = 𝑃(𝑈𝑘 |𝑋0,𝑈0, 𝑅1, . . . ,𝑈𝑘−1, 𝑅𝑘 , 𝑋𝑘) ∀𝑘 ∈K, (2.32)
stationary Markovian policy: 𝜋(𝑢 |𝑥) = 𝑃(𝑈𝑘 =𝑢 |𝑋𝑘 =𝑥) ∀𝑘 ∈K . (2.33)

Furthermore, at least one deterministic policy 𝜋 : X → U with 𝑃(𝑈𝑘 = 𝑢 |𝑋𝑘 = 𝑥) =
𝛿(𝑢−𝜋(𝑥)) exists under the optimal policies [Puterman, 1994, Theorem 6.2.7]. For the
remainder of this chapter, MDPs with infinite time horizon are assumed.

The conditional dependencies between the random variables {𝑋𝑘 ,𝑈𝑘 , 𝑅𝑘+1}𝑘∈K are for-
malized in Equations (2.29) and (2.32) and visualized in Figure 2.10 with a graphical
model.

To conclude, an MDP is specified by the tuple (X,U, 𝑝, 𝑟, 𝛾), with

• X the state space, i.e. the possible values of the random variables {𝑋𝑘 }𝑘∈K ,

• U the action space, i.e. the possible values of the random variables {𝑈𝑘 }𝑘∈K ,

• 𝑝(𝑥′|𝑥, 𝑢)=𝑃(𝑋𝑘+1=𝑥′|𝑋𝑘 =𝑥,𝑈𝑘 =𝑢) ∀𝑘 ∈K the static state transition model,

• 𝑟 (𝑥, 𝑢, 𝑥′)=𝐸 [𝑅𝑘+1 |𝑋𝑘 =𝑥,𝑈𝑘 =𝑢, 𝑋𝑘+1=𝑥′] ∀𝑘 ∈K the reward function, and

• 𝛾 ∈ [0, 1] the discount factor of the return.

The initial distribution 𝑝0(𝑥0)=𝑃(𝑋0 = 𝑥0) over the states is not relevant because optimal
policies maximize the expected discounted return independently of this distribution. In
a partially observable MDP, states are not directly observable and additional random
variables for state observations are introduced. In this thesis, fully observable MDPs are
considered and in the next section general methods to solve them are presented.

38

2.3 Reinforcement Learning

2.3.3 General Concepts for Solving Markov Decision Processes

Value functions and Bellman Equations

In RL algorithms, value functions are used to evaluate the quality of a policy given a state
or state-action pair. The state-value function is defined as the expected discounted return
when starting from a state 𝑥 at any time step 𝑘 and then following the policy 𝜋(𝑢 |𝑥):

𝑉𝜋𝑘 (𝑥) = 𝐸 [𝐺𝑘 |𝑋𝑘 = 𝑥] = 𝐸
[∑︁
𝑘 ′∈K

𝛾𝑘
′
𝑅𝑘+𝑘 ′+1 |𝑋𝑘 = 𝑥

]
. (2.34)

The action-value function is defined analogously, except that the first action after starting
from state 𝑥 is not sampled from the policy but set to a given action 𝑢:

𝑄𝜋
𝑘 (𝑥, 𝑢) = 𝐸 [𝐺𝑘 |𝑋𝑘 =𝑥,𝑈𝑘 =𝑢] = 𝐸

[∑︁
𝑘 ′∈K

𝛾𝑘
′
𝑅𝑘+𝑘 ′+1 |𝑋𝑘 =𝑥,𝑈𝑘 =𝑢

]
. (2.35)

For the considered infinite time horizonK =N0, the value functions are independent of 𝑘 ,
i.e. 𝑉𝜋 (𝑥)=𝑉𝜋

𝑘
(𝑥) and 𝑄𝜋 (𝑥, 𝑢)=𝑄𝜋

𝑘
(𝑥, 𝑢). The state-value and action-value function can

be expressed by each other:

𝑉𝜋 (𝑥) =
∫

𝑄𝜋 (𝑥, 𝑢)𝜋(𝑢 |𝑥)𝑑𝑢, (2.36)

𝑄𝜋 (𝑥, 𝑢) =
∫ (

𝑟 (𝑥, 𝑢, 𝑥′) + 𝛾𝑉𝜋 (𝑥′)
)
𝑝(𝑥′|𝑥, 𝑢)𝑑𝑥′. (2.37)

Furthermore, the value functions can be expressed through themselves by substituting the
above equations in each other. Then, the Bellman equations are obtained, which describe
an important recursive relationships of the state-value and action-value functions:

𝑉𝜋 (𝑥) = 𝐸 [𝑅𝑘+1 + 𝛾𝑉𝜋 (𝑋𝑘+1) |𝑋𝑘 =𝑥] (2.38)

=

∫
𝜋(𝑢 |𝑥)

∫
𝑝(𝑥′|𝑥, 𝑢)

(
𝑟 (𝑥, 𝑢, 𝑥′) + 𝛾𝑉𝜋 (𝑥′)

)
𝑑𝑥′𝑑𝑢,

𝑄𝜋 (𝑥, 𝑢) = 𝐸 [𝑅𝑘+1 + 𝛾𝑄𝜋 (𝑋𝑘+1,𝑈𝑘+1) |𝑋𝑘 =𝑥,𝑈𝑘 =𝑢] (2.39)

=

∫
𝑝(𝑥′|𝑥, 𝑢)

∫
𝜋(𝑢′|𝑥′)

(
𝑟 (𝑥, 𝑢, 𝑥′) + 𝛾𝑄𝜋 (𝑥′, 𝑢′)

)
𝑑𝑢′𝑑𝑥′.

Thus, the equations express the value functions as the expectation value of the sum of the
reward and the value functions at the next time step.

An optimal policy 𝜋∗ is defined as a policy that maximizes the expected return for all
states:

𝑉∗(𝑥) = 𝑉𝜋∗ (𝑥) ≥ 𝑉𝜋 (𝑥) 𝑥 ∈X,∀𝜋, (2.40)

with 𝑉∗ the corresponding optimal state-value functions. It can be shown that at least
one optimal policy exists that is better than or equal as good as all other policies for

39

2 Preliminaries

all states. An optimal policy according to (2.40) maximizes also the expected return in
Equation (2.31) independently of the distribution over states at start 𝑝(𝑥0):

𝐽𝜋 =

∫
𝑉𝜋 (𝑥0)𝑝(𝑥0)𝑑𝑥0 ≤

∫
𝑉∗(𝑥0)𝑝(𝑥0)𝑑𝑥0 = 𝐽𝜋

∗
= 𝐽∗ ∀𝜋, (2.41)

with 𝐽∗ the notation for the maximum expected return. Analogously, Equation (2.37) and
Equation (2.40) imply that an optimal policy maximizes the action-value function:

𝑄𝜋 (𝑥, 𝑢) =
∫ (

𝑟 (𝑥, 𝑢, 𝑥′) + 𝛾𝑉𝜋 (𝑥′)
)
𝑝(𝑥′|𝑥, 𝑢)𝑑𝑥′ (2.42)

≤
∫ (

𝑟 (𝑥, 𝑢, 𝑥′) + 𝛾𝑉∗(𝑥′)
)
𝑝(𝑥′|𝑥, 𝑢)𝑑𝑥′

= 𝑄𝜋∗ (𝑥, 𝑢) = 𝑄∗(𝑥, 𝑢) 𝑥 ∈X, 𝑢 ∈U,∀𝜋,

with 𝑄∗ the notation for the optimal action-value function. The optimal state-value
function 𝑉∗(𝑥) and the optimal action-value function 𝑄∗(𝑥, 𝑢) are related via:

𝑉∗(𝑥) = max
𝑢∈U

𝑄∗(𝑥, 𝑢). (2.43)

The right-hand side of the above equation is obviously the value function𝑉 (𝜋,𝜋∗) of a policy
with 𝜋(𝑥) = arg max𝑢 𝑄∗(𝑥, 𝑢) in the current time step and then following 𝜋∗. According
to Equation (2.36), the value function of an optimal policy is maximally equal as good as
𝑉 (𝜋,𝜋

∗):

𝑉∗(𝑥) (2.36)
=

∫
𝑄∗(𝑥, 𝑢)𝜋∗(𝑢 |𝑥)𝑑𝑢 ≤ max

𝑢∈U
𝑄∗(𝑥, 𝑢) = 𝑉 (𝜋,𝜋∗) (𝑥) ∀𝜋. (2.44)

Finally, the less or equal must be an equal because of the definition of an optimal policy
in Equation (2.40).

The Bellman optimality equations describe a recursive relationship of the optimal state-
value and action-value function and are obtained by applying equations (2.37) and (2.43)
in the order specified above the equality symbol:

𝑉∗(𝑥) (2.43),(2.37)
= max

𝑢∈U

∫ (
𝑟 (𝑥, 𝑢, 𝑥′) + 𝛾𝑉∗(𝑥′)

)
𝑝(𝑥′|𝑥, 𝑢)𝑑𝑥′, (2.45)

𝑄∗(𝑥, 𝑢) (2.37),(2.43)
=

∫ (
𝑟 (𝑥, 𝑢, 𝑥′) + 𝛾max

𝑢′∈U
𝑄∗(𝑥′, 𝑢′)

)
𝑝(𝑥′|𝑥, 𝑢)𝑑𝑥′. (2.46)

In comparison to the general Bellman equations in (2.38) and (2.39), the Bellman opti-
mality equations are more compact and the value functions depend only on themselves
and not on the policy. For finite state and action spaces, the Bellman optimality equa-
tions have unique solutions. Given this solution, an optimal policy is easily obtained,
e.g. by 𝜋∗(𝑥) = arg max𝑢 𝑄∗(𝑥, 𝑢). However, typically the environments are complex, the
dynamics 𝑝(𝑥′|𝑥, 𝑢) unknown, and an optimal value function can not computed exactly
or computational and memory costs become infeasibly large. Therefore, in the following
methods for finding approximate solutions are presented.

40

2.3 Reinforcement Learning

Figure 2.11: General policy iteration alternates between improving the policy greedily, the policy improve-
ment step, and approximating the value function of the improved policy, the policy evaluation
step. Typically, the policy evaluation is an iterative algorithm and the quality depends on the
number of iterations. Instead of waiting for convergence, frequently policy evaluation involves
only few iterations or a single iteration before the policy is updated again. If the policy im-
provement step no longer changes the policy and enough iterations are performed so that the
approximated value function converged to the true value function, an optimal policy and an
optimal value function is found. The figure has been adapted from Figure 4.7 in Sutton and
Barto [2018, p.105].

General Policy Iteration

Many RL algorithms are based on a greedy learning scheme, which is called general
policy iteration [Sutton and Barto, 2018] and visualized in Figure 2.11. In an alternating
process, the policy is updated to improve the average return, then the improved policy
is evaluated to update the estimation of the average return. The former is called policy
improvement and the latter policy evaluation. Typically, policy evaluation requires that
the agent interacts with the environment. An appropriate trade-off between exploration of
unknown domains and exploitation of promising actions is crucial. In the long run and
under certain conditions, general policy iteration converges to the optimal policy.

Policy improvement. Given the value function 𝑉𝜋/𝑄𝜋 of a policy 𝜋, the following greedy
policy 𝜋′ is at least as good as 𝜋:

𝜋′(𝑥) = arg max
𝑢∈U

𝑄𝜋 (𝑥, 𝑢) (2.47)

(2.37)
= arg max

𝑢∈U

∫ (
𝑟 (𝑥, 𝑢, 𝑥′) + 𝛾𝑉𝜋 (𝑥′)

)
𝑝(𝑥′|𝑥, 𝑢)𝑑𝑥′.

This is a result of the policy improvement theorem and shows the importance of approx-
imating value functions with policy evaluation. If it turns out that the greedy policy is
unchanged, an optimal policy 𝜋∗ = 𝜋′ = 𝜋 is found. This can be seen by using Equa-
tion (2.47) with 𝜋′= 𝜋 in the Bellman Equations (2.38) and (2.39) to obtain the Bellman
optimality equations.

41

2 Preliminaries

Theorem 1 (Policy improvement theorem). Let 𝜋 and 𝜋′ be two policies so that the
average return of 𝜋 can be improved by using the policy 𝜋′ in the current time step and
then following 𝜋: ∫

𝑄𝜋 (𝑥, 𝑢)𝜋′(𝑢 |𝑥)𝑑𝑢 ≥ 𝑉𝜋 (𝑥) ∀𝑥 ∈ X. (2.48)

Then, using the changed policy 𝜋′ in all time steps yields at least the average return of 𝜋:

𝑉𝜋
′ (𝑥) ≥ 𝑉𝜋 (𝑥) ∀𝑥 ∈ X. (2.49)

If there exists a state in Equation (2.48) that inequality holds, the state-value function of
𝜋′ is greater than the state-value function of 𝜋 for at least this state.

The idea in the proof of the policy improvement theorem is an iterative expansion of
𝑄𝜋 (𝑥, 𝑢) in Equation (2.48) with Equation (2.37) and a repeated application of Equa-
tion (2.48) [Sutton and Barto, 2018, p.95]. It becomes clear that the greedy policy 𝜋′ in
Equation (2.47) fulfills Equation (2.48) by writing the right-hand side in Equation (2.48)
according to Equation (2.36).

Equation (2.47) shows the construction of an improved deterministic policy over a given
policy. A similar statement exists for the construction of an improved stochastic policy.
Given a value function 𝑄𝜋 of an 𝜖-soft policy 𝜋 (𝜋 fulfills 𝜋(𝑢 |𝑥) ≥ 𝜖/|U| ∀𝑥 ∈ X with
|U|=

∫
U 𝑑𝑢), the following so-called 𝜖-greedy policy 𝜋′𝜖 is at least as good as 𝜋:

𝑢𝜖 ∼ 𝜋′𝜖 (𝑢 |𝑥) :

{
𝑢𝜖 = arg max𝑢∈U 𝑄𝜋 (𝑥, 𝑢) with probability 1 − 𝜖
𝑢𝜖 ∼ 𝑝(𝑈) = 1/|U| with probability 𝜖

(2.50)

The 𝜖-greedy policy chooses a random action with a probability of 𝜖 and otherwise the
action of the greedy policy w.r.t. 𝜋. It can be shown that the 𝜖-greedy policy fulfills
Equation (2.48) under the assumption that 𝜋 is a 𝜖-soft policy. This implies that the
𝜖-greedy policy w.r.t. an 𝜖-soft policy 𝜋 improves 𝜋. As shown later, many RL algorithms
approximate the value function only roughly in the policy evaluation step. Frequently,
the value function is updated only locally at a certain state or state-action pair and the
next state or state-action pair for the value function update is determined by the so-called
behavior policy. For convergence, these algorithms typically require that the behavior
policy explores the complete state-action space. This can be ensured by using the 𝜖-
greedy policy. If the behavior policy is also the policy that is optimized (on-policy
method), the policy improvement theorem ensures that the 𝜖-greedy policy improves in
fact any previous 𝜖-greedy policy. The value of 𝜖 determines the exploration-exploitation
trade-off. Higher values of 𝜖 favor random actions (exploration) and lower values favor
already explored and promising actions (exploitation).

Policy evaluation. In principle, the value functions of a policy 𝜋 can be determined by
solving the Bellman Equations (2.38) and (2.39). E.g. for a finite state and action space and
a completely known environment model, the Bellman equation of the state-value function
is a system of |X| linear equations with |X| unknowns. This system can be solved directly

42

2.3 Reinforcement Learning

or with the iterative policy evaluation algorithm, which uses the Bellman equation (finite
version of Equation 2.38) as update rule for all states:

𝑉𝑘+1(𝑥) =
∑︁
𝑢

𝜋(𝑢 |𝑥)
∑︁
𝑥′
𝑝(𝑥′|𝑥, 𝑢)

(
𝑟 (𝑥, 𝑢, 𝑥′) + 𝛾𝑉𝑘 (𝑥′)

)
. (2.51)

Iterative policy evaluation converges for 𝑘→∞ to the true value function 𝑉𝜋.

However, frequently the environment model is not known and/or solving for an exact
solution is infeasible w.r.t. computational costs. Therefore, typically RL algorithms ap-
proximate the value functions. Value functions can be estimated from experience by
interacting with the environment according to the policy and obtaining samples of the
reward. For finite state/action spaces, the expectation values in the definitions of the
value functions can be approximated with an average value over sampled returns. In these
so-called Monte Carlo methods, one starts from a given state or state-action pair, performs
actions according to the policy, and computes the discounted return from the obtained
rewards.

Another approach is a combination of the sampling approach and the update rule of the
iterative policy evaluation algorithm in Equation (2.51). In so-called temporal difference
learning, Equation (2.51) is approximated with a sample 𝑟 + 𝛾𝑉𝑘 (𝑥′) and this sample is
weighted with a small constant 𝛼 to update the current state-value estimate of the state 𝑥:

𝑉𝑘+1(𝑥) = 𝑉𝑘 (𝑥) + 𝛼
(
𝑟 + 𝛾𝑉𝑘 (𝑥′) −𝑉𝑘 (𝑥)

)
, (2.52)

with 𝑥′, 𝑟 sampled from the environment 𝑝(𝑟, 𝑥′|𝑥, 𝑢) and 𝑢 sampled from the policy
𝜋(𝑢 |𝑥). Analogously, an update rule for the action-value function at state 𝑥 and action 𝑢
can be derived:

𝑄𝑘+1(𝑥, 𝑢) = 𝑄𝑘 (𝑥, 𝑢) + 𝛼
(
𝑟 + 𝛾𝑄𝑘 (𝑥′, 𝑢′) −𝑄𝑘 (𝑥, 𝑢)

)
, (2.53)

with 𝑥′, 𝑟 as in the case for the sate-value function and 𝑢′ sampled from 𝜋(𝑢′|𝑥′). Contrary
to applying Equations (2.52) and (2.53) to all states (and actions) in one iteration, the value
functions are typically updated for the states (and actions) in the order they appear in the
episode (𝑥, 𝑢), (𝑥′, 𝑢′), . . . when following the policy 𝜋.

So far, the presented approaches, the Monte Carlo methods and the update rules, are
applied at certain states or state-action pairs and the full value function is obtained by
visiting each state or state-action pair frequently enough. This is not feasible for infinite
state and action spaces. However, the concepts can be transferred to problems with infinite
state and action spaces if parametrized function approximators are used for the value
functions. In this case, the parametrized function approximators are fitted to targets that
are defined by the Monte Carlo samples or the update rules. E.g. a class of DRL algorithms
approximate the value functions with NNs.

43

2 Preliminaries

2.3.4 Reinforcement Learning Algorithms

As explained in the previous section, many RL algorithms can be understood as some form
of general policy iteration. General policy iteration alternates between policy improvement
and policy evaluation and converges, under certain assumptions, to the optimal policy. RL
algorithms differ mainly in the approach and accuracy of the policy evaluation. In the
following, specific RL algorithms are summarized and common categorizations defined.

First, dynamic programming algorithms are considered. For finite state and action spaces
and known environment models, the policy iteration and value iteration algorithms are
applicable. Both algorithms leverage the update rule in Equation (2.51) for policy evalua-
tion and Equation (2.47) for policy improvement. However, policy iteration performs the
update rule until convergence, whereas value iteration executes only one iteration before
updating the policy.

Definition 1 (Model-based and model-free methods). In model-based RL, either the
environment model, i.e. 𝑝(𝑥′|𝑥, 𝑢) and 𝑟 (𝑥, 𝑢, 𝑥′), is known or the agent learns a model in
training. Contrary, model-free RL algorithms learn from interaction with the environment,
i.e. from samples (𝑥, 𝑢, 𝑟, 𝑥′) of state transitions and rewards, without using a model of
the environment.

For unknown environment models, Q-learning is a popular version of general policy
iteration. Q-learning leverages Equation (2.53) for policy evaluation and performs only
one update step followed by a policy improvement step according to Equation (2.47). In
this case, policy evaluation and policy improvement can be summarized in one step:

𝑄𝑘+1(𝑥, 𝑢) = 𝑄𝑘 (𝑥, 𝑢) + 𝛼
(
𝑟 + 𝛾max

𝑢′∈U
𝑄𝑘 (𝑥′, 𝑢′) −𝑄𝑘 (𝑥, 𝑢)

)
. (2.54)

For 𝑘→∞, the greedy policy 𝜋𝑘 (𝑥′) = arg max𝑢 𝑄𝑘 (𝑥′, 𝑢) (the target policy) converges
to the optimal policy according to the principle of general policy iteration. Q-learning is
a so-called off-policy method and the interaction with the environment for generating the
samples {(𝑥, 𝑢, 𝑟, 𝑥′)} can be performed with a different policy (the behavior policy) than
the target policy as long as all state-action pairs are continued to be updated. Typically,
the 𝜖-greedy policy in Equation (2.50) is used as behavior policy.

Definition 2 (On-policy and off-policy methods). In off-policy RL algorithms, the policy
for the interaction with the environment (behavior policy) can differ from the policy that is
optimized (target policy). Contrary, in on-policy methods the behavior and target policy
are the same.

In recent years, DRL algorithms have gained attention beyond the research community by
catching up or even surpassing human experts in playing Atari Games [Mnih et al., 2015]
and the board game Go [Silver et al., 2016]. DRL algorithms leverage NNs as function
approximators. One of these breakthroughs is deep Q-learning, which approximates the
action-value function with a deep NN, the so-called Deep Q Network (DQN) [Mnih et al.,
2015]. In deep Q-learning, the update rule in Equation (2.54) of Q-learning is transferred

44

2.3 Reinforcement Learning

to an update rule for the parameters \ of the DQN 𝑄\ (𝑥, 𝑢). First, the DQN of iteration
step 𝑘 is fixed by using a second target network 𝑄\′ (𝑥, 𝑢) with the same architecture as
𝑄\ (𝑥, 𝑢) and by copying the parameters \′ = \. For robustness, the target DQN is not
updated after fitting to one target sample 𝑟 + 𝛾max𝑢′ 𝑄\′ (𝑥′, 𝑢′) but rather after fitting 𝐶
minibatches of samples. In practice, stochastic gradient descent steps are applied to the
following loss function:

𝐿 (\) = 1
𝑁

𝑁∑︁
𝑖=1

(
𝑟𝑖 + 𝛾max

𝑢′
𝑄\′ (𝑥′𝑖 , 𝑢′) −𝑄\ (𝑥𝑖, 𝑢𝑖)

)2
, (2.55)

with D = {(𝑥𝑖, 𝑢𝑖, 𝑟𝑖, 𝑥′𝑖)} sampled from previous transitions of the behavior policy. After
performing 𝐶 stochastic gradient descent steps w.r.t. the loss function 𝐿 (\), the procedure
repeats for the next time step 𝑘 +1 and the parameters \ are copied to the target DQN
\′ = \. Typically, the 𝜖-greedy policy is used as behavior policy and the set of previous
transitionsD is called experience replay buffer. The usage of the experience replay buffer
is sample-efficient and only possible because deep Q-learning is an off-policy algorithm.

Deep Q-learning assumes finite action spaces and the max𝑢 𝑄\′ (𝑥′𝑖 , 𝑢′) operation in Equa-
tion (2.55) is not feasible in continuous action spaces. Contrary, continuous action spaces
are naturally covered by policy gradient methods. These methods approximate the policy
𝜋(𝑢 |𝑥) with a parametrized function approximator 𝜋𝜙 (𝑢 |𝑥) with parameters 𝜙 and per-
form policy improvement with gradient ascent steps of the expected discounted return
𝐽𝜋𝜙 = 𝐽 (𝜙). The computation of the gradient of the expected return does not require
the gradient of the potentially unknown state transition model 𝑝(𝑥′|𝑥, 𝑢). This statement
follows from the policy gradient theorem [Sutton et al., 1999].

Theorem 2 (Policy gradient theorem). The gradient of the expected discounted return
𝐽𝜋𝜙 = 𝐽 (𝜙) of a parametrized policy 𝜋𝜙 is given by the following expectation value
[Sutton et al., 1999]:

∇𝐽 (𝜙) =
∫ ∑︁

𝑘∈K
𝛾𝑘 𝑝(𝑋𝑘 =𝑥)

∫
∇𝜙𝜋𝜙 (𝑢 |𝑥)𝑄𝜋𝜙 (𝑥, 𝑢)𝑑𝑢𝑑𝑥, (2.56)

= 𝐸

[∑︁
𝑘∈K

𝛾𝑘∇𝜙 log 𝜋𝜙 (𝑈𝑘 |𝑋𝑘)𝑄𝜋𝜙 (𝑋𝑘 ,𝑈𝑘)
]
.

For deterministic parametrized policies 𝜋𝜙 (𝑥), the gradient of the expected discounted
return can be written as [Silver et al., 2014]:

∇𝐽 (𝜙) =
∫ ∑︁

𝑘∈K
𝛾𝑘 𝑝(𝑋𝑘 =𝑥)∇𝜙𝜋𝜙 (𝑥)∇𝑢𝑄𝜋𝜙 (𝑥, 𝑢) |𝑢=𝜋𝜙 (𝑥)𝑑𝑥, (2.57)

= 𝐸

[∑︁
𝑘∈K

𝛾𝑘∇𝜙𝜋𝜙 (𝑋𝑘)∇𝑢𝑄𝜋𝜙 (𝑋𝑘 , 𝑢) |𝑢=𝜋𝜙 (𝑋𝑘)

]
.

Given the action-value function 𝑄𝜋𝜙 of the parametrized policy, the policy gradient the-
orem allows to approximate the gradient of the expected return by sampling roll-outs

45

2 Preliminaries

Figure 2.12: Actor-critic methods use different memory structures, e.g. parametrized function approxima-
tors, to model the policy and the value function. The memory structure of the policy is called
actor and of the value function critic. In the DDPG and TD3 algorithm, the critic is updated
with temporal difference learning and the actor according to an off-policy version of the de-
terministic policy gradient theorem. The variable 𝑥𝑘 represents the state of the environment,
𝑟𝑘 the reward, and 𝑢𝑘 the action at time step 𝑘 . The figure has been adapted from Figure 1 in
Brosowsky et al. [2021b].

with the policy 𝜋𝜙 and building a sample mean. For the gradient of the expected return,
different expressions have been derived. E.g. in the REINFORCE algorithm [Williams,
1992], the following expression is used:

∇𝐽 (𝜙) = 𝐸
[∑︁
𝑘∈K

𝛾𝑘∇𝜙 log 𝜋𝜙 (𝑈𝑘 |𝑋𝑘)𝐺𝑘

]
. (2.58)

In Equation (2.58), the action-value function of Equation (2.56) is substituted with a Monte
Carlo estimate of the discounted return 𝐺𝑘 . On the one hand, thereby the action-value
function𝑄𝜋𝜙 (𝑥, 𝑢)must not be estimated. On the other hand, the variance in the estimation
of the gradient ∇𝜙𝐽 (𝜙) is higher. The reduction of the variance in the gradient estimation
is addressed by actor-critic methods.

Definition 3 (Value-based, policy gradient, and actor-critic methods).

Value-based methods are RL algorithms that leverage memory structures, e.g. parametrized
function approximators, to represent a value function, e.g. deep Q-learning [Mnih et al.,
2015].

Policy gradient methods are RL algorithms that leverage parametrized function approx-
imators to represent the policy and perform gradient ascent on the expected discounted
return, e.g. REINFORCE [Williams, 1992].

Actor-critic methods are RL algorithms that leverage different memory structures, e.g. two
parametrized function approximators, to represent a value function and the policy, e.g.
Deep Deterministic Policy Gradient (DDPG) [Lillicrap et al., 2016].

Actor-critic methods model the policy and the value function with different memory
structures, which are called actor and critic, respectively. This is visualized in Figure 2.12.
E.g. the DDPG algorithm uses parametrized function approximators 𝜋𝜙 (𝑥) and 𝑄\ (𝑥, 𝑢)
to model a deterministic policy and the action-value function. The action-value function

46

2.3 Reinforcement Learning

is updated analogously to deep Q-learning by leveraging a separate target action-value
function 𝑄\′ (𝑥, 𝑢) and a separate target policy 𝜋𝜙′ :

𝐿 (\) = 1
𝑁

𝑁∑︁
𝑖=1

(
𝑟𝑖 + 𝛾𝑄\′ (𝑥′𝑖 , 𝜋𝜙′ (𝑥′𝑖)) −𝑄\ (𝑥𝑖, 𝑢𝑖)

)2
. (2.59)

The notation of the variables is analogously to Equation (2.55). Then, the policy is
improved according to a variant of the deterministic policy gradient theorem for off-policy
methods:

∇𝜙𝐽 (𝜙) ≈
1
𝑁

𝑁∑︁
𝑖=1
∇𝑢𝑄\ (𝑥, 𝑢) |𝑥=𝑥𝑖 ,𝑢=𝜋𝜙 (𝑥𝑖)∇𝜙𝜋𝜙 (𝑥𝑖). (2.60)

Approximated gradient ascent steps are performed to improve the policy 𝜋𝜙 (𝑥). Inter-
estingly, the gradient ascent steps on the return can also be interpreted as improving the
policy 𝜋𝜙 (𝑥) towards the greedy policy in Equation (2.47). In the DDPG algorithm, the
policy improvement is performed with gradient ascent according to Equation (2.60) and
the policy evaluation with gradient descent according to Equation (2.59). Both steps are
alternated until convergence. DDPG is an off-policy algorithm and uses a replay buffer
known from deep Q-learning. A successor of DDPG is the TD3 algorithm [Fujimoto
et al., 2018], which is explained in Section 4.3.3 and applied in Chapter 4.4 on a vehicle
following controller.

47

3 Sample-Specific Output Constraints for Neural
Networks: ConstraintNet

Contents

3.1 Motivation . 50

3.2 Related Work . 54

3.3 ConstraintNet . 60

3.3.1 Sample-Specific Output Constraints for Neural Networks 60

3.3.2 Architecture and Construction 61

3.3.3 Constraint Guard Layer . 63

3.3.4 Training . 65

3.3.5 Supported Constraints and Generalizations 66

3.4 Facial Landmark Detection Experiments 68

3.4.1 Overview . 68

3.4.2 Output Constraints . 69

3.4.3 Training and Quantitative Results 72

3.4.4 Qualitative Results . 75

3.5 Conclusion . 79

For many tasks, NNs achieve a high performance on average. However, it is typically not
ensured that the predictions are consistent with prior knowledge and safety requirements.
Addressing this, Chapter 3.1 introduces sample-specific output constraints and proposes
ConstraintNet—a novel and efficient NN architecture that constrains the output range in
each forward pass independently to an externally specifiable geometry. In Chapter 3.2,
related work is presented, which includes NNs with projection layers. Chapter 3.3 explains
the construction of ConstraintNet and the modeling of different classes of constraints. In
Chapter 3.4, ConstraintNet is evaluated in facial landmark detection experiments and
several output constraints are modeled. Finally, Chapter 3.5 concludes the findings.

Parts of this chapter have previously appeared in the publication Sample-Specific Output
Constraints for Neural Networks [Brosowsky et al., 2021a] and in the patents DE10 2019
119 739 A1, DE10 2020 127 051 A1, DE10 2021 100 765 A1, US 2021 0027150 A1, US
2022 0114416 A1 [Brosowsky, 2019, 2020, 2021a,b,c].

49

Sample-Specific Output Constraints for Neural Networks

Figure 3.1: a) Data-driven models learn complex non-linear relations implicitly from data. In comparison,
rule-based models are constructed by experts and frequently represented with explicit and inter-
pretable expressions. Rule-based models are typically designed to ensure intended properties
and safety guarantees. Imposing constraints on data-driven models combines the benefits of both
approaches. b) Prior knowledge in the form of explicit rules can be leveraged to constrain the
solution space of data-driven models to consistent, intended, and safe behavior. The boundary
(red) between valid and invalid solutions is sharp as visualized or softened depending on whether
the constraints are hard or soft.

3.1 Motivation

DNNs have become state-of-the-art in many high dimensional decision-making tasks by
learning complex non-linear relationships implicitly from data. However, as discussed in
Chapter 1 the opaque decision-making process, the so-called black box character, limits
their application in safety-critical environments. A promising approach to improve the
safety of and the trust in NNs is to reduce the black box character by incorporating
prior knowledge. Frequently, prior knowledge is expressed by explicit relations that
represent constraints on the model [Karpatne et al., 2017; Li and Srikumar, 2019; Pham
et al., 2018]. These constraints enable the specification of a valid solution space with
consistent, intended, and safe behavior (see Figure 3.1). Depending on whether the
approach guarantees or only encourages constraint satisfaction, the constraints are called
hard [Márquez-Neila et al., 2017] or soft [Karpatne et al., 2017], respectively. On the one
hand, combining the implicit and data-driven approach of NNs with prior knowledge in
the form of explicit relations is an ongoing challenge. On the other hand, such approaches
promote consistency, interpretability, generalization, as well as reliability and safety.

Frequently, safety can be improved by deriving output constraints from expert knowledge
and imposing them on NNs [Márquez-Neila et al., 2017; Dalal et al., 2018; Pham et al.,
2018]. E.g. for safe DRL, Dalal et al. [2018] leverage output constraints on the policy’s
NN to confine agents to safe regions. Thereby, crashes with walls are avoided. More-
over, output constraints may be imposed on AVs’ motion planning algorithms for safety
reasons. The output of the planner directly influences the AV’s longitudinal and lateral
dynamics and the main safety requirement is the avoidance of collisions. The RSS model
[Shalev-Shwartz et al., 2017] and the SFF [Nistér et al., 2019] (see Chapter 2.1.3) provide
explicit rules that constrain control inputs of AVs and thereby formally guarantee collision
avoidance. Consequently, collision avoidance of NN-based planners can be ensured by
imposing the constraints of the RSS model or the SFF. One option to implement out-

50

3.1 Motivation

Figure 3.2: a) Frequently, the output �̂� of NNs is constrained to a problem-specific value range C by the
final layer 𝜙. For such global output constraints, the feasible region C is fixed by design of
the final layer and constant w.r.t. the input. E.g. in classification, the softmax function restricts
the output components to only valid parameters of the categorical distribution (see Figure 3.3).
b) Contrary, sample-specific output constraints are characterized by restricting the output range
in each forward pass independently to a different subdomain C(𝑠). The geometry of C(𝑠) is
specified by an additional input 𝑠.

put constraints are post-processing steps like clipping and projections. However, such
separate steps, which are not part of the actual learning task, are prone to be suboptimal
and to degrade the performance and efficiency. Instead, this chapter strives for a holistic
approach, which ensures constraint satisfaction by the model’s construction. Embedding
output constraints in the NN’s architecture is promising for learning optimal constrained
predictions.

It is common practice to constrain the output of NNs with an appropriate final layer to a
fixed and problem-specific feasible output region C. The feasible region C is independent
of the input and represents therefore a global output constraint. E.g. the softmax layer
ensures positive and normalized output values (see Figure 3.3). However, in many safety-
critical environments it is required to restrict the output for each input independently to a
different range C(𝑠). In the following, output constraints are called sample-specific if the
geometry of the feasible output range C(𝑠) can be specified with a vector description 𝑠 in
each forward pass independently. Figure 3.2 compares global and sample-specific output
constraints for NNs. In this chapter, the novel NN architecture ConstraintNet is proposed.
ConstraintNet embeds sample-specific output constraints in its architecture [Brosowsky,
2019; Brosowsky et al., 2021a]. Apart from safety-critical environments, sample-specific
output constraints are applicable wherever a partition into valid and invalid outputs is
given by an external source, e.g. by a human, map data, a rule-based model, or even
a second NN. In the mentioned example with the NN-based motion planner, predicted
trajectories may be further constrained depending on navigation instructions. In medical

51

Sample-Specific Output Constraints for Neural Networks

Figure 3.3: The output of the softmax function 𝜙 is constrained to only valid parameters of the categorical
distribution, i.e. the output vector’s components are positive �̂�𝑖 ≥ 0 and add up to one

∑
𝑖 �̂�𝑖 =1.

The feasible output space C corresponds to a convex polytope with vertices given by the standard
basis and the softmax function parametrizes the interior of this polytope. The figure shows the
3D case.

image processing, a human expert may annotate a region, which confines the localization
of an anatomical landmark.

Prior research regarding output constraints for NNs is known from safe DRL [Pham et al.,
2018; Dalal et al., 2018] and proposes to apply a final projection layer. The input of the
projection layer is an unconstrained action 𝑢 and the output 𝑢⊥ is the element within a
state-specific safe set C(𝑥) with minimum distance to the input 𝑢:

𝑢⊥ = arg min
𝑦∈C(𝑥)

1
2
∥𝑦 − 𝑢∥2. (3.1)

The projection can be considered as an optimization problem and solved with an arbitrary
solver. The gradients for the backward pass are determinable by leveraging methods of the
more generally studied differentiable projection layers [Amos and Kolter, 2017; Agrawal
et al., 2019]. This is explained in more detail in Chapter 3.2 about related work.

Figure 3.4 visualizes the components of the proposed NN architecture ConstraintNet.
Instead of performing a projection, a sample-specific parametrization 𝜙(𝑧, 𝑠) of the con-
strained region C(𝑠) is applied as final layer, the so-called constraint guard layer. Thereby,
the complete interior of the constrained output range C(𝑠) is covered and almost no com-
putational overhead is required. The input of the constraint guard layer is the output 𝑧
of the previous layer and the vector description 𝑠 of the chosen constraint. The vec-
tor description 𝑠 is called constraint parameter and considered as an auxiliary input of
ConstraintNet. The constraint parameter 𝑠 specifies the geometry of the feasible output
region C(𝑠) in each forward pass separately. Moreover, a tensor description 𝑔(𝑠) of the
constraint parameter informs ConstraintNet about the chosen constraint. The tensor 𝑔(𝑠)
is included by extending the input or by concatenation to the output of an intermediate
layer. In this way, different output constraints, even for the same input 𝑥, are applicable.
This is beneficial in many applications. E.g. in Chapter 3.4, the facial landmark detections
are confined to an externally given bounding box around the face. In this example, Con-
straintNet is capable of handling bounding boxes with varying shape and size. Altogether,
ConstraintNet embeds a precisely described class of constraints, e.g. the class of convex
polytopes with five vertices in three dimensions, in the NN architecture and an arbitrary
constraint of this class can be picked in each forward pass via the additional input 𝑠.

52

3.1 Motivation

hθ(x, g(s))

φ(z, s)
g(s)

x

s

ŷ ∈ C(s)

z

Figure 3.4: Components of ConstraintNet: First, an additional input is introduced for the constraint parameter
𝑠 and specifies the geometry of the constrained output region C(𝑠). Second, a final layer 𝜙 maps
the output of previous layers 𝑧 = ℎ\ (𝑥, 𝑔(𝑠)) on the constrained output region C(𝑠) depending
on the constraint parameter 𝑠. Third, the input of the previous layers ℎ\ includes a tensor
representation 𝑔(𝑠) of 𝑠. This enables ConstraintNet to deal with different constraints for the
same input 𝑥. The figure is based on Brosowsky et al. [2021a].

A common element of safe architectures is a safety layer or supervisor. The safety layer
monitors the output and intervenes if safety-critical behavior is detected [Shalev-Shwartz
et al., 2017; Nistér et al., 2019] (see Figure 2.3). According to this concept, the projection-
based approach observes the unconstrained output of the NN and performs a correction
if the safe set is exceeded. Contrary, ConstraintNet considers the output constraint at an
earlier stage in the architecture. The input 𝑧 of the constraint guard layer should not be
interpreted as an unconstrained output that needs to be monitored and eventually corrected.
Contrary, 𝑧 = ℎ(𝑥, 𝑔(𝑠)) is generated by previous layers ℎ that take the information about
the output constraint via 𝑔(𝑠) into account. The intermediate variable 𝑧 can be interpreted
as the learned optimal constrained output in constraint-specific coordinates. The output
in constraint-specific coordinates 𝑧 is then transformed to an output �̂� in global and
constraint-independent coordinates with �̂� = 𝜙(𝑧, 𝑠). The trick is that the output range in
constraint-specific coordinatesZ is identical for all constraint parameters 𝑠 and typically
the unbounded R𝑛. On the one hand, this means that for the same input 𝑥 with label 𝑦
different 𝑧 must be learned depending on the chosen constraint 𝑠. On the other hand,
the mapping between 𝑧 and the final output �̂� is identical for different inputs 𝑥 and
shared features can be learned. Finally, ConstraintNet is end-to-end trainable with almost
no overhead in the forward pass and ensures hard output constraints by construction.
Theoretically, ConstraintNet can be extended so that the constraint parameter 𝑠 and the
corresponding feasible region C(𝑠) is learned from data. An additional layer may predict
the constraint parameter 𝑠 = 𝑟𝛼 (𝑥) based on the input [Brosowsky, 2020, 2021c]. In
another modification, the constraint guard layer may be applied to constrain the output of
an intermediate layer instead of the final layer [Brosowsky, 2021a].

The contributions of this chapter are as follows:

• The novel NN architecture ConstraintNet is proposed, which embeds externally
adjustable output constraints in the NNs architecture. The capability of imposing
sample-specific output constraints allows to incorporate prior knowledge in a flexible
way. The more prior knowledge is available, the more specific the constraints can
be modeled and vice versa.

• For ensuring constraint satisfaction, a final layer in the form of an input-dependent
parametrization of the constrained output space, the constraint guard layer, is

53

Sample-Specific Output Constraints for Neural Networks

leveraged. Thereby, the complete interior of the constrained output space is covered
and almost no additional computational costs are required.

• Multiple constraints for the same input are applicable. The output constraint is
set in each forward pass independently by specifying a tensor description of the
constraint. The tensor description informs ConstraintNet about the exact geometry
of the constraint.

• ConstraintNet supports a broad class of constraints. For constraints in the form
of convex polytopes, a compact parametrization based on the vertex representation
is proposed. Furthermore, a general mathematical formalization for output con-
straints of arbitrary parametrizable geometries including non-convex polytopes and
unbounded regions is provided and encourages the modeling of problem-specific
constraints.

3.2 Related Work

This chapter provides an overview about approaches that leverage prior knowledge to
constrain NNs. After an introduction to methods in general, particular methods that
impose sample-specific output constraints on NNs are presented in detail. These specific
constraints allow to confine predictions to safe sets and are of particular relevance for
safety-critical environments.

Constrained Local Models (CLMs) [Cristinacce and Cootes, 2006] detect a set of points,
e.g. facial landmarks on an image, by imposing a priori known constraints on data-
driven detections of single points. The detection is performed in two steps. First, local
models generate response maps, which assign costs to possible locations of single points.
Second, a global shape model is fitted to the local detections and leverages knowledge
about the spatial relations between the points. Thereby, CLMs are hybrid models and
combine the advantages of rule-based and data-driven algorithms (see Figure 1.1). This
can be illustrated through the example of facial landmark detection. On the one hand,
the local appearances of the facial landmarks are diverse and a reliable detection must be
robust against variations in occlusion, illumination, hairstyle, and accessories, among other
characteristics. ML algorithms are state-of-the-art to provide local evidence for landmarks
under these variations. In Zadeh et al. [2017], this step is performed with NNs. On the
other hand, prior knowledge exists about the spatial arrangement of facial landmarks in
the form of a global shape model. While certain rigid and non-rigid transformations are
allowed, detections with large deviations to the shape model indicate wrong predictions
that require corrections. The fitting of the global shape model is formulated as a classical
optimization problem, e.g. with the Point Distribution Model [Cootes et al., 2001]. In
CLMs, the shape model utilizes the output of the local models. However, the local models
are independent of the global shape model. This drawback motivates holistic approaches
and the embedding of constraints directly in NNs.

In this thesis, ConstraintNet is proposed to embed sample-specific output constraints in the
NN architecture. In Chapter 3.4, ConstraintNet is evaluated on facial landmark detection

54

3.2 Related Work

tasks and relative positions of landmarks are enforced. Additionally, constraints in the form
of bounding boxes with variable location and shape confine the landmark detections in
each forward pass separately. Besides ConstraintNet [Brosowsky, 2019; Brosowsky et al.,
2021a], many other methods incorporate constraints directly in NNs. The approaches
address soft and hard constraints and are spread over a variety of applications. In the
following, three categories of methods are distinguished depending on how the constraints
are implemented. Methods of the first category add a loss term to penalize constraint
violations. Thereby, NNs are encouraged to satisfy imposed constraints. However, these
so-called soft constraints are not guaranteed and constraint violations may still occur.
Furthermore, the weighting of the different loss terms is not obvious and the loss always
represents a trade-off between constraint satisfaction and the actual objective. Karpatne
et al. [2017] model lake temperature dynamics at different depths with NNs and derive
constraints from physical relationships. Predicted temperatures are related to the water
density and the water density increases with the depth. Inconsistencies are penalized
with a so-called physics-based loss function. A second group of approaches modifies
the optimizer to minimize the loss function under constraints. Márquez-Neila et al.
[2017] impose equality constraints on a human pose estimation task and apply the method
of Lagrange multipliers on a linearized objective in each training step. The equality
constraints enforce symmetry conditions, e.g. equal length of the left and the right arm. The
approach achieves similar performance as a baseline with soft constraints. Furthermore,
the constraints are specific to the training data and constraint satisfaction on novel data is not
ensured. A third category of approaches ensures constraint satisfaction by construction of
the NN architecture. Li and Srikumar [2019] enforce logical statements between neurons
by adding a manually designed distance function to the pre-activation scores. The distance
function is designed to be smooth and differentiable and generates large values if a logical
statement implies an activation of the neuron. In the following, further methods of the
third category are shown and the approaches are related to ConstraintNet.

A common approach to constrain the output or an intermediate layer of NNs is the
application of a parametrization 𝜙(𝑧) of the constrained subdomain C= {𝜙(𝑧) |𝑧 ∈Z}. Z is
either the unboundedR𝑁 or a region that is constrained by previous layers. E.g. the softmax
layer constrains the output to only valid parameters of the categorical distribution in this
way. Figure 3.3 visualizes the constrained output range of the softmax function with three
dimensions. Parametrizations are also applicable to more complex constraints. Lezcano-
Casado and Martínez-Rubio [2019] leverage the Lie group theory and the exponential map
to parametrize the unitary and the special orthogonal group. The approach is applied to
constrain the kernel matrices of RNNs. Thereby, the vanishing and exploding gradient
problem is addressed, the training is stabilized, and the performance is improved. Cui et al.
[2020] propose a final kinematic layer to generate the output of an NN-based trajectory
prediction. The kinematic layer (see Figure 3.5) receives a sequence of future steering
and acceleration predictions as input, clips these actions to allowed ranges, and transforms
them to the corresponding trajectory under a given vehicle model. Thus, the kinematic
layer can be considered as a parametrization of kinematically feasible trajectories. All
previously presented approaches parametrize a globally fixed subspace C. However,
for safety-critical environments sample-specific output constraints C(𝑠) are of particular
relevance, which can be varied by the constraint parameter 𝑠. ConstraintNet implements

55

Sample-Specific Output Constraints for Neural Networks

Figure 3.5: Cui et al. [2020] propose an NN with a final kinematic layer 𝜙 to generate only kinematically
feasible trajectories �̂� = (𝑥1, 𝑦1, 𝑣1, 𝜓1, . . .)⊺, with waypoints 𝑥𝑖 , 𝑦𝑖 , velocities 𝑣𝑖 , and heading
angles𝜓𝑖 . The layer computes the trajectories from series of acceleration and steering commands
𝑧= (𝑎1, 𝛾1, . . .)⊺ by leveraging a vehicle model.

sample-specific output constraints with the final constraint guard layer. The constraint
guard layer is a parametrization that is adjusted by the constraint parameter 𝑠:

{𝜙(𝑧, 𝑠) |𝑧 ∈ Z} = 𝜙(Z, 𝑠) ⊆ C(𝑠). (3.2)

The image of the constraint guard layer 𝜙(Z, 𝑠) is typically the feasible region C(𝑠) or the
interior of C(𝑠). The constraint parameter 𝑠, which specifies the geometry of the feasible
set C(𝑠), can be chosen independently in each forward pass.

As mentioned in the motivation, there are approaches known from DRL [Pham et al.,
2018; Dalal et al., 2018; Gros et al., 2020] that constrain the output of policy NNs to safe
sets C(𝑥) depending on the current state 𝑥 of the environment. Instead of a sample-specific
parametrization, a projection is performed in the final layer to ensure the output constraint.
Typically, the safe sets are derived from prior knowledge and computed with rule-based
algorithms from the state 𝑥. For the safe set C(𝑥) and an unconstrained action 𝑢 as input,
the projection layer computes the projected action 𝑢⊥ with minimum distance to 𝑢 so
that the constraint 𝑢⊥ ∈ C is still satisfied. The projection step in Equation (3.1) can be
rewritten with 𝑧=𝑢 for the input and �̂�=𝑢⊥ for the output to highlight the applicability as
a layer in NNs in general:

�̂� = arg min
𝑦∈C

1
2
∥𝑦 − 𝑧∥2. (3.3)

If the input 𝑧 of the projection is withinC, the projection is the identity function. Otherwise,
the output is the element in C with the minimum Euclidean distance to 𝑧. The latter case
is visualized in Figure 3.6.

Pham et al. [2018] consider a 3D object-reaching task with DRL. State-specific safe sets
are modeled to comply with physical constraints, e.g. constraints for collision avoidance
and torque limits. The safe sets are defined via linear equality and inequality constraints
C(𝑥) = {𝑦 |𝐺 (𝑥)𝑦 ≤ ℎ(𝑥), 𝐴(𝑥)𝑦= 𝑏(𝑥)} and depend on the current state 𝑥 of the robot. A
projection is performed to impose these safe sets on the policy. The projection acts as a
safety layer and is called OptLayer. To solve Equation (3.3), Pham et al. [2018] rewrite the

56

3.2 Related Work

Figure 3.6: The projection layer maps an unconstrained input 𝑧 on the element �̂� within the feasible region
C (red polygon) with the minimum Euclidean distance to 𝑧.

objective as a Quadratic Program (QP) with 𝑄 = 𝐼 the identity matrix and 𝑞 = 𝑧 the input
(the unconstrained action):

arg min
𝑦

1
2
𝑦⊺𝑄𝑦 − 𝑞⊺𝑦, (3.4)

s.t. 𝐺 (𝑥)𝑦 ≤ ℎ(𝑥), (3.5)
𝐴(𝑥)𝑦 = 𝑏(𝑥). (3.6)

For QPs, many solvers exist. However, the projection is supposed to be a layer of an NN.
Thus, for the backward pass the derivations w.r.t. the input 𝑧 must be determined as well.
Both solving the optimization problem and computing the derivations are addressed by
methods of the more general differentiable optimization layers [Amos and Kolter, 2017;
Agrawal et al., 2019]. Amos and Kolter [2017] propose the NN architecture OptNet with
a differentiable layer for solving QPs. OptNet even allows the parameters of the QP to be
treated as learnable. The optimization is based on the dual-primal interior point method in
Mattingley and Boyd [2012]. Agrawal et al. [2019] generalize the method to differentiable
convex optimization layers. From a high level perspective, the method can be explained
as follows. First, the convex optimization problem is mapped to a canonical cone program
and the problem is solved with a conic solver. Next, the implicit function theorem is
applied to the optimality conditions of the cone program. Thereby, the derivations w.r.t.
the input and the parameters are computed. Finally, the solutions are mapped to the orginal
problem. In Chapter 3.4, projection layers are applied on facial landmark detection tasks.
The projection layers are implemented as differentiable optimization layers with the Python
package cvxpylayers. The package cvxpylayers provides a domain-specific language for
convex optimization layers [Agrawal et al., 2019]. Usually, differentiable optimization
layers require higher computational costs than explicit layers like convolutional or linear
layers [Amos and Kolter, 2017, Figure 1]. Dalal et al. [2018] reduce the runtime of
projection layers in specific RL use cases by simplifying the constraints. They derive
a closed-form solution by assuming that only one constraint is active at any time and
linearizing the constraint w.r.t. the action. In the experiments, the constraints are designed
to confine the RL agents to specific spatial regions. Note that the proposed simplifications
are generally not applicable.

In the following, the fundamentals of the theory of differentiable optimization layers are
explained. First, methods for solving constrained optimization problems are presented.

57

Sample-Specific Output Constraints for Neural Networks

Second, the relevant gradients for the backpropagation algorithm are derived by utilizing
the implicit function theorem [Dontchev and Rockafellar, 2009]. Explaining the details
would go beyond the scope of this chapter and the reader is referred to the cited publications
and books.

Optimization, Karush-Kuhn-Tucker Conditions, and Interior Point Methods

This section is based on Boyd and Vandenberghe [2009, Chapter 5 and 11]. The con-
strained optimization problem can be formulated as:

𝑥∗ = arg min
𝑥

𝑓 (𝑥), (3.7)

s.t. 𝑔(𝑥) ≤ 0,
ℎ(𝑥) = 0.

It is assumed that 𝑥 ∈R𝑁 and that all functions 𝑓 : R𝑁 → R, 𝑔 : R𝑁 → R𝑀 , ℎ : R𝑁 → R𝑃
are continuously differentiable. Note, for an optimization layer the problem is specified
by the input 𝑧, i.e. 𝑓 , 𝑔, ℎ are functions of 𝑥 and 𝑧. For now, the dependency on 𝑧 is
skipped because it is not relevant for solving the optimization problem. The output of
the optimization layer is the solution �̂�(𝑧) = 𝑥∗(𝑧), which is assumed to be unique. The
Lagrangian function of the problem (3.7) is defined by:

𝐿 (𝑥, a, _) = 𝑓 (𝑥) + a𝑇𝑔(𝑥) + _𝑇ℎ(𝑥), (3.8)

with a ∈ R𝑀 and _ ∈ R𝑃. For a solution 𝑥∗ of the problem in Equation (3.7) and under
certain regularity conditions, there exist a∗ and _∗ that fulfill the following so-called
Karush-Kuhn-Tucker (KKT) conditions:

∇𝐿 (𝑥∗, a∗, _∗) = ∇ 𝑓 (𝑥∗) +
𝑀∑︁
𝑖=1

a∗𝑖 ∇𝑔𝑖 (𝑥∗) +
𝑃∑︁
𝑗=1
_∗𝑗∇ℎ 𝑗 (𝑥∗) = 0, (3.9)

𝑔(𝑥∗) ≤ 0,
ℎ(𝑥∗) = 0,
a∗ ≥ 0,

a∗𝑖 𝑔𝑖 (𝑥∗) = 0 ∀𝑖 ∈ 1, . . . , 𝑀.

The KKT conditions are a generalization of the method of Lagrange multipliers. The
latter allows only equality constraints. If the primal problem in Equation (3.7) is convex,
the KKT conditions are also sufficient conditions.

Interior Point Methods (IPMs) solve convex optimization problems with a sequence of
equality-constrained problems or modified KKT conditions that approximate the opti-
mization problem with increasing accuracy. The sequence of solutions stays in the interior
of the region that is defined by the inequality constraints and converges to the solution
of the original problem. An equality-constrained problem can be obtained by adding a
barrier function that penalizes solutions close to the boundary defined by the inequality

58

3.2 Related Work

Figure 3.7: The principle of the barrier method is shown for a linear program with inequality constraints
𝑔(𝑥) ≤ 0. A logarithmic barrier function 𝜙(𝑥) confines the solutions 𝑥∗ (`) to the interior of the
feasible set C (red polygon). Iteratively, ` is decreased and the previous solution 𝑥∗ (`𝑖) is used
as starting point for solving the current problem 𝑥∗ (`𝑖+1) with the Newton method. Thereby,
𝑥∗ (`) approximates the true solution 𝑥∗ with increasing accuracy. The figure has been adapted
from Figure 11.2 in Boyd and Vandenberghe [2009, p. 566].

constraints. By choosing a logarithmic barrier function and a small scalar ` > 0, the
optimization problem in Equation (3.7) can be approximated with:

arg min
𝑥

𝑓 (𝑥) − `
𝑀∑︁
𝑖=1

log(−𝑔𝑖 (𝑥)), (3.10)

s.t. ℎ(𝑥) = 0.

This equality-constrained problem can be solved with the method of Lagrange multiplier:

0 = ∇ 𝑓 (𝑥∗) − `
𝑀∑︁
𝑖=1

1
𝑔𝑖 (𝑥∗)

∇𝑔𝑖 (𝑥∗) +
𝑃∑︁
𝑗=1
_∗𝑗∇ℎ 𝑗 (𝑥∗), (3.11)

0 = ℎ(𝑥∗).

The so-called modified or perturbed KKT conditions are obtained by defining a∗
𝑖
(`) =

−`/𝑔𝑖 (𝑥∗) and substituting the corresponding term in Equation (3.11). Thus, the modified
KKT conditions are identical to the original ones in Equation (3.9) except that the term
a∗
𝑖
𝑔𝑖 (𝑥∗) = 0 is replaced with a∗

𝑖
(`)𝑔𝑖 (𝑥∗) = −`. Unfortunately, directly solving the

modified KKT conditions in Equation (3.11) for a small ` with the Newton method is
unstable. However, this issue can be resolved by considering a sequence of problems 𝑥∗(`)
with decreasing values for `. The problems are solved sequentially and the last solution
is used as starting point for the next iteration. The barrier method and the primal-dual
IPM are two important variants of IPMs. The barrier method solves Equation (3.11)
directly with the Newton method in an inner loop and reduces the value of ` in an outer
loop. For a linear program, the barrier method is visualized in Figure 3.7. Contrary, the
primal-dual IPM determines the Newton step from the modified KKT conditions with the
additional parameter a and performs only one loop. In each iteration of the loop, ` is
reduced and just one Newton step is performed. Furthermore, a line search is applied
to ensure the satisfaction of the inequality constraints. The equality constraints must not
necessarily be satisfied. Primal-dual IPMs are state-of-the-art in convex optimization and
achieve typically faster convergence with higher accuracy than barrier methods. Compared

59

Sample-Specific Output Constraints for Neural Networks

to classical explicit layers, differentiable optimization layers are still computationally
expensive because an iterative solving of linear systems in the Newton step is required.

Optimization as a Differentiable Layer and Implicit Function Theorem

For optimization layers, the optimization problem in Equation (3.7) is specified by the input
𝑧 of the layer, i.e. 𝑓 , 𝑔, ℎ are functions of 𝑥 and 𝑧, and the output is the primal optimal solu-
tion �̂�(𝑧)=𝑥∗(𝑧). Given a primal-dual optimal solution 𝑞∗(𝑧) = (𝑥∗⊺ (𝑧), a∗⊺ (𝑧), _∗⊺ (𝑧))⊺
of the optimization problem for an input 𝑧, the gradient 𝜕�̂�

𝜕𝑧
can be derived from the KKT

equality conditions [Barratt, 2018] with the implicit function theorem [Dontchev and
Rockafellar, 2009]. By denoting the equality conditions in Equation (3.9) with KKTeq,
the derivative 𝜕𝑞∗

𝜕𝑧
can be written as:

0 =KKTeq(𝑞∗(𝑧), 𝑧) (3.12)

⇔ 0 =
𝜕KKTeq

𝜕𝑞∗
𝜕𝑞∗

𝜕𝑧
+
𝜕KKTeq

𝜕𝑧

⇔ 𝜕𝑞∗

𝜕𝑧
= −

(
𝜕KKTeq

𝜕𝑞∗

)−1 𝜕KKTeq

𝜕𝑧
.

Here, the partial derivations denote the corresponding Jacobians (𝜕𝑦
𝜕𝑥
)𝑖, 𝑗 = 𝜕𝑦𝑖

𝜕𝑥 𝑗
. The final

equation includes the desired expression for 𝜕�̂�

𝜕𝑧
as the first 𝑁 rows of 𝜕𝑞∗

𝜕𝑧
.

3.3 ConstraintNet

This chapter starts with a mathematical definition of sample-specific output constraints
for NNs in Section 3.3.1. ConstraintNet ensures sample-specific output constraints with
a constraint guard layer and the full architecture is explained in Section 3.3.2. In Sec-
tion 3.3.3, the constraint guard layer is modeled for constraints in the form of convex
polytopes, sectors of a circle, and independent constraints on different output parts. The
training of ConstraintNet requires a sampling of valid constraints and the algorithm is ex-
plained in detail in Section 3.3.4. Finally, in Section 3.3.5 supported classes of constraints
and possible generalizations are presented.

3.3.1 Sample-Specific Output Constraints for Neural Networks

Common NNs 𝑛\ :X→Y are function approximators with learnable parameters \ ∈ Θ
and map inputs 𝑥 ∈ X to elements �̂� of a static output range Y. In supervised learning
(see 2.2.2), the parameters \ are deduced from an optimization problem over a data set
D = {(𝑥𝑖, 𝑦𝑖)}𝑁𝑖=1 with 𝑁 data points 𝑥𝑖 and labels 𝑦𝑖. The behavior of trained NNs is
characterized by the data. However, properties or guarantees are typically difficult to
prove and the NN is considered as a black box. Addressing this, in the following sample-

60

3.3 ConstraintNet

specific output constraints for NNs are mathematically introduced. Sample-specific output
constraints are supposed to implement and ensure desired properties and guarantees.

First, let us define an output constraint as a subset of the output domain C⊂Y and a class
of output constraints as a parametrized set of them ℭ = {C(𝑠) ⊂ Y : 𝑠 ∈ S}. S is a set
of the so-called constraint parameters 𝑠 ∈S. For NNs, sample-specific output constraints
are defined as output constraints ℭ so that the constraint parameter 𝑠 can be set separately
in each forward pass to ensure �̂� ∈ C(𝑠). ConstraintNet is an NN 𝑓\ : X×S →Y with
an additional input for the constraint parameter 𝑠 ∈S and the guarantee to predict within
C(𝑠) by the design of the NN architecture, i.e. independently of the learned weights \:

∀\ ∈Θ ∀𝑠∈S ∀𝑥 ∈X : 𝑓\ (𝑥, 𝑠) ∈ C(𝑠). (3.13)

Sample-specific output constraints allow even multiple output constraints for the same
input 𝑥. This capability has several benefits. The method is robust to variance in the
output constraint. E.g. bounding boxes, which confine landmark detections, do not need
to be centered perfectly. Furthermore, the output constraint may be relaxed or tightened
depending on how much prior knowledge is available. E.g. if the feasible region is
annotated by human experts, each individual may specify another region. Finally, sample-
specific output constraints are able to direct the focus in ambiguous situations. E.g. for
trajectory planning, the output constraints could encode navigation instructions like turn
left or right. Another example is an human pose estimation and a bounding box may
constrain the prediction to an individual person of a group.

3.3.2 Architecture and Construction

For the integration of sample-specific output constraints, ConstraintNet comprises three
components. The components and the general construction approach are shown in Fig-
ure 3.4. The approach ensures that ConstraintNet satisfies Equation (3.13) and that back-
propagation and gradient-based optimization algorithms remain applicable. Figure 3.8
visualizes a specific implementation of ConstraintNet with a CNN and output constraints
in the form of triangles.

The first component is the introduction of the constraint parameter 𝑠 as an additional
input. The constraint parameter specifies the exact geometry of the output constraint
C(𝑠). Second, the constraint guard layer 𝜙 :Z×S→Y is applied as final layer. The layer
parametrizes the constrained output region C(𝑠) depending on the constraint parameter
𝑠. The input 𝑧 ∈Z of the constraint guard layer is the output of previous layers. Given a
class of constraints ℭ= {C(𝑠) ⊂Y : 𝑠∈S}, 𝜙 must fulfill:

∀𝑠∈S ∀𝑧 ∈Z : 𝜙(𝑧, 𝑠) ∈ C(𝑠). (3.14)

Typically, the image 𝜙(Z, 𝑠) is equal to C(𝑠) or its interior. Furthermore, 𝜙 must be
(piecewise) differentiable w.r.t. 𝑧 so that backpropagation and gradient-based optimization
algorithms are applicable. The constraint guard layer 𝜙 does not comprise learnable
parameters and therefore the optimal constrained behavior is learned by the previous

61

Sample-Specific Output Constraints for Neural Networks

v(2)
v(3)

v(1)
concat{v(i)}

z σ(z)

v(1) v(2) v(3)

x

g(s)

s

φ(z, s)

φ =
∑

i σi(z)v
(i)(s)

· · · · · ·

ŷ

·
σ1

·
σ2

+ ·
σ3

+

Figure 3.8: Construction of ConstraintNet by extending a CNN. For illustration purposes, the detection of
a nose landmark on an image 𝑥 is shown with an output constraint in the form of a triangle,
i.e. a convex polytope with three vertices {𝑣 (𝑖) (𝑠)}3

𝑖=1. The constraint parameter 𝑠 specifies the
chosen triangle and consists of the six vertex 𝑥, 𝑦-coordinates. A tensor representation 𝑔(𝑠) of
𝑠 is concatenated to the output of an intermediate convolutional layer and extends the input of
the next layer. Instead of creating the final output for the nose landmark with a 2D dense layer,
a 3D intermediate representation 𝑧 is generated. The constraint guard layer 𝜙 applies a softmax
function 𝜎 on 𝑧 and weights the three vertices of the triangle with the softmax outputs. This
guarantees a detection �̂� within the specified triangle. The figure is based on Brosowsky et al.
[2021a].

layers ℎ\ with parameters \. In the ideal case, ConstraintNet predicts the same true output
𝑦 for a data point 𝑥 under different but valid constraints 𝑠. This behavior requires that ℎ\
depends on 𝑠 in addition to 𝑥. Without this requirement, 𝑧 = ℎ\ (𝑥) would have the same
value for fixed 𝑥, and 𝜙 would project this 𝑧 for different but valid constraint parameters 𝑠
to different outputs in general. Thus, the third modification informs the previous layers ℎ\
about the chosen constraint 𝑠. The constraint parameter 𝑠 is transformed into an appropriate
tensor description 𝑔(𝑠) and represents an additional input of ℎ\ , i.e. ℎ\ :X×𝑔(S) →Z.
For the construction of ℎ\ , it is proposed to concatenate 𝑔(𝑠) to the input 𝑥 or to the output
of an intermediate layer. For deep architectures, the latter is proposed because the first
layers extract typically low level features of the input 𝑥. This recommendation assumes
that the information about the output geometry 𝑔(𝑠) is optimally incorporated by layers
that extract features with a higher level of abstraction.

To summarize, ConstraintNet is constructed by applying the layers ℎ\ and the constraint
guard layer 𝜙 sequentially:

𝑓\ (𝑥, 𝑠) = 𝜙
(
ℎ\ (𝑥, 𝑔(𝑠)), 𝑠

)
. (3.15)

The property of 𝜙 in Equation (3.14) implies that ConstraintNet predicts within the
constrained output range C(𝑠) according to Equation (3.13). Furthermore, the constraint
guard layer propagates gradients and backpropagation remains applicable.

In many image processing tasks, CNNs achieve a high performance and are a natural
choice due to their translational equivariance. Thus, Figure 3.8 illustrates the construction
of ConstraintNet with a CNN as backbone, i.e. the intermediate variable 𝑧 is generated with
a CNN ℎ\ (𝑥, 𝑔(𝑠)). The detection of noses on face images is considered and the output
constraints are assumed to be triangles randomly located around the nose, i.e. convex
polytopes with three vertices. The constraints are specified by a constraint parameter 𝑠

62

3.3 ConstraintNet

consisting of the concatenated vertex coordinates. The constraint guard layer 𝜙 for convex
polytopes is modeled in the next section and requires a 3D intermediate variable 𝑧 ∈R3 for
triangles. The previous layers ℎ\ map the image data 𝑥 ∈X and the constraint parameter
𝑠 on the 3D intermediate variable 𝑧 ∈ R3. A CNN with output domain Z = R𝑀 can
be realized by adding a dense layer with 𝑀 output neurons and linear activations. The
output of an intermediate convolutional layer and the tensor representation 𝑔(𝑠) of 𝑠 are
concatenated and represent the input of the next layer. Thereby, the dependency of ℎ\ on
𝑠 is incorporated in a natural way. Empirically, a tensor description 𝑔(𝑠) with one channel
per constraint parameter component is found as an appropriate representation. All entries
within one channel of 𝑔(𝑠) are set to the same normalized value of the corresponding
constraint parameter component.

3.3.3 Constraint Guard Layer

For a given class of constraints ℭ, the key challenge in the construction of ConstraintNet
is the identification of a corresponding constraint guard layer 𝜙. Consequently, explicit
expressions of 𝜙 for broadly applicable classes of constraints are of particular interest and
presented in this section. The section starts with a compact constraint guard layer for
the general class of convex polytopes with a fixed number of vertices. Furthermore, a
concept is shown to constrain different output parts independently. For problem-specific
constraints, the construction of tailored constraint guard layers is encouraged. As an
example, a parametrization of sectors of a circle is shown. For other common geometric
shapes with known parametrizations, the constraint guard layer can be derived analogously.
The constraint guard layers in this section are evaluated in Chapter 3.4. Beyond that,
Section 3.3.5 covers further supported constraint types and generalizations that are not
evaluated in this work and serve as inspiration. Figure 3.9 visualizes several constraint
classes and the corresponding constraint guard layers.

Convex Polytopes

A convex polytope P in R𝑁 can be described by the convex hull of 𝑀 vertices {𝑣 (𝑖)}𝑀
𝑖=1 of

dimension 𝑁:

P
(
{𝑣 (𝑖)}𝑀𝑖=1

)
=

{
𝑀∑︁
𝑖=1

𝑝𝑖𝑣
(𝑖) : 𝑝𝑖 ≥0,

𝑀∑︁
𝑖=1

𝑝𝑖 =1

}
. (3.16)

The vertices 𝑣 (𝑖) (𝑠) are assumed to be functions of the constraint parameter 𝑠 so that the
output constraints are defined as C(𝑠)=P({𝑣 (𝑖) (𝑠)}𝑀

𝑖=1). Convex polytopes can be written
as the solution space of a finite number of linear inequality constraints P({𝑣 (𝑖) (𝑠)}𝑀

𝑖=1) =
{𝑦 ∈ R𝑁 : 𝐴𝑦 ≤ 𝑏} (𝐴∈R𝐾×𝑁 , 𝑏 ∈R𝐾) and vice versa as the convex hull of vertices if the
solution space is bounded. The constraint guard layer for convex polytopes ℭ = {C(𝑠) :
𝑠∈S} with 𝑀 vertices can be constructed as follows:

𝜙(𝑧, 𝑠) =
𝑀∑︁
𝑖=1

𝜎𝑖 (𝑧)𝑣 (𝑖) (𝑠), (3.17)

63

Sample-Specific Output Constraints for Neural Networks

Figure 3.9: Visualization of the constraint guard layers for output constraints in the form of different geo-
metric shapes. a) For triangles, a 3D softmax function 𝜎 generates weights for each vertex of
the triangle and the output is the weighted sum of the vertices. Thereby, the output is ensured
to be in the triangle’s interior. b) The exponential function is leveraged to parametrize the
unbounded region [𝑏,∞). c) The constraint guard layer in Equation (3.17) generalizes a) to
arbitrary convex polytopes with a fixed number of vertices. d) For other geometric shapes with
known parametrizations, the constraint guard layer follows directly from the parametrization.

with 𝑧 ∈ R𝑀 . In the formula, 𝜎𝑖 (·) denotes the 𝑖th component of the 𝑀-dimensional
softmax function 𝜎 : R𝑀→R𝑀 . The required property of 𝜙 in Equation (3.14) follows
directly from the properties 0<𝜎𝑖 (·) < 1 and

∑
𝑖 𝜎𝑖 (·) = 1 of the softmax function. To be

precise, 𝜙(𝑧, 𝑠) covers the interior of the convex polytope because 𝜎𝑖 (·) ≠ 1. Thus, the
boundary of the convex polytope is not reachable exactly but with arbitrary high accuracy.
Furthermore, 𝜙 is differentiable w.r.t. 𝑧 and thus a valid constraint guard layer.

Constraints on Output Parts

Frequently, it is desired to constrain different parts of a multidimensional output indepen-
dently to a different subdomain. These constraints can easily be implemented by generating
an intermediate variable 𝑧(𝑖) for each output part and applying individual constraint guard
layers 𝜙(𝑖) in parallel.

Formally, an output with 𝐾 parts 𝑦 (𝑘) (𝑘 ∈ {1, . . . , 𝐾}) is considered:

𝑦 = (𝑦 (1)⊺, . . . , 𝑦 (𝐾)⊺)⊺ ∈ Y = Y (1) × · · · × Y (𝐾) . (3.18)

64

3.3 ConstraintNet

Each output part 𝑦 (𝑘) should be constrained independently to an output constraint
C (𝑘) (𝑠(𝑘)) of a part-specific class of constraints ℭ(𝑘) = {C (𝑘) (𝑠(𝑘)) ⊂ Y (𝑘) : 𝑠(𝑘) ∈ S (𝑘)}.
This is equivalent to constraining the overall output 𝑦 to:

ℭ = {C(𝑠) ⊂ Y : 𝑠 ∈ S (1) × · · · × S (𝐾)}, (3.19)

with C(𝑠) = C (1) (𝑠(1)) × · · · × C (𝐾) (𝑠(𝐾)),

and 𝑠 = (𝑠(1) , . . . , 𝑠(𝐾))⊺. Furthermore, it is assumed that the constraint guard layers for
the parts 𝜙(𝑘) are given, i.e. for ℭ(𝑘) . For this case, an overall constraint guard layer 𝜙, i.e.
for ℭ, can be constructed by concatenating the constraint guard layers of the parts:

𝜙(𝑧, 𝑠) =
(
𝜙(1)

⊺ (𝑧(1) , 𝑠(1)), . . . , 𝜙(𝐾)⊺ (𝑧(𝐾) , 𝑠(𝐾))
)⊺
, (3.20)

with 𝑧= (𝑧(1)⊺, . . . , 𝑧(𝐾)⊺)⊺. The validity of the property in Equation (3.14) for 𝜙 w.r.t. ℭ
follows immediately from the validity of this property for 𝜙(𝑘) w.r.t. ℭ(𝑘) .

Sectors of a Circle

Let O be a sector of a circle with center position (𝑥c, 𝑦c)⊺ ∈ R2 and radius 𝑅 > 0.
Furthermore, the sector is assumed to be symmetric w.r.t. the vertical line 𝑥 = 𝑥c and
covers Ψ ∈ (0, 2𝜋] rad. Then, the sector of a circle can be described by the following set
of points:

O(𝑠) =
{
𝑟 · (sin 𝜑, cos 𝜑)⊺+(𝑥c, 𝑦c)⊺ ∈R2 : 𝑟 ∈ [0, 𝑅], 𝜑∈ [−Ψ/2, +Ψ/2]

}
, (3.21)

with 𝑠= (𝑥c, 𝑦c, 𝑅,Ψ)⊺. The following constraint guard layer satisfies Equation (3.14) for
a class of these constraints ℭ= {O(𝑠) : 𝑠∈S}:

𝜙(𝑧, 𝑠) = 𝑟 (𝑧1) ·
(
sin 𝜑(𝑧2), cos 𝜑(𝑧2)

)⊺+(𝑥c, 𝑦c)⊺, (3.22)

with an intermediate variable 𝑧= (𝑧1, 𝑧2)⊺ ∈R2, 𝑟 (𝑧1)=𝑅 ·sig(𝑧1) and 𝜑(𝑧2)=Ψ·(sig(𝑧2)−
0.5). The sigmoid function sig(𝑡) = 1/(1+exp(−𝑡)) maps a real number to the interval
(0, 1). Finally, 𝜙 is differentiable w.r.t. 𝑧.

3.3.4 Training

In supervised learning, NNs are trained by utilizing a set of input-output pairs D =

{(𝑥𝑖, 𝑦𝑖)}𝑁𝑖=1. However, ConstraintNet has an additional input 𝑠 ∈ S that is not unique.
The constraint parameter 𝑠 encodes the shape of the constrained output range C(𝑠), which
should cover the true output 𝑦 ∈ C(𝑠). Therefore, the constraint parameter 𝑠𝑖 of an
input-output pair (𝑥𝑖, 𝑦𝑖) is restricted to a set of valid constraint parameters S𝑦𝑖 = {𝑠 ∈
S : 𝑦𝑖 ∈ C(𝑠)}. In principle, also constraint parameters 𝑠𝑖 with 𝑦𝑖 ∉ C(𝑠𝑖) may be
justified to encourage a prediction within the feasible set with a minimum distance to the
optimal output. However, it is proposed to sample 𝑠𝑖 only from the valid set S𝑦𝑖 . Thereby,
representative input-output triplets (𝑥𝑖, 𝑠𝑖, 𝑦𝑖) are created. The sampling procedure enables

65

Sample-Specific Output Constraints for Neural Networks

Algorithm 1 Training algorithm for ConstraintNet. The constraint parameter
𝑠𝑖 for an input-output pair (𝑥𝑖 , 𝑦𝑖) is sampled from a set of valid parameters
S𝑦𝑖 = {𝑠∈S : 𝑦𝑖 ∈C(𝑠)}. This pseudocode is based on Brosowsky et al. [2021a].

procedure train({𝑥𝑖 , 𝑦𝑖}𝑁𝑖=1)
\ ← random initialization
for batch do

𝐼batch ← get_indices(batch)
for 𝑖 ∈ 𝐼batch do

𝑠𝑖 ← sample(S𝑦𝑖)
�̂�𝑖 ← 𝑓\ (𝑥𝑖 , 𝑠𝑖) ⊲ ConstraintNet

end for
𝐿 (\) ← 1

|𝐼batch |
∑
𝑖∈𝐼batch ℓ(𝑦𝑖 , �̂�𝑖)+_𝑅(\)

\ ← update(\,∇\𝐿)
end for
return \

end procedure

ConstraintNet to be trained with standard SGD as shown in Algorithm 1. Note that many
input-output triplets can be generated for the same input-output pair (𝑥𝑖, 𝑦𝑖) by sampling
different constraint parameters 𝑠𝑖. Therefore, ConstraintNet is encouraged to learn an
invariant prediction for the same input under different constraint parameters. Although
inconsistent constraint parameters 𝑠 with 𝑦 ∉C(𝑠) are not used in training, ConstraintNet
shows a desired generalization for invalid constraints (see Figure 3.16 in Section 3.4).

3.3.5 Supported Constraints and Generalizations

According to Equation (3.14), an output constraint C is feasible if a differentiable para-
metric equation 𝜙 exists for C. Consequently, the presented constraints are exemplary and
the construction of constraint guard layers for problem-specific constraints is encouraged.
In the following, general guidelines w.r.t. the construction of constraint guard layers are
summarized:

a) All constraints of a set {C𝑗 } 𝑗∈𝐽 can be ensured by parametrizing the intersection
C =

⋂
𝑗∈𝐽 C𝑗 . E.g. in the facial landmark detection experiment in Chapter 3.4,

constraints in the form of relative relations between the landmarks and in the form
of bounding boxes are ensured by using this technique (see Equation (3.27) and
Figure 3.12).

b) At least one constraint of a set {C𝑗 } 𝑗∈𝐽 can be ensured by performing a prediction
�̂� 𝑗 within each C𝑗 . An additional output with a sigmoid activation function may
be introduced to estimate the probability 𝑝(𝑦 ∈ C𝑗 |𝑥) that the specified constrained
region covers the ground truth. Finally, the output is the prediction �̂� 𝑗 under the
constraint C𝑗 with the highest confidence 𝑝 to cover the ground truth. This approach
is applicable to sets {C𝑗 } 𝑗∈𝐽 with different numbers of constraints.

c) Non-convex polytopes are feasible by partitioning the polytope into a triangle mesh.
The triangle mesh represents a set of constraints and exactly one of the constraints

66

3.3 ConstraintNet

Figure 3.10: a) and b) For a nose landmark detection, a constraint in the form of a non-convex polytope is
partitioned into two different triangle meshes (red). For each triangle constraint, ConstraintNet
performs a prediction (white and black crosses). c) The predictions within the two triangles
that cover the true nose landmark (black crosses) are in close vicinity while the others are
uncorrelated. Thus, the final prediction can be defined as the mean value of the two predictions
in mesh 1 and 2 that are closest together.

must be satisfied. Thus, the non-convex polytope constraint can be ensured analo-
gously to b) or as visualized in Figure 3.10.

d) For an output constraint in the form of separated sets, e.g. two separated triangles,
the feasible region can be partitioned into connected spaces and b) is applicable.

e) ConstraintNet can be generalized to classification tasks by constraining the con-
tinuous logit or probability space. E.g. in a multi-label classification task with 𝐾
classes, the class confidences 0≤ 𝑝𝑘 ≤ 1 may be generated with a sigmoid function
sig : R𝐾 → (0, 1)𝐾 and shall be individually limited from above 𝑝𝑘 ≤ 𝑐𝑘 with a
vector 𝑐 ∈ [0, 1]𝐾 , which is assumed to be given by prior knowledge. In this case, a
simple element-wise multiplication of the sigmoid function with the upper bounds
𝑝=sig(𝑧) ⊙ 𝑐 ensures constraint satisfaction.

f) ConstraintNet is also capable of dealing with unbounded regions. E.g. for predicting
�̂� ∈R above a threshold 𝑏, the constraint guard layer 𝜙(𝑧, 𝑠)=exp(𝑧)+𝑏 is proposed
and the constraint parameter 𝑠=𝑏 is the threshold (see Figure 3.9 b).

In principle, the concept of sample-specific parametrizations 𝜙(𝑧, 𝑠) is also applicable
to constrain the output of intermediate layers instead of only the final layer [Brosowsky,
2021a]. As long as 𝜙(𝑧, 𝑠) is differentiable w.r.t. 𝑧, backpropagation is applicable. Sample-
specific constraints on intermediate layers might be interesting if interpretable latent repre-
sentations are supposed to be learned and should be in line with explicit relations, e.g. for
consistency with rule-based models. A second interesting modification of ConstraintNet
is learning the constraint parameter 𝑠 from data instead of assuming that the parameter is
externally given [Brosowsky, 2020, 2021c]. Additional layers 𝑠=𝑟𝛼 (𝑥) with own learnable
parameters 𝛼 may be leveraged to determine the geometry of the feasible region from the
input. The constraint parameter 𝑠may either be learned in a supervised manner with given
target values or implicitly by considering 𝑠 as latent variable of ConstraintNet. The latter
requires that 𝜙(𝑧, 𝑠) is also differentiable w.r.t. 𝑠 because the layers 𝑟𝛼 are assumed to be
part of ConstraintNet.

67

Sample-Specific Output Constraints for Neural Networks

3.4 Facial Landmark Detection Experiments

3.4.1 Overview

In this section, ConstraintNet is applied to facial landmark detection tasks on images of the
Large-scale CelebFaces Attributes (CelebA) data set [Liu et al., 2015]. Different classes of
output constraints are evaluated and visualized in Figure 3.11. First, output constraints that
restrict the landmarks to a bounding box around the face are considered. These constraints
are extended to enforce additionally relative relation between the landmarks, e.g. that the
eyes are above the nose. Moreover, for demonstration purposes triangle and sector of a
circle constraints are applied and imposed on the prediction of the nose landmark. The
performance is evaluated and compared to conventional NNs without constraints and NNs
with a projection layer for constraint satisfaction. The code is available on github1.

Data Set and Preprocessing

The experiments are performed on the Large-scale CelebFaces Attributes (CelebA) data
set [Liu et al., 2015]. This data set consists of a training (162 771 images), a validation
(19 867 images), and a test set (19 961 images) with in total 202 599 images, each picturing
a face. In addition, CelebA provides five landmark annotations, among other attributes.
This chapter focuses on predicting the nose, the left eye, and right eye landmark. For
preprocessing, the images are rescaled, patches of size 224×224 px are cropped, and
finally the patches are normalized.

Modified ResNet50 Architecture

ConstraintNet is constructed by applying the approach described in Section 3.3.2 and by
leveraging ResNet50 as backbone. The construction is visualized in Figure 3.8. ResNet50
[He et al., 2016] is a state-of-the-art CNN architecture and is frequently used for classifica-
tion and regression in computer vision [Lathuilière et al., 2020]. In regression, the output
is typically generated by a final dense layer with linear activations. The modifications
for ConstraintNet comprise the following steps: adapting the output dimension of the
final dense layer with linear activations to match the required dimension of 𝑧, adding the
constraint guard layer 𝜙 for the considered class of constraints ℭ, and concatenating the
representation 𝑔(𝑠) of the constraint parameter 𝑠 to the output of an intermediate layer.
The representation 𝑔(𝑠) is defined as a tensor and the channels 𝑐 ∈ {1, . . . , dim(𝑠)} are
identified with the components of the constraint parameter 𝑠. Furthermore, all entries
within a channel are set to a rescaled value of the corresponding constraint parameter
component 𝑠𝑐:

𝑔𝑐,𝑤,ℎ (𝑠) = _𝑐 · 𝑠𝑐 ∀𝑤 ∈ {1, . . . ,𝑊}, ℎ ∈ {1, . . . , 𝐻}, (3.23)

1 https://github.com/mbroso/constraintnet_facial_detect

68

https://github.com/mbroso/constraintnet_facial_detect

3.4 Facial Landmark Detection Experiments

a) b) c) d)

Figure 3.11: Visualization of four different output constraints that are imposed on facial landmark detection.
a) Landmark detections for nose, left, and right eye are confined to a bounding box around the
face. b) In addition to the bounding box constraints, the eyes are enforced to be above the nose
and the left eye is restricted to the left of the right eye. c) and d) The prediction for the nose
landmark is constrained c) to a domain in the form of a triangle or d) to a sector of a circle,
respectively. This figure is based on the supplementary part of Brosowsky et al. [2021a].

with 𝑊 and 𝐻 for the tensor’s width and height and each _𝑐 is a rescaling factor. If
identical constraint parameter components 𝑠𝑐 occur several times in 𝑠, they are encoded in
the same channel of 𝑔 to avoid unnecessary redundancy. The tensor 𝑔(𝑠) is concatenated
to the output of the 22nd layer of ResNet50 with dimensions 𝑊 =𝐻 = 28. This extended
output represents the input for the 23rd layer. The 22nd layer is the last layer in the
second of four building blocks of ResNet50 and followed by further 27 convolutional
layers. The first layers of CNNs recognize image features with a low-level of abstraction,
e.g. edges. The 22nd layer extracts already high-level abstractions of the image and
therefore a joint processing with the constraint parameter representation 𝑔(𝑠) is argued to
be reasonable. However, it would be interesting to analyze whether optimizing the layer
for inserting 𝑔(𝑠) even improves performance. Furthermore, rescaling 𝑠𝑐 to the scale of the
values in the concatenated tensor is found empirically to be important for the convergence
and performance of training. The specific values of the rescaling factors _𝑐 are chosen
depending on the considered class of constraints and denoted for each experiment.

3.4.2 Output Constraints

Bounding Box Constraints and Relative Constraints

In the first experiments, the landmarks for the nose (𝑥n, �̂�n)⊺, the left eye (𝑥le, �̂�le)⊺, and
the right eye (𝑥re, �̂�re)⊺ are predicted. The NN’s output is arranged according to:

�̂� = (𝑥n, 𝑥le, 𝑥re, �̂�n, �̂�le, �̂�re)⊺ . (3.24)

These landmark detections are confined to a bounding box, which might be given by a
face detector. The bounding box is specified by a left 𝑙 (𝑥) , a right 𝑢(𝑥) , a top 𝑙 (𝑦) , and
a bottom 𝑢(𝑦) boundary. Note that the 𝑦-axis starts at the top of the image and points
downwards so that 𝑙 denotes the lower and 𝑢 the upper bound. Confining the landmark
detections to a bounding box is equivalent to constrain the 𝑥-components 𝑥𝑖 ∈ {𝑥n, 𝑥le, 𝑥re}
to the interval [𝑙 (𝑥) , 𝑢(𝑥)] and the 𝑦-components �̂�𝑖 ∈ {�̂�n, �̂�le, �̂�re} to the interval [𝑙 (𝑦) , 𝑢(𝑦)].
These intervals are One Dimensional (1D) convex polytopes with the interval boundaries

69

Sample-Specific Output Constraints for Neural Networks

a)

x̂n
l(x) u(x)

b)

x̂le

x̂re

l(x) u(x)

l(x)

u(x)
c)

ŷrel(y)
u(y)

ŷn

ŷle

l(y)

u(y)

l(y)

u(y)

Figure 3.12: Combining the bounding box constraints with relative relations between landmarks is equivalent
to constrain the output parts �̂� (1) =𝑥n to the line segment in a), �̂� (2) = (𝑥le, 𝑥re)⊺ to the triangle
in b), and �̂� (3) = (�̂�n, �̂�le, �̂�re)⊺ to the pyramid in c). This figure is based on Brosowsky et al.
[2021a].

as vertices. Thus, the bounding box constraints for the 𝑥- and 𝑦-components can be written
with the definition in Equation (3.16) as:

C (𝑥)bb (𝑠
(𝑥)) =P({𝑙 (𝑥) , 𝑢(𝑥)}), (3.25)

C (𝑦)bb (𝑠
(𝑦)) =P({𝑙 (𝑦) , 𝑢(𝑦)}),

with 𝑠(𝑥) = (𝑙 (𝑥) , 𝑢(𝑥))⊺ and 𝑠(𝑦) = (𝑙 (𝑦) , 𝑢(𝑦))⊺. The constraint guard layers for the 𝑥- and
𝑦-components are derived from Equation (3.17):

𝜙
(𝑥)
bb (𝑧

(𝑥𝑖) , 𝑠(𝑥)) = 𝜎1(𝑧(𝑥𝑖))𝑙 (𝑥) + 𝜎2(𝑧(𝑥𝑖))𝑢(𝑥) , (3.26)

𝜙
(𝑦)
bb (𝑧

(�̂�𝑖) , 𝑠(𝑦)) =𝜎1(𝑧(�̂�𝑖))𝑙 (𝑦) + 𝜎2(𝑧(�̂�𝑖))𝑢(𝑦) ,

with 𝑧(𝑥𝑖) , 𝑧(�̂�𝑖) ∈R2 and 𝜎 the 2-dimensional softmax function. Note that each of the 𝑥-
and 𝑦-components has an individual latent variable 𝑧(𝑥𝑖) or 𝑧(�̂�𝑖) but shares the constraint
parameter 𝑠(𝑥) or 𝑠(𝑦) . Finally and according to Equation (3.20), the overall constraint
guard layer 𝜙bb(𝑧, 𝑠) is constructed from the constraint guard layers of the components
and requires a 12-dimensional intermediate variable 𝑧 ∈ R12. The constraint parameter
representation 𝑔(𝑠) has four channels corresponding to the boundaries of the box and a
rescaling factor of _𝑐 =0.01 is chosen for each of the four channels. For bounding boxes
that do not exceed the image boundaries, thereby the value range of 𝑔𝑐,𝑤,ℎ (𝑠) is reduced
to [0, 2.24].

For training of ConstraintNet, valid constraint parameters 𝑠 ∈ S𝑦 are randomly sampled
(sample(S𝑦𝑖) in Algorithm 1). Valid constraint parameters correspond to bounding boxes
that cover all considered facial landmarks. Thus, first the smallest rectangle that covers the
landmarks nose, left eye, and right eye is determined. Next, four integers are sampled from
the range [20, 60] and used to extend each of the four rectangle boundaries independently.
Finally, the sampled constraint parameter is given by the boundaries of the generated box
𝑙 (𝑥) , 𝑢(𝑥) , 𝑙 (𝑦) , 𝑢(𝑦) . For test, the constraint parameter is sampled with the same procedure
as in training. This tests how well ConstraintNet performs under bounding boxes with
high variability in size.

70

3.4 Facial Landmark Detection Experiments

The bounding box constraints are extended by modeling relations between landmarks. As
an example, the left eye is enforced to be in fact to the left of the right eye (𝑥le ≤ 𝑥re) and
the both eye landmarks are restricted to be above the nose (�̂�le, �̂�re ≤ �̂�n). The bounding
box constraints Cbb and these relative constraints Crel are combined by parametrizing the
intersection of both constraints C∩ =Cbb ∩ Crel. This intersection can be written as three
independent constraints for the output parts �̂� (1) =𝑥n, �̂� (2) = (𝑥le, 𝑥re)⊺, �̂� (3) = (�̂�n, �̂�le, �̂�re)⊺:

C (1)∩ (𝑠(𝑥)) = {𝑥n ∈R : 𝑙 (𝑥) ≤ 𝑥n≤𝑢(𝑥)}, (3.27)

C (2)∩ (𝑠(𝑥)) = {(𝑥le, 𝑥re)⊺ ∈R2 : 𝑥le≤ 𝑥re, 𝑙
(𝑥) ≤ 𝑥le, 𝑥re≤𝑢(𝑥)},

C (3)∩ (𝑠(𝑦)) = {(�̂�n, �̂�le, �̂�re)⊺ ∈R3 : �̂�le, �̂�re≤ �̂�n, 𝑙
(𝑦) ≤ �̂�n, �̂�le, �̂�re≤𝑢(𝑦)},

with unchanged constraint parameters 𝑠(𝑥) = (𝑙 (𝑥) , 𝑢(𝑥))⊺ and 𝑠(𝑦) = (𝑙 (𝑦) , 𝑢(𝑦))⊺. The
constraints {C (𝑘)∩ }3𝑘=1 are visualized in Figure 3.12: C (1)∩ is a line segment in 1D, C (2)∩ is a
triangle in 2D, and C (3)∩ is a pyramid with 5 vertices in 3D. These geometric shapes are all
convex polytopes and can be written in vertex representation according to Equation (3.16):

C (1)∩ (𝑠(𝑥)) =P
(
{𝑣 (𝑖)}2𝑖=1

)
with 𝑣 (1) = 𝑙 (𝑥) , 𝑣 (2) =𝑢(𝑥) , (3.28)

C (2)∩ (𝑠(𝑥)) =P
(
{𝑣 (𝑖)}3𝑖=1

)
with 𝑣 (1) = (𝑙 (𝑥) , 𝑙 (𝑥))⊺, 𝑣 (2) = (𝑙 (𝑥) , 𝑢(𝑥))⊺, 𝑣 (3) = (𝑢(𝑥) , 𝑢(𝑥))⊺,

C (3)∩ (𝑠(𝑦)) =P
(
{𝑣 (𝑖)}5𝑖=1

)
with 𝑣 (1) = (𝑙 (𝑦) , 𝑙 (𝑦) , 𝑙 (𝑦))⊺, 𝑣 (2) = (𝑢(𝑦) , 𝑙 (𝑦) , 𝑙 (𝑦))⊺,

𝑣 (3) = (𝑢(𝑦) , 𝑙 (𝑦) , 𝑢(𝑦))⊺, 𝑣 (4) = (𝑢(𝑦) , 𝑢(𝑦) , 𝑢(𝑦))⊺,
𝑣 (5) = (𝑢(𝑦) , 𝑢(𝑦) , 𝑙 (𝑦))⊺ .

In the notation of the vertices, the index for the output part is skipped for readability.
However, note that 𝑣 (𝑖) is a different vertex depending on the output part. Given the vertex
representations, the constraint guard layers {𝜙(𝑘)∩ }3𝑘=1 for the three parts are directly given
by Equation (3.17). Note that 𝜙(𝑘)∩ requires an intermediate variable 𝑧(𝑘) with dimension
equal to the number of vertices of the corresponding polytope, i.e. 𝑧(1) ∈ R2, 𝑧(2) ∈ R3,
and 𝑧(3) ∈ R5. Finally and according to Equation (3.20), the overall constraint guard
layer 𝜙∩ is given by applying the layers for the parts 𝜙(𝑘)∩ in parallel. 𝜙∩ depends on the
intermediate variable 𝑧= (𝑧(1)⊺, 𝑧(2)⊺, 𝑧(3)⊺)⊺ with dimension 2+3+5=10. In other words,
for each output part a softmax layer is applied in parallel to generate the weights for the
vertices of the convex polytopes in Figure 3.12. The first softmax is of dimension two,
the second one of dimension three, and the third one of dimension five. Finally, each of
the three output parts is generated by an average weighting of the vertices of the polytopes
with the generated softmax probabilities. The constraint parameter representation 𝑔(𝑠)
and the sampling of valid constraint parameters are identical to the previously explained
experiment with only bounding box constraints. Under rotations of the image, the nose
might be above the eyes whereas the constraints prohibit such a prediction. Thus, it should
be noted that the introduced relations between the landmarks are considered as an example
to illustrate the modeling of constraints.

71

Sample-Specific Output Constraints for Neural Networks

Triangle and Sector of a Circle Constraints

In further experiments, only the nose landmark (𝑥n, �̂�n)⊺ is detected and the detection
is constrained to a triangle or a sector of a circle. These constraints are visualized in
Figure 3.11 c) and d) and Figure 3.8 shows ConstraintNet and the constraint guard layer
for triangle constraints.

A triangle is a convex polytope with three vertices. Therefore, the constraint guard layer is
given by Equation (3.17) and requires a 3-dimensional intermediate variable 𝑧 ∈R3. The
triangle constraint is specified with a 6-dimensional constraint parameter 𝑠 that consists
of the concatenated vertex coordinates. For training and test, triangles with random shape
around the nose landmark are sampled with the following procedure. First, an equilateral
triangle is created on an imaginary circle around the nose landmark with radius of 55.5 px.
This corresponds to an area of 4000 px2 covered by the equilateral triangle. Next, the
triangle is set into a polar coordinate system with the point of origin at the center of the
triangle. For randomization, for each triangle vertex a deviation for the radius coordinate is
sampled from [−30, 10] px and a deviation for the angle coordinate from [−𝜋/6, 𝜋/6] rad.
These transformations result in a sampling procedure for triangles that cover the nose
landmark. For the tensor representation 𝑔(𝑠) in Equation (3.23), a rescaling factor of
_𝑐=0.01 is chosen for all six constraint parameter components.

A sector of a circle is defined in Equation (3.21) and the shape and position is specified
via the constraint parameter 𝑠= (𝑥c, 𝑦c, 𝑅,Ψ)⊺. The constraint guard layer for constraints
in the form of sectors of a circle is given by Equation (3.22) and requires a 2-dimensional
intermediate variable 𝑧 ∈ R2. For training and test, a constraint parameter sampling
procedure is defined so that the nose landmark 𝑦= (𝑥n, 𝑦n)⊺ is covered by the corresponding
sector of a circle. The radius 𝑅 is sampled from [50, 100] px, Ψ from [0.4, 1.0] rad, 𝑦c
from [𝑦n−𝑅, 𝑦n], and 𝑥c from [𝑥n−𝛿𝑥, 𝑥𝑛+𝛿𝑥] with 𝛿𝑥= ⌊tan(Ψ/2) (𝑦n−𝑦c)⌋. For the tensor
representation 𝑔(𝑠) in Equation (3.23), a rescaling factor of _𝑐=0.01 is chosen for the first
three constraint parameter components 𝑥c, 𝑦c, and 𝑅 and a rescaling factor of _4=1.0 for
the fourth component Ψ .

3.4.3 Training and Quantitative Results

For a fair comparison, the baseline is created by substituting the constraint guard layer of
ConstraintNet with a differentiable optimization layer that performs a projection [Agrawal
et al., 2019]. The output of the projection layer is the element within the feasible region
C(𝑠) with the shortest Euclidean distance to the input (see Equation (3.3)). Analogous to
ConstraintNet, the tensor description of the constraint parameter 𝑔(𝑠) is concatenated to the
output of the 22nd layer of the projection-based approach. Furthermore, the conventional
ResNet50 without any constraint is evaluated as a second baseline.

72

3.4 Facial Landmark Detection Experiments

Figure 3.13: Learning curves of ConstraintNet, the projection-based approach and ResNet50. The plots
show the MSE as a function of the training progress up to the epoch when overfitting begins.
a) Learning curves for models with bounding box (bb) constraints and with additional relative
relations between the landmarks (bb+rel). b) Learning curves for triangle (△) and sector of
a circle constraints (O). This figure is based on the supplementary part of Brosowsky et al.
[2021a].

All models are trained with the Adam [Kingma and Ba, 2014] optimizer (see Section 2.2.2)
and the MSE loss is used without a regularization term 𝑅 (_=0):

𝐿 (\) = 1
𝑁

𝑁∑︁
𝑖=1
∥𝑦𝑖 − �̂�𝑖∥22 + _𝑅(\). (3.29)

Here, ∥·∥2 is the Euclidean distance. For the experiments with bounding box and rel-
ative constraints, a hyperparameter optimization is performed by a search over a dis-
crete range of learning rates and batch sizes. First, five trainings with learning rates
[50, 10, 2, 0.5, 0.1]·10−4 and a fixed batch size of 64 are evaluated. Then, the learning rate
with the lowest MSE on the validation set is picked and additional five trainings with batch
sizes [8, 16, 32, 64, 128] are performed. For all models, a learning rate of 5 ·10−5 and a
batch size of 64 are found as the optimal hyperparameters. For the triangle and sector of a
circle constraints, these optimal values are reused without performing a separate hyperpa-
rameter optimization. In all experiments, training is stopped when overfitting begins and
the weights with lowest validation score are used for the evaluation on the test set.

Figure 3.13 shows the learning curves of ConstraintNet and the projection-based approach
for the different output constraints. For comparison, ResNet is trained for the same tasks
without constraints and the learning curves are depicted as well. ConstraintNet and the
projection-based approach are trained according to Algorithm 1 with randomly generated
bounding boxes, triangles, and sectors of a circle. ConstraintNet and the projection-based
approach converge significantly faster than the ResNet50 baseline. This can be explained

73

Sample-Specific Output Constraints for Neural Networks

Method (Constraint) Predicted landmarks Training Evaluation

One epoch Total (epochs)

ConstraintNet (bb)

nose, left, and
right eye

18 min 1 s 15 h 55 min (53) (33.2 ± 0.2) s
projection (bb) 32 min 1 s 20 h 17 min (38) (64.8 ± 0.5) s
ConstraintNet (bb+rel) 17 min 49 s 20 h 11 min (68) (33.7 ± 0.4) s
projection (bb+rel) 31 min 45 s 24 h 52 min (47) (67.5 ± 0.8) s
ResNet50 (None) 18 min 28 s 53 h 51 min (175) (32.9 ± 0.2) s

ConstraintNet (△)

nose

17 min 32 s 12 h 52 min (44) (34.2 ± 0.7) s
projection (△) 118 min 52 s 55 h 29 min (28) (295.5 ± 0.8) s
ConstraintNet (O) 18 min 25 s 10 h 44 min (35) (33.4 ± 0.4) s
ResNet50 (None) 18 min 12 s 20 h 19 min (67) (32.9 ± 0.2) s

Table 3.1: Runtimes for the training and the evaluation of ConstraintNet, the projection-based approach, and
ResNet50 for facial landmark detection tasks. Results are shown for the detection of the nose,
left eye, and right eye landmarks with constraints in the form of bounding boxes (bb), additional
constraints to enforce relative relations (bb+rel) and no constraints (ResNet50). Furthermore, a
detection of only the nose landmark is performed and runtimes are shown for triangle constraints
(△), sector of a circle constraints (O), and no constraints (ResNet50). Training is stopped when
overfitting begins and the corresponding number of epochs is denoted in brackets (compare the
learning curves in Figure 3.13). The evaluation runtime is measured for performing predictions
on the complete test set (19 961 images) and computing the MSE metric. The mean values and the
standard deviations of the runtimes are determined from 30 repetitions. Training and evaluation is
performed with a batch size of 64 and the data loader is parallelized on 10 threads. The runtimes
are measured on a Lambda Quad (CPU: 12x Intel Core i7-6850K 3.6 GHz, GPU: 4x Nvidia
12 GB Titan V, RAM: 128 GB) using one of the four dedicated graphics cards.

by the incorporated domain knowledge. The output constraints comprise knowledge about
the rough location of specific facial landmarks. The projection-based approach requires
fewer epochs but higher runtime than ConstraintNet. One explanation for the different
epoch numbers is that the intermediate representation 𝑧 of ConstraintNet depends not only
on the input 𝑥 but additionally on the constraint parameter 𝑠, i.e. an invariant prediction
for the same input under varying constraints must be learned. Whereas this mechanism
requires training the same input-output pairs under varying constraints, the design choice
is argued as follows: (1) The dependency of the intermediate variable 𝑧 on the constraint
parameter 𝑠 enforces ConstraintNet to incorporate the constraint parameter. (2) Diverse
decision paths for the same sample must be learned, which may support regularization
[Opitz and Shavlik, 1995]. (3) The effort to learn the additional relation is limited because
the relation is identical between all samples. (4) In all performed experiments, an explicit
order is defined on the vertices. Thereby, learning an invariant prediction under vertex
permutations is avoided.

Table 3.1 shows the runtimes for the training and the evaluation of pure ResNet50, the
projection-based approach, and ConstraintNet. The projection-based approach requires
fewer epochs than ConstraintNet. However, the total runtime for training is higher due to a
higher runtime of more than 30 min for a progress of one epoch (162771 images). In com-
parison, the runtime per epoch of ConstraintNet and ResNet50 is approximately 18 min.
Performing the projection requires solving an optimization problem and the computational

74

3.4 Facial Landmark Detection Experiments

Method (Constraint) MSE(𝑥n) MSE(�̂�n) MSE(𝑥le) MSE(�̂�le) MSE(𝑥re) MSE(�̂�re) MSE(�̂�)

ConstraintNet (bb) 2.17±0.04 1.63±0.05 1.88±0.05 1.92±0.06 2.06±0.06 1.57±0.04 11.23±0.16
Projection (bb) 1.84±0.06 1.71±0.10 2.00±0.10 2.03±0.08 2.93±0.09 1.48±0.06 11.99±0.35
ConstraintNet (bb+rel) 1.43±0.05 1.76±0.05 1.80±0.04 1.62±0.06 1.69±0.04 1.39±0.03 9.70±0.10
Projection (bb+rel) 1.62±0.06 1.95±0.09 1.78±0.06 1.74±0.08 1.91±0.05 1.43±0.06 10.44±0.25
ResNet50 (None) 3.28±0.76 2.40±0.34 3.78±0.80 2.20±0.22 3.82±0.78 1.93±0.27 17.42±2.89

ConstraintNet (△) 1.44±0.03 1.59±0.04 – – – – 3.03±0.05
Projection (△) 1.63±0.04 1.66±0.06 – – – – 3.30±0.08
ConstraintNet (O) 2.17±0.05 4.15±0.14 – – – – 6.33±0.15
ResNet50 (None) 4.24±0.53 3.78±0.37 – – – – 8.02±0.67

Table 3.2: MSE metrics for facial landmark detection with ConstraintNet, ResNet50 with projection layer,
and pure ResNet50 on the test set of the CelebA data set. Results are shown for constraints in the
form of bounding boxes (bb), additional constraints to enforce a relative arrangement (bb+rel),
triangle (△), and sector of a circle constraints (O). The average covered area of the triangle
constraints is (2345 ± 6) px2 and the area of the sector of the circle constraints (2040 ± 8) px2.

costs are higher than for the execution of the constraint guard layer. Analogously, for test
ConstraintNet requires almost no additional runtime compared to ResNet50. Contrary,
the projection-based approach requires about twice the time.

After training, the facial landmark predictions of ConstraintNet, the projection-based
approach, and ResNet50 without constraints are evaluated on the test set. For the three
models and the different types of constraints, Table 3.2 shows the obtained MSE metrics
of the facial landmark predictions. For all considered constraints, ConstraintNet achieves
lower MSEs metrics than the projection-based approach and the projection-based performs
better than pure ResNet50. Consequently, the approaches with imposed output constraints
successfully utilize the information encoded in the constraint. This is in line with the
observation that the performance with additional relative constraints improves over just
bounding box constraints. Furthermore, applying the constraint guard layer instead of
the projection-layer seems to have a positive impact on the performance. One possible
explanation is that the smooth transformation of the constraint guard layer from the latent
space Z on the feasible region C(𝑠) is better suited for SGD than a projection on the
boundary of C(𝑠). E.g. for the feasible region C = {𝑦 ≥ 0} in 1D, the projection layer is
identical to the ReLU, which has non-informative gradients of zero for inputs 𝑧 <0.

3.4.4 Qualitative Results

For a qualitative evaluation of the facial landmark detection tasks, a graphical user interface
has been developed with streamlit2, which is visualized in Figure 3.14 and available
on github3. The app allows to select ConstraintNet, the projection-based approach, or
ResNet50 without output constraints as NN for the prediction. Furthermore, widgets are
configured to load an image, to perform preprocessing and manipulation steps, to set the

2 https://streamlit.io, accessed on 10/10/2022
3 https://github.com/mbroso/constraintnet_facial_detect

75

https://streamlit.io
https://github.com/mbroso/constraintnet_facial_detect

Sample-Specific Output Constraints for Neural Networks

Figure 3.14: For the facial landmark detection experiments, an interactive user interface has been developed
with streamlit. The user can unfold the steps 0 to 6 and set the options for specifying the NN,
loading an image, preprocessing and manipulation steps, and for setting the output constraint.
Finally, in step 7 the corresponding facial landmark detection is shown. In the depicted
screenshot, the NN with the projection layer and bounding box as well as relative output
constraints is selected.

output constraint depending on the specified NN, and to perform and visualize the facial
landmark detection. The graphical user interface is structured in step 0 to 6:

0. Load config: A trained NN is loaded by setting the configuration file of the training.
An arbitrary NN of the experiments in Table 3.2, except the experiment with sector
of a circle constraints, can be specified.

1. Load image and resize: An image can be loaded by specifying the path. Furthermore
the image is resized so that the shorter dimension is of length 300 px.

2. Crop image: A 224 px × 224 px patch of the image can be specified for cropping.

3. Add a rectangle (optional): A part of the image can be covered with a colored
rectangle of arbitrary size, shape, and color (as in Figure 3.15).

4. Rotate image (optional): The image can be rotated with an arbitrary angle.

5. Add Gaussian blurring (optional): The image is blurred with an adjustable standard
deviation.

6. Set output constraint: If the projection-based approach or ConstraintNet is selected
in step 0, the output constraint (bounding box or triangle) must be specified.

76

3.4 Facial Landmark Detection Experiments

Figure 3.15: Merging two portraits generates an ambiguous setting for the facial landmark detection because
the NNs are modeled for detections on images picturing only one face. a) ResNet50 without
output constraints predicts the facial landmarks of the face on the right-hand side and interpo-
lates between both faces if the preferred face is covered with a white rectangle. b) and c) Facial
landmark detections with the projection-based approach and ConstraintNet with bounding box
and relative constraints. The bounding box is set around the face on the left-hand side to resolve
the ambiguity. b) The projection-based approach incorporates the information of the bounding
box constraint. However, the landmark detections still tend to the face on the right-hand side.
c) ConstraintNet predicts the facial landmarks correctly even on the image without the white
rectangle. This indicates that ConstraintNet incorporates the information that is provided by
the constraint deep in the decision process.

In Figure 3.15, predictions are performed on an image that is generated by merging two
portraits. Thereby, the decision-making process is designed intentionally ambiguous
because the NNs are trained for a facial landmark detection on images with only one face.
In the first row, ResNet50 is applied without output constraints. On the original image,
ResNet50 predicts the facial landmarks for the face on the right-hand side. The reason is
probably that the face on the right-hand side is larger pictured or that the person wears no
glasses. Then, the face on the right-hand side is gradually covered with a white rectangle.
Interestingly, first the facial landmark detections are between the two faces and move
gradually to the face on the left-hand side. In other applications, this interpolation may
cause hazardous behavior. E.g. in an NN-based trajectory planner, a highway exit may
cause an ambiguous situation with the options to stay on the highway or to take the exit.
The interpolation of the optimal trajectories of both scenarios would lead to driving on the
impassable area between the highway and exit or a crash in the worst-case. In the center and

77

Sample-Specific Output Constraints for Neural Networks

Figure 3.16: Facial landmark detection with ConstraintNet on a portrait with different rotation angles.
ConstraintNet ensures bounding box constraints in combination with relative constraints, i.e.
that the eyes are above the tip of the nose and the left eye is indeed to the left of the right eye. For
a rotation of 70◦, ConstraintNet detects the left eye and the tip of the nose with deviations from
the correct position. The deviations are minimal under the constraint that the landmark for the
left eye must be above the tip of the nose. For larger rotation angles, the prediction of the right
eye moves to the symmetry axis of the face. This behavior can be explained by missing training
data for such rotations and probably ConstraintNet learned that faces are typically symmetric.

bottom row of Figure 3.15, the facial landmark detections of the projection-based approach
and of ConstraintNet are shown with bounding box and relative constraints. The bounding
box is set to enforce the facial landmark detections to the face on the left-hand side. The
projection-based approach incorporates the information of the bounding box constraint
and detects the facial landmarks for the face on the left-hand side but with a significant
offset in the direction of the second face. The offset vanishes only when the second face
is covered to a large extent with the white rectangle. The projection-based approach is
generated by substituting the constraint guard layer of ConstraintNet with a projection
layer and is informed about the constraint via the constraint parameter representation
𝑔(𝑠) analogously to ConstraintNet. Contrary, ConstraintNet predicts the facial landmarks
correctly even when the second face is not covered at all. Thus, ConstraintNet leverages
the information that is encoded in the constraint strongly. This can be explained by the fact
that ConstraintNet must learn the dependency on the tensor representation of the constraint
𝑔(𝑠) for correct predictions even under only slightly varying output constraints. Contrary,
the projection-based approach does not depend on 𝑔(𝑠) necessarily because the projection
layer is just the identity function if the prediction is within the feasible set.

Figure 3.16 shows facial landmark detections on a rotated portrait with different rotation
angles. The detections are performed with ConstraintNet and bounding box and relative
constraints. The relative constraints enforce that the eyes are above the nose and that the
left eye is in fact to the left of the right eye. For a rotation of 60◦, the left eye is on a similar
level than the nose and the output constraint enforces that the landmark for the left eye is
above the landmark for the tip of the nose. For a larger rotation of 70◦, the left eye is below
the tip of the nose. Although such rotations are not explicitly addressed in the training,
ConstraintNet generalizes well. The landmark for the left eye is predicted slightly above
and the landmark for the nose slightly below the correct position. Thereby, the relative
constraint is ensured and the error of the prediction is minimized as far as possible. For
a rotation of 80◦, a similar behavior is observed. However, the prediction of the right eye
is also closer to the symmetry axis of the face. A possible reason is that ConstraintNet
learned that faces are usually symmetric.

78

3.5 Conclusion

3.5 Conclusion

In safety-critical environments of DASs, constraints are a common method for the im-
plementation of safety requirements. E.g. for ensuring collision avoidance, Nistér et al.
[2019] and Shalev-Shwartz et al. [2017] propose constraints on the control input of AVs.
However, imposing constraints on NNs is challenging and existing methods are limited.
Addressing this, the chapter has focused on the novel NN architecture ConstraintNet that
embeds sample-specific output constraints in its architecture. Facial landmark detection
experiments have been performed and different constraints have been modeled for illustra-
tion purposes. Safety-critical environments of DASs are considered in the next chapters.
In addition to safety considerations, incorporating constraints in NNs is promising to re-
duce the black box character, to stabilize the training, to upgrade the performance, or to
improve the data efficiency.

Contrary to prior approaches that perform a projection in the final layer, ConstraintNet
applies an input-dependent parametrization of the constrained output space, the so-called
constraint guard layer. Thereby, the complete interior of the constrained region is covered,
the approach is applicable to DNNs, and the computational overhead is minimal. The
constraint guard layer ensures constraint satisfaction by construction. As a second mod-
ification, an auxiliary input has been added. The auxiliary input specifies the geometry
of the constraint and enables handling multiple constraints for the same sample. Finally,
ConstraintNet is end-to-end trainable with almost no overhead in the forward and back-
ward pass. For output constraints in the form of convex polytopes, a constraint guard
layer based on the vertex representation has been proposed. The experiments on facial
landmark detection tasks have shown improved performance and reduced runtimes over
performing projections with differentiable optimization layers.

Moreover, a general mathematical formalization of the approach has been presented and
is applicable to output constraints of arbitrary parameterizable geometries. In addition
to this formalization, a set of guidelines and ideas for generalizations are provided. This
includes concepts for feasible regions that are non-convex polytopes and concepts for
restricting the output of an intermediate layer. The mathematical formalization and the
generalizations aim to reach researchers of different domains and are intended to encourage
the construction of problem-specific constraint guard layers. In particular, ConstraintNet
is applicable to safety-critical environments of DASs. This is demonstrated in the next
chapter on the example of a vehicle following controller.

79

4 Safe Reinforcement Learning with Constrained
Neural Networks: Vehicle Following Controller

Contents

4.1 Motivation . 82

4.2 Related Work . 85

4.2.1 Safe Reinforcement Learning 85

4.2.2 Adaptive Cruise Control . 87

4.3 Methods . 88

4.3.1 Vehicle Following Controller 88

4.3.2 State-Specific Safe Sets . 90

4.3.3 Twin Delayed Deep Deterministic Policy Gradient Algorithm . . 98

4.4 Experiments . 100

4.4.1 Simulator and Reward Function 100

4.4.2 Training . 103

4.4.3 Results . 105

4.5 Conclusion . 108

This chapter focuses on safe DRL with constrained NNs. On the example of a vehicle
following controller, state-specific safe sets are modeled and imposed as output constraints
on the control policy. A vehicle following controller is a core functionality of ACC, which
is a common ADAS for longitudinal control in modern vehicles. Thus, the proposed
approach is called Adaptive Cruise Control with State-Specific Safe Sets (ACC 4S). For
the constrained policies, ConstraintNet and projection-based approaches are leveraged.
First, Chapter 4.1 provides an overview and motivates the approach. In Chapter 4.2,
related safe RL algorithms are presented. Moreover, classical and RL approaches for
ACC are compared. In Chapter 4.3, the vehicle following controller is explained from
a control theory perspective. Starting from the RSS model, the safe sets are derived
and extended. Furthermore, the TD3 algorithm is explained, which has been chosen as
DRL algorithm for training. In Chapter 4.4, the details of the experimental evaluation
are presented including the simulator and reward function, the NN architectures for the
policy, the evaluation metrics, and the final results. Finally, in Chapter 4.5 the findings are
discussed.

81

Safe Reinforcement Learning with Constrained Neural Networks

Parts of this chapter have previously appeared in the publication Safe Deep Reinforcement
Learning for Adaptive Cruise Control by Imposing State-Specific Safe Sets [Brosowsky
et al., 2021b].

4.1 Motivation

In RL, an agent interacts with an environment in a time-discrete way and receives a reward
per time step depending on its chosen action and the state of the environment. Frequently,
the dynamic of the environment is implemented with a simulator. The objective is the
maximization of the cumulative and discounted rewards. In recent years, DRL algorithms
have gained attention beyond the research community by surpassing human experts in
playing Atari Games [Mnih et al., 2015] and the board game Go [Silver et al., 2016].
In comparison to classical RL, DRL is characterized by leveraging NNs as function
approximators.

A key characteristic of RL is self-taught learning. Contrary to supervised learning, the
learning algorithm does not rely on a data set with expert labels. Instead, the optimal be-
havior is learned from experience of past actions, state transitions, and obtained rewards.
Of particular importance are model-free RL algorithms, which do not require a mathemat-
ical model for the environment transitions but learn it implicitly from experience. On the
one hand, the fundamental principle learning from trial-and-error is a strength and allows
to potentially surpass the best experts in the considered task, even in the case of complex
environments [Silver et al., 2016]. On the other hand, it makes RL prone to accidental
damage in safety-critical environments. In DRL, safety is even more challenging due to
the black box character of NNs. Safe RL addresses these difficulties and gains increasing
attention. An important class of these approaches restricts the policy‘s output space to
a state-dependent set of safe actions, the safe set C(𝑥). Typically, a final differentiable
optimization layer [Amos and Kolter, 2017; Agrawal et al., 2019] is used to project an
unconstrained action 𝑢 on the element 𝑢⊥ within the safe set with minimal distance to 𝑢
[Pham et al., 2018; Dalal et al., 2018]. It is referred to Equation (3.1) in Chapter 3:

𝑢⊥ = arg min
𝑦∈C(𝑥)

1
2
∥𝑦 − 𝑢∥2. (4.1)

In the previous chapter, ConstraintNet [Brosowsky et al., 2021a] has been proposed as
an alternative approach to impose output constraints on NNs. ConstraintNet applies a
sample-specific parametrization of the feasible region in the final layer, the constraint
guard layer. Contrary to the projection-based approach, no optimization problem needs
to be solved and the computational overhead is minimal. Further concepts and a short
overview of safe RL are provided in Chapter 4.2.

For solving control tasks of ADs and ADASs, DRL algorithms with continuous action
spaces are of particular interest. The TD3 algorithm [Fujimoto et al., 2018] is a state-of-
the-art actor-critic model of this class and a further development of the commonly used
DDPG algorithm [Lillicrap et al., 2016]. However, the described safety concerns limit the

82

4.1 Motivation

Figure 4.1: Left: The vehicle following controller is active if a vehicle ahead is detected. Sensors measure
the acceleration 𝑎ego,𝑘 and velocity 𝑣ego,𝑘 of the ego vehicle, the distance 𝑑𝑘 to the front vehicle,
the relative velocity Δ𝑣𝑘 =𝑣f,𝑘−𝑣ego,𝑘 , and the relative acceleration Δ𝑎𝑘 =𝑎f,𝑘−𝑎ego,𝑘 of the front
vehicle w.r.t. the ego vehicle. The subscript 𝑘 is for the current time step. The control input 𝑢𝑘
is a demanded acceleration 𝑎ego,dem,𝑘 with the goal to reach and maintain a velocity-dependent
distance 𝑑set,𝑘 (𝑣ego) according to a set time gap. Right: An accurate, comfortable, and safe
vehicle following control behavior is learned with the TD3 algorithm, which is an actor-critic
algorithm for continuous action spaces. The following vehicle represents the actor and chooses
an action 𝑢𝑘 =𝑎ego,dem,𝑘 in the form of a demanded acceleration at time step 𝑘 depending on the
state 𝑥𝑘 . Next, the environment generates the state and reward for the next time step. The figure
is based on Brosowsky et al. [2021b].

application of DRL algorithms for DASs. Addressing this, the chapter focuses on learning
a safe vehicle following controller with the TD3 algorithm and output constrained NNs.

A vehicle following controller represents one of the two core capabilities of ACC, which is
a common ADAS for longitudinal control in modern vehicles. In the cruise control mode,
ACC controls the speed according to a set value or a recognized speed limit. If a vehicle
ahead is detected, the second mode is activated and the vehicle following controller keeps
a velocity-dependent distance (see Figure 4.1). For a vehicle following controller, the main
safety goal is the avoidance of rear-end collisions with the front vehicle. To address this,
the RSS model [Shalev-Shwartz et al., 2017] (see Section 2.1.3) defines a safe distance to
the front vehicle. If the safe distance is undershot, the following vehicle is supposed to
initiate a braking maneuver and minimum conditions w.r.t. the deceleration are required.
This maneuver is called the proper response. Thereby, the RSS model formally guarantees
the avoidance of rear-end collisions even for unexpected full braking of the front vehicle.
In Section 4.3.2, the proper response of the RSS model is extended with the goal to
avoid undershooting the minimal safe distance. However, if the minimal safe distance
is undershot, the response is according to RSS. Thereby, an upper bound 𝑐max,𝑘 for the
demanded acceleration of the vehicle following controller at time step 𝑘 is obtained or in
other words a lower bound for the demanded deceleration. Additional operational limits
lead to a final state-specific interval C(𝑠𝑘)= [𝑐min,𝑘 , 𝑐max,𝑘] of safe actions. Safe driving is
ensured by imposing these state-specific safe sets (4S) as output constraints on the policy,
which gives the approach the name ACC 4S. Moreover, safe exploration is ensured by
restricting the policies also during training.

For the experiments, ConstraintNet is constructed to embed the state-specific safe sets
C(𝑠𝑘) = [𝑐min,𝑘 , 𝑐max,𝑘] in the NN architecture. Furthermore, ConstraintNet is compared
with an unconstrained NN, an NN with an additional clipping to [𝑐min,𝑘 , 𝑐max,𝑘] as post-

83

Safe Reinforcement Learning with Constrained Neural Networks

Figure 4.2: Left: Visualization of learning the control law for vehicle following with an actor-critic model
like the TD3 algorithm. Right: In the original TD3 algorithm, the actor’s policy is modeled
with an unconstrained fully connected NN (unconstrained). Here, state-specific safe sets are
imposed as constraints C(𝑠𝑘) on the demanded acceleration 𝑢𝑘 = 𝑎ego,dem,𝑘 . Note, C(𝑠𝑘) is an
interval [𝑐min,𝑘 , 𝑐max,𝑘] and 𝑠𝑘 is the vector (𝑐min,𝑘 , 𝑐max,𝑘)⊺. Three different approaches are
evaluated: 1) clipping as post-processing step (clipped NN), 2) clipping as a differentiable layer
(projection), and 3) ConstraintNet. The input of all models is the state of movement 𝑥𝑘 and the
parameter for the safe set 𝑠𝑘 after normalization (𝑥⊺

𝑘
, 𝑠
⊺
𝑘
)⊺. The figure is based on Brosowsky

et al. [2021b].

processing (clipped NN), and clipping as part of the NN (projection-based approach).
Note, for the safe set in form of a 1D interval C(𝑠𝑘) = [𝑐min,𝑘 , 𝑐max,𝑘] the projection in
Equation (4.1) is simply the clipping procedure. The difference between the clipped NN
and the projection-based approach is that the former considers clipping as part of the
environment and the latter as part of the NN with an influence on the backward pass.
The different approaches are visualized in Figure 4.2. Imposing state-specific safe sets on
the policy has two advantages compared to adding a reward term for safe driving. First,
the additional reward term would only encourage safe driving and does not guarantee it.
Second, tuning the relative weights of the reward terms is always a trade-off between the
different objectives. A higher weight on the reward term for safe driving may degrade
the performance. Contrary, considering safety with constraints requires only balancing
between comfort and distance accuracy.

The main contributions of this chapter are as follows:

• The RSS model is leveraged and extended to derive state-specific safe sets for a ve-
hicle following scenario. The harsh interventions of the RSS model are transformed
into a continuous braking constraint. For the case that the minimal safe distance
is approached, the continuous constraint converges to the full braking request of
the RSS model. Thereby, abrupt braking requests are smoothed without losing the
collision avoidance guarantees of the RSS model.

• A safe vehicle following policy is learned with the TD3 algorithm by imposing the
safe sets as hard output constraints on the policy. The output constraints are imple-
mented with ConstraintNet, with clipping as post-processing, and with a projection
layer. Furthermore, an unconstrained policy is evaluated by using a conventional
NN.

• The effectiveness of the safe sets is validated by measuring a constant crash rate of
zero for all constrained policies.

84

4.2 Related Work

• The training behavior and the performance w.r.t. safety, distance accuracy, and
comfort of the constrained and the unconstrained policies are evaluated. While
all approaches achieve similar comfort metrics, ConstraintNet and the clipped NN
achieve the smallest time gap error. Compared to the other approaches, Constraint-
Net has the most stable training behavior and converges fastest.

4.2 Related Work

4.2.1 Safe Reinforcement Learning

In RL, the interaction between the agent and the environment is modeled with an MDP.
Frequently, the maximum expected return is the only goal and thereby an appropriate
definition of the objective. However, in safety-critical environments the maximization of
the expected return is not sufficient. In line with the definition of safety in Section 2.1.1,
safe RL aims to reduce the risk of the agent during training and/or after deployment. This
general definition covers algorithms with different and more specific definitions of risk.
Frequently, safe RL algorithms are supposed to solve tasks in real physical environments,
e.g. to control a real robot arm or an AV, and risk is related to concrete hazards like a
collision or torque limits [Pham et al., 2018]. Another common understanding of risk
refers to the uncertainty of the return. A policy with a lower expected return may be
preferred because the uncertainty of the return is lower. This phenomenon is known as
risk aversion.

García et al. [2015] classify safe RL algorithms depending on whether 1) the objective
and/or 2) the exploration process are modified. Approaches of the first category extend
the objective to include some form of risk. This implies generally also a modification of
the exploration process. For a clear separation, the second category covers approaches
that modify only the exploration process and keep the maximization of the expected return
as objective. 1) Approaches that modify the objective can be further clustered depending
on the way how risk is included. a) The expected return is optimized under worst-case
assumptions w.r.t. the uncertainty in the parameters of the MDP or the intrinsic uncer-
tainty of the MDP [Heger, 1994]. However, frequently worst-case assumptions are too
restrictive. b) Contrary, in risk-sensitive RL the objective includes a parameter to bal-
ance between risk avoidance and maximizing the expected return [Howard and Matheson,
1972]. c) A third way to modify the objective is the maximization of the expected re-
turn under additional constraints. Frequently, the problem is modeled with a Constrained
Markov Decision Process (CMDP) [Altman, 1999]. 2) A common form to reduce the risk
of the exploration process is the incorporation of expert knowledge instead of learning
from scratch. In apprenticeship learning, demonstrations of experts are leveraged to ini-
tialize the RL algorithm. For value-based methods, Maire and Bulitko [2005] propose an
algorithm to estimate an informative initial value function from demonstrations. For the
approach ACC 4S in this chapter, state-specific safe sets are imposed as output constraints
on the policy of a vehicle following controller. The safe sets are based on the RSS model
[Shalev-Shwartz et al., 2017] and guarantee avoidance of rear-end collisions with the front
vehicle. ACC 4S is part of category 1b) because the RSS model assumes reasonable

85

Safe Reinforcement Learning with Constrained Neural Networks

worst-case assumptions w.r.t. the uncertainty of the vehicle dynamics. Furthermore, the
safe sets are applied as output constraints on the policy. Thus, ACC 4S belongs also to
category 1c) and can be interpreted as solving a CMDP with a restricted feasible set as
shown in the following.

A CMDP (X,U, 𝑝, 𝑟, 𝛾, 𝐶, 𝐵) [Altman, 1999] extends a classical MDP (X,U, 𝑝, 𝑟, 𝛾) by
a set of cost functions 𝐶= {𝐶𝑖 : X×U×X → R} and a set of cost limits 𝐵= {𝑏𝑖 ∈R}. For
each cost function, a cost return 𝐽𝜋

𝐶𝑖
is defined for a policy 𝜋 analogously to the expected

discounted return 𝐽𝜋 in Equation (2.31):

𝐽𝜋𝐶𝑖 = 𝐸

[∑︁
𝑘∈K

𝛾𝑘𝐶𝑖 (𝑋𝑘 ,𝑈𝑘 , 𝑋𝑘+1)
]
. (4.2)

Furthermore, the cost functions and limits define a set of feasible policies:

Π𝐶 = {𝜋 : ∀𝑖 𝐽𝜋𝐶𝑖 ≤ 𝑏𝑖}. (4.3)

Finally, the objective of the CMDP is defined as finding a feasible policy with maximum
expected return:

𝜋∗ = arg max
𝜋∈Π𝐶

𝐽𝜋 . (4.4)

For the vehicle following controller, the feasible set Π𝐶 should be a set of policies that
ensure collision avoidance. A natural definition of a cost function is to define a cost only
in the case of a crash:

𝐶 (𝑥, 𝑢, 𝑥′) = 𝐶 (𝑥) =
{

0 for 𝑑 > 0,
1 else,

(4.5)

with 𝑑 the distance between the ego and the front vehicle in state 𝑥. Then, the cost return is
only 𝐽𝜋

𝐶
=0 if collisions never occur (𝑑 >0 for all time steps) under a policy 𝜋. Otherwise,

the cost return is greater than zero 𝐽𝜋
𝐶
>0. Consequently, Π𝐶 is exactly the set of collision

free policies for a cost limit of zero 𝑏 = 0. However, solving a CMDP according to
Equation (4.4) is difficult because the cost return of the policy in Equation (4.2) must be
estimated to decide whether the policy is feasible. In model-free RL, the expectation value
of the cost return is approximated from samples. Achiam et al. [2017] propose the on-
policy method constrained policy optimization to solve a CMDP. While the approach can
be generally applied and considers safe exploration, constraint violations still occur due to
approximation errors. In comparison and for the specific use case of a collision-free vehicle
following controller, ACC 4S leverages domain knowledge about the worst-case behavior
to ensure constraint satisfaction without approximation errors. By denoting the output
constrained policies of ACC 4S with Π4𝑆, the relation Π4𝑆 ⊆Π𝐶 holds because all policies
of ACC 4S are formally ensured to be collision free. Thus, on the one hand imposing safe
sets is more restrictive than necessary. On the other hand, collision avoidance is ensured
without any approximation errors like in constrained policy optimization. Furthermore,
ACC 4S allows the usage of sample-efficient off-policy methods (e.g. the TD3 algorithm).

86

4.2 Related Work

The idea of identifying safe sets and restricting the actions to these sets with a safety layer
has been proved as an efficient safe RL approach. Previous research [Pham et al., 2018;
Dalal et al., 2018] has focused on projecting the action of an unconstrained policy 𝑢 = 𝜋
on the safe set, i.e. the action 𝑢⊥ within the safe set with the minimal Euclidean distance:

𝑢⊥ = arg min
𝑦∈C(𝑥)

1
2
∥𝑦 − 𝑢∥2. (4.6)

There are DRL algorithms that perform the projection as a final differentiable layer in
the policy NN [Dalal et al., 2018]. The projection can be considered as an optimization
problem and the more generally studied differentiable optimization layers [Amos and
Kolter, 2017; Agrawal et al., 2019] are applicable. For further explanation, it is referred
to Section 3.2.

In this chapter, ConstraintNet is leveraged for safe RL and the output constraints are
identified with safe action sets C(𝑠). Here, 𝑠 is the parameter that describes the geometry
of the safe set. Constraint satisfaction is achieved by parametrizing the safe set:

𝜙(𝑠, ·) :

{
Z → C(𝑠),
𝑧 ↦→ �̂�,

(4.7)

and applying the parametric equation 𝜙 as final layer, which is called constraint guard layer.
For the state-specific safe sets, the constraint parameter 𝑠 is a function of the state 𝑥. The
constraint guard layer is motivated as follows. First, the parametric equations are smooth
over the total safe set with informative gradients. Contrary, the projection is the identity
function if the input is within the safe set and otherwise a mapping on the boundary of the
safe set. This reduces the information of the gradient, e.g. in 1D the gradient is zero if the
input is not within the safe set. Second, the constraint guard layer is an explicit layer with
almost no computational overhead.

4.2.2 Adaptive Cruise Control

ACC is an ADAS for longitudinal control and deployed in many modern vehicles. It
comprises two working modes. The vehicle following controller gets activated if a vehicle
in front is detected. Otherwise, the cruise control mode is active and keeps the velocity
close to a set velocity or to the recognized speed limit. Different control algorithms have
been proposed for ACC and consider safety, comfort, energy consumption, and traffic
flow aspects [Darbha and Rajagopal, 1999; Tapani, 2012]. For simple controller and plant
models, approaches from classical control theory can be effectively leveraged to meet
the intended control behavior [Chamraz and Balogh, 2018; Canale and Malan, 2003].
Frequently, the cruise control is implemented as a simple P, PI, or PID controller [Rout
et al., 2016]. Design methods help to achieve the desired control characteristics, e.g. pole-
placement design [Rout et al., 2016]. However, for more complex systems the optimal
tuning of the controller gains is challenging. Advanced approaches for ACC are based on
MPC [Bauer and Gauterin, 2016; Sakhdari and Azad, 2018; Lin et al., 2021]. In MPC, the
measured current state of the system is predicted with a plant model under a given control

87

Safe Reinforcement Learning with Constrained Neural Networks

strategy up to a finite time horizon and a cost is assigned. In each time step, the control
strategy is optimized w.r.t. the costs. Finally, the control input is obtained by the first step of
the optimized control strategy. Except for model simplifications, this predictive approach
is optimal and additional requirements can be incorporated as constraints, e.g. in Bauer
and Gauterin [2016] constraints are created from map data for a predictive speed control.
However, MPC requires a model and computational costs limit the model complexity,
the dealing with uncertainties [Li and Gorges, 2019; Bradford and Imsland, 2018], and
the length of the prediction horizon. RL is promising to overcome these shortcomings,
whereas ensuring safety is challenging. Lin et al. [2021] and Desjardins and Chaib-draa
[2011] leverage RL for ACC. They focus mainly on accuracy and comfort and less on
safety. E.g. Desjardins and Chaib-draa [2011] address safety by penalizing small distances
to the front vehicle in the reward function. Nevertheless, rear-end collisions may still occur.
In this chapter, safe RL is leveraged and hard output constraints are imposed on the policy
to learn a collision-free vehicle following controller.

4.3 Methods

4.3.1 Vehicle Following Controller

The vehicle following controller aims to reach and maintain a desired distance 𝑑set to the
front vehicle depending on the ego vehicle’s velocity 𝑣ego and a set time gap 𝑇set (see
Figure 4.1). For velocities of the ego vehicle 𝑣ego below a threshold �̃�, an offset distance
𝑑0 is ramped in linearly and 𝑑0 is reached when the vehicle stops:

𝑑set(𝑣ego) =
{
𝑇set · 𝑣ego for 𝑣ego > �̃�,

𝑇set · 𝑣ego + 𝑑0
(
1 − 𝑣ego/�̃�

)
for 0 ≤ 𝑣ego ≤ �̃�.

(4.8)

The set distance can be written as 𝑑set=𝑇set(𝑣ego+𝑣ego,corr) by defining the correction term
𝑣ego,corr:

𝑣ego,corr(𝑣ego) =
{

0 for 𝑣ego > �̃�,

𝑑0(1−𝑣ego/�̃�)/𝑇set for 0 ≤ 𝑣ego ≤ �̃�.
(4.9)

Then, a natural definition for the current time gap is:

𝑇 = 𝑑/(𝑣ego + 𝑣ego,corr), (4.10)

and 𝑇 =𝑇set corresponds to 𝑑= 𝑑set. The chosen values for the parameters of the time gap
policy are summarized in Table 4.1.

For the dynamics of the ego vehicle and for setting a demanded acceleration 𝑎ego,dem, it
is assumed that a low-level controller exists. Its closed-loop behavior is modeled with
a first-order lag with a gain of one and a time constant 𝜏 [Ploeg et al., 2011; Li et al.,
2017b]. The corresponding transfer function is given by 𝐺 low(𝑠) = 1/(1+𝜏𝑠). Separate

88

4.3 Methods

Parameter Value Description

𝑇set 2 s Time gap of the desired distance.
𝑑0 3.2 m Offset distance for standstill.
�̃� 3.33 m s−1 Below this velocity threshold the offset distance 𝑑0 is ramped in linearly.
𝑑𝑡 0.1 s Time step interval for discretization of control input/action.

𝜏ego,a/𝜏ego,b 0.7 s/0.3 s Time constant for the ego vehicle (acceleration/deceleration).
𝜏f 0.5 s Time constant for the front vehicle.
𝑝f 0.000833 Probability for a new front vehicle (cut-in and -out scenario).

Table 4.1: Parameters of the time gap policy and the simulator. The table is based on Brosowsky et al.
[2021b].

time constants 𝜏ego,a and 𝜏ego,b are used to take different response times for acceleration
and braking into account:

¤𝑎ego =

{
(𝑎ego,dem − 𝑎ego)/𝜏ego,a for 𝑎ego,dem ≥ 0,
(𝑎ego,dem − 𝑎ego)/𝜏ego,b for 𝑎ego,dem < 0.

(4.11)

For the total model of the plant and the dynamics of the front vehicle, the time is discretized.
Furthermore, the time steps are enumerated with the subscript 𝑘 and the time interval
between them is denoted with 𝑑𝑡. The state of the system is described by:

𝑥𝑘 = (𝑣ego,𝑘 , 𝑎ego,𝑘 , 𝑣f,𝑘 , 𝑎f,𝑘 , 𝑑𝑘)⊺, (4.12)

with 𝑣ego,𝑘 , 𝑎ego,𝑘 the velocity and acceleration of the ego vehicle, 𝑣f,𝑘 , 𝑎f,𝑘 the velocity
and acceleration of the front vehicle, and 𝑑𝑘 the distance between the vehicles at time step
𝑘 . The front vehicle‘s acceleration is modeled probabilistically 𝑎f,𝑘+1∼ 𝑝𝑘 (𝑎f) to simulate
the unknown behavior of the front vehicle’s driver. For a given control input 𝑢𝑘 =𝑎ego,dem,𝑘
and a sampled acceleration of the front vehicle 𝑎f,𝑘+1, the state of the next time step 𝑥𝑘+1 is
determined by using Equation (4.11) and fundamental kinematic relations. Consequently,
the state-space representation for the system is given by:

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 + 𝐷𝑎f,𝑘+1, (4.13)

𝐴 =

©«

1 𝑑𝑡 0 0 0
0 1 − 𝑑𝑡/𝜏ego 0 0 0
0 0 1 𝑑𝑡 0
0 0 0 0 0
−𝑑𝑡 0 𝑑𝑡 0 1

ª®®®®®®®¬
, (4.14)

𝐵 = (0, 𝑑𝑡/𝜏ego, 0, 0, 0)⊺, 𝐷 = (0, 0, 0, 1, 0)⊺, (4.15)

𝜏ego =

{
𝜏ego,a for 𝑢𝑘 ≥ 0,
𝜏ego,b for 𝑢𝑘 < 0,

(4.16)

𝑎f,𝑘+1 ∼ 𝑝𝑘 (𝑎f). (4.17)

89

Safe Reinforcement Learning with Constrained Neural Networks

Thus, the plant dynamics are described by a piecewise linear model with an additional
probabilistic term for the front vehicle‘s acceleration. It is piecewise linear due to the
different values for the time constant 𝜏ego depending on the sign of the control input. In
Section 4.4.1, the simulator will be presented, which samples front vehicle trajectories,
computes the dynamics of the vehicle following controller, and determines the reward
per time step. The simulator uses slightly modified versions of the state transition Equa-
tions (4.13)-(4.17) to exclude backwards movement of the ego and front vehicle, and to
include cut-in and -out scenarios. Furthermore, a crash (𝑑 =0 m) is defined as a terminal
state.

As shown in Figure 4.1, the vehicle following controller computes 𝑢 based on sensor
measurements (𝑣f , 𝑎f ,Δ𝑣,Δ𝑎, 𝑑)⊺, withΔ𝑣=𝑣f−𝑣ego andΔ𝑎=𝑎f−𝑎ego. Note, the measured
quantities contain full information about the state 𝑥 in Equation (4.12). Therefore, the
state is fully observable and the sensor measurements are denoted with 𝑥 as well. Future
states depend only on the state of the current time step and thus the control problem can
be modeled as an MDP. The optimal behavior of an MDP is defined by introducing an
additional reward function. For optimizing the policy, RL algorithms gain experience
from state transitions 𝑥𝑘 , 𝑢𝑘→𝑥𝑘+1 and corresponding rewards 𝑟𝑘+1. The behavior policy
chooses actions 𝑢𝑘 and the transitions are computed with a simulator (see Section 4.4.1).
Contrary to model-free RL, in MPC dealing with uncertainty is non-trivial and typically
simplifying assumptions are made, e.g. Lin et al. [2021] assume that the front vehicle
continues with constant velocity and its acceleration is considered as disturbance.

4.3.2 State-Specific Safe Sets

The control input of the vehicle following controller is a demanded acceleration 𝑢=𝑎ego,dem
and the goal of this section is the derivation of an interval of safe control inputs:

𝑎ego,dem,𝑘 ∈ C(𝑠𝑘)= [𝑐min,𝑘 , 𝑐max,𝑘], (4.18)

with 𝑘 for the time step and 𝑠𝑘 a tuple comprising the lower and upper bound 𝑠𝑘 =

(𝑐min,𝑘 , 𝑐max,𝑘)⊺. Thus, the safe sets define a feasible band for the demanded acceleration
as it is illustrated by the dashed lines in the top right plot of Figure 4.5. In the vehicle
following scenario, the rear vehicle, hereafter referred to as ego vehicle, is responsible for
collision avoidance and must keep a sufficient safe distance.

The distance 𝑑 between the front vehicle and the ego vehicle is considered safe if the
ego vehicle is able to avoid collisions even in a reasonable worst-case scenario. This
is visualized in Figure 4.3. In the worst-case, the front vehicle suddenly brakes fully
with 𝑎f = −𝑎f,min and the ego vehicle requires a response time 𝜌 before braking fully
with 𝑎ego = −𝑎ego,min. It is assumed that the ego vehicle brakes less strongly than the
front vehicle 𝑎ego,min < 𝑎f,min. In the response time, a maximal acceleration of the ego
vehicle of 𝑎ego = 𝑎ego,max is assumed. Further, both vehicles do not drive backwards,
i.e. the deceleration is set to zero 𝑎ego(𝑡ego,stop) = 𝑎f (𝑡f,stop) = 0 when the vehicles stop
𝑣ego(𝑡ego,stop)= 𝑣f (𝑡f,stop)=0.

90

4.3 Methods

Figure 4.3: For safe vehicle following, the RSS model proposes to keep a minimal safe distance 𝑑RSS
(orange) to the vehicle in front. The safe distance is defined so that even in a reasonable
worst-case scenario the ego vehicle is still able to avoid a crash by following a so-called proper
response [Shalev-Shwartz et al., 2017]. In the worst-case, the front vehicle (green) suddenly
brakes maximally with 𝑎f = −𝑎f,min. The acceleration profile is plotted in the bottom right. As
soon as the minimal safe distance 𝑑 ≤ 𝑑RSS is undershot the ego vehicle (blue) is supposed to
request full braking, so that after a response time 𝜌 the deceleration is at least 𝑎ego = −𝑎ego,min.
The acceleration profile is visualized in the bottom left. During the response time, the ego
vehicle may accelerate maximally with 𝑎ego,max. It is assumed that both vehicles do not drive
backwards, i.e. the accelerations are set to zero at stopping time 𝑡ego/f,stop. In the picture of safe
action sets, the maximum demanded acceleration of the ego vehicle is bounded from above with
𝑐max = −𝑎ego,min for 𝑑 ≤ 𝑑RSS and the response time is the allowed time to set the demanded
acceleration.

The RSS model formalizes a proper response of the ego vehicle by deriving an explicit
expression for the minimal safe distance 𝑑RSS(𝑣ego, 𝑣f) depending on the velocities of both
vehicles. If the minimal safe distance 𝑑 ≤ 𝑑RSS is undershot, the ego vehicle has to initiate
the described braking maneuver. This response is required until the distance to the front
vehicle is again larger than the safe distance. The proper response may be implemented by
introducing an upper bound 𝑐max for the ego vehicle’s demanded acceleration and setting
the bound to:

𝑐max = −𝑎ego,min for 𝑑 ≤ 𝑑RSS. (4.19)

This bound assumes a low-level controller that is able to set the demanded acceleration
within the response time. However, undershooting the safe distance followed by a harsh
full braking should be prevented as well. Therefore, in the following an upper bound is pro-
posed also for 𝑑 >𝑑RSS that continuously converges towards full braking 𝑐max→−𝑎ego,min
for 𝑑→ 𝑑𝑅𝑆𝑆. Thereby, the Equation (4.19) for the upper bound is extended. Finally, a
lower bound 𝑐min,𝑘 is defined according to standards for the maximum deceleration and
completes the definition of the safe interval.

Property 1. For the acceleration profiles of the ego and the front vehicle according
to the RSS model (visualized in Figure 4.3), the minimal distance between the vehicles
occurs either in the beginning 𝑡0 or when both vehicles have come to a stop 𝑡stop =

max{𝑡ego,stop, 𝑡f,stop}.

91

Safe Reinforcement Learning with Constrained Neural Networks

Parameter Value Description

𝑎f,min 8 m s−2 Maximum deceleration of front vehicle (worst-case).
𝜌 0.5 s Response time of ego vehicle.

𝑎ego,min 7 m s−2 Minimum deceleration of ego vehicle after response time and 𝑑 <𝑑RSS.
𝑎ego,max 3 m s−2 Maximum acceleration of the ego vehicle within the response time.
𝑗max 6 ms−3 Maximum jerk in definition for upper bound 𝑐max.

Table 4.2: Parameters for the RSS-based safe sets. The table is based on Brosowsky et al. [2021b].

Proof. Three different cases can be considered. 1) If the ego vehicle is faster than the
front vehicle at 𝑡0, the front vehicle stops first and 𝑣ego(𝑡)>𝑣f (𝑡) holds for all 𝑡 ∈ [𝑡0, 𝑡stop]
due to the stronger braking of the front vehicle. Consequently, the distance decreases
monotonically and the minimum is reached when both vehicles have come to a stop 𝑡stop.
If the front vehicle is faster than the ego vehicle, the distance monotonically increases until
both vehicles have the same velocity. At the time point of same velocity, either 2) both
vehicles have come to a stop or 3) from now on the ego vehicle is faster and the distance
monotonically decreases analogously to 1). Thus, in case 2) the minimal distance occurs
at start time point 𝑡0 and in case 3) either at start time point 𝑡0 or at stop time point 𝑡stop. □

If the stopping distance of the ego vehicle 𝑠ego = 𝑥ego(𝑡ego,stop)−𝑥ego(𝑡0) is larger than of
the front vehicle 𝑠f =𝑥f (𝑡f,stop)−𝑥f (𝑡0), the distance at stop is smaller than in the beginning.
With Property 1 it follows that the minimal distance is reached at 𝑡stop and the minimal safe
distance is 𝑠ego(𝑣ego)−𝑠f (𝑣f). Otherwise, the minimal distance occurs in the beginning 𝑡0
and a distance of zero 𝑑 =0 is safe because the distance increases even in the worst-case.
Consequently, the minimal safe distance can be written compactly as:

𝑑RSS(𝑣ego, 𝑣f) = max{0, 𝑠ego(𝑣ego) − 𝑠f (𝑣f)}, (4.20)

with 𝑠ego/f =𝑥ego/f (𝑡stop)−𝑥ego/f (𝑡0) the stopping distance in the worst-case scenario. The
following analytical expressions for 𝑠ego/f arise from twice integration of the acceleration
profiles in Figure 4.3:

𝑠ego(𝑣ego) = 𝑣ego𝜌 +
1
2
𝑎ego,max𝜌

2 +
(𝑣ego + 𝑎ego,max𝜌)2

2𝑎ego,min
, (4.21)

𝑠f (𝑣f) =
𝑣2

f
2𝑎f,min

.

The worst-case assumption is modeled by setting the response time 𝜌, the maximum
acceleration of the ego vehicle within the response time 𝑎ego,max, the minimum braking
of the ego vehicle after the response time 𝑎ego,min, and the maximum braking of the front
vehicle 𝑎f,min. For the experiments in Chapter 4.4, the parameters are set according to
Table 4.2 and represent a trade-off between safety and pragmatic distances between the
vehicles.

92

4.3 Methods

Figure 4.4: For distances above the minimal safe distance 𝑑 >𝑑RSS, a parameter that relaxes the ego vehicle’s
proper response of the RSS model is proposed as the upper bound 𝑐max for the demanded
acceleration. a) With this modification, the deceleration profile of the ego vehicle is divided
into I) response time, II) jerk-limited braking, III) full braking and IV) stop phase. b) If the
ego vehicle stops before full braking is reached, phase III) is skipped. Figure a) is based on
Brosowsky et al. [2021b].

Equation (4.19) defines the upper bound 𝑐max of the safe set for 𝑑 ≤ 𝑑RSS according to the
RSS model and the minimal safe distance 𝑑RSS is given by Equations (4.20) and (4.21).
Now, the upper bound 𝑐max is extended for 𝑑 > 𝑑RSS so that a continuous pass over at
distance 𝑑RSS is achieved. Thereby, sudden braking maneuvers of the ego vehicle when
the minimal safe distance 𝑑RSS is undershot are replaced by smoother transitions and the
safety guarantees of the RSS model remain valid. For a continuous upper bound, 𝑐max is
defined for 𝑑 >𝑑RSS as a parameter that relaxes the full braking phase of the ego vehicle’s
proper response as visualized in Figure 4.4. Instead of full braking with −𝑎ego,min after the
response time, a deceleration ramp with limited jerk − 𝑗max renders a linear transition from
the upper bound 𝑐max≥−𝑎ego,min to full braking. The value of 𝑐max is determined such that
this modified ego acceleration profile just prevents a crash in the case that the front vehicle
brakes fully 𝑎f = −𝑎f,min. Analogously to Property 1 and by requiring 𝑐max ≥ −𝑎ego,min,
it follows that the minimum distance is reached either in the beginning 𝑡0 or when both
vehicles stop 𝑡stop. In a just prevented crash, the minimum distance is zero and must be
reached at 𝑡stop because 𝑑 (𝑡0)>𝑑RSS≥0 has been assumed in the beginning. Consequently,
the following equation must be solved for 𝑐max:

𝑠ego(𝑣ego, 𝑐max) − 𝑠f (𝑣f) = 𝑑, (4.22)
with 𝑐max≥−𝑎ego,min and 𝑑 > 𝑑RSS,

and 𝑠ego the stopping distance of the modified ego acceleration profile in Figure 4.4. In
comparison to the notation 𝑠ego without hat for 𝑑 ≤ 𝑑RSS, the notation with the hat 𝑠ego is
used for 𝑑 > 𝑑RSS. The upper bound can be interpreted as follows. If the front vehicle
brakes fully, the ego vehicle must reach an acceleration below the upper bound 𝑐max within
the response time and then a jerk-limited braking is sufficient to avoid a crash. The upper
bound converges by construction and as intended to full braking 𝑐max → −𝑎ego,min for
𝑑→𝑑RSS>0. Note, for 𝑐max=−𝑎ego,min the proper response of the RSS model is obtained.
In a post-processing step, the upper bound is clipped to the limit 𝑎ego,max if 𝑐max>𝑎ego,max.

93

Safe Reinforcement Learning with Constrained Neural Networks

For solving Equation (4.22), the ego vehicle’s stopping distance 𝑠ego is written as a twice
integral of the modified acceleration profile of the ego vehicle �̂�ego(𝑡, 𝑐max) over time:

�̂�ego(𝑡, 𝑣ego, 𝑐max) =𝑣ego +
∫ 𝑡

𝑡0

�̂�ego(𝑡, 𝑐max) 𝑑𝑡, (4.23)

𝑠ego(𝑣ego, 𝑐max) =
∫ 𝑡stop

𝑡0

�̂�ego(𝑡, 𝑣ego, 𝑐max) 𝑑𝑡.

The acceleration profile �̂�ego(𝑡, 𝑐max) consists of a I) response, II) jerk-limited braking,
III) full braking, and IV) stop phase as visualized in Figure 4.4 a). If the ego vehicle stops
already in the jerk-limited braking phase before full braking −𝑎ego,min is reached, phase
III) is skipped as visualized in Figure 4.4 b). For solving Equation (4.22), in the following
several properties are derived.

Property 2. In Figure 4.4, the two possible acceleration profiles �̂�ego(𝑡, 𝑣ego, 𝑐max) are
visualized. Let us call the profile in a) full braking regime and in b) jerk-limited braking
regime. For an ego vehicle with velocity 𝑣ego and upper bound 𝑐max, the regime can be
determined by:

regime =

{
a) if 𝑣′ego > 𝑣case(𝑐max),
b) if 𝑣′ego ≤ 𝑣case(𝑐max),

(4.24)

with 𝑣′ego = 𝑣ego + 𝑎ego,max𝜌 the ego vehicle’s velocity after the response phase and the

velocity threshold 𝑣case(𝑐max) =
𝑎2

ego,min−𝑐
2
max

2 𝑗max
≥
𝑎2

ego,min
2 𝑗max

. Note, for 𝑣ego >
𝑎2

ego,min
2 𝑗max

− 𝑎ego,max𝜌 =

2.58 m s−1 (parameters according to Table 4.2) the ego vehicle is always in the full braking
regime independently of 𝑐max.

Proof. The corresponding regime can be determined by computing the velocity of the
ego vehicle after the response phase followed by jerk-limited braking until −𝑎ego,min is
reached. If the final velocity is greater zero, further braking with −𝑎ego,min is required
and the case a) is identified. Otherwise, the vehicle must have come to a stop previously
according to case b). For the jerk-limited braking, the acceleration of the ego vehicle at
time 𝑡′= 𝑡 − (𝑡0 + 𝜌) can be written as:

�̂�ego(𝑡′) = 𝑐max − 𝑗max𝑡
′, (4.25)

and full braking is reached at 𝑡′𝑐= (𝑎ego,min + 𝑐max)/ 𝑗max. The velocity at time 𝑡′ is obtained
by integration:

�̂�ego(𝑡′) = 𝑣′ego + 𝑐max𝑡
′ − 1

2
𝑗max𝑡

′2, (4.26)

with 𝑣′ego=𝑣ego+𝑎ego,max𝜌 the ego vehicle’s velocity after the response phase. Substituting
𝑡′ with 𝑡′𝑐 results in the following expression for the velocity at the time when full braking
is reached:

�̂�ego(𝑡′𝑐) = 𝑣′ego +
𝑐2

max − 𝑎2
ego,min

2 𝑗max
. (4.27)

94

4.3 Methods

As explained, regime a) an b) can be assigned depending on the sign of �̂�ego(𝑡′𝑐):

regime =

{
a) if �̂�ego(𝑡′𝑐) > 0⇔ 𝑣′ego > 𝑣case(𝑐max),
b) if �̂�ego(𝑡′𝑐) ≤ 0⇔ 𝑣′ego ≤ 𝑣case(𝑐max),

(4.28)

with the velocity threshold 𝑣case(𝑐max)=
𝑎2

ego,min−𝑐
2
max

2 𝑗max
. □

Property 3. The stopping distance 𝑠ego is a strictly monotonically increasing function of
𝑐max.

Proof. For two upper bounds 𝑐max,1<𝑐max,2, the velocity profile �̂�ego(𝑡, 𝑐max,2) of 𝑐max,2 is
greater equal than the velocity profile �̂�ego(𝑡, 𝑐max,1) of 𝑐max,1 for a point-wise comparison
at 𝑡 ≥ 𝑡0:

𝑐max,1<𝑐max,2 and T = {𝑡 ≥ 𝑡0 : �̂�ego(𝑡, 𝑐max,1) ≥ 0 ∧ �̂�ego(𝑡, 𝑐max,2) ≥ 0} (4.29)
⇒∀𝑡 ∈ T : �̂�ego(𝑡, 𝑐max,1) ≤ �̂�ego(𝑡, 𝑐max,2)
⇒∀𝑡 ∈ T : �̂�ego(𝑡, 𝑐max,1) ≤ �̂�ego(𝑡, 𝑐max,2)
⇒ 𝑡ego,stop(𝑐max,1) ≤ 𝑡ego,stop(𝑐max,2)
⇒∀𝑡 ≥ 𝑡0 : �̂�ego(𝑡, 𝑐max,1) ≤ �̂�ego(𝑡, 𝑐max,2).

This implies immediately 𝑠ego(𝑣ego, 𝑐max,1) ≤ 𝑠ego(𝑣ego, 𝑐max,2). Strict monotony follows
from the fact that there is always a small time interval in the beginning of the jerk-limited
braking phase with �̂�ego(𝑡, 𝑐max,1)< �̂�ego(𝑡, 𝑐max,2). □

Property 4. The stopping distance 𝑠ego is unbounded from above, i.e. 𝑠ego(𝑐max) → ∞
for 𝑐max →∞.

Proof. According to Property 2, 𝑐max → ∞ implies that the acceleration profile is in the
full braking regime:

𝑣case(𝑐max) → −∞ for 𝑐max →∞ (4.30)
⇒𝑣′ego > 𝑣case(𝑐max) ⇒ full braking regime.

The braking distance 𝑠ego,II of phase II) (jerk-limited braking) can be computed by
integration of Equation (4.26) and evaluation when full braking is reached at 𝑡′𝑐 =

(𝑎ego,min + 𝑐max)/ 𝑗max:

𝑠ego,II(𝑡′) = 𝑣′ego𝑡
′ + 1

2
𝑐max𝑡

′2 − 1
6
𝑗max𝑡

′3, (4.31)

𝑠ego,II(𝑡′𝑐) = 𝑣′ego
(𝑎ego,min + 𝑐max)

𝑗max
+ 1

2
𝑐max
(𝑎ego,min + 𝑐max)2

𝑗2max
− 1

6
(𝑎ego,min + 𝑐max)3

𝑗2max

=
𝑐3

max

3 𝑗2max
+ O(𝑐2

max).

95

Safe Reinforcement Learning with Constrained Neural Networks

Thus, the braking distance of phase II) is unbounded 𝑠ego,II(𝑐max)→∞. This implies that
the full braking distance is unbounded 𝑠ego(𝑐max)→∞ because the distances of the other
braking phases are greater or equal to zero. □

Property 5. There exists a unique upper bound 𝑐max that solves Equation (4.22).

Proof. The Equation (4.20) for the minimal safe distance can be rewritten by using
𝑠ego(𝑣ego) = 𝑠ego(𝑣ego, 𝑐max = −𝑎ego,min). For 𝑑 > 𝑑RSS, this leads to the following in-
equalities:

𝑑RSS = max{0, 𝑠ego(𝑣ego) − 𝑠f (𝑣f)} (4.32)
⇒𝑑RSS ≥ 𝑠ego(𝑣ego) − 𝑠f (𝑣f) = 𝑠ego(𝑣ego,−𝑎ego,min) − 𝑠f (𝑣f)
⇒𝑑 > 𝑠ego(𝑣ego,−𝑎ego,min) − 𝑠f (𝑣f)
⇒∃! 𝑐max > −𝑎ego,min : 𝑑 = 𝑠ego(𝑣ego, 𝑐max) − 𝑠f (𝑣f).

The last implication leverages that 𝑠ego is a strictly monotonically increasing function of
𝑐max (Property 3) and not bounded from above (Property 4). □

In the following, Properties 2 to 5 are leveraged to solve Equation (4.22) for the upper
bound 𝑐max. According to Property 5, there exists a unique solution.

1. If 𝑣ego >
𝑎2

ego,min
2 𝑗max

− 𝑎ego,max𝜌 =2.58 m s−1 holds (parameters according to Table 4.2),
Property 2 ensures that full braking is reached. Thus, step 2 can be skipped and
𝑐max is determined in step 3. Otherwise, i.e. for 𝑣ego≤2.58 m s−1, step 2 is required.

2. Assuming that the solution is in the jerk-limited braking regime, Equation (4.22)
can be solved under the relaxed condition that the jerk-limited braking phase is
not bounded from below by −𝑎ego,min. If the solution 𝑐max of the relaxed problem
satisfies 𝑣′ego≤ 𝑣case(𝑐max), Property 2 ensures that full braking is indeed not reached
and the upper bound is found. Otherwise, the solution of Equation (4.22) must be
in the full braking regime and step 3 must be performed.

3. Equation (4.22) is solved for 𝑐max under the knowledge that full braking is reached.

For step 2, Equation (4.22) is solved in the jerk-limited braking regime under the relaxed
condition that the acceleration is not bounded from below by −𝑎ego,min. First, the integrals
for the velocity and the distance in Equation (4.23) are performed. For the response phase,
the following expression is found:

𝑠ego,I(𝑣ego) = 𝑣ego𝜌 +
1
2
𝑎ego,max𝜌

2. (4.33)

96

4.3 Methods

For the jerk-limited braking phase, the acceleration, velocity, and distance are given by:

�̂�ego(𝑡′) = 𝑐max − 𝑗max𝑡
′, (4.34)

�̂�ego(𝑡′) = 𝑣′ego + 𝑐max𝑡
′ − 1

2
𝑗max𝑡

′2,

𝑠ego,II(𝑡′) = 𝑣′ego𝑡
′ + 1

2
𝑐max𝑡

′2 − 1
6
𝑗max𝑡

′3,

with 𝑡′= 𝑡 − (𝑡0 + 𝜌) and 𝑣′ego = 𝑣ego + 𝑎max𝜌. The distance until the ego vehicles stops is
derived as follows:

�̂�ego(𝑡′) = 0, (4.35)

⇒𝑡′ego,stop =
𝑐max

𝑗max
+

√︄
𝑐2

max

𝑗2max
+

2𝑣′ego

𝑗max
,

⇒𝑠ego,II(𝑣ego, 𝑐max) = 𝑣′ego𝑡
′
ego,stop +

1
2
𝑐max𝑡

′2
ego,stop −

1
6
𝑗max𝑡

′3
ego,stop.

Finally, 𝑐max is determined numerically by solving for the roots of:

𝑠ego,I(𝑣ego) + 𝑠ego,II(𝑣ego, 𝑐max) − 𝑠f (𝑣f) − 𝑑 = 0. (4.36)

For step 3, Equation (4.22) is solved under the knowledge that full braking is reached.
First, the integrals in Equation (4.23) are performed for phase I), II) and III) of the full
braking regime. The distance of phase I) is given by Equation (4.33) and the distance of
phase II) by Equation (4.31). In phase III), the ego vehicle brakes with −𝑎ego,min and the
braking distance until stopping is:

𝑠ego,III(𝑣ego, 𝑐max) =
�̂�2

ego(𝑡′𝑐)
2𝑎ego,min

, (4.37)

�̂�ego(𝑡′𝑐) = 𝑣′ego +
𝑐2

max − 𝑎2
ego,min

2 𝑗max
, (4.38)

with �̂�ego(𝑡′𝑐) the ego vehicle’s initial velocity in phase III) from Equation (4.27). Finally,
the upper bound 𝑐max is determined numerically by solving for the roots of:

𝑠ego,I(𝑣ego) + 𝑠ego,II(𝑣ego, 𝑐max) + 𝑠ego,III(𝑣ego, 𝑐max) − 𝑠f (𝑣f) − 𝑑 = 0. (4.39)

The left-hand side is a polynomial in 𝑐max of degree four and the roots can be solved with
standard numerical solvers.

97

Safe Reinforcement Learning with Constrained Neural Networks

The lower bound 𝑐min of the state-specific safe set C describes the maximum deceleration.
The maximum deceleration is defined according to ISO15622 [2018] and depends on the
current velocity of the ego vehicle 𝑣ego:

𝑐min =

−5 m s−2 for 𝑣ego < 5 m s−1,

−5 m s−2 + (𝑣ego − 5 m s−1)/10 s for 5 m s−1 ≤ 𝑣ego ≤ 20 m s−1,

−3.5 m s−2 for 𝑣ego > 20 m s−1.

(4.40)

If the upper bound 𝑐max undershoots the lower bound 𝑐min, an emergency braking mode is
entered and the lower bound is overwritten with the upper bound. Thus, in the emergency
braking mode the ego vehicle’s demanded acceleration is explicitly given by 𝑎ego,dem =

𝑐max=𝑐min.

4.3.3 Twin Delayed Deep Deterministic Policy Gradient
Algorithm

The TD3 algorithm [Fujimoto et al., 2018] is a state-of-the-art RL algorithm for continuous
action spaces and a further development of the commonly used and successful DDPG
algorithm [Lillicrap et al., 2016]. According to Definitions 1, 2, 3 (see Section 2.3.4), the
TD3 and the DDPG algorithm are model-free off-policy actor-critic DRL algorithms. Both
algorithms save the interactions with the environment in an experience replay buffer and
the same sample may be used multiple times in training. This efficient reuse of samples is
only possible because the algorithms are off-policy methods. The TD3 algorithm modifies
the DDPG algorithm to address three weak points. First, the overestimation of the action-
value function 𝑄𝜋 in the DDPG algorithm is tackled by approximating 𝑄𝜋 with two NNs
and taking the minimum of them. The modification represents the twin in TD3. Second,
the policy is less frequently updated than the action-value function to stabilize training.
This explains the word delayed in TD3. Third, overfitting of the deterministic policy to
narrow peaks in the action-value function is addressed by regularizing the action-value
function. In the following, the common concepts and differences of the DDPG and TD3
algorithm are explained on a technical level. Algorithm 2 shows the pseudo code of the
TD3 algorithm.

Both algorithms, TD3 and DDPG, parametrize a deterministic policy by using an NN
𝜋𝜙 with parameters 𝜙. For policy improvement, a gradient ascent step of the expected
discounted return 𝐽 (𝜙) is performed (line 13 in Algorithm 2). The gradient ∇𝐽 (𝜙) is
estimated with the deterministic policy gradient theorem [Silver et al., 2014]:

∇𝐽 (𝜙) ≈ 1
𝑁

∑︁
𝑖

∇𝑢𝑄𝜋𝜙 (𝑥, 𝑢) |𝑥=𝑥𝑖 ,𝑢=𝜋𝜙 (𝑥𝑖)∇𝜙𝜋𝜙 (𝑥𝑖), (4.41)

≈ 1
𝑁

∑︁
𝑖

∇𝑢𝑄\ (𝑥, 𝑢) |𝑥=𝑥𝑖 ,𝑢=𝜋𝜙 (𝑥𝑖)∇𝜙𝜋𝜙 (𝑥𝑖). (4.42)

In the second equation, the action-value function 𝑄𝜋𝜙 of the current policy 𝜋𝜙 is approxi-
mated with the NN 𝑄\ with parameters \.

98

4.3 Methods

Algorithm 2 TD3. The pseudo code has been adapted from Algorithm 1 in Fujimoto et al. [2018].
1: Initialize critic networks 𝑄 \1 , 𝑄 \2 , and policy 𝜋𝜙 with random parameters \1, \2, 𝜙
2: Initialize target networks \′1 ← \1, \′2 ← \2, 𝜙′ ← 𝜙

3: Initialize replay buffer D
4: for 𝑘 = 1 to 𝐾 do
5: Select action 𝑢∼𝜋𝜙 (𝑥) + 𝜖 with exploration noise 𝜖 ∼N(0, 𝜎)
6: Observe reward 𝑟 and next state 𝑥′, and save the transition (𝑥, 𝑢, 𝑟, 𝑥′) in D
7: Sample a mini-batch of 𝑁 transitions {(𝑥𝑖 , 𝑢𝑖 , 𝑟𝑖 , 𝑥′𝑖)} from the replay buffer D
8: Determine targets:
9: 𝑢′

𝑖
= 𝜋𝜙′ (𝑥′𝑖) + 𝜖 and 𝜖 ∼clip(N (0, �̃�),−𝑐, 𝑐)

10: 𝑦𝑖 = 𝑟𝑖 + 𝛾min 𝑗=1,2𝑄 \ ′
𝑗
(𝑥′
𝑖
, 𝑢′
𝑖
)

11: Update critics \ 𝑗 by gradient descent step w.r.t. 𝐿 (\ 𝑗) = 1/𝑁 ∑
𝑖 (𝑦𝑖 −𝑄 \ 𝑗 (𝑥𝑖 , 𝑢𝑖))2

12: if 𝑘 mod 𝐾𝑑 then
13: Update policy 𝜋𝜙 by gradient ascent step w.r.t. 𝐽 (𝜙):
14: ∇𝐽 (𝜙) ≈ 1/𝑁 ∑

𝑖 ∇𝑢𝑄 \1 (𝑥, 𝑢) |𝑥=𝑥𝑖 ,𝑢=𝜋𝜙 (𝑥𝑖)∇𝜙𝜋𝜙 (𝑥𝑖)
15: Update target networks:
16: \′

𝑗
← 𝛼\ 𝑗 + (1 − 𝛼)\′𝑗

17: 𝜙′ ← 𝛼𝜙 + (1 − 𝛼)𝜙′
18: end if
19: end for

For policy evaluation, the DDPG algorithm approximates an update rule based on the
Bellman equation by fitting the action-value function towards sampled targets:

𝑄\ (𝑥𝑖, 𝑢𝑖) ← 𝑦𝑖 = 𝑟𝑖 + 𝛾𝑄\′ (𝑥′𝑖 , 𝜋𝜙′ (𝑥′𝑖)), (4.43)

with 𝑟𝑖 the obtained reward of the transition (𝑥𝑖, 𝑢𝑖, 𝑥′𝑖), 𝑄\′ a previous approximation of
the action-value function, and 𝜋𝜙′ a previous approximation of the policy. In comparison
to the DDPG algorithm, the TD3 algorithm takes additionally the minimum of the two
action-value functions (see line 10 in Algorithm 2). The fitting is performed with gradient
descent steps of the following loss function (see line 11 in Algorithm 2):

𝐿 (\) = 1
𝑁

𝑁∑︁
𝑖=1

(
𝑦𝑖 −𝑄\ (𝑥𝑖, 𝑢𝑖)

)2
. (4.44)

For the targets 𝑦, the so-called target networks 𝑄\′ and 𝜋𝜙′ are used, which are copies of
their counterparts 𝑄\ and 𝜋𝜙 with own parameters. The target networks are introduced
to adjust the granularity of updates, i.e. the number of fitted targets per Bellman update.
Either, the parameters of the target networks are set periodically to the parameters of the
current networks or a delayed update is implemented with the update rule \′←𝛼\+(1−𝛼)\′
and 𝜙′←𝛼𝜙+(1−𝛼)𝜙′.

Fujimoto et al. [2018] show that the gradient ascent update 𝜋up = 𝜋𝜙+[∇𝐽 of the current
policy 𝜋𝜙 with an approximated action-value function 𝑄\ as in Equation 4.42 instead
of the unknown true action-value function 𝑄𝜋𝜙 leads to an overestimation of the action-
value function. Formally, for the expectation values of the value estimates the inequality
𝐸 [𝑄\ (𝑥, 𝜋up(𝑥))] ≥𝐸 [𝑄𝜋𝜙 (𝑥, 𝜋up(𝑥))] holds under reasonable assumptions. This approx-
imation bias influences the targets 𝑦 and the Bellman updates. Finally, the overestimation

99

Safe Reinforcement Learning with Constrained Neural Networks

of the action-value function slows down convergence. The TD3 algorithm reduces this
overestimation by learning two action-value functions with different weight initializations
\1, \2 (\′1 and \′2 for target networks) and by taking the minimum:

𝑦𝑖 = 𝑟𝑖+𝛾 min
𝑗=1,2

𝑄\′ 𝑗 (𝑥′𝑖 , 𝜋𝜙′ (𝑥′𝑖)). (4.45)

This approach is called clipped double Q-learning in Fujimoto et al. [2018]. A second
modification reduces the bias in the action-value function by a less frequent update of
the policy and target networks. Thereby, the error of the value estimate w.r.t. the current
policy is reduced by more policy evaluation steps. The target networks and the policy are
updated only after 𝐾𝑑 steps instead of every step (line 12-17 in Algorithm 2). In a third
modification, the action-value function is regularized to reduce overfitting of the policy to
narrow peaks. Smoothing is implemented by adding small random noise 𝜖 to the actions
of the target policy (line 9 and 10 in Algorithm 2):

𝑦𝑖 = 𝑟𝑖 + 𝛾 min
𝑗=1,2

𝑄\′
𝑗
(𝑥′𝑖 , 𝜋𝜙′ (𝑥′𝑖) + 𝜖) with 𝜖 ∼clip(N (0, �̃�),−𝑐, 𝑐). (4.46)

This smoothing exploits the fact that similar actions should have similar values.

In Fujimoto et al. [2018], the DDPG and the TD3 algorithm are compared on a number
of continuous control problems. In the experiments, the TD3 algorithm outperforms the
DDPG algorithm in most of the tasks significantly in performance.

4.4 Experiments

4.4.1 Simulator and Reward Function

Simulator

Figure 4.5 shows the graphical user interface of the simulator. For a given policy 𝜋 and a
random initial state 𝑥0, the dynamics of the vehicle following behavior are computed and
visualized. A 3D animation is rendered to get a qualitative feedback for the dynamics and
plots show the relevant quantities over time.

The simulator generates a variety of vehicle following scenarios: front vehicle with
constant and varying speed, stop-and-go traffic, lane changes of the leading vehicle,
and cutting-in vehicles. First, the initial state 𝑥0= (𝑣ego,0, 𝑎ego,0, 𝑣f,0, 𝑎f,0, 𝑑0)⊺ is sampled
randomly under the constraint that 𝑣ego/f,0≥0 and 𝑑0>𝑑𝑅𝑆𝑆 (𝑣ego, 𝑣f) is satisfied. The state
variables are defined in Equation (4.12) and 𝑑𝑅𝑆𝑆 is the minimal safe distance according to
the RSS model and Equation (4.20). Next, random acceleration profiles of the front vehicle
are generated corresponding to driving with constant and varying speed and stop-and-go
traffic. Instead of sampling the acceleration immediately, a demanded acceleration is
generated and a first-order lag applied. The transfer function of the first-order lag is given
by𝐺 (𝑠)=1/(1+𝜏f𝑠) and the same time constant 𝜏f for braking and acceleration is used. This
kind of smoothing corresponds to usual driving with limited jerk. In principle, it would

100

4.4 Experiments

Figure 4.5: Simulator: A variety of trajectories are randomly generated for the front vehicle and the be-
havior of the vehicle following policy 𝜋 is simulated. In the depicted scenario, the ego vehicle
approaches the accelerating front vehicle. Top: Screenshot of the 3D animation. The green filled
rectangle represents the optimal distance according to the set time gap and the highest reward
and the orange line the minimal safe distance. Bottom: The plots show relevant quantities over
time. Blue lines visualize quantities that are related to the ego vehicle, gray lines the demanded
acceleration of the ego vehicle, green lines quantities that are related to the front vehicle or the
optimal values, the orange line is for the minimal safe distance, and the dashed lines represent
the constraints for the demanded acceleration. The figure is based on Brosowsky et al. [2021b].

also be possible to use recorded data for the trajectories of the front vehicle. For given front
vehicle’s acceleration profiles 𝑎f (𝑘), the state transitions are described by Equations (4.13)
to (4.17) apart from the following small modifications. First, it is assumed that the ego
vehicle’s low-level controller for setting the demanded acceleration prevents reversing.
Additionally, the ODD is restricted to only forward driving front vehicles. Technically,
driving in forward direction is ensured by setting the velocity and acceleration of the front
and ego vehicle to zero 𝑣ego/f = 0 m s−1 and 𝑎ego/f = 0 m s−2 if the demanded acceleration
would lead to driving backwards. Second, for the simulation of cut-in and -out scenarios
the appearance of a new front vehicle is modeled with a probability 𝑝f . The probability
𝑝f = 𝑑𝑡/120 s is chosen so that a cut-in or -out scenario occurs on average every 2 min.
For a cutting-in or -out vehicle, a new distance 𝑑 >𝑑RSS(𝑣ego, 𝑣f) and velocity of the front

101

Safe Reinforcement Learning with Constrained Neural Networks

Figure 4.6: The reward function assigns high rewards 𝑟 if the time gap 𝑇 is close to the set time gap 𝑇set=2 s
and if the time gap derivation 𝜕𝑇/𝜕𝑡 indicates a reduction of the time gap deviation. The figure
has been adapted from Desjardins and Chaib-draa [2011].

vehicle 𝑣f ≥ 0 is sampled. Finally, a terminal state is defined for a crash 𝑑 = 0 m. The
chosen values for the parameters of the simulator are summarized in Table 4.1.

Reward Function

The reward function is designed for safe, accurate, and comfortable driving. For safe and
accurate vehicle following behavior, the reward function in Desjardins and Chaib-draa
[2011] is reused. In a second step, a comfort term is added. Desjardins and Chaib-draa
[2011] propose a discrete reward function that depends on the time gap𝑇 and its derivation
in time. The time gap is computed from the current state 𝑥𝑘 according to Equation (4.10)
and the time gap derivation from two subsequent time gaps:

𝑇𝑘 = 𝑑𝑘/(𝑣ego,𝑘 + 𝑣ego,corr,𝑘), (4.47)(𝜕𝑇
𝜕𝑡

)
𝑘
= (𝑇𝑘+1 − 𝑇𝑘)/𝑑𝑡.

High rewards are assigned to distances close to the set time gap and to time gap derivations
that correspond to a decrease in the time gap error. For the choice of 𝑇set=2 s, Figure 4.6
visualizes the chosen values of the reward function [Desjardins and Chaib-draa, 2011].
The highest reward is assigned if the time gap is in a narrow band 1.9 s≤𝑇 ≤2.1 s around
the set time gap. These optimal time gaps correspond to distances in the green filled
rectangle of Figure 4.5.

102

4.4 Experiments

Parameter Value Description

𝐾total 1 × 106 Total number of time steps in training.
𝐾start 1 × 104 Number of initial time steps with random actions to fill experience replay buffer.
𝐾eval 5 × 103 Number of time steps between evaluation of learned behavior.
𝐾d 2 Number of time steps between policy improvement steps (delayed update).

𝑁buffer 1 × 106 Size of replay buffer in number of transitions.
𝑁neurons 256 Number of neurons in hidden layers (actor, critic).
𝑁batch 256 Batch size used for training.
𝑙 3 × 10−4 Learning rate for Adam optimizer [Kingma and Ba, 2014] for actor and critic.
𝛾 0.99 Discount factor.
𝛼 5 × 10−3 Factor for soft-update of target-networks.
𝜎 0.35 m s−2 Standard deviation of exploration noise.
�̃� 0.7 m s−2 Standard deviation of target policy noise.
𝑐 1.75 m s−2 Maximum target policy noise.

Table 4.3: Parameters of the TD3 algorithm.

Next, the reward function is extended to favor comfortable driving. An additional reward
term 𝑟comfort penalizes high values of the demanded acceleration and jerk:

𝑟comfort(𝑥𝑘 , 𝑢𝑘 , 𝑥𝑘+1) = −𝑤𝑎 · |𝑎ego,dem,𝑘 | − 𝑤 𝑗 · |𝑎ego,𝑘+1 − 𝑎ego,𝑘 |/𝑑𝑡, (4.48)

with weighting factors 𝑤𝑎, 𝑤 𝑗 > 0 for the absolute values of the acceleration and jerk. In
Engel and Babuska [2014], absolute values show reduced steady-state errors compared
to quadratic ones. In Section 4.4.3, different values of the weighting factors 𝑤𝑎, 𝑤 𝑗 are
evaluated.

4.4.2 Training

The policies are optimized with the TD3 algorithm [Fujimoto et al., 2018], which is a DRL
algorithm for continuous action spaces. The TD3 algorithm approximates the action-value
function and a deterministic policy with separate NNs, the 𝑄-network 𝑄\ (𝑥, 𝑢) and the
policy network 𝜋𝜙 (𝑥), respectively. The parameters of the NNs are denoted with \ and 𝜙.
While the TD3 algorithm is explained in detail in Section 4.3.3, the learning scheme can be
summarized shortly with the principle of general policy improvement. The policy network
𝜋𝜙 (𝑥) is updated to improve the average return by leveraging the 𝑄-network 𝑄\ (𝑥, 𝑠) and
vice versa the𝑄-network is updated to be consistent with the improved policy. Contrary to
the common DDPG algorithm, a second 𝑄-network and a second target 𝑄-network with
different initializations are added. The idea is to reduce the overestimation of the action-
value function by using the minimum of both target 𝑄-networks for the training updates
of the current 𝑄-networks. A second modification is the delayed update of the policy
network in only every second time step (𝐾𝑑 =2). This stabilizes the policy evaluation. In
Table 4.3, the parameters of the TD3 algorithm and the chosen values are shown.

103

Safe Reinforcement Learning with Constrained Neural Networks

Contrary to the original TD3 algorithm, state-specific safe sets C(𝑠) = [𝑐min, 𝑐max] are
imposed as hard output constraints on the policy network 𝜋𝜙 as visualized in Figure 4.2.
Safe exploration is ensured by restricting the output of the behavior policy to the safe set.
The state-specific safe sets are derived in Section 4.3.2 and define an interval of safe actions
with lower bound 𝑐min and upper bound 𝑐max. C(𝑠) denotes the interval [𝑐min, 𝑐max] and
𝑠 is the constraint parameter, i.e. the vector (𝑐min, 𝑐max)⊺ that defines the safe set. State-
specific constraints are characterized by the fact that the constraint parameter 𝑠(𝑥) is a
function of the current state 𝑥. If in each time step 𝑘 the demanded acceleration of the
ego vehicle 𝑢𝑘 =𝑎ego,dem,𝑘 is within the safe set 𝑢𝑘 ∈C(𝑠𝑘), rear-end collisions are avoided
by guarantee. In the original implementation of the TD3 algorithm1, the policy network
is a conventional unconstrained NN with three fully connected layers. For imposing
the safe sets as hard output constraints, clipping is applied as post-processing (clipped
NN), clipping is implemented with a differentiable layer (projection), and ConstraintNet
is leveraged. ConstraintNet ensures constraint satisfaction by applying the following
constraint guard layer:

�̂�(𝑠, 𝑧) = 𝜎1(𝑧)𝑐min + 𝜎2(𝑧)𝑐min, (4.49)

with 𝑧 ∈ R2 the unconstrained input, 𝜎 the two-dimensional softmax function, and 𝑠 =
(𝑐min, 𝑐max)⊺ the constraint parameter. Thus, the constraint guard layer computes one
weight for the upper and lower bound and generates the output by taking the weighted
average of the bounds. Furthermore, the input of ConstraintNet is extended by the
constraint parameter 𝑠 to consider the dependency of the intermediate variable 𝑧 on 𝑠.
For the sake of fairness, the input of all policies is defined as the normalized state and
constraint parameter (𝑥⊺, 𝑠⊺)⊺.

All policies are trained with the TD3 algorithm for 𝐾total = 106 training steps. This
corresponds to almost 28 h of driving in the simulation with a discretization of 𝑑𝑡 =0.1 s
between subsequent time steps. Furthermore, the maximum duration of an episode is set to
5 min. For the comfort term of the reward function, the weights𝑤a=6 s2m−1 for penalizing
large absolute values of the demanded acceleration and 𝑤j=14 s3m−1 for penalizing large
absolute values of the jerk are chosen. Empirically, these values are found to take comfort
sufficiently into account. Furthermore, the standard deviation of the exploration noise is
chosen as 𝜎=0.35 ms−2 and the network size of the policy is specified with 𝑁neurons=256
neurons per layer. Additionally, ConstraintNet is evaluated for different combinations of
the comfort weights 𝑤a and 𝑤j, different values of the exploration noise, and different
number of neurons per layer. Except for these variations, the standard parameter choice
of the TD3 algorithm and the simulator is summarized in Table 4.1 and Table 4.3.

For the standard training configuration, Figure 4.7 shows the average episode return over
training time for the different policies. ConstraintNet, the projection-based approach, and
the clipped unconstrained policy converge faster and reach a higher average return than
the unconstrained policy. ConstraintNet learns most stable and has the steepest learning
curve. The projection-based approach has the second fastest convergence, followed by the
clipped NN. The unconstrained NN converges slowest. This behavior can be explained
by the importance of gradients for learning. ConstraintNet embeds the output constraints
in the NN architecture and the gradient of the constraint guard layer (see Equation 4.49)
1 https://github.com/sfujim/TD3, accessed on 10/10/2022

104

https://github.com/ sfujim/TD3

4.4 Experiments

Figure 4.7: Average not discounted episode return over training time for ConstraintNet, the projection-based,
the clipped, and the unconstrained policy. Mean and standard deviation are determined over six
agents trained with different initializations. ConstraintNet learns fastest and is most stable. The
projection-based approach converges slightly slower than ConstraintNet followed by the clipped
unconstrained policy. The unconstrained policy requires more time steps for convergence and
reaches a lower average return than the policies with imposed safe sets. The figure is based on
Brosowsky et al. [2021b].

w.r.t. its input 𝑧 is a continuous function. The projection-based approach applies clipping
as a final layer and has gradients of zero outside of the safe interval. One explanation is
that gradients of zero are less informative and less optimal for training. Finally, the policy
with clipping as post-processing step and the unconstrained NN converge slowest and their
gradients are independent of the safety constraints.

Figure 4.8 shows the crash rate over training time. Only unconstrained policies are plotted
since the safe sets ensure collision avoidance completely. Thus, the constrained policies
have a constant crash rate of zero. For the unconstrained policy with a comfort term in
the reward function, the crash rate decreases slowly from over 60% to roughly 10% after
full training. For comparison, the crash rate of an unconstrained policy that is trained
without a comfort term in the reward function (𝑤a=𝑤j=0) is shown. Without the comfort
term, the unconstrained policy improves collision avoidance and achieves a crash rate
of almost zero. However, crashes still occur rarely. This demonstrates the drawback of
soft constraints. If the reward function is supposed to enforce constraints, a trade-off
between performance and constraint satisfaction must be chosen. In the experiments,
reducing collisions comes at the expense of reduced comfort. Contrary, imposing the safe
sets ensures safe training without any collisions and a comfort term is included as well.
Moreover, the safe sets improve training performance and stability.

4.4.3 Results

Evaluation Metrics

Several metrics are defined to quantify safety, the accuracy, and the comfort. For each
agent, the metrics are computed over 100 episodes with a duration of maximally 5 min.
For each training configuration, six agents with different random initializations of the NN

105

Safe Reinforcement Learning with Constrained Neural Networks

Figure 4.8: Crash rate over training time of the original unconstrained policy. In the reward function,
comfortable driving is considered by choosing 𝑤a=6 s2m−1 as weight for costs on the demanded
acceleration and 𝑤j = 14 s3m−1 as weight for costs on the jerk (orange line). Since the crash
rate decreases poorly, a second unconstrained policy without the comfort terms is trained, i.e.
𝑤a=0 s2m−1 and 𝑤j=0 s3m−1 (purple line). In this case, the crash rate drops fast. However, still
crashes occur rarely. For the policies with imposed safe sets, the crash rate is zero over the total
training time. The figure is based on Brosowsky et al. [2021b].

weights are trained. After training, the mean and the standard deviation of each metric are
determined.

The crash rate is defined as the number of episodes 𝜏 that terminate with a crash (𝑑=0 m)
divided by the total number of evaluated episodes:

𝑀CrashRate =
#{𝜏 |𝑑𝑘 = 0}

#{𝜏} . (4.50)

The mean time gap error measures the tracking accuracy:

𝑀|𝛿𝑇 | = ⟨|𝑇set − 𝑇 |⟩, (4.51)

with𝑇 the actual and𝑇set the set time gap. For evaluation of the comfort, the mean absolute
acceleration and the mean absolute jerk of the ego vehicle are computed:

𝑀|𝑎ego | = ⟨|𝑎ego |⟩, (4.52)
𝑀| 𝑗ego | = ⟨| 𝑗ego |⟩. (4.53)

Comparison of Approaches and the Impact of Exploration Noise, Network Size,
and Reward Weights

In this section, the unconstrained policy and the three policies with imposed state-specific
safe sets are evaluated, i.e. the clipped NN, the projection-based approach, and Constraint-
Net. Furthermore, the impact of the weights for comfort, of the exploration noise, and
of the network size on ConstraintNet is analyzed. The approaches are compared w.r.t.
evaluation metrics for safety, accuracy, and comfort and Table 4.4 shows the results. The

106

4.4 Experiments

Policy 𝑤𝑎 𝑤 𝑗 𝜎 (exploration) 𝑁neurons 𝑀 | 𝛿𝑇 | 𝑀 |𝑎ego | 𝑀 | 𝑗ego | 𝑀CrashRate
[s2m−1] [s3m−1] [ms−2] [s] [ms−2] [ms−3] [%]

unconstrained 6 14 0.35 256 1.29 ± 0.49 0.32 ± 0.05 0.07 ± 0.01 7 ± 11
clipped NN 6 14 0.35 256 0.52 ± 0.20 0.35 ± 0.02 0.09 ± 0.01 0.0
projection 6 14 0.35 256 0.82 ± 0.49 0.33 ± 0.02 0.08 ± 0.01 0.0
ConstraintNet 6 14 0.35 256 0.52 ± 0.16 0.35 ± 0.01 0.08 ± 0.01 0.0

ConstraintNet 6 14 0.1 256 0.86 ± 0.36 0.33 ± 0.02 0.10 ± 0.03 0.0
ConstraintNet 6 14 0.35 256 0.52 ± 0.16 0.35 ± 0.01 0.08 ± 0.01 0.0
ConstraintNet 6 14 0.7 256 1.15 ± 0.31 0.32 ± 0.01 0.08 ± 0.01 0.0
ConstraintNet 6 14 1.4 256 1.07 ± 0.35 0.35 ± 0.02 0.09 ± 0.01 0.0

ConstraintNet 6 14 0.35 64 2.16 ± 1.09 0.32 ± 0.07 0.14 ± 0.09 0.0
ConstraintNet 6 14 0.35 256 0.52 ± 0.16 0.35 ± 0.01 0.08 ± 0.01 0.0
ConstraintNet 6 14 0.35 512 0.44 ± 0.06 0.35 ± 0.01 0.08 ± 0.01 0.0

ConstraintNet 0 0 0.35 256 0.26 ± 0.04 0.44 ± 0.02 0.73 ± 0.17 0.0
ConstraintNet 0 14 0.35 256 0.34 ± 0.06 0.39 ± 0.02 0.10 ± 0.01 0.0
ConstraintNet 0 28 0.35 256 0.47 ± 0.13 0.37 ± 0.02 0.08 ± 0.01 0.0
ConstraintNet 6 0 0.35 256 0.48 ± 0.07 0.36 ± 0.01 0.19 ± 0.03 0.0
ConstraintNet 6 14 0.35 256 0.52 ± 0.16 0.35 ± 0.01 0.08 ± 0.01 0.0
ConstraintNet 6 28 0.35 256 0.74 ± 0.48 0.36 ± 0.03 0.07 ± 0.01 0.0
ConstraintNet 12.5 0 0.35 256 1.18 ± 0.24 0.30 ± 0.01 0.14 ± 0.02 0.0
ConstraintNet 12.5 14 0.35 256 2.17 ± 0.50 0.27 ± 0.01 0.06 ± 0.01 0.0
ConstraintNet 12.5 28 0.35 256 1.98 ± 1.00 0.29 ± 0.03 0.05 ± 0.01 0.0

Table 4.4: Results of the different policies and of the ConstraintNet-based policy depending on exploration
noise, network size, and reward weights.

hyperparameters for the training are set according to Table 4.1 and Table 4.3 and the
comfort weights, the exploration noise, and the network size is specified in the columns
of Table 4.4.

The first block of Table 4.4 shows the evaluation metrics for the four approaches. While
the comfort metrics are similar between the approaches, the time gap accuracy varies.
ConstraintNet and the clipped NN achieve the best balance between time gap error and
comfort. However, ConstraintNet converges in training fastest as shown in the previous
section. The time gap error of the unconstrained NN is more than twice as high compared
to ConstraintNet and crashes with the front vehicle occur on average in seven of the
100 evaluation episodes. Moreover, the formal guarantee of the safe sets w.r.t. collision
avoidance is verified. All policies with imposed safe sets show a constant crash rate of
zero.

For further analysis, ConstraintNet is trained with different hyperparameters for the
standard deviation of the exploration noise (𝜎 = 0.1/0.35/0.7/1.4 ms−2), the number
of neurons per layer (𝑁neurons = 64/256/512), and the weights of the comfort term
(𝑤𝑎 = 0/6/12.5 s2m−1 and 𝑤 𝑗 = 0/14/28 s3m−1). All other hyperparameters are not
modified. The evaluation metrics of the different experiments are shown in the lower three

107

Safe Reinforcement Learning with Constrained Neural Networks

blocks of Table 4.4 and are interpreted as follows. Regarding the exploration noise, the
best performance is achieved for 𝜎=0.35 ms−2. The result indicates that this setting leads
to an optimal exploration-exploitation trade-off. In the next block, different NN sizes are
evaluated. A reduced number of neurons per layer from 256 to 64 increases the mean time
gap error significantly to roughly 2 s. Probably, the capacity of the NN with 64 neurons
per layer is not sufficient to deal with the task complexity. Contrary, doubling the number
of neurons per layer from 256 to 512 improves the mean time gap error further without
downgrading the comfort metrics. In the last block of Table 4.4, different weights for the
comfort term in the reward function are compared. The set of evaluated comfort weights
covers the full range from no comfort to a suitable trade-off between comfort and time gap
accuracy to a high comfort at the expense of a low time gap accuracy. The results show
an expected behavior. Increasing the costs for the demanded acceleration with the weight
𝑤𝑎 reduces the mean absolute acceleration. Analogously, increasing the costs for the jerk
with the weight 𝑤 𝑗 reduces the mean absolute jerk. However, improved comfort metrics
correspond to a higher mean time gap error. For this trade-off between time gap accuracy
and comfort, the weights 𝑤a=6 s2m−1 and 𝑤j=14 s3m−1 are considered as optimal.

4.5 Conclusion

Deep reinforcement learning is a promising candidate for solving continuous control tasks
of driving automation systems. However, safety concerns limit the application in safety-
critical systems. To address this, the TD3 algorithm has been applied for learning a
vehicle following controller and state-specific safe sets have been imposed as constraints
on the control input. For the safe sets, the responsibility-sensitive safety model has
been leveraged. The model proposes an emergency braking request if a minimal safe
distance is undershot. For distances close to the minimal safe distance, the model has been
continuously extended. Thereby, collision avoidance is still ensured by the responsibility-
sensitive safety model. However, the extended continuous upper bound intervenes already
before the minimal safe distance is undershot and thereby harsh braking requests are
reduced. To impose the safe sets on the policy’s neural network, three approaches have
been evaluated, i.e. ConstraintNet, clipping as post-processing, and a projection-based
approach that performs clipping as a final layer. Consistent with the theory of the safe
sets, all three approaches have reduced the crash rate to zero. Moreover, ConstraintNet
and the clipped unconstrained policy have shown the best performance with respect to
balancing the mean time gap error and the two comfort metrics. The most stable training
behavior and the fastest convergence has been achieved with ConstraintNet. This suggests
an efficient embedding of constraints. In conclusion, the effectiveness and practicability of
constraints on the control input has been demonstrated successfully for the safety assurance
of driving policies.

108

5 Behavior Prediction for Safe Driving with
Constrained Neural Networks: Joint Vehicle
Trajectory and Cut-In Prediction

Contents

5.1 Motivation . 110

5.2 Related Work . 113

5.3 Methods . 116

5.3.1 Data Set and Automatic Scenario Detection 116

5.3.2 Model Input . 123

5.3.3 Encoder-Decoder Architecture 125

5.3.4 Soft and Hard Output Constraints 128

5.3.5 Loss . 129

5.4 Experiments . 131

5.4.1 Evaluation Metrics . 131

5.4.2 Preprocessing . 134

5.4.3 Training . 138

5.4.4 Results . 139

5.5 Conclusion . 148

Defensive and responsible driving like keeping sufficient large distances to preceding ve-
hicles is crucial for road safety. However, in practice not all road-users behave accordingly.
E.g. on highways, vehicles on the neighboring lane may cut-in recklessly. Thus, Chap-
ter 5.1 motivates the necessity of an early and reliable behavior prediction of surrounding
vehicles for safe ADSs and ADASs to mitigate the risk. Chapter 5.2 provides an overview
of known and related maneuver and trajectory prediction models. In Chapter 5.3, the
model in Deo and Trivedi [2018b] is extended and a joint vehicle trajectory and cut-in
prediction [Brosowsky et al., 2021c] is proposed for real-world application. LSTMs are
leveraged to predict the parameters of a bimodal distribution over future trajectories and
soft and hard output constraints are evaluated to improve mode separation. In Chapter 5.4,
experiments are performed on a large and diverse data set, which is created from mea-

109

Joint Vehicle Trajectory and Cut-In Prediction with Constrained Neural Networks

surements of a vehicle fleet. Chapter 5.5 concludes that the results show great potential to
improve the safety and the comfort of DASs.

Parts of this chapter have previously appeared in the publication Joint Vehicle Trajec-
tory and Cut-In Prediction on Highways using Output Constrained Neural Networks
[Brosowsky et al., 2021c].

5.1 Motivation

A performant behavior prediction of surrounding vehicles is crucial for the safety, the
comfort, and the efficiency of DASs. In AVs, motion prediction enables an optimized
trajectory planning similar to a human driver. Thus, behavior prediction has become an
elementary part of an AV’s software stack [Bansal et al., 2019; Deo and Trivedi, 2018b].
Attentive drivers observe the traffic, recognize temporal patterns, anticipate other road-
user’s future behavior, and adapt the driving policy appropriately. For ADASs, behavior
prediction is crucial for an intelligent and predictive control behavior. E.g. ACC controls a
vehicle’s longitudinal dynamics and sets a desired velocity-dependent distance to the front
vehicle. Anticipating other vehicles’ lane changes [Schmüdderich et al., 2015; Wirthmüller
et al., 2020] enables an early reaction to the relevant vehicle. Thus, uncomfortable or even
hazardous braking maneuvers can be avoided.

In principle, a behavior prediction can be implemented on the level of exact trajectories or
on the coarser level of semantically interpretable maneuvers. Trajectories comprise exact
information about space and time by definition. However, motion prediction is inherently
uncertain and a probabilistic view is required. Two main factors of uncertainty are
missing knowledge about the driving policies of surrounding vehicles and an only partially
observable environment. Nevertheless, vehicle motion shows common and repeating
patterns in the form of semantically interpretable maneuvers, e.g. lane changes, following
objects, or overtake maneuvers.

Based on these observations, in this chapter a bimodal trajectory prediction is proposed and
the modes are semantically associated with a cut-in (𝑚=c) and a passing (𝑚=p)maneuver,
respectively. The model builds on and modifies the approach of Deo and Trivedi [2018b].
For each vehicle of interest, the motion prediction is performed separately. According to
the ODD, specific rules are applied and decide whether a vehicle is relevant for prediction.
In the following, the object under consideration is called target vehicle. Furthermore, a cut-
in maneuver of the target vehicle is defined as a future lane change from a neighboring lane
to the ego vehicle’s lane, hereafter referred to as ego lane, so that the target vehicle becomes
the Closest In-Path Vehicle (CIPV). In comparison, passing maneuvers are defined as the
complement of cut-ins, i.e. continued lane-keeping, lane changes to a different than the
ego lane, or lane changes to the ego lane in front of the CIPV. For the future trajectory, the
variable 𝑦𝑘 = (𝑦𝑘,1, . . . , 𝑦𝑘,𝐿) is introduced with 𝑘 the time step of prediction and 𝑦𝑘,𝑙 the
2D coordinates of the target vehicle at time step 𝑘+𝑙 in the reference frame of the target
vehicle. To support readability, the subscript is skipped occasionally. The trajectories are
predicted 𝑇𝐿 =3 s in the future with a step size of 𝑑𝑡=0.1 s between subsequent time steps.
The model output is a distribution over the target vehicle’s future trajectory and maneuver

110

5.1 Motivation

Figure 5.1: The output of the model _ = 𝑓\ (𝑥) are parameters of a bimodal distribution 𝑝(𝑦, 𝑚 |_) over
the target vehicle’s future trajectory 𝑦 with two modes 𝑚 = p/c. The modes are semantically
associated with a cut-in (𝑚=c, red) and a passing maneuver (𝑚=p, gray) with probabilities 𝛼 (c)
and 𝛼 (p) , respectively. The probability distribution over the future trajectory for a given mode
𝑚 is modeled as product of individual bivariate Gaussians. Each Gaussian models the spatial
uncertainty of a waypoint at time step 𝑙 = 1, . . . , 𝐿. The parameters of the bivariate Gaussians
consist of the mean values and the standard deviations in 𝑥- and 𝑦-direction, and the correlation
coefficient 𝜏 (𝑚)

𝑙
= (` (𝑚)

𝑙,𝑥
, `
(𝑚)
𝑙,𝑦

, 𝜎
(𝑚)
𝑙,𝑥

, 𝜎
(𝑚)
𝑙,𝑦

, 𝜌
(𝑚)
𝑙
)
⊺
. Thereby, different uncertainties in 𝑥- and

𝑦-direction and increasing uncertainties for waypoints further in the future are considered. For
illustration purposes, the uncertainties of only every third waypoint are indicated.

𝑝(𝑦, 𝑚 |𝑥, \), with 𝑥 the input and \ the model parameters. As visualized in Figure 5.1, the
model predicts the parameters _= 𝑓\ (𝑥) of the bimodal distribution 𝑝(𝑦, 𝑚 |_). From this
perspective, the actual driven future trajectory 𝑦 = 𝑦𝑘 and maneuver 𝑚 =𝑚𝑘 of the target
vehicle are realizations of the corresponding random variables. Bayes theorem allows to
write the likelihood as:

𝑝(𝑦, 𝑚 |𝑥, \) = 𝑝(𝑦 |𝑚, 𝑥, \)𝑝(𝑚 |𝑥, \), (5.1)

with 𝑥 = 𝑥𝑘 = (𝑥𝑘,−𝐻 , . . . , 𝑥𝑘,0) a sequence of input features, i.e. 𝑥𝑘,−ℎ is a feature vector
w.r.t. time step 𝑘−ℎ. In the most general form, the discrete distribution 𝑝(𝑚 |𝑥, \) is a
categorical distribution:

𝑝(𝑚 |𝑥, \) = 𝑝
(
𝑚 |𝛼 = 𝑓

(𝛼)
\
(𝑥)

)
, (5.2)

with parameters 𝛼 = (𝛼(p) , 𝛼(c))⊺ (
∑
𝑚 𝛼
(𝑚) = 1) that are predicted by the model 𝑓 (𝛼)

\
.

Furthermore, the trajectory distribution for a given mode 𝑝(𝑦 |𝑚, 𝑥, \) is modeled to be
within a family of parametric distributions:

𝑝(𝑦 |𝑚, 𝑥, \) = 𝑝
(
𝑦 |𝜏(𝑚) = 𝑓 (𝑚)

\
(𝑥)

)
, (5.3)

with parameters 𝜏(𝑚) predicted by the model 𝑓 (𝑚)
\
(𝑥). Typically, 𝑝(𝑦 |𝜏(𝑚)) is modeled as

a product of 2D Gaussian distributions [Alahi et al., 2016; Deo and Trivedi, 2018b]:

𝑝(𝑦 |𝜏(𝑚)) =
𝐿∏
𝑙=1
N(𝑦𝑙 |𝜏(𝑚)𝑙

), (5.4)

111

Joint Vehicle Trajectory and Cut-In Prediction with Constrained Neural Networks

with 𝜏(𝑚)
𝑙

= (`(𝑚)
𝑙,𝑥
, `
(𝑚)
𝑙,𝑦
, 𝜎
(𝑚)
𝑙,𝑥
, 𝜎
(𝑚)
𝑙,𝑦
, 𝜌
(𝑚)
𝑙
)
⊺

comprising the mean values, variances, and the
correlation coefficient. This heteroscedastic model allows to predict individual uncertain-
ties for the longitudinal and lateral components and increasing uncertainties for waypoints
in the more distant future. However, this comes at the expense of higher model and train-
ing complexity. In principle, instead of N(𝑦𝑙 |𝜏(𝑚)𝑙

) different parametric distributions can
be chosen, e.g. the Laplace distribution. Multimodality results from separate parameters
𝜏(𝑚) for different maneuvers. Finally, all parameters of the likelihood distribution can be
summarized in one vector:

_ = (𝛼(p) , 𝛼(c) , 𝜏(p)1
⊺
, . . . , 𝜏

(p)
𝐿

⊺
, 𝜏
(c)
1
⊺
, . . . , 𝜏

(c)
𝐿

⊺
)
⊺
. (5.5)

Analogously to MDNs [Bishop, 1994], the NLL loss is leveraged for training and the
parameters are estimated with an NN:

_= 𝑓\ (𝑥)=
(
𝑓
(𝛼)
\

⊺
(𝑥), 𝑓 (p)

\

⊺
(𝑥), 𝑓 (c)

\
(𝑥)
⊺)⊺

. (5.6)

The sequential form of the data is taken into account by utilizing an LSTM-based encoder-
decoder model [Hochreiter and Schmidhuber, 1997]. LSTMs are capable of capturing
short- and long-term dependencies in sequential data by using a gating mechanism and
updating an internal cell state. Contrary to Bishop [1994] and according to Deo and
Trivedi [2018b], the maneuvers𝑚 are not considered as latent variables and require labels.
Thereby, the output is semantically interpretable at the expense of the necessity to annotate
the data. For scalability, automatic labeling functions are leveraged and a manual review
with possible corrections is performed on the validation and test set.

A challenge is the handling of multimodal distributed data. Common loss functions like
the MSE loss function can be interpreted as the NLL loss of a unimodal distribution.
Theoretically, modeling the loss for multimodal outputs is possible as well. However,
in practice frequently the learned distributions turn out to be less diverse than the true
distributions. This is known as collapsing of the modes [Makansi et al., 2019]. To address
this, soft and hard constraints are applied and supposed to separate the lateral components
of the trajectories associated with the passing and cut-in maneuver. For the soft constraints,
an additional loss term is introduced [Karpatne et al., 2017]. For the hard constraints,
a final constraint guard layer [Brosowsky et al., 2021a] is constructed and applied. The
constraint guard layer prevents unimodal output distributions by design.

To summarize, the main contributions of this chapter are as follows:

• For a probabilistic and interpretable behavior prediction, LSTM-based encoder
decoder models are leveraged and the output is modeled as a bimodal distribution
over trajectories. The two modes of the distribution are semantically assigned to a
cut-in and a passing maneuver.

• Hard and soft output constraints are modeled for improving the separation of the cut-
in and passing mode. The hard constraints are imposed by applying ConstraintNet
[Brosowsky et al., 2021a] and the soft constraints are implemented with an additional
loss term [Karpatne et al., 2017].

112

5.2 Related Work

• A diverse and large-scale data set is created by leveraging a retrospective view
on recorded measurement files of a test vehicle fleet. For the scenario detection,
the pipeline leverages the sequencing framework [Elspas et al., 2020]. Automatic
labeling functions and a retrospective view are leveraged and a data set with 1856
cut-in and an equal number of passing maneuvers is created. The ground truth of
the trajectories is computed fully automatically from odometry and ego vehicle’s
object detection.

• All LSTM-based models predict the cut-ins far before the physical baseline and
the lateral trajectory error is reduced by a factor of two over a constant velocity
model. It is shown that ConstraintNet achieves the best overall performance w.r.t.
cut-in prediction, trajectory accuracy, and mode separation. Furthermore, the lateral
and longitudinal uncertainties of the trajectory waypoints are well-interpretable and
increase with larger time horizons as expected.

• The applied LSTM-based encoder-decoder models depend only on the ego vehicle’s
sensor measurements and are intended for real-world application on highways.

5.2 Related Work

In general, the prediction of vehicle behavior [Deo and Trivedi, 2018a,b; Bansal et al.,
2019; Cui et al., 2019, 2020; Pan et al., 2020] is challenging for several reasons: multiple
actors are interacting, the dependence on static infrastructure, the relevance of the temporal
context, and the uncertainty about the intention of other drivers. For safe and predictive
planning, the prediction of cutting-in vehicles is of particular importance. As visualized
in Figure 5.2, existing approaches can be categorized in a) task-specific models for lane
change prediction [Schmüdderich et al., 2015; Wirthmüller et al., 2021; Wissing et al.,
2017; Schlechtriemen et al., 2014], b) trajectory prediction models [Bansal et al., 2019;
Cui et al., 2019, 2020; Pan et al., 2020; Altche and Fortelle, 2018], and c) joint models
combining a lane change and a trajectory prediction [Wirthmüller et al., 2020; Deo and
Trivedi, 2018a].

a) Schmüdderich et al. [2015] model a cut-in prediction as a classification task and in-
troduce a physics-based and a context-based model for short- and long-term prediction
horizons, respectively. The physics-based approach relies on matching tracked trajectories
of the target vehicle with trajectory prototypes, while the context-based approach incorpo-
rates spatial and dynamic relations to surrounding vehicles. The latter leverages so-called
indicator functions that quantify whether a scene matches to a certain situation. The
approach is reliable, interpretable, and works on fused camera and radar data. However,
the situation complexity is reduced to typical behavior classes, the context-based approach
neglects the time context, and learning the optimal parameters requires a black box op-
timizer. Wissing et al. [2017] propose a similar model consisting of a movement-based
and situation-based model. Analogously to the context-based model, the situation-based
model relies on inter-vehicle features, which are designed by experts. In comparison
to the trajectory matching of the physics-based approach in Schmüdderich et al. [2015],
Wissing et al. [2017] perform a classification with a Support Vector Machine and con-

113

Joint Vehicle Trajectory and Cut-In Prediction with Constrained Neural Networks

Figure 5.2: The figure shows three categories of models for behavior prediction. For illustration, a target
vehicle is shown that either passes the ego vehicle and keeps its lane (passing) or changes
to the ego vehicle’s lane (cut-in). a) Models of the first category perform a classification over
maneuvers. b) Models of the second category predict a multimodal distribution over trajectories.
In general, no semantic labels are associated with the modes. c) Models of the third category
perform a multimodal trajectory prediction and additionally assign maneuvers to the modes.

sider only the lateral components of the trajectory. Further publications [Weidl et al.,
2018; Schlechtriemen et al., 2014] treat maneuver prediction as a classification problem.
Contrary, Wirthmüller et al. [2021] model the lane change prediction as a regression task
by estimating the time until the vehicle changes the lane with an LSTM. If the vehicle
keeps the lane, a maximum value of 7 s should be predicted. Contrary to classification
approaches, it is no longer necessary to define time intervals for cut-in labels, which are
difficult to choose. Furthermore, the LSTM-based approach combines features that are
related to the context and the movement of the target vehicle. In comparison to Schmüd-
derich et al. [2015] and Wissing et al. [2017], this allows to leverage the full temporal
context and all features at once. In rule-based models, this would lead to rapidly increasing
complexity. However, the pure data-driven approach, the expressive power of NNs, and
the efficient recognition of temporal patterns with LSTMs make this holistic approach
feasible.

b) In the last years, the majority of state-of-the-art trajectory prediction models leverage
the expressive power of deep NNs. Commonly applied architectures are CNNs [Bansal
et al., 2019; Cui et al., 2019], Graph Neural Networks (GNNs) [Scarselli et al., 2009;
Pan et al., 2020], RNNs [Altche and Fortelle, 2018], Transformers [Vaswani et al., 2017;
Giuliari et al., 2021], or models combining mechanisms of these architectures [Deo and
Trivedi, 2018a; Liang et al., 2020; Alahi et al., 2016]. Depending on the architecture,

114

5.2 Related Work

different input representations are preferred. A class of approaches [Djuric et al., 2020;
Cui et al., 2019, 2020; Bansal et al., 2019] propose to render the static and dynamic
elements of the environment in a multichannel bird’s-eye view representation. This high
dimensional input is able to represent the spatial arrangement of a varying number of
objects and environment features can be added in a modular way. Given the rasterized
input, typically CNNs are applied. CNNs are equivariant w.r.t. translations and are efficient
and successful to process data in grid-like structures. E.g. in Djuric et al. [2020], the spatial
arrangement of elements in the environment is translated into pixel space of an RGB image
and different types of elements are encoded with different colors. Furthermore, temporal
context is included by representing objects of past time steps with reduced brightness. On
the one hand, this input format deals naturally with different numbers of objects in the
scene and allows to encode a number of different environment elements efficiently. On
the other hand, setting the dimensions of the tensor requires a trade-off between the field
of view, spatial resolution, and tensor size. Furthermore, the rendering of environment
elements suffers from information loss [Liang et al., 2020] and the design choices are not
obvious and require intuition, creativity, and experience, e.g. for rasterizing traffic signs.
To conclude, the transformation in a bird’s-eye view representation enables processing
with CNNs at the expense of information loss and expanding the data. A more compact
representation of the environment is a graph, which can be processed with GNNs [Pan
et al., 2020; Gao et al., 2020; Liang et al., 2020]. Graph Convolutional Networks (GCNs)
[Kipf and Welling, 2017; Henaff et al., 2015; Duvenaud et al., 2015] are GNNs that apply
a graph convolution operator to extract features. Analogously to CNNs, GCNs share
parameters over all locations in the graph. E.g. Liang et al. [2020] represent the geometry
and direction of lanes in the map as a graph and extract features with a so-called LaneGCN.
The past trajectories of the actors are processed with CNNs and attention mechanisms are
used to fuse the map and actor information. In Gao et al. [2020], map features and the
actors’ past trajectories are represented as graphs and processed with a hierarchical GNN.
While GNNs work on a compact representation of the environment, a unified graph-
based representation of all aspects of the environment and processing with pure GNNs is
challenging as well. Consequently, frequently GNNs are applied in combination with other
architectures like CNNs, LSTMs and attention-mechanisms [Liang et al., 2020; Schmidt
et al., 2022]. Alternatively, a grid of a fixed number of neighboring vehicles around the
target vehicle can be introduced and their spatial-relations summarized as features among
others in a vector [Altche and Fortelle, 2018; Wirthmüller et al., 2020]. Typically, RNNs
[Altche and Fortelle, 2018] or Transformers [Giuliari et al., 2021] are applied to capture
the temporal context of these feature vectors, e.g. in an encoder-decoder architecture.
Trajectory prediction is intrinsically probabilistic and multimodal and therefore the output
of the model is optimally a multimodal distribution. The prediction of a single future
trajectory [Altche and Fortelle, 2018] can lead to a misleading output that represents
the mean value of the underlying multimodal distribution. For an intersection scenario,
this is demonstrated by Cui et al. [2019, Figure 1]. A model with two modes is able to
predict reasonable trajectories and probabilities for driving straight and a turn maneuver.
Contrary, unimodal models tend to predict the mean trajectory of both maneuvers, which
is outside the drivable space and not reasonable. Multimodal models can be realized
by predicting several trajectories in combination with an appropriate loss function, e.g.
the Winner-Takes-All (WTA) loss [Guzman-Rivera et al., 2012; Makansi et al., 2019; Cui

115

Joint Vehicle Trajectory and Cut-In Prediction with Constrained Neural Networks

et al., 2019, 2020]. Further methods are MDNs, classificators over a set of fixed trajectories
[Phan-Minh et al., 2020], or latent variable models [Casas et al., 2020]. The latter samples
a latent variable to generate different output realizations. MDNs estimate the parameters
of a multimodal distribution. However, MDNs are difficult to train and suffer from the
collapsing mode problem. In Makansi et al. [2019], an NN with two stages is proposed
to overcome this limitation. In the first stage, multiple hypotheses are predicted with a
CNN and a modified WTA loss. In the second stage, a layer that fits a mixture density
model to the hypotheses is added. In comparison, this chapter addresses mode separation
by enforcing a sufficient lateral distance between the trajectory modes with soft and hard
output constraints. The soft constraints are implemented with an additional loss term that
penalizes constraint violations [Karpatne et al., 2017]. The hard output constraints require
an additional constraint guard layer according to ConstraintNet [Brosowsky et al., 2021a].

c) A model for both, lane change and trajectory prediction, is presented in Wirthmüller et al.
[2020]. A mixture of experts approach is leveraged consisting of a maneuver classification
(gating model) and a prediction of distributions over future positions for each maneuver
(experts). For each expert, a Gaussian mixture model is fitted to the maneuver-specific
data in the joint space of in- and outputs. For prediction, Gaussian mixture regression
is leveraged, i.e. the distributions over the future positions are determined depending on
the input. In Wirthmüller et al. [2020], the ego vehicle is considered as target vehicle.
This allows to capture accurate motion information and to detect all surrounding vehicles
except following vehicles. However, for the behavior prediction of surrounding vehicles it
may suffer from a domain change or requires an advanced and accurate perception system.
Deo and Trivedi [2018a] propose to estimate the parameters of a multimodal distribution
over future trajectories with an NN. Contrary to a conventional MDN, the modes are
associated with six maneuvers, e.g. slow lane change to the left. Analogously, in this
chapter cut-in and passing maneuvers are assigned to the modes of a bimodal trajectory
prediction. Both trajectories are predicted simultaneously with one decoder and doubled
output dimensions. Contrary in Deo and Trivedi [2018a], an one-hot encoded vector
of the maneuver is added to the context vector to predict maneuver-specific trajectories.
The choice of doubling the output dimension instead of using a one-hot encoded vector
is motivated by observing a better separation of the modes with this modification. In
Deo and Trivedi [2018a], first the dynamic behavior of the involved actors is captured
with one LSTM per actor and shared parameters. Second, the interactions between them
are considered with a convolutional and pooling unit. In comparison, in this chapter the
spatial relations to neighboring vehicles and the lane geometry are encoded in the feature
vectors time step-wise and the temporal context is leveraged with an LSTM afterwards.

5.3 Methods

5.3.1 Data Set and Automatic Scenario Detection

The data set is created from measurement files of real world test drives and consists of
a collection of highway scenarios represented by 𝑆 = {𝑠𝑖}𝑖∈𝐼 . Each scenario includes a
tracked target vehicle that performs either a cut-in or a passing maneuver among possibly

116

5.3 Methods

Figure 5.3: Schematic visualization of the pipeline for the creation of a large and diverse data set. The
pipeline starts with measurement files of real-world test drives. 1) The measurement files are
checked for required signals, the data is resampled to a fixed frequency, and saved in a column-
oriented data format. 2) Cut-in and passing maneuvers are detected automatically with regular
expressions on discretized signal states. 3) The resulting set of scenarios is balanced and split
into training 𝑆∗train, validation 𝑆∗valid, and test sets 𝑆∗test. The asterisk denotes the state before
manual verification. 4) Finally, the validation and test sets are manually checked and wrong
annotations are excluded. The arrow in the bottom indicates that the annotations are pointers to
the converted measurement files. The figure is based on Brosowsky et al. [2021c].

other vehicles. The numbers of cut-in and passing scenarios are chosen equally. For a
cut-in scenario, the cut-in time 𝑡𝑐 is defined as the time when the target vehicle has crossed
the lane marking with its center and is just assigned as the CIPV. Formally, a scenario is
represented as a tuple 𝑠= (𝑒, 𝑓 , 𝑡𝑠, 𝑡𝑒, 𝑖, 𝑎1, . . . , 𝑎𝑛)⊺ with 𝑒 ∈ {cut-in, passing}×{left,right}
for the semantic label, 𝑓 for the reference to the measurement file, 𝑡𝑠 and 𝑡𝑒 for the start and
end time within the measurement file, 𝑖 for the identifier of the target vehicle, and 𝑎1, . . . , 𝑎𝑛
for additional attributes, e.g. the cut-in time 𝑡𝑐. The start and end time are defined as the time
points when the track of the target vehicle starts and stops, respectively. For each time step 𝑘
in a scenario, the targets of the NN, namely the future trajectory 𝑦𝑘 and the future maneuver
𝑚𝑘 , are computed automatically from the measurement file and the scenario descriptor
𝑠. The procedures leverage a retrospective view and are explained in Section 5.4.2. For
the detection of the scenarios 𝑆, a scalable and largely automated pipeline is applied and
visualized in Figure 5.3. The pipeline uses the sequencing framework that is proposed in
Elspas et al. [2020]. The automated steps one to three are specified with configuration files
and allow continuous and iterative improvements. In the final step, manual corrections
are performed with a labeling tool. The user interface of the tool is shown in Figure 5.5.

The toolchain starts with a set of measurement files, which were recorded during nine
vehicle test campaigns. In general, a test campaign includes test drives of several vehicles
and covers multiple days. The measurement files of all nine campaigns comprise 19 885 km
driving data from ten European countries. From this distance, 11 905 km were driven on
highways. The files contain sensor and processed signals in the form of multivariate
time series. In a first processing step, the files are checked for the required signals
and the verified files are converted from a write-optimized file format into the column-
oriented Apache Parquet format. The required signals comprise egomotion signals, map
information about the road type, camera signals for lane markings, and fused camera and
radar data of detected and tracked surrounding vehicles. Additionally, the signals are
resampled to a fixed frequency of 100 Hz. This relatively high frequency is used for the

117

Joint Vehicle Trajectory and Cut-In Prediction with Constrained Neural Networks

Figure 5.4: For the automatic detection of cut-in and passing scenarios, the tracks of surrounding vehicles
are first extracted. For each vehicle track, a number of conditions are checked on time step level
and define the ODD. The corresponding Boolean signal is called ODD-flag. In the visualized
example, the target vehicle leaves the ODD at a certain point in time because the distance to
the ego vehicle exceeds a specified maximum value. For the detection of cut-in and passing
maneuvers, signals are discretized into states and regular expressions are defined on the alphabet
given by these states. The detection within the ODD is ensured by defining states that require
a true ODD-flag. For the detection of cut-ins from the left and from the right, three regular
expressions are used. If at least one of the cut-in detectors has a match, the vehicle track is
labeled as a cut-in scenario. The detectors of passing maneuvers require that no cut-ins are
detected.

scenario detection. The input of the NN is generated less frequent and the sampling rate
is reduced by a preprocessing step (see Section 5.4.2). The next steps of the data pipeline
generate metadata and pointers to the files of this stage.

In the second step, a superset 𝑆∗= {𝑠𝑖}𝑖∈𝐼∗ of the final scenarios 𝑆= {𝑠𝑖}𝑖∈𝐼 is automatically
generated and consists of scenario hypotheses. An overview of the automatic scenario
detection is visualized in Figure 5.4. The detection starts with the extraction of tracks of
all surrounding vehicles and pointers to their start and end points. A vehicle track consists
by definition of a sequence of object detections over time that belong to the same vehicle.
The fusion system attaches unique Identifiers (IDs) 𝑖 to each object detection and encodes
in this way the links between objects over time steps. Each vehicle track defines the
following features of a potential scenario 𝑠: the reference to the measurement file 𝑓 , the
start 𝑡𝑠 and end time 𝑡𝑒, and the identifier 𝑖 of the target vehicle. The next steps, check the
ODD and determine the label 𝑒 ∈ {cut-in, passing}×{left, right}. A time step of a vehicle
track fulfills the ODD conditions if the distance between target and ego vehicle is less than
150 m, the velocity of the target and ego vehicle is above 10 ms−1, both lane markings are
detected, and the ego vehicle is not closer than 1 m to the lane markings. The purpose of
the last condition is the exclusion of ego lane changes. The evaluations of these checks are
attached to each vehicle track as a Boolean signal that is true if all conditions are fulfilled
in the considered time step and false otherwise. In the following, this signal is called
ODD-flag. Next, each of the vehicle tracks is scanned for patterns corresponding to cut-in
and passing maneuvers within the ODD. This is achieved by discretizing relevant signals
into semantically meaningful states. Subsequently, regular expressions on the alphabet

118

5.3 Methods

given by these states allow the extraction of patterns over time. The detection within the
ODD is ensured by defining only states that require the ODD-flag being true. Empirically,
it is found that the cut-in detection improves by defining three different regular expressions
for each side. The regular expressions to detect cut-ins from the left and right lane are
symmetric versions of each other. The three expressions rely on 1) the target and ego
vehicle’s trajectory, 2) the angles between the target vehicle and the corresponding lane
marking, and 3) changes in the lane assignment of the target vehicle given by the perception
system. All three detectors require that the target vehicle has finally crossed with its center
the lane marking and is labeled as CIPV. This requirement is described by the final state
𝑓 . For detector 1), the trajectories of the target and the ego vehicle are computed in a
stationary reference frame from ego motion signals and the measured relative position
of the target vehicle w.r.t. the ego vehicle (see Section 5.4.2 and Algorithm 3). In the
stationary reference frame and for each time step, the minimum distance 𝑑min of the target
vehicle’s position to the trajectory of the ego vehicle is computed. Additionally, for each
time step the relative position of the target vehicle w.r.t. the ego vehicle’s closest position
is distinguished in to the left or to the right of the ego vehicle. For the detection of cut-ins,
the minimum distance 𝑑min and the relative position are binned into the following states:
large distance (1.5 m ≤ 𝑑min < 5 m, state 𝑑), medium distance and the target vehicle is
on the left or right-hand side (1 m ≤ 𝑑min < 1.5 m, state 𝑙 or 𝑟), and small distance and
target vehicle has become CIPV (𝑑min<1 m, state 𝑓). A cut-in is going to leave state 𝑑 at
some point in time, followed by at least one time step being in state 𝑙 or 𝑟 , and finally it
becomes the CIPV (state 𝑓). The two patterns are formalized with the following regular
expressions:

regex_1(cut-in, left): 𝑑𝑙+ 𝑓 , (5.7)
regex_1(cut-in, right): 𝑑𝑟+ 𝑓 .

For detector 2), the angle between the target vehicle and the lane marking is binned into
three states: target vehicle to the left of the (state 𝑙), on the (state 𝑜), or to the right of
the (state 𝑟) lane marking. Cut-ins from left are characterized as follows. After the target
vehicle is to the left of the lane marking the last time, it is going to be on the lane marking,
followed by an arbitrary number of time steps of being on or right to the lane marking.
Finally, the target vehicle becomes the CIPV (state 𝑓). For cut-ins from right, the pattern
is a symmetric version. Consequently, the regular expressions are given by:

regex_2(cut-in, left): 𝑙𝑜{𝑜 |𝑟}∗ 𝑓 , (5.8)
regex_2(cut-in, right): 𝑟𝑜{𝑜 |𝑙}∗ 𝑓 .

For detector 3), the lane assignment of the perception system is leveraged. The perception
provides labels for the closest vehicles on the left and right neighboring lane as well as
for the CIPV. Consequently, the following expressions detect cut-ins that start as closest
vehicle on the left or right neighboring lane (state 𝑙 or 𝑟), are optionally no longer one

119

Joint Vehicle Trajectory and Cut-In Prediction with Constrained Neural Networks

Figure 5.5: The figure shows a screenshot of the developed labeling tool to verify the automatically generated
scenario labels 𝑒 ∈ {cut-in, passing}×{left, right}. The tool provides functionality to iterate over
the detected scenarios, to show relevant plots, to render a 3D animation of the scenario, and to
remove scenarios or to modify the label if necessary.

of the closest vehicles but remain in the ODD (state 𝑐), and finally become the CIPV
(state 𝑓):

regex_3(cut-in, left): 𝑙𝑐{0, 50} 𝑓 , (5.9)
regex_3(cut-in, right): 𝑟𝑐{0, 50} 𝑓 .

If at least one of the cut-in detectors matches, the scenario 𝑠 is labeled as cut-in and the
matching regular expression determines whether the cut-in is from the left or from the
right neighboring lane 𝑒 = (cut-in, left/right). Note that the cut-in time 𝑡𝑐 can always be
determined, because all cut-in detectors require that the target vehicle becomes finally
the CIPV (state 𝑓). For passing vehicles, vehicle tracks without any cut-in detection are
extracted. Additionally, in each time step the passing vehicle must be not the CIPV and
the center needs to have a maximum distance of 3 m to the closest of the two ego lane
markings. If these conditions are fulfilled and the passing vehicle is to the left or to the
right of the ego lane, time steps are labeled with the state 𝑙 or 𝑟, respectively. For the
detection that the vehicle passes on the left or on the hand side, the regular expressions
can be written as:

regex(passing, left): (?<= 𝑠)𝑙∗(?=𝑒), (5.10)
regex(passing, right): (?<= 𝑠)𝑟∗(?=𝑒),

with state 𝑠marking the start and state 𝑒marking the end of a vehicle track. The expression
(?<= . . .) is a lookbehind and (?= . . .) a lookahead pattern, which are checked but not

120

5.3 Methods

Description Total Train Valid Test

Number of scenarios. 3712 2598 557 557
Number of scenarios with cut-ins from left / 691/ 491/ 108/ 92/
right lane. 1165 800 174 191
Number of scenarios with passing vehicles on left / 672/ 455/ 106/ 111/
right lane. 1184 852 169 163
Mean tracking time of cutting-in vehicle from left / 5.8/ 5.7/ 6.5/ 5.7/
right lane before it becomes CIPV. 8.7s 8.6s 8.9s 8.6s
Mean tracking time of passing vehicle on left / 14.1/ 13.8/ 14.5/ 14.7/
right lane. 12.0s 12.0s 11.6s 12.2s
Mean relative velocity of cutting-in vehicle from left / 2.85/ 2.88/ 2.45/ 3.22/
right lane at 𝑡c. −3.89m s−1 −3.97m s−1 −3.83m s−1 −3.62m s−1

Mean longitudinal distance of cutting-in vehicle from left / 42.6/ 42.6/ 43.5/ 41.6/
right lane at 𝑡c. 54.4 m 54.4 m 53.5 m 55.0 m

Table 5.1: The table summarizes a range of statistics of the created data set. The numbers are denoted for
the total data set (total), the training (train), the validation (valid), and the test set (test).

part of the match. The matches of the two detectors are mutually exclusive. The scenario
is labeled as 𝑒= (passing, left) or 𝑒= (passing, right) depending on the detector that found
the match. Vehicle tracks without any cut-in and passing detection are out of the ODD
and excluded from the scenario set 𝑆∗.

In the third step, a subset of the automatically detected scenario hypotheses is selected, the
number of scenarios between cut-in and passing maneuvers is balanced, and the scenarios
are split into a training, a validation, and a test set. Scenarios are kept if the target vehicle
is tracked for at least 6 s and if the road type is highway. Furthermore, the number of
cut-in and passing scenarios is set equally and the data set is partitioned into a training,
validation, and test set according to a split of 70%, 15%, and 15%, respectively.

For the evaluation metrics, it is important that all labels 𝑒 ∈ {cut-in, passing}×{left, right}
of the automatically generated validation 𝑆∗valid and test set 𝑆∗test are verified. For the
verification, a labeling tool has been developed with the Dash1 framework for Python (see
Figure 5.5). The tool provides functionality to iterate over the scenario descriptors, to
create plots of the corresponding multivariate time series, to show a 3D animation of the
scenario, and to remove the scenario or to modify the scenario label 𝑒 ∈ {cut-in, passing}×
{left, right} if necessary. The verified validation and test sets are denoted as 𝑆valid and
𝑆test without asterisks.

The presented automated pipeline enables the creation of a large data set consisting of 1856
cut-in and 1856 passing scenarios. Approximately, a third of the maneuvers occurs on the
left lane and two third on the right lane. Cutting-in vehicles from the left (right) lane have
on average a distance of 42.6 m (54.4 m) and a relative velocity of 2.85m s−1 (−3.89m s−1).
Further statistics of the data set are summarized in Table 5.1. In the table, the numbers
are given for the training, the validation, the test, and the total data set. Due to the large

1 https://dash.plotly.com, accessed on 08/03/2022

121

https://dash.plotly.com

Joint Vehicle Trajectory and Cut-In Prediction with Constrained Neural Networks

Figure 5.6: For the 1856 cut-in scenarios in the data set, three histograms and one scatter plot show distri-
butions over the following quantities. Top left: The tracking time of the target vehicle before
the cut-in time 𝑡𝑐. Top right: The distance 𝑥′rel,tar (𝑡𝑐) of the target vehicle at the cut-in time 𝑡𝑐.
Bottom left: The relative longitudinal velocity Δ𝑣tar,x (𝑡𝑐) at the cut-in time 𝑡𝑐. Bottom right: The
relative longitudinal velocity Δ𝑣tar,x (𝑡𝑐) over the distance 𝑥′rel,tar (𝑡𝑐) at the cut-in time 𝑡𝑐. Cut-ins
from the left lane are visualized in red and cut-ins from the right lane in blue.

number of scenarios in each of the sets, the average values and ratios are similar between
them. For the cut-in scenarios, Figure 5.6 shows three histograms and one scatter plot
of relevant quantities. In addition to the average values in Table 5.1, these plots provide
insights about the distributions of the quantities, the completeness and representativeness
of the data set. The plots distinguish between cut-ins from the left and the right lane
and the differences can be interpreted with the following prototypical behavior. Usually,
cut-ins from the left lane overtake the ego vehicle and change to the ego lane as soon as
possible. Contrary, cut-ins from the right lane typically change to the ego lane to overtake
a slower vehicle on their lane, e.g. a truck. The histogram in the top left of Figure 5.6
presents the distribution of the tracking time of the target vehicle before becoming the
CIPV. As expected, the cut-ins from the left lane are tracked on average for a shorter time
because they typically enter the front-facing field of view from behind. Contrary, cut-ins
from the right enter the field of view usually from a large distance, which results in a
longer tracking time. The histogram in the top right of Figure 5.6 shows the distribution
of the distance 𝑥′rel,tar(𝑡𝑐) of the target vehicle when cutting-in. Typically, cut-ins from
the left lane change to the ego lane directly in front of the ego vehicle after completing
the overtake maneuver. Thus, the histogram shows a strong peak for distances between
20 m and 30 m. In comparison, cut-ins from the right occur more frequently also at larger
distances. This characteristic is reasonable since overtaking a slower vehicle on the target
vehicle’s lane may happen also at large distances to the ego vehicle. Moreover, short

122

5.3 Methods

Feature 𝑓 Description

𝑥tar, 𝑦tar Past trajectory points of the target vehicle.
𝑣tar,𝑥 , 𝑣tar,𝑦 Velocity of the target vehicle.

𝑤tar Width of the target vehicle.
𝑣′ego,𝑥 , 𝑎

′
ego,𝑥 Longitudinal velocity and acceleration of the ego vehicle.

𝑥′rel, tar, 𝑦
′
rel, tar Relative position of the target vehicle w.r.t. the ego vehicle.

𝑥′rel, CIPV Longitudinal position of the CIPV w.r.t. the ego vehicle.
𝑦env, l/r, s Lateral position of the left/right lane marking in a distance of 𝑠 w.r.t. the target

vehicle for encoding the lane curvature, 𝑠 = 0/20/40/60/80 m.
𝑙env,l/r Type of the lane marking (solid, broken).

Table 5.2: The table shows the available features for the behavior prediction. Features that are measured in
the reference frame of the ego vehicle are denoted with an apostrophe. In Figure 5.7, the features
are visualized.

distances occur rarely because the ego vehicle is typically faster and a certain minimum
distance is required for safety reasons. The histogram in the bottom left of Figure 5.6
shows the distribution of the relative longitudinal velocity Δ𝑣tar,x(𝑡𝑐) between the target
and the ego vehicle. As expected, cut-ins from the left are faster on average and cut-
ins from the right typically slower than the ego vehicle. The scatter plot in the bottom
right of Figure 5.6 correlates the relative longitudinal velocity Δ𝑣tar,x(𝑡𝑐) with the distance
𝑥′rel,tar(𝑡𝑐) of the target vehicle when cutting-in. Critical cut-ins have a large negative
relative velocity and occur at small distances. In general, the plots confirm that the data
set covers various cut-in scenarios with a wide range of relative velocities and distances.
In conclusion, the representativeness and the completeness of the data set is considered to
be strong based on this statistical analysis.

5.3.2 Model Input

The behavior prediction is designed in an agent-centric way, i.e. for each vehicle of interest,
a separate prediction is performed. This agent-wise prediction enables the handling of a
variable number of agents in a natural way. For each selected vehicle, an input sequence
𝑥𝑘 = (𝑥𝑘,−𝐻 , . . . , 𝑥𝑘,0) is computed from historical and current perception and sensor data.
The time step of prediction is denoted as 𝑘 and 𝑥𝑘,−ℎ represents a feature vector at time
step 𝑘−ℎ. The input sequence consists of at least 𝐻 =5 and maximally 𝐻 =60 time steps
depending on the duration the target vehicle is already tracked. For the chosen step size
of 𝑑𝑡 = 0.1 s, this corresponds to a duration 𝑇𝐻 between 0.5 s and 6 s. The input sequence
enables the NN to leverage temporal patterns of the maneuvers.

For an input sequence 𝑥𝑘 with prediction time step 𝑘 , a set of features is evaluated for each
time step 𝑘−ℎ of the considered history and standardized. An overview of all available
features { 𝑓 𝑗 } 𝑗∈𝐽 is shown in Table 5.2 and visualized in Figure 5.7. Figure 5.7 visualizes
additionally the used reference frames, which are either fixed to the ego or to the target
vehicle. Features in the reference frame of the ego vehicle are marked with an apostrophe
and features fixed to the target vehicle without an apostrophe. Features in the form of

123

Joint Vehicle Trajectory and Cut-In Prediction with Constrained Neural Networks

Figure 5.7: Visualization of the predicted bimodal trajectory (red and grey) at time step 𝑘 (bold vehicles) and
of the input features at time step 𝑘−ℎ (shaded vehicles). The past trajectory (blue, 𝑥tar, 𝑦tar) and
the predicted trajectories (𝜏 (p) , 𝜏 (c)) are measured in a reference frame with origin at the location
of the target vehicle at prediction time 𝑘 . The other features with position or distance information
are either in the reference frame with origin at the target vehicle’s (without apostrophe) or ego
vehicle’s (with apostrophe) location at time step 𝑘−ℎ. Table 5.2 describes all features shortly.
The input sequence for the NN comprises at least features of the latest five times steps and
maximally 60 time steps corresponding to a duration between 0.5 s and 6 s. The figure is based
on Brosowsky et al. [2021c].

velocities and accelerations are measured in a global reference frame and rotated according
to the orientation of the ego vehicle’s reference frame.

The features are categorized via the subscript into ego vehicle 𝑓ego, target vehicle 𝑓tar,
environment 𝑓env, and interaction or relational features 𝑓rel. The environment features
describe static elements, while the interaction features are used for spatial relations between
surrounding vehicles. The total feature set { 𝑓 𝑗 } 𝑗∈𝐽 includes features related to the type
and geometry of the lane markings, the past trajectory of the target vehicle, the target
vehicle’s velocity and width, the longitudinal velocity and acceleration of the ego vehicle,
and the relative position of the target vehicle and the CIPV w.r.t. the ego vehicle. The latter
features indicate whether gaps in the traffic are available for a cut-in maneuver. If no CIPV
is detected, a default value is used as input. Features regarding the interaction of the target
vehicle and a potential vehicle in front of the target vehicle are of interest as well. E.g. the
approaching of a slower preceding vehicle is a typical reason for a lane change. However,
these features are not included due to limitations of the perception system. The width of
the target vehicle is included to inform the NN about the vehicle type. This allows to take
different dynamics into account, e.g. for cars and trucks. Instead of curvilinear coordinates,
positions are given in Cartesian coordinates and features about the lane marking geometry
𝑦env,l/r,s are included. Thereby, a direct degradation of the prediction accuracy due to
noisy lane marking detections is avoided. Instead, the NN is enabled to reason about the
temporal context of the noisy signals by itself. Furthermore, the cut-in behavior depends
potentially on the road topology and the corresponding features 𝑦env,l/r,s are important for
situation-aware predictions.

Except for the past trajectory of the target vehicle, the input features are either directly given
by the perception and ego motion sensors or can be computed with basic operations from

124

5.3 Methods

several of these signals. Contrary, the past trajectory of the target vehicle requires higher
computational effort and is performed in a twofold procedure as shown in Figure 5.14.
First, odometry is used to determine the ego vehicle’s trajectory. Second, the target
vehicle’s trajectory is determined from the ego vehicle’s trajectory and the target vehicle’s
relative positions w.r.t. the ego vehicle. The details are explained in Section 5.4.2 and
Algorithm 3.

5.3.3 Encoder-Decoder Architecture

For the bimodal trajectory prediction model, two LSTMs are leveraged in an encoder-
decoder architecture [Cho et al., 2014; Sutskever et al., 2014]. LSTMs are enhanced
versions of RNNs and explicitly designed to exploit temporal dependencies over long and
short terms. Thereby, LSTMs are a good choice for the encoder and decoder. In the
following, first LSTMs and then the encoder-decoder architecture are explained.

Long Short-Term Memory

RNNs are explicitly designed to process sequential data of variable length and propagate
information over time steps with recurrent connections (see Section 2.2.1). However,
training RNNs is difficult and the learning of long-term dependencies is challenging.
An LSTM [Hochreiter and Schmidhuber, 1997] is an enhanced version of an RNN that
leverages a forget, an input, and an output gate to control the flow of information. Thereby,
LSTMs improve the capability of learning long-term dependencies significantly over
vanilla RNNs. The repeating module of an LSTM is called LSTM cell and visualized in
Figure 5.8.

Additionally to the hidden state ℎ𝑘 of vanilla RNNs, LSTMs leverage a second recurrent
connection to propagate the so-called cell state 𝑐𝑘 . For each time step 𝑘 , LSTMs update
their cell 𝑐𝑘 and hidden state ℎ𝑘 by using forget 𝑓𝑘 , input 𝑖𝑘 , and output gates 𝑜𝑘 . The
explicit equations are given by the following formulas:

𝑓𝑘 =𝜎
(
𝑊 (𝑥 𝑓)𝑥𝑘 + 𝑏 (𝑥 𝑓) +𝑊 (ℎ 𝑓)ℎ𝑘−1 + 𝑏 (ℎ 𝑓)

)
, (5.11)

𝑖𝑘 =𝜎
(
𝑊 (𝑥𝑖)𝑥𝑘 + 𝑏 (𝑥𝑖) +𝑊 (ℎ𝑖)ℎ𝑘−1 + 𝑏 (ℎ𝑖)

)
,

𝑔𝑘 = tanh
(
𝑊 (𝑥𝑔)𝑥𝑘 + 𝑏 (𝑥𝑔) +𝑊 (ℎ𝑔)ℎ𝑘−1 + 𝑏 (ℎ𝑔)

)
,

𝑜𝑘 =𝜎
(
𝑊 (𝑥𝑜)𝑥𝑘 + 𝑏 (𝑥𝑜) +𝑊 (ℎ𝑜)ℎ𝑘−1 + 𝑏 (ℎ𝑜)

)
,

𝑐𝑘 = 𝑓𝑘 ⊙ 𝑐𝑘−1 + 𝑖𝑘 ⊙ 𝑔𝑘 ,
ℎ𝑘 =𝑜𝑘 ⊙ tanh(𝑐𝑘).

For the cell state 𝑐𝑘 , the forget gate 𝑓𝑘 determines the weighting of the previous cell state
𝑐𝑘−1 and the input gate 𝑖𝑘 controls the weighting of the cell input 𝑔𝑘 of the current time
step. The hidden state ℎ𝑘 is computed from the updated cell state 𝑐𝑘 and the output gate
𝑜𝑘 . The three gates and the cell input 𝑔𝑘 are determined by linearly combining the input
𝑥𝑘 and the previous hidden state ℎ𝑘−1 and subsequently applying an activation function.
In the equations (5.11), ⊙ denotes the Hadamard product, tanh the hyperbolic tangent

125

Joint Vehicle Trajectory and Cut-In Prediction with Constrained Neural Networks

Figure 5.8: An LSTM cell processes sequential data by updating and passing a hidden state ℎ𝑘 and an
internal cell state 𝑐𝑘 over time steps 𝑘 . An input 𝑖𝑘 , a forget 𝑓𝑘 , and an output gate 𝑜𝑘 are
leveraged to control the flow of information. For each gate, the input 𝑥𝑘 of the current time
step and the hidden state of the previous time step ℎ𝑘−1 are passed through linear layers (□) and
the sigmoid function (𝜎) is applied element-wise as activation function. For updating the cell
𝑐𝑘 and the hidden state ℎ𝑘 , the gates balance the influence of the previous cell state 𝑐𝑘−1, the
previous hidden state ℎ𝑘−1, and the cell input 𝑔𝑘 of the current time step. In the visualization, ⊙
denotes the Hadamard product, + an element-wise addition, and tanh an element-wise applied
hyperbolic tangent.

(element-wise applied), 𝜎 the sigmoid function (element-wise applied), 𝑊 the weight
matrices, and 𝑏 the bias vectors. Note that the three gates 𝑓𝑘 , 𝑖𝑘 , 𝑜𝑘 , the cell input 𝑔𝑘 , the
cell state 𝑐𝑘 , and the hidden state ℎ𝑘 have the same dimensionality.

Theoretically, even vanilla RNNs are capable of storing information over many time
steps. However, in practice the training suffers from vanishing and exploding gradients
[Hochreiter and Schmidhuber, 1997; Bengio et al., 1994; Pascanu et al., 2013]. For an
illustration of this problem, a standard loss 𝐿 in the form of a sum of losses per time step
𝐿𝑘 is considered:

𝐿 (\) =
𝐾∑︁
𝑘=1

𝐿𝑘 (ℎ𝑘), (5.12)

ℎ𝑘 = 𝑓 (𝑥𝑘 , ℎ𝑘−1, \). (5.13)

Here, 𝐾 is the length of the sequence and 𝑓 is an RNN with parameters \. In practice,
the gradient of the loss can be computed first by unfolding the RNN into a feedforward
NN and second by performing the differentiation with the backpropagation algorithm (see
Section 2.2.2). The unfolding of RNNs is visualized in Figure 2.6. Analytically, the
gradient can be written as a sum of products [Pascanu et al., 2013]:

𝜕𝐿

𝜕\
=

𝐾∑︁
𝑘=1

𝑘−1∑︁
𝑙=0

𝜕𝐿𝑘

𝜕ℎ𝑘

(∏
𝑘≥𝑚>𝑘−𝑙

𝜕ℎ𝑚

𝜕ℎ𝑚−1

)
𝜕ℎ𝑘−𝑙
𝜕\︸ ︷︷ ︸

𝑃(𝑘−𝑙)→𝑘

. (5.14)

Each product 𝑃(𝑘−𝑙)→𝑘 can be interpreted as the effect of the parameter \ from a previous
time step 𝑘−𝑙 on the loss 𝐿𝑘 at time step 𝑘 . For the vanilla RNN in Equations (2.10), the
long-term contributions (𝑙≫ 1) involve many multiplications of the same weight matrix.

126

5.3 Methods

Figure 5.9: Illustration of the applied encoder-decoder architecture that consists of two LSTMs, one LSTM
for the encoder and one for the decoder. The encoder processes the input 𝑥 and outputs the
context vector. The decoder generates the trajectory distributions 𝜏 (p/c) for the passing and
cut-in mode. For the case that hard constraints are imposed, additionally a constraint guard layer
is applied. The dimension of the input embedding is denoted with 𝑑in,emb, of the hidden state
of the encoder LSTM with 𝑑h,enc, of the context vector with 𝑑context, and of the hidden state of
the decoder LSTM with 𝑑h,dec. The mode probabilities 𝛼 are generated with a softmax function.
The figure is based on Brosowsky et al. [2021c].

Similar to a product of scalars with repeating multiplications of the same number, the
final product represents either a very large or a very small contribution to the gradient.
This behavior explains the difficulty of learning long-term dependencies with RNNs.
LSTMs address this downside by controlling the flow of information with gates. In
each time step, the gates of LSTMs enable to remove, to add, and to read information
systematically from the cell state. This can be interpreted as information is kept by default
and modifications require actively forgetting or adding information. Thereby, the learning
of storing information over long terms is supported.

Encoder-Decoder Architecture

The joint vehicle trajectory and cut-in prediction is modeled with an encoder-decoder
architecture [Cho et al., 2014; Sutskever et al., 2014] based on LSTMs, which is visualized
in Figure 5.9. The model consists of two parts: 1) The encoder compresses the input
sequence into a context vector. 2) The decoder generates the output sequence from the
compressed context vector. Note, that the input and the output sequences have different
lengths in general. The length of the input sequence 𝑥 = (𝑥−𝐻 , . . . , 𝑥0) depends on the
time the target vehicle is already tracked and covers between 𝑇𝐻 =0.5 s and 𝑇𝐻 =6 s. The
output sequence 𝜏(p/c) = (𝜏(p/c)

1 , . . . , 𝜏
(p/c)
𝐿
) comprises the Gaussian distributions over the

waypoints of the passing and the cut-in maneuver and covers 𝑇𝐿 = 3 s. The topology of
such an RNN with in- and output sequences of different lengths is called many-to-many
(compare the classification in Figure 2.7).

Here, the encoder and the decoder are modeled with separate LSTMs. Furthermore, only
single layer LSTMs are considered because no improvements were found with stacked

127

Joint Vehicle Trajectory and Cut-In Prediction with Constrained Neural Networks

LSTMs. The first LSTM (encoder) encodes the input sequence of variable length in
a context vector with fixed length 𝑑context. Before the LSTM is applied, each element
of the input sequence is passed through a fully connected layer with shared weights.
This procedure generates an input embedding of dimension 𝑑in,emb. After the LSTM is
applied, the context vector is generated from the last hidden state (dimension 𝑑h,enc) with
an additional fully connected layer. For both modes 𝑚=p/c and for each future time step
𝑙, the second LSTM (decoder) generates the mean values, the standard deviations, and the
correlation term of the trajectory waypoints 𝜏(𝑚)

𝑙
= (`(𝑚)

𝑙,𝑥
, `
(𝑚)
𝑙,𝑦
, 𝜎
(𝑚)
𝑙,𝑥
, 𝜎
(𝑚)
𝑙,𝑦
, 𝜌
(𝑚)
𝑙
)
⊺

from
the context vector. The decoder LSTM uses the context vector as input at each future time
step 𝑙 and different outputs arise from updating the cell and hidden state. The value ranges
of the variances 𝜎𝑥 , 𝜎𝑦 ∈ (0,∞) and of the correlation term 𝜌 ∈ (−1, 1) are enforced with
the activation functions 1/exp(𝑥) and tanh(𝑥), respectively. The outputs 𝜏(𝑚)

𝑙
of the two

maneuvers𝑚=p/c are generated by applying the same linear projection on different halves
of the decoder’s hidden state (dimension 𝑑h,dec). For enforcing a lateral separation of the
two trajectory modes, an additional constraint guard layer is added. This is a concept
of ConstraintNet [Brosowsky et al., 2021a]. The design of the constraint guard layer is
explained in detail in the next Section 5.3.4. Finally, the probabilities 𝛼= (𝛼(p) , 𝛼(c))⊺ for
the passing 𝜏(p) and the cut-in 𝜏(c) trajectory must be predicted. These probabilities are
generated with a linear layer and a softmax function on top of the context vector.

5.3.4 Soft and Hard Output Constraints

A challenge of multimodal trajectory prediction is the prediction of well-separated trajec-
tory modes [Makansi et al., 2019]. In the following, soft and hard constraints on the NN’s
output are considered to address this difficulty. The constraints are defined on the mean
values of the waypoints of the passing `(p) = (`(p)1 , . . . , `

(p)
𝐿
) and the cut-in trajectory

`(c) = (`(c)1 , . . . , `
(c)
𝐿
) with the goal to encourage a clear lateral separation between these

two trajectories.

For the soft constraints, a loss term is defined that penalizes converging and diverging
modes. The lateral mean displacement error ℓLMDE between the two trajectories is used
as distance measure and an optimal value 𝑣LMDE for this distance is set. The loss of the
soft constraint ℓC is the deviation of the actual distance and the set optimal value:

ℓC(`(p) , `(c)) =|ℓLMDE(`(p) , `(c)) − 𝑣LMDE |, (5.15)

ℓLMDE(`(p) , `(c)) =
1
𝐿

∑︁
𝑙

|`(p)
𝑙,𝑦
− `(c)

𝑙,𝑦
|. (5.16)

The loss of the soft constraint ℓC is added to the training loss (see Section 5.3.5) with the
weight 𝑤C. Empirically, the optimal mean lateral distance was determined to 𝑣LMDE =

0.75 m and the weight for the loss term to 𝑤C=1 m−1.

For the hard output constraints, the lateral components of the cut-in trajectory are forced
to be separated from the passing trajectory with increasing distances for waypoints in
the more distant future. Formally, the minimum lateral distances are set via a quadratic

128

5.3 Methods

Figure 5.10: The hard constraints enforce a quadratically increasing minimum lateral separation of the cut-in
trajectory (red) from the passing trajectory (grey). For the 𝑙th waypoint, the minimum lateral
separation is given by |` (c)

𝑙,𝑦
− ` (p)

𝑙,𝑦
| ≥ 𝑏 · (𝑙/𝐿)2.

function |`(c)
𝑙,𝑦
− `(p)

𝑙,𝑦
| ≥ 𝑏 · (𝑙/𝐿)2 as visualized in Figure 5.10. Here, 𝑏 is the minimum

lateral distance between the waypoints at the end of the prediction horizon. Based on
empirical observations, the value was set to 𝑏=0.7 m. The output constraint is embedded
in the NN architecture with the concept of ConstraintNet [Brosowsky et al., 2021c].
According to the constraint guard layer in Brosowsky et al. [2021c], the output constraint
is parametrized:

`
(c)
𝑙,𝑦

= `
(p)
𝑙,𝑦
± [𝑏 · (𝑙/𝐿)2 + exp(𝑧𝑙)] . (5.17)

Here, 𝑧𝑙 is an intermediate unconstrained variable for the lateral component of the cut-
in trajectory. The exponential function generates a positive value and is added to the
minimum lateral distance. Depending on whether the target vehicle is on the left (−) or
right (+) neighboring lane, the sign in front of the bracket is determined i.e. the cut-in
trajectory is on the right or left-hand side of the passing trajectory. The target vehicle is
assigned to the left lane when the distance to the left lane marking is smaller than to the
right lane marking and vice versa. As visualized in Figure 5.9, the constraint guard layer
can be added on top of the architecture without constraints. Starting with the architecture
without constraints, the lateral components of the waypoints `(c)

𝑙,𝑦
of the cut-in trajectory

can be used as intermediate unconstrained variable 𝑧𝑙 for the architecture with hard output
constraints. Finally, the constraint guard layer is applied and ensures that the output
constraints hold.

5.3.5 Loss

In many classification and regression tasks, the loss is interpreted as an average error that
measures the discrepancy between the model’s prediction and the label. According to
this intuition, the joint trajectory and cut-in prediction can be trained with a cross-entropy
loss for the maneuver classification and an MSE loss for the trajectory part. However, the
output also includes uncertainties of the trajectory waypoints as visualized in Figure 5.1.
For these uncertainties, no labels exist. A solution provides the MLE approach, which
was introduced in Section 2.2.3. The approach is equivalent to minimizing the NLL loss.
Thus, in the following the NLL loss is derived for the joint trajectory and cut-in prediction.
In practice, a mixture of error-based losses and the NLL loss performed optimal.

As introduced in Chapter 5.1, the NN output _ can be interpreted as parameters of an
output distribution. The output distribution is bimodal (𝑚 = p/c) and independent 2D

129

Joint Vehicle Trajectory and Cut-In Prediction with Constrained Neural Networks

Gaussian distributions are assumed for the waypoints. According to the Equations (5.1),
(5.2), and (5.4), the likelihood of a training sample (𝑦, 𝑚, 𝑥) can be written as:

𝑝(𝑦, 𝑚 |_) = 𝑝(𝑚 |𝛼(p) , 𝛼(c))
𝐿∏
𝑙=1
N(𝑦𝑙 |𝜏(𝑚)𝑙

), (5.18)

with _ = 𝑓\ (𝑥) comprising the maneuver probabilities 𝛼(p/c) and the parameters of the
waypoint distributions 𝜏(p/c)

𝑙
. The NLL loss for this distribution splits into a cross-entropy

part for the maneuvers and a separate term for the trajectories:

ℓNLL(𝑦, 𝑚, _) = ℓCE(𝑚, 𝛼(𝑚)) + 𝑤 · ℓTNLL(𝑦, 𝜏(𝑚)), (5.19)

with 𝑤 a scaling factor. While the cross-entropy loss function ℓCE is well known, the loss
function of the trajectory part ℓTNLL requires further explanation. An analytical expression
for ℓTNLL can be derived as follows:

ℓTNLL(𝑦, 𝜏(𝑚)) ∝ − log
𝐿∏
𝑙=1
N(𝑦𝑙 |𝜏(𝑚)𝑙

) ∝ − 1
𝐿

∑︁
𝑙

logN(𝑦𝑙 |𝜏(𝑚)𝑙
). (5.20)

Here, N(·|·) are 2D Gaussian distributions, which are parametrized by mean values,
variances, and a correlation coefficient:

N(𝑦𝑥 , 𝑦𝑦 |`𝑥 , `𝑦, 𝜎𝑥 , 𝜎𝑦, 𝜌) =
1

2𝜋𝜎𝑥𝜎𝑦
√︁

1 − 𝜌2
exp

(
− 1

2(1 − 𝜌2)

[
(𝑦𝑥 − `𝑥)2

𝜎2
𝑥

+ (5.21)

(𝑦𝑦 − `𝑦)2

𝜎2
𝑦

−
2𝜌(𝑦𝑥 − `𝑥) (𝑦𝑦 − `𝑦)

𝜎𝑥𝜎𝑦

])
.

The final expression for the NLL loss of the trajectory part is obtained by plugging
Equation (5.21) in Equation (5.20):

ℓTNLL(𝑦, 𝜏(𝑚)) =
1
𝐿

∑︁
𝑙

[
log

(
2𝜋𝜎𝑥𝜎𝑦

√︃
1 − 𝜌2

)
+ 1

2(1 − 𝜌2)

(
(𝑦𝑥 − `𝑥)2

𝜎2
𝑥

+
(𝑦𝑦 − `𝑦)2

𝜎2
𝑦

(5.22)

−
2𝜌(𝑦𝑥 − `𝑥) (𝑦𝑦 − `𝑦)

𝜎𝑥𝜎𝑦

)] (𝑚)
𝑙

.

In this equation, the indices 𝑙 and 𝑚 for 𝜏(𝑚)
𝑙

= (`(𝑚)
𝑙,𝑥
, `
(𝑚)
𝑙,𝑦
, 𝜎
(𝑚)
𝑙,𝑥
, 𝜎
(𝑚)
𝑙,𝑦
, 𝜌
(𝑚)
𝑙
)
⊺

are shifted
to the outer closing bracket. An isotropic homoscedastic model is obtained by assuming a
constant and isotropic standard deviation (𝜎 (𝑚)

𝑙,𝑥/𝑦 =const and 𝜌(𝑚)
𝑙

=0). In the homoscedastic
case, ℓTNLL turns out to be the mean squared error loss except for a weighting factor and
an additive constant:

ℓMSE
(
𝑦, `(𝑚)

)
=

1
2𝐿

∑︁
𝑙

(
𝑦𝑙,𝑥 − `(𝑚)𝑙,𝑥

)2 +
(
𝑦𝑙,𝑦 − `(𝑚)𝑙,𝑦

)2
. (5.23)

130

5.4 Experiments

In the following, ℓTNLL refers only to the heteroscedastic case and ℓMSE is used as an
additional loss term to stabilize training. Empirically, the best performance was found
when using the following mixture of different loss terms:

ℓ(𝑦, 𝑚, _) =𝑤CEℓCE
(
𝑚, 𝛼(𝑚)

)
+ 𝑤TNLLℓTNLL

(
𝑦, 𝜏(𝑚)

)
(5.24)

+𝑤MSEℓMSE
(
𝑦, `(𝑚)

)
+ 𝑤LMSEℓLMSE

(
𝑦, `(𝑚)

)
,

with weighting factors 𝑤CE = 20, 𝑤LMSE = 20 m−2, 𝑤MSE = 1 m−2, and 𝑤TNLL = 0.01. In
comparison to ℓMSE, the lateral mean squared error loss ℓLMSE is the mean squared value
of only the lateral error 𝑦𝑙,𝑦 − `(𝑚)𝑙,𝑦

. In the probabilistic picture, adding ℓLMSE can be
interpreted as assuming less uncertainty for the lateral part 𝜎 (𝑚)

𝑦,𝑙
<𝜎

(𝑚)
𝑥,𝑙

.

5.4 Experiments

5.4.1 Evaluation Metrics

In this section, evaluation metrics are defined for 1) the maneuver and 2) the trajectory
prediction.

1) For the maneuver prediction, in each time step 𝑡𝑘 a cut-in �̂��̃� (𝑡𝑘) = c or a passing
maneuver �̂��̃� (𝑡𝑘)=p is assigned by thresholding the model’s probability for a cut-in 𝛼(c):

�̂��̃� (𝑡𝑘) =
{

c if 𝛼(c) (𝑥𝑘) ≥ �̃�,
p if 𝛼(c) (𝑥𝑘) < �̃�,

(5.25)

with �̃� a specifiable threshold. Next, the predictions of a scenario are summarized in one
single event. This results in a scenario-wise evaluation and supports the interpretability
of the evaluation. For a cut-in scenario, a true positive (tp) is defined if and only if the
model predicts the cut-in at least 𝑇min=0.6 s and maximally 𝑇max=12 s before the labeled
cut-in time 𝑡c:

tp⇔ ∃𝑡𝑘 ∈ [𝑡𝑐−𝑇max, 𝑡𝑐−𝑇min] : �̂��̃� (𝑡𝑘) = c. (5.26)

A true positive is visualized in Figure 5.11. Otherwise, the cut-in scenario is evaluated as
a false negative (fn):

fn⇔ ∀𝑡𝑘 ∈ [𝑡𝑐−𝑇max, 𝑡𝑐−𝑇min] : �̂��̃� (𝑡𝑘) = p. (5.27)

For a passing scenario, a true negative (tn) is defined if and only if the model predicts a
passing maneuver for all time steps of the scenario:

tn⇔ ∀𝑡𝑘 ∈ [𝑡s, 𝑡e] : �̂��̃� (𝑡𝑘) = p. (5.28)

Otherwise, the passing scenario is evaluated as a false positive (fp):

fp⇔ ∃𝑡𝑘 ∈ [𝑡s, 𝑡e] : �̂��̃� (𝑡𝑘) = c. (5.29)

131

Joint Vehicle Trajectory and Cut-In Prediction with Constrained Neural Networks

Figure 5.11: For a correctly predicted cut-in, i.e. a true positive, the figure shows the model’s cut-in prob-
ability 𝛼 (c) over time 𝑡. First, the cut-in probability is on a relatively low level. Then, the
probability increases rapidly and overshoots the threshold of �̃� = 0.8 at 𝑡𝑐 = 8.3 s. This time
point 𝑡𝑐 of prediction happens 𝑇gain = 2.2 s before the target vehicle crosses the lane marking
and is assigned to the ego lane at 𝑡𝑐 =10.5 s. The time gain of 𝑇gain=2.2 s is above the minimum
value of 𝑇min = 0.6 s. Therefore, this scenario is evaluated as a true positive. If the prediction
would be a false negative, the cut-in probability 𝛼 (c) would be below the threshold �̃� for all
time steps in the window [𝑡𝑐−𝑇max, 𝑡𝑐−𝑇min], with 𝑇max=12 s and 𝑇min=0.6 s.

Based on these definitions, the following quantities are considered as evaluation metrics.
The precision is the ratio of the number of all correctly detected cut-ins divided by the
number of all detected cut-ins including the false positives:

precision =
#tp

#tp + #fp
. (5.30)

The recall is the ratio of the number of all correctly detected cut-ins divided by the number
of all actual cut-ins including the false negatives:

recall =
#tp

#tp + #fn
. (5.31)

The trade-off between precision and recall is adjusted with the threshold �̃�. In this thesis,
the threshold �̃� is increased in steps of 0.1 until a minimum precision of 94% is reached.
Furthermore, the mean time gain is considered as evaluation metric. For a true positive,
the first time of a cut-in prediction in the relevant time window is denoted with 𝑡c and the
time gain is defined as 𝑇gain= 𝑡c−𝑡c. Finally, the mean time gain is determined over all true
positives:

⟨𝑇gain⟩ = ⟨𝑡c − 𝑡c⟩. (5.32)

Note that the cut-in time 𝑡𝑐 is defined as the time point when the target vehicle has crossed
the lane marking with its center and the target vehicle is assigned to the ego lane. Thereby,
the metric represents the time gain for a downstream system, e.g. an ACC. Additionally,
the time gain is computed w.r.t. the time when only the center of the target vehicle has
crossed the lane marking independently of the lane assignment. In the following, the
former definition is meant if not specified otherwise.

2) For evaluating the trajectory prediction, different metrics are measured at random time
steps within the scenarios. The sampling procedure of the time steps is analogous to the
sampling step in the preprocessing, which is described in Section 5.4.2. For the sampled
time steps, the two trajectories `(p) , `(c) are predicted and the winner trajectory `(�̂�) is
determined by selecting the maneuver with the higher probability �̂� = �̂��̃�=0.5. Next, the

132

5.4 Experiments

Figure 5.12: The trajectory metrics measure distances between the more probable of the two predicted
trajectories, the so-called winner trajectory ` (�̂�) , and the ground truth 𝑦. For the distance
measures, the Mean Squared Error (MSE) and the mean Euclidean distance, here referred to
as Mean Displacement Error (MDE), are used and evaluated on waypoint-level. Additionally,
the prefix L for lateral indicates that only lateral components are considered and the prefix F
for final denotes that only the waypoints in the most distance future are evaluated. E.g. LMDE
is the Lateral Mean Displacement Error.

distance between the winner trajectory and the ground truth 𝑦 is measured with different
metrics ℓX as visualized in Figure 5.12. Finally, the mean value of a distance metric over
all samples results in the evaluation metric:

X = ⟨ℓX(𝑦, `(�̂�))⟩. (5.33)

The following evaluation metrics X are considered:

• Mean Squared Error (MSE): ℓMSE(𝑦, `(�̂�))= 1
2𝐿

∑
𝑙

(
𝑦𝑙,𝑥 − `(�̂�)𝑙,𝑥

)2 +
(
𝑦𝑙,𝑦 − `(�̂�)𝑙,𝑦

)2,

• Mean Displacement Error (MDE): ℓMDE(𝑦, `(�̂�))= 1
𝐿

∑
𝑙 ∥𝑦𝑙 − `

(�̂�)
𝑙
∥2,

• Final Mean Displacement Error (FMDE): ℓFMDE(𝑦, `(�̂�))= ∥𝑦𝐿 − `(�̂�)𝐿
∥2,

• Lateral Mean Displacement Error (LMDE): ℓLMDE(𝑦, `(�̂�))= 1
𝐿

∑
𝑙 |𝑦𝑙,𝑦 − `

(�̂�)
𝑙,𝑦
|,

• Final Lateral Mean Displacement Error (FLMDE): ℓFLMDE(𝑦, `(�̂�))= |𝑦𝐿,𝑦 − `(�̂�)𝐿,𝑦
|.

In comparison to the MSE, the MDE measures the mean Euclidean distance ∥ · ∥2 between
trajectory waypoints. Analogously to the loss, the prefix L denotes that the corresponding
distance metric is restricted only to the lateral components. A second prefix F is used if
the distance metric is applied only to the final trajectory waypoint, i.e. the trajectory point
in the most distant future 𝑙 = 𝐿. Furthermore, the distance metrics ℓLMDE and ℓFLMDE are
applied on both trajectory modes `(p) , `(c) instead of the winner trajectory `(�̂�) and the
ground truth 𝑦. This allows the evaluation of the lateral separation of the two trajectories.
For these metrics, the prefix M- for mode separation is used and followed by the name of
the distance metric X:

M-X = ⟨ℓX(`(p) , `(c))⟩. (5.34)

E.g. M-FLMDE is the final lateral mean displacement between the predicted cut-in and
passing trajectory.

133

Joint Vehicle Trajectory and Cut-In Prediction with Constrained Neural Networks

Figure 5.13: The figure shows an overview of the preprocessing steps. The steps generate the input sequence
𝑥𝑘 of the model, set the label of the maneuver 𝑚𝑘 =p/c, and determine the ground truth of the
future trajectory 𝑦𝑘 . For training and for the evaluation of the trajectory metrics, procedures are
defined to sample time points 𝑡𝑘 randomly from scenarios. For a cut-in scenario, the maneuver
labels 𝑚𝑘 are set to cut-in in the time window that covers 𝑇label=3.5 s before the target vehicle
becomes the CIPV at 𝑡𝑐. For the other time steps, the maneuver labels are set to passing. In
order to sample more frequently from the time interval with cut-in labels, the time points 𝑡𝑘 are
sampled from a Gaussian distribution with a mean value 𝑇off = 2.3 s before 𝑡𝑐 and a standard
deviation of 𝜎 =4 s. If the target vehicle passes, all maneuver labels are set to passing 𝑚𝑘 =p
and the time point 𝑡𝑘 for prediction is sampled uniformly between the start 𝑡𝑠 and the end time
𝑡𝑒 of the scenario. For the trajectory of the target vehicle, an odometry algorithm is performed
on motion data of the ego vehicle and combined with measurements of the relative position of
the target vehicle w.r.t. the ego vehicle (compare Figure 5.14 and Algorithm 3).

5.4.2 Preprocessing

If a scenario 𝑠 is selected from the data set, the preprocessing steps enable to sample a time
point 𝑡𝑘 and to compute the input sequence 𝑥𝑘 , the future trajectory 𝑦𝑘 , and the maneuver
label 𝑚𝑘 automatically. An overview of the preprocessing steps is shown in Figure 5.13.
The preprocessing steps leverage the information of the scenario descriptor 𝑠 from the data
set. The descriptor 𝑠 includes pointers to the file 𝑓 with the multivariate sensor data, the
start 𝑡𝑠 and the end time 𝑡𝑒 of the scenario in the file, an identifier 𝑖 of the target vehicle,
and a label 𝑒=p/c for whether the target vehicle passes the ego vehicle or performs a cut-in
maneuver. If the target vehicle cuts in, additionally the time point when the target vehicle
becomes CIPV 𝑡𝑐 is part of the scenario descriptor 𝑠.

Sampling time points 𝑡𝑘 : In training and for the evaluation of the trajectory metrics, time
points for the prediction 𝑡𝑘 are sampled randomly from a scenario. For passing scenarios,
the time points are sampled from a uniform distribution over the total scenario [𝑡s, 𝑡e]. For
cut-in scenarios, a Gaussian with mean value `= 𝑡𝑐−𝑇off (𝑇off=2.3 s) and standard deviation
𝜎=4 s is used to sample more frequently when cut-in maneuvers become predictable.

134

5.4 Experiments

Maneuver labels 𝑚𝑘 : For all time steps of a passing scenario (𝑒=p), the maneuver labels
𝑚𝑘 are set to passing:

𝑒 = p⇒ ∀𝑡𝑘 ∈ [𝑡𝑠, 𝑡𝑒] : 𝑚𝑘 = p. (5.35)

A cut-in scenario (𝑒=c) includes also many time steps with the label passing. Only for a
duration of 𝑇label=3.5 s before 𝑡𝑐, the labels 𝑚𝑘 are set to cut-in:

𝑒 = c⇒ 𝑚𝑘 =

{
c for 𝑡𝑘 ∈ [𝑡𝑐−𝑇label, 𝑡𝑐],
p else.

(5.36)

Input sequence 𝑥𝑘 and future trajectory 𝑦𝑘 : Except for the target vehicle’s trajectory, all
features of the input sequence 𝑥𝑘 are either directly available in the signals or can be
computed from several signals with straightforward expressions. Thus, the focus is on
computing the trajectory. First, the target vehicle’s trajectory (𝑥tar,𝑘 , 𝑦tar,𝑘)⊺𝑘∈𝐼 is determined
in a global reference system, which is explained in the next paragraph. Then, the past and
future trajectory are transformed in a target vehicle-centric reference system for arbitrary
time steps 𝑡𝑘 by applying a translation and a rotation:

past trajectory :

(
𝑥tar,𝑘−ℎ

�̃�tar,𝑘−ℎ

)
← 𝑅(−\tar,𝑘)

[(
𝑥tar,𝑘−ℎ

𝑦tar,𝑘−ℎ

)
−

(
𝑥tar,𝑘

𝑦tar,𝑘

)]
with ℎ ∈ {0, . . . , 𝐻},

(5.37)

future trajectory:

(
𝑥tar,𝑘+𝑙

�̃�tar,𝑘+𝑙

)
← 𝑅(−\tar,𝑘)

[(
𝑥tar,𝑘+𝑙

𝑦tar,𝑘+𝑙

)
−

(
𝑥tar,𝑘

𝑦tar,𝑘

)]
with 𝑙 ∈ {1, . . . , 𝐿}.

In the formula, 𝑅(·) is the 2D rotation matrix, (𝑥tar,𝑘 , �̃�tar,𝑘)⊺ is the position in the target
vehicle’s reference system, (𝑥tar,𝑘 , 𝑦tar,𝑘)⊺ is the position in the global reference system,
and \tar,𝑘 is the heading angle in the global reference frame.

Target vehicle’s trajectory in a global reference frame: The target vehicle’s trajectory is
computed with odometry and from the relative positions of the target vehicle w.r.t. the ego
vehicle. The twofold process is visualized in Figure 5.14 and the explicit computations
are summarized in Algorithm 3. First, the trajectory of the ego vehicle is computed
with odometry in a global reference frame that is fixed to the ego vehicle’s position and
orientation at the initial time step zero. Next, the waypoints (𝑥ego,𝑘 , 𝑦ego,𝑘)⊺ and the
heading angles \ego,𝑘 are updated iteratively with the update rule:

𝑥ego,𝑘+1 = 𝑥ego,𝑘 + 𝑑𝑥ego,𝑘 , (5.38)
𝑦ego,𝑘+1 = 𝑦ego,𝑘 + 𝑑𝑦ego,𝑘 ,

\ego,𝑘+1 = \ego,𝑘 + 𝑑\ego,𝑘 ,

with 𝑑𝑥ego,𝑘 , 𝑑𝑦ego,𝑘 for the driven distance, and 𝑑\ego,𝑘 the change in the heading angle
between time steps 𝑘 and 𝑘 +1. To support readability, in the following the subscript
for the ego vehicle is skipped. The driven distance between two time steps 𝑑𝑥′

𝑘
, 𝑑𝑦′

𝑘
is

computed in the reference system of the ego vehicle at time step 𝑘 and then transformed
to the distance 𝑑𝑥𝑘 , 𝑑𝑦𝑘 in the reference system of the ego vehicle at time step zero by

135

Joint Vehicle Trajectory and Cut-In Prediction with Constrained Neural Networks

Figure 5.14: The trajectory of the target vehicle (blue) is computed in two steps. First, the trajectory of
the ego vehicle (green) is determined in a global reference frame that is fixed to the ego
vehicle’s position and orientation at the initial time step zero. Second, the waypoints of target
vehicle’s trajectory 𝑥tar,𝑘 , 𝑦tar,𝑘 are given by adding the relative positions between target and
ego vehicle 𝑥′rel,tar,𝑘 , 𝑦

′
rel,tar,𝑘 to the ego vehicle’s waypoints 𝑥ego,𝑘 , 𝑦ego,𝑘 after rotating with the

heading angle \ego,𝑘 at the corresponding time step. The relative positions 𝑥′rel,tar,𝑘 , 𝑦
′
rel,tar,𝑘 are

measured in the reference system that is fixed to the ego vehicle’s position and orientation at
time step 𝑘 .

applying a rotation. Both reference systems are visualized in Figure 5.14. In the ego
vehicle’s reference frame at time step 𝑘 , the ego vehicle’s velocity can be written by its
absolute value 𝑣 and its heading angle \′:

𝑣′𝑥 (𝑡) = 𝑣(𝑡) cos
(
\′(𝑡)

)
, (5.39)

𝑣′𝑦 (𝑡) = 𝑣(𝑡) sin
(
\′(𝑡)

)
.

Between two time steps [𝑡𝑘 , 𝑡𝑘+1], the heading angle and the absolute velocity is approxi-
mated with a first order Taylor expansion:

\′(𝑡′) = 𝜔𝑘 𝑡′, (5.40)
𝑣(𝑡′) = 𝑣𝑘 + 𝑎𝑘 𝑡′,

with𝜔𝑘 = ¤\ (𝑡𝑘) the angular velocity, 𝑎𝑘 = ¤𝑣(𝑡𝑘) the longitudinal acceleration, and 𝑡′= 𝑡−𝑡𝑘 ∈
[0, 𝑑𝑡] the time starting at time step 𝑘 . Using this approximation, the driven distance of
the ego vehicle between the two time steps can be computed as follows:

𝑑𝑥′𝑘 =

∫ 𝑑𝑡

0
𝑣′𝑥 (𝑡′)𝑑𝑡′ =

∫ 𝑑𝑡

0
(𝑣𝑘 + 𝑎𝑘 𝑡′) cos(𝜔𝑘 𝑡′)𝑑𝑡′ (5.41)

=
𝑣𝑘 + 𝑎𝑘𝑑𝑡

𝜔𝑘
sin(𝜔𝑘𝑑𝑡) +

𝑎𝑘

𝜔2
𝑘

(
cos(𝜔𝑘𝑑𝑡) − 1

)
|𝜔𝑘 |<𝜖≈ 𝑣𝑘𝑑𝑡 +

1
2
𝑎𝑘𝑑𝑡

2,

136

5.4 Experiments

Algorithm 3 Computation of the ego and the target vehicle’s trajectory.
1: Input
2: 𝑣 ← (𝑣0, . . . , 𝑣𝐾) ⊲ absolute velocity of the ego vehicle
3: 𝑎 ← (𝑎0, . . . , 𝑎𝐾) ⊲ longitudinal acceleration of the ego vehicle
4: 𝜔← (𝜔0, . . . , 𝜔𝐾) ⊲ angular velocity of the ego vehicle’s heading
5: 𝑥′rel,tar ← (𝑥

′
rel,tar,0, . . . , 𝑥

′
rel,tar,𝐾), ⊲ relative position of target vehicle w.r.t. ego vehicle

6: 𝑦′rel,tar ← (𝑦
′
rel,tar,0, . . . , 𝑦

′
rel,tar,𝐾)

7:
8: Output
9: 𝑥ego ← (𝑥ego,0, . . . , 𝑥ego,𝐾) ⊲ trajectory of the ego vehicle

10: 𝑦ego ← (𝑦ego,0, . . . , 𝑦ego,𝐾)
11: \ego ← (\ego,0, . . . , \ego,𝐾) ⊲ heading angle of the ego vehicle
12: 𝑥tar ← (𝑥tar,0, . . . , 𝑥tar,𝐾) ⊲ trajectory of the target vehicle
13: 𝑦tar ← (𝑦tar,0, . . . , 𝑦tar,𝐾)
14:
15: 𝑥ego,0 ← 0, 𝑦ego,0 ← 0, \ego,0 ← 0 ⊲ initial position and heading angle of the ego vehicle
16: (𝑥tar,0, 𝑦tar,0)⊺ ← (𝑥′rel,tar,0, 𝑦

′
rel,tar,0)

⊺ ⊲ initial position of the target vehicle
17: for 𝑘 = 0 to 𝐾 − 1 do
18: if |𝜔𝑘 | < 10−4 then
19: 𝑑𝑥′

𝑘
← 𝑣𝑘𝑑𝑡 + 1

2𝑎𝑘𝑑𝑡
2

20: 𝑑𝑦′
𝑘
←

(1
2𝑣𝑘 +

1
3𝑎𝑘𝑑𝑡

)
𝜔𝑘𝑑𝑡

2

21: else
22: 𝑑𝑥′

𝑘
← 𝑣𝑘+𝑎𝑘𝑑𝑡

𝜔𝑘
sin(𝜔𝑘𝑑𝑡) + 𝑎𝑘

𝜔2
𝑘

(
cos(𝜔𝑘𝑑𝑡) − 1

)
23: 𝑑𝑦′

𝑘
← − 𝑣𝑘+𝑎𝑘𝑑𝑡

𝜔𝑘
cos(𝜔𝑘𝑑𝑡) + 𝑎𝑘

𝜔2
𝑘

sin(𝜔𝑘𝑑𝑡) + 𝑣𝑘
𝜔𝑘

24: end if
25: (𝑑𝑥𝑘 , 𝑑𝑦𝑘)⊺ ← 𝑅(\ego,𝑘) (𝑑𝑥′𝑘 , 𝑑𝑦

′
𝑘
)⊺ ⊲ transformation to global reference system

26: 𝑑\ego,𝑘 ← 𝜔𝑘𝑑𝑡 ⊲ change in heading angle
27: 𝑥ego,𝑘+1 ← 𝑥ego,𝑘 + 𝑑𝑥𝑘
28: 𝑦ego,𝑘+1 ← 𝑦ego,𝑘 + 𝑑𝑦𝑘
29: \ego,𝑘+1 ← \ego,𝑘 + 𝑑\𝑘
30: (𝑥tar,𝑘+1, 𝑦tar,𝑘+1)⊺ ← (𝑥ego,𝑘+1, 𝑦ego,𝑘+1)⊺ + 𝑅(\ego,𝑘+1) (𝑥′rel,tar,𝑘+1, 𝑦

′
rel,tar,𝑘+1)

⊺

31: end for

𝑑𝑦′𝑘 =

∫ 𝑑𝑡

0
𝑣′𝑦 (𝑡′)𝑑𝑡′ =

∫ 𝑑𝑡

0
(𝑣𝑘 + 𝑎𝑘 𝑡′) sin(𝜔𝑘 𝑡′)𝑑𝑡′ (5.42)

= −𝑣𝑘 + 𝑎𝑘𝑑𝑡
𝜔𝑘

cos(𝜔𝑘𝑑𝑡) +
𝑎𝑘

𝜔2
𝑘

sin(𝜔𝑘𝑑𝑡) +
𝑣𝑘

𝜔𝑘

|𝜔𝑘 |<𝜖≈
(1
2
𝑣𝑘 +

1
3
𝑎𝑘𝑑𝑡

)
𝜔𝑘𝑑𝑡

2.

For small angular velocities |𝜔𝑘 | < 𝜖 = 10−4, the given approximations are precise and
used. The driven distance between two time steps in the reference system that is fixed to
the ego vehicle at time step zero is given by applying a rotation with the heading angle \𝑘 :(

𝑑𝑥ego,𝑘

𝑑𝑦ego,𝑘

)
= 𝑅(\𝑘)

(
𝑑𝑥′

𝑘

𝑑𝑦′
𝑘

)
. (5.43)

137

Joint Vehicle Trajectory and Cut-In Prediction with Constrained Neural Networks

Hyperparameter Value range Best value Description

𝑁batch 8, 16, 32, . . . , 256 128 Batch size.
stepmax 100, 101, . . . , 1000 429 Warm start gradient descent steps.
𝑤 0.156 · (

√
10)𝑛 : 𝑛=−4, −3, . . . , 1 0.049 Learning rate factor.

𝑑context 8, 16, 32, . . . , 512 256 Dimension of context vector.
𝑑in, emb 8, 16, 32, . . . , 512 32 Dimension of input embedding.
𝑑h, enc 8, 16, 32, . . . , 512 128 Dimension of hidden state (encoder).
𝑑h, dec 8, 16, 32, . . . , 512 512 Dimension of hidden state (decoder).

Table 5.3: The table summarizes the hyperparameters, their discrete value ranges, and the found optimal
values. The hyperparameters that refer to dimensions in the NN architecture are visualized in
Figure 5.9.

The update of the heading angle is 𝑑\ego,𝑘 =𝜔𝑘𝑑𝑡. Given the increments 𝑑𝑥ego,𝑘 , 𝑑𝑦ego,𝑘
and 𝑑\ego,𝑘 , Equations (5.38) allow to iteratively compute the ego vehicle’s trajectory.
Finally, the target vehicle’s trajectory is obtained by shifting the ego vehicle’s trajectory
with the rotated relative distances:(

𝑥tar,𝑘

𝑦tar,𝑘

)
=

(
𝑥ego,𝑘

𝑦ego,𝑘

)
+ 𝑅(\ego,𝑘)

(
𝑥′rel,tar,𝑘
𝑦′rel,tar,𝑘

)
. (5.44)

The rotation is required to transform the relative positions to the reference frame that is
fixed to the ego vehicle at time step zero.

5.4.3 Training

For training, the Adam optimizer [Kingma and Ba, 2014] is used with a standard parameter
choice of 𝛽1 = 0.9 and 𝛽2 = 0.98. The explicit update rule of Adam and the meaning of
the parameters are given in Equation (2.19). Furthermore, the learning rate [is set with a
warm start scheduler [Vaswani et al., 2017]:

[= 𝑤/
√︁

stepmax ·min(step/stepmax,
√︁

stepmax/step), (5.45)

with step for the current gradient descent step, 𝑤 a learning rate scale factor and stepmax
the step with the maximum learning rate of 𝑤/√stepmax. During training, the loss on the
validation set is computed every 100 steps, the model weights are saved if the model has
improved, and the learning rate is reduced with a factor of 10 if the validation loss has not
improved four times in a row.

Additionally to the model weights, there are hyperparameters that must be tuned separately.
An overview of the hyperparameters is given by Table 5.3. Instead of manual tuning, the
hyperparameters are optimized systematically with a hyperparameter optimization algo-
rithm. For the objective of the optimization, the loss in Equation (5.24) is evaluated on
the validation set. The Tree-structured Parzen Estimator (TPE) [Bergstra et al., 2011]
with Hyperband pruning [Li et al., 2017a] is chosen as the optimization algorithm and

138

5.4 Experiments

the algorithm is implemented with the framework Optuna [Akiba et al., 2019]. TPE is a
strategy for sequential model-based global optimization. Instead of directly determining
the surrogate 𝑝(𝑦 |𝑥) (𝑦 is the score, 𝑥 is the hyperparameter configuration), 𝑝(𝑥 |𝑦) and
𝑝(𝑦) are modeled and Bayesian theorem is applied. TPE is particularly suitable if evalu-
ating hyperparameters is expensive. Furthermore, Hyperband pruning terminates training
of unpromising configurations. Thus, the principle is the allocation of resources for the
promising trials. The explained hyperparameter optimization is performed on the bimodal
LSTM-based model without constraints, a duration of cut-in labels of 𝑇label =3.5 s, and a
weight of 𝑤LMSE = 20 m−2 for the lateral part of the loss. In the following, this model is
referred to as the basic model and Table 5.3 shows the found optimal hyperparameters.
The optimal values of the basic model are used for further trainings with the following
modifications:

• A maneuver classification is performed purely and the trajectory prediction by the
decoder is excluded.

• A trajectory prediction with a single mode is performed purely and the maneuver
prediction is excluded.

• The duration of the cut-in labels is reduced from 𝑇label=3.5 s to 𝑇label=2 s.

• The lateral mean squared error part of the loss is removed, i.e. 𝑤LMSE = 0 m−2 in
Equation (5.24).

• The soft constraints are applied with 𝑤C = 1 m−1 and 𝑣LMAD = 0.75 m−1 in Equa-
tion (5.15). Empirically, these values have been found for an optimal trade-off
between the separation of the cut-in and passing trajectory and the accuracy.

• ConstraintNet and hard constraints are applied and enforce a minimum lateral move-
ment of 𝑏 =0.7 m over 3 s for a cut-in maneuver (see Equation (5.17)). The choice
of 𝑏=0.7 m is based on an analysis of cut-in trajectories.

The modifications are applied to analyze the influences of the design choices and the
constraints.

5.4.4 Results

Table 5.4 and Table 5.5 show the results of the basic and the modified LSTM-based
models. The numbers result from evaluating the models on the test set with the metrics
of Section 5.4.1. The mean values and the standard deviations are determined from five
trainings with different and random weight initializations. For comparison, additionally
the following two rule-based models are introduced. 1) For the maneuver prediction,
a cut-in detection is defined if the lateral distance of the target vehicle’s center to the
lane marking is less than 0.2 m. Analogously to adjusting the threshold �̃� for the cut-in
detection of the LSTM-based models, the threshold of the baseline is set such that just a
minimum precision of 94% is reached. 2) For the trajectory prediction, a constant velocity
model is applied as baseline, i.e. the trajectory is extrapolated based on the last estimation
of the target vehicle’s velocity.

139

Joint Vehicle Trajectory and Cut-In Prediction with Constrained Neural Networks

Model Precision [%] Recall [%] Time Gain [s]

thresholding (0.2 m) 94.4 68.7 1.00 (0.28)

LSTM (pure classification) 95.8 ± 0.6 96.3 ± 0.4 2.68 ± 0.05 (2.10 ± 0.04)
LSTM (basic model) 95.3 ± 0.7 95.3 ± 0.7 2.70 ± 0.07 (2.13 ± 0.07)
LSTM (𝑇label = 2 s) 95.3 ± 1.2 96.9 ± 0.4 2.44 ± 0.11 (1.86 ± 0.11)
LSTM (𝑤LMSE = 0 m2) 94.9 ± 0.9 96.1 ± 0.2 2.68 ± 0.07 (2.11 ± 0.07)

LSTM (ConstraintNet) 95.4 ± 0.5 95.5 ± 0.6 2.77 ± 0.09 (2.19 ± 0.09)
LSTM (soft constraint) 94.8 ± 0.9 95.8 ± 0.5 2.74 ± 0.08 (2.16 ± 0.08)

Table 5.4: For the cut-in prediction, the table shows the evaluation metrics of the LSTM-based models on
the test set. For comparison, the results of a rule-based model that thresholds the distance of the
target vehicle to the lane marking are shown. Optimal values are written in bold and the time gain
is denoted based on two different reference time points. The value without brackets compares the
time point of detection with the time point when the target vehicle is assigned to the ego lane.
The value in brackets represents the time gain w.r.t. the time point when the target vehicle’s center
has crossed the lane marking.

Table 5.4 shows the results of the cut-in prediction. All LSTM-based models achieve more
than twice the time gain of the baseline and improve the recall significantly. For the LSTM-
based model with hard constraints and the baseline, Figure 5.15 shows the distributions
over the time gains of the true positives. Note that a true positive is defined when a cut-in
is detected at least 0.6 s before the actual cut-in. For the baseline, roughly a third of all
actual cutting-in vehicles have a time gain below 0.6 s, which results in a recall of 68.7%.
The baseline’s average time gain of the true positives is 1.0 s. Choosing the baseline’s
threshold above 0.2 m would improve the time gain and the recall, however, at the expense
of a higher number of false positives and the precision would drop below the required
value of 94%. The precison of all LSTM-based models is also adjusted to be slightly
above 94% by setting the detection threshold �̃� correspondingly. For the models with the
basic label duration of 𝑇label = 3.5 s, this precision is reached with a threshold of �̃�=0.8.
In comparison, the model with the shorter label duration of 𝑇label = 2 s achieves the same
precision with a significantly lower threshold of �̃�=0.4. As expected and due to the lower
threshold, the model with the short label duration achieves the highest recall of 96.9±0.4%.
However, the models with the standard label duration achieve only slightly lower recalls
between 95.3±0.7% and 96.3±0.4%. Furthermore, the label duration influences the time
gain. The models with 𝑇label = 3.5 s achieve a time gain of about 2.7±0.1s. In comparison,
the time gain of the model with 𝑇label = 2 s decreases to 2.4±0.1s. Interestingly, the
evaluation metrics of the model with pure maneuver prediction are comparable to the
results of the models with additional trajectory prediction. Probably, the cut-in and the
trajectory prediction task share most of the learned features and no trade-off is required
when learning both tasks jointly.

For the trajectory prediction, the discussion of the results is twofold. On the one hand,
the accuracy is measured with the Mean Squared Error (MSE), Mean Displacement Error
(MDE), Final Mean Displacement Error (MDE), and Lateral Mean Displacement Error
(LMDE). On the other hand, the lateral separation between the cut-in and the passing mode

140

5.4 Experiments

Figure 5.15: For the baseline and ConstraintNet, the figure shows the distribution of time gains on the test
set. Top: The cut-in maneuvers are detected by thresholding the distance of the target vehicle to
the lane marking with 0.2 m. Bottom: The cut-in maneuvers are detected with ConstraintNet,
i.e. the LSTM-based model with hard constraints, and a threshold of �̃�=0.8. True positives are
defined as cut-in detections with a time gain of at least 0.6 s. Therefore, the histograms start
above this value. ConstraintNet achieves a mean time gain of `=2.8 s. This is more than twice
as high as the baseline’s time gain of `=1.0 s.

is analyzed with the metrics Lateral Mean Displacement between Modes (M-LMDE) and
Final Lateral Mean Displacement between Modes (M-FLMDE). The mode separation is
discussed in the context of hard and soft constraints and the duration of cut-in labels. Re-
garding the prediction accuracy, the LSTM-based models outperform the constant velocity
model clearly in all accuracy metrics. The best performing models achieve a Lateral Mean
Displacement Error (LMDE) of 0.36±0.01m, which is only half the error of the constant
velocity model. Thus, the input features comprise information that indicates cut-in or
passing maneuvers far beyond linear extrapolation. Without an additional weighting of
the lateral part in the loss (𝑤LMSE = 0 m−2), the LMDE is downgraded to 0.42±0.01m,
which can be explained as follows. The longitudinal coordinates are of a larger order
of magnitude than the lateral coordinates and therefore the loss is dominated by the lon-
gitudinal part if no additional weighting of the lateral part is included. Furthermore, a
model that predicts a single trajectory is trained and evaluated. The uni- and the bimodal
approach achieve compareable accuracies in all considered metrics. However, a clear ad-
vantage of the bimodal approach is the enhanced interpretability by assigning the modes
semantically to a cut-in and a passing maneuver. Furthermore, it is expected that the ac-
tual but unknown real uncertainty distribution has at least two modes. Thus, the bimodal
model is more realistic than the unimodal model. For analyzing the mode separation of
the bimodal approaches, the Lateral Mean Displacement between Modes (M-LMDE) and

141

Joint Vehicle Trajectory and Cut-In Prediction with Constrained Neural Networks

Model MSE [m2] MDE [m] FMDE [m] LMDE [m] M-LMDE [m] M-FLMDE [m]

const. velocity model 6.26 1.77 3.96 0.70 - -

LSTM (single trajectory) 4.66 ± 0.28 1.57 ± 0.04 3.24 ± 0.10 0.36 ± 0.01 - -
LSTM (basic model) 4.62 ± 0.10 1.58 ± 0.01 3.26 ± 0.02 0.36 ± 0.01 0.58 ± 0.02 1.33 ± 0.04
LSTM (𝑇label = 2 s) 4.81 ± 0.32 1.62 ± 0.10 3.34 ± 0.23 0.36 ± 0.01 0.51 ± 0.04 0.96 ± 0.10
LSTM (𝑤LMSE = 0 m2) 4.58 ± 0.17 1.58 ± 0.03 3.28 ± 0.05 0.42 ± 0.01 0.61 ± 0.05 1.20 ± 0.12

LSTM (ConstraintNet) 4.56 ± 0.19 1.56 ± 0.03 3.24 ± 0.04 0.36 ± 0.01 0.61 ± 0.03 1.41 ± 0.06
LSTM (soft constraint) 4.92 ± 0.27 1.63 ± 0.10 3.40 ± 0.25 0.36 ± 0.01 0.65 ± 0.01 1.34 ± 0.04

Table 5.5: For the trajectory prediction, the table shows the evaluation metrics of the LSTM-based models
and the constant velocity model on the test set. The abbreviations of the evaluation metrics are
explained in Section 5.4.1. Optimal values are written in bold.

Final Lateral Mean Displacement between Modes (M-FLMDE) are measured between the
predicted cut-in and passing trajectory. Larger values of these metrics indicate that the
models capture indeed bimodality and have learned the semantic assignment of a cut-in
and a passing maneuver. On the one hand, the choice of the label duration 𝑇label influ-
ences the mode separation. A reduced label duration of 𝑇label = 2 s results in a less mean
lateral separation of the modes and smaller M-LMDE and M-FLMDE. This is a logical
consequence of the fact that the model is supposed to learn the separated cut-in trajectory
for a shorter duration. On the other hand, imposing hard and soft constraints enhance
mode separation. The model with soft constraints achieves the highest M-LMDE and
ConstraintNet with hard constraints the highest M-FLMDE. Consequently, the intended
effect of the constraints on the mode separation is observed in the experiments. Further-
more, ConstraintNet achieves the best total performance considering all metrics, whereas
the trajectory accuracy decreases slightly with soft constraints. An advantage of the hard
constraints is that the objective is unaffected as long as the hard constraint is valid. Based
on empirical observations, it is reasonable to assume that the lateral movement during a
cut-in maneuver over 𝑇𝐿 = 3 s is at least 0.7 m and therefore choosing a hard constraint
with 𝑏 = 0.7 m is a valid assumption. Contrary to the hard constraints, the loss term
for the soft constraints changes the objective and results in learning a trade-off between
mode separation and accuracy. Empirically, an optimal trade-off between performance
and mode separation was found with the parameters 𝑤C=1 m−1 and 𝑣LMAD=0.75 m−1.

Figure 5.16 shows the bimodal prediction of ConstraintNet and the trajectory prediction
of the constant velocity model for four characteristic time steps of a cut-in scenario.
ConstraintNet predicts roughly equal probabilities for a cut-in and a passing scenario at
time 𝑡𝑘 =7.9 s. The mean values of the two predicted trajectories represent indeed a cut-in
and passing maneuver. Additionally to the mean values, the plot shows the uncertainty of
the predicted trajectory waypoints with a color encoding of the density. As expected, the
model predicts a higher longitudinal than lateral uncertainty and a higher uncertainty for
waypoints in the more distant future. Thus, the predicted distributions of the joint bimodal
trajectory and cut-in prediction demonstrate an improved interpretability compared to a
pure maneuver classification or the prediction of a single trajectory. The trajectory of

142

5.4 Experiments

Figure 5.16: For a cut-in scenario, the predictions of ConstraintNet (red, gray) and of the constant velocity
model (pink) are visualized in a bird’s-eye view at four times 𝑡𝑘 . The actual driven trajectory is
shown in green. Scene at 𝑡𝑘 =7.9 s: For both modes, similar probabilities 𝛼 (p/c) are predicted
by ConstraintNet and the heteroscedastic uncertainty of the trajectory waypoints is visualized.
The color encodes the predicted Gaussian probability density of the waypoint. For illustration
purposes, the density of only every third waypoint is visualized and the peak of the density
is normalized. Scene at 𝑡𝑘 = 8.3 s: For the cut-in maneuver, a probability of 𝛼 (c) = 80.0%
is predicted while the target vehicle is still clearly on the neighboring lane. The trajectory
prediction of ConstraintNet is close to the ground truth, whereas the constant velocity model
suffers from the simple linear interpolation. Scene at 𝑡𝑘 =10.1 s: The plot shows the reference
point when the target vehicle’s center crosses the lane marking. Scene at 𝑡𝑘 = 10.5 s: The
second reference time point 𝑡𝑐 is defined by the time when the target vehicle is assigned to the
lane of the ego vehicle. The figure is based on Brosowsky et al. [2021c].

143

Joint Vehicle Trajectory and Cut-In Prediction with Constrained Neural Networks

Figure 5.17: For the scene at time 𝑡𝑘 =8.3 s in Figure 5.16, the predictions of the LSTM-based model with
hard constraints (ConstraintNet, 𝑇label = 3.5 s) and the LSTM-based model with a short label
duration of𝑇label=2 s are compared. The depicted scene is 2.2 s before the cut-in time 𝑡𝑐 =10.5 s
and therefore the model with short label duration predicts correctly a passing maneuver and
ConstraintNet correctly a cut-in maneuver. Whereas both models show a consistent maneuver
classification, the trajectory accuracy benefits from the larger label duration of 𝑇label = 3.5 s.
For a detailed explanation of the legend, it is referred to Figure 5.16.

the constant velocity model represents a passing maneuver at time 𝑡𝑘 =7.9 s. The second
plot is 0.4 s later and ConstraintNet predicts a high probability of 𝛼(c) = 80% for the
cut-in maneuver while the target vehicle is still clearly on the neighboring lane. Thus,
the threshold of �̃� = 80% is reached and ConstraintNet detects the cut-in maneuver at
this time. The predicted cut-in trajectory shows a non-linear shape and is close to the
ground truth. Contrary, the trajectory of the constant velocity model represents still a
passing maneuver and the distance to the ground truth is considerably. For the same
time 𝑡𝑘 = 8.3 s and scenario, Figure 5.17 compares the prediction of ConstraintNet with
the LSTM-based model with a shorter label duration of 𝑇label = 2 s. The LSTM with the
short label duration predicts with 𝛼(p) = 84.3% a passing maneuver. This is actually the
correct behavior because the time point 𝑡𝑘 =8.3 s is 2.2 s before the cut-in time 𝑡𝑐 =10.5 s
and the model is supposed to predict a cut-in maneuver only 𝑇label = 2 s before the cut-in
time. Interestingly, the model compensates this fact by predicting the passing trajectory
more towards a lane crossing. However, choosing a larger label time 𝑇label for a higher
time gain comes at the expense of downgraded precision and recall. A good balance is
achieved with the label duration of 𝑇label=3.5 s. The lower two plots in Figure 5.16 show
the reference time points for measuring the time gain. The center of the target vehicle
crosses the lane marking at time 𝑡𝑘 = 10.1 s and the target vehicle is assigned to the ego
lane at time 𝑡𝑘 =10.5 s. Consequently, ConstraintNet achieves a time gain of 2.2 s or 1.8 s
in the visualized scenario depending on the choice of the reference time point.

Table 5.6 shows the performance of ConstraintNet depending on different input feature
sets. The detection threshold for the cut-in prediction is fixed to �̃� = 0.8. The best

144

5.4 Experiments

Cut-In Prediction �̃� = 0.8 Trajectory Prediction
Model Precision [%] Recall [%] Time Gain [s] MSE [m2] MDE [m] FMDE [m] LMDE [m]

ConstraintNet 95.4 ± 0.5 95.5 ± 0.6 2.77 ± 0.09 4.56 ± 0.19 1.56 ± 0.03 3.24 ± 0.04 0.36 ± 0.01
all features (2.19 ± 0.09)

without 𝑙env,l/r 95.2 ± 0.3 94.5 ± 1.9 2.67 ± 0.07 4.76 ± 0.14 1.63 ± 0.09 3.33 ± 0.09 0.37 ± 0.01
(2.09 ± 0.07)

without 𝑤tar 95.8 ± 0.7 93.3 ± 3.2 2.61 ± 0.19 4.80 ± 0.30 1.61 ± 0.03 3.33 ± 0.08 0.37 ± 0.01
(2.03 ± 0.19)

without 𝑥tar, 𝑦tar 95.2 ± 0.8 94.6 ± 1.1 2.67 ± 0.11 4.79 ± 0.29 1.61 ± 0.05 3.31 ± 0.08 0.39 ± 0.02
(2.09 ± 0.11)

without 𝑥′rel, CIPV, 90.3 ± 0.8 87.9 ± 1.5 2.26 ± 0.05 4.98 ± 0.18 1.62 ± 0.03 3.35 ± 0.08 0.38 ± 0.01
(𝑥/𝑦)′rel,tar (1.68 ± 0.05)
without 𝑦env,l/r,s 94.1 ± 1.3 73.9 ± 12 2.67 ± 0.13 4.75 ± 0.18 1.69 ± 0.04 3.59 ± 0.10 0.48 ± 0.03

(2.11 ± 0.13)

Table 5.6: The table shows the performance of ConstraintNet on the test set for different input feature sets.
The first row shows the results with all input features. In the following rows, the specified input
features are excluded to analyze the impact on the performance. Optimal values are written in
bold.

results for the maneuver and the trajectory prediction are achieved with the full feature set.
Removing either the lane marking type feature 𝑙env,l/r, the target vehicle’s width 𝑤tar, or the
target vehicle’s past trajectory points 𝑥tar, 𝑦tar results in only slightly downgraded cut-in
prediction metrics. Thus, the importance of these features is not as high compared to other
features or the feature can be compensated by redundancy. E.g. the relative position of the
target vehicle 𝑥′rel,tar, 𝑦

′
rel,tar in combination with ego motion features may compensate the

feature for the past trajectory 𝑥tar, 𝑦tar to a certain extent. Excluding the relative position
of the target vehicle 𝑥′rel,tar, 𝑦

′
rel,tar and the distance of the CIPV 𝑥′rel,CIPV from the feature

set results in a reduction of 5% in the precision, of 8% in the recall, and 0.5 s in the time
gain. This significant drop in performance shows the importance of the spatial relations
between the agents for the prediction of a cut-in maneuver. E.g. the spatial relations
indicate whether a gap in traffic is available for cutting-in. Furthermore, the features
for the lane geometry 𝑦env,l/r,s are important. Without theses features, all considered
metrics are downgraded. In particular the lateral error of the trajectory prediction part
(LMDE) increases significantly from 0.36±0.01m to 0.48±0.03m. In the used Cartesian
coordinate system, the features 𝑦env,l/r,s are required to adapt the trajectory prediction to
the lane geometry. Furthermore, the lane geometry features are important to distinguish
the lateral movement of the target vehicle in curves from the lateral movement of a cut-in
maneuver. In the scenario of Figure 5.18, the target vehicle passes the ego vehicle in a
curve without cutting-in. Without lane geometry features, the lateral movement of the
target vehicle is interpreted as a cut-in maneuver with a confidence of 𝛼(c) = 77.0% at
the visualized time step. Furthermore, the predicted cut-in and passing trajectory do not
follow the road curvature and are not interpretable. With the lane geometry features, the
maneuver is correctly classified as passing with a confidence of 𝛼(p) = 95.8% and the
predicted passing and cut-in trajectory are in line with the road geometry as expected.

145

Joint Vehicle Trajectory and Cut-In Prediction with Constrained Neural Networks

Figure 5.18: The figure shows ConstraintNet’s predictions with and without features for the lane geometry.
In the visualized scenario, the target vehicle passes the ego vehicle in a curve without cutting-in.
The ego vehicle is at position 𝑥=−20 m and not visualized. Without the lane geometry features,
the lateral movement of the target vehicle results in a high confidence of 𝛼 (c) = 77.0% for a
cut-in maneuver and the predicted trajectories are inconsistent with the road geometry. With
lane geometry features, a passing maneuver is predicted correctly with a high confidence of
𝛼 (p) =95.8% and the trajectories are in line with the road geometry. For a detailed explanation
of the legend, it is referred to Figure 5.16

For an in-vehicle experience of the cut-in prediction, a live prediction is implemented with
the Robot Operating System (ROS) [Quigley et al., 2009]. In a Porsche Cayenne of the third
generation as test vehicle, the basic LSTM-based model has been deployed. The model
requires access to the output of the ego vehicle’s perception and inertial measurement
unit. The relevant signals are routed from the vehicle’s bus to a computer in the vehicle’s
trunk and published as messages in Robot Operating System (ROS). Rospy is a Python
client library for ROS and helps to deploy the trained model in the test vehicle. For each
detected vehicle in the ODD, the input data is preprocessed, the model is applied, and
the predictions are visualized live on a display in the test vehicle. Figure 5.19 shows
the live visualization, which is implemented with the package RViz2. In the depicted
highway scenario, two vehicles are in the ODD and one of them is performing a cut-in
and the other a passing maneuver. The vehicle on the left-hand side overtakes the ego
vehicle and is going to cut-in. The truck on the right-hand side is overtaken by the ego
vehicle. The upper visualization shows the model’s predictions slightly before the cut-
in maneuver of the vehicle on the left lane is detected and the lower screenshot shortly
after the first cut-in detection. Arrows on top of the vehicles indicate whether a passing
or cut-in maneuver is predicted by the model. Furthermore, a sound is played when
the arrow switches from passing to cut-in. This sound is an important feedback for the
driver, who can not watch the display continuously. Additionally, the more probable of
the predicted cut-in and passing trajectory is visualized with white point markers. In

2 http://wiki.ros.org/rviz, accessed on 10/15/2022

146

http://wiki.ros.org/rviz

5.4 Experiments

Figure 5.19: For two scenes of a highway scenario, the predictions of an LSTM-based model that is deployed
in a test vehicle are visualized. The visualization is implemented with the ROS-package RViz
and includes three panels. The upper left panel allows to configure the displayed elements,
the lower left panel shows a video stream, and the big right panel a 3D visualization of the
perceived environment and the model’s predictions. The detected vehicles are visualized with
3D bounding boxes. Vehicles on the left lane are visualized in green, vehicles on the right
lane in red, the CIPV in yellow, and all other vehicles in white. Furthermore, the detected lane
markings are depicted with a sequence of point markers with green for the left lane marking
and red for the right lane marking. The arrows on top of the target vehicles point ahead if a
passing maneuver is predicted and towards the lane of the ego vehicle if a cut-in maneuver
is predicted. Furthermore, the more probable of the predicted cut-in and passing trajectory is
visualized with white waypoints.

147

Joint Vehicle Trajectory and Cut-In Prediction with Constrained Neural Networks

the upper scene of Figure 5.19, the model predicts a passing maneuver for the vehicle
and the truck. The trajectory predictions follow the lane geometry and represent lane
keeping. In the lower scene of Figure 5.19, the vehicle is still on the neighboring lane but
slightly approaches the lane marking. Furthermore, a gap between the ego vehicle and
the CIPV is available and a sufficient distance between the target and the ego vehicle is
reached. Finally, the LSTM interprets the lateral movement of the target vehicle together
with the context knowledge as the start of a cut-in maneuver. The predicted trajectory is
oriented towards the lane marking and indicates a lane crossing. Indeed, the target vehicle
is cutting-in and changes to the ego lane. The truck on the right-hand side is overtaken
without any cut-in detection. Both behaviors are correct and close to how a human would
interpret the scenario. In comparison, common ADASs detect a cut-in maneuver late
and react only when a significant part of the target vehicle already covers the ego lane.
This may result in abrupt decelerations and may even cause hazardous scenarios in the
worst-case. Consequently, an early and relaiable cut-in prediction has great potential to
improve comfort and safety of DASs. E.g. in the vehicle following mode, ACC controls
the distance to the CIPV. The cut-in prediction allows to incorporate a change in the CIPV
before it will actually happen. Thereby, a predictive control behavior can be achieved.
Furthermore, the in-vehicle implementation demonstrates that the computational time is
manageable. In future work, it would be interesting to analyze the benefits of the cut-in
prediction for the control behavior of DASs and to deploy the model on an electronic
control unit as a first step towards a model for series production.

5.5 Conclusion

In this chapter, LSTM-based models have been evaluated for a joint trajectory and cut-in
prediction. The models are capable of predicting cut-ins far before a rule-based model and
assign interpretable probabilities to the trajectory modes and waypoints. The two modes
have been semantically associated with a cut-in and passing maneuver. To improve the
lateral separation of the cut-in and passing trajectory, soft and hard output constraints have
been modeled and evaluated.

In a supervised student thesis [Orschau, 2021], the LSTM-based models have been com-
pared to transformers [Vaswani et al., 2017]. In the experiment, the transformers have
not improved the performance and similar evaluation metrics have been measured. One
potential explanation could be that the complexity of the task is moderate and therefore the
capacity of LSTMs is sufficient. This argumentation is also consistent with the observation
that multilayer LSTMs have not improved over single layer LSTMs. While this chapter
has focused on LSTM-based models, transformers are considered especially relevant for
possible extensions and enhancements of the behavior prediction.

For training and test, a semi-automatic data pipeline has been built up and a diverse and
large data set has been created from recorded measurement files of a test vehicle fleet.
The key part of the data pipeline is a retrospective and rule-based extraction of cut-in
and passing scenarios. The data pipeline has been shown to be effective and requires a
manageable and relatively low manual effort with a labeling tool.

148

5.5 Conclusion

First, the performance of the cut-in and trajectory prediction has been evaluated. The best
performing LSTM-based models have achieved a time gain of 2.7 s. This is more than
double the baseline’s time gain of 1.0 s. The baseline detects cut-ins by thresholding the
distance of the target vehicle’s center to the lane marking. For a fixed precision, the data-
driven approach has also improved the recall over the baseline. Furthermore, the accuracy
of the LSTM-based trajectory prediction has outperformed a constant velocity model
clearly. For an optimal performance of the trajectory prediction, an additional weighting
of the lateral part of the loss has turned out to be important. Moreover, a separate
prediction of cut-ins and a separate one for the trajectories have not shown improvements
in performance compared to the joint prediction. However, the joint trajectory and cut-in
prediction is beneficial for computational costs and improves interpretability by assigning
maneuvers to the modes of the bimodal distribution.

For improving the lateral separation of the cut-in and passing trajectory, the impact of soft
and hard constraints has been evaluated. The hard constraints have been implemented
with ConstraintNet and the soft constraints with an additional loss term. Both constraint
types improve mode separation. However, the best overall performance has been achieved
with ConstraintNet. Hard constraints have the benefit that they guarantee constraint
satisfaction, whereas soft constraints only penalize constraint violation. Furthermore, it
has been found that short durations of the cut-in labels downgrade the separation of the
trajectory modes. Finally, ConstraintNet has achieved a high trajectory accuracy and has
predicted well-separated and interpretable modes.

Contrary to other approaches that use curvilinear coordinates, the trajectory has been
predicted in Cartesian coordinates and the road geometry has been encoded in the input
features. This has the benefit that the model is not directly downgraded by noisy lane
marking detections and is able to reason about the noise in an end-to-end fashion. It has
been demonstrated that the model is able to incorporate the road geometry from the input
features and predicts trajectories that are aligned with the road geometry.

The model’s input has been generated purely from the ego vehicle’s sensor measurements.
That has made it possible to deploy the model in a test vehicle. Moreover, all considered
features have turned out to be important. In particular, features that encode the spatial
relations between the agents and the road geometry have shown high influence on the
model’s performance.

Finally, the results of the joint trajectory and cut-in prediction have shown great potential
to improve comfort and safety of planning and control systems. Furthermore, the imposing
of constraints has been evaluated successfully to direct the intended behavior.

149

6 Conclusion and Outlook

This thesis has focused on imposing output constraints on neural networks to exclude unin-
tended behavior in safety-critical environments of driving automation systems. Therefore,
a methodological and an experimental part have been distinguished. In the methodological
part, ConstraintNet—a novel and efficient neural network architecture with embedded out-
put constraints—has been proposed. In the experimental part, constrained neural networks
including ConstraintNet have been evaluated on two important tasks of driving automation
systems: 1) learning a control behavior to keep safe distances to vehicles ahead with deep
reinforcement learning and 2) learning a joint vehicle trajectory and cut-in prediction for
safe motion planning and control.

First, the novel neural network architecture ConstraintNet has been proposed to embed hard
output constraints in the architecture. ConstraintNet restricts the output in each forward
pass independently to a specifiable geometry and constraint satisfaction is ensured by
construction. A specific output constraint is encoded in the form of a precise tensor
description and treated as an additional input. Thereby, multiple constraints for the same
input are applicable and prior knowledge is incorporated in a flexible way. The more prior
knowledge is known, the more specific the constraints are supposed to be chosen and vice
versa. Contrary to projection-based approaches, ConstraintNet applies an input-dependent
parametrization of the constrained output space as the final layer, the so-called constraint
guard layer. Thereby, the complete interior of the constrained output space is covered and
no additional optimization is required. For constraints in the form of convex polytopes,
the constraint guard layer has been constructed by leveraging the vertex representation.
Beyond that, ConstraintNet supports a broad class of constraints. This has been shown by
suggesting concepts to constrain classification tasks, to combine constraints, and to deal
with non-convex and unbounded constraints. Furthermore, the modeling of constraints
and the performance of ConstraintNet have been demonstrated on several facial landmark
detection tasks. Constraints in the form of bounding boxes, triangles, sectors of a circle,
and relative relations between landmarks have been evaluated. ConstraintNet has shown
improved performance and reduced runtimes over the projection-based approach. Thus,
the results demonstrate the effectiveness of ConstraintNet’s design choices. In general,
this work aims to reach researchers of different domains and the focus has been set on a
formal mathematical formalization. This allows to construct ConstraintNet depending on
the specific problem at hand. In particular, the constraints enable the implementation of
safety requirements and ConstraintNet contributes to trustfully applying neural networks
in safety-critical environments. In future research, it would be interesting to evaluate more
complex constraints, to constrain intermediate layers of neural networks [Brosowsky,
2021a], and to learn constraints by the network self [Brosowsky, 2020, 2021c]. The
learning of constraints would weaken the safety guarantees but is promising for exploration
in unknown environments.

151

6 Conclusion and Outlook

The first application in the experimental part has focused on learning a vehicle following
controller with deep reinforcement learning. The objective of a vehicle following controller
is keeping a velocity-dependent distance to vehicles ahead under comfort and safety
aspects. To avoid rear-end collisions, neural networks with hard output constraints have
been proposed for the policy. The constrained sets of outputs are called state-specific safe
sets and restrict the control input. The safe sets have been derived from the responsibility-
sensitive safety model. However, the abrupt interventions in the responsibility-sensitive
safety model have been modified and transformed into a continuous form. Thereby, harsh
braking commands are softened and the collision avoidance guarantees remain valid. In
the experiments, an unconstrained fully-connected neural network and three constrained
neural networks with imposed safe sets have been compared: ConstraintNet, a neural
network with clipping as post-processing, and a neural network with a projection layer.
All policies have been trained with the TD3 algorithm and evaluated with respect to
safety, performance, and training behavior. The results have shown the effectiveness of
the safe sets. For all constrained policies, a constant crash rate of zero has been measured.
Overall, ConstraintNet and the neural network with clipping as post-processing have
achieved slightly improved performances compared to the projection-based approach and
the unconstrained policy. Furthermore, ConstraintNet has shown the fastest and most
stable training behavior. It is concluded that constrained neural networks and in particular
ConstraintNet are promising for learning controllers in safety-critical environments of
driving automation systems. For safe automated driving in complex scenarios, the learning
of a combined longitudinal and lateral controller with constrained neural networks is of
particular interest for future research.

The second application in the experimental part has studied a behavior prediction for safe
driving automation systems. An early and reliable behavior prediction of surrounding ve-
hicles is crucial to anticipate hazardous maneuvers and mitigate the risk of late detections.
Addressing this, unconstrained and constrained neural networks have been leveraged for
a joint vehicle trajectory and cut-in prediction. To capture the time context explicitly,
LSTMs and transformers have been considered in an encoder-decoder fashion. However,
in experiments the transformers have not improved the performance and achieved similar
metrics compared to the LSTMs [Orschau, 2021]. The observations can be explained by
the moderate complexity of the task, which may not require models with large capacities.
Thus, the focus has been put on LSTM-based models. Nevertheless, transformers are con-
sidered especially relevant for possible extensions and enhancements of the model. The
output of the decoder has been modeled as a bimodal probability distribution over trajecto-
ries and the modes have been semantically associated with a cut-in and passing maneuver.
To improve the lateral separation of the cut-in and passing trajectory, hard and soft output
constraints have been imposed. For the hard constraints, ConstraintNet has been applied.
For the soft constraints, an additional loss term has been added. The proposed models are
intended for real-world application on highways. Thus, the input depends only on the ego
vehicle’s sensors and perception and a large-scale data set has been created from recorded
measurement data. Given this data set, the unconstrained LSTM, the LSTM with soft con-
straints, and the LSTM-based ConstraintNet have been trained. The evaluation has shown
significant performance benefits of all LSTM-based models over a physical baseline. All
models have achieved similar performance. However, ConstraintNet has improved the

152

6 Conclusion and Outlook

overall performance slightly with respect to the cut-in prediction, the trajectory accuracy,
and the mode separation. This highlights the smooth integration of output constraints
with ConstraintNet in existing architectures to address a specific intended behavior. In
general, the decoders bimodal output has shown well-interpretable properties. First, the
semantic association of the modes with cut-in and passing maneuvers is similar to how
humans anticipate vehicle maneuvers on highways. The association with maneuvers is
also important for downstream tasks like trajectory planning. Second, the predicted un-
certainties of the trajectories’ waypoints are interpretable. The uncertainties are larger in
the lateral component compared to the longitudinal direction and increase with larger time
horizons. Finally, the joint vehicle trajectory and cut-in prediction anticipates the behavior
of other vehicles early, reliable, and in an interpretable way and has shown great potential
to improve safety and comfort of planning and control systems. In future research, the
integration of the proposed behavior prediction in downstream tasks like adaptive cruise
control and trajectory planning is of particular interest to improve safety.

In conclusion, this thesis contributes to responsibly applying neural networks in safety-
critical environments by imposing output constraints. Constrained neural networks have
been applied on two safety-relevant tasks of driving automation systems. The experiments
have shown that constrained neural networks are able to exclude unintended and hazardous
behavior explicitly, do not necessarily require computational overhead, and achieve high
performances. Finally, constrained neural networks are a promising step towards safe
artificial intelligence and the dream of safe self-driving vehicles.

153

List of Figures

Figure 1.1 Research fields addressing the black box character of NNs. 2
Figure 1.2 The six levels of driving automation according to SAE-J3016 [2021]. 4
Figure 1.3 Sense-plan-act model and processing chain of DASs. 5
Figure 1.4 Overview of the chapters in this thesis. 7

Figure 2.1 The minimization of hazardous scenarios is the goal of SOTIF activities. 14
Figure 2.2 The process of the SOTIF standard. 15
Figure 2.3 Imposing constraints on the control input for safe driving policies. . 19
Figure 2.4 Illustration of an artificial neuron and a neural network. 23
Figure 2.5 A convolutional layer in 2D. 24
Figure 2.6 Visualization of an RNN. 26
Figure 2.7 Visualization of different RNN topologies. 28
Figure 2.8 Illustration of the backpropagation algorithm. 33
Figure 2.9 Interaction of an agent with the environment in RL. 36
Figure 2.10 Graphical model for an MDP. 38
Figure 2.11 Solving MDPs approximately with general policy iteration. 41
Figure 2.12 Illustration of actor-critic methods. 46

Figure 3.1 Data-driven, rule-based, and constrained data-driven models. 50
Figure 3.2 Global and sample-specific output constraints for NNs. 51
Figure 3.3 Output range of the softmax function. 52
Figure 3.4 Components of ConstraintNet. 53
Figure 3.5 Kinematic layer for predicting only kinematically feasible trajectories. 56
Figure 3.6 Projection of a point on a constrained region. 57
Figure 3.7 Illustration of the barrier method for a linear program. 59
Figure 3.8 ConstraintNet with triangle constraints and a CNN as backbone. . . . 62
Figure 3.9 Constraint guard layers for several geometric shapes. 64
Figure 3.10 ConstraintNet for a constraint in the form of a non-convex polytope. . 67
Figure 3.11 Four different output constraints for facial landmark detection. 69
Figure 3.12 Bounding box and relative constraints for facial landmark detection. . 70
Figure 3.13 Learning curves of ConstraintNet, the projection-based approach and

ResNet50. 73
Figure 3.14 Streamlit app for facial landmark detection with constrained NNs. . . 76
Figure 3.15 Facial landmark detection of ConstraintNet, the projection-base ap-

proach, and ResNet50 without constraints on ambiguous images with
two faces. 77

155

List of Figures

Figure 3.16 Facial landmark detection with ConstraintNet on a rotated portrait. . 78

Figure 4.1 Environment of a vehicle following controller and visualization of
learning the control law with an actor-critic model. 83

Figure 4.2 Overview about the evaluated NNs for the vehicle following policy. . 84
Figure 4.3 Proper longitudinal response according to the RSS model in a vehicle

following scenario [Shalev-Shwartz et al., 2017]. 91
Figure 4.4 Upper bound of the demanded acceleration for distances above the

minimal safe distance. 93
Figure 4.5 Graphical user interface of the simulator for vehicle following control. 101
Figure 4.6 Reward function for comfortable and accurate vehicle following behav-

ior [Desjardins and Chaib-draa, 2011]. 102
Figure 4.7 Average episode return over training time for ConstraintNet, the projection-

based, the clipped, and the unconstrained policy. 105
Figure 4.8 Crash rate over training time of the original unconstrained policy. . . 106

Figure 5.1 The model output are parameters of a bimodal distribution over the
target vehicle’s trajectory. 111

Figure 5.2 Categorization of models for behavior prediction. 114
Figure 5.3 Visualization of the pipeline for the creation of a large and diverse data

set with an equal number of cut-in and passing scenarios. 117
Figure 5.4 Automatic detection of cut-in and passing scenarios with regular ex-

pressions. 118
Figure 5.5 Screenshot of the labeling tool. 120
Figure 5.6 Distributions over the tracking time, the distance, and the relative ve-

locity of the cutting-in vehicles in the data set. 122
Figure 5.7 Visualization of the input features for the behavior prediction. 124
Figure 5.8 Visualization of an LSTM cell. 126
Figure 5.9 Illustration of the LSTM-based encoder-decoder architecture. 127
Figure 5.10 Hard output constraints for enforcing a lateral separation of the cut-in

and passing trajectories. 129
Figure 5.11 The predicted cut-in probability over time of a true positive. 132
Figure 5.12 Visualization of the metrics for the evaluation of the trajectory prediction. 133
Figure 5.13 Overview of the preprocessing steps for the behavior prediction. . . . 134
Figure 5.14 Computation of the target vehicle’s trajectory with odometry and mea-

surements of the relative position. 136
Figure 5.15 Distributions over the time gains of ConstraintNet and the baseline. . 141
Figure 5.16 Comparison of the trajectory prediction between ConstraintNet and the

constant velocity model. 143
Figure 5.17 Comparison of the behavior prediction for two different label durations. 144
Figure 5.18 Comparison of the behavior prediction in a curve between Constraint-

Net with and ConstraintNet without features for the lane geometry. . 146
Figure 5.19 Screenshot of the in-vehicle prediction with ROS. 147

156

List of Tables

Table 3.1 Runtimes for the training and the evaluation of ConstraintNet, the
projection-based approach, and ResNet50 for facial landmark detection
tasks. 74

Table 3.2 MSE metrics for facial landmark detection tasks on the test set for
ConstraintNet, the projection-based approach, and ResNet50. 75

Table 4.1 Parameters of the time gap policy and the simulator. 89
Table 4.2 Parameters for the RSS-based safe sets. 92
Table 4.3 Parameters of the TD3 algorithm. 103
Table 4.4 Results of the different policies and of the ConstraintNet-based policy

depending on exploration noise, network size, and reward weights. . 107

Table 5.1 Statistics of the data set with cut-in and passing scenarios. 121
Table 5.2 Input features of the behavior prediction. 123
Table 5.3 Hyperparameters of the behavior prediction. 138
Table 5.4 Results of the cut-in prediction. 140
Table 5.5 Results of the trajectory prediction. 142
Table 5.6 Analysis of the feature importance. 145

157

Publications, Patents, and Supervised Theses

Conference Contributions

Brosowsky, M., Keck, F., Dünkel, O., and Zöllner, M. (2021a). Sample-Specific Output
Constraints for Neural Networks. Proceedings of the AAAI Conference on Artificial
Intelligence, 35:6812–6821.

Brosowsky, M., Keck, F., Ketterer, J., Isele, S., Slieter, D., and Zöllner, M. (2021b).
Safe Deep Reinforcement Learning for Adaptive Cruise Control by Imposing State-
Specific Safe Sets. Proceedings of the 32nd IEEE Intelligent Vehicles Symposium,
pages 488–495.

Brosowsky, M., Orschau, P., Dünkel, O., Elspas, P., Slieter, D., and Zöllner, M. (2021c).
Joint Vehicle Trajectory and Cut-In Prediction on Highways using Output Constrained
Neural Networks. Proceedings of the IEEE Symposium Series on Computational
Intelligence.

Elspas, P., Lindner, J., Brosowsky, M., Bach, J., and Sax, E. (2022). Towards a Scenario
Database from Recorded Driving Data with Regular Expressions for Scenario De-
tection. Proceedings of the 8th International Conference on Vehicle Technology and
Intelligent Transport Systems - VEHITS, pages 400–409.

Isele, S., Klein, F., Brosowsky, M., and Zöllner, M. (2021). Learning Semantics on Radar
Point-Clouds. Proceedings of the 32nd IEEE Intelligent Vehicles Symposium, pages
810–817.

Patents

Brosowsky, M. (2019). DE10 2019 119 739 A1: Verfahren und System zur Erzeu-
gung von sicherheitskritischen Ausgabewerten mittels einer Datenanalyseeinrichtung.
Deutsches Patent- und Markenamt.

Brosowsky, M. (2020). DE10 2020 127 051 A1: Verfahren zur Bestimmung von sicherheit-
skritischen Ausgabewerten mittels einer Datenanalyseeinrichtung. Deutsches Patent-
und Markenamt.

Brosowsky, M. (2021a). DE10 2021 100 765 A1: Verfahren, System und Computerpro-
grammprodukt zur Bestimmung von sicherheitskritischen Ausgabewerten. Deutsches
Patent- und Markenamt.

159

Bibliography

Brosowsky, M. (2021b). US 20210027150 A1: Method and System for Generating Safety-
Critical Output Values of An Entity. United States Patent and Trademark Office.

Brosowsky, M. (2021c). US 20220114416 A1: Method for Determining Safety-Critical
Output Values by Way of a Data Analysis Device for a Technical Entity. United States
Patent and Trademark Office.

Supervised Theses

Dünkel, O. (2019). Vehicle Trajectory Prediction Using a Neural Network With Uncer-
tainty Estimation in the Context of a Cut-In Detection. Bachelor Thesis, Institut für
Technik der Informationsverarbeitung, Karlsruhe Institut für Technologie.

Keck, F. (2020). Learning a Safe Follow-Up Control Using Reinforcement Learning and
Implementation of a Simulation. Bachelor Thesis, Institut für Technik der Informa-
tionsverarbeitung, Karlsruhe Institut für Technologie.

Orschau, P. (2021). Multi-Modal Trajectory Prediction using Transformer Networks in
the Context of Predicting Cut-In Scenarios on Highways. Bachelor Thesis„ Institute
for Automotive Engineering, RWTH Aachen.

Puzzo, F. (2020). Implementation of a Follow Control with Neural Networks and Evalua-
tion of an Integrated Safety Concept for Neural Networks. Master Thesis, Institut für
Verbrennungsmotoren und Kraftfahrwesen, Universität Stuttgart.

160

Bibliography

Achiam, J., Held, D., Tamar, A., and Abbeel, P. (2017). Constrained policy optimization.
International Conference on Machine Learning, 70:22–31.

Agrawal, A., Amos, B., Barratt, S., Boyd, S., Diamond, S., and Kolter, J. Z. (2019). Dif-
ferentiable convex optimization layers. Advances in Neural Information Processing
Systems, 32:9562–9574.

Akiba, T., Sano, S., Yanase, T., Ohta, T., and Koyama, M. (2019). Optuna: A next-
generation hyperparameter optimization framework. ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 2623–2631.

Alahi, A., Goel, K., Ramanathan, V., Robicquet, A., Fei-Fei, L., and Savarese, S. (2016).
Social lstm: Human trajectory prediction in crowded spaces. IEEE Conference on
Computer Vision and Pattern Recognition, pages 961–971.

Altche, F. and Fortelle, A. D. L. (2018). An lstm network for highway trajectory prediction.
IEEE International Conference on Intelligent Transportation Systems, pages 353–359.

Altman, E. (1999). Constrained Markov Decision Processes. CRC Press.

Amersbach, C. and Winner, H. (2017). Functional decomposition: An approach to reduce
the approval effort for highly automated driving. 8. Tagung Fahrerassistenz.

Amos, B. and Kolter, J. Z. (2017). Optnet: Differentiable optimization as a layer in neural
networks. International Conference on Machine Learning, 70:136–145.

Bansal, M., Krizhevsky, A., and Ogale, A. (2019). Chauffeurnet: Learning to drive by
imitating the best and synthesizing the worst. Robotics: Science and Systems.

Barratt, S. (2018). On the differentiability of the solution to convex optimization problems.
arXiv preprint arXiv:1804.05098.

Barthelmes, L., Wilkes, G., Kagerbauer, M., and Vortisch, P. (2022). Ein On-Demand-
und Level 4-Kleinbus auf dem Testfeld Autonomes Fahren BW – Erkenntnisse aus
der begleitenden Haushaltsbefragung zu EVA-Shuttle. Journal für Mobilität und
Verkehr, pages 36–46.

Bauer, K. L. and Gauterin, F. (2016). A two-layer approach for predictive optimal cruise
control. SAE Technical Papers, 2016-April.

Bengio, Y., Simard, P., and Frasconi, P. (1994). Learning long-term dependencies with
gradient descent is difficult. IEEE Transactions on Neural Networks, 5:157–166.

161

Bibliography

Bergstra, J., Bardenet, R., Bengio, Y., and Kégl, B. (2011). Algorithms for hyper-parameter
optimization. Advances in Neural Information Processing Systems, pages 2546–2554.

BGBl (2017). (Bundesgesetzblatt I) Gesetz zur Änderung des Straßenverkehrsgesetzes -
Gesetz zum automatisierten Fahren.

BGBl (2021). (Bundesgesetzblatt I) Gesetz zur Änderung des Straßenverkehrsgesetzes
und des Pflichtversicherungsgesetzes - Gesetz zum autonomen Fahren.

Bishop, C. M. (1994). Mixture Density Networks. Aston University.

Bishop, C. M. (2006). Pattern Recognition and Machine Learning, volume 4. Springer
New York.

Bojarski, M., Testa, D. D., Dworakowski, D., Firner, B., Flepp, B., Goyal, P., Jackel, L. D.,
Monfort, M., Muller, U., Zhang, J., Zhang, X., Zhao, J., and Zieba, K. (2016). End
to end learning for self-driving cars. arXiv preprint arXiv:1604.07316.

Boyd, S. and Vandenberghe, L. (2009). Convex Optimization. Cambridge University
Press, 7 edition.

Bradford, E. and Imsland, L. (2018). Stochastic nonlinear model predictive control using
gaussian processes. European Control Conference, pages 1027–1034.

Canale, M. and Malan, S. (2003). Robust design of pid based acc s and g systems. IFAC
Proceedings Volumes, 36:333–338.

Casas, S., Gulino, C., Suo, S., Luo, K., Liao, R., and Urtasun, R. (2020). Implicit latent
variable model for scene-consistent motion forecasting. European Conference on
Computer Vision.

Chamraz, S. and Balogh, R. (2018). Two approaches to the adaptive cruise control (acc)
design. International Conference on Cybernetics and Informatics.

Cho, K., Merriënboer, B. V., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., and
Bengio, Y. (2014). Learning phrase representations using rnn encoder-decoder for
statistical machine translation. Empirical Methods in Natural Language Processing,
pages 1724–1734.

Cootes, T. F., Edwards, G. J., and Taylor, C. J. (2001). Active appearance models. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 23:681–685.

Cristinacce, D. and Cootes, T. (2006). Feature detection and tracking with constrained
local models. British Machine Vision Conference, pages 929–938.

Cui, H., Nguyen, T., Chou, F.-C., Lin, T.-H., Schneider, J., Bradley, D., and Djuric,
N. (2020). Deep kinematic models for kinematically feasible vehicle trajectory
predictions. IEEE International Conference on Robotics and Automation, pages
10563–10569.

162

Bibliography

Cui, H., Radosavljevic, V., Chou, F.-C., Lin, T.-H., Nguyen, T., Huang, T.-K., Schneider,
J., and Djuric, N. (2019). Multimodal trajectory predictions for autonomous driving
using deep convolutional networks. IEEE International Conference on Robotics and
Automation, pages 2090–2096.

Dalal, G., Dvĳotham, K., Vecerik, M., Hester, T., Paduraru, C., and Tassa, Y. (2018). Safe
exploration in continuous action spaces. arXiv preprint arXiv:1801.08757.

Darbha, S. and Rajagopal, K. R. (1999). Intelligent cruise control systems and traffic flow
stability. Transportation Research Part C: Emerging Technologies, 7:329–352.

Deo, N. and Trivedi, M. M. (2018a). Convolutional social pooling for vehicle trajectory
prediction. IEEE/CVF Conference on Computer Vision and Pattern Recognition
Workshops.

Deo, N. and Trivedi, M. M. (2018b). Multi-modal trajectory prediction of surrounding
vehicles with maneuver based lstms. IEEE Intelligent Vehicles Symposium, Proceed-
ings, pages 1179–1184.

Desjardins, C. and Chaib-draa, B. (2011). Cooperative adaptive cruise control: A re-
inforcement learning approach. IEEE Transactions on Intelligent Transportation
Systems, 12:1248–1260.

Destatis (2022). Verkehrsunfälle - Fachserie 8 Reihe 7. Statistisches Bundesamt.

Djuric, N., Radosavljevic, V., Cui, H., Nguyen, T., Chou, F. C., Lin, T. H., Singh, N., and
Schneider, J. (2020). Uncertainty-aware short-term motion prediction of traffic actors
for autonomous driving. IEEE Conference on Applications of Computer Vision, pages
2084–2093.

Dontchev, A. L. and Rockafellar, R. T. (2009). Implicit Functions and Solution Mappings.
Springer New York.

Duvenaud, D. K., Maclaurin, D., Iparraguirre, J., Bombarell, R., Hirzel, T., Aspuru-Guzik,
A., and Adams, R. P. (2015). Convolutional networks on graphs for learning molecular
fingerprints. Advances in Neural Information Processing Systems, 28:2224–2232.

Elman, J. L. (1990). Finding structure in time. Cognitive Science, 14:179–211.

Elspas, P., Langner, J., Aydinbas, M., Bach, J., and Sax, E. (2020). Leveraging regular ex-
pressions for flexible scenario detection in recorded driving data. IEEE International
Symposium on Systems Engineering, Proceedings.

Engel, J. M. and Babuska, R. (2014). On-line reinforcement learning for nonlinear motion
control: Quadratic and non-quadratic reward functions. IFAC Proceedings Volumes,
47:7043–7048.

EU2019/2144 (2019). General safety regulation. The European Parliament and the
Council.

163

Bibliography

European-Commission (2021). Proposal for a Regulation Laying Down Harmonised
Rules on AI.

Fujimoto, S., Hoof, H. V., and Meger, D. (2018). Addressing function approximation error
in actor-critic methods. International Conference on Machine Learning, 80:1587–
1596.

Gal, Y. (2016). Uncertainty in Deep Learning. University of Cambridge (PhD Thesis).

Gal, Y. and Ghahramani, Z. (2016). Dropout as a bayesian approximation: Representing
model uncertainty in deep learning. International Conference on Machine Learning,
48:1050–1059.

Gao, J., Sun, C., Zhao, H., Shen, Y., Anguelov, D., Li, C., and Schmid, C. (2020).
Vectornet: Encoding hd maps and agent dynamics from vectorized representation.
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 11522–
11530.

García, J., Fern, and Fernández, O. (2015). A comprehensive survey on safe reinforcement
learning. Journal of Machine Learning Research, 16:1437–1480.

Gernant, E., Vieth, B., and Roßmann, B. (2022). The autonomous logistics hub of the
future. White Paper.

Gilpin, L. H., Bau, D., Yuan, B. Z., Bajwa, A., Specter, M., and Kagal, L. (2018).
Explaining explanations: An overview of interpretability of machine learning. IEEE
International Conference on Data Science and Advanced Analytics, pages 80–89.

Giuliari, F., Hasan, I., Cristani, M., and Galasso, F. (2021). Transformer networks
for trajectory forecasting. International Conference on Pattern Recognition, pages
10335–10342. Code is available.

Grigorescu, S., Trasnea, B., Cocias, T., and Macesanu, G. (2020). A survey of deep
learning techniques for autonomous driving. Journal of Field Robotics, 37:362–386.

Gros, S., Zanon, M., and Bemporad, A. (2020). Safe reinforcement learning via projection
on a safe set: How to achieve optimality? IFAC PapersOnLine, 53:8076–8081.

Gutjahr, B. (2019). Recheneffiziente Trajektorienoptimierung für automatisierte Fahrein-
griffe. KIT Scientific Publishing (PhD Thesis).

Guzman-Rivera, A., Batra, D., Tech, V., and Kohli, P. (2012). Multiple choice learning:
Learning to produce multiple structured outputs. Advances in Neural Information
Processing Systems, 25:1799–1807.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image
recognition. IEEE Conference on Computer Vision and Pattern Recognition, pages
770–778.

Heger, M. (1994). Consideration of risk in reinforcement learning. International Confer-
ence on Machine Learning, pages 105–111.

164

Bibliography

Henaff, M., Bruna, J., and LeCun, Y. (2015). Deep convolutional networks on graph-
structured data. arXiv preprint arXiv:1506.05163.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural Computation.

Hornik, K., Stinchcombe, M., and White, H. (1989). Multilayer feedforward networks are
universal approximators. Neural Networks, 2:359–366.

Howard, R. A. and Matheson, J. E. (1972). Risk-sensitive markov decision processes.
Management Science, 18:356–369.

Huang, X., Kwiatkowska, M., Wang, S., and Wu, M. (2017). Safety verification of deep
neural networks. International Conference on Computer Aided Verification, pages
3–29.

ISO15622 (2018). Intelligent transport systems — adaptive cruise control systems —
performance requirements and test procedures. The International Organization for
Standardization.

ISO21448 (2022). Road vehicles — safety of the intended functionality. The International
Organization for Standardization.

ISO24089 (2023). Road vehicles — software update engineering. The International
Organization for Standardization.

ISO26262 (2018). Road vehicles — functional safety. The International Organization for
Standardization.

ISO/SAE21434 (2021). Road vehicles — cybersecurity engineering. The International
Organization for Standardization.

Karpatne, A., Watkins, W., Read, J., and Kumar, V. (2017). Physics-guided neural
networks (pgnn): An application in lake temperature modeling. arXiv preprint
arXiv:1710.11431.

Katz, G., Barrett, C., Dill, D. L., Julian, K., and Kochenderfer, M. J. (2017). Reluplex:
An efficient smt solver for verifying deep neural networks. International Conference
on Computer Aided Verification, pages 97–117.

KI-Absicherung (2022). Safe ai for automated driving. https://www.ki-absicherung-
projekt.de (accessed: 10/12/2022).

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. Interna-
tional Conference on Learning Representations.

Kingma, D. P. and Welling, M. (2014). Auto-encoding variational bayes. International
Conference on Learning Representations.

Kipf, T. N. and Welling, M. (2017). Semi-supervised classification with graph convolu-
tional networks. International Conference on Learning Representations.

165

Bibliography

Klingner, M. and Fingscheidt, T. (2022). Improved dnn robustness by multi-task training
with an auxiliary self-supervised task. Deep Neural Networks and Data for Automated
Driving, pages 149–170.

Koller, B. and Matawa, R. (2020). Automated driving requires international regulations.
White Paper (TÜV Süd).

Lathuilière, S., Mesejo, P., Alameda-Pineda, X., and Horaud, R. (2020). A comprehensive
analysis of deep regression. IEEE Transactions on Pattern Analysis and Machine
Intelligence, pages 2065–2081.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning applied
to document recognition. Proceedings of the IEEE, 86:2278–2323.

Lezcano-Casado, M. and Martínez-Rubio, D. (2019). Cheap orthogonal constraints in
neural networks: A simple parametrization of the orthogonal and unitary group.
International Conference on Machine Learning, 97:3794–3803.

Li, G. and Gorges, D. (2019). Ecological adaptive cruise control and energy management
strategy for hybrid electric vehicles based on heuristic dynamic programming. IEEE
Transactions on Intelligent Transportation Systems, 20:3526–3535.

Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., and Talwalkar, A. (2017a). Hyper-
band: A novel bandit-based approach to hyperparameter optimization. Journal of
Machine Learning Research, 18:6765–6816.

Li, S. E., Zheng, Y., Li, K., Wu, Y., Hedrick, J. K., Gao, F., and Zhang, H. (2017b).
Dynamical modeling and distributed control of connected and automated vehicles:
Challenges and opportunities. IEEE Intelligent Transportation Systems Magazine,
9:46–58.

Li, T. and Srikumar, V. (2019). Augmenting neural networks with first-order logic. ACL
Annual Meeting of the Association for Computational Linguistics, pages 292–302.

Liang, M., Yang, B., Hu, R., Chen, Y., Liao, R., Feng, S., and Urtasun, R. (2020).
Learning lane graph representations for motion forecasting. European Conference
on Computer Vision, pages 541–556.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., and Wierstra,
D. (2016). Continuous control with deep reinforcement learning. International
Conference on Learning Representations.

Lin, T. Y., Goyal, P., Girshick, R., He, K., and Dollar, P. (2017). Focal loss for dense
object detection. IEEE Transactions on Pattern Analysis and Machine Intelligence,
42:318–327.

Lin, Y., McPhee, J., and Azad, N. L. (2021). Comparison of deep reinforcement learning
and model predictive control for adaptive cruise control. IEEE Transactions on
Intelligent Vehicles, 6:221–231.

166

Bibliography

Liu, L. and Sukhatme, G. S. (2018). A solution to time-varying markov decision processes.
IEEE Robotics and Automation Letters, 3:1631–1638.

Liu, Z., Luo, P., Wang, X., and Tang, X. (2015). Deep learning face attributes in the wild.
IEEE International Conference on Computer Vision, pages 3730–3738.

Madry, A. (2018). Towards deep learning models resistant to adversarial attacks. Interna-
tional Conference on Learning Representations.

Maire, F. and Bulitko, V. (2005). Apprenticeship learning for initial value functions
in reinforcement learning. ĲCAI Workshop on Planning and Learning in A Priori
Unknown or Dynamic Domains.

Makansi, O., Ilg, E., Cicek, O., and Brox, T. (2019). Overcoming limitations of mixture
density networks: A sampling and fitting framework for multimodal future prediction.
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 7137–
7146.

Mattingley, J. and Boyd, S. (2012). Cvxgen: A code generator for embedded convex
optimization. Optimization and Engineering, 13:1–27.

McLachlan, G. J. and Basford, K. E. (1988). Mixture Models: Inference and Applications
to Clustering. Marcel Dekker, New York.

Mertikopoulos, P., Hallak, N., Kavis, A., and Cevher, V. (2020). On the almost sure
convergence of stochastic gradient descent in non-convex problems. Advances in
Neural Information Processing Systems, 33:1117–1128.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves,
A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., Petersen, S., Beattie, C., Sadik,
A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S., and Hassabis, D.
(2015). Human-level control through deep reinforcement learning. Nature, 518:529–
533.

Márquez-Neila, P., Salzmann, M., and Fua, P. (2017). Imposing hard constraints on deep
networks: Promises and limitations. arXiv preprint arXiv:1706.02025.

Nistér, D., Lee, H.-L., Ng, J., and Wang, Y. (2019). The safety force field. White Paper
(NVIDIA).

Opitz, D. W. and Shavlik, J. W. (1995). Generating accurate and diverse members of
a neural-network ensemble. Advances in Neural Information Processing Systems,
8:535–541.

Pan, J., Sun, H., Xu, K., Jiang, Y., Xiao, X., Hu, J., and Miao, J. (2020). Lane attention:
Predicting vehicles’ moving trajectories by learning their attention over lanes. IEEE
International Conference on Intelligent Robots and Systems, pages 7949–7956.

Pascanu, R., Mikolov, T., and Bengio, Y. (2013). On the difficulty of training recurrent
neural networks. International Conference on Machine Learning, 28:1310–1318.

167

Bibliography

PEGASUS (2019). Project for the establishment of generally accepted quality criteria,
tools and methods as well as scenarios and situations. https://www.pegasusprojekt.de
(accessed: 10/10/2022).

Pham, T. H., Magistris, G. D., and Tachibana, R. (2018). Optlayer - practical constrained
optimization for deep reinforcement learning in the real world. IEEE International
Conference on Robotics and Automation, pages 6236–6243.

Phan-Minh, T., Grigore, E. C., Boulton, F. A., Beĳbom, O., and Wolff, E. M. (2020). Cov-
ernet: Multimodal behavior prediction using trajectory sets. IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 14062–14071.

Ploeg, J., Scheepers, B. T., Nunen, E. V., Wouw, N. V. D., and Nĳmeĳer, H. (2011).
Design and experimental evaluation of cooperative adaptive cruise control. IEEE
Conference on Intelligent Transportation Systems, pages 260–265.

Puterman, M. L. (1994). Markov decision processes: Discrete stochastic dynamic pro-
gramming. John Wiley and Sons.

Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., and
Ng, A. Y. (2009). Ros: an open-source robot operating system. IEEE International
Conference on Robotics and Automation Workshop on Open Source Software.

Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. (2016). You only look once:
Unified, real-time object detection. IEEE Conference on Computer Vision and Pattern
Recognition, pages 779–788.

Ronneberger, O., Fischer, P., and Brox, T. (2015). U-net: Convolutional networks for
biomedical image segmentation. International Conference on Medical Image Com-
puting and Computer-Assisted Intervention, pages 234–241.

Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and
organization in the brain. Psychological Review, 65:386–408.

Rout, M. K., Sain, D., Swain, S. K., and Mishra, S. K. (2016). Pid controller design for
cruise control system using genetic algorithm. International Conference on Electrical,
Electronics, and Optimization Techniques, pages 4170–4174.

Rudin, C. (2019). Stop explaining black box machine learning models for high stakes
decisions and use interpretable models instead. Nature Machine Intelligence, 1:206–
215.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning representations by
back-propagating errors. Nature, 323:533–536.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy,
A., Khosla, A., Bernstein, M., Berg, A. C., and Fei-Fei, L. (2015). Imagenet large scale
visual recognition challenge. International Journal of Computer Vision, 115:211–
252.

168

Bibliography

SAE-J3016 (2021). Taxonomy and definitions for terms related to driving automation
systems for on-road motor vehicles. SAE International.

SaFAD (2019). Safety first for automated driving. White Paper.

Sakhdari, B. and Azad, N. L. (2018). Adaptive tube-based nonlinear mpc for economic
autonomous cruise control of plug-in hybrid electric vehicles. IEEE Transactions on
Vehicular Technology, 67:11390–11401.

Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., and Monfardini, G. (2009). The
graph neural network model. IEEE Transactions on Neural Networks, 20:61–80.

Schlechtriemen, J., Wedel, A., Hillenbrand, J., Breuel, G., and Kuhnert, K. D. (2014).
A lane change detection approach using feature ranking with maximized predictive
power. IEEE Intelligent Vehicles Symposium, Proceedings, pages 108–114.

Schmidt, J., Jordan, J., Gritschneder, F., and Dietmayer, K. (2022). Crat-pred: Vehicle
trajectory prediction with crystal graph convolutional neural networks and multi-head
self-attention. IEEE International Conference on Robotics and Automation, pages
7799–7805.

Schmüdderich, J., Rebhan, S., Weisswange, T., Kleinehagenbrock, M., Kastner, R., Nishi-
gaki, M., Kusuhara, S., Kamiya, H., Mori, N., and Ishida, S. (2015). A novel approach
to driver behavior prediction using scene context and physical evidence for intelligent
adaptive cruise control (i-acc). Future Active Safety Technology Towards zero traffic
accidents.

Schuster, M. and Paliwal, K. K. (1997). Bidirectional recurrent neural networks. IEEE
Transactions on Signal Processing, 45:2673–2681.

Shalev-Shwartz, S., Shammah, S., and Shashua, A. (2017). On a formal model of safe and
scalable self-driving cars. arXiv preprint arXiv:1708.06374.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Driessche, G. V. D., Schrit-
twieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe,
D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach, M., Kavukcuoglu,
K., Graepel, T., and Hassabis, D. (2016). Mastering the game of go with deep neural
networks and tree search. Nature, 529:484–489.

Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., and Riedmiller, M. (2014).
Deterministic policy gradient algorithms. International Conference on Machine
Learning, 32:387–395.

Simonyan, K., Vedaldi, A., and Zisserman, A. (2014). Deep inside convolutional networks:
Visualising image classification models and saliency maps. International Conference
on Learning Representations Workshop.

Smith, S., Elsen, E., and De, S. (2020). On the generalization benefit of noise in stochastic
gradient descent. International Conference on Machine Learning, 119:9058–9067.

169

Bibliography

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2014).
Dropout: A simple way to prevent neural networks from overfitting. Journal of
Machine Learning Research, 15:1929–1958.

Stage, H., Ries, L., Langner, J., Otten, S., Sax, E., Stage, H., Ries, L., Langner, J.,
Otten, S., Sax, E., Ries, L., Langner, J., Otten, S., and Sax, E. (2022). Analysis and
comparison of datasets by leveraging data distributions in latent spaces. Deep Neural
Networks and Data for Automated Driving, pages 107–126.

Stegmüller, S., Werner, M., Kern, M., Birzle-Harder, B., Götz, K., and Stein, M. (2019).
Akzeptanzstudie “ROBOCAB”. Fraunhofer IAO.

Sutskever, I., Vinyals, O., and Le, Q. V. (2014). Sequence to sequence learning with neural
networks. Advances in Neural Information Processing Systems, 27:3104–3112.

Sutton, R. S. and Barto, A. G. (2018). Reinforcement Learning, Second Edition: An
Introduction - Complete Draft. MIT Press.

Sutton, R. S., McAllester, D., Singh, S., and Mansour, Y. (1999). Policy gradient meth-
ods for reinforcement learning with function approximation. Advances in Neural
Information Processing Systems, 12:1057–1063.

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., and Fergus,
R. (2013). Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199.

Tapani, A. (2012). Vehicle trajectory effects of adaptive cruise control. Journal of
Intelligent Transportation Systems, 16:36–44.

Tieleman, T. and Hinton, G. (2012). Lecture 6.5-rmsprop: Divide the gradient by a
running average of its recent magnitude. COURSERA: Neural networks for machine
learning, 4:26–31.

UN-R157 (2021). Un regulation no. 157 — uniform provisions concerning the approval
of vehicles with regard to automated lane keeping systems. United Nations Economic
Commission for Europe.

UN-R79 (2018). Un regulation no. 79 — uniform provisions concerning the approval of
vehicles with regard to steering equipment. United Nations Economic Commission
for Europe.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Łukasz
Kaiser, and Polosukhin, I. (2017). Attention is all you need. Advances in Neural
Information Processing Systems, 30:5998–6008.

Wachenfeld, W. and Winner, H. (2015). Autonomes Fahren - Kapitel: Die Freigabe des
autonomen Fahrens. Springer Vieweg, Berlin, Heidelberg.

Weidl, G., Madsen, A. L., Wang, S., Kasper, D., and Karlsen, M. (2018). Early and
accurate recognition of highway traffic maneuvers considering real world application:
A novel framework using bayesian networks. IEEE Intelligent Transportation Systems
Magazine, 10:146–158.

170

Bibliography

Williams, R. J. (1992). Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine Learning, 8:229–256.

Wirthmüller, F., Klimke, M., Schlechtriemen, J., Hipp, J., and Reichert, M. (2021).
Predicting the time until a vehicle changes the lane using lstm-based recurrent neural
networks. IEEE Robotics and Automation Letters, 6:2357–2364.

Wirthmüller, F., Schlechtriemen, J., Hipp, J., and Reichert, M. (2020). Teaching vehicles
to anticipate: A systematic study on probabilistic behavior prediction using large data
sets. IEEE Transactions on Intelligent Transportation Systems, 22:7129–7144.

Wissing, C., Nattermann, T., Glander, K. H., Hass, C., and Bertram, T. (2017). Lane
change prediction by combining movement and situation based probabilities. IFAC
PapersOnLine, 50:3554–3559.

Zadeh, A., Baltrušaitis, T., and Morency, L.-P. (2017). Convolutional experts constrained
local model for 3d facial landmark detection. IEEE International Conference on
Computer Vision Workshops, pages 2519–2528.

Zeiler, M. D. and Fergus, R. (2014). Visualizing and understanding convolutional net-
works. European Conference on Computer Vision, pages 818–833.

171

	Acronyms and Mathematical Notation
	Introduction
	Motivation
	Advanced Driver Assistance and Automated Driving Systems
	Levels of Driving Automation
	Processing Chain of Driving Automation Systems

	Contributions and Structure of the Thesis

	Preliminaries
	Standards, Guidelines, and Methods for the Development of Safe Driving Automation Systems
	Overview
	Safety of the Intended Functionality
	Formal Methods for the Safety of the Intended Functionality of Driving Policies

	Neural Networks
	Basics: Artificial Neurons, Layers, and Neural Networks
	Optimization
	Bayesian Deep Learning

	Reinforcement Learning
	Basics and Intuition
	Markov Decision Process
	General Concepts for Solving Markov Decision Processes
	Reinforcement Learning Algorithms

	Sample-Specific Output Constraints for Neural Networks: ConstraintNet
	Motivation
	Related Work
	ConstraintNet
	Sample-Specific Output Constraints for Neural Networks
	Architecture and Construction
	Constraint Guard Layer
	Training
	Supported Constraints and Generalizations

	Facial Landmark Detection Experiments
	Overview
	Output Constraints
	Training and Quantitative Results
	Qualitative Results

	Conclusion

	Safe Reinforcement Learning with Constrained Neural Networks: Vehicle Following Controller
	Motivation
	Related Work
	Safe Reinforcement Learning
	Adaptive Cruise Control

	Methods
	Vehicle Following Controller
	State-Specific Safe Sets
	Twin Delayed Deep Deterministic Policy Gradient Algorithm

	Experiments
	Simulator and Reward Function
	Training
	Results

	Conclusion

	Behavior Prediction for Safe Driving with Constrained Neural Networks: Joint Vehicle Trajectory and Cut-In Prediction
	Motivation
	Related Work
	Methods
	Data Set and Automatic Scenario Detection
	Model Input
	Encoder-Decoder Architecture
	Soft and Hard Output Constraints
	Loss

	Experiments
	Evaluation Metrics
	Preprocessing
	Training
	Results

	Conclusion

	Conclusion and Outlook
	List of Figures
	List of Tables
	Publications, Patents, and Supervised Theses
	References

