
High-Performance Commodity Data
Acquisition Systems for Scientific
Applications in the Terascale Era

Zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften (Dr.-Ing.)

von der KIT-Fakultät für Elektrotechnik und Informationstechnik
des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation
von

Dipl.-Inf.

Timo Dritschler
aus Ludwigshafen

Tag der mündlichen Prüfung: 06.07.2023
Erster Gutachter: Prof. Dr. rer. nat. Marc Weber
Zweiter Gutachter: Prof. Dr.-Ing. Dr. hc Jürgen Becker





Abstract

Advancements in detector technologies and computing systems have enabled
observations of physical processes and interactions in unprecedented detail,
both in the spatial and temporal domain. This increase in detail leads to a cor-
responding increase in the data volumes and the rates at which data is being
produced by modern scientific experiments. As such, the Data Acquisition
(DAQ) systems required to record and distribute the data produced by these
experiments have also grown in complexity.
Conventional off-the-shelves (commodity) components of Personal Comput-
ing systems have mostly been deemed inappropriate for fulfilling the require-
ments of cutting-edge experiments. This has lead to most experiments putting
increased effort into the development of custom DAQ electronics that are tai-
lor-made for their respective needs.

This thesis aims to show that the development of commodity computing com-
ponents has reached a level at which they can be used to build computing
systems adequate for even the highest of DAQ requirements. It puts special
focus on the application of standardized and commercially available intercon-
nect technologies, especially with regards to high-performance on-line data
processing and fast feedback control loops.

To this end, this thesis will provide an overview of currently available data-
transfer and computing technologies. It will identify the technologies that are
most useful in the construction of high-performance and low-latency process-
ing system. The respective strengths and weaknesses of chosen technologies
is shown through their application in real experimental use-cases. And even-
tually, these technologies are combined into a prototypical, generalized, scal-
able high-performance “Software Defined DAQ” and processing system, capa-
ble of satisfying the needs of even highly demanding scientific experiments.

i





Kurzfassung

Fortschritte von Detektortechnologien und Computersystemen ermöglichen
die Untersuchung physikalischer Prozesse und Interaktionen in nie dagewe-
senem Detail, sowohl in der räumlichen, als auch in der zeitlichen Domäne.
Diese Steigerung in Details führt ebenso zu einer Steigerung der Datenmenge
und der Rate mit der die Messdaten vonmodernen wissenschaftlichen Experi-
menten erzeugt werden. Daher sind auch die Datanerfassungssysteme (DAQ),
die zur Aufzeichnung und Verarbeitung dieser Experimentdaten dienen, glei-
chermaßen komplexer geworden.
Dies hat dazu geführt, dass viele Experimente erheblichen Aufwand in die
Entwicklung von komplexer Spezialelektronik investieren müssen, um den
DAQ Ansprüchen ihrer jeweiligen Messsysteme genügen zu können. Denn
konventionelle frei erwerbliche (commodity) Komponenten von standard PC
Systemen werden als unzureichend betrachtet, um die Ansprüche fortschritt-
licher Experimente erfüllen zu können.
Diese Arbeit zielt darauf ab, aufzuzeigen, dass die Entwicklung von standardi-
sierten PC Komponenten mittlerweile einen Stand erreicht hat, mit dem sich
auch mit Standardkomponenten Verarbeitungssysteme erstellen lassen, die
selbst den höchsten DAQ-Anforderungen genügen können. Dabei wird be-
sonderer Wert auf die Anwendung moderner Standardkomponenten zur Da-
tenübertragung gelegt, insbesondere imHinblick auf hochperformante online
Datenverarbeitung und Feedback-Loops.

Hierzu gibt diese Arbeit einen Überblick über aktuell verfügbare Techno-
logien zur Datenübertragung und Verarbeitung. Die Technologien, die am
besten geeignet zur Erschaffung von hochperformanten Verarbeitungssyste-
men bei geringsten Latenzen sind, werden aufgezeigt. Und deren jeweiligen
Schwächen und Stärken werden anhand von echten Anwendungsbeispielen

iii



Kurzfassung

dargestellt. Schließlich werden die gezeigten Technologien in ein prototypi-
sches, skalierbares, generelles „Software definiertes DAQ“ Verarbeitungssys-
tem vereint, das selbst den Ansprüchen modernster wissenschaftlicher Expe-
rimente genügen kann.

iv



Acknowledgements

This work is dedicated to the remarkable group of people without which this
work would have never come to be.

To my grandfather, I say “Thank you, for igniting the spark of curiosity for the
world of electronics in me.”

To Thomas Laun, I say “Thank you, for introducing me to the world of com-
puter science.”

To my parents and family, I say “Thank you, for always supporting me and for
providing the framework for me to carve out my own path in life.”

To all of my friends, I say “Thank you, for all of your loyalty even during my
darkest times.”

To all of my colleagues and mentors, I say “Thank you, for teaching me and for
all the excitement we had together along the way.”

To all of my supervisors and my professors, I say “Thank you, for all of the
trust you have put in me, even in the face of impending failure.”

To Vivienne, I say “Thank you, for all of your kindness, and for being my safe
haven throughout all of this.”

And finally, to all of those teachers of mine back in school that said I would
never reach this goal, I say “Screw you! I did it anyway!”

“Fall seven times, stand up eight.” —An old Japanese proverb

v





Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . i

Kurzfassung . . . . . . . . . . . . . . . . . . . . . . . iii

Acknowledgements . . . . . . . . . . . . . . . . . . . . v

1 Introduction . . . . . . . . . . . . . . . . . . . . . 1
1.1 DAQ in the Terascale Era . . . . . . . . . . . . . . 2
1.2 Problem statements and research questions . . . . . . . 4

2 DAQ basics: Data Transfer and Computing . . . . . . . . 9
2.1 Data Communication Fundamentals . . . . . . . . . . 14

2.1.1 Transmission Media . . . . . . . . . . . . . 16
2.1.2 Interconnects relevant to this work . . . . . . . 22
2.1.3 Networking Protocols . . . . . . . . . . . . . 33

2.2 High Performance Computing Methods . . . . . . . . . 44
2.2.1 The Multi-Core Paradigm . . . . . . . . . . . 44
2.2.2 Scalability of data access . . . . . . . . . . . 45
2.2.3 Computing Accelerators and Co-Processors . . . . 48

2.3 Field Programmable Gate Arrays . . . . . . . . . . . 55

3 Direct Memory Access . . . . . . . . . . . . . . . . . 61
3.1 Remote Direct Memory Access . . . . . . . . . . . . 67
3.2 GPU as Target of RDMA . . . . . . . . . . . . . . . 69
3.3 GPU DMA using an FPGA . . . . . . . . . . . . . . 72

4 KIRO: An RDMA programming library . . . . . . . . . 81

vii



Contents

4.1 KIRO Software Design and Components . . . . . . . . 81
4.2 KIRO Performance Measurements . . . . . . . . . . . 91
4.3 Case Study: High-speed RDMA side-channel for control

systems . . . . . . . . . . . . . . . . . . . . . 94
4.3.1 X-Ray Imaging at the IMAGE beamline of KARA . . 95
4.3.2 State of the System and Implementation

Considerations . . . . . . . . . . . . . . . 101
4.3.3 Side-Channel Benchmarks and Results . . . . . . 106

5 Low-Latency GPU computing system for commodity
DAQ . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.1 System Design . . . . . . . . . . . . . . . . . . . 109
5.2 GPGPU Specific latency optimization . . . . . . . . . 112
5.3 Case Study: Low Latency Trigger . . . . . . . . . . . 117

5.3.1 The CMS and its L1-Track Trigger . . . . . . . . 117
5.3.2 Track-Finding based on a Hough-

Transformation . . . . . . . . . . . . . . . 123
5.3.3 Hexagonal Hough Space . . . . . . . . . . . 125
5.3.4 Implementation details of the Track Trigger . . . . 126

5.4 Results and Discussion . . . . . . . . . . . . . . . 132

6 Software-defined DAQ and future developments . . . . . 135
6.1 RDMA Network Routing for fault tolerance and load

balancing . . . . . . . . . . . . . . . . . . . . . 136
6.2 Future of DAQ in the Cloud . . . . . . . . . . . . . 142

7 Conclusion and Research Results . . . . . . . . . . . . 145

Bibliography . . . . . . . . . . . . . . . . . . . . . . . 151

List of Figures . . . . . . . . . . . . . . . . . . . . . . 161

List of Tables . . . . . . . . . . . . . . . . . . . . . . 165

Listings . . . . . . . . . . . . . . . . . . . . . . . . . 167

viii



Contents

Acronyms . . . . . . . . . . . . . . . . . . . . . . . . 169

ix





1 Introduction

Electronic systems that sample signals from a data source (such as a detector)
and make these signals available and accessible to be processed by a computer
are called Data Acquisition Systems (DAQ). They span the operational range
from the moment data is being created, to the moment the data gets handed
off to a “permanent” storage, from which they can be accessed, processed and
evaluated. In addition, aspects of process control and computing have been
woven into the operational range of DAQ, in order to augment and facilitate
the operation of increasingly complex instrumentation.
As such, DAQ has taken on an important role in the operation of scientific
equipment, and its design and implementation often represents a substantial
portion of an experiment’s budget, both financially and in development effort.
In an ever-evolving scientific and technological landscape, many experiments
are faced with having to develop custom electronics, in order to satisfy their
DAQ requirements. This comes not only at the cost of slow development cy-
cles, but also has a propensity to “reinvent the wheel”, which holds higher
risk of reintroducing problems that are commonly associated with the chosen
technologies, further increasing the required development efforts, and reduc-
ing reliability.
In contrast, standardized equipment and technologies that are commercially
available (wewill call this commodity hardware) offers vastly reduced integra-
tion efforts, as they canmostly be used “out of the box” with high performance
and reliability, but do so by trading off versatility for specializing on a narrow
set of use-cases. In general, commodity hardware is considered to be unsuit-
able for the requirements of cutting-edge experiments with particularly high
DAQ demands, as they were commonly only optimized for data processing,
and lacked required connectivity and transfer capabilities.
In this thesis, I will show that these concerns are no longer valid, as the

1



1 Introduction

data transfer characteristics of commodity computing equipment have be-
come powerful enough to be suitable even to the needs of the most demand-
ing experiments. I will demonstrate how scalable high-performance general
purpose DAQ can be built from general purpose commodity computing com-
ponents at minimal development effort, and will propose a software-defined
framework to operate such commodity DAQ systems.

1.1 DAQ in the Terascale Era

Advances in detector technologies enable the observation of physical pro-
cesses and phenomena in unprecedented detail. This increase in detail directly
leads to an increase in the amount and the frequency at which data is being
produced by such detectors. As an example, we look at the Compact Muon
Solenoid (CMS) at the Large Hadron Collider (LHC) of CERN. It is predicted to
produce up to 50Tb (50 Terabits: 50 × 1012 bits) of raw data per second, after
its “Phase 2” upgrade ([And17]), putting us firmly into what we will call the
Terascale Era of instrumentation. Other experiments and instrumentations
from different scientific domains are certain to reach this milestone in the
coming years as well.
These increases in data rates are often a result of an increase not only in the
spatial resolution of a detector, but also in its sampling frequency. Experi-
ments that operate at high event rates of MHz or more are a challenge for
their respective readout systems, but they also offer potential benefits to the
fidelity of their measurement results. When observing dynamically evolving
processes at microsecond intervals or even smaller, it can be of benefit to be
able to influence process variables of an experiment at pace with its sampling
frequency. In some cases, these control decisions are based on an evaluation
of data provided by the detector at runtime. In this way, an experiment can
quickly react to changes in an observed process or phenomenon to increase
the quality of measurement results or change the overall system behavior.
This is commonly known as a Feedback Control Loop. Realizing such feed-
back loops for experiments with high-frequency sampling electronics requires
both, fast data communication channels, as well as computing infrastructure

2



1.1 DAQ in the Terascale Era

that is capable of processing measurement data at a sufficiently fast pace. As a
result, modern DAQ has evolved to be characterized by low-latency and high-
throughput data communication, as well as high-performance computing ca-
pabilities.
In the past, commodity computing hardware has mainly focused on compu-
tational bandwidth rather than latency, as the traditional use-cases for com-
puting have much more relaxed time frames. This has made it challenging
to use conventional commodity computing equipment to satisfy the DAQ re-
quirements of highly-demanding experiments. However, in this thesis I ar-
gue that deliberately choosing equipment and technologies with inherently
low latencies and high computing performance may yet make it possible to
construct commodity DAQ systems capable of meeting the demands of ex-
periments in the terascale era. Over the years, key performance metrics of
commercially available computing and networking equipment have steadily
improved. Arguably, the technological advances of commodity Personal Com-
puting (PC) and High Performance Computing (HPC) equipment have reached
a break-even point, at which it becomes feasible to develop highly perfor-
mant commodity DAQ, while minimizing the need for custom electronics.
This could lead to reduced integration efforts and avoid reintroducing typi-
cal problems in the development of custom electronics. Furthermore, such
DAQ would profit from the availability of the vast ecosystem of pre-existing
software and programming libraries for commodity components, which have
already been created over the past. Newer versions of the chosen equipment
can potentially serve as “in-place” upgrades with minimal changes to the ex-
isting system, once they become available. Overall, this would benefit small
and mid-tier experiment in particular, which often do not have the means to
finance the development of custom electronics for their DAQ.

In this thesis, I will focus on the development of high-performance DAQ
through commodity computing equipment, and aim to answer the question:

Guideline Question: How can we build DAQ systems from com-
modity computing components, capable of satisfying the needs of
experiments in the Terascale Era?

3



1 Introduction

My work takes a closer look at the needs and requirements of modern DAQ
for a range of different types of experiments. It will identify shortcomings
and strengths of such DAQ systems, and aim to alleviate identified prob-
lems through the application of commodity computing equipment wherever
possible. It will discuss traditionally applied technologies and methods in
the field of DAQ systems, as well as recent developments in the personal
computing fields, how these recent developments fit into the bigger picture of
DAQ and what stands to be gained from the symbiosis of custom electronics
with available commodity equipment. It will demonstrate the capabilities of a
purely commodity DAQ by implementing a trigger system for one of the most
highly demanding experiments to date, both in terms of data rate and latency
requirements. It will prove that with careful consideration for components
and interconnects, commodity DAQ is a highly attractive prospect, and can
definitely keep pace with traditional DAQ technologies.
And finally, it proposes a highly performant, scalable, general-purpose
“Software-defined DAQ” setup, built exclusively from commodity comput-
ing equipment, that bridges the gap between traditional DAQ and modern
Cloud Computing.

1.2 Problem statements and research
questions

A question as general as the guideline question can not trivially be answered
directly. Therefore, the research done in this thesis separates the single guide-
line question into a set of approachable elements, and aims to provide answers
to them as follows.

Traditional DAQ and Personal Computing Technologies

Due to the complexity of modern instrumentation, their DAQ systems of-
ten have to consider and aggregate data from many different subsystems or

4



1.2 Problem statements and research questions

sources in order to operate. This results in complex distributed systems, con-
sisting of many different layers, and a mixture of specialized readout elec-
tronics, networking components and computing equipment. Finding suitable
and optimal technologies and methods to allow for the effective combination
of data transfer and computing is a core challenge of modern DAQ design.
Adherence to established standards opens the door to a high level of inter-
operability, and can often ensure not just reliability, but also flexibility and
maintainability. It is in the best interest of any new DAQ design to be aware
of available technologies and methods, and to have a solid understanding of
their benefits and shortcomings, in order to choose optimal solutions. From
this, we can derive the first primary research question:

Question 1: Which commodity computing technologies can be
used to aid the integration of heterogeneous DAQ components?

Remote Direct Memory Access for Low-Latency Networks

Single computing nodes can not provide sufficient computational perfor-
mance to control complex instrumentation. A DAQ that needs to take
multiple data sources and additional online-processing into account can only
meet required performance constraints by means of a distributed system,
as they are commonly found in HPC installations. Especially when using
commodity computing equipment that is intended for personal computing
applications, such systems often turn into multi-layered heterogeneous
clusters. The further such a computing network is distributed, the more
important it becomes to focus on the design of the network that connects the
resources to each other, in order to maintain scalability. Additionally, when
designing a DAQ that incorporates online-processing with feedback-loops,
communication latency gains increased importance over just interconnect
bandwidth.
Direct Memory Access (DMA) allows devices connected to a common bus
inside of a computing system direct bus-level access to attached memories
without the need for the CPU to manage the data-transfer. This avoids
many of the overheads of data-transfer inside computer systems and frees

5



1 Introduction

up the CPU for more meaningful tasks in the mean time. Remote Direct
Memory Access (RDMA) extends this concept onto a network level, in which
network devices and protocols allow for the movement of data directly to
and from memories attached to their respective system buses. This bypasses
the operating system’s network stack and significantly reducing transfer
latency. There are multiple data-transfer standards available that support
(R)DMA, as well as different protocols to facilitate different levels of reli-
ability. However, many DAQ systems and networks still heavily rely on
Ethernet for their data-transfer needs, which traditionally does not support
RDMA. The question arises:

Question 2: Which RDMA capable network standards are avail-
able? How do they differ from each other, and how well are they
suited to modern DAQ needs? How can existing Ethernet DAQ in-
frastructure benefit from RDMA?

Integration of GPU Computing into Low-Latency RDMA Networks

Traditional computing equipment is commonly optimized for computational
throughput, rather than low latencies. Components, such as GPUs, can op-
erate on multiple data at once to reach high computational bandwidth, but
data transfer from and to GPUs is notoriously slow, with many overheads
and bottlenecks. For DAQ to profit from the high computing performance of
GPUs for fast on-line processing, GPUs need to be efficiently integrated into
the DAQ network with a low-latency and high-throughput link.
Recently, GPU manufacturers have provided technologies that allow for their
GPUs to be the target of DMA operations, which opens up the possibility to
perform RDMA operations to and from such GPUs. This provides an ideal
opportunity to reduce latencies and turnaround times in distributed comput-
ing systems.

Question 3: How can Remote Direct Memory Access be combined
with traditional High-Performance Computing methods, such as
GPU computing?

6



1.2 Problem statements and research questions

Application of FPGAs in commodity DAQ Systems

Field Programmable Gate Arrays (FPGAs) are a form of software-pro-
grammable, low-power integrated circuit that can be reprogrammed to
change configuration, providing full control over their timings and behaviour.
Many FPGAs offer a wealth of integrated interconnectivity components, such
as fast digital/analogue domain converters, generic high-speed transceivers
and a high number of custom programmable General Purpose Input/Output
(GPIO) pins. They find broad application in many custom DAQ installations,
especially in front-end electronics, where they are used for data-sampling,
(pre)processing, distribution and recording. They are also commonly used
to implement highly parallel data processing logic and have recently gained
increased recognition as general purpose computing accelerators, as well as
machine-learning applications. However, most FPGAs can not compete with
the computing performance of highly optimized computing equipment, such
as GPUs. Integrating them into any system usually requires the development
of a highly complex custom circuit board to mount the FPGA onto. Although
for many cases there exist pre-fabricated “evaluation boards” that provide
access to most of an FPGAs functionality and can be used in a turn-key
fashion.
When using FPGAs to their respective strengths and combining them with
other components so that they can supplement each other, they are most
valuable tools to build modular, flexible and highly performant DAQ systems.
To this end, it becomes important to consider suitable strategies of integrating
FPGAs into commodity DAQ environments, and we formulate the question:

Question 4: How can general purpose commodity DAQ systems
benefit from the application of FPGAs, and how can FPGAs be inte-
grated into such systems?

Design and validation of a commodity DAQ processing chain

With the wealth of available components and technologies to realize high-
performance commodity DAQ systems, we become interested in a suitable

7



1 Introduction

selection and arrangement that facilitates both, lowest latencies and high-
speed computing. To ease integration efforts, such systems should be flexi-
ble enough to be compatible with a wide range of DAQ requirements, while
remaining scalable to the respective experiment’s needs.

Question 5: What is a suitable commodity DAQ system design
that facilitates both, low data communication latencies and high-
performance computing? Which standards should be chosen, to aid
maintainability and scalability?

Software for commodity DAQ Systems

After choosing optimal networking and computing equipment, we arrive at
a notion of DAQ that consist mostly of commodity computing hardware. It
heavily resembles traditional distributed High Performance Computing sys-
tems, with an added focus on low-latency data communication. With this, the
bulk of the work of the DAQ implementation shifts away from electronic con-
siderations, towards software and firmware design, as almost all commodity
computing equipment is software programmable.
There are many programming frameworks and libraries available that may
help programmers to implement their DAQ. But due to the novelty of com-
modity hardware DAQ, no software exists that specifically focuses on such
“Software-definded DAQ”. A novel concept for a control software specifically
for DAQ built from commodity computing and networking equipment needs
to be developed. So we ask the question:

Question 6: How can DAQ benefit from being defined mainly
through software, and how could such a Software-defined DAQ
system look like?

8



2 DAQ basics: Data Transfer and
Computing

Let us first clarify some basic contexts for this thesis. We understand Data Ac-
quisition Systems (DAQ) as electronic systems that sample data from a source,
and make these data available to be processed by a computer. Further, for the
scope of this thesis, we assume that the data source is some form of detec-
tor, or multiple detectors, that provide their measurement results in the form
of analogue electric signals which get sampled and converted into the digital
domain. Conventionally, this converted data is then written to some form of
storage, from which it can eventually be picked up by any arbitrary comput-
ing system that is suitable to the instrumentation’s requirements. This com-
puting system processes the recorded data, extracts relevant information and
thus provides knowledge to the operators of the instrumentation. Without
loss of generality, let us assume that this process is performed in the context
of a scientific experiment that uses the aforementioned detector(s) for their
investigations.
In most basic cases, the DAQ that samples and converts the data from the
detector(s) will eventually store it onto persistent memory, most typically
one (or many) computer hard-drive(s). The scheme of waiting for data to
be stored onto a hard-drive, and then processing it afterwards, is called Off-
line Processing, or sometimes also Batch Processing, in cases where multiple
datasets get processed periodically. This paradigm is still feasible for many
experiments today. But we can already see the first large-scale scientific ex-
periments emerge, for which the processes of offline- and batch processing
would require such prohibitively large computing and storage setups, as well
as long data transfer times which make these solutions practically infeasible.
For example, with experiments from the field of high-energy physics, such as

9



2 DAQ basics: Data Transfer and Computing

the Large Hadron Collider of CERN, even single experiments, like the Com-
pact Muon Solenoid (CMS), can produce multiple Terabytes (1012 bytes) of
data per second ([And17]). To put this number into perspective, the largest
computer hard-drive to date, which has only recently (as of 2022) become
available¹, provides 20 Terabytes of storage capacity. Meaning, the data from
the CMS alone would fill up one of such hard-drives every couple of seconds.
With an estimated 7.5 million seconds of operation per year², the resulting
deluge of data would be—quite frankly—neigh impossible to manage with to-
day’s levels of storage technology.
As a direct consequence of those circumstances, the conventional paradigm
of offline processing is no longer applicable to such experiments, and forces
them into a dilemma. Either the runtime of the experiment needs to be lim-
ited to the scale of available storage, severely limiting the experiments effi-
cacy, or they have to find means to reduce the amount of data that needs
to be stored, without significant loss of valuable information. Indeed, many
methods of achieving data reduction have been developed, ranging from data
compression ([Arr01][Pur03]), pre-processing of data with the intent of only
storing processing results (sometimes referred to as Online Knowledge Extrac-
tion [Can15]), as well as so-called Trigger Systems, which aim to select mea-
surements that hold relevant information. (Such Trigger Systems will get dis-
cussed in more detail in chapter 5 of this thesis.)
Regardless of the solution each experiment might choose, they all have one
important thing in common: They require Computing. While the traditional
notion of DAQ ismostly limited to data recording and transport, it is becoming
increasingly more typical for DAQ to also incorporate aspects of computing
on its data path from source to storage, in order to facilitate forms of Online-
Processing in accordance to an experiment’s requirements. However, with
the aforementioned increase in generated data bandwidth of modern exper-
iments, the computational performance necessary for online processing can

¹ https://www.seagate.com/news/news-archive/seagate-ramps-20tb-hdd-shipments-answering-
mass-data-growth-pr-master

² http://home.cern/news/news/computing/cern-data-centre-passes-200-petabyte-milestone

10



2 DAQ basics: Data Transfer and Computing

not be provided by a single computing node. In most cases, distributed sys-
tems with varying types of computing accelerators are required to provide
sufficient performance. This introduces yet another challenge into the design
of modern DAQ: Data Transfer and Networking.
Even in the traditional notion of DAQ as a simple data recording mechanism,
aspects of data transfer needed to be considered in order to provide inter-
connects from source to storage that can provide enough bandwidth for the
amount of data generated by the source. By today, most detector systems
have grown in complexity and consist of a number of different subsystems
that operate largely independently of each other. This means that measure-
ment information of such detectors is split intomultiple separate data streams,
that need to be re-combined into logical events in order to get the “full pic-
ture”. Again, data transfer plays an important role in the design of such data
concentrators. When aiming to process the collected data in a distributed com-
puting system, interconnect bandwidth becomes an important aspect of the
scalability of those distributed systems. Finally, as detectors not only grow in
structural complexity, they also enable measurements at ever higher tempo-
ral resolution. Meaning, that any experiment that aims to dynamically control
measurement parameters of their detector at pace with its measurement rate,
will have to put additional emphasis not only on the bandwidth of its inter-
connects, but also on their communication latency.

In conclusion, the scope of modern DAQ has increased from its traditional
notion of simple data-recording system, to sophisticated online-processing
and distribution systems which are characterized by both, efficient network-
ing technologies, as well as online high-performance computing capabilities.
This “modernized” view of the capabilities and responsibilities of DAQ is vi-
sualized in figure 2.1 and will serve as the general “blueprint” for the systems
I aim to present during the course of this work.

With this modern notion of DAQ in mind, as well as its two core operational
responsibilities (Data Transfer and Computing), we can now set out to be-
gin and choose suitable technologies to realize such a system. According to
the mission statement of this work (see Chapter 1) I aim to do this through
the use of as much commercially available commodity hardware as possible.

11



2 DAQ basics: Data Transfer and Computing

In the following sections of this chapter, I will introduce general concepts
and characteristics of the most common forms of data communication and
interconnects, as well as basics of data processing and distributed comput-
ing. At first, I will introduce networking related technologies and present the
interconnects and networking technologies that I have chosen for my work.
Then, I will give an introduction to contemporary methods of High Perfor-
mance Computing (HPC), such as General Purpose GPU Computing (GPGPU)
and Field Programmable Gate Arrays (FPGAs).

12



2 DAQ basics: Data Transfer and Computing

Fi
gu

re
2.
1:

Th
eg

en
er
al
iz
ed

sc
he
m
a
of

a
DA

Q
ch
ai
n
fro

m
da
ta

so
ur
ce

to
st
or
ag
e.
In
cl
ud

in
g
sa
m
pl
in
g
st
ag
es

an
d
da
ta

co
nc
en
tra

tio
n,

O
nl
in
e-

Co
m
pu

tin
g
an
d
Fa
st
Fe
ed
ba
ck

Co
nt
ro
lL

oo
p.

13



2 DAQ basics: Data Transfer and Computing

2.1 Data Communication Fundamentals

Electromagnetic signals are a commonly used form of data transmission in
contemporary information processing systems. These include electric cur-
rents, radio waves and bundles of photons through a range of different me-
dia.
Information is encoded on such signals by means of frequency and ampli-
tude. While both of these information domains are continuous by nature,
most computing systems have been developed to interpret these signals at
discrete amplitude levels and at fixed frequencies. Specifically, most modern
computing systems focus solely on two distinct amplitude levels to separate a
’high’ and a ’low’ state of a signal at well defined transition frequencies, and
are therefore called digital computers. Computers that interpret the full con-
tinuous spectrum of a signal also exist and are respectively called analogue
computers. They have advantages over their digital counterparts in regards
to processing bandwidth and functional range. However, digital systems are
superior in regards to flexibility and computing precision ([Rub53]) and have
thus become the predominant computing architecture. Therefore, I will focus
on the transfer and the processing of digital information, throughout the rest
of this thesis.

For computers, the most common form of signal is an electric current through
a conductor. However, radio transmission and optical communication by
sending light impulses through a fiber, are commonly used as well. It is im-
portant to keep in mind that in actual practical applications even digital in-
formation is still being transmitted by means of a continuous analogue signal.
Suitable mechanisms of encapsulating and extracting the digital information
stream onto and from the analogue transmission signal need to be chosen for
an interconnect to work efficiently and reliably. The development of reliable
interconnects at high transfer rates has spawned whole scientific domains
and industries focused solely on this particular aspect of data communica-
tion. However, as this thesis focuses on the construction of DAQ with com-
mercially available commodity components, the physical functionality of such

14



2.1 Data Communication Fundamentals

interconnects is mostly out of scope for those considerations, as we are ex-
pressly aiming to avoid developing custom data transmission electronics. This
is why I will take on the assumption, that we won’t have to involve ourselves
with the basic functionalities of the interconnects discussed in this thesis, and
that we can use and rely upon their functionality basically as a black-box.
To be able to make qualitative assessments and comparisons of those black-
boxes, we will use three different forms of metrics.

• Bandwidth: The bandwidth of an interconnect is a measure of the
maximum potential amount of data that can be transferred between
two endpoints over a fixed unit of time. It is typically denoted in the
form of Bits per Second, which I will abbreviate as bps throughout this
thesis. This is not to be confused with an analog signal bandwidth,
which is a measure of the difference between lowest and highest
attainable frequency of a continuous frequency band, and would be
denoted in Hertz (Hz) instead.

• Throughput: is a measure of the amount of useful data that is
actually being transferred within a certain window of time. It is
typically averaged and normalized to the amounts of Bits per Second
(bps), just as the bandwidth is. In practical application, the throughput
of an interconnect will always be lower than its maximum bandwidth,
due to a variety of factors, such as protocol overheads and
retransmissions due to bit-errors.

• Latency: The latency of a data transmission describes the systemic
amount of time that will pass between sending data and the moment
the receiver has fully obtained the data and is ready to process it. It is
affected by signal propagation time, path length and various
transformation delays when information gets encoded and decoded to
and from the carrier signal and the type of transfer protocol that is
being used. As it is an amount of time, it is denoted in seconds.

15



2 DAQ basics: Data Transfer and Computing

Note: Bandwidth, Throughput and Latency are by far not the only
metrics that play a role in the design of a complete system. For exam-
ple, power consumption might be relevant for particularly small-scale
systems, as well as heat build-up and the required thermal dissipation
equipment. But those aspects have no direct impact on the primary
functionality of an interconnect.

Aside of those intrinsic properties of interconnects, it is also of importance
to understand the benefits and drawbacks of the types of transmission media
an interconnect can utilize. There are a number of properties that need to be
understood in order to make an informed choice.

2.1.1 Transmission Media

Whenever information needs to be transmitted, there always needs to be a
medium through which the signal that carries the information will travel.
The most common forms of transmission media for digital information are
in the form of an electrical current through metal wires, packets of photons
through an optical fiber and radio waves across the air. These transmission
media differ in their properties, which need to be considered when choosing
a medium. A summary of those differences and their impact on the design of
a data communication system is shown in listing 2.1.1 and will be described
in further detail in the following sections.

Radio Transmission

While radio transmission (commonly just classified as “wireless” communi-
cation) might appear convenient, as it does not require a wired connection
between the communication participants, it is also the least reliable of the
three mentioned transmission media, and also the one with the worst average
bandwidth and throughput.
While there exist a wealth of different standards for wireless communication
that are being widely used for data communication, such as Bluetooth [Bis01],

16



2.1 Data Communication Fundamentals

Wireless LAN [Ros04], Fifth generation mobile communication (5G) [Jai18],
etc., they all exhibit similar limitations in their practical application. Wireless
communication is notoriously unreliable as it is prone to interference and
suffers from a significant drop in signal-strength/signal-to-noise ratio when
transmitting through obstacles like the walls and floors of a building. It
is common in many experiment setups that a detector and its respective
computing infrastructure are set up in different locations. In the best case,
these would be located in the same building. But it is not uncommon for
data centers to be located in a different building on the same campus all
together. This already makes it exceedingly difficult to transmit a radio signal
from data source to the computer infrastructure. In radiation-hardened
environments, like they can be found in many experiment setups, it might
even be impossible for a radio signal to penetrate the shielded area in the
detector cavity to begin with. Let alone any negative impacts the radiation
produced by the experiment might have on the radio signal, or even worse,
which impact the radio signal might have on the measurements.
Regarding expected bandwidth, typical data rates range from a few megabits
per second for Bluetooth, to roughly 10 gigabits per second in 5G (under
ideal conditions, including the use of carrier aggregation and non-congested
licensed transmission frequencies.) The newest Wireless LAN standards
(801.11ax), also called Wi-Fi 6, reports to reach a bandwidth of 2200 mbit/s
under optimal conditions [Bel16]. These bandwidths are an order of mag-
nitude less than what most common cable-based interconnects are able to
achieve and wireless will rarely ever reach their theoretical maximum speeds
in practical application.

For those reasons, wireless data transfer only occupies a very small niche
in the domain of DAQ and it is typically only used in cases where a wired
connection is unfeasible. For the rest of this thesis, I will assume that we will
be able to used wired alternatives instead.

17



2 DAQ basics: Data Transfer and Computing

Metal Wire

Metal wires or traces on a circuit board are the most common form of trans-
mission medium found today. As virtually all computing circuits nowadays
work by means of electric current, metal wires are ideal choices to transport
those currents over short or medium distances. Metal wires are robust against
mechanical damage and bending. The source electric signals can simply be
transmitted through a wire without needing to be adjusted first, at least in
cases where current is being transported over short distances only (tens of
centimeters). However, when wanting to transport current over medium to
long distance (generally beginning at around 1/10 of the signal wavelength),
some unwanted side-effects will begin to manifest. At high transmission fre-
quencies, wires begin to act like antennas, emitting radio signals, and in-
troducing cross-talk into neighbouring lines. With increasing cable length,
electric impedance, signal reflection and Inter-Symbol-Interference (ISI) will
need to be taken into account. These effects limit the maximum possible ca-
ble length, as well as the maximum transmission frequency. In addition, other
sources of electromagnetic radiation can introduce noise into the transmission
lines of the cable, interfering with the transmission. Some of those effects can
be mitigated by shielding the cable, and by using Differential Signalling in-
stead of single transmission lines, at the expense of increased manufacturing
cost.

When usingDifferential Signalling, an electric signal is not sent across a single
transmission line, with its amplitude being derived from a comparison against
a pre-defined base level. Rather, signals are sent across a pair of lines simul-
taneously, where both lines transport the signal with an amplitude equal and
opposite to each other. The signal is then derived from the difference in am-
plitude across both lines. This adds reliability to the transmission process, as
any external interference usually affects both lines in the same way and there-
fore has low impact on a differential signal. A visualization of this effect can
be seen in figure 2.2. In addition, a differentially transmitted signal tends to
reduce the radio emissions of the interconnect, as the electromagnetic fields
created by the equal but opposite charges of the transmitted signals cancel

18



2.1 Data Communication Fundamentals

each other out, which significantly reduces cross-talk, and allows for higher
transmission frequencies over longer distances.

Figure 2.2: An example of noise reduction when using differential signalling b

b By ’Linear77’, Wikimedia Commons, licensed under CC BY 3.0 (https://creativecommons.org/
licenses/by/3.0/). The work is being used unaltered.

Employing these strategies, it becomes possible to use metal wires of varying
lengths for different types of speed-grades. As an example, we look at the dif-
ferent speed-grades of the commonly used Ethernet interconnect. For 1 Giga-
bit per second, metal cables are able to reach lengths of up to 100 meters. This
maximum length will gradually reduce to only 15 meters for up to 40 Gigabits
per second. 7 meters when used for 100 Gigabits per second. 3 meters for 200
Gigabits per second. For speed-grades of 400 Gigabits per second and higher,
metal cables are no longer foreseen as compatible transmission medium. It is
to be noted, though, that Ethernet generally combines multiple pairs of wires
to reach the desired throughputs. The mentioned throughputs can only serve
as a relative comparison, and do not accurately present the maximum amount
of data that can be transferred via a single metal wire or differential pair. For
all intents and purposes of this thesis, however, the knowledge that metal
cables exist for Ethernet of up to 200 Gigabit per second is sufficient for all
further discussions.

19

https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/


2 DAQ basics: Data Transfer and Computing

Despite the mentioned drawbacks, the simplicity and reliability of metal wires
and cables, when being used over short to medium distances only, still make
them the most widely used form of transmission medium to date.

Optical Fiber

In fiber-optic-communication, long strands of translucent fibers, made from
silica or plastic, are used to transport light from one end of the fiber to the
other. The inherent properties of using light as a transmission signal bring a
number of benefits. As photons move with close-to-light-speed through the
fiber, signal transmission has only very little latency. Simultaneously, fiber-
optic data transmission is immune to electromagnetic interference, but they
are comparatively fragile and can easily get damaged.
There are two types of optical fibers. They differ by how many Modes of Light
can travel through the fiber simultaneously and are thus aptly called Single-
Mode and Multi-Mode fibers. The discussion about modes of light is outside
the scope of this thesis. The practical implications of single-mode and multi-
mode fibers essentially come down to the following understanding:

• Single-Mode fiber installations are generally more expensive, but have
higher bandwidth and can reliably transport signals up to 40
kilometers

• Multi-Mode fiber installations are generally cheaper, but are limited in
bandwidth and range, and are recommended for distances of less than
400 meters

As of today, it can be approximated as a rule of thumb that optical-fiber instal-
lations are roughly double the price of comparable metal-wire installations.
This increase in cost comes not only down to the production cost of the fibers
themself, but also to the higher complexity of the required networking equip-
ment and connectors. Electric signals first need to be converted into a light
pulse, before they can be transmitted through an optical-fiber. They then need
to be converted back to an electrical signal at the receiving end. The trans-
mitters and receivers required for this conversion are a driving factor behind

20



2.1 Data Communication Fundamentals

the higher prices and are the main reason that prohibits the proliferation of
fiber-optics for data communication over conventional metal wire cables.

Listing 2.1.1: Summary of the qualities of transmission
media

• Wireless Radio Transmission
– Supports up to 10 Gbps peak performance, but averages out at

below 1 Gbps in practical applications

– Has a typical range of below 100 meters, but can be extended to
multiple kilometers by using directional antennas

– No mechanical connection/cable required to connect machines,
though requires appropriate radio equipment

– Is notoriously unreliable and has trouble penetrating obstacles,
making it difficult to use between installations and in radiation-
hardened environments

• Metal Wire Cables
– Up to 200 Gbps in practical applications

– Supports up to 100 meters of cable length

– Is comparatively cheap, robust and requires low mechanical
complexity

– Maximum cable length strictly limited by transmission
frequency, topping out at a maximum of 3 meters at 200 Gbps
applications, and is sensitive to electromagnetic-interference

• Optical-Fiber
– Up to 400 Gbps in commodity applications, but can theoretically

be used up to multiple Terabits per second.

– Up to 40 kilometers for Single-Mode fibers and up to 400 meters
for Multi-Mode fibers

21



2 DAQ basics: Data Transfer and Computing

– High signal propagation speed, transmission bandwidth and
maximum cable length. Immune to electromagnetic-interference

– More expensive than regular metal-wire cables and mechanically
fragile

From the mentioned properties of transmission media, it can be concluded
that fiber-optics-communication is the ideal choice when wanting to transmit
signals of very high bandwidth, or whenever distances above 100 meters need
to be bridged. While for applications below 100meters, metal wire cables offer
a better trade-off between performance and cost.

2.1.2 Interconnects relevant to this work

There exists a whole ecosystem of different interconnect standards. In this
section, I will introduce the interconnects that are most relevant to the objec-
tive of this work. But before I will do this, I deem it important to have a quick
clarification of the term “interconnect” which is used regularly throughout
this thesis, as the term itself is ambiguous. It is used in different capacities
whenever talking about aspects of data communication, like the definition of
physical interfaces and connectors, as well as whole classes of information ex-
change systems. To make any further discussions more concise, I will define
an interconnect as follows:

An interconnect is a data communication standard that consists
of a set of protocols which describe:

• At least one type of physical interface to a shared
transmission medium to which the participants of a
communication are connected

• An encoding of information onto a carrier signal which
gets transmitted through the shared medium

• Structures and sequences of information via the carrier
signal that make it possible to transmit a generic data
payload between participants of a communication

22



2.1 Data Communication Fundamentals

In a similar way, the term “protocol” is equally ambiguous. As mentioned
in the interconnect definition, there might be protocols for carrier types,
modulation and frequencies, permissible signal amplitudes, bit arrangement
and interpretation, handshakes, send/receive order, addressing schemes, and
many more. Generally, a protocol is simply a set of communication rules that
both ends of a communication are following in order to exchange informa-
tion. To better clarify what type of protocol is being referred to during the
discussions in this work (wherever necessary) I will also specify the so-called
“OSI Layer” of the protocol in question. The Open Systems Interconnection
Model (OSI Model) is a conceptual model to describe the different “layers” of
data communication in order to better describe which aspect of communica-
tion any given protocol pertains to. The 7 layers of the OSI model and a short
explanation of each layer is presented in table 2.1.

Table 2.1: The 7 layers of the OSI Model

Layer Name Explanation
7 Application Interface definition for the communication of applications
6 Presentation Interpretation of bit sequences in the payloads
5 Session Grouping of multiple exchanges into one logical “dialogue”
4 Transport Sequences of data frames forming one coherent exchange
3 Network Methodology to chose data path/receiver on a network
2 Data Link Arrangement of bits to form a consistent “data frame”
1 Physical Encoding of information (bits) onto the carrier signal

As the goal of this thesis is to discuss how to build data-acquisition system
with commodity hardware, I will limit the selection of presented intercon-
nects to those who’s primary purpose is to transport generic user-data and
are not limited to domain-specific applications. For example, interconnects
for graphics devices, such as the Video Graphics Array (VGA) [Tho88], High-
Definition Multi-Media Interface (HDMI) [Eid] and related interconnects in the
same domain do findwidespread use. They are not intended to transport user-
data, and instead are optimized for the connection of displays to a computing
device. Many such domain-specific interconnects exist for a range of different

23



2 DAQ basics: Data Transfer and Computing

purposes, such as Video, Audio, input devices and more. Those domains and
their respective interconnects are not relevant to this thesis.
Similarly, there exists a wealth of point-to-point and bus-based interconnec-
tion standards for generic data-transfer, such as RS-232 [Buc04], CAN Bus
[HPL02], 𝐼2𝐶 [Man14], and similar, which see widespread adaptation in many
types of applications worldwide, but are still not relevant for the work pre-
sented in this thesis due to their bandwidth being orders of magnitude too
small (generally, 5 Mbps or slower) to be feasible for the data rates of modern
detectors.
For clarification, I will limit my selection of interconnects to those which can
fulfill the following requirements:

• General-Purpose

• Bandwidth of 32 Gbps or greater

• Nominal latency of 1 ms or lower

• Wire-bound (as in: not “wireless”)

• Widely used and readily available commodity components for PCs

• No requirement for additional electronics development

• OSI Layer 3 routable (More on this in chapter 6)

• Available Remote Direct Memory Access functionality or extension
(See following note)

Note: Direct Memory Access (DMA), as well as its network extension
Remote Direct Memory Acces (RDMA), will be introduced in full detail
in chapter 3. For this introduction and the overview of chosen standard
interconnects and protocols, it is sufficient to understand that (R)DMA
is a technology that reduces the latency of a data transfer by elimi-
nating superfluous copy operations on the data path. The resulting
decrease in transfer latency thus makes RDMA capable interconnects
particularly useful for the high-performance DAQ systems developed
in this thesis.

24



2.1 Data Communication Fundamentals

When applying these criteria to the selection of interconnects, the list of
candidates out of all available interconnects quickly contracts to only three
options. Ethernet, InfiniBand and OmniPath. I will introduce and evalu-
ate these options in the following sections.
However, before I do so, I will start with an exception to this selection.
Namely, the Peripheral Component Interconnect Express (PCIe) standard used
for inter-system communication inside PCs. This communication standard
will become important during later discussions, especially for the concepts
of Direct Memory Access (DMA).

PCI Express

As of the time of writing this thesis, the Peripheral Component Interconnect
Express (PCIe) [Bud04] is the driving force behind the inter-system communi-
cation inside of PCs. It will provide the necessary communication medium for
all of the Direct Memory Access applications that will be introduced through-
out this thesis. As such, it is important to have at least a conceptional under-
standing of how this interconnects operates. Even though PCIe can not be
used for networking applications.

PCIe is used to connect the internal components of modern PCs, such as mem-
ory controllers, storage devices, data drives, graphics adapters, some network-
ing adapters and other components together on a common bus. Its connector
specification also provides up to 75 Watts of power to the connected device.
At the time of writing, virtually all commodity computer systems use PCIe to
connect their internal components together. It is a serial data-bus that is based
on a point-to-point topology that provides communication lines for devices
to connect them to a common root complex. It is possible to connect multiple
PCIe root-complexes together through a specialized PCIe switch in order to
expand the amounts of available communication lines. However, this comes
at the cost of increased communication overhead when communication be-
tween devices has to traverse the switch. All devices that are connected to
a root complex share a common bus address space and can freely establish

25



2 DAQ basics: Data Transfer and Computing

communication links between one another. Links between devices are or-
ganized by combining between 1 and 16 individual communication lanes to-
gether, with each lane consisting of two pairs of differential signalling lines (4
individual lines in total). One of these pairs is used for sending messages, and
the other pair is used to receive messages, ammounting to full-duplex. How
many lanes are available for each device is dependent on the connector the
device is plugged into, and devices will negotiate the amount of lanes they
want to utilize with their respective communication partner. The maximum
amount of communication lanes a device is able to simultaneously utilized
is often denoted in the form of an “x” prefix, followed by that number. e.g.:
x1, x4, x16, etc. and there exist individual connectors for each of those lane-
counts (Figure 2.3). Connectors differ in size, depending on the amount of
PCIe lanes they provide. And they are designed in such a way, that it is pos-
sible to plug a device that requires fewer lanes into a connector that provides
more lanes than the device needs. The inverse is not possible, however, as
devices requiring more lanes than a connector can provide will not physically
fit into the connector.
The PCIe communication standard is separated into a physical layer, data

link layer and a transaction layer (Layers 1, 2 and 3 of the OSI Model). These
layers describe the electrical properties of the bus connection, the semantics
of each individual transmission, as well as the organization of signal trans-
mission on the bus, respectively. PCIe communication is encapsulated into
well-defined communication packages that are exchanged between a commu-
nication “requester” and a communication “responder”. It mandates a reliable
communication semantic in which a device must store each transmitted data
package in a buffer for the purpose of potential retransmission, until the re-
ceiver acknowledges their arrival.
PCIe hast evolved through multiple iterations of the standard from version
1.0 in the year 2003, until its current version 5.0 in 2019. Version 6.0 of the
standard is expected for 2022. Each version has successively increased the
maximum transfer rate and these rates can be seen in table 2.2.

26



2.1 Data Communication Fundamentals

Figure 2.3: Four PCIe connectors of varying sizes on a computer motherboard. An x16 form
factor connector with full 16 lanes exposed at the top. Two times x1 in the middle
and one x16 form factor connector at the bottom that only exposes 4 lanes. Their
respective classifications are printed onto the motherboard for easier identification
(red ellipse). a

a By ’Sayeen’, Wikimedia Commons, licensed under CCBY-SA 4.0 (https://creativecommons.org/
licenses/by-sa/4.0/). The work is being used unaltered.

Table 2.2: PCIe transfer rates and throughput per version

Version Introduced in Transfer Rate Throughput
- Year Gigatransfers per second Gigabytes per second
1.0 2003 2.5 GT/s 0.250 GB/s
2.0 2007 5 GT/s 0.500 GB/s
3.0 2010 8 GT/s 0.985 GB/s
4.0 2017 16 GT/s 1.969 GB/s
5.0 2019 32 GT/s 3.938 GB/s
6.0 2022 64 GT/s 8.000 GB/s

27

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/


2 DAQ basics: Data Transfer and Computing

Ethernet

Ethernet[Spu00] is a family of interconnects that offers high bandwidth and
error resilient full-duplex communication between any number of computers
connected on a network. Its standards and protocols define functionality up
to, and including, OSI-Layer 3. It is one of the most ubiquitous interconnects
used today, seeing wide adaptation in almost all domains, from industry to
consumers and the sciences. It was first developed in 1980 and conceptually
uses a single shared differential transmission line to which all participants of a
communication are connected. Each participant is assigned a globally unique
address (the so-called Media Access Control (MAC) address) and each trans-
mission over an Ethernet network contains both a source MAC address and a
destination MAC address. These addresses consist of 48 bits of information,
split into 6 individual bytes. They get represented by two hexadecimal digits
per byte, separated by a colon character. For Example: 56:FA:A9:08:BD:2F
Conceptually, all participants share a common communication medium, and
any transmission can be seen and received by every station connected to that
medium. Ethernet networking adapters are expected to ignore all transmis-
sions that are not directly addressed at them. During the early phases of Eth-
ernet, it used a single coaxial cable to which each station on the network was
attached to. This causes congestion on the transmission line when multiple
stations on the network are trying to transmit at the same time. By today,
the most common physical connector standard is the RJ45 plug, seen in pic-
ture 2.4, which features 4 differential pairs of transmission lines and allows
two ends of an Ethernet connection to communicate in full-duplex. Further-
more, interconnections between different stations are nowadays commonly
established through networking hardware called Switches, rather than con-
necting endpoints with each other directly. These switches feature a number
of individual Ethernet connectors, commonly called ports. Instead of simply
re-broadcasting incoming transmissions from one port onto all other ports,
switches implement logic that allows them to forward incoming data pack-
ages only to applicable ports, reducing traffic and therefore congestion on
unrelated lines. Furthermore, due to their functionality as communication in-
termediary, they make it possible to translate between differing speed-grades

28



2.1 Data Communication Fundamentals

on separate ports. With the help of switches, it is possible to isolate and
connect individual networks together into complex meshes and WANs (Wide
Area Networks) to form “networks of networks”.
Ethernet speed grades of up to 400 Gbps are commercially available and speed
grades of greater than 1 Tbps are already in development. Single-Transmis-
sion latencies of below 1 ms are common, albeit heavily dependent on the
protocol embedded into the Ethernet payload, as well as the complexity of
the routing through the network.
For speed grades of up to 1 Gbps, the previously mentioned RJ45 connector is
the most common standard. Beyond that, starting at 10 Gpbs, Ethernet most
typically uses an Small Form-Factor Pluggable (SFP) type connector, shown
in image 2.4.

Figure 2.4: Two typical plug standards for network interconnects. RJ45 (left) is most commonly
used for Ethernet up to 1 Gbps and SFP (right) is used by 10+ Gbps Ethernet (and
also by InfiniBand).

29



2 DAQ basics: Data Transfer and Computing

Natively, Ethernet is not capable of RDMA data transfer, as the specification
for the networking adapter and protocols of Ethernet do not foresee the nec-
essary DMA engine. However, as we will see in the discussion of communica-
tion protocols in section 2.1.3, there exists a protocol extension called RDMA
over Converged Ethernet (RoCE) which brings RDMA capabilities to conven-
tional Ethernet connections (but still requires the use of specific RDMA capa-
ble network adapters.)
The ubiquity of Ethernet, its high speed grades, decent communication laten-
cies and its protocol extension for RDMA make Ethernet a suitable candidate
for the work presented in this thesis.

InfiniBand

InfiniBand[Pfi01] is a specification of the OSI Layer protocol levels 1 through
4, for a wire-bound high-performance interconnect that features high band-
widths at very low latencies. InfiniBand networking adapters of speed-grades
up to 400 Gbps are commercially available, with standards for up to 4.6 Tbps
currently under development. It features single-transmission latencies of
as low as 0.5 𝜇s and also natively supports Remote Direct Memory Access
capabilities.
It is primarily used in the high-performance-computing domain, with its
initial specification released in the year 2000 by the InfiniBand Trade Associa-
tion (IBTA) and was intended to serve as a replacement for the PCI interface
in PCs at the time. The IBTA had originally even envisioned to base entire
computer architectures on top of their InfiniBand fabric, though these plans
were never fully realized. By 2014, InfiniBand was the most widely used
interconnect for supercomputer installations, according to the top500.org¹ list
of supercomputers, but has since been overtaken by the Ethernet family of
interconnects again. The biggest supplier of InfiniBand hardware nowadays
is Mellanox, which became a subsidiary of Nvidia in 2019.
Unlike Ethernet, InfiniBand does not operate on a shared transmission
medium, but rather isolated point-to-point connections over a number of

¹ https:\\www.top500.org

30



2.1 Data Communication Fundamentals

differential transmission lines. It is capable of bundling up to 12 of those
pairs together for a single point-to-point connection. The topology of the
communication protocols is intended to be switched, allowing to relay packets
through additional networking substations and thus forming full network
meshes. However, this requires to establish local subnet routing tables in
order to traverse a network in which sender and receiver do not share a
direct point-to-point connection. This requires individual stations on the
data-path to properly receive and forward messages that are not intended
for them. In an InfiniBand network, this requires the application of specific
subnet managers, which communicate and exchange information about the
individual targets that can be reached from within each subnet and accross
those subnet boundaries. High-grade InfiniBand switches often provide a
subnet manager as an embedded service. In addition, it is also common to
have one of the computers on the network to function as subnet manager
through a software service.
In order to separate the concerns of physical transport, connection man-
agement, routing and higher level interactions, the InfiniBand standard
is sperated into an architecture of multiple communication levels which
roughly span from OSI Layer 1 to 4, and can be seen in figure 2.5.

Even though InfiniBand differs in its interconnection strategy from Ethernet,
it has still opted to adapt the same type of MAC addressing scheme as is seen
with Ethernet networking adapters. This is an intended design decision to
facilitate an interoperability with other Ethernet fabrics, so that InfiniBand
network adapters can be configured to operate in an “Ethernet Mode”. In this
mode, a network adapter will send/receive and process Ethernet data frames
through the same physical interface, instead of InfiniBand data frames. As 10+
Gbps Ethernet and InfiniBand both opt to use connectors of the SFP family,
this makes it particularly convenient to run Ethernet and InfiniBand installa-
tions side by side or even interoperate the two standards. Though the required
networking infrastructure (e.g.: Switches) can not easily be interchanged and
need to be specific to the interconnect standard in use.
Its high speed-grades, very low communication latencies and interoperability

31



2 DAQ basics: Data Transfer and Computing

Figure 2.5: The InfiniBand communication standard is split into multiple logical levels which
operate mostly independent from each other, and can be considered to span the OSI
Layers 1 through 4. a

a Source: Mellanox Technologies / Nvidia Corporation, “Introduction to InfiniBand” (https:
//network.nvidia.com/pdf/whitepapers/IB_Intro_WP_190.pdf).

with its strongest competitor (Ethernet) make InfiniBand an excellent choice
for the DAQ systems developed in this Thesis.

Omni-Path

Omni-Path is a proprietary high-performance interconnect technology devel-
oped by Intel, that aims to provide high throughput and low latency data com-
munication for supercomputer installations. First products supporting Omni-
Path became available in 2015, which were capable of 100 Gbps communica-
tion. By that time, InfiniBand had already developed a significant foothold
in supercomputer installations, which positioned Omni-Path and InfiniBand
as competitors. Despite Intel’s efforts to make Omni-Path hardware a “drop-

32

https://network.nvidia.com/pdf/whitepapers/IB_Intro_WP_190.pdf
https://network.nvidia.com/pdf/whitepapers/IB_Intro_WP_190.pdf


2.1 Data Communication Fundamentals

in” replacement for InfiniBand by providing driver-level support for Infini-
Band commands (verbs) on top of their Omni-Path fabric, they eventually
announced in 2019 that they would not continue development of Omni-Path
technology beyond 100 Gbps, but wouldmerely continue supporting the older
100 Gbps technology. According to the top500.org list of supercomputers,
Omni-Path today holds a share of around 8% in the top 500 supercomput-
ers as of 2021. Outside this domain, Omni-Path has not seen any significant
adaptation.
Due to its niche specialisation on supercomputers, the proprietary closed-
source nature of the interconnect specification and unclear future of the in-
terconnect beyond 100 Gbps data transfer, I do not currently consider Omni-
Path a suitable choice for general-purpose DAQ design.

2.1.3 Networking Protocols

Now that the physical layers and bit-level data communication protocols have
been established, we can move on to discuss the communication protocols
relevant to this thesis. As with the previous section, an OSI Layer or a suit-
able approximation for each protocol will be provided. Due to their close
coupling with the physical-layer interconnects presented in the previous sec-
tion, the selection of suitable protocols reduces down to two main families
of standards. Those protocols are the ones belonging to the Internet Pro-
tocol Suite (IPS), like the Internet Protocol (IP)[Lei85], Transmission Control
Protocol (TCP)[For02a] and User Datagram Protocol (UDP)[Pos80], as these are
almost universally used across almost all Ethernet installations. As well as the
protocols related to InfiniBand, with additional focus on iWARP[Dal05] and
RDMA over Converged Ethernet (RoCE)[Guo16], which aim to provide RDMA
functionality over Ethernet.

33



2 DAQ basics: Data Transfer and Computing

Note: Again, Remote Direct Memory Access (RDMA) will get dis-
cussed in full detail in chapter 3 of this thesis. For now, it is sufficient
to understand that RDMA is a technology that avoids superfluous data
copy operations on the data path, thus reducing the effective transmis-
sion latency and therefore improving performance.

Internet Protocol Suite

The Internet Protocol Suite (IPS)[Lei85] is a set of communication protocols
closely related to the Ethernet family of interconnects. It provides function-
ality on how to order, transmit and route information across a “network of
networks”. Its most notable members are the Internet Protocol (IP) which reg-
ulates how an information package can be routed across multiple intercon-
nected networks, providing the backbone functionality of its direct name-
sake, the Internet. Closely related to the IP is the Transmission Control Protocol
(TCP)[For02a] which provides functionality to establish a persistent connec-
tion between two endpoints of a communication and safely exchange infor-
mation, ensuring correct ordering and retransmissions in case of errors. Be-
cause of the close interconnections of the TCP and IP protocols for use in the
Internet, the Internet Protocol Suit is often also labeled as TCP/IP. The remain-
ing prominent member of the IP is the User Datagram Protocol (UDP), which
provides “connectionless” uni-directional datagram communication.
In addition to these three core protocols of the IPS, there are a plethora of other
protocols which mostly serve specific use cases, like address resolution, com-
pression, encryption, resource management and more. These protocols might
find use in the larger context of computer network installation, but are not
meant for general user data transfer and are therefore disregarded for further
discussions in this thesis. The only exception to this will be the QUIC[Lan17]
protocol, which will get showcased in the context of the discussion about the
TCP, as QUIC is intended to supersede TCP in the long term.

34



2.1 Data Communication Fundamentals

Internet Protocol

The Internet Protocol is an OSI Layer 3 (Networking Layer) protocol that man-
ages the routing of data through a network of networks (internetworking).
To do so, it wraps the payload of a transmission into an additional structure
which contains a source- and a destination address, among other header in-
formation, such as protocol version, packet length, Time To Live (TTL) and
Fragmentation Information. The exact details of these header informations
beside the address data field, is outside the scope of this introduction. For
further reference, the interested reader may refer to [For02b].
The primary addressing scheme of the IP protocol is Version 4, and is aptly
called IPv4. It consists of four groups of one byte each, and it is typically rep-
resented by the decimal unsigned integer representation of each of the four
bytes, separated by a single period. For Example: 192.168.0.1
There are certain addressing ranges that are reserved for specific applications.
As seen in the given example, an address of the type 192.168.X.X, by conven-
tion, is used for any non-publicly accessible (private) network. While ad-
dresses that hold the value 0 for their fourth octet (X.X.X.0) are usually con-
sidered to be broadcasts for the respective network layer.
IP addresses need to be unique on a logical network level, but do not need to
be unique globally. But when setting up a service that needs to be accessible
from any network anywhere on the planet, it needs to be assigned a globally
unique IP. These static assignments have caused the globally unique address
space of IPv4 to come close to exhaustion. Which is why the IP protocol has
been extended by a Version 6 addressing scheme, and has been declared the
new standard for IP based addressing on the internet in 2017.
IPv6 works similar to its predecessor, but uses a different addressing scheme
that consists of eight groups of two octets each (8 × 2 × 8 bits = 2128 possible
combinations). They are represented as four hexadecimal digits each, sepa-
rated by a colon character. For Example: 2a00:1450:4016:0808:0000:2003:0000
To save space and make IPv6 addresses easier to read, segments consisting
of exclusively zeroes, as well as leading zeroes, are usually omitted. For the
given example, that would be: 2a00:1450:4016:808::2003:
IP based networking is themost abundant form of addressing in any computer

35



2 DAQ basics: Data Transfer and Computing

networks today, and almost all networking applications and equipment pro-
vide support for IP-based networking in some way, shape or form. This makes
IP networking the primary choice for the works presented in this thesis.

UDP

The User Datagram Protocol (UDP) is an OSI Layer 4 protocol and a core
member of the Internet Protocol Suite. It does not require any previous
handshaking or connection negotiation between sender and receiver prior to
a transmission and is therefore considered a “connectionless” protocol. UDP
is optimized for very little protocol overhead and due to its lack of connection
negotiation is well suited for any application that requires low communi-
cation latency. However, due to its simplicity, UDP does not provide any
form of re-transmission mechanism in case of errors and does not provide
protection against packet loss, duplication or incorrect ordering. All of these
aspects need to be handled on a higher protocol level. UDP merely provides a
single checksum for each package that allows to detect any bit errors during
the transmission, as well as a source- and a destination-port to identify the
application on the receiver which the package is addressing.

Note: In computer networking, a Port is a single 16-bit unsigned
integer number and abstractly describes a single communication end-
point to which a software service, running on the computer, can bind
to. Through this mechanism it becomes possible to mark specific appli-
cations on a computer as the receiver of a transmission, by specifying
that application’s respective port, despite the computer only providing
a single networking interface with a single networking address.

36



2.1 Data Communication Fundamentals

TCP

The Transmission Control Protocol (TCP) is an OSI Layer 4 protocol and an-
other core member of the Internet Protocol Suite. Unlike UDP, the TCP speci-
fies a process through which two endpoints of a communication will establish
a logical persistent connection (Handshaking). Once such a connection has
been established, all data packages sent through this persistent connection
benefit from protocol-level transmission reliability. All packages are guar-
anteed to be sent and received successfully, completely and in correct order.
To achieve this, TCP mandates that each transmission be equipped with a
sequence number and the sender hold the transmission in a buffer until the
receiver has signified the successful arrival of that package, or requests the
transmission to be repeated for the sake of error correction. This makes TCP
applicable for applications which require reliable in-order transmissions, but
comes at the cost of significantly increased transfer latency, due to protocol
overheads, when compared to simpler protocols like UDP.
TCP achieves this protocol-level reliability by adding additional data fields to
its protocol header which serve to track the state of the connection over its
lifetime. These data fields can be seen in image 2.6. They are the single-bit
data fields called CWR, ECE, URG, ACK, PHN, RST, SYN and FIN.

When TCP establishes a connection, the sender will first send a package to a
receiver (in listening state) with the SYN flag set, to signify the begin of the
connection handshake. If the receiver accepts the connection, it will reply
with a package in which both SYN and ACK flags are set, in order to sig-
nify the acknowledgement of the opening connection. This is followed by
yet another package from the sender, with the ACK flag set, to acknowledge
successfully having received the SYN-ACK from the listener. The connection
is then considered to be established and similar handshaking steps are taken
whenever a sender wishes to transfer data to a receiver. An example of this
is visualized in image 2.7.

However, this mechanism has drawbacks when being used over unreliable
transmission lines with high signal degradation or error rates. Since TCP
guarantees the correct ordering of packages, it might take some time between

37



2 DAQ basics: Data Transfer and Computing

Figure 2.6: Layout of the data fields inside of a TCP Protocol Header a

a By ’Appaloosa’, Wikimedia Commons, licensed under CC BY-SA 3.0 (https://creativecommons.
org/licenses/by-sa/3.0/). The work is being used unaltered.

the receiver noticing a missing package, and the sender receiving the corre-
sponding request for re-transmission. All packages that have been sent during
this time window are then typically discarded and the transmission sequence
is set back to the corresponding missing package. If this happens regularly,
a noticeable portion of time will be spent on re-transmitting data and invali-
dating or blocking all communication across the established TCP connection
until the error(s) have been corrected.
To alleviate some of these issues, a proposed successor for TCP, called QUIC

38

https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/


2.1 Data Communication Fundamentals

Figure 2.7: The individual steps for a connection handshake specified by the Transmission Con-
trol Protocol (TCP). a

a Derived from a work by ’Snubcube’, Wikimedia Commons, licensed under CC BY-SA 3.0 (https:
//creativecommons.org/licenses/by-sa/3.0/).

has been developed in 2013, which went through multiple standardization it-
erations and attempts and is now considered to be an official communication
standard since 2021. QUIC (Pronounced ”Quick”. QUIC is not an acronym,
but rather the actual name of the protocol) does not expand upon TCP, but
rather uses UDP as its base protocol, and aims to establish multiple simul-
taneous data streams between sender and receiver at the same time. These
streams are individually handled by the higher-level implementations of the
QUIC protocol, which also provides reliability functions similar to TCP, in-
cluding retransmissions and sequence checking. The main benefit of this ap-
proach is a noticeably reduce in overall connection latency compared to TCP
because of the lower protocol overhead of UDP, and in the case of a trans-
mission error, only a single transmission stream will be forced to go into an
error recovery state, while the remaining streams can continue operating as
normal. Furthermore, QUIC allows to send supplementary user data in its
initial stream opening message, which can be used to provide additional in-
formation necessary for all following exchanges, like encryption information
for Transport Layer Security (TLS)[Die08] encryption, where TCP would first
need to fully establish a connection, before such key exchanges can happen

39

https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/


2 DAQ basics: Data Transfer and Computing

in a second step. Thus saving additional latency over TCP because QUIC can
do these “secondary” information exchanges and the stream setup in a single
step. Finally, QUIC adds a unique identifier to each data stream, which serves
as the primary identifier of an ongoing communication, whereas TCP always
uses a combination of source-address and sequence number to identify an
ongoing communication. This leads to problems in highly dynamic networks,
where one end of a communication might change its local network address
(for example due to Network Roaming), which will force a TCP connection to
be closed and then re-established and higher-level protocols having to man-
age the migration of the outdated connection context to the newly established
one. Since QUIC does only use the unique stream identifier for such purposes,
it is indifferent to an endpoint changing its networking address at any point,
so long as the endpoint will continue to use the same unique stream identifier
as before.
As QUIC is still a fairly new communication standard, it has not yet been
adapted into most data communication applications. This will lead to addi-
tional development efforts when establishing a QUIC compatible setup, as
QUIC support would have to be added manually, through available software
libraries. However, the benefits of QUIC, especially in regards to latency and
roaming, are certainly beneficial for latency-sensitive applications and highly
dynamic setups like they can be found in modern cloud-computing applica-
tions. For these reasons, QUIC will not be considered a suitable choice of
protocol for current DAQ designs.

InfiniBand

The InfiniBand standard defines both, a physical interconnect specification,
as well as a set of communication protocols. The InfiniBand communication
protocol stack reaches up to and including OSI Layer 4. In contrast to Ether-
net, InfiniBand is specifically designed around the concept of Remote Direct
Memory Access (RDMA).
Any transactions between to endpoint of an InfiniBand connection can be
either a self-contained datagram message or an RDMA operation request.

40



2.1 Data Communication Fundamentals

Both of these messaging modes may additionally contain a 4-byte “Immedi-
ate” value, which will be transmitted independently of the chosen operation.
Additionally, InfiniBand allows for so-called “Atomic” operations, which
perform a pre-defined operation of the type “read-compare-write” on a single
memory location. The available operations are dependent on the config-
uration of the respective endpoints, as well as the chosen transport mode
between these established pairs.
InfiniBand offers four different transport modes, which fall into two separate
categories. Reliable (R) and Unreliable (U). As well as Connected (C) and
Datagram (D). (See figure 2.8) In a sense, a Reliable Connected (RC) transport
configuration is similar to a connection using TCP. While the Unreliable
Datagram (UD) mode is similar to a UDP connection.

Figure 2.8: InfiniBand specifies two groups of transportmodes, and influencewhich transactions
are supported. Unreliable (U) and Reliable (R), aswell as Connected (C) andDatagram
(D). Note that the grey portion of the graph (Reliable Datagram (RD)) is not supported
by the current InfiniBand API. a

a Source: Mellanox Technologies/Nvidia Corporation, “RDMA Aware Networks Program-
ming User Guide”, (https://network.nvidia.com/related-docs/prod_software/RDMA_Aware_
Programming_user_manual.pdf)

As mentioned in the introduction to the physical interconnect specification
for InfiniBand, it is specifically intended to provide easy interoperability be-
tween InfiniBand and Ethernet networking installations. For this purpose, a

41

https://network.nvidia.com/related-docs/prod_software/RDMA_Aware_Programming_user_manual.pdf
https://network.nvidia.com/related-docs/prod_software/RDMA_Aware_Programming_user_manual.pdf


2 DAQ basics: Data Transfer and Computing

protocol extension for InfiniBand, called “IP over InfiniBand” exists which al-
lows InfiniBand applications to use the same addressing schemes which are
found in native IP based networks, rather than the inconvenient MAC ad-
dresses of each individual adapter. Furthermore, there exist two important
protocol extension for Ethernet —which does not natively support RDMA —
that aim to bring RDMA support to exclusively Ethernet-based networks by
emulating InfiniBands protocols and/or wrapping it into an Ethernet-compat-
ible data stream. These protocols are called iWARP and RDMAover Converged
Ethernet (RoCE). Since the InfiniBand adapters provided by Mellanox/Nvidia
can operate in both, an InfiniBand and an Ethernet mode, using that Ethernet
mode in combination with one of the RDMA protocol extension promises to
potentially simplify the incorporation of RDMA into existing Ethernet net-
works, by virtue of being able to retain previous networking equipment, such
as switches, and routers. These interoperability features, together with its in-
trinsic support for RDMA operations, make InfiniBand a primary candidates
for the works presented in this thesis.

iWARP

iWARP is a proprietary protocol that encapsulates iWARP-Specific RDMA
operation requests inside a TCP/IP data stream, called Direct Data Placement
protocol or DDP for short, which in turn transports another protocol, called
RDMAP that specifies the actual DMA operations. iWARP, in contrast to
InfiniBand, only supports reliable connection-oriented transport, as this is the
only connection mode supported by the underlying TCP. Both, the DDP and
RDMAP protocol are proprietary protocols with no public documentation.
In order to gain the actual benefits of RDMA, a networking device that
specifically supports iWARP is required. While pre-existing Ethernet net-
working infrastructure, like switches and routers, can still be used. Due
to some quirks in the way TCP handles payload lengths and sequences,
iWARP needed to be built around these quirks. In addition, by the way
iWARP encapsulates its RDMAP and DDP payloads into the state-reliant
connections of TCP, it becomes hard to identify iWARP traffic as such,
which prevents most networking equipment, such as switches and routers,

42



2.1 Data Communication Fundamentals

to perform certain traffic-shaping and quality-of-service optimizations. The
resulting “best-effort” transport of iWARP as generic TCP traffic causes
iWARP performance to fall short of the performance other Ethernet-based
RDMA protocols can provide.

RoCE

RoCE follows a different strategy, in which the native InfiniBand protocol gets
fully encapsulated into standard UDP packages. While UDP is, by nature, an
unreliable protocol, the InfiniBand protocol wrapped inside does support re-
liable connections (See figure 2.8) and will take care of the required retrans-
missions and acknowledgements on a higher level. The InfiniBand packages
get stripped of their native networking and addressing headers, which get re-
placed by the UDP and IP addressing headers instead. The payload of the UDP
packages then only contain the raw InfiniBand transaction requests and their
respective payloads. The generalized layout of such a RoCE package can be
seen in figure 2.9.

Figure 2.9: The generalized layout of a RoCE data frame for both Version 1 and Version 2 of the
Protocol. It is shown how an InfiniBand Header (BTH) and Payload is wrapped in a
common UDP package, which is in turn wrapped into an Ethernet data frame. a

a By ’Ophirmaor’, Wikimedia Commons, licensed under CC BY-SA 4.0 (https://creativecommons.
org/licenses/by-sa/4.0/). The work is being used unaltered.

43

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/


2 DAQ basics: Data Transfer and Computing

This has the strong benefit, that any existing UDP/Ethernet networking equip-
ment can be re-used and doesn’t need to be replaced by InfiniBand specific
hardware, while still gaining the full benefits of InfiniBand’s reliability and
RDMA capability. The only requirements are InfiniBand capable networking
adapters in the participating computers/server. The remaining Ethernet in-
frastructure, like switches and routers, however, can remain the same.
Because of this, RoCE will be my primary choice for any Ethernet based ap-
plication in my DAQ designs, wherever RDMA can be of benefit.

2.2 High Performance Computing Methods

For the development of the computing systems used for the DAQ concepts
presented in this thesis, a few key aspects need to be considered. The aspects
relevant to this work are the multi-core paradigm, scalable access to shared
or slow resources, the use of parallel computing accelerators such as Graphics
Processing Units (GPUs) and Field Programmable Gate Arrays (FPGAs) as typical
front-end electronics interface.

2.2.1 The Multi-Core Paradigm

By the early 2000’s, linear performance scaling of computing hardware
through increased clock-rates alone had reached a practical limit, as leak-
current, power consumption and thermal dissipation in highly integrated
circuits became significant challenges. With increased integration densities,
it became viable to replicate multiple computing structures inside the same
processor. Ever since, manufacturers have started to scale processing per-
formance of microprocessors by equipping them with multiple processing
cores in parallel. This gave rise to the current era of multi-core and many-
core processing. By today, Central Processing Units (CPUs) with 8 and more
logical processing cores are common occurrences, and top-models can offer
up to 64 cores at a time. These multiple cores work together and in parallel
to complete computing tasks faster than previous single-core systems ever
could.

44



2.2 High Performance Computing Methods

This not only had an effect on the design of processors, but on the architec-
tures of entire computing systems as a whole. While at the end of the 20th
century, high-performance computing (HPC) was often performed via single
monolithic supercomputers (commonly called Mainframes), these systems
have largely been replaced by distributed computing clusters consisting of
hundreds or even thousands of individual computers, connected by a com-
mon interconnect. On a logical level, such distributed systems resemble the
multi-core paradigm on a network scale.
The developments towards multi-core and distributed systems introduced
a paradigm change in how software for such systems needs to be designed
in order to leverage the full computing potential of such systems. Initially,
computing systems could be programmed with a single “consumer” of data
in mind and programmers needed to pay little attention to concurrent access
to data. By now, the locality of data and concurrent access to memories and
other shared resources are of high importance, as computing systems become
increasingly fragmented, parallel and distributed. Programming libraries,
such as theMessage Passing Interface (MPI)[Gro96] can ease the programming
efforts for moving data across system boundaries, but can not generally solve
the problems associated with highly distributed computing.

2.2.2 Scalability of data access

In 1994, Wulf andMcKee pointed out a limitation in the potential performance
increase of computing systems [Wul95]. They realized, that the computing
performance of processors was increasing at a faster rate than the data rates
of memories. This would eventually lead to a situation in which the execution
time of computer programs would be dominated by memory access times,
and could no longer scale off an increase in processor performance alone.
They dubbed this phenomenon the “Memory Wall”.
In distributed and parallel systems, this problem gets further exacerbated
when data is stored on a shared resource. If subsystems want to access
different data, sequential access to memory will bottleneck overall perfor-
mance. Already in 1988, John Gustafson proposed a model that describes the

45



2 DAQ basics: Data Transfer and Computing

scaling of a system with parallel computing resources, in relation to its purely
sequential parts, which has become known as “Gustafson’s Law” [Gus88].

It states:
We define the speedup of a computing process under the application of par-
allel computing resources as 𝑆, with

𝑆 = 𝑝 × 𝑁 + (1 − 𝑝)

where 𝑝 denotes the fraction of a program that can be executed perfectly in
parallel, and 𝑁 is the number of available processors.
This leads to:

𝑆 = 1 + (𝑁 − 1) × 𝑝 (2.1)

Equation 2.1 shows, that the speedup factor of a programwhen using multiple
processors is proportional to its portion of execution that can be fully paral-
lelized. It is therefore limited by its purely sequential portion. In general, this
aspect is known as scalability.

From this we derive, that any part of a computing process that is both atomic
(meaning, it can not be split into smaller parts) and has a high completion time,
is of direct detriment to that process’ scalability. Such types of slow atomic
processes are commonly seen when accessing data from external memories,
including the transfer of data over an interconnect.

Data Source Speed Grade Hierarchies

In conventional personal computing (and in parts also in HPC), there exists
a hierarchy of data sources in regards to their access speeds. Generally, the
network can be considered to be the slowest data source. This is followed by
permanent storage devices, such as hard-disks, optical drives, USB pen-drives
or similar. Yet again followed by multiple layers of volatile memory, such as
conventional system Random Access Memory (RAM), and its different layers
of caches. The lowest hierarchy layer is made up of register memories, which

46



2.2 High Performance Computing Methods

are the on-die process memories of the CPU itself. Figure 2.10 illustrates the
most typical memory layers inside (super)computers.

Figure 2.10: Illustration of the hierarchy of different memories of a computer system, as well as
their typical access latencies and storage dimensions. a

a Derived from [Hou17]. Licensed under CC-BY 3.0 (https://creativecommons.org/licenses/by/3.0/)

Data in main memory is often accessed in sequence. For this reason, main
system memory has been optimized to be able to continuously return consec-
utive data elements, following the initial request, at no additional latency cost.
This mechanism is called burst reading or writing. To lessen the effects of the
memory wall, computers have been equipped with memory caches. These
caches are designed to offer faster access times than main memory. They can
retain data that is frequently reused and can also predict and prefetch addi-
tional data before it might get accessed by a processor. This leverages main
memory’s burst capabilities. When data gets requested by the CPU, the cache
can either already have the relevant data stored (hit) or it will need to request
data from a lower layermemory system (miss) which incurs additional latency

47



2 DAQ basics: Data Transfer and Computing

cost. Is is common for computers to have multiple levels of such caches. In
current systems, 3 layers are commonly found, simply denoted as L1, L2 and
L3. The lowest layers (L1) are typically placed on silicon, close to the the CPU
cores, and offer access speeds of just a few nanoseconds. However, they are
limited in size by just a few kilobytes. Consecutive layers of caches are each
placed further away from the CPU cores, which allows them to become larger,
but at the cost of increased access latencies.
Writing programs so that they are aware of available caches, and optimiz-
ing their processing sequences as well as their data structures, so that they
optimize the amount of cache hits, can greatly increase a program’s runtime.

Below these memory layers and hierarchies lies any form of networked data
transfer. Naive data transfer designs for distributed programs can easily make
the network become the largest bottleneck. This problem can be approach
from hardware, by choosing interconnects with lower latencies and larger
throughputs. And it can be approached from software, by optimizing the
order and frequency in which data gets transmitted. For example, sending
frequent small packets of data is generally undesirable, due to compounding
network protocol overheads. It is preferable to collect data and send single
large chunks, wherever possible.
Furthermore, it is beneficial for a program to request new data sets as early
as feasible, and in parallel to other tasks that are unrelated to the network
data transfer. Wherever possible, programs should be designed to already re-
quest and receive the N+1 dataset in parallel to the N-th dataset still being
processed. Doing this effectively “masks” data transfer behind running com-
puting operations. However, this is not universally possible, depending on
the application.

2.2.3 Computing Accelerators and Co-Processors

To assist conventional CPUs in the processing of highly specialized comput-
ing tasks, multiple types of co-processors (often also called Computing Ac-
celerators) have been developed. Such co-processors often plug directly into
a computer system (for example, using the PCIe bus) and provide dedicated

48



2.2 High Performance Computing Methods

computing architectures that are highly optimized for a specific type of tasks.
For example, they can offer dedicated silicon implementations of specific algo-
rithms, such as video encoding or cryptographic applications. They can also
offer generally altered computing architectures, that lend themselves better
to specific repetitive tasks. Examples of such co-processors can be Artificial-
Intelligence Accelerators[Tor22] or in recent times, even Quantum Comput-
ing units[Bri17][Ber20]. Also, Field Programmable Gate Arrays (FPGAs) have
seen a recent resurgence as dedicated computing accelerator in the form of
computing cards with PCIe interfaces. FPGAs will be introduced in detail in
section 2.3 of this chapter.
However, the most common type of computing co-processors found today
are Graphics Processing Units (GPUs).

GPU Computing

Graphics Processing Units (GPUs) are common Single-Instruction-Multiple-
Data (SIMD) many-core co-processors found in most computers. Their pur-
pose is to assist the CPU in the processing of raster graphics for display on a
computer monitor. By now, GPUs have developed a similar range of capabili-
ties as CPUs do, and are being used to offloadmore general workloads, besides
just graphics processing tasks, in order to accelerate computing-intensive pro-
grams. Modern GPUs are equipped with thousands of independent computing
cores, with top-models reaching into the tens-of-thousands of cores. Figure
2.12 illustrates the differences in scale and number of CPU cores, compared
to GPU cores. For example, the Nvidia RTX 3080 Ti consumer-grade GPU
features 10240 logical processing cores, split accross 80 physical processors
(Nvidia calls these: Streaming-Multiprocessors). Their highly parallel com-
puting architectures makes them well suited for repetitive computing tasks
that operate on large sets of data.
The two largest GPU manufacturers to date are Nvidia and Advanced Micro
Devices (AMD).

49



2 DAQ basics: Data Transfer and Computing

Figure 2.11: An Nvidia Tesla K40c computing GPU (left) and an AMD Radeon R9 290 consumer-
grade GPU (righ)

History of GPUs

In order to reduce the required involvement of the CPU in the processing
of raster graphics, manufacturers equipped computers with simple co-pro-
cessors that had hardware implementations of the most common arithmetic
operations required for graphics processing. These co-processors were called
Blitters. The CPU would program the blitter with a sequence of instructions
to perform on the graphics buffer and could then focus on the execution of
other tasks, while the blitter would independently execute the programmed
instructions, including memory access and data movement.
In time, these blitters grew in complexity and functional range, including the
ability to execute instructions on multiple data at once and eventually most
computing systems began to offload graphics processing to the blitters all to-
gether, relocating the frame buffer from systemmemory to dedicated memory
on the blitter. By today, we know these co-processors as Graphics Processing
Units or GPUs, for short.

50



2.2 High Performance Computing Methods

Figure 2.12: A conceptual sketch showing the differences between the number of CPU comput-
ing cores and GPU computing cores. The CPU on the left has fewer cores, but each
core is highly optimized and features a large functional range. While the GPU on
the right features simpler cores with less functional range, but in a greater number.

As the complexity and functional range of most processing systems increased
over the years, GPUs eventually also reached a point where their processing
units had similar functional range and processing reliability as CPU cores did.
At this point, GPUs had become capable of executing general purpose tasks
that were no longer limited to graphics processing exclusively. Manufactur-
ers of GPUs realized this potential and provided programming frameworks
that allowed to offload computing tasks to the GPU in order to leverage their
highly parallel computing architecture. While CPUs are optimized to execute
a set of instructions as quickly as possible in sequence, GPUs are optimized to
execute individual instructions on a multitude of data at once in parallel. This
makes GPU computing particularly useful for any repetitive processing task

51



2 DAQ basics: Data Transfer and Computing

in which a short sequence of instructions need to be applied to a large set of
data. These types of operations are typically found when working with large
vectors of data or in matrix and tensor operations.
By today, General Purpose GPU Computing (GPGPU) has found widespread
application in the field of high-performance computing as many supercom-
puters provide a substantial portion of their overall processing performance
through GPGPU Computing.

Furthermore, it has become a common trend for GPU manufacturers to equip
their devices with additional specialized dedicated processing units, to extend
the functional ranges of GPUs as computing accelerators. For example, Nvidia
added so-called “Tensor Cores”, which are specialized for the mathematical
operations most commonly found in machine-learning applications. In this
regard, GPUs share a certain common ground with other dedicated artificial-
intelligence accelerators. Processing units for graphics applications, such as
ray-tracing, are also common place.

GPU Architecture

Modern GPUs consist of multiple logical processors that consist of a number
of sub-components. Nvidia calls these logical processors “Streaming Multi-
processors (SM)” while AMD calls theirs “Scalar Processors (SP)”. Both archi-
tectures are similar in the types of subsystems they feature, and differ only
in detail. They both feature a number of individual compute cores, that are
each equipped with a register file to hold processing data. As well as tex-
ture processors with specialized texture memory (similar to a cache) that per-
tain only to the processing of raster-graphics. Additionally, each SM/SP is
equipped with an L1 instruction cache, and L2 data and instruction cachees
for each computing core, as well as infrastructure modules to access higher-
order memory structures.

Just like with conventional CPUs, GPUs implement layered mamory and
caches in order to speed up their operations. We distinguish, from slowest to
fastest, Global Memory, Shared Memory and Registers.

52



2.2 High Performance Computing Methods

• Global Memory: GPUs come equipped with their own pool of
external memory modules that typically reside on the same PCB as the
silicon die itself. They are high-capacity SDRAM modules that are
highly optimized for memory bandwidth and are commonly labeled as
GDDR SDRAM, often simply abbreviated to GDDR. Since these
modules reside outside of the GPU silicon die, and need to be
externally connected, they suffer from large communication latencies,
compared to other on-die memory structures. Global Memory sizes of
8 – 32 Gigabytes of capacity are not uncommon.

• Shared Memory: Each streaming-multiprocessor is equipped with its
own L1 and L2 data and instruction cache. As well as pre-configurable
static and special purpose caches, such as geometry- and texture-
buffers. Addiditonally, most GPUs are also equipped with a small data
cache that is individual for each streaming-multiprocessor, called
shared memory. In some cases, this shared memory can be congruent
with the L2 cache. It is part of the integrated circuit silicon die of the
GPU and thus can be accessed at lower latencies than global memory.
Typical shared memory is between 48 and 96 kilobytes, per processor,
with modern GPU designs capable of providing cache access latencies
of as low as 50 ns, in cases of a cache hit.

• Register Memory: Register memory is the memory structure closest
to the arithmetical units of the GPU cores and is highly optimized for
access speed. It can usually be accessed with no additional latency.
This makes it difficult to fit large amounts of it into a system, as larger
register banks would increase critical path lengths and would
eventually no longer be accessible with low enough latencies. This is
why register memory is severely limited to only a couple hundreds of
bytes per computing core. The data that is stored in registers however
can only be accessed directly by its respective core.

53



2 DAQ basics: Data Transfer and Computing

Accelerator Programming Frameworks

With the highly specialized designs and functionalities of computing acceler-
ators come a number of custom proprietary programming interfaces in order
to operate the individual accelerators. The discussion of most of these pro-
prietary interfaces is out of the scope of this thesis. But there exists two par-
ticular programming frameworks that are important to know about. Namely,
OpenCL[Mun09] and CUDA[San10].

The Open Computing Language, or OpenCL, for short, is a device indepen-
dent interface definition to perform computing on a wide range of hetero-
geneous computing architectures, including CPUs, GPUs, FPGAs and some
proprietary co-processors. It is developed and maintained as open software,
by a non-profit consortium called Khronos Group. OpenCL aims to be plat-
form-independent by designing its interfaces in such a way that they target
a number of conceptualized “compute devices”, which provide a hypothetical
set of functionality. Any actual computing hardware can then choose to im-
plement the interface and functional range of any of those compute devices
to become OpenCL compliant. Furthermore, OpenCL provides the capability
to write custom “extensions” that can be used to target specific non-standard-
ized computing hardware, at the cost of losing the platform independence that
OpenCL aims for.
OpenCL offers a language interface similar to C, but with bindings to a wide
range of different languages. Due to its broad focus and support for many
different computing architectures, OpenCL only features very limited device-
specific optimization potential, and is considered by some to be inconvenient
to use. However, its universal nature makes it ideal for use on highly hetero-
geneous computing systems that combine different computing architectures
into one logical system.

CUDA is the proprietary GPGPU programming interface of Nvidia corpora-
tion. It targets exclusively Nvidia’s own GPUs and can not be used outside of
that scope. Due to this narrow scope, it is highly optimized and provides a
number of conveniences specific to Nvidia GPUs. An example that will be-
come relevant in chapter 5 is the flushing of the GPUs global memory cache.

54



2.3 Field Programmable Gate Arrays

The CUDA language resembles conventional C++ code, but bindings to virtu-
ally any contemporary programming language have been developed.

2.3 Field Programmable Gate Arrays

An essential aspect of high-performance DAQ is the link to the detector sys-
tem. Here, it is common to see a specific type of device being used. The Field
Programmable Gate Array (FPGA). Due to how common FPGAs are in many
DAQ installations, it is necessary to discuss their integration into commodity
DAQ systems.

An FPGA is a form of integrated circuit that provides a number of config-
urable logic blocks who’s functionalities and interconnections between each
other can be defined through software in order to implement a large variety
of combinatory circuitry. In most contemporary FPGAs, these configurations
are not permanent and can be updated and exchanged at any time (hence
the term Field Programmable). Furthermore, it has become common place
for FPGAs to integrate a large variety of pre-fabricated functional blocks that
are ready to use, such as clocks, memories, analogue-to-digital and digital-to-
analogue converters, transceivers and more. The software interface used to
program an FPGA commonly is in the form of a Hardware Description Lan-
guage (HDL), such as Verilog or VHDL, which get’s compiled into a device-
specific block configuration list and the connections between these blocks (a
so-called netlist) which gets converted into a binary format and is loaded onto
the device. Manufacturers of FPGAs commonly provide development envi-
ronments, including source-code editors and compilers for the HDLs, as well
as pre-compiled functional blocks (so-called Intellectual Property (IP) Cores)
and other tools to ease development efforts. However, as the design process
of FPGAs is centered around the abstract description of combinatory logic,
the development of FPGA-based applications requires expertise beyond tra-
ditional software programming. Furthermore, FPGAs are single chips in an
electronic package, and can’t be used as stand-alone components. They are
intended to be integrated into custom electronics designs, just as any other

55



2 DAQ basics: Data Transfer and Computing

common electronic components, which requires yet more development ef-
fort. Additionaly, there exist a wealth of pre-fabricated “development boards”
for most FPGAs, which provide the means to operate and interact with an
FPGA and most of its functional spectrum prior to having to integrate it into
custom electronics. For some applications, these development boards can be
sufficient.
Currently, the two largest manufactureres of FPGAs are Xilinx and Altera.

FPGA Architecture

FPGAs are made up of Configurable Logic Blocks (CLBs) that are intercon-
nected in a mesh that makes it possible to arbitrarily connect inputs and out-
puts of specific CLBs with each other. A single CLB generally consists of three
types of logic. Lookup Tables (LUTs), Full-Adders and Flip-Flops. The specific
amounts of these components per CLB is dependent on vendor and model of
the FPGA. These inner components are interconnected through multiplexers.
Control inputs of these multiplexers get defined during device configuration.
Through this mechanism, CLBs can be used to realize generic logic functions,
arithmetic units andmemories. Multiple CLBs are connected together to form
larger and more complex logic. The connections between CLBs are also de-
fined during device configuration. An exemplary layout of a CLB is shown
in figure 2.13.

In addition to CLBs, most FPGAs feature predefined structures in silicon, such
as multipliers, memories, clocks or similar, which can be used in conjunction
with the CLBs to extend an FPGAs functional range.

FPGA Programming

An FPGA gets configured by applying a bitfile to it. This bitfile contains the
configurations of the CLBmultiplexers, as well as the interconnectionmeshes.
A bitfile is device-specific and is generated from a higher-level netlist that ab-
stractly describes the desired arrangement of logic blocks. The netlist is in
turn compiled from a higher level hardware description language, which is

56



2.3 Field Programmable Gate Arrays

Figure 2.13: An exemplary layout of an FPGA CLB consisting of two Lookup Tables (LUT), a
Full-Adder (FA) and a Flip-Flop (DFF). The paths, configurations and interconnects
between these components are defined by several multiplexers (MUX). a

a By “Petter.kallstrom”, Wikimedia Commons. No CC.

used to describe the desired functional behaviour of the FPGA. It is also pos-
sible to program FPGAs indirectly through other means. For example, FPGAs
are also a common target for the previouslymentioned OpenCL programming
framework. In such cases, the FPGA will be loaded with a pre-defined config-
uration that is compliant to the OpenCL computing modell. Code written in
OpenCL can then be compiled for that infrastructure and transferred to the
FPGA to be executed, rather than programming the FPGAs logic cells directly.

Applications

Many FPGAs feature high numbers of general purpose I/O pins that can be
used to control external electronics. Together with integrated hard-cores,
like signal amplifiers or analogue-to-digital converters, FPGAs are a popu-
lar choice for signal processing applications. For these reasons, FPGAs are
also very commonly found in DAQ, mostly close the detectors, where they
serve as front-end electronics for data sampling and real-time control. They
are also often used for data processing, since FPGAs can implement virtually
any digital logic. Since it is possible to even synthesize fully functional CPUs

57



2 DAQ basics: Data Transfer and Computing

Figure 2.14: An example of FPGA firmware code written in Verilog

inside an FPGA, they can also be used to solve any computational task.
FPGAs are particularly useful to implement highly specialized digital logic for
specific algorithms. Depending on the device’s number of available CLBs and
other resources, computational logic can potentially be replicatedmany times,
enabling highly parallel and concurrent processing. Depending on the use
case, an FPGA can potentially even outperform conventional software com-
puting on a CPU, even though FPGAs generally feature significantly lower
clock rates than common CPUs do. While many commodity CPUs typically
provide clock rates of 3+ GHz, the implemented circuits inside of FPGAs can
rarely reach beyond 1 GHz. This is mainly due to the large structure sized of

58



2.3 Field Programmable Gate Arrays

an FPGA’s logic blocks, and the interconnections between them, which result
in long critical data paths. For these reasons, FPGAs are not ideal to solve
general purpose software computing tasks.
To alleviate the problem of slow general purpose computation, a new gen-
eration of FPGA devices has emerged over the past couple of years, which
combines programmable FPGAs with a fully functional CPU based System-
on-Chip (SoC) in a single silicon die. For example, the Xilinx Zynq class of
devices combines their FPGAs with a Dual-Core ARM Cortex-A53 conven-
tional CPU, as well as an additional Dual-Core ARM Cortex-R5F real-time
CPU. These systems are capable of supporting DDR4 RAM and fast intercon-
nects like Gigabit Ethernet or PCIe. The integrated ARM CPUs make it possi-
ble to run conventional computing operating systems, such as Linux, on them,
to provide the full flexibility of a software-programmable CPU of decent com-
puting performance, while being able to seamlessly access the synthesized
logic of the integrated FPGA. An evaluation and development board of the
Zynq family of devices is shown in figure 2.15.

Figure 2.15: Picture of a ZynqUltra Scale Plus Development and Evaluation board of the ZCU102
family of MPSoCs a

a Image property of AMD / Xilinx Inc.

59



2 DAQ basics: Data Transfer and Computing

More recent developments of FPGAs have focused highly on their application
as computing accelerators. Mainly driven by the rise in popularity of ma-
chine-learning applications. To this end, FPGAmanufacturers have started to
develop commodity computing components that integrate special FPGA types
that are highly optimized for computational tasks. Similar to the Zynq family
of SoCs, the Alveo computing accelerator family of devices (fig. 2.16), devel-
oped by Xilinx, combine large powerful FPGAs with many-core ARM CPUs.
These devices come pre-packaged on a PCIe extender card that can plug into
a conventional computer or server. In addition, these card also feature inte-
grated high-speed Gigabit+ Ethernet transceivers. With this, these types of
devices are ideally suited to be applied in data-center installations to offload
highly specific computing tasks onto them in distributed computing systems.

Figure 2.16: A Xilinx ALVEO computing accelerator card with two SFP slots (left side of card)
for Gigabit Ethernet and a PCIe x16 connector (bottom of card) to be plugged into
a computer. The card is equipped with an FPGA (covered by the red housing) and
internal cooling. a

a Image property of AMD / Xilinx Inc.

60



3 Direct Memory Access

Direct Memory Access (DMA) is a method of interacting with memories on a
shared interconnectwithout continuous involvement of the CPU and itsmem-
ories and caches. Traditionally, whenever data gets moved between devices
attached to the system bus, the CPU is the active component that facilitates
those data transfers. For example, when a program requests data to be read
into main memory from a peripheral device, such as a hard drive, the CPU
will be the main active component in that exchange. The CPU will issue the
read command to the bus, wait for data to be put onto the bus and then col-
lect the returned data from the bus, temporarily storing the data in its internal
registers. It will then take this data from its internal registers and post a write-
request to the main memory for that data.
This approach requires constant involvement of the CPU whenever data is
being moved to or from memory, preventing the CPU from executing other
programs while doing so. It also increases the length of the critical path of
data by having to traverse all involved cache layers, further increasing trans-
fer latency. Eventually, a concept has emerged that allows peripheral devices
on a common bus to access memories attached to that same bus directly, with-
out requiring constant involvement of the CPU. This concept is called Direct
Memory Access, or DMA, for short.
A wide range of computing components that pertain to any form of (tempo-
rary) storage nowadays support DMA operations. In fact, DMA has become
common place and is widely adapted and used in most contemporary oper-
ating systems. For example, most storage devices nowadays exchange data
with the systems main memory almost exclusively via DMA.

To be able to perform data copying operations on its own, a device must have
a so-called DMA Engine. It is a semi-programmable piece of hardware that

61



3 Direct Memory Access

can interact with connected memories independently of the CPU. A DMA en-
gine does not receive data directly, but instead receives instructions where
to find data in memory and where to copy it to. The data structures used to
configure the DMA engine are commonly called Descriptors. Descriptors are
typically placed in system memory, and the DMA engine receives addresses
as to where it can find them. These descriptors contain all necessary infor-
mation for the DMA engine to perform a transfer operation, as well as some
reserved memory for the DMA engine to write process information to. The
software running on the CPU that initiated the DMA transfer is expected to
periodically monitor these descriptors in order to keep track of the data trans-
fer. In some cases, the system can also be configured to trigger an interrupt
upon transfer completion.
The source and destination informations stored in the descriptors can either
consist of a matching pair of single start- and stop-addresses of memory for
both the source and destination respectively. Or it can contain a list-structure,
consisting of multiple such information pairs at once. This is commonly called
a Scatter-Gather-List. The DMA engine will then read the entries in the de-
scriptors and scatter-gather-list and commit matching read or write requests
onto the system bus. This process is repeated for each of the submitted de-
scriptors.
The general schema and comparison of conventional data transfer and DMA
enabled data transfer is shown in figure 3.1.

Note: In most cases, the sequence in which descriptors and/or the
entries in their scatter-gather-lists get processed is generally consid-
ered to be indeterminate. Meaning, the soft- or hardware of the DMA
device might decide to process the requested transfers out of sequence
for any reason.

62



3 Direct Memory Access

Fi
gu

re
3.
1:

Sc
he
m
ao

ft
he

da
ta
tra

ns
fe
rs
ch
em

at
aa

nd
pa
th
sf
ro
m

ap
er
ip
he
ra
ld
ev
ic
et
o
m
ai
n
sy
st
em

m
em

or
y.
Co

nv
en
tio

na
lly

(le
ft)

th
eC

PU
re
qu

es
ts

an
d
re
ce
iv
es

da
ta

fro
m

th
e
pe
rip

he
ra
ld

ev
ic
e
an
d
fo
rw

ar
ds

th
e
da
ta

to
m
ai
n
m
em

or
y.

Th
is
is
re
pe
at
ed

fo
re

ac
h
da
ta
.

W
he
n
us
in
g
D
M
A
(ri
gh

t)
th
e
CP

U
on

ly
co
nfi

gu
re
sm

em
or
y
an
d
th
e
de
vi
ce
.Th

e
de
vi
ce

ca
n
th
en

fre
el
y
pl
ac
e
da
ta

di
re
ct
ly

in
to

th
e
pr
ep
ar
ed

m
em

or
y
w
ith

ou
ti
nv

ol
ve
m
en
to

ft
he

CP
U.

63



3 Direct Memory Access

DMA and Virtual Memory

Before a segment of memory may become the target of a DMA operation, it
first needs to be prepared by the system.
When a program requests systemmemory from the operating system, the op-
erating system keeps track of the memory addresses that have been assigned
to the program. Each time the program continues its operation after being
woken up by the system scheduler, it can continue its operation where it left
off, expecting data to still reside exactly where it was placed previously. How-
ever, most operating systems implement a feature called Memory Swapping.
This feature was implemented in an attempt to better utilize system memory,
because memory was a limiting factor in the earlier days of computing. The
operating system will identify memory of a program which has not been ac-
cessed over a certain period of time. That memory is then written out to a
hard drive to free it up. When the corresponding program is woken up again
by the scheduler, its data is written back from disk to memory. This works
well so long as the operating system is able to write data back into the exact
same location. However, if the previous location of data has already been re-
distributed to other programs, it can not be placed back into the same location.
The corresponding program would cause then memory access violations if it
tried to access those outdated memory locations.
To solve this issue, most operating systems rely on a concept called virtual
memory. Virtual memory relies on what is know as a Page Table. A page
table serves as an indirection to memory access and effectively redirects the
requested memory operations of a program to an associated physical location.
It works by generating fixed sized blocks in a table (the pages) that each map
to a physical location in system memory. This association can be changed
and rewritten. Each program that requests memory from the operating sys-
tem will be assigned an appropriate amount of pages to fulfill that request.
And rather than addressing memory directly via physical address, processes
will now instead address an offset inside of their assigned pages’ memory
range when accessing memory. The operating system will then look up the
indirection in the page that the program is trying to access and redirects the
memory access accordingly. This concept is visualized in figure 3.2.

64



3 Direct Memory Access

When a process’ memory gets swapped out and eventually is swapped in
again, all the operating system needs to do is update the corresponding page
table entries. The process can then access its virtual memory as per usual, and
the requests will be redirected to their new locations accordingly.
Nowadays, this memory virtualisation is handled by discrete logic blocks that
are built into modern CPUs and/or mainboard chipsets. They are calledMem-
ory Management Units or MMUs, for short. The operating system merely pro-
vides these units with the required information. The MMUs will take care of
catching memory access requests from progrmas and transparently redirect-
ing them according to their page tables.

Note: Nowadays, swapping has lost part of its significance for com-
mon PC system, as systemmemory is readily available and is no longer
as much of a limiting factor. However, memory virtualisation is still
abundantly used by many systems as it provides a set of further ad-
vantages. Examples include:

• Access permission enforcement and monitoring

• Sharing of memory between processes by mapping multiple
pages to the same physical memory

• Providing more virtual memory to a process than is physically
available, when operating on highly sparse data structures

• Memory layout randomization, to physically separate critical
segments of memory. This makes it harder for an attacker to
locate information, should they gain access to the physical
memory address space

This virtualisation mechanism provides problems when wanting to use DMA.
Once a DMA engine has been configured with the physical addresses of data
to access, it will not be aware of that memory changing ownership, should the
system swap out that memory region. This could potentially cause the DMA
engine to read stale data, or worse, overwrite program data of a completely
unrelated process that has been swapped into that location. To prevent this,

65



3 Direct Memory Access

Figure 3.2: Visualization of the concept of Virtual Memory in a computer system. Pages on the
left are being mapped onto actual memory location on the right. b

b By ’Ehamberg’, Wikimedia Commons, licensed under CC BY-SA 3.0 (https://creativecommons.
org/licenses/by-sa/3.0/). The work is being used unaltered.

anymemory region that is to be prepared for DMAaccess needs to be “pinned”
first. Pinning instructs the operating system to not swap a pinned memory
segment under any circumstances. Once a process finished DMA operations
and wants to free up the memory segment, it simply instructs the operating
system to unpin the memory again. Additionally, since a DMA engine will
send instructions to physical memory, DMA descriptors need to contain de-
virtualised physical addresses. The operating system provides functionality
for the translation of virtual addresses into physical ones. In many cases, this
is automatically handled by the DMA device driver.

66

https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/


3.1 Remote Direct Memory Access

3.1 Remote Direct Memory Access

The concepts of DMA have also been extended onto the network and inter-
connect level, creating the concept of Remote Direct Memory Access (RDMA).
RDMA follows the same basic principals as the basic DMA does but in com-
bination with an attached networking interface.
Conventional networking devices usually contain an internal data buffer
where data gets stored after it has been received from the network. The
networking device will then notify the operating system about available data,
which will then be picked up by the CPU to be stored in main memory. This
type of procedure incurs additional effort on the CPU in order to pick up data
from the networking device’s buffer. In some operating systems, this issue
gets further exacerbated by the data processing chain that follows after the
data has been received (the Network Stack of the Operating System). The
necessary sequences for most data transfer protocols are usually handled
by software inside of the operating system. This protocol handling often
involves dozens of additional data movement, processing and copying steps.
Each of these steps increase the length of the data path and binds up the
CPU with the required protocol procedures, increasing the overall transfer
latencies.

Note: For the most common communication protocols, such as
TCP/IP, most standard networking devices are able to handle a sub-
stantial portion of the protocol overhead by themselves, in the form of
dedicated hardware on the device. This is known as TCP/IP Offloading.
While this does reduce CPU involvement, it does not reduce the over-
all length of the critical data path by much. Received data still needs
to traverse the operating system’s network stack.

RDMA aims to avoid the overheads associated with this conventional form
of networked data transfer. RDMA capable network adapters are equipped
with dedicated hardware that handles the entirety of the protocol overhead,
as well as a DMA engine. This bypasses the operating system’s networking

67



3 Direct Memory Access

Figure 3.3: An Nvidia Connect X6 InfiniBand network adapter with two QSFP 200 Gbps ports
and a PCIe Gen. 3 x16 plug. a

a Image property of Nvidia corporation.

stack and requires minimal CPU involvement.
The procedure is generally the same as with conventional DMA, where the
DMA engines work by processing a set of descriptors, instead of getting pay-
loads passed to them directly. However, in order to send data across the net-
work, sender and receiver first need to exchange access information with each
other, in order for the receiver to prepare for the incoming data transfer. This
configuration step (Handshake) needs to be managed by software, involving
the CPU. Once the connection between sender and receiver has been estab-
lished, data can be sent freely, without further CPU involvement.
This handshake consists of a set of additional information from the receiving
end of the transfer. Specifically, the receiver first needs to pin a region of sys-
tem memory which will be access via DMA from the network interface. This
memory-region will be described in the form of an access token that contains
the system-bus-specific addresses of the memory region, as well as a gener-
ated key in the form of a 64-bit integer number. In order to allow a peer to
access this memory-region directly, it has to request an access token from

68



3.2 GPU as Target of RDMA

the host beforehand. The peer will then have to use this token to authenti-
cate against the host before issuing DMA operations, or the host will drop all
incoming data packages from that peer. This access token is generated per
memory region and will remain valid until revoked by the host.

3.2 GPU as Target of RDMA

Over the recent years, General Purpose GPU Computing (GPGPU Comput-
ing) has increased in significance for applications with high computational
demands. As such, GPGPU computing has also become a valuable asset for
scientific applications, be it for simulations, image processing, machine learn-
ing or other computing intensive tasks.
GPUs are commonly equipped with large dedicated memories, optimized for
their processing architecture. This so-called Graphics Double Data Rate Ran-
dom Access Memory (GDDR RAM) is similar to a computer’s normal DRAM
Memory. But GDDR is highly optimizes for large throughput at higher trans-
fer frequencies than normal systemDRAM.This optimization is done not only
through architectural changes in the RAMmodules themself, but also by con-
necting the memory modules directly with the GPU’s main processor on the
GPU’s PCB. Having dedicated memory for the GPU with a direct connection,
rather than a generic bus, reduces communication overheads and speeds up
data transfer by lowering signal propagation latencies. Since the GDDR is
dedicated exclusively to the GPU, it is not connected to the host computer’s
main data bus and does not share a common address space with the rest of
the system memory. It is therefore inaccessible to the CPU directly and will
require the assistance of the GPU driver to be accessed. The driver handles
the necessary device communication in order to transfer data to and from the
GPU.
In systems that utilize multiple GPUs for joint computing tasks, relying on
system memory as an intermediary for data transfer between GPUs can slow
down performance of the whole system. To tackle this problem, GPU manu-
facturers have started to expand their GPUs to be DMA capable. To achieve

69



3 Direct Memory Access

this, the GPU registers a segment of the system bus address space during de-
vice enumeration (the so called User Bank Register (BAR)). The rest of the sys-
tem can then address data transfers to this BAR and the GPU will pick up
data from the bus as if the GPU were conventional memory. The GDDR is not
actually exposed to the system bus, but the hardware on the GPU that has ac-
cess to the bus will instead redirect incoming data to the GDDR. In most cases,
the GPU’s driver still needs to be involved in order to do necessary configura-
tion for the GPU to be aware of the incoming DMA. Once this configuration
has concluded, the acquired BAR address from the GPU can be addressed like
conventional memory for the purpose of DMA operations.

With this new functionality, GPUs can also become the targets of RDMA op-
erations over a network. In the case of a distributed computing environment
that uses GPU computing resources across a network, the data path from data
source to GDDR (and potentially back) can becomes very long. Data needs to
arrive on the network device first, traverse system main memory and then be
transferred to the GPU by its driver. This introduces considerable overhead
into the network communication with a GPU, diminishing its performance
and suitability for tasks that require fast response times. Letting the RDMA
network adapter access GDDR “directly”, without a detour through system
main memory, can therefore reduce critical data path lengths and lead to
shorter systemic data transfer latencies. This is visualized in figure 3.4. The
two largest GPU manufacturers, Nvidia and AMD, have registered different
trademarks for their respective implementations of these GPU RDMA fea-
tures. Nvidia is calling their implementation GPUDirect, while AMD calls
their implementation DirectGMA. The principles behind their respective
technologies are the same, however.

70



3.2 GPU as Target of RDMA

Figure 3.4: Visualization of the different data paths for data transfer from the network into a
GPU.The solid line represents the conventional data path without DMA of any form.
The dashed lines represent the data path when utilizing GPU RDMA.

71



3 Direct Memory Access

3.3 GPU DMA using an FPGA

FPGAs can provide a number of benefits to high-speed DAQ. The article
[Rot15] introduces a DMA capable FPGA data acquisition platform that we
call “High-Flexibility FPGA DAQ Platform”, or simply High-Flex for short
(fig. 3.5). It implements DMA data transfer functionality over a PCIe bus as
a DMA master device. The platform is based on a Xilinx Virtex 7 FPGA and
offers external connectivity via two high-density FMC connectors and one
PCIe x16 plug. This PCIe plug allows for the device to be plugged into the
PCIe bus of a conventional computer system. A Linux driver for the device is
available, through which the device can be configured and operated.
In [Rot16] and [Cas17] we have successfully demonstrated the feasibility
of using High-Flex to transfer data into a GPU’s memory, using DMA. In
an x8 PCIe configuration, the system was demonstrated to reach transfer
throughputs of up to 52 gbps, as well as transfer latencies of 1–2 𝜇s.

Performance Measurements

To get a better understanding of the transfer latency behavior of the High-Flex
platform in a GPU computing context, we analyzed its transmission latencies
under a number of different scenarios.

We used an ASUS X99-E WS/USB3.1 motherboard, equipped with an Intel
Xeon E5-1650 CPU. This system features seven PCIe Gen. 3 slots that are
split across two separate PCIe bridges (think: Internal Switches) which are
connected to the same PCIe Root Complex. One of these slots is statically
set up for x16 operation. The remaining slots are each paired together with
a so-called “Quick Switch (QSW)” which can be configured to either operate
both of its connected PCIe ports in an x8 configuration, or operate only one
of the two ports in an x16 configuration. The layout of the system is shown
in figure 3.6

We are interested in the transfer latencies of the system under different con-
figurations and scenarios. We tested the system using the High-Flex board as

72



3.3 GPU DMA using an FPGA

Figure 3.5: Picture of the KIT high-flexibility FPGA DAQ board (High-Flex). The FPGA in the
center of the board is covered by a heat sink and fan. The board is designed to be
plugged into an x16 form-factor PCIe port as an extension card. Among other inter-
connects, the board also features two FMC connectors, shown on the top of the PCB.

data generator and two different GPUs (one Nvidia Tesla K40 and one Nvidia
Tesla P100) as target devices. The system is assembled in such a way that all
three devices are connected to a PCIe port that is configured for x16 opera-
tion. Each GPU can either be connected to the same PCIe bridge as the High-
Flex board, or it can reside on the other bridge. In the first case, the High-
Flex board can directly communicate with the GPU on its bridge. In the latter
case, the PCIe communication needs to be switched across the Root Complex
and the second bridge, in order to establish communication.
A software was developed that configures the communication between each
of the devices, then starts and monitors data transfer. The data used for the

73



3 Direct Memory Access

Figure 3.6: Schematic representation of the ASUS X99-E PCIe bus layout. One Root Complex
is split into two x16 lanes which are each connected to a PCIe Bridge. PCIe slot 1
is fixed to x16 operation at all times. While all other remaining ports are arranged
in pairs of x8 links each. Each pair is attached to a Quick-Switch (QSW) which can
be used to reassign the switche’s x8 link to one of the connected slots. This forms
either one x16 slot and leaves the other slot in the pair without function, or forms
two independent x8 slots.

transfer is generated internally by the High-Flex FPGA. It is a simple increas-
ing counter. Targetmemory on the GPUs is configured and pinned by the soft-
ware. It then creates DMAdescriptors for those target memories and transfers
them to the High-Flex board. The board is equipped with 4 GB of DDR mem-
ory that is used both as data buffer, as well as internal operational memory for
the DMA engine. Parts of this memory is mapped to the device’s PCIe BAR
which can be accessed directly by the CPU.The CPU loads the descriptor into

74



3.3 GPU DMA using an FPGA

this memory and instructs the DMA engine to start transfer. The DMA engine
on the High-Flex device writes transfer progress information into the descrip-
tors previously loaded onto the device. The CPU continuously monitors these
descriptors to measure the start and end of a transfer. A total of 4096 bytes are
transferred at once. Each transmission is repeated 500 times, and we observe
the distribution of the transfers.

Three different scenarios were tested to compare the impact of data paths in
the inter-system data transfer performance.

• Conventional Transfer: Data is transferred from the FPGA to GPU
memory in two steps. Data is first transferred from the FPGA to
system main memory via DMA, and then further transferred to the
GPU. The software program running on the CPU observes the
completion of data transfer from the FPGA to system main memory
and then uses the CUDA programming interface call cudaMemcpy to
transfer that same data to the GPU. Results are summarized in table
3.1 and are detailed in figure 3.7.

• Transfer on same PCIe Root-Complex: In this scenario, both the
target GPU and the High-Flex FPGA were connected directly to the
same PCIe root-complex on the bus. Data was transferred from FPGA
to GPU using DMA with no involvement of the CPU or system main
memory. Results are summarized in table 3.2 and are detailed in figure
3.8.

• Transfer over PCIe Switche: In this scenario, both the target GPU
and the High-Flex FPGA were connected via a PCIe switch to the same
root-complex. Data was transferred from FPGA to GPU using DMA
with no involvement of the CPU or system main memory. Results are
summarized in table 3.3 and are detailed in figure 3.9.

75



3 Direct Memory Access

Conventional Transfer

Table 3.1: Latency measurements (in 𝜇s) of data transfer from High-Flex FPGA to RAM and
then further to GPU (Nvidia K40 and Nvidia P100). Sampled over 500 iterations of
4096 bytes.

GPU Average 𝜎 min max
Nvidia K40 19.48 ±4.24 8.19 55.25
Nvidia P100 20.08 ±3.66 8.94 41.44

K40

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

10
20
30
40
50
60
70

Latency (𝜇s)

Count
(of 500)

P100

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

10
20
30
40
50
60
70

Latency (𝜇s)

Count
(of 500)

Figure 3.7: Distribution of latency measurements (in 𝜇s) of data transfer from High-Flex FPGA
to RAM and then further to GPU (Nvidia K40 (top) and Nvidia P100 (bottom)). Sam-
ple sizes were 500 iterations of 4096 bytes.

76



3.3 GPU DMA using an FPGA

Transfer on same PCIe Root-Complex

Table 3.2: Latency measurements (in 𝜇s) of data transfer from High-Flex FPGA to GPU (Nvidia
K40 and Nvidia P100) connected to the same PCIe switch, using DMA. Sampled over
500 iterations of 4096 bytes.

GPU Average 𝜎 min max
Nvidia K40 1.67 ±0.055 0.884 1.816
Nvidia P100 1.73 ±0.46 0.804 11.88

K40

1.5
9

1.6
1

1.6
3

1.6
5

1.6
7

1.6
9

1.7
1

1.7
3

1.7
5

1.7
7

1.7
9

1.8
1

1.8
3

20
40
60
80
100
120
140
160

Latency (𝜇s)

Count
(of 500)

P100

1.5
9

1.6
1

1.6
3

1.6
5

1.6
7

1.6
9

1.7
1

1.7
3

1.7
5

1.7
7

1.7
9

1.8
1

1.8
3

20

40

60

Latency (𝜇s)

Count
(of 500)

Figure 3.8: Distribution of latency measurements (in 𝜇s) of data transfer from High-Flex FPGA
to GPU (Nvidia K40 (top) and Nvidia P100 (bottom)) on the same PCIe root-complex,
using DMA. Sample sizes were 500 iterations of 4096 bytes.

77



3 Direct Memory Access

Transfer via PCIe Switch

Table 3.3: Latency measurements (in 𝜇s) of data transfer from High-Flex FPGA to GPU (Nvidia
K40 and Nvidia P100) connected to separate PCIe switches on the same root-complex,
using DMA. Sampled over 500 iterations of 4096 bytes.

GPU Average 𝜎 min max
Nvidia K40 1.70 ±0.063 0.848 1.796
Nvidia P100 1.74 ±0.078 1.572 1.844

K40

1.5
9

1.6
1

1.6
3

1.6
5

1.6
7

1.6
9

1.7
1

1.7
3

1.7
5

1.7
7

1.7
9

1.8
1

1.8
3

20
40
60
80
100

Latency (𝜇s)

Count
(of 500)

P100

1.5
9

1.6
1

1.6
3

1.6
5

1.6
7

1.6
9

1.7
1

1.7
3

1.7
5

1.7
7

1.7
9

1.8
1

1.8
3

2
4
6
8
10
12

Latency (𝜇s)

Count
(of 100)

Figure 3.9: Distribution of latency measurements (in 𝜇s) of data transfer from High-Flex FPGA
to GPU (Nvidia K40 (top) and Nvidia P100 (bottom)) on different PCIe switches on
the same root-complex, using DMA. Sample sizes were 500 iterations of 4096 bytes
for the top (K40). Due to a misconfiguration in the measurement script for the bottom
(P100), only 100 iterations of 4096 bytes were performed. The general shape of the
distribution is still representative, and aligns in its overall shape to the distribution
of the P100 in the “same root-complex” scenario in figure 3.8.

78



3.3 GPU DMA using an FPGA

From the presented data it can be understood that DMA data transfer into
GPUmemory directly, without detour through systemmain memory, reduces
transfer times by one order of magnitude, from 20 𝜇s to 2 𝜇s. Furthermore,
standard deviations of transfer times were decreased by almost two orders of
magnitude, from 4 𝜇s to 0.05 𝜇s, which significantly increases real-time appli-
cability of DMA data transfer over conventional methods. The “professional
grade” GPU (K40) performed generally better than the “consumer grade” GPU
(P100), showing much more consistent transfer times overall.
The overhead introduced by the PCIe switch increased the average transfer
times from 1.67 to 1.70 while simultaneously negatively affecting the stan-
dard deviation, increasing it from 0.055 to 0.063.
In conclusion, this shows that DMAdata transfer significantly increases trans-
fer performance and reduces transfer time deviations, which is of great impor-
tance for real-time applications. For such applications, a configuration with
both sender and receiver of a data transfer on the same PCIe root-complex
is preferable.

79





4 KIRO: An RDMA programming
library

RDMA has been identified as a key component for data communication at
lowest latencies. To explore the necessary software requirements for RDMA
communication, I created KIRO. The KIT Infiniband Remote Object RDMA
networking library. It is intended to allow a host/server to provide unre-
stricted RDMA-Read access to the memory contents of any single abstract
“data object” (think: a single contiguous region of memory). Hence the name
“remote object”. KIRO is geared towardsminimalism, to ease integration com-
plexity into other software projects. The establishment and management of
a barebones KIRO connection heavily resembles that of conventional UNIX
sockets. KIRO’s primary usecase is a server-and-client based unidirectional
RDMA data transfer. In addition, it also offers higher-level convenience func-
tionality, such a self-synchronizing ring buffer and a many-to-many message
passing module.

KIRO is open source and available under an LGPL 2.1 license. It can be found
on Github under https://github.com/ufo-kit/kiro

4.1 KIRO Software Design and Components

An outline of the general software stack KIRO is built upon can be seen in
figure 4.1. KIRO was developed with Mellanox-brand InfiniBand network
adapters in mind. It is however compatible with any RDMA network adapter
that is supported by the RDMA Communication Manager (rdma_cma) and
IB_VERBS programming libraries.

81



4 KIRO: An RDMA programming library

Figure 4.1: A visualization of the software stack KIRO is based upon, as well as the functional
units that KIRO is comprised of, ordered by abstraction from highest (top) to lowest
(bottom). Pre-existing software is marked in grey. KIRO-specific software is marked
in teal.

IB_VERBS is an open software provided by the OpenFabrics Alliance (OFA).
Members of the OFA provide their specific device drivers, as well as related
software, in the context of theOpenFabrics Enterprise Distribution (OFED).This
software package provides a multitude of drivers and software to facilitate the
adoption and development of RDMA data transfer communication and stor-
age technologies. As part of this OFED software stack, Mellanox distributes a
basic programming interface for its InfiniBand protocol, the aforementioned
InfiniBand Verbs (IB_VERBS). It provides low-level application calls to their
network adapters. On top of this low-level interface sits the RDMA Commu-
nication Manager (rdma_cma). The rdma_cma abstracts the device-specific
interface into a generalized RDMA-centric one that is agnostic of the actual
RDMA hardware being used. The rdma_cma interface provides some con-
venient high-level functions that bundle some of the low-level ib_verbs calls
into logical blocks. However, it still requires the user to execute the full RDMA
connection setup sequence manually. KIRO sits on top of this rdma_cma in-
terface and aims to provide a high level of abstraction, similar to the behaviour

82



4.1 KIRO Software Design and Components

of standard Unix Sockets. KIRO is written using the GLib development frame-
work, which aims to emulate object oriented programming patterns in a pure
C environment. This framework has been chosen to stay consistent with other
frameworks that have previously been developed by our working group. GLib
further provides some additional convenience features, such as simplified cre-
ation of function bindings for other programming languages, and a wealth of
pre-defined function blocks. KIRO uses some of these blocks, such asmutexes,
signals, timers and some data structures like dynamic arrays, lists and hashes.

Note: KIRO relies upon the assumption that the InfiniBand network
it is connected to uses the IP-over-InfiniBand extension in order to
address and identify clients on the network through a conventional
IPv4/IPv6 address. This extension is exclusively used for the initial con-
nection setup between twomachines. The actual data transfer between
two peers on the network is still performed via native InfiniBand.

The KIRO software library itself is comprised of a set of functional units:

• RDMA Memory Manager

• Server

• Client

• Transmittable Ring Buffer

• Self-Synchronizing Buffer

• Messenger

RDMAMemory Manager

Most user-facing modules of KIRO rely on a shared back-end component
whichmanages the creation, commission and cleanup of RDMAcapablemem-
ory. It is not meant to be interacted with by the user directly, but rather is an
internal interface for other KIRO components.
Whenever a KIRO component wants to create a memory segment for RDMA,

83



4 KIRO: An RDMA programming library

or make a third-party memory segment RDMA capable, it will use the inter-
facec provided by this RDMA Memory Manager. This includes the memories
for the InfiniBand-specific protocol state abstractions (the so-called Queues)
and all necessary steps to create, attach, configure and destroy these Queues
of a logical InfiniBand connection.

To leverage the benefits of GPU-RDMA, specifically the Nvidia variation
GPUDirect, a flag can be passed to the memory manager to instruct it to place
payload memory on a GPU. Queue-Pairs and connection context memories,
as well as descriptor memory will still reside in conventional system mem-
ory. When the flag is passed in, the memory management module will use
the Nvidia GPU programming API (CUDA) to enumerate all available and
compatible GPUs in the system, pick the first one in that list, and allocate a
memory segment on that GPU. Once this allocation succeeds, the memory
will then be run through the appropriate preparation steps, required to make
that memory RDMA accessible. In the case of Nvidia, this consists of an
RDMA specific CUDA API call, instructing the driver to enable the GPU to
process Bus-Level memory access calls to its registered address range.
Once this memory segment has been created, the rest of the memory man-
agement chain can continue as normal. Resolving the Bus-Level address
of the GPU memory segment is no different than how conventional system
memory addresses are being resolved. This is thanks to the Nvidia GPUDirect
Kernel Module, which injects RDMA enabled GPU memory into the systems
page table, allowing to re-use the exact same system calls as for conventional
system memory.
Additional information about the GPUDirect feature can be found in the
Diploma Thesis that implemented and verified the technology [Rie15].

KIRO Server

TheKIRO Server is the passive part of the software, and is run on the host com-
puter that will function as a data source. An already existing memory region
must be passed along to the server upon creation, together with appropriate
size information, to register that memory for RDMA operations. The server

84



4.1 KIRO Software Design and Components

will then open a “listening” connection, and wait for any clients to connect
to it. Once a connection request has been received, it will interchange all
necessary information to access the reserved memory region with the newly
connected client. The client is then free to perform RDMA operations on that
memory region, without further involvement of the KIRO server. The listen-
ing connection will stay open for any further clients that wish to connect to
the server. The KIRO server can support an arbitrary number of connected
clients. It will monitor the connection status of each connected client, and
inform each client about changes in the reserved memory region, should the
user chose to relocate or resize the memory. The maximum available band-
width for RDMA operations is dependent on the number of connected clients.
Clients that concurrently want to perform RDMA operations on the server’s
memory will have to wait their turn, effectively reducing the throughput of
the connection by a factor of the number of concurrent requests.

KIRO Client

TheKIRO Client is the active part of the software, and is run on the destination
computer. Its job is to connect to a KIRO Server on the network and RDMA-
Read the data that is provided by that server into its own local systemmemory.
To do so, it will first send a connection request to a KIRO Server with an
address provided by the user. It will then handle the necessary handshake and
information exchange with the server, including receiving the RDMA access
information for the memory region provided by the server. It tries to reserve
a memory region of identical size in the local system memory as a destination
to copy the data from the server to. If that connection setup succeeds, and a
sufficiently sizedmemory region could be reserved, the client can then be used
to fetch data from the server, overwriting the local reserved memory region.
It provides interfaces to either copy the entire remote memory content, or
only specific parts of it. In case of the server changing any information about
the provided memory region, the client will automatically re-negotiate the
necessary RDMA information and tries to reserve a new suitable memory
region in local memory. Once the user calls the fetch function the next time,
the client will automatically switch to that newly reserved memory region

85



4 KIRO: An RDMA programming library

and free up the old region. It is the users responsibility to either copy the
received data into a separate memory region for further processing, or refrain
from fetching new data from the server until all operations are complete.

Transmittable Ring Buffer

This module is an implementation of a ring buffer, that holds self-containing
information about its current iteration status within its own memory. It is
specifically designed so that the raw data which represents the contents of
the ring buffer can be transmitted across a network and re-introduced (we call
this “adopting”) into a local instance of a ring buffer without loss of coherence.
It is intended to be instantiated on a KIRO Server and used to ensure that no
incoherent data that is in the middle of being recorded is being read by the
connected clients. Analogously, a KIRO client is supposed to instantiate a
local transmittable ring buffer as well to “adopt” the data it fetches from the
server into, in order to restore coherence. The user can decide the number
of cells in the ring buffer, together with the size of those cells. The size of
all cells is identical and may not change during normal operation. The ring
buffer provides a user interface to retrieve data from the ring buffer, or to
add a new element to the ring buffer. It is the users responsibility to ensure
that only appropriately sized data is added to the ring buffer. Once the buffer
is full (e.g.: all cells have been filled) it will automatically wrap back to the
beginning of the buffer and start to overwrite the oldest cell available upon
receiving new data.

Self-Synchronizing Buffer

A KIRO Self-Synchronizing buffer (KSB) is a wrapper around the previously
mentioned Server, Client and Transmittable Ring Buffer classes. Its purpose
is to keep a region of memory on a local machine consistently and auto-
matically updated with data from a remote KSB. Whenever the remote KSB
updates its data, the local KSB will automatically fetch and incorporate that
data.
In order to accomplish this, a KSB will create internal instances of KIRO

86



4.1 KIRO Software Design and Components

Server, Client and Transmittable Ring Buffer, depending on its operation
mode, and will constantly monitor the header information in the remote Ring
Buffer of the KSB it is connected to, automatically fetching the most recently
added element of the remote Ring Buffer into its own memory.

From a user-perspective, a KSB manages only a single memory block. (e.g.:
memory for one individual frame of a camera.) The KSB provides an interface
to manage the data of this local element. In reality, as KSB will create a Trans-
mittable Ring Buffer of appropriate size in order to provide Triple-Buffering for
the managed memory region. This is chosen to ensure that a connected KSB
will always be able to read a fully coherent element from the Transmittable
Ring Buffer, without running the risk of fetching an element that is either not
finished being written or has already partially been overwritten. The software
interface of the KSB is designed to suggest that only a single memory block
is automatically being synchronized from the remote server.

A KSB can be configured to be either “serving” or “cloning”. When a KSB is
serving, it will create an internal KIRO server and then register the memory
of its internal Ring Buffer for RDMA access via that server and listen for in-
coming connections.
When a KSB is Cloning it will create an internal KIRO client and tries to con-
nect to a remote KSB with an address provided by the user. After successful
connection, it will create a clone of the Transmittable Ring Buffer provided
by the remote KSB. If this connection setup is successful, the KSB will then
continuously fetch specifically only the data from the remote KSB that is re-
quired to identify whether a new element has been added to its internal ring
buffer. Upon detection of a new element, it will only fetch that specific ele-
ment from the remote ring buffer, embedding it into its own local buffer. A
cloning KSB provides interfaces to register function callbacks for whenever a
new update has occurred, and provides functionality to temporarily stop au-
tomatic updating (freezing) or resume automatic updating (thawing). It is a
users responsibility to either copy the data of the most current element into a
safe memory location for further processing, or to freeze the KSBwhile data is
being processed, in order to prevent the current element from automatically
being overwritten.

87



4 KIRO: An RDMA programming library

KIRO Messenger

The KIRO Messenger is an extension and combination of both KIRO Server
and Client. Its purpose is to RDMA-transfer an arbitrarily sized block of
memory in any direction, between two connected messenger. In contrast,
the conventional KIRO Server and Client combination will always transfer a
fixed-sized memory block from Server to Client. Messengers can transfer dy-
namic blocks of memory of any size in both directions. It is not possible to
connect to a KIRO messenger by using a normal KIRO client.
Once a KIRO messenger has been instantiated, it will automatically open a
listening connection and wait for any peers that want to connect to it. Upon
receiving a connection request, the two peers will allocate small memory re-
gions for each other (postboxes) and exchange RDMA information for these
regions with each other, in order to send unannounced control flow messages
to each other. Each connected peer will be assigned a unique ID that is only
valid in the context of the local KIRO messenger.
The client can then provide the messenger with a pre-existing memory region
and the ID of a peer that the memory is to be transferred to. The messenger
will first prepare the memory for RDMA access. It will then notify that peer
about its intent to transfer data to it by sending the RDMA access and size
information to the peer. The peer is then expected to allocate an appropri-
ately sized memory region and use the received RDMA information to read
the remote data into the newly create local memory. Afterwards, a request
completion message will be sent to the peer, completing the transfer.
Like the Self-Synchronizing Buffer, a KIRO messenger provides interfaces to
register function callbacks in order to be notified about received messages
and transfer completion, as well as interfaces to perform “blocking” send op-
erations (meaning, the function call will not return until the send operation
has finished).

88



4.1 KIRO Software Design and Components

Code Examples

Listing 4.1: Code example for setting up a KIRO Server

1 #include <stdio.h>

2 #include <kiro -server.h>

3

4 int main (int argc , int[] argv) {

5 //Create KIRO Server

6 KiroServer *server = kiro_server_new();

7

8 //Create memory segment

9 int sizeBytes = 1024 * 1024;

10 void *mem = malloc(sizeBytes);

11 if (mem == null) {

12 printf("Failed to allocate memory for the server!\n

");

13 goto end;

14 }

15

16 //Start the server

17 if (0 > kiro_server_start(server , "192.168.11.61", "

60010", mem, sizeBytes) {

18 printf("Failed to launch server!\n");

19 goto end;

20 }

21

22 /* <Program Main Loop Here > */

23

24 end:

25 kiro_server_free(server);

26 return 0;

27 }

89



4 KIRO: An RDMA programming library

Listing 4.2: Code example for setting up and connecting a KIRO Client

1 #include <stdio.h>

2 #include <kiro -client.h>

3

4 int main (int argc , int[] argv) {

5 //Create KIRO Client

6 KiroClient *client = kiro_client_new();

7

8 //Connect client to server

9 if (0 > kiro_client_connect(cient , "192.168.11.61", "

60010") {

10 printf("Failed to connect to server!\n");

11 goto end;

12 }

13

14 //Get memory segment from server

15 kiro_client_sync(client);

16

17 //Access the data

18 int bytesData = kiro_client_get_memory_size(client);

19 void *mem = kiro_client_get_memory(client);

20

21

22 /* <Program Main Loop Here > */

23

24 end:

25 kiro_client_free(client);

26 return 0;

27 }

90



4.2 KIRO Performance Measurements

4.2 KIRO Performance Measurements

To illustrate the performance of KIRO, a series of measurements were per-
formed. These measurements all used the same Nvidia Mellanox Connect-X3
QFP network interface adapter in native InfiniBand protocol mode on both
KIRO server and client. The software was running on 2 separate PCs, con-
nected directly to each other without a network switch.
Three measurements were taken: Throughput per payload size, KIRO protocol
overhead latency and RDMA invocation latency.

Throughput per payload size

Throughput was measured for varying payload sizes. Payloads were scaled
from 1 byte to 1 Gigabyte in steps of × 10 each. The presented values are
averaged over 1000 individual measurements per payload size. The results
are shown in figure 4.2.

KIRO Protocol Overhead

When KIRO establishes a connection or when other control-flow informa-
tion are being exchanged (such as Ping requests), no RDMA operations take
place. Instead, KIRO server and client exchange common datagrams that em-
bed the control-flow information as “immediate” values into the transmission.
As these messages have to traverse the operating system network stack to be
processed by the KIRO software layer, they lose the latency benefit of RDMA
and have generally higher processing latencies. To illustrate these latencies,
KIRO has an integrated Ping functionality. A Ping sends a message from a
KIRO client to a server, to which the server will immediately send an appro-
priate reply back. The client that initiated the Ping measures the elapsed time
between sending the request and receiving the reply. This measurement has
been repeated 40.000 times and the distribution of turnaround times is shown
in figure 4.3

91



4 KIRO: An RDMA programming library

KIRO RDMA invocation latency

Once a persistent connection between KIRO client and server have been es-
tablished, the client is free to perform RDMA Read operations on the memory
provided by the server. This does not rely on the datagram communication
that KIRO uses its control-flow (such as the Ping functionality in the previ-
ous measurement). Since pure RDMA operations do not need to traverse the
operating system network stack, they have much lower completion latencies.
However, there is still a systemic delay between invoking the software func-
tion that initiates an RDMA operation, and the moment the KIRO software
has received a completion notification from the device driver. To illustrate
the systemic latencies involved in reading memory from a KIRO server, a sin-
gle RDMA read operation was measured. Times measure the difference be-
tween the invocation of the software function call to the KIRO Sync() function
and the moment the function call returns (completes). The resulting latency
distribution for 40.000 iterations is shown in figure 4.4.

10 100 1k 10k 100k 1M 10M 100M 1G

4

8
12

16
20
24

28
32
36
40

Packet Size (Bytes)

Throughput (Gbps)

Figure 4.2: KIRO throughput performance in Gbps vs. payload size. The maximum bandwidth
is 40 Gbps, based on the QFP ConnectX-3 NIC that has been used. Measurements
were averaged over 1000 individual transmissions each.

92



4.2 KIRO Performance Measurements

400 Counts

60 63 66 69 72 75 78 81 84 87 90+

1,000

2,000

3,000

4,000

5,000

6,000

Latency (𝜇s)

Count
(of 40.000)

Figure 4.3: Latency histogram of 40.000 round-trip messages, measured using the KIRO “Ping”
functionality. When using Ping, no RDMA operations are being conducted. KIRO
Client and Server only send control-flow messages. This gives a representation
of the KIRO protocol overhead latency. Measured using an Nvidia Mellanox QFP
ConnectX-3 NIC.

2 Counts 1 Count

4 5 6 7 8

5k
10k
15k
20k
25k
30k
35k

Latency (𝜇s)

Count (of 40.000)

Figure 4.4: Latency histogram of 40.000 single-byte RDMA read operations, after a persistent
KIRO connection has been established. Times include one RDMA Read operation,
as well as the software-layer invocation latency of the KIRO Sync() function call.
Measured using an Nvidia Mellanox QFP ConnectX-3 NIC.

93



4 KIRO: An RDMA programming library

4.3 Case Study: High-speed RDMA
side-channel for control systems

To manage the complexity of modern scientific instrumentation, experiments
usually deploy software systems that perform high-level management tasks
for controlling and monitoring the involved pieces of equipment. In general,
such systems are commonly described as Control Systems. There exist multi-
ple control systems that have found broad adaptation in many installations,
such as EPICS (Experimental Physics and Industrial Control System) [Dal91],
or TANGO[Göt03]. The latter will get explained in greater detail later in this
chapter. By design, most control systems are highly distributed and are in-
tended to control multiple pieces of decentralized equipment through a com-
mon network. To this end, almost all control systems natively support some
combination of Ethernet, UDP or TCP communication.

One typical application of such control systems is known as Slow-Control.
Slow-control systems concern themselves with controlling and monitoring
tasks that are not time-critical. In cases where timing is of particular im-
portance, other proprietary systems are often developed on a case-by-case
basis (e.g.: SODA, the time distribution system for the PANDA experiment
[Kon09]).
In most cases, running such systems on top of a conventional Gigabit Ether-
net network is sufficiently performant for their purposes. However, with the
increase in data rates of modern scientific equipment, corner cases emerge
in which even slow-control systems need to operate at higher data-rates and
lower communication latencies than their native network implementations
can provide.
In this section, one of such cases will be illustrated, at the example of an X-
Ray Tomography installation at the KARA synchrotron light-source. I will
show how KIRO was used to implement a high-performance side-channel for
the TANGO control system.

94



4.3 Case Study: High-speed RDMA side-channel for control systems

4.3.1 X-Ray Imaging at the IMAGE beamline of KARA

X-Rays, or Röntgen radiation, as it is also known in many different languages,
are an energetic form of electromagnetic radiation, ranging fromwavelengths
of 10 nm to 10 pm and energies of up to 124 keV (See figure 4.5). Due to their
high energies, X-rays can penetrate object and materials whereas visible light
can not. Depending on the atomic composition of a material, X-rays passing
through the material may be partially absorbed or deflected, allowing for the
discrimination of those materials based on the measurements of remaining
radiation after passing the object. Ever since their discovery at the end of the
19th century, X-rays have been used in medical applications for the visualiza-
tion of internal features of objects, such as bones in the human body. Nowa-
days, X-rays are not only used for medical applications, but for a wide variety
of non-destructive investigation of the internal features of objects and materi-
als, from material science, to engineering or security applications at airports.

Figure 4.5: Visualization of some different wavelengths and energies of the electromagnetic
spectrum, and some typical applications of X-rays at their respective wavelengths. b

b By ’Ulflund’, Wikimedia Commons, licensed under CC BY-SA 3.0 (https://creativecommons.
org/licenses/by-sa/3.0/). The work is being used unaltered.

95

https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/


4 KIRO: An RDMA programming library

KIT operates its own synchrotron light source: the KArlsruhe Research Accel-
erator (KARA). KARA is a circular electron accelerator that uses a cyclotron to
accelerate electron bunches, which are then injected into a booster and stor-
age ring. The circulating electrons emit different forms of electromagnetic
radiation (simply speaking: Light) of differing energies and wavelengths. The
light is generated via Bremsstrahlung and emitted into individual sections and
outlets in the KARA facility (so-called beamlines) that are arranged tangen-
tially around the ring. KARA is capable of emitting light from the visible
(infrared) spectrum, all the way up to X-rays, and the provided beams are
used for a multitude of different scientific applications.
One of these applications uses the coherent X-Rays at KARA’s IMAGE and
TOPOTOMO beamlines for the investigation of the physiology of small insects
([San14],[Kam11]). The investigation is performed through X-ray tomography
and/or laminography. In these methods, a sample is placed in the center of the
X-ray beam on a spinning platform. X-rays are sent through the sample ei-
ther perpendicularly, in the case of tomography, or at an angle, in the case
of laminography. The attenuated light after passing through the sample is
visualized by a scintillator crystal before being recorded by a camera. The
sample is spun around one axis during the recording in order to generate pro-
jections from a number of different angles. These projections are then used to
mathematically reconstruct a volumetric 3D tomogram of the sample[Bro75].

The UFO Ecosystem

In the conventional process of X-Ray imaging at the KARA facility, the record-
ing and reconstruction of a single tomogram could take up to 1.5 hours. This is
in large parts due to inefficient CPU-based processing of the recorded datasets
and slow data links between camera station and processing system. Further-
more, most commercial high-speed cameras will not transfer recorded frames
directly, but rather buffer frames in an internal memory. These frames need
to be retrieved from the camera in a separate step, making the whole sys-
tem real-time incapable. In cases when recording parameters have been cho-
sen incorrectly or errors in the setup have been made, it will only become
apparent hours after the recording has already finished. With the scarcity

96



4.3 Case Study: High-speed RDMA side-channel for control systems

of available operation time at a beamline, such mistakes can be very costly.
In order to streamline the recording process and increase turnaround time
of tomographic reconstruction, a framework for Ultra fast X-ray tomogra-
phy with Feedback control loops and Online reconstruction (UFO) was pro-
posed[Kop16]. This framework aims to bring a substantial speed-up to the
conventional workflow of tomographic imaging by adding high-speed cam-
eras with continuous streaming capabilities, parallel GPU computing, fast in-
terconnects and a modular control system into the workflow. One of the core
novelties of the UFO system is the concept of feeding the image results from
a fast tomographic reconstruction on GPUs to the control system in soft real-
time. This forms a feedback control loop with which recording parameters
of the imaging process can be adjusted dynamically at runtime. A high-level
abstraction of the UFO processing chain is shown in figure 4.6.

Figure 4.6: Visualization of the UFO Processing Chain. Shown are the individual processing
steps from Light-Source all the way to final storage, including the on-line processing
parts that form a feedback control loop. a

a Graphic courtesy of Max Riechelmann

97



4 KIRO: An RDMA programming library

When comparing the intent of the UFO Framework with the proposed
blueprint of modern high-performance DAQ as shown in chapter 2, figure
2.1, we can already begin to see similarities.
The detector used for the data chain is a custom built camera with high
temporal and spacial resolution of up to 20 megapixels and up to 5000 frames
per second, producing data rates of up to 8 Gigabytes per second [Ste18].
Actuators to manipulate the experiment are present in the form of the ex-
perimental setup, holding the measurement sample, rotating it along one
axis to produce the required projections. The data recorded by the high-
speed camera is buffered on the beam-line-computer, to which the camera
is attached to, serving as a form of data concentrator, before data is being
forwarded to a computing stage for reconstruction. The UFO research group
had already identified distributed and parallel GPU computing as their desired
computing architecture, and developed a software system which manages
the distribution, processing and collection of data onto such a distributed
system [Vog12]. The information generated by this processing stage was
expressly intended to be used in a feedback control loop, as indicated in
the main title of the project “[...] with Feedback control loops [...]”. Further
more, fast data links from the processing stage to the storage cluster had
already been provided in the form of an InfiniBand fabric. However, this
InfiniBand fabric was configured to run in Ethernet mode, with TCP as
underlying transport in order to utilize a distributed storage communication
framework called iSER (iSCSI Extension for RDMA), which in turn relies on
the iWARP protocol introduced in chapter 2.1. The entirety of the setup was
controlled by two software control systems: Concert and TANGO. Concert
[Vog13], which orchestrates the high-level procedures of the experiment
and interfaces with TANGO [Göt03], which is used to control electronic
equipment at the beamline. TANGO is one of the major control systems used
at the KARA facility (and in the synchrotron community in general). The
software system stack of UFO is shown in figure 4.7.

One of the remaining bottlenecks of the system was the data link between the
acquisition PC of the high-speed camera and the control system and process-
ing stage. The up-to 8 Gigabytes per second of data produced by the camera
could not be transported by the available 1 Gbps Ethernet fabric at the facility.

98



4.3 Case Study: High-speed RDMA side-channel for control systems

Figure 4.7: The individual components and intercommunications of the UFO software stack.
The brown box at the top, containing TANGO and KIRO, are the software elements
that will be introduced and discussed during this section of the thesis. (As seen in:
[Kop16])

However, InfiniBand network adapters were available and already in use for
connecting the processing stage with the storage cluster. Because of this, it
was decided to implement another InfiniBand link between the camera PC and
the computing stage. Due to the reliance of the project on the TANGO control
system to control data flow and processing, a solution had to be found as to
how to implement an InfiniBand data-channel into the TANGO environment.

TANGO, the control system

TANGO[Göt03] is a control system which is aimed to provide network access
and control to remote hardware and instrumentation. Its primary applica-
tions are large scientific light-source installations, such as synchrotrons and
lasers, and it is actively applied at multiple facilities, mainly in Europe, but
also worldwide.

99



4 KIRO: An RDMA programming library

TANGO uses a remote procedure call paradigm to model remote devices. This
is achieved through the adaptation of the Common Object Request Broker Ar-
chitecuter (CORBA) standard. Specifically, by integrating the omniORB im-
plementation of the CORBA standard.
Since TANGO builds on top of the CORBA paradigm, it works in much the
same way. It defines the notions of “Devices” which encapsulate the local
hardware specific implementation, or the remote user interface implementa-
tion respectively. In addition, TANGO also introduces a database component,
which is used to manage the distribution of device implementations, as well
as providing persistence for device parameters and event logging.

The CORBA standard

The CORBA standard defines a software architecture design which provides
functionality to create and interact with platform independent abstract de-
vice descriptions over a network. It achieves this by demanding the inter-
face to any hardware which should be controlled through CORBA must use a
strict interface definition language (IDL) to abstractly describe the functions
and properties of the hardware. This IDL code will then be translated by the
CORBA tool chain into an “intermediary” software layer, which binds the pro-
vided abstract interface descriptions to a CORBA compatible implementation
on one end, and a “skeleton” implementation of the same interfaces in any
programming language of the users choice on the other end. An outline of
this scheme can be seen in figure 4.8.

CORBA supports a large set of target programming languages, such as C,
C++, Java, Python and many more. Once this intermediary layer has been
compiled, the provider of the hardware device can then extend the skeleton
implementation of the device interface with the actual hardware specific im-
plementation. The other end of the intermediary layer serves as a “plug-in”
to a so-called Object Request Broker (ORB) whose functionality is to manage
the object live cycle of the device representation and manage the translation
of the CORBA specific interface implementation to a network interface. One
or many of such ORBs can then be exposed to a network.

100



4.3 Case Study: High-speed RDMA side-channel for control systems

Figure 4.8: The CORBA software paradigm. The interface to an actual hardware device gets
transcribed in the form of an interface description language and then compiled into
a local and a remote representation. These binding layers then attach to the CORBA
transport implementation and communicate with each other through an Object Re-
quest Broker.

Simultaneously, the IDL complier also generates a remote representation of
the defined interfaces. The binding to an ORB works in much the same way
as the hardware specific local implementation, but rather than providing a
skeleton implementation on the other end, it instead generates a functional
user-facing software interface. When the user interacts with this interface,
the interactions with the interface get transcribed onto the CORBA interface
through the binding layer and are relayed by the ORB to the respective remote
device on the network. There, its ORBwill receive the relayed interactions and
translate them to the hardware specific interface through its respective bind-
ing layer. Any output generated by the hardware specific implementation will
then be passed back through the same software chain in reverse.

4.3.2 State of the System and Implementation
Considerations

Thehigh-speed camera used for the UFO project can provide up to 5000 frames
per second at 512x512 pixels of resolution at 8 bit color depth. This means

101



4 KIRO: An RDMA programming library

a single frame must be acquired and transmitted to the control system and
computing station in less than 200 𝜇s to prevent frames from piling up. This
serves as the lower latency bound of any proposed solution. Additionally, we
are aiming for a data rate of 8 Gigabytes per second, or 64 Gbps, in order to
be able to operate the camera at its maximum performance.
To determine current state of the available network at the facility, we ran pre-
liminary test measurements with data blocks of 265 kilobyte each (data size
of one 512x512 pixels frame at 8 bit color depth), totalling at 1 Gigabyte per
transmission.
The 1 Gbps Ethernet network at the facility is insufficient for either the re-
quired 64 Gbps throughput, but also failed to meet the required 200 𝜇s latency
constraint by an entire order of magnitude. Depending on the amount of
clients that are simultaneously connected to the camera server, Ethernet per-
formance would peak out at 750 Mbps for an individual client, scaling down
as more clients connect. While latencies stayed comparatively consistently
within a range of 84 to 86 ms. These results can be seen in the diagonally
striped bars and dotted line in figure 4.9.

Furthermore, we evaluated the performance of operating the InfiniBand
connection of the available 32 Gbps adapter with the TCP-over-InfiniBand
(TCPoIB) protocol extension, to remain compatible to TANGO’s native net-
work implementation.
Measurements showed that the TCPoIB performance was considerably lower
than we would have expected, in comparison to the native InfiniBand per-
formance of KIRO had demonstrated. Using the 32 Gbps specified InfiniBand
network adapter for testing, the single-client performance topped out at 7.4
Gbps, lowering slightly with each additional concurrent client connection.
These connections showed large latency variations of 23 to 200 ms. This
is most likely due to the additional load the TCPoIB extension puts onto a
systems CPU, as it will have to handle the entirety of the TCP protocol over-
head due to a lack of TCP offloading with InfiniBand networking adapters.
Additionally, the comparatively small individual package sizes of just 265
kilobytes might have added excessive protocol overhead and could potentially
be optimized by collecting multiple images into larger transmission blocks.

102



4.3 Case Study: High-speed RDMA side-channel for control systems

Figure 4.9: Shown are the measurement results of the throughput and latency ranges for 1 Gbps
Ethernet and a 32 Gbps InfiniBand adapter, transporting TCP via the TCPoIB (TCP
over InfiniBand) protocol extension. Transmitted datasets were 1 Gigabyte in size,
consisting of individual 512x512 pixel images at 8 bit color depth, resulting in 265
Kilobyte blocks each.a

a Source: Own Publication [Dri14]

The results of the 32 Gbps TCPoIB InfiniBand adapter measurements are
shown in the solid bars and line in figure 4.9.

In comparison, previous measurements of the performances of a native In-
finiBand connection, using the KIRO library, strongly indicated that such a
channel should be able to meet the required latency constraints. (Though the
available 32 Gbps InfiniBand adapter would not be able to provide the required
64 Gbps throughput even under ideal circumstances. This problem could only
be solved by a hardware upgrade.) In order to implement such a native Infini-
Band channel into the TANGO ecosystem, we first had to identify on which
layer of the CORBA/OmniORB stack the implementation should be made. As
seen in figure 4.8, there are three potential layers to which InfiniBand sup-
port could be added.

103



4 KIRO: An RDMA programming library

Implementation Considerations

When implementing the InfiniBand/KIRO side-channel, we aimed to be as
lightweight as possible with the implementation. It would have been, in prin-
ciple, possible to add full InfiniBand support to either TANGO or its underly-
ing CORBA/OmniORB implementation. However, this would have forced us
to operate a separate personal code-base to the official TANGO project that
we would have needed to continuously maintain and merge with any official
upstream changes made by the TANGO consortium. We could also have con-
tributed the implementation to the official TANGO main-line source tree, but
the effort was deemed inappropriately large for the scope of the UFO project
at that time.
However, there was another option of a piece of software that was already
completely custom built for the UFO project: the software used to control the
UFO camera through the TANGO control system.

To control the high-speed cameras used by the UFO project, a software had
been created that aims to unify the separate driver interfaces of the cameras
into a single high-level interface. The software is called libUCA (Unified Cam-
era Control). It provides a plugin mechanism through which multiple differ-
ing driver standards for the separate cameras can be loaded and libUCAwraps
these plugins into a unified interface to the rest of the UFO framework.
To control the cameras through the TANGO control system, libUCA and an
appropriate OmniORB implementation had been created. The camera-facing
part of this pattern (UCA Device) is run on the camera-PC and receives in-
structions from the TANGO network. The user-facing part (UCA Camera)
takes instructions from the user and relays them through the TANGO net-
work to the UCA Device, returning resulting data and camera frames. This
schema is illustrated in figure 4.10.

As explained earlier in this section, we want to extend the pre-existing
software infrastructure with a native InfiniBand channel to transport cam-
era frames. To this end, we extended both UCA implementations for the
camera-PC and the user-facing side with a KIRO server and a KIRO client
module respectively. When the libUCA layer of the camera-PC UCA Device

104



4.3 Case Study: High-speed RDMA side-channel for control systems

Figure 4.10: Schematic of the software stack for remote control of an UFO camera, using libUCA
for both camera control and remote interface abstraction. TANGO is used to trans-
port all of the camera’s data and frames.

Figure 4.11: Schematic of the software stack for remote control of an UFO camera, using libUCA
for both camera control and remote interface abstraction. TANGO is used to trans-
port all of the camera’s registers. While a KIRO Server and Client component has
been added to the respective sides of the control to provide a native InfiniBand side
channel. All recorded camera frames are transferred through the side channel and
are transparently fed back into libUCA on the user-facing UCA Camera layer.

implementation collects frames from the camera, it no longer stores them in
a separate internal buffer, but instead pushes them into a newly added KIRO
Transmittable Ring Buffer. This ring buffer is getting served to a connected
InfiniBand network by the KIRO Server module added to the UCA Device.
On the user-facing side, the UCA Camera implementation adds its own KIRO

105



4 KIRO: An RDMA programming library

Transmittable Ring Buffer. When libUCA wants to serve a camera frame to
the user, it no longer requests the frame through the TANGO network, but
instead takes the newest available frame from the newly added ring buffer.
To keep the two ring buffers synchronized, the user-facing UCA Camera
software uses a KIRO Client module to connect to the respective KIRO Server
of the UCA Device on the camera-PC. The buffer is then continuously syn-
chronizes from the server to the client using native InfiniBand RDMA data
transfer. To connect the KIRO Server and KIRO Client of the UCA Device
and UCA Camera with each other, both module’s OmniORB implementations
were extended with a new data field that stores the required KIRO addresses
to setup the connections. This extended schema is illustrated in figure 4.11.

4.3.3 Side-Channel Benchmarks and Results

In this chappter, I demonstrated the possibility to augment a traditional slow-
control environment, based on Ethernet, with an additional native high-per-
formance InfiniBand data link, using the KIRO programming library. The
approach was deliberately chosen in order to keep the necessary software
changes at a minimum, while still providing the full benefit of the high-speed
channel for camera data transfer. The conventional control schemes from the
previous control system were kept fully in tact.
The resulting architecture shown in figure 4.11. In this way, it is possible to
control a remote UCA camera through a TANGO network as if it was a lo-
cally attached camera. While the time-critical transfer of camera frames runs
through an InfiniBand side channel that is transparent to the users. This ap-
proach is not limited to any specific form of detector and can be extended
and exchanged for other types of readout hardware. Furthermore, as long
as readout data from the detector is first stored in any form of PC main sys-
tem memory, a similar architecture can be developed which picks up the data
from system memory independently of the readout mechanisms and software
libraries. Data can be integrated back into the rest of the data chain down the
line by a symmetrical piece of software on the user-facing end of the chain.
In the demonstrated case, we were able to achieve a “close-to-native” perfor-
mance of the InfiniBand channel, with 30 Gbps throughput out of an indicated

106



4.3 Case Study: High-speed RDMA side-channel for control systems

adapter bandwidth of 32 Gbps. Latencies ranged between 5 and 8 𝜇s for each
265 kilobyte package. This package size was deliberately chosen, as it rep-
resents the expected data size of a single camera image, when operating in
full 5000 frames per second mode, with image sizes of 512x512 pixels at 8 bit
color depth. The native channel could be shown to clearly outperform a net-
work based on InfiniBand, running a TCPoIB protocol extension. Measured
latencies were sufficient to fulfill the 200 𝜇s constraint for 5000 frames per
second operation. However, the maximum data throughput of the camera, at
64 Gbps, was not able to be accommodated. Results are shown in figure 4.12.

Figure 4.12: Shown are the measurement results of the throughput and latency ranges for 32
Gbps native InfiniBand link and a 32 Gbps InfiniBand link, transporting TCP via
the TCPoIB (TCP over InfiniBand) protocol extension. Transmitted datasets were 1
Gigabyte in size, consisting of individual 512x512 pixel images at 8 bit color depth,
resulting in 265 Kilobyte blocks each.a

a Source: Own Publication [Dri14]

The available network adapter would not have been able to provide the
required 64 Gbps throughput even under ideal circumstances. It was ex-
pected that technology extrapolation and the implications of Moore’s Law
would eventually lead to fast enough single-component commodity adapter
that will be able to provide the required throughput. Indeed, at the time of
writing, InfiniBand adapters with 100 Gbps bandwidth are readily available.

107



4 KIRO: An RDMA programming library

It remains unclear if these advancements would have been able to properly
outpace any potential increase in data rate from further improved detector
equipment.
However, the fact that newer generations of InfiniBand equipment with
higher key performance metrics did become available, and could potentially
be used as full drop-in replacements of the old adapters with no additional
requirements for software updates, provides support to the validity of the
initial claim of this work. As discussed in chapter 1 of this thesis, the qual-
ity of commodity hardware to eventually become available with increased
performance, while retaining full backwards compatibility, is one of the
core concepts driving the decision to build DAQ specifically from such
commodity components.

The results of this work have been published in the proceedings of the Per-
sonal Computing and Particle Accelerator Conference (PCaPAC) 2014 and can
be found in [Dri14].

108



5 Low-Latency GPU computing
system for commodity DAQ

In the previous chapters we selected and introduced key technologies for
building high-performance commodity DAQ systems. With the help of those
technologies, we nowwant to create a system that combines them into a high-
performance computing node with lowest possible systemic latencies.
To provide a reference point for the performance of the resulting system, we
are going to implement part of the new Level-1 Track Trigger concepts for
the Compact Muon Solenoid (CMS) detector at the Large Hadron Collider
(LHC). Specifically, we will implement the track-finding algorithm, based on
a Hough-Transformation, using the GPGPU computing capabilities provided
by our system.

5.1 System Design

To illustrate the performance potential of the commodity DAQ concept, we
aim to build a demonstrator system that operates at lowest possible systemic
latencies while providing high general purpose computing performance.
In accordance to the results presented in earlier chapters of this thesis, the
chosen key technologies for this goal are (R)DMA capable interconnects and
networks, multi- andmany-core computing (specifically GPU computing) and
FPGAs. From these, we aim to assemble a general purpose system that fits
the DAQ blueprint shown in chapter 2, figure 2.1. This requires the following
components:

109



5 Low-Latency GPU computing system for commodity DAQ

• A sampling stage that reads data from the source and converts the
data into the digital domain

• A data concentrator that receives, arranges and distributes the data
from the sampling stage onto the available computing stages

• A computing system that receives data from the concentrator and
processes the data according to the chosen algorithms

• A feedback loop that allows the computing stage or the concentrator
to communicate directly with previous stages in order to influence
data generation

• At least one type of interconnect in order to connect the
aforementioned components to each other

First, we require a sampling stage. The task of this stage is to sample signals
from the source and convert them into the digital domain. Unfortunately, this
can not easily be provided as a generalized commodity component. Especially
for highly advanced experiments, the front-end electronics and sensors for
detectors vary drastically in design and purpose. Thismakes it difficult or even
impossible to generalize their respective requirements. However, we can at
least stipulate that whatever solutions may get chosen for the sampling stage
should provide their data output through a commodity interconnect system,
such as Ethernet, InfiniBand or PCIe. This guarantees that readout data can be
ingested into the remainder of the commodity DAQ chain as early as possible.

Next, we are interested in the data concentrator. The purpose of this sys-
tem will be to receive the sampled datasets and distribute them across the
following DAQ stages. Depending on the detector and general experimental
setup, a concentrator stage might need to aggregate readout data over time
and frommultiple subsystems. The layout of a concentrator is therefore heav-
ily dependent on the measurement methodology and the data rates of the ex-
periment. For example, system such as the CMS feature a large number of
separate subsystems with thousands of individual readout channels. In such
cases, a concentrator stage will need to be designed in the form of a mesh of
multiple devices, in order to provide and operate an adequate amount of data
transceivers.

110



5.1 System Design

Assuming the task of most concentrators is primarily to order and re-arrange
data, an FPGA based solution is preferred, when aiming to operate at lowest
possible latencies. PC systems arrange data in regularly sized chunks (today’s
system use mostly 64 bit words) and rely on external memory modules (RAM)
to hold data, which are heavily optimized for sequential access. While FPGAs
can be programmed and optimized to operate on arbitrarily sized chunks of
data entirely in internal logic pipelines, removing the overheads associated
with external memory module communications. Furthermore, FPGAs are
well-suited for the integration of multiple data transceiver standards, both
for inbound and outbound data streams and can thus easily serve as “trans-
lators” between proprietary readout data formats and commodity standard
data communication interfaces.

One of the core components of the commodity DAQ concept are high-perfor-
mance low-latency computing systems. To this end, we have chosen to use
GPGPU computing. As shown in chapter 3, using DMA data transfer in con-
junction with GPU computing opens up the possibility of providing the high
computing performance of GPUs to a distributed system at lowest systemic
communication latencies. This introduces a requirement for at least one PC
host system into our DAQ design, featuring a PCIe bus, to which the required
GPUs can be attached. The CPU of that PC is tasked with the configuration
and control of its GPUs. As well as setting up the required (R)DMA communi-
cation channels prior to operation. The resulting PC system can be considered
as a general purpose computing node. Data can be provided to such a node
through a common network, such a InfiniBand, or directly from the concen-
trator stage through PCIe integration.
Depending on the required computing performance for a DAQ system, such
a computing node could be replicated multiple times onto the same network.
However, keep in mind that this will again introduce general scalability con-
cerns to such a distributed system, as they have been mentioned in chapter
2.2.2 “Scalability of data access”. Generally speaking, any distributed system
design should always aim to keep the amount of intermediary memories on
any given data path to a minimum, while simultaneously choosing the fastest
available interconnect technologies with lowest systemic transfer latencies.

111



5 Low-Latency GPU computing system for commodity DAQ

Furthermore, our system should also be capable of implementing feedback
loops. Generally speaking, a feedback loop is formed whenever any stage
of the DAQ system possesses the capability to communicate with any of the
previous stages of the processing chain. In many cases, such a feedback loop
benefits from the same considerations as those of general data communica-
tion of the DAQ as a whole. Assuming data communication between DAQ
stages is built on top of a general purpose network, and no stages communi-
cate with each other in any capacity other than that network, feedback loops
can be formed freely, so long as the chosen type of communication on the net-
work is bi-directional. This leads directly to the considerations of the chose
interconnects. For intra-system communication, we did already establish
PCIe as the chosen standard, as it is almost universally used by GPUs and
most network adapters. For network communication, we rely on the results
of chapter 2.1.2 and suggest an RDMA capable standard, such as InfiniBand
or Ethernet with RoCE support.

5.2 GPGPU Specific latency optimization

Outside of the general design considerations, we have applied further opti-
mizations to the overall systemic latencies of the GPU computing nodes, based
on intrinsic properties of the GPGPU concept.

Spinning Kernel and CUDA Framework

GPU computing execution is organized into small executables that are loaded
onto the GPU and get executed on it’s processors. These executables are com-
monly called Kernels. The pre-loading and transfer of a kernel to the GPU is
managed by it’s driver, and therefore is running as software on the system’s
CPU. Loading and launching a kernel to GPU incurs overheads in the range
of 20–50 𝜇𝑠. To reduce these overheads, we design our kernel in such a way,
that it can be pre-loaded and executed on the GPU and will stay in continuous
operation. It runs in a tight loop, in which it polls GPU memory for a “Start
Flag”, before beginning operation, and then returns to this polling stage, once

112



5.2 GPGPU Specific latency optimization

the dataset has been processed, waiting for new data to arrive. By doing this,
we push the kernel launch delay out into a pre-preparation step, that can be
performed before measurements even start. However, we identified a short-
coming of this method.
GPUmemory is also equippedwithmultiple layers of caches. When accessing
the same region ofmemory in a loop in order to observe the start flag, the GPU
will continuously read “stale” data from the memory cache, unless the cache
somehow gets flagged to be flushed and renewed. Inmost computing systems,
there exist specific instructions in order to flush a cache. Unfortunately, in the
case of GPU computing, there exists no such instruction in the OpenCL com-
puting framework. However, it is possible to instruct Nvidia GPUs to flush
their caches, using their vendor-specific CUDA framework. This limits us to
only being able to use Nvidia-brand GPUs and their respective CUDA soft-
ware framework.

GPU Process Control and Data Exchange

Once the spinning kernel has been launched on the GPU, we need to im-
plement some mechanism that is capable of detecting when the GPU has
finished processing of the current dataset, and when it is ready to receive new
data to process. The same is true for the process of retrieving computation
results from GPU memory.
In conventional DMA communication, most of these operations are per-
formed by software running on the CPU. Such software could, for example,
continuously poll and monitor appropriate flags in GPU memory to manage
data exchange or rely on communication primitives provided by the GPU
programming framework. However, doing so would inevitably introduce
multiple additional memory layers to the data path, as the data being pro-
cessed by the software being executed by the CPU needs to traverse CPU
memory caches and system main memory before it can be accessed. To pre-
vent this, we aim to control the signalling and exchange of data exclusively
from within the active GPU kernel.
This introduces the challenge of needing to exchange DMA descriptors be-
tween communication peers. Into which memory location on a peer these

113



5 Low-Latency GPU computing system for commodity DAQ

descriptors need to be written and how these descriptors need to be struc-
tured is highly dependent on the specific device and is normally handled by
the device driver, running on the CPU. As we want to avoid communication
between the GPU kernel and software running on CPU as much as possible,
this means the GPU has no means of knowing when it is safe to communicate
with its peer. Furthermore, it would require us to re-implement at least parts
of the device driver logic in GPU.
To bypass these issues, we have instead opted to use a “High-Flex” FPGADAQ
platform, as introduced in chapter 3 of this thesis, as our means to exchange
data. Since we have full control over the functionality of the FPGA, we can
know its exact communication specifications and use those to program the
GPU spinning kernel to communicate directly with the FPGA, using DMA
on the FPGA’s exposed user bank registers. This allowed us to keep device
specific “driver” implementation inside the GPU to a minimum, since we
were able to implement simple control patterns on the FPGA as we needed
them.
Memory on the GPU gets reserved and pinned during the process initial-
ization and the resulting descriptors are passed to the High-Flex board, so
it can write data directly to GPU memory. In the same way, the address of
the BAR of the High-Flex board is passed to the GPU kernel, so the GPU can
write process control information to the boards registers. After this setup,
the High-Flex board and the GPU can then communicate with each other
directly, using DMA, without any further required assistance by software
running on the CPU. This cuts out all of the CPU-side memory hierarchies
from the system’s critical data path.

The resulting system is shown in picture 5.1

GPU Memory Optimization

As discussed in chapter 2 of this thesis, the memory hierarchies of computing
systems play an important role in the overall processing latencies of a sys-
tem. In the case of GPGPU computing, the most important memory layers

114



5.2 GPGPU Specific latency optimization

Figure 5.1: A PC setup featuring all the required components to realize a computing node as
described in chapter 6.1.1.
The system features a GPU, a High-Flex FPGA board and an InfiniBand network
adapter. All components communicate exclusively via DMA on the PCIe bus.

are register memory, shared memory and global memory. When designing any
GPGPU algorithm, these criteria should be kept in mind:

• Global Memory: While global memory is the most abundant one, it
is conventionally also the one with the slowest access times. However,
when using GPU RDMA to transfer data into a GPU, there is no other
choice for initial data transfer than to target global memory. Once
data arrives in global memory, it needs to traverse GPU memory
caches and can then be loaded into shared or register memory for
further processing. The same is true for the opposite direction.
Register and shared memory must first be written back into global
memory, before then can be accessed via (R)DMA.
There is a benefit to global memory, though, due to its large size. In
many cases, it can be possible to transfer multiple datasets into main
memory at once or in parallel to any ongoing computing process.
When done ideally, this may enable a process to “mask” parts of, or

115



5 Low-Latency GPU computing system for commodity DAQ

even the entire data transfer behind ongoing computing, in cases
where multiple datasets get processed in sequence. This concept is
commonly known as Pipelining.

• Shared Memory: Each of the Streaming Multiprocessors (SM) of a
GPU is equipped with fast local memory, called shared memory. In
some cases, this memory coincides with one of the cache layers of
global memory. Any data structures that get accessed frequently
should ideally be placed into shared memory to reduce access times.
Due to its limited size, it is sometimes necessary to swap shared
memory contents with other data from global memory.

• Register Memory: Registers are essentially the working-memory of
any processor’s Arithmetic Logic Unit (ALU). Almost all operations
take operands from, and store results into registers. Also, data that
gets fetched from higher memory layers must traverse register
memory at some point, as the processor is the intermediary of most
memory transfers. Especially for loops, these circumstances can
provide optimization potential when arrays and operands can be pre-
fetched into register memory. However, register memory is severely
limited to just a few hundred datawords on most GPUs, making it
difficult to fully utilize.

Note: Optimizing algorithms for memory locality is a challenging
task that requires intimate knowledge of processor systems and com-
puting systems. These concerns are not exclusive to GPUs, but apply
to most computing systems. The presented hierarchy optimizations
and considerations only scratch the surface of available techniques.
Further detailed considerations are, however, out of the scope of this
work. A detailed review of GPU architectures and related optimiza-
tions can be found in [Chi20].

116



5.3 Case Study: Low Latency Trigger

5.3 Case Study: Low Latency Trigger

To investigate and illustrate the performance of the described DAQ systems,
we aim to implement part of a track-trigger for the Compact Muon Solenoid
(CMS) experiment. The DAQ requirements of the CMS after its Phase-2 up-
grade ([And17]) are assumed to be among the most challenging DAQ require-
ments to date. Comparing the performance of the described commodity DAQ
system against these requirement provides a suitable quantitative measure for
the feasibility of the commodity DAQ concept as a whole.

5.3.1 The CMS and its L1-Track Trigger

The Large Hadron Collider (LHC) is a large particle collider at the European
Organization for Nuclear Research (CERN). It is designed to accelerate and
collide proton and heavy ion beams, currently reaching energies of up to
6.5 TeV (13 TeV total collision energy). The resulting collisions are observed
by seven independent detectors, arranged around four beam crossing points,
with each detector aiming to observe different phenomena. Their aim is to
experimentally test and verify predictions from the field of particle physics,
as well as potentially discovering new physics. The experiments conducted at
the LHC are currently best know for the first experimental verification of the
existence of a particle consistent with a prediction made from the standard
model of physics: the Higgs Boson [ATL12][CMS12]

One of the detectors at the LHC is the Compact Muon Solenoid (CMS), shown
in figure 5.2. It is a cylindrical, multi-layered general-purpose detector, which
is equipped with a strong electromagnet (a solenoid) that produces a 3.8 Tesla
magnetic field. The magnet is used to bend the trajectory of the particles
created upon collision, in order to derive momentum and energy information
from observing the curvature of their trajectories. The higher the energy of a
particle, the less its trajectory will be bent by themagnetic field, and inversely,
the lower the energy of a particle, the more its trajectory will be bent.

The innermost layer of the CMS, Layer 1, is the so-called tracker. It is itself
comprised of multiple layeres of silicon sensors which detect the positions of

117



5 Low-Latency GPU computing system for commodity DAQ

Figure 5.2: A cutaway diagram and scale model of the CMS. Illustrated and labeled are the dif-
ferent detector layers around the beam crossing point in the center of the detector. b

b By Tai Sakuma, CERN, licensed under CC BY-SA 4.0 (https://creativecommons.org/licenses/by-
sa/4.0/). The work is being used unaltered.

electrons, muons and hadrons with high precision. There are 14 tracker lay-
ers in total, with the endcaps being equipped with an additional 15th layer.
The silicon sensors on the four tracker layers closest to the impact point are
designed as high-precision pixel sensors, while the remaining layers are de-
signed as microstrip sensors. By measuring the trajectory of a particle across
the individual tracker layers, it is possible to derive its momentum, when tak-
ing the magnetic field of the solenoid into account. The information provided
by the tracker will be used extensively for the functionality of the track trig-
ger demonstrated in this chapter.

The individual detector layers and modules of the CMS are read out through
millions of individual data channels that get aggregated into separate events

118

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/


5.3 Case Study: Low Latency Trigger

of roughly 1 Megabyte in size each. Due to the rarity of the events the CMS
aims to observe, the experiment needs to be operated at a very high event rate
of 40 MHz. At 2 Megabytes raw data size per event this results in a raw data
rate of approximately 80 Terabits per second. As explained in the introduction
of this thesis, storing a data stream of that size under continuous operation
is technically unfeasible. Because of this, the CMS experiment implements a
trigger system ([CMS17]) which aims to discard any dataset which does not
contain any events of interest before full readout and storage occurs. With the
application of this trigger, the acceptance rate of the experiment is reduced
down from 40 MHz to roughly 100 kHz, resulting in approximately 200 Giga-
bits per second output data rate.
The full trigger system is separated into two distinct steps. A Level 1 Trigger
(L1T), and a High Level Trigger (HLT). The L1T makes a decision to discard or
keep the date from a colission event, based on partial information provided
from the calorimeters and muon chambers of the detector. Due to the length
of the readout pipeline of the entire CMS, the L1T needs to provide its trig-
ger decision within 3.5 𝜇s of the collision occuring. Due to this very tight
constraint, the current L1T systems and algorithms are developed entirely in
dedicated hardware, such as FPGAs and ASICs. [Jei14]

After the Phase-2 upgrade, increased collision rates would lead to an increase
in acceptance rate of the trigger. To keep the readout data rate at a man-
ageable level without loss of efficiency of the observation, the trigger system
needs to be upgraded in order to handle the increased pile-ups (PU). Multiple
strategies have been proposed. Among these strategies is the introduction of
an L1 Track Trigger, which would process, for the first time, data from the
silicon tracker subsystem of the CMS.
The strategy follows the idea of using tracker information to calculate “Track
Candidates”. These informations can then further be used to increase the ef-
fectiveness of the trigger decisions of the Muon and Calorimeter triggers, by
adding additional discriminatory information.
In order to accommodate the additional latency introduced by this system,
the CMS project aims to increase the pipeline, and therefore the timing con-
straint, to 12.5 𝜇s. Of which 5 𝜇s are intended for the track trigger (1 𝜇s for
data transfer and 4 𝜇s for computing). Together with the 3.5 𝜇s for the Muon

119



5 Low-Latency GPU computing system for commodity DAQ

and Calorimeter trigger latencies, and 1 𝜇s to relay the global trigger informa-
tion to the readout electronics of the CMS, this sums up to 9.5 𝜇s. Onto this,
roughly 30% of safety margin are applied, to arrive at the aforementioned
12.5 𝜇s total trigger latency.

Therefore, the timing constraint that we will compare our commodity DAQ sys-
tem against will be the 5 𝜇s allotted to the track trigger stage. As these times
include data transfer, the goal for out system will be to transfer data from the
concentrator stage to the computing stage and perform one iteration of the
chosen track trigger algorithm on GPU within the given 5 𝜇s.

The function of the L1-Track-Trigger

The task of the L1-Track-Trigger is to analyze the data received from the CMS
tracker and try to ascertain the presence of particles above a certain threshold
energ. This is done by reconstructing particle trajectories through the tracker
(we call these tracks) and derive information about the particle’s energies from
the track’s curvature.
As mentioned in the introduction to CMS, one of the deciding features of the
experiment is a strong magnetic field that influences the trajectories of the
particles generated upon impact. A particle’s trajectory through the detector
will be affected by the magnetic field and become curved in accordance to
its velocity away from the beam-crossing and the strength of the magnetic
field. In the context of the CMS experiment, this velocity is described as the
“Transverse Momentum” of a particle, denoted as 𝑝𝑇 . In particular, the CMS
experiment is interested in finding particles above a specific 𝑝𝑇 threshold of
2–3 𝐺𝑒𝑉/𝑐 (configurable). The data provided by the tracker to the track trig-
ger is a list of the coordinates of detected particle hits, in reference to the
detector geometry.

The tracker will be upgraded with new modules that can perform transverse
momentum pre-filtering. This is done by putting two layers of pixel and/or
strips in close proximity to each other and comparing the hit locations on
both layers. When a hit is registered on the lower layer of the module, it gen-
erates an expected “window” for a subsequent hit on the layer above. The

120



5.3 Case Study: Low Latency Trigger

size of this window controls the maximum permissible curvature of a parti-
cle track that is considered to be high-𝑝𝑇 . If another hit is registered within
that window, a “stub” is created and will be passed on to the track trigger for
processing. Essentially, a stub holds the approximate location information of
the hits (limited by the sensor resolution) as well as the estimated 𝑝𝑇 of the
hit. This process is shown in figure 5.3

Figure 5.3: The upgraded CMS silicon tracker modules consist of double layers of either pixel-
strip or strip-strip modules in close proximity to each other. Informations from
neighboring layers are used in the formation of “stubs”, based on permissible tra-
jectory curvature. (a) shows the general concept of stub-building. The size of the
neighboring acceptance window regulates the lower bound for permissible trans-
verse momentum. Based on projection of tracks into further detector layers, the size
of the acceptance window needs to be adjusted accordingly for barrel layers (b) and
endcaps (c). a

a Source: [Agg17]. Licensed under CC BY 3.0 (https://creativecommons.org/licenses/by/3.0/).
The work is being used unaltered

This form of pre-filtering reduces the amount of data that needs to be pro-
cessed by the track trigger, but it is insufficient on its own when wanting to
derive an accurate curvature of a track. This is because the short track seg-
ments between two individual module layers will resemble something close to
a straight line. In order to derive the appropriate curvature radius 𝑅 of a track,
it is necessary to observer its trajectory over multiple detector layers in time.
However, since the tracker can only provide individual interaction points with

121

https://creativecommons.org/licenses/by/3.0/


5 Low-Latency GPU computing system for commodity DAQ

an estimated 𝑝𝑇 (stubs), a challenge arises from how those individual stubs
can be assembled and assigned to corresponding tracks. A visualization of
the process is shown in figure 5.4

Figure 5.4: The process of identifying tracks from stubs generated by the silicon tracker. Shown
is only a single segment of the detector. On the left, only stubs are known. After
the track finding process, tracks and their corresponding stubs have been identified,
shown on the right. At least 5 out of 6 layers need to participate to a track in order
to be considered.

In order to solve this track-finding challenge, multiple approaches have been
investigated. One approachmatches stubs against a pattern data-bank formed
from associativememory ([Ams17]). Another approach extrapolates potential
follow-up stubs in outer tracker layers from the approximated 𝑝𝑇 of a stub
to form “Tracklets” ([Bar17]). These approaches leverage the separation into
individual tracker layers and assemble an appropriate computing architecture.
They operate on both, the predictions made by the previous layer, as well as
their resepctive layer’s hit information from the detector.

The proposed solution that we have selected as case study for the commodity
DAQ system does not require the separation into individual layers. Instead it
evaluates the complete set of stubs from an individual event as a whole (al-
beit split into multiple individual detector segments). This approach leverages
a Hough Transformation, which transforms the angular detector coordinate

122



5.3 Case Study: Low Latency Trigger

space of the stubs into a coordinate space in which certain geometric depen-
dencies are easier to recognize ([Ams16]).

5.3.2 Track-Finding based on a Hough-Transformation

A Hough Transformation is a well-understood method of feature extraction in
image processing systems. The method works by transforming conventional
image features into a specific parameter-space in which certain features are
more easily identified and distinguished. In particular, the transformation
chosen for the L1 Track Trigger is interested in identifying circular features,
as the tracks formed by particles in the detectors magnetic field describe helix
paths, which project into circular paths when viewing them along the beam
axis. The exact transformation is described in [Ams16]. The principal opera-
tion of the algorithm is centered around the concept, that the parameters of
the helix paths can be sufficiently described by just two parameters. These two
parameters are the production angle at the origin/the beam crossing (Φ) and
a radius of the curvature of the path (𝑅) which correlates to a transverse mo-
mentum (𝑝𝑇 ) of the respective particle. The algorithm processes two points:
an origin and the location of a stub in normalized detector coordinates. The
coordinate normalization transforms absolute detector coordinates into co-
ordinates relative to a specific pivot point of each detector segment. This
makes it so the value ranges of all coordinates of each segment are identi-
cal and therefore simplifies algorithm design. From these two coordinates
(pivot point and stub location) an infinite amount of potential circle param-
eters emerge that cross both of these points. All potential circle parameters
are noted down in a so-called “Hough-Map” that is parametrized by the two
valuesΦ and 𝑝𝑇 , in which the given circle parameters will form straight lines.
Due to limitations in the precision of stub locations (caused by the pitch of the
pixels and strips) the Hough-Map is inherently separated into discrete bins.
The size of these bins is actually an important parameter for the algorithm as
it has direct impacts on the memory footprint of the map in device-memory,
its runtime and most importantly, on the precision of the derived information.
A simplified visualization of the process is shown in figure 5.5.

123



5 Low-Latency GPU computing system for commodity DAQ

Figure 5.5: Left: Two points in regular space (origin and stub location) can be described by
an infinite number of possible circles that will cross both points. Right: All of the
possible circle parameters form a straight line in Hough parameter space, describing
the angle of incident at the origin and the curvature of the circle. Note, that this
graph is not drawn to scale. Axes have no meaningful units, as this graph was made
purely to visualize the conceptual process of the transformation. a

a Graph courtesy of Hannes Mohr.

After all stubs have been processed, the corresponding lines in Hough param-
eter space will form intersections. These intersections abstractly describe sets
of circular path parameters that are compatible withmultiple individual stubs.
In places where there are intersection clusters that are formed from stubs from
at least 5 out of the 6 separate tracker layers, the corresponding set of circular
path parameters is considered to be a track candidate. The algorithm gathers
these track candidates and passes them on to the next trigger stage.
So the task of the algorithm is to find sets of stubs that most likely belong to
one consistent track through the tracker layers, derive their momentum in-
formation and pass on a list of all identified tracks with their respective stubs
and parameters to the global trigger system. From there, the derived infor-
mation will be used to increase the fidelity of the trigger decisions made by
the Calorimeter- and Muon-Trigger systems.

124



5.3 Case Study: Low Latency Trigger

5.3.3 Hexagonal Hough Space

A common side effect of the way the chosen Hough Transformation is target-
ing a rectangular parameter-space, due to its evenly spaced binning in both
dimensions, is the creation of so-called Fake Track Candidates. Due to the bin-
ning, the lines generated by the Hough Transformation will effectively cause
“aliasing” when the transformed line is binned/rasterized into the hough map.
This aliasing causes some neighboring cells to be voted into, even though a
line only barely intersects with the cell. As a result, especially in areas where
many lines intersect, clusters will often “bleed” into neighboring cells, giv-
ing them enough votes to be considered viable candidates, when in reality,
they are merely an artifact of the parameter uncertainties of the Hough Space
binning. Figure 5.6 shows an example dataset rasterized into a conventional
rectangular Hough parameter space. It can clearly be seen how lines of similar
slope close together will form many fake intersections, due to the aforemen-
tioned cell bleeding.

In order to alleviate some of these shortcomings, we developed amodified ver-
sion of theHoughTransformation that leverages the floating-point computing
capabilities of GPUs by transforming stubs not into a regularly spaced rectan-
gular parameter space, but instead into a more complex hexagonal paramter
space (See [Moh17]).
In a hexagonal parameter space, the resulting Hough-transformed lines can
more accurately be represented. Furthermore, neighboring cells in the hexag-
onal space are equidistant to their respective centers, unlike in rectangular
space, where their distances vary based on arrangement. At the same time,
each hexagonal cell only has 6 distinct neighbors, compared to 8 neighbors in a
rectangular grid, which reduces the worst-case cluster sizes. This leads to less
cell bleeding while rasterizing a line into the hexagonal parameter space and
thus forms less fake track candidates. The difference is shown in figure 5.7.

125



5 Low-Latency GPU computing system for commodity DAQ

Figure 5.6: Shown is a Hough Transformation of the stub information of a single detector seg-
ment, from an exemplary event with a pileup of 140. In this case, some lines of sim-
ilar slope rendered close to each other, causing many fake clusters from the aliasing
caused by rasterizing the lines into the rectangular Hough parameter space. a

a Graph courtesy of Hannes Mohr.

5.3.4 Implementation details of the Track Trigger

As the primary active component of this test system, we will be using a 2013
Nvidia Tesla K40c GPU. It is a “professional grade” GPU that is primarily in-
tended for computing tasks, rather than video processing, and was one of the
first generations of Nvidia GPUs that fully supported GPUDirect GPU RDMA.
It features 2880 computing cores, arranged over 15 Streaming Multiprocessors
(SMX) operated at a 745 MHz clock rate, and is being promoted by Nvidia
as reaching peak performances of roughly 5 TFlops/s at 32 bit Floating Point
precision. It is equipped with 12 GB of GDDR5 memory.

126



5.3 Case Study: Low Latency Trigger

Figure 5.7: Comparison of hexagonal (left) and rectangular (right) parameter space of a Hough
transformation. The hexagonal parameter space more accurately represents lines
and leads to formation of tighter clusters, which reduces “bleed over” of clusters into
neighboring cells. a

a Graph courtesy of Hannes Mohr.

In our specific case, we have a High-Flex FPGA platform connected on the
same PCIe bus as the GPU. As described earlier in this chapter, we chose this
option over using a conventional network adapter to optimize system com-
plexity in regards to process control. Because we have this FPGA platform
available, we imagine it could also double as part of the data concentrator
subsystem. Regardless whether the FPGA will be part of the concentrator
subsystem or serve merely as communication device with the rest of the net-
work, it will in both cases be the entry point into the computing node that
provides fully assembled datasets to the GPU. For the demonstrator setup, we
havemanually selected a number of test datasets, exported from the CMS sim-
ulation software suite ([Ban12]) and pre-loaded those datasets into the FPGAs
internal memory. For our tests there is no conceptual difference between data

127



5 Low-Latency GPU computing system for commodity DAQ

arriving from an external source or being already stored on the FPGA. This
step is merely meant to reduce the complexity of the test system.

Overall, this results in a hypothetical DAQ system that conceptually sees the
CMS software as the data source, the manual selection of test-datasets as sam-
pling, the FPGA as concentrator, and the GPU as computing node. An over-
view over this system is shown in figure 5.9

GPU memory requirements and considerations

Asmentioned in the discussion about GPGPU computing in chapter 2.2 of this
thesis, a major aspect towards reducing computational runtime is the use of
fastest available memories. For this, we need to be aware of the amount of
storage our processing task will require.
In the case of our Hough transformation, we needed to consider two main as-
pects. The storage for the received stub information, as well as the storage for
the Hough-map. We assumed an estimate of 160 stubs being generated per
sector of the CMS detector, per event. Stubs are transferred in a compressed
data format of 48 bit per stub. As the GPU we are using can only operate on
data-words of 32 or 64 bit alignment, we decompress stub information into
two 32 bit words. Giving us 160 x 2 x 32 bit = 10240 bits = 1280 bytes of stor-
age for the input data of a single event.
We structure the storage for the resulting Hough-map as fallows: The largest
size of map we support is 32 by 32 bins. Each bin needs to keep track of the
individual stubs that might contribute into the cell after transformation. We
arbitrarily assume a cell to never have more than 30 individual stubs con-
tribute to it. To keep track of contributing stubs, we provide an array of 30
individual 32 bit words per cell. Furthermore, we add an additional 32 bit word
to each cell to keep track of participating detector layers. One additional 32
bit word is added as a counter for the amount of participating stubs. This is
so we can keep consistent runtime and do not need to count the resulting list
of individual contributing stubs per each cell afterwards. Instead, we have
the stub count readily available after processing. As a result, our Hough-map
requires (2 + 30) × 32 × 32 × 32 bit = 1048576 bit = 131072 bytes of memory.

128



5.3 Case Study: Low Latency Trigger

Neither the data for the stubs, nor the Hough-map can fit into register mem-
ory. Unfortunately, as the Tesla k40c that we used only offers 48 kilobytes of
sharedmemory per thread block, the Hough-map does not fit into share mem-
ory either. The remaining memory would be main GPU memory. However,
latency tests that we performed indicated main GPU memory access times to
be in the magnitude of 300 clock cycles. At the GPUs clock frequency of 745
MHz, this worked out to be around 0.4 𝜇𝑠 per non-sequential access. We expect
multiple memory accesses per stub, which disqualifies GPUmain memory due
to its excessive access latencies.
We are therefore forced to separate the map into its individual 32 rows or
columns and distribute the processing across 32 individual thread blocks. This
is possible due to the “embarrassingly parallel” nature of the chosen Hough-
transformation that is entirely independent on any outside parameters other
than the raw stub input data. However, since the k40c only offers a total of
2880 threads, this means we can only process 2880 ÷ 32 = 90 stubs per GPU
per event in parallel. On a more positive side, this separation only requires
us to use (2 + 30) × 32 × 32 bit = 32768 bit = 4096 bytes of shared memory per
thread block. Meaning, it is possible to copy the entirety of the 160 stub input
event data into shared memory alongside the individual Hough-map section,
per thread block. This allows us to work almost exclusively in shared mem-
ory, at the cost of the significantly reduced throughput of the limited number
of available threads per block.

Masking Data Transfer by Pipelining

Since preliminary testing results showed that the computing time exceeds the
average data transfer time by about a factor of 2, and enough main graphics
memory is available to holdmultiple input datasets at once, we can implement
a pipeline schema for our work execution. In a pipeline, we leverage the fact
that data transfer into GPUmemory can be performed in parallel to execution
of a GPU kernel. This means, in cases where data can be provided fast enough
by the sampling electronics, we can already start transferring the 𝑛+1 dataset
into GPUmemory, while dataset 𝑛 is still being processed. In this case, we can
perform data transfer and computation in parallel, rather than having these

129



5 Low-Latency GPU computing system for commodity DAQ

steps be in sequence. Once the processing of the current dataset is complete,
the GPU can assume that data for the next dataset can already be found in
main memory. Therefore, the actual data transfer times only need to take
into consideration the time it needs for the GPU kernel to confirm that a new
dataset has indeed already arrived (polling).

The general execution order of our implementation, as well as a comparison
between the sequential and pipelined approaches is shown in figure 5.8.

Figure 5.8: The schema of execution-order for the commodity GPU-based track trigger. Left:
The conventional, linear execution order, in which data and computation are strictly
sequential. Right: A pipelined approach, in which data transfer for the next dataset
is “hidden” behind the computation time of the previous dataset and performed in
parallel to ongoing computation. a

a Taken from own work: [Moh17]

130



5.3 Case Study: Low Latency Trigger

Fi
gu

re
5.
9:

A
sc
he
m
ao

ft
he

co
m
m
od

ity
ha
rd
w
ar
eC

M
S
L1

Tr
ac
k
Tr
ig
ge
rt
es
ts
ys
te
m
.E

xp
er
im

en
td

at
ai
sg

en
er
at
ed

by
as

im
ul
at
io
n
so
ftw

ar
e

an
d
da
ta
se
ts
ar
em

an
ua
lly

ex
po

rte
d
an
d
pr
e-
lo
ad
ed

on
to

th
eF

PG
A
,w

hi
ch

eff
ec
tiv

el
y
se
rv
es

as
da
ta
co
nc
en
tra

to
r.
Th

ec
om

pu
tin

g
is
do

ne
a
by

a
Te
sla

K4
0c

GP
U
w
hi
ch

se
nd

sr
eq
ue
st
st
o
th
e
FP

GA
vi
a
D
M
A
to

re
ce
iv
e
th
e
ne
xt

da
ta
se
tt
o
pr
oc
es
s.

A
fte

rw
ar
ds
,

re
su
lts

ar
e
du

m
pe
d
on

to
th
e
ha
rd
dr
iv
e
an
d
co
m
pa
re
d
to

th
e
ex
pe
ct
ed

gr
ou

nd
-tr

ut
hs

of
th
e
te
st
da
ta
se
t.

131



5 Low-Latency GPU computing system for commodity DAQ

5.4 Results and Discussion

The results of the demonstration system show that computing and transfer
times of a fewmicroseconds are, in fact, achievable for GPGPU systems, when
using appropriate technologies and interconnects. Measured results are given
in table 5.1

Table 5.1: Execution times for the commodity trigger implementation. Shown are the results for
standard rectangular Hough Space implementation, both sequential and pipelined. As
well as the sequential hexagonal Hough Space implementation. All times given in 𝜇s.

Rectangular (Sequential) mean 𝜎 max
Polling and Transfer 1.96 ±0.02 2.01
Computation 3.73 ±0.13 4.19
Total 5.84 ±0.14 6.33
Rectangular (Pipelined) mean 𝜎 max
Polling 0.41 ±0.01 0.43
Computation 3.63 ±0.10 3.82
Total 4.17 ±0.07 4.37
Hexagonal (Sequential) mean 𝜎 max
Polling and Transfer 1.91 ±0.05 1.99
Computation 4.94 ±0.11 5.20
Total 7.07 ±0.12 7.40

We built the system in such a way that it uses exclusively DMA to move data
to and from the GPU. Transfer times were measured from within the GPU
and showed comparatively stable transfer times of 2 𝜇s for any dataset up to 8
kBytes. Data arrival was ascertained bymeans of reading a data flag fromGPU
main memory. This indicates that 2 𝜇s measurement is largely influenced by
the propagation of the flag to memory cache, rather than actual DMA transfer.
Furthermore, polling times for the pipelined approach, in which data will have
already arrived before checking the respective completion flag, show a highly
stable 0.4 𝜇s access time. This aligns with our preliminary measurements of
GPU main memory access requiring roughly 300 clock cycles.

132



5.4 Results and Discussion

Computation and GPU Kernel design were aggressively optimized for latency,
rather than throughput. This resulted in our system being able to reach com-
puting times as low as 4 𝜇s. But due to highly unfavourable thread-block
distribution and the limited amount of shared memory of the GPU, we were
unable to process all of the stubs of a single detector sector at once. This
would have forced us to split even single detector segments across multiple
GPUs, which would have added additional complexity and synchronization
overheads to the system. The dataset transferred is still represented as a full
dataset, for which we used simulated TTBar events of 140 and 200 Pileup (PU)
containing a top and antitiop quark pair. The total number of stubs transferred
was 160, which overestimates the actual number of stubs generated by such
events and pileups by roughly a factor of 2. However, due to the aforemen-
tioned limitations in memory layout and kernel design, we were only able to
process around 90 of these stubs in parallel. At the current expected CMS
detector segmentation of 9 × 32 sectors, this would have made it necessary
to use between 288 and 576 GPUs to process the data of the whole detector,
depending on pileup.
We still deem the presented results as valid, due to the fact that all stubs get
processed independently from each other in fully parallel fashion. This means
that themean computation time does not scale off the number of stubs in total,
but rather off the longest individual processing time for any given individual
stub. With regards to future generations of GPUs, we are hopeful that we
will see an increase in the amount of available shared memory and/or sig-
nificantly reduced GPU main memory access times, as well as an increase
in available parallel execution units that would make it possible to process a
higher number of stubs in parallel.

Note: The current design proposals for the detector segmentation of
CMS introduces necessary overlaps between sectors. This requires the
front-end electronics and data concentrators to duplicate stubs in those
overlapping regions and passing them on to more than one individual
computing stage at a time. This introduces the need to remove the
resulting duplicate tracks from the results, which is not implemented
in our demonstrator.

133



5 Low-Latency GPU computing system for commodity DAQ

Leveraging the floating-point computing capabilities of GPUs, we introduced
a change to the Hough transformation from the conventional (rectangular)
parameter space into a hexagonal one. The added computational complex-
ity increased the average computing times by around 1 𝜇s, or roughly 25%
However, the benefits of the hexagonal parameter space could be shown to
reduce the amounts of fake track candidates found by an amount of up to 35%
in scenarios of high pileups ([Moh16],[Moh17]).

Overall, we were able to demonstrate that we could develop a commodity
GPGPU-based DAQ computing system that comes astonishingly close to sat-
isfying the demands of something like the CMS’ track trigger specifications
of 1 𝜇s for data transfer and 4 𝜇s for computing. Our system was capable
of achieving 2 𝜇s for data transfer and between 3.8–5.2 𝜇s for computing,
depending on the version of the implementation (Rectangular or Hexagonal
Hough Space).

Table 5.2: Comparison of actual CMS L1 Track Trigger constraints against achieved performance
of the Commodity GPGPU DAQ Demonstrator, by algorithmic variation. Times for
the algorithms represent worst-cases.

Data Transfer Computing Total
CMS Constraint 1 𝜇s 4 𝜇s 5 𝜇s

Rectangular (Sequential) 2 𝜇s 4.2 𝜇s 6.2 𝜇s
Rectangular (Pipelined) 0.4 𝜇s 3.8 𝜇s 4.2 𝜇s
Hexagonal (Sequential) 2 𝜇s 5.2 𝜇s 7.5 𝜇s

With these results, we are less than a factor of two away from the target
specifications. Even though at the time of measurement, the amount of re-
quired GPUs to process an entire CMS dataset would have been prohibitively
large, the results clearly indicate the feasibility and potential performance
of the commodity DAQ concept, especially when taking potential future ad-
vancements in GPU technologies and general technology-extrapolation into
account.

The results of this investigation and proof-of-concept implementation have
been presented in the proceedings of the Topical Workshop on Electronics for
Particle Physics 2016. They were published in the Journal of instrumentation
12.04 (2017) ([Moh17]).

134



6 Software-defined DAQ and future
developments

When looking at the proposed technologies and system designs presented in
the previous chapters a of this thesis, a trend towards software-programmable
components becomes visible. A similar trend has already emerged in the gen-
eral field of wireless transmission in the early 2000s. This trend is commonly
known as Software-defined Radio (SDR) [Sad04].
The concept of SDR can be described as a movement to replace as many “hard-
wired” analogue electronics in radio transmission systems as possible with
programmable devices. SDR garnered widespread adaptation in the respec-
tive communities, with its main benefits stemming from software-system’s
high flexibility due to the ability of software defined systems to quickly adapt
to and interoperate between multiple different standards.
Much like with SDR, the point can be made that the DAQ systems presented
in this thesis achieve a similar level of flexibility due to their core principles
of employing mainly software-programmable commodity computing compo-
nents. As a result, we coin the term Software-defined DAQ (SDDAQ) for the
systems presented in this thesis.

This chapter will show potential future prospects of fully embracing the soft-
ware-controlled nature of SDDAQ with special emphasis on concepts such as
Routing and Fault-Tolerance.

135



6 Software-defined DAQ and future developments

6.1 RDMA Network Routing for fault
tolerance and load balancing

When computing systems need to offer more (computing) resources than a
single processing node can supply, they often begin to scale their operations
on a network level. By introducing multiple separate physical nodes to a pro-
cessing scheme, connected by a network, one also necessarily introduces the
challenge of Routing. Routing describes the process of (re)directing network
traffic from a source to a destination through intermediary participants. It is
a vital part of many large network installations today, and is one of the key
technologies of the Internet as we know it. That is why the devices we typi-
cally use to connect to the internet are still today most commonly known as
“Routers”.
Routing can also be used to provide reliability in a distributed network ser-
vice. When data packets are addressed towards a node that went into a failure
state, they can be dynamically and transparently rerouted towards a fallback
node that provides the same functionality. Equally, nodes and services can
be replicated multiple times, and the routing towards these nodes can be se-
lected based on the current workload of each node. This is commonly known
as Load Balancing [Bar89]. Both of these techniques are common place in
most modern data centers.
Many of these routing techniques rely, in essence, on the capability of chang-
ing the intended recipient data-field in a network package and then re-emit-
ting the package towards that (new) destination. In this section, I want to
present thoughts on how fault-tolerance and load-balancing in an RDMA ca-
pable network can be achieved.

IP-based data communication uses a “port” information field to describe the
software service on the recipient that is intended to process the received data
package. Changing any of the addressing information of the package on the
way to its destination will not interfere with this mechanism, as long as the
new (think: rerouted) recipient of the communication has an identical soft-
ware service listening on that same port. Therefore, an Ethernet IP package

136



6.1 RDMA Network Routing for fault tolerance and load balancing

can be rerouted both on the data-link-layer (Ethernet MAC address), as well
as the network-layer (IP Address).

Note: Remember, the mentioned Data-Link-Layer and Network-
Layer pertain to layer 2 and 3 of the OSI Model, presented in table
2.1, in section 2.1.2 of this thesis.

If we imagine the same mechanism for RDMA network communication,
specifically for InfiniBand / RoCE, we encounter a problem. Recall the
introduction of InfiniBand in chapter 3 of this thesis. To perform RDMA
operations on a remote node, that node first needs to grant access to its
memory to a connected peer by means of generating an access token. This
token is unique for each node-peer combination. InfiniBand uses both, data-
link-layer and network-layer address information, and should therefore be
routable just like IP based communication. However, the access tokens
embedded in the data frame will be invalid if the package gets rerouted to a
completely different recipient node. Therefore, InfiniBand traffic is capable of
being routed through a network of networks (OSI Layer 3), but —at least not
in its native form —can not be used to provide load balancing or fault tolerant
redundancy. The same holds true for InfiniBand through Ethernet (RoCE),
as RoCE merely replaces the data-link-layer and network-layer encodings of
InfiniBand with that of conventional Ethernet and IP protocols.
To provide a solution to these issues, and make InfiniBand RDMA a suit-
able candidate for fault-tolerant and load-balanced routing, the following
solutions are proposed.

Token Unification: The driver software for InfiniBand RDMA could be
changed, so that it either always generates the exact same token for each
allocated RDMA memory segment, or it could be changed to not rely on the
tokens all together. This solution would provide the following benefits:

• Can be implemented fully and exclusively in software

• Conventional routing mechanisms of Ethernet / IP based systems can
be retained

137



6 Software-defined DAQ and future developments

However, this solution also holds a number of disadvantages.

• Individualized changes in software packages maintained by other
sources need continuous upkeep and maintenance whenever the
software receives downstream changes

• Changes potentially need to be platform-dependent, increasing
development complexity when using heterogeneous systems
consisting of multiple different platforms

Furthermore, we observe another potentially severe drawback of this solution.
Up until this point, we have only considered RDMA access tokens. However,
the necessary information encoded in a data package for RDMA does not only
include these access tokens. They also include the system-level memory ad-
dress of the allocated RDMA segment on the recipient system. Where these
memory segments reside is highly application specific and in many cases de-
pends on the allocation mechanisms of the node’s operating system. Even if
we change the access tokens to be uniform across our network, the location of
each memory segment on each peer would still vary. When rerouting RDMA
traffic to a new destination, it would lead to the RDMA packages addressing
memory locations that are not part of the provided access token.
Changing this behavior can be considered to not be generally possible. How
muchmemory is available to each system, how the operating system segments
the memory and if the desired memory segment is available at the time of al-
location, can not universally be controlled, lest extensive changes are made
to the node’s operating system.

Custom RDMA Dispatcher: A different solution could be to develop what
we shall call an RDMA Dispatcher. This intermediary device would be respon-
sible to ensure the correctness of the RDMAaccess tokens as the data packages
travel through the device. To do this, we could configure the device in such a
way that it provides memory segments for each software service on the net-
work. When a device wants to send data to one of those services, it instead
sends data to the corresponding memory segment of the dispatcher. The dis-
patcher receives the communication, and upon transfer completion, re-emits
the received data to the node on the network that actually implements the

138



6.1 RDMA Network Routing for fault tolerance and load balancing

corresponding service. For this, a software framework would be required that
informs the dispatcher of each of the services on the network and exchanges
the required access tokens for those service’s memory segments with the dis-
patcher. The dispatcher can then dynamically choose which device to forward
the received data to, based on any metric, like static configuration, faults or
workload on the nodes. This process is symbolized in figure 6.1.

Figure 6.1: The working principles of an RDMA dispatcher. The dispatcher provides specific
memory segments for each available service. A client that wants to send data to one
of these services sends data instead to the corresponding memory segment of the
repeater (1). After the transfer concludes, the repeater forwards the data to its final
destination in the respective service’s memory (2). Based on internal metrics, like
faults or resource occupation, the dispatcher can decide to redirect data to a different
service instead.

This solution would have the following benefits:

• Hardware could be set up using only standard commodity components

• Connections between dispatcher and participating nodes will use only
conventional RDMA schemes

• No packet manipulations is required

139



6 Software-defined DAQ and future developments

• Required routing tables and metrics can be implemented in software

However, the system would also have drawbacks

• Receiving data on the dispatcher first, and then retransmitting the
received data, introduces one additional round of systemic transfer
overhead

• Depending on the amount of services on the network, the dispatcher
would require large amounts of memory

• Concurrent access to the same memory segment on the dispatcher
could cause data corruption

• Dispatcher performance would be limited by memory bandwidth and
throughput

CustomRDMARouter: Finally, we propose the solution of a custom RDMA
router. Modern programmable hardware devices, such as FPGAs with Giga-
bit transceivers, and “Smart” Switches with embedded FPGAs have become
available over the recent years. It is assumed that it should be technically fea-
sible to use such a device to read and modify network communication as it
passes through the device, not unlike conventional Ethernet routers operate.
Such devices could be used to fully and transparently rewrite the entirety of
the RDMA access tokens and address information in an InfiniBand / RoCE
packet. For this to work, the router would need a database of the currently
available RDMA services on the network, and their respective access tokens.
When a node on the network sends an RDMA package to any destination on
the network, the router would analyze the target address, and replace RDMA
access information based on desired metrics. Note that in this case, not only
the Access Token would be replaced, but the entire RDMA package header,
except for the data payload. In the previously discussed solution (RDMA Dis-
patcher), the dispatcher itself was a conventional endpoint of the RDMA com-
munication. In case of the proposed RDMA router, the router would not be
an endpoint. Packages would travel through the device and get modified as
they get passed along. The working principle of such an RDMA router is vi-
sualized in figure 6.2.

140



6.1 RDMA Network Routing for fault tolerance and load balancing

Figure 6.2: The working principles of an RDMA router. The router is made aware of the specific
memory segments for each available service, and their respective RDMA access to-
kens. All communications directed towards the network are funneled through the
router. The router observes a data package addressed towards one of the services (1).
Based on internal metrics, the router then rewrites parts of the package to change its
routing information and path through the network (2). This may change the previ-
ously intended recipient of the package. Afterwards, the rewritten package is emitted
towards the rest of the network (3) where conventional transfer schemes are used to
deliver the package to its (potentially new) destination.

This solution would have the following benefits:

• Only marginal added communication latency, since data is not fully
placed in memory before being re-emitted

• Concurrent access would be a non-issue, since packages are not
stored, but merely rewritten

• Commodity hardware, capable of implementing such actions, are
already commercially available (e.g.: Xilinx Vitis devices)

However, this solution also features a list of complex drawbacks:

• Implementation in HDL is much more complex, error-prone and less
flexible than pure software solutions

141



6 Software-defined DAQ and future developments

• Correctly decoding, modifying and encoding the checksum of each
package may not be possible if the checksum algorithm of the protocol
being used is unknown

• Reliability and retransmission mechanisms of protocols like
InfiniBand would make it necessary to reimplement parts of their
protocol stack on the router, increasing the device’s complexity

In summary, all of the proposed solutions have individual strengths andweak-
nesses. It is not currently possible to choose one of them as the clearly optimal
solution to implement the required routing mechanisms. Implementation of
these solutions, as well as performance measurements remain subject to fu-
ture investigations.

6.2 Future of DAQ in the Cloud

Cloud Computing has gained increased significance over the recent years.
When speaking of a computing “cloud”, we generally mean any heavily dis-
tributed computing service that is made available to a user on-demand. Large
companies, like Microsoft, Amazon, Google, Facebook and others offer highly
specialized resources to users, billed on some form of per-use basis. Popular
cloud services include data storage, audio and video transcoding, image pro-
cessing and more. More generalized computing resources, like many-core
CPUs, machine-learning accelerators and other forms of specialized comput-
ing hardware are also commonly available in the cloud.
This has given rise to services that live exclusively in the cloud. Companies
leveraging cloud computing services benefit from not having to set-up, oper-
ate and maintain their own data centers, freeing up resources. Furthermore,
they can leave development and optimization of such services in the hands of
the cloud providers, avoiding having to bundle the necessary technical exper-
tise on their own roster of personnel.

With the newly coined concept of Software-defined DAQ, we envision ser-
vices specialized for scientific data processing eventually adopting a similar
paradigm. Many research groups (such like universities) could benefit from

142



6.2 Future of DAQ in the Cloud

operating a single data-center that provides access to multiple small and mid-
sized research teams. Considering possible solutions to the RDMA routing
problems (as proposed in the previous section) it may soon become possible
to fully realize such DAQ data centers in a local context (e.g. per University
Campus). As mentioned in chapter 2.1.1 of this thesis, conventional metal
wire cables can already bridge distances of hundreds of meters at up to 200
Gbps. Optical fibres can even provide dozens of kilometers range at up to 400
Gbps. For the local context of a single research campus it should therefore be
feasible to link local research installations to the campus’ data center without
suffering substantially reduced networking performance.

Another possibility could be the decentralization and sharing of DAQ comput-
ing resources through the internet. While conventional internet connections
to services worldwide are currently not sufficient to handle the data-rates and
latencies depicted in this thesis, it is not unreasonable to assume that these
constraints might one day disappear. As can be seen in the “Global Speedtest
Index” by Ookla (one of the leading providers of online internet performance
tests worldwide), average internet performances around the globe are on the
rise. Figure 6.3 shows how average worldwide internet throughputs have in-
creased from just below 40 Mbps in mid 2017 to almost 110 Mbps by the same
time in 2021. Mobile internet download throughputs have increased by an
even larger margin. While these graphs only show average download speeds,
neglecting average upload speed and average latencies, the presented data can
still be seen as an indication that average internet key metrics will likely keep
increasing in the coming years.

Furthermore, while these key performance metrics are orders of magnitude
below the performances demonstrated by the systems in this thesis, it is im-
portant to keep in mind that not all experiments have such challenging re-
quirements. Many projects operate at data rates much lower than the terabit-
or even gigabit- domain, and with event rates in the order of lower kilohertz.
For such experiments, typical internet throughputs and latencies of a fewmil-
liseconds are already sufficient, even today. However, as the internet is built
on a “best-effort” basis, data passing through the internet is not guaranteed
to arrive at its destination. Protocols like TCP can provide resilience towards

143



6 Software-defined DAQ and future developments

Figure 6.3: Average global internet download speeds as measured by Ookla, from July 2017 to
July 2021, as part of their yearly Speedtest Global Index. b

b Provided by Ookla inc.

lost data packages, but do so by repeatedly sending packages until the recipi-
ent has confirmed their arrival. On particularly unreliable connections, such
a mechanism introduces unpredictable latencies and vastly varying times-of-
arrival. Therefore, even if data-rates of an internet connection might be suf-
ficient for certain experiments, real-time conformity remains an open chal-
lenge.

In summary, we believe that the systems and concepts presented in this the-
sis bring us further towards a future in which experiments can enjoy sub-
stantially decreased development efforts for their DAQ. Fuelled by central-
ized cloud-DAQ services, systems configured and defined exclusively through
software, and ever-increasing key performances, due to continues industry
developments in the fields of High-Performance-Computing.

144



7 Conclusion and Research Results

Thiswork investigated the potential of using commodity computing and data-
transfer components to build high-performance DAQ systems that are capa-
ble of satisfying the needs of even highly challenging scientific experiments.
Summarizing the results of this research, the questions formulated in the in-
troduction of this thesis can now be answered as follows.

Research question 1:
Which commodity computing technologies can be used to aid the integration of
heterogeneous DAQ components?

The requirements for modern high-performance DAQ have developed into
a direction that became increasingly similar to those of modern high-per-
formance computing (HPC) installations. However, both domains differ in
their specific core focus. In many cases, HPC installations can afford to put
lower emphasis on transfer and processing latencies, as many HPC applica-
tions lack real-time requirements. For the creation of fast feedback-control-
loops, as they are increasingly more commonly found in modern scientific ex-
periments however, low transfer and computing latencies are of much higher
importance. Furthermore, most HPC applications do not require connections
to external custom electronics, whereas such connectivity is essential for DAQ
system. These subtle but important differences in design priorities are what
sets apart the DAQ systems proposed in this thesis from conventional HPC
installations. Essentially, the systems resulting from this work are distributed,
heterogeneous HPC systems, optimized for lowest possible data transfer and
computing latencies, while offering convenient connectivity to any arbitrary
custom electronics through FPGAs.

145



7 Conclusion and Research Results

Answer: Contemporary HPC systems provide a suitable
blueprint for heterogeneous DAQ systems but need to be aug-
mented with connectivity solutions for custom electronics at
low latencies. FPGAs can serve as middle-grounds between
fully custom electronics and standardized interfaces to PC sys-
tems. Interconnect technologies that support DMA aid with
the optimization towards low-latency communication in large
heterogeneous systems.

Research question 2:
Which RDMA capable network standards are available? How do they differ from
each other, and howwell are they suited to modern DAQ needs? How can existing
Ethernet DAQ infrastructure benefit from RDMA?

To realize high-performance commodity DAQ systems, (Remote) DirectMem-
ory Access (DMA/RDMA) was shown to be an invaluable asset. As the com-
plexity of distributed systems grows, so does the number of intermediary
memories across those systems. The capability to move data directly into
target memory layers on interconnected systems while bypassing unrelated
memory structures significantly reduces critical data path lengths and thereby
shortens systemic data transfer latencies. It was demonstrated how RDMA
communication could bypass bottlenecks in existing systems at the example
of a high-speed tomography DAQ system through the integration of a newly
developed RDMA networking library, called KIRO. KIRO aims to mimic the
behavior of conventional UNIX network sockets, while providing additional
conveniences, such as self-synchronizing remote ring-buffers, and many-to-
many messaging. It supports InfiniBand and RoCE RDMA data transfer, and
was shown to be able to provide adapter bandwidth utilizations of up to 95%
(38 Gpbs throughput of 40 Gpbs bandwidth) with systemic latencies averag-
ing 6 𝜇s. With the help of this software, it became possible to add RDMA to
any networking application with just a few lines of code [Dri14].

Answer: Two most commonly used (R)DMA-capable intercon-
nects are PCI-Express (PCIe) and InfiniBand. PCIe is optimized
for peripheral interconnectivity inside of a single PC system.

146



7 Conclusion and Research Results

It is not optimized for networking. In contrast, InfiniBand is
built specifically to be a Network-Layer routable protocol. Both
standards are well-suited for low-latency interconnectivity. PCIe
serves as intra-system data bus. InfiniBand serves as inter-
system network solution.
Ethernet does not natively support RDMA, but can profit from
it by means of the RoCE protocol. RoCE places InfiniBand “in-
structions” into Ethernet data frames by replacing Data-Link and
Network Layer information in an InfiniBand data frame with
Ethernet and UDP addressing headers respectively.

Research question 3:
How can Remote Direct Memory Access be combined with traditional High-Per-
formance Computing methods, such as GPU computing?

It was shown how Graphics Processing Units (GPUs) can benefit from
(R)DMA to receive processing data directly into their graphics memory,
rather than having to rely on the CPU to copy data from system main mem-
ory over to the GPU.This reduced transfer latencies by an order of magnitude
from 20 𝜇s to as low as 1.8 𝜇s. GPUs are typically valued for their very high
computational throughput, and RDMA data transfer therefore additionally
enables the utilization of GPU’s high computing performance for distributed
and networked applications with extremely low latency requirements.

Answer: GPU manufacturers provide drivers that enable direct
bus-level access to GPUmemory directly on the device. This sup-
ports bypassing conventional CPU-centric data transfer schemes
and enables DMA capable devices to target GPUmemory directly.
Using RDMA extends these capabilities onto the network level.

Research question 4:
How can general purpose commodity DAQ systems benefit from the application
of FPGAs, and how can FPGAs be integrated into such systems?

147



7 Conclusion and Research Results

To provide the necessary interface between custom detector front-end elec-
tronics and commodity DAQ systems, it was demonstrated how RDMA-capa-
ble FPGAs can be integrated into our systems towrite digitized data straight to
the memory of any connected computing accelerator (e.g. GPUs). An exam-
ple of this is the DMA capable FPGA-based “High-Flexibility DAQ Platform”
(High-Flex) developed at KIT [Cas14]. Interconnectivity between the High-
Flex platform and a PC is provided through PCIe (Gen. 3, x8 or x16) as well
as Gigabit Ethernet.

Answer: FPGAs provide high levels of control over external
interconnectivity by means of discrete logic blocks like Ana-
logue-to-Digital converters and general purpose high-speed
transceivers. This makes them well-suited as interfacing devices
to custom electronics. High-Speed transceivers can be used
to implement (R)DMA capable interconnects and protocols to
standardize integration with other commodity PC components
at low communication latencies.

Research question 5:
Which suitable commodity DAQ system design facilitates both low data commu-
nication latencies and high- performance computing? Which standards should
be chosen to aid maintainability and scalability?

It was shown how the combination of FPGAs and GPUs inside of DAQ is par-
ticularly powerful, as both technologies compensate each others weaknesses.
FPGAs provide excellent connectivity and electronic interfacing, as well as
precise control over timing and digital logic, whereas GPUs provide com-
putation capabilities at higher performances than FPGAs. Furthermore, the
demonstrated integration of heterogeneous computing components through
the use of RDMAwas shown to result in a general purpose computing system
that was able to provide turnaround times of only 4.1 – 5.8 𝜇s. Interconnectiv-
ity was provided through PCIe Gen. 3 x8, with potential peak point-to-point
throughputs of up to 52 Gbps (as presented in [Rot16]). This was demon-
strated by the implementation of a Hough-Transformation Track-Finding al-
gorithm, as it is projected to be used by the CMS experiment after the LHC’s

148



7 Conclusion and Research Results

high-luminosity upgrade. These times include data transfer and computing
(however, no full loop was implemented, which needs to be considered in fu-
ture implementations). This example illustrates the feasibility of the commod-
ity DAQ concept by showing performance of the same order of magnitude as
those required by the CMS Track Trigger specifications, which is projected to
be 5 𝜇s for a full turn-around trip. The presented times of our system are pre-
dicted to further decrease in the future, as newer generations of networking
adapters and GPUs become available, which are likely to provide increased
performance metrics and reduced intrinsic latencies [Moh17].

Answer: The proposed systems use DMA-capable FPGA plat-
forms to implement interfaces to external systems and custom
electronics. For computing, the proposed systems use GPUs be-
cause of their high computing performances and DMA capabil-
ities. Communication between components is realized through
PCIe, as the de-facto standard for peripheral interconnectivity in
contemporary systems while being fully DMA-capable. Scalabil-
ity can be achieved through a distributed design. The necessary
network communication can be provided through InfiniBand or
Ethernet + RoCE networking adapters, which also interface with
the PCIe bus, easing integration.

Research question 6:
How can DAQ benefit from being defined mainly through software, and how
could such a Software-defined DAQ system look like?

For practical applications, this work proposes the novel concept of “Software-
defined DAQ”. As most of the proposed commodity components are soft-
ware programmable, it is possible to model the data flow and the processing
schemas across the proposed commodity DAQ systems completely in soft-
ware. Typically, this is done by defining a chain of network services that
exchange data with each other by means of addressing their respective mem-
ories. To this end, we envision a modular system of heterogeneous process-
ing nodes, interconnected by an RDMA capable network. Each node in these

149



7 Conclusion and Research Results

systems provides a specific “service” to the DAQ chain, e.g.: Filtering, Com-
pression, Track Reconstruction, etc. The distribution of data is managed by
orchestration software, running on “smart” networking device that will be
capable of dynamically routing data according to the current experiment re-
quirements. Deep-Package-Inspection could be used to rewrite RDMA ad-
dress and access information in networking packages to dynamically reroute
traffic based on system metrics like occupation or system faults. The neces-
sary software configuration could be provided in the form of containerized
software, which would ease the creation and integration of additional com-
puting nodes into the system.
In the future, advances in networking technologies may reduce global inter-
net latencies while simultaneously increasing available bandwidths and reli-
ability, to potentially provide generalized Software-defined DAQ services in
the form of a computing cloud. This could open up the possibilities to pro-
vide shared access to highly specialized DAQ processing chains to research
groups that do not possess the required resources to operate such systems on
their own. These cloud DAQ services could also provide access to emerging
technologies, such as Neuro-Accelerators, Quantum-Processors or arrays of
FPGA computing cards.

Answer: Software-defined DAQ provides high-level control over
the behavior of computing and data paths in a distributed DAQ
systemwith a high degree of flexibility and adaptability. With the
addition of the proposed routingmechanisms for RDMA it should
become possible to build decentralized DAQ services, as well as
providing fault-tolerance and load-balancing to such systems.

Overall, it was shown that with careful system design, using commodity com-
puting components, it is possible to create highly performant and flexible soft-
ware-defined DAQ systems, capable of satisfying the needs of even highly
challenging experiments.

150



Bibliography

[Agg17] AGGLETON, R. et al.: “An FPGA based track finder for the L1 trig-
ger of the CMS experiment at the High Luminosity LHC”. In:
Journal of Instrumentation 12.12 (Dec. 2017), P12019–P12019. DOI:
10.1088/1748-0221/12/12/p12019. URL: https://doi.org/10.1088/
1748-0221/12/12/p12019 (cit. on p. 121).

[Ams16] AMSTUTZ, C. et al.: “An FPGA-based track finder for the L1 trig-
ger of the CMS experiment at the high luminosity LHC”. In: 2016
IEEE-NPSS Real Time Conference (RT). 2016, pp. 1–9. DOI: 10.1109/
RTC.2016.7543102 (cit. on p. 123).

[Ams17] AMSTUTZ, Christian: “Evaluation of an Associative Memory and
FPGA-based System for the Track Trigger of the CMS-Detector”.
54.02.02; LK 01. PhD thesis. Karlsruher Institut für Technologie
(KIT), 2017. 183 pp. DOI: 10.5445/IR/1000071572 (cit. on p. 122).

[And17] ANDRE, J-M et al.: “The CMS Data Acquisition - Architectures
for the Phase-2 Upgrade”. In: Journal of Physics: Conference Series
898 (Oct. 2017), p. 032019. DOI: 10.1088/1742-6596/898/3/032019.
URL: https://doi.org/10.1088/1742-6596/898/3/032019 (cit. on
pp. 2, 10, 117).

[Arr01] ARREGUI, M; CARENA, W; CHAPELAND, S; CSATO, P; DENES, E;
DIVIA, R; EGED, B; JOVANOVIC, Predrag; KISS, T; LINDENSTRUTH,
V et al.: “The ALICE DAQ: current status and future challenges”.
In: Computer physics communications 140.1-2 (2001), pp. 117–129
(cit. on p. 10).

[ATL12] ATLAS GROUP: “Observation of a new particle in the search for
the Standard Model Higgs boson with the ATLAS detector at
the LHC”. In: Physics Letters B 716.1 (2012), pp. 1–29. DOI: https:

151

https://doi.org/10.1088/1748-0221/12/12/p12019
https://doi.org/10.1088/1748-0221/12/12/p12019
https://doi.org/10.1088/1748-0221/12/12/p12019
https://doi.org/10.1109/RTC.2016.7543102
https://doi.org/10.1109/RTC.2016.7543102
https://doi.org/10.5445/IR/1000071572
https://doi.org/10.1088/1742-6596/898/3/032019
https://doi.org/10.1088/1742-6596/898/3/032019
https://doi.org/https://doi.org/10.1016/j.physletb.2012.08.020
https://doi.org/https://doi.org/10.1016/j.physletb.2012.08.020


Bibliography

//doi.org/10.1016/j.physletb.2012.08.020. URL: https://www.
sciencedirect.com/science/article/pii/S037026931200857X (cit. on
p. 117).

[Ban12] BANERJEE, S: “CMS Simulation Software”. In: Journal of Physics:
Conference Series 396.2 (Dec. 2012), p. 022003. DOI: 10.1088/1742-
6596 / 396 / 2 / 022003. URL: https : / / doi . org / 10 . 1088 / 1742 -
6596/396/2/022003 (cit. on p. 127).

[Bar17] BARTZ, EDWARD et al.: “FPGA-Based Tracklet Approach to Level-
1 Track Finding at CMS for the HL-LHC”. In: EPJ Web Conf. 150
(2017), p. 00016. DOI: 10.1051/epjconf/201715000016. URL: https:
//doi.org/10.1051/epjconf/201715000016 (cit. on p. 122).

[Bar89] BARAN, Mesut E and WU, Felix F: “Network reconfiguration in
distribution systems for loss reduction and load balancing”. In:
IEEE Transactions on Power delivery 4.2 (1989), pp. 1401–1407 (cit.
on p. 136).

[Bel16] BELLALTA, Boris: “IEEE 802.11ax: High-efficiency WLANS”. In:
IEEE Wireless Communications 23.1 (2016), pp. 38–46. DOI: 10 .
1109/MWC.2016.7422404 (cit. on p. 17).

[Ber20] BERTELS, K.; SARKAR, A.; HUBREGTSEN., T.; SERRAO, M.; MOUE-
DENNE, A. A.; YADAV, A.; KROL, A. and ASHRAF, I.: “Quantum
Computer Architecture: Towards Full-Stack Quantum Accelera-
tors”. In: 2020 Design, Automation and Test in Europe Conference
and Exhibition (DATE). 2020, pp. 1–6. DOI: 10.23919/DATE48585.
2020.9116502 (cit. on p. 49).

[Bis01] BISDIKIAN, Chatschik: “An overview of the Bluetooth wireless
technology”. In: IEEE Communications magazine 39.12 (2001),
pp. 86–94 (cit. on p. 16).

[Bri17] BRITT, Keith A.; MOHIYADDIN, Fahd A. and HUMBLE, Travis S.:
“Quantum Accelerators for High-Performance Computing Sys-
tems”. In: 2017 IEEE International Conference on Rebooting Com-
puting (ICRC). 2017, pp. 1–7. DOI: 10.1109/ICRC.2017.8123664
(cit. on p. 49).

152

https://doi.org/https://doi.org/10.1016/j.physletb.2012.08.020
https://doi.org/https://doi.org/10.1016/j.physletb.2012.08.020
https://www.sciencedirect.com/science/article/pii/S037026931200857X
https://www.sciencedirect.com/science/article/pii/S037026931200857X
https://doi.org/10.1088/1742-6596/396/2/022003
https://doi.org/10.1088/1742-6596/396/2/022003
https://doi.org/10.1088/1742-6596/396/2/022003
https://doi.org/10.1088/1742-6596/396/2/022003
https://doi.org/10.1051/epjconf/201715000016
https://doi.org/10.1051/epjconf/201715000016
https://doi.org/10.1051/epjconf/201715000016
https://doi.org/10.1109/MWC.2016.7422404
https://doi.org/10.1109/MWC.2016.7422404
https://doi.org/10.23919/DATE48585.2020.9116502
https://doi.org/10.23919/DATE48585.2020.9116502
https://doi.org/10.1109/ICRC.2017.8123664


Bibliography

[Bro75] BROOKS, Rodney A and DI CHIRO, Giovanni: “Theory of image
reconstruction in computed tomography”. In: Radiology 117.3
(1975), pp. 561–572 (cit. on p. 96).

[Buc04] BUCHANAN, W. J.: “RS-232”. In: The Handbook of Data Communi-
cations and Networks: Volume 1. Volume 2. Boston, MA: Springer
US, 2004, pp. 239–274. DOI: 10.1007/978-1-4020-7870-5_11. URL:
https://doi.org/10.1007/978-1-4020-7870-5_11 (cit. on p. 24).

[Bud04] BUDRUK, Ravi; ANDERSON, Don and SHANLEY, Tom: PCI express
system architecture. Addison-Wesley Professional, 2004 (cit. on
p. 25).

[Can15] CANZIAN, Luca and VAN DER SCHAAR, Mihaela: “Real-time
stream mining: online knowledge extraction using classifier
networks”. In: IEEE Network 29.5 (2015), pp. 10–16 (cit. on p. 10).

[Cas14] CASELLE, M. et al.: “Commissioning of an ultra-fast data acquisi-
tion system for coherent synchrotron radiation detection”. In: 5th
International Particle Accelerator Conference (IPAC 2014), Dresden,
15. - 20. Juni 2014. Paper THPME113 JACoW, 2014. 55.51.10; LK 02.
JACoW Publishing, 2014, pp. 3497–3499 (cit. on p. 148).

[Cas17] CASELLE, M.; PEREZ, L.E. Ardila; BALZER, M.; DRITSCHLER, T.;
KOPMANN, A.; MOHR, H.; ROTA, L.; VOGELGESANG, M. and WEBER,
M.: “A high-speed DAQ framework for future high-level trigger
and event building clusters”. In: Journal of Instrumentation 12.03
(Mar. 2017), pp. C03015–C03015. DOI: 10.1088/1748-0221/12/03/
c03015. URL: https://doi.org/10.1088/1748-0221/12/03/c03015
(cit. on p. 72).

[Chi20] CHILINGARYAN, Suren; AMETOVA, Evelina; KOPMANN, Anreas
and MIRONE, Alessandro: “Reviewing GPU architectures to build
efficient back projection for parallel geometries”. In: Journal of
Real-Time Image Processing 17.5 (2020), pp. 1331–1373. DOI: https:
//doi.org/10.1007/s11554-019-00883-w (cit. on p. 116).

153

https://doi.org/10.1007/978-1-4020-7870-5_11
https://doi.org/10.1007/978-1-4020-7870-5_11
https://doi.org/10.1088/1748-0221/12/03/c03015
https://doi.org/10.1088/1748-0221/12/03/c03015
https://doi.org/10.1088/1748-0221/12/03/c03015
https://doi.org/https://doi.org/10.1007/s11554-019-00883-w
https://doi.org/https://doi.org/10.1007/s11554-019-00883-w


Bibliography

[CMS12] CMS GROUP: “Observation of a new boson at a mass of 125 GeV
with the CMS experiment at the LHC”. In: Physics Letters B 716.1
(2012), pp. 30–61. DOI: https://doi.org/10.1016/j.physletb.2012.
08.021. URL: https://www.sciencedirect.com/science/article/pii/
S0370269312008581 (cit. on p. 117).

[CMS17] CMS GROUP: “The CMS trigger system”. In: Journal of Instru-
mentation 12.01 (Jan. 2017), P01020–P01020. DOI: 10.1088/1748-
0221 /12 /01 /p01020. URL: https : / /doi .org /10 .1088%2F1748-
0221%2F12%2F01%2Fp01020 (cit. on p. 119).

[Dal05] DALESSANDRO, Dennis; DEVULAPALLI, Ananth and WYCKOFF,
Pete: “Design and Implementation of the iWarp Protocol in Soft-
ware.” In: IASTED PDCS. 2005, pp. 471–476 (cit. on p. 33).

[Dal91] DALESIO, Leo R; KOZUBAL, AJ and KRAIMER, MR: EPICS architec-
ture. Tech. rep. Los Alamos National Lab., NM (United States),
1991 (cit. on p. 94).

[Die08] DIERKS, Tim and RESCORLA, Eric: The transport layer security
(TLS) protocol version 1.2. Tech. rep. 2008 (cit. on p. 39).

[Dri14] DRITSCHLER, T; CHILINGARYAN, S; FARAGO, T; KOPMANN, A and
VOGELGESANG, M: “InfiniBand interconnects for highthroughput
data acquisition in a TANGO environment”. In: Proc. PCaPAC’14
(2014), pp. 161–163 (cit. on pp. 103, 107, 108, 146).

[Eid] EIDSON, Stevan; GAINES, Brett and WOLF, Paul: “30.2: HDMI:
High-Definition Multimedia Interface”. In: SID Symposium Di-
gest of Technical Papers 34.1 (), pp. 1024–1027. DOI: https://doi .
org/10.1889/1.1832462. URL: https://sid.onlinelibrary.wiley.com/
doi/abs/10.1889/1.1832462 (cit. on p. 23).

[For02a] FOROUZAN, Behrouz A: TCP/IP protocol suite. McGraw-Hill
Higher Education, 2002 (cit. on pp. 33, 34).

[For02b] FOROUZAN, Behrouz A: TCP/IP protocol suite. McGraw-Hill
Higher Education, 2002 (cit. on p. 35).

154

https://doi.org/https://doi.org/10.1016/j.physletb.2012.08.021
https://doi.org/https://doi.org/10.1016/j.physletb.2012.08.021
https://www.sciencedirect.com/science/article/pii/S0370269312008581
https://www.sciencedirect.com/science/article/pii/S0370269312008581
https://doi.org/10.1088/1748-0221/12/01/p01020
https://doi.org/10.1088/1748-0221/12/01/p01020
https://doi.org/10.1088%2F1748-0221%2F12%2F01%2Fp01020
https://doi.org/10.1088%2F1748-0221%2F12%2F01%2Fp01020
https://doi.org/https://doi.org/10.1889/1.1832462
https://doi.org/https://doi.org/10.1889/1.1832462
https://sid.onlinelibrary.wiley.com/doi/abs/10.1889/1.1832462
https://sid.onlinelibrary.wiley.com/doi/abs/10.1889/1.1832462


Bibliography

[Göt03] GÖTZ, A; TAUREL, E; PONS, JL; VERDIER, P; CHAIZE, JM; MEYER,
J; PONCET, F; HEUNEN, G; GÖTZ, E; BUTEAU, A et al.: “TANGO
a CORBA based control system”. In: ICALEPCS2003, Gyeongju,
October (2003) (cit. on pp. 94, 98, 99).

[Gro96] GROPP, William; LUSK, Ewing; DOSS, Nathan and SKJELLUM, An-
thony: “A high-performance, portable implementation of the
MPI message passing interface standard”. In: Parallel Computing
22.6 (1996), pp. 789–828. DOI: https : / /doi .org /10 .1016 /0167-
8191(96)00024-5. URL: https://www.sciencedirect.com/science/
article/pii/0167819196000245 (cit. on p. 45).

[Guo16] GUO, Chuanxiong; WU, Haitao; DENG, Zhong; SONI, Gaurav; YE,
Jianxi; PADHYE, Jitu and LIPSHTEYN, Marina: “RDMA over com-
modity ethernet at scale”. In: Proceedings of the 2016 ACM SIG-
COMM Conference. 2016, pp. 202–215 (cit. on p. 33).

[Gus88] GUSTAFSON, John L: “Reevaluating Amdahl’s law”. In: Communi-
cations of the ACM 31.5 (1988), pp. 532–533. DOI: 10.1145/42411.
42415 (cit. on p. 46).

[Hou17] HOUZEAUX, Guillaume; BORRELL, Ricard; FOURNIER, Yvan;
GASULLA, Marta Garcia-; GÖBBERT, Jens Henrik; HACHEM, Elie;
MEHTA, Vishal; MESRI, Youssef; OWEN, Herbert and VÁZqUEZ,
Mariano: “High-Performance Computing: Dos and Don’ts”. In:
Computational Fluid Dynamics. Ed. by IONESCU, Adela. Rijeka:
IntechOpen, 2017. Chap. 1. DOI: 10.5772/intechopen.72042. URL:
https://doi.org/10.5772/intechopen.72042 (cit. on p. 47).

[HPL02] HPL, Steve Corrigan: “Introduction to the controller area net-
work (CAN)”. In: Application Report SLOA101 (2002), pp. 1–17
(cit. on p. 24).

[Jai18] JAIN, Amit Kr.; ACHARYA, Rupesh; JAKHAR, Saroj and MISHRA,
Tarun: “Fifth Generation (5G) Wireless Technology “Revolution
in Telecommunication””. In: 2018 Second International Confer-
ence on Inventive Communication and Computational Technologies
(ICICCT). 2018, pp. 1867–1872. DOI: 10.1109/ICICCT.2018.8473011
(cit. on p. 17).

155

https://doi.org/https://doi.org/10.1016/0167-8191(96)00024-5
https://doi.org/https://doi.org/10.1016/0167-8191(96)00024-5
https://www.sciencedirect.com/science/article/pii/0167819196000245
https://www.sciencedirect.com/science/article/pii/0167819196000245
https://doi.org/10.1145/42411.42415
https://doi.org/10.1145/42411.42415
https://doi.org/10.5772/intechopen.72042
https://doi.org/10.5772/intechopen.72042
https://doi.org/10.1109/ICICCT.2018.8473011


Bibliography

[Jei14] JEITLER, M: “The upgrade of the CMS trigger system”. In: Journal
of Instrumentation 9.08 (Aug. 2014), pp. C08002–C08002. DOI: 10.
1088/1748-0221/9/08/c08002. URL: https://doi.org/10.1088/1748-
0221/9/08/c08002 (cit. on p. 119).

[Kam11] KAMP, Thomas van de; VAGOVIČ, Patrik; BAUMBACH, Tilo and
RIEDEL, Alexander: “A Biological Screw in a Beetle&#x2019;s
Leg”. In: Science 333.6038 (2011), pp. 52–52. DOI: 10.1126/science.
1204245. eprint: https : / /www.science .org/doi /pdf /10 .1126/
science.1204245. URL: https://www.science.org/doi/abs/10.1126/
science.1204245 (cit. on p. 96).

[Kon09] KONOROV, I; ANGERER, H; MANN, A and PAUL, S: “SODA: Time
distribution system for the PANDA experiment”. In: 2009 IEEE
Nuclear Science Symposium Conference Record (NSS/MIC). IEEE.
2009, pp. 1863–1865 (cit. on p. 94).

[Kop16] KOPMANN, Andreas et al.: “UFO — a scalable platform for high-
speed synchrotron X-ray imaging”. In: 2016 IEEE Nuclear Science
Symposium, Medical Imaging Conference and Room-Temperature
Semiconductor Detector Workshop (NSS/MIC/RTSD). 2016, pp. 1–5.
DOI: 10.1109/NSSMIC.2016.8069895 (cit. on pp. 97, 99).

[Lan17] LANGLEY, Adam; RIDDOCH, Alistair; WILK, Alyssa; VICENTE, An-
tonio; KRASIC, Charles; ZHANG, Dan; YANG, Fan; KOURANOV, Fe-
dor; SWETT, Ian; IYENGAR, Janardhan et al.: “The quic transport
protocol: Design and internet-scale deployment”. In: Proceedings
of the conference of the ACM special interest group on data com-
munication. 2017, pp. 183–196 (cit. on p. 34).

[Lei85] LEINER, Barry; COLE, Robert; POSTEL, Jon and MILLS, David: “The
DARPA Internet protocol suite”. In: IEEE Communications Maga-
zine 23.3 (1985), pp. 29–34 (cit. on pp. 33, 34).

[Man14] MANKAR, Jayant; DARODE, Chaitali; TRIVEDI, Komal; KANOJE,
Madhura and SHAHARE, Prachi: “Review of I2C protocol”. In: In-
ternational Journal of Research in Advent Technology 2.1 (2014)
(cit. on p. 24).

156

https://doi.org/10.1088/1748-0221/9/08/c08002
https://doi.org/10.1088/1748-0221/9/08/c08002
https://doi.org/10.1088/1748-0221/9/08/c08002
https://doi.org/10.1088/1748-0221/9/08/c08002
https://doi.org/10.1126/science.1204245
https://doi.org/10.1126/science.1204245
https://www.science.org/doi/pdf/10.1126/science.1204245
https://www.science.org/doi/pdf/10.1126/science.1204245
https://www.science.org/doi/abs/10.1126/science.1204245
https://www.science.org/doi/abs/10.1126/science.1204245
https://doi.org/10.1109/NSSMIC.2016.8069895


Bibliography

[Moh16] MOHR, Hannes: “Evaluation of GPU-based track-triggering for
the CMS detector at CERN’s HL-LHC”. 2016 (cit. on p. 134).

[Moh17] MOHR, H. et al.: “Evaluation of GPUs as a level-1 track trigger for
the High-Luminosity LHC”. In: Journal of Instrumentation 12.04
(2017). 54.02.02; LK 01, p. C04019. DOI: 10.1088/1748-0221/12/04/
C04019 (cit. on pp. 125, 130, 134, 149).

[Mun09] MUNSHI, Aaftab: “The opencl specification”. In: 2009 IEEE Hot
Chips 21 Symposium (HCS). IEEE. 2009, pp. 1–314 (cit. on p. 54).

[Pfi01] PFISTER, Gregory F: “An introduction to the infiniband architec-
ture”. In: High performance mass storage and parallel I/O 42.617-
632 (2001), p. 102 (cit. on p. 30).

[Pos80] POSTEL, Jon: RFC0768: User Datagram Protocol. 1980 (cit. on
p. 33).

[Pur03] PURSCHKE, ML: “The DAQ and online system of the PHENIX ex-
periment at RHIC”. In: 2003 IEEE Nuclear Science Symposium.
Conference Record (IEEE Cat. No. 03CH37515). Vol. 2. IEEE. 2003,
pp. 1151–1152 (cit. on p. 10).

[Rie15] RIECHELMANN, Max: “Optimizing high-speed data transfer and
processing of DAQ systems with NVIDIAs GPUDirect RDMA”.
Karlsruhe, KIT, Institut für Technische Informatik, Dipl.-Arb.,
2015. 2015 (cit. on p. 84).

[Ros04] ROSHAN, Pejman and LEARY, Jonathan: 802.11 Wireless LAN fun-
damentals. Cisco press, 2004 (cit. on p. 17).

[Rot15] ROTA, L.; CASELLE, M.; CHILINGARYAN, S.; KOPMANN, A. and WE-
BER, M.: “A PCIe DMA Architecture for Multi-Gigabyte Per Sec-
ond Data Transmission”. In: IEEE Transactions on Nuclear Science
62.3 (2015), pp. 972–976. DOI: 10.1109/TNS.2015.2426877 (cit. on
p. 72).

157

https://doi.org/10.1088/1748-0221/12/04/C04019
https://doi.org/10.1088/1748-0221/12/04/C04019
https://doi.org/10.1109/TNS.2015.2426877


Bibliography

[Rot16] ROTA, L.; VOGELGESANG, M.; PEREZ, L.E. Ardila; CASELLE, M.;
CHILINGARYAN, S.; DRITSCHLER, T.; ZILIO, N.; KOPMANN, A.;
BALZER, M. and WEBER, M.: “A high-throughput readout archi-
tecture based on PCI-Express Gen3 and DirectGMA technology”.
In: Journal of Instrumentation 11.02 (Feb. 2016), P02007–P02007.
DOI: 10.1088/1748-0221/11/02/p02007. URL: https://doi.org/10.
1088/1748-0221/11/02/p02007 (cit. on pp. 72, 148).

[Rub53] RUBINOFF, Morris: “Analogue vs. Digital Computers-A Compar-
ison”. In: Proceedings of the IRE 41.10 (1953), pp. 1254–1262. DOI:
10.1109/JRPROC.1953.274277 (cit. on p. 14).

[Sad04] SADIKU, M.N.O. and AKUJUOBI, C.M.: “Software-defined radio:
a brief overview”. In: IEEE Potentials 23.4 (2004), pp. 14–15. DOI:
10.1109/MP.2004.1343223 (cit. on p. 135).

[San10] SANDERS, Jason and KANDROT, Edward: CUDA by example: an
introduction to general-purpose GPU programming. Addison-
Wesley Professional, 2010 (cit. on p. 54).

[San14] SANTOS ROLO, Tomy dos; ERSHOV, Alexey; KAMP, Thomas van
de and BAUMBACH, Tilo: “In vivo X-ray cine-tomography for
tracking morphological dynamics”. In: Proceedings of the Na-
tional Academy of Sciences 111.11 (2014), pp. 3921–3926. DOI:
10 . 1073 / pnas . 1308650111. eprint: https : / /www .pnas . org /
doi/pdf/10.1073/pnas.1308650111. URL: https://www.pnas.org/
doi/abs/10.1073/pnas.1308650111 (cit. on p. 96).

[Spu00] SPURGEON, Charles E: Ethernet: the definitive guide. Ö’Reilly
Media, Inc.”, 2000 (cit. on p. 28).

[Ste18] STEVANOVIC, Uros: “A High-Performance Data Acquisition Sys-
tem for Smart Cameras in Science”. 54.02.02; LK 01. PhD the-
sis. Karlsruher Institut für Technologie (KIT), 2018. 136 pp. DOI:
10.5445/IR/1000079814 (cit. on p. 98).

[Tho88] THOMPSON, S.: “VGA—sign choices for a new video subsystem”.
In: IBM Systems Journal 27.2 (1988), pp. 185–197. DOI: 10.1147/sj.
272.0185 (cit. on p. 23).

158

https://doi.org/10.1088/1748-0221/11/02/p02007
https://doi.org/10.1088/1748-0221/11/02/p02007
https://doi.org/10.1088/1748-0221/11/02/p02007
https://doi.org/10.1109/JRPROC.1953.274277
https://doi.org/10.1109/MP.2004.1343223
https://doi.org/10.1073/pnas.1308650111
https://www.pnas.org/doi/pdf/10.1073/pnas.1308650111
https://www.pnas.org/doi/pdf/10.1073/pnas.1308650111
https://www.pnas.org/doi/abs/10.1073/pnas.1308650111
https://www.pnas.org/doi/abs/10.1073/pnas.1308650111
https://doi.org/10.5445/IR/1000079814
https://doi.org/10.1147/sj.272.0185
https://doi.org/10.1147/sj.272.0185


Bibliography

[Tor22] TORTORELLA, Yvan; BERTACCINI, Luca; ROSSI, Davide; BENINI,
Luca and CONTI, Francesco: “RedMulE: A Compact FP16 Matrix-
Multiplication Accelerator for Adaptive Deep Learning on
RISC-V-Based Ultra-Low-Power SoCs”. In: 2022 Design, Automa-
tion and Test in Europe Conference and Exhibition (DATE). 2022,
pp. 1099–1102. DOI: 10.23919/DATE54114.2022.9774759 (cit. on
p. 49).

[Vog12] VOGELGESANG, Matthias; CHILINGARYAN, Suren; TOMY, dos San-
tos Rolo and KOPMANN, Andreas: “UFO: A Scalable GPU-based
Image Processing Framework for On-line Monitoring”. In: 2012
IEEE 14th International Conference on High Performance Com-
puting and Communication 2012 IEEE 9th International Confer-
ence on Embedded Software and Systems. 2012, pp. 824–829. DOI:
10.1109/HPCC.2012.116 (cit. on p. 98).

[Vog13] VOGELGESANG, M; FARAGO, T; SANTOS ROLO, T dos; KOPMANN, A
and BAUMBACH, T: “When hardware and software work in con-
cert”. In: Proc. IPACLEPCS’13 (2013), pp. 661–664 (cit. on p. 98).

[Wul95] WULF, Wm A and MCKEE, Sally A: “Hitting the memory wall:
Implications of the obvious”. In: ACM SIGARCH computer archi-
tecture news 23.1 (1995), pp. 20–24. DOI: 10.1145/216585.216588
(cit. on p. 45).

159

https://doi.org/10.23919/DATE54114.2022.9774759
https://doi.org/10.1109/HPCC.2012.116
https://doi.org/10.1145/216585.216588




List of Figures

2.1 Schema of DAQ with computing and feedback control
loop . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Example of noise reduction in differential signalling . . . . 19
2.3 Multiple PCIe connectors of different sizes on a

motherboard . . . . . . . . . . . . . . . . . . . . 27
2.4 RJ45 and SFP plugs . . . . . . . . . . . . . . . . . . 29
2.5 The multi-layered architecture of the InfiniBand

interconnect standard . . . . . . . . . . . . . . . . . 32
2.6 Data Fields of a TCP Protocol Header . . . . . . . . . . 38
2.7 TCP Connection Handshake . . . . . . . . . . . . . . 39
2.8 The available Transport Modes of the InfiniBand fabric . . . 41
2.9 General layout of a RoCE package (v1 and v2) . . . . . . . 43
2.10 Speeds and sized of multiple cache layers . . . . . . . . . 47
2.11 An Nvidia Tesla K40c and an AMD Radeon R9 290 GPU . . . 50
2.12 Comparison of CPU and GPU computing cores . . . . . . 51
2.13 Exemplary layout of an FPGA CLB . . . . . . . . . . . 57
2.14 Exemple Verilog Code . . . . . . . . . . . . . . . . 58
2.15 Zynq Ultra Scale Plus Development Board . . . . . . . . 59
2.16 A Xilinx ALVEO computing accelerator FPGA Card . . . . 60

3.1 Schema of conventional and DMA data transfer . . . . . . 63
3.2 Conceptual presentation of Virtual Memory Mapping . . . . 66
3.3 An Nvidia Connect X6 InfiniBand network adapter . . . . . 68
3.4 Visualization of the different data paths for GPU RDMA . . . 71
3.5 The High-Flexibility FPGA DAQ board . . . . . . . . . . 73
3.6 Schematic of the FPGA DMA Test System PCIe Bus layout . . 74

161



List of Figures

3.7 Latency distribution of transfer latency from FPGA to
RAM, then GPU . . . . . . . . . . . . . . . . . . . 76

3.8 Latency distribution of transfer latency from FPGA to GPU
on same PCIe switch . . . . . . . . . . . . . . . . . 77

3.9 Latency distribution of transfer latency from FPGA to GPU
on same PCIe switch . . . . . . . . . . . . . . . . . 78

4.1 KIRO Software Stack . . . . . . . . . . . . . . . . . 82
4.2 KIRO Throughput per Payload Size . . . . . . . . . . . 92
4.3 KIRO Protocol overhead latency . . . . . . . . . . . . 93
4.4 KIRO RDMA Read Latency . . . . . . . . . . . . . . 93
4.5 Visualization of the different wavelengths of

electromagnetic radiation . . . . . . . . . . . . . . . 95
4.6 Visualization of the UFO Processing Chain . . . . . . . . 97
4.7 Visualization of the UFO Software Stack . . . . . . . . . 99
4.8 Conceptual presentation of the CORBA software

paradigm . . . . . . . . . . . . . . . . . . . . . . 101
4.9 Measurements of 1 Gbps Ethernet and 32 gpbs

TCPoverInfiniBand performance in TANGO/CORBA . . . . 103
4.10 Remote UFO Camera control through TANGO, using

libUCA . . . . . . . . . . . . . . . . . . . . . . 105
4.11 Remote UFO Camera control through TANGO, using a

KIRO side channel . . . . . . . . . . . . . . . . . . 105
4.12 Results of the native InfiniBand side channel in a TANGO

controlled environment . . . . . . . . . . . . . . . . 107

5.1 Inside of a low-latency computing node PC . . . . . . . . 115
5.2 A cutaway diagram of the CMS detector . . . . . . . . . 118
5.3 The process of stub-building in the new CMS silicon

tracker modules . . . . . . . . . . . . . . . . . . . 121
5.4 The process of identifying tracks from stubs . . . . . . . . 122
5.5 Transformation of circle parameters into Hough Space . . . 124
5.6 Example Hough Paramter Space Rasterization showing cell

bleeding . . . . . . . . . . . . . . . . . . . . . . 126

162



List of Figures

5.7 Comparison of hexagonal and rectangular Hough
parameter space . . . . . . . . . . . . . . . . . . . 127

5.8 Visualization of pipelined computation against linear
ordered computing . . . . . . . . . . . . . . . . . . 130

5.9 Schema of the commodity hardware CMS L1 Track Trigger
test system . . . . . . . . . . . . . . . . . . . . . 131

6.1 Working principles of a hypothetical RDMA dispatcher . . . 139
6.2 Working principles of a hypothetical RDMA router . . . . . 141
6.3 Ookla Speedtest Global Index 2021 . . . . . . . . . . . 144

163





List of Tables

2.1 The 7 layers of the OSI Model . . . . . . . . . . . . . 23
2.2 PCIe transfer rates and throughput per version . . . . . . 27

3.1 Results of transfer latency measurements from FPGA to
RAM, then GPU . . . . . . . . . . . . . . . . . . . 76

3.2 Transfer latency measurements from FPGA to GPU on the
same PCIe switch . . . . . . . . . . . . . . . . . . 77

3.3 Transfer latency measurements from FPGA to GPU on
separata PCIe switches . . . . . . . . . . . . . . . . 78

5.1 Execution times for the commodity trigger
implementation. Shown are the results for standard
rectangular Hough Space implementation, both sequential
and pipelined. As well as the sequential hexagonal Hough
Space implementation. All times given in 𝜇s. . . . . . . . 132

5.2 Comparison of actual CMS L1 Track Trigger constraints
against achieved performance of the Commodity GPGPU
DAQ Demonstrator, by algorithmic variation. Times for the
algorithms represent worst-cases. . . . . . . . . . . . . 134

165





Listings

4.1 Code example for setting up a KIRO Server . . . . . . . . . . . . 89
4.2 Code example for setting up and connecting a KIRO Client . . . 90

167





Acronyms

bps Bits per Second

CERN European Organization for Nuclear Research

CLB Configurable Logic Block

CMS Compact Muon Solenoid

CORBA Common Object Request Broker Architecuter

CPU Central Processing Unit

DAQ Data Acquisition

DMA Direct Memory Access

FPGA Field Programmable Gate Array

HDL Hardware Description Language

HLT High Level Trigger

HPC High Performance Computing

IP Internet Protocol

IPS Internet Protocol Suite

169



Acronyms

KARA KArlsruhe Research Accelerator

L1T Level 1 Trigger

LHC Large Hadron Collider

LUT Lookup Table

MAC Media Access Control

OSI Model Open Systems Interconnection Model

RDMA Remote Direct Memory Access

RoCE RDMA over Converged Ethernet

SDR Software-defined Radio

SFP Small Form-Factor Pluggable

SIMD Single-Instruction-Multiple-Data

TCP Transmission Control Protocol

UDP User Datagram Protocol

UFO Ultra fast X-ray tomography with Feedback control loops and
Online reconstruction

170


	Cover
	Abstract
	Kurzfassung
	Acknowledgements
	Contents
	1 Introduction
	1.1 DAQ in the Terascale Era
	1.2 Problem statements and research questions

	2 DAQ basics: Data Transfer and Computing
	2.1 Data Communication Fundamentals
	2.1.1 Transmission Media
	2.1.2 Interconnects relevant to this work
	2.1.3 Networking Protocols

	2.2 High Performance Computing Methods
	2.2.1 The Multi-Core Paradigm
	2.2.2 Scalability of data access
	2.2.3 Computing Accelerators and Co-Processors

	2.3 Field Programmable Gate Arrays

	3 Direct Memory Access
	3.1 Remote Direct Memory Access
	3.2 GPU as Target of RDMA
	3.3 GPU DMA using an FPGA

	4 KIRO: An RDMA programming library
	4.1 KIRO Software Design and Components
	4.2 KIRO Performance Measurements
	4.3 Case Study: High-speed RDMA side-channel for control systems
	4.3.1 X-Ray Imaging at the IMAGE beamline of KARA
	4.3.2 State of the System and Implementation Considerations
	4.3.3 Side-Channel Benchmarks and Results


	5 Low-Latency GPU computing system for commodity DAQ
	5.1 System Design
	5.2 GPGPU Specific latency optimization
	5.3 Case Study: Low Latency Trigger
	5.3.1 The CMS and its L1-Track Trigger
	5.3.2 Track-Finding based on a Hough-Transformation
	5.3.3 Hexagonal Hough Space
	5.3.4 Implementation details of the Track Trigger

	5.4 Results and Discussion

	6 Software-defined DAQ and future developments
	6.1 RDMA Network Routing for fault tolerance and load balancing
	6.2 Future of DAQ in the Cloud

	7 Conclusion and Research Results
	Bibliography
	List of Figures
	List of Tables
	Listings
	Acronyms

