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The beam longitudinal dynamics code BLonD, utilized tool, has been developed at CERN since 2014. It
has emerged as a central tool for conducting longitudinal beam dynamics simulations. In this paper, we
present this modular simulation suite and the various physics models that can be included and combined by
the user. We detail the reference frame, the equations of motion, the plethora of options for radio-frequency
parameters such as phase noise, fixed-field acceleration, and feedback models for the CERN accelerators,
as well as the modeling of collective effects and synchrotron radiation. We also present various methods of
generating multibunch distributions matched to a given impedance model. BLonD is furthermore a well
tested and optimized simulation suite, which is demonstrated through examples, too.
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I. INTRODUCTION

For several decades, longitudinal beam dynamics sim-
ulations at CERN have been performed using Fermilab’s
widely used simulation suite called ESME [1]. With the
upgrade projects of the CERN synchrotrons and studies of
future machines, there was a growing need for precision
simulations that could combine for a given study of all
relevant physics with machine-specific features. At the
same time, the simulation suite would have to be general
enough to cover a wide range of applications, from low- to
high-energy synchrotrons, from electrons over protons to
ions, from space charge to synchrotron-radiation dominated
regimes.
The Beam Longitudinal Dynamics simulation suite

BLonD [2,3] has been developed at CERN since 2014.

It is an open-source particle tracking code for the simu-
lation of longitudinal motion in synchrotrons, written in
PYTHON and C++ languages. It relies on some of the most
popular and efficient scientific libraries including Numpy
[4], Scipy [5], and CuPy [6].
The code usesmacroparticleswith the same charge-to-mass

ratio as the real particles. Real bunch intensities typically vary
in the range of 108–1013 particles=bunch, while in simula-
tions, an order of 104–107 macroparticles=bunch are used.
BLonD has a modular structure that allows the user to model
different effects according to their needs. The BLonD code’s
unique feature is that it allows both the coordinates of beam
particles and the properties of the radio-frequency (rf) system,
that is, its frequency and voltage vector, to evolve in space and
time, by tracking them with respect to an external reference
“clock,” just as in a real machine. This has the advantage
of being able to include several beam- and/or cavity loops,
collective effects, etc. when modeling the beam motion.
Additional special features of the code are the generation of
matched multibunch phase-space distributions with collective
effects, rf phase noise and sinusoidal rf phase modulation, and
its overall flexibility.
The trustworthiness of the BLonD suite has been

strengthened through thorough benchmarking [7] and
numerous applications in all the CERN existing and future
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synchrotrons. The outcome of BLonD simulation studies has
often guided the baseline choices for machine upgrades [8].
Tomention a few challenging applications, theCERNProton
Synchrotron Booster (PSB), for instance, poses its chal-
lenges with an injection scheme using constant frequency
during a magnetic ramp, with beam-based feedback systems
on, strong space charge, and a beam that stretches over the
entire ring before getting bunched. The proton synchrotron
(PS) is equipped with numerous rf systems used to shape the
beam via rf manipulations (e.g., splitting and merging
bunches), so simulations including multi-rf systems and
beam-loading effects are required to predict the best achiev-
able beam quality when increasing beam intensity. Deter-
mining the beam and rf parameters for the post-2021 Super
Proton Synchrotron (SPS) requires a meticulously accurate
impedance model, which was determined from benchmarks
of beam-based measurements against simulation results. In
addition, apart fromCERN, several other institutes have been
using BLonD for longitudinal studies [9–12].
In this article, we present the unique features of the BLonD

code and demonstrate them through application examples.
We do this by first describing the methods and underlying
equations before providing a concrete use case. The paper is
structured as follows: Starting from an overview of the
program structure (Sec. II), we provide the reference frame
and beam-cavity interactions (Sec. III), we then describe the
modulation of rf parameters (Sec. IV), the modeling of

impedance and collective effects (Sec. V), synchrotron
radiation and quantum excitation (Sec. VI), global and local
feedback models (Sec. VII), over the generation of particle
distributions (Sec. VIII), to optimizations (Sec. IX), and
finally benchmark techniques (Sec. X).

II. PROGRAM STRUCTURE

The main programming objects that comprise the build-
ing blocks of BLonD simulations are depicted in Fig. 1. The
legend on the right explains the different shapes used. The
objects marked as mandatory are present in every BLonD

simulation, while the remaining ones are only initialized if
considered relevant by the user. Objects connected with an
arrow indicate that the source object is either input to the
target object or updates data stored in the target object. The
circled numbers on the top-right corner of each object
suggest an initialization sequence. Some optional, data-
analysis objects that are responsible for storing and plotting
data are not shown in the figure.
The Ring object (❶) holds all the immutable synchro-

tron properties, e.g., the circumference, the number of ring
segments, etc., which are independent of the rf systems and
the beam. The rf station object (❷) contains the rf
parameters for all the rf systems in one ring segment.
The beam object (❸) holds the longitudinal particle
coordinates. The distribution generators (❹)
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FIG. 1. BLonD program structure. This figure displays the main building blocks of BLonD simulations, their role, and interactions. The
legend on the right explains the function of the different shapes.
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initializing the phase-space distribution of the beam are
described in detail in Sec. VIII. The profile object (❺) is
responsible for performing a binning [13] operation on the
beam to calculate the longitudinal profile. The function of
the optional induced voltage (❻), synchrotron
radiation (❼), and rf feedbacks (❽) objects is
described in Secs. V–VII, respectively. Finally, the rf
tracker (❾) is responsible for updating the particle
coordinates in every rf station and in between them by
applying the equations of motion listed in Sec. III.
Following the initialization of the necessary objects, the

simulation enters the main tracking loop. Each iteration
of the main loop corresponds to one revolution of the
beam in the synchrotron. The trackable objects, i.e., those
that implement a track() method, are updated in every
iteration, modifying private data such as the beam profile
and the induced voltage, or data stored in remote objects,
such as the beam coordinates.
Upon completion of the main tracking loop, statistical

data or features are typically stored in files for postprocess-
ing, and some plots are generated to visually inspect the
simulation evolution. This marks the end of a BLonD

simulation. A collection of illustrative simulation examples
can be found in the public BLonD code repository [3].

III. REFERENCE FRAME AND BEAM-CAVITY
INTERACTIONS

Just like beam- and cavity control work in a real
synchrotron, BLonD describes the evolution of beam particle
coordinates and the voltage, phase, and frequency in the
radio-frequency accelerating cavities w.r.t. an external
reference clock. The design clock time td;ðnÞ in a given
turn n counts the total number of turns elapsed in the
laboratory frame,

td;ð0Þ ≡ 0 and td;ðnÞ ≡
Xn
k¼1

Trev;ðkÞ for n ≥ 1: ð1Þ

The revolution periods Trev;ðnÞ are defined by the design
orbit of radius Rd and βd;ðnÞ, the relative speed of the design
particle with respect to the speed of light c on that orbit,

Trev;ðnÞ ¼
2πRd

βd;ðnÞc
; ð2Þ

where the user can input βd;ðnÞ implicitly via the corre-
sponding design relativistic momentum pd;ðnÞ or total
energy Ed;ðnÞ evolution over time. The input also deter-
mines the design of magnetic field ramp Bd;ðnÞ through the
relation

pd;ðnÞ ¼ jqjρBd;ðnÞ; ð3Þ
where q is the charge of the particle and ρ the bending
radius of the magnets.

The user can choose to place several rf stations along the
ring, in which case the magnetic field program of each
section of the ring (from one rf station to another) has to be
input. This subcycling of a turn can be useful, for instance,
in the presence of strong synchrotron radiation. In each rf
station, an arbitrary number of nrf harmonic rf systems can
be modeled; all rf systems in a given rf station will be
treated as having the same longitudinal position. The origin
of the coordinate system ðex; ey; ezÞ is fixed to the
longitudinal position of the first rf station, on the reference
orbit, see Fig. 2.
The particles are described with the phase-space coor-

dinates ðΔtðnÞ;ΔEðnÞÞ, which are the particle’s arrival time
and energy with respect to the integrated reference time
td;ðnÞ and the design total energy Ed;ðnÞ, respectively. For
each section of the ring, first, the energy ΔE of a given
particle is updated from time step n to nþ 1 based on the
particle’s arrival time and all the rf voltage kicks k received
in the corresponding rf station,

ΔEðnþ1Þ ¼ ΔEðnÞ þ
Xnrf
k¼1

qVk;ðnÞ sinðωrf;k;ðnÞΔtðnÞ þφrf;k;ðnÞÞ

− ðEd;ðnþ1Þ −Ed;ðnÞÞ þEother;ðnÞ; ð4Þ

where Vk is the voltage amplitude, ωrf;k the rf angular
frequency, and φrf;k the phase of the rf system k, and
Ed;ðnþ1Þ − Ed;ðnÞ the change of the design energy from one
turn to another. The last term Eother;ðnÞ contains additional
energy changes due to induced voltage, synchrotron radia-
tion, etc.
The modular structure of the code allows that, on

demand, the rf frequency and voltage vector need not be
preprogrammed but can evolve dynamically. This evolution
is dictated by global and local control loops, as described

FIG. 2. Reference frame for the equations of motion and the
reference time. A given particle on the orbit R is described with
the energy E and the longitudinal coordinate t.
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later in Sec. VII. When such loops are acting, the rf voltage
amplitude and phase can even be arrays instead of single
numbers. The choice of the reference frame ensures that
these arrays can be sampled at a desired frequency, and
modulated to the reference frequency when input into
Eq. (4), even if the rf frequency is not an integer multiple
of the revolution frequency anymore.
The time coordinate of the particle is updated sub-

sequently, using the already updated energy of the particle
and the momentum compaction factor α of at least zeroth,
and up to second order,

Δtðnþ1Þ ¼ΔtðnÞ þTrev;ðnþ1Þ

2
64�1þα0;ðnþ1Þδðnþ1Þ

þα1;ðnþ1Þδ2ðnþ1Þ þα2;ðnþ1Þδ3ðnþ1Þ
�1þ ΔEðnþ1Þ

Ed;ðnþ1Þ

1þ δðnþ1Þ
− 1

3
75;
ð5Þ

where δðnÞ ¼ ΔpðnÞ
pd;ðnÞ

≃ ΔEðnÞ
β2dEd;ðnÞ

is the relative momentum offset.

The collective effects contained in the Eother;ðnÞ term of
Eq. (4) can in general depend on the particle’s coordinates
Eother;ðnÞðΔtðnÞ;ΔEðnÞÞ and the coordinates of other particles
as well. Without this term, the one-turn mapping of the
coordinate pair x≡ ðΔtðnÞ;ΔEðnÞÞ to y≡ ðΔtðnþ1Þ;ΔEðnþ1ÞÞ
can be described by rewriting Eqs. (4) and (5) as

Δtðnþ1Þ ¼ ΔtðnÞ þ f½ΔEðnþ1ÞðΔtðnÞ;ΔEðnÞÞ�; ð6Þ

ΔEðnþ1Þ ¼ ΔEðnÞ þ gðΔtðnÞÞ: ð7Þ

Using the chain rule, themapping or Jacobianmatrix, defined
as Mij ≡ ∂yi=∂xj, becomes

M ¼
�
1þ f0g0 f0

g0 1

�
: ð8Þ

It is straightforward to show thatM fulfills the symplecticity
condition [14]

MTSM ¼ S; ð9Þ

where S ≡ ð 0
−1

1
0
Þ. The equations of motion, without any

collective effects, are therefore symplectic, and, as a conse-
quence, preserve the phase-space area of the coordinates,
despite the rather complex form of Eq. (5). Some solvers are
not symplectic and lead therefore to unphysical blowup in
simulations. In general, however, when other terms are
introduced, like synchrotron radiation ormultiparticle effects
such as diffusion due to rf noise or collective effects, where

the entire N-particle system of equations needs to be
considered, symplecticity can be broken.

A. Periodicity

The equations of motion provided in the preceding sec-
tion lack periodicity in the time coordinate. Consequently,
in scenarios where a particle remains outside the rf bucket
without experiencing any acceleration, it may drift away
toward infinitely large time coordinates which neglects the
ring’s geometry and is unrealistic. To address this limita-
tion, the BLonD code supports adding the periodicity
condition to the equations of motion.
To illustrate how the periodicity algorithm operates, let

us suppose that a particle is outside the rf bucket at turn 1
and about to drift away from the present time frame, as
shown in Fig. 3. This implies that Δt1 > 0 and Δt2 < 0,
respectively, before and after the equations of motions are
applied to the particle. Since Δt2 < 0, the particle is ahead
relative to the time frame of turn 2, therefore, the particle
has to be kicked in energy and drifted one more time, using
the rf wave (blue) of turn 1. In order to do that, we first need
to represent the time coordinate of the particle relative to
the previous time frame, i.e., Δt1 ¼ Δt2 þ Trev;ð1Þ. Then,
the equations of motion with the rf wave of turn 1 are again
applied. As a result, the particle has now Δt2 > 0 and it is
inside the time frame of turn 2, as desired. The particle will
again drift to the left, turn after turn, and the procedure will
be repeated whenever Δt < 0.
On the contrary, if a particle drifts to the right and is

about to cross the boundary at turn 1, then at turn 2, the
particle will be late relative to the current time frame,
therefore the equations of motion will not be applied at turn
2. They will be applied at turn 3, after having represented
the time coordinate of the particle with respect to the time
frame of turn 3, i.e., Δt3 ¼ Δt2 − Trev;ð2Þ.
There are specific cases where the ring periodicity has to

be considered in order to describe accurately the dynamics
of the particles. One example is a single bunch covering the
entire accelerator circumference, with the head and the tail
of the bunch crossing the boundaries between previous,
present, and next turns. Such a scenario can occur for

FIG. 3. Scheme illustrating how the periodicity algorithm
operates for a particle that drifts away from the current time
frame crossing the left border.
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instance in the PSB operated at the h ¼ 1 harmonic
(Fig. 4), where the ring periodicity ensures that all the
particles remain synchronized to the present time frame.
The periodicity algorithm is also useful when the beam

losses have to be computed accurately or when an un-
bunched beam has to be captured inside an rf bucket.
Another useful application is when parts of the rf bucket
cross the lines Δt ¼ 0 and Δt ¼ Trev in phase space, for
example, when the beam phase loop changes the design rf
frequency and shifts the bucket in phase space, or when a
second rf system with relatively high voltage is added in
bunch-lengthening mode to the main-harmonic voltage
during acceleration. In these cases, the bunch will be
numerically split in phase space into two portions, which,
however, in practice behave as a whole.
While the implemented periodicity feature has demon-

strated notable improvements in accuracy for specific
simulation scenarios, it is important to note that the
algorithm for handling periodicity with full consistency
regarding collective effects is presently unavailable in
BLonD. This limitation may have a notable impact on
simulations involving unbunched beams with collective
effects.

IV. MODULATION OF RF PARAMETERS

BLonD provides the possibility of simulating any complex
beam manipulation in the longitudinal plane since both the
momentum and the rf programs [ωrf;kðtÞ, VkðtÞ, φrf;kðtÞ]
can be given as an input. The choice of whether to modulate
the rf phase or frequency is in theory equivalent, as the
modulated phase offsetΔφrf can be related to the frequency
offset Δωrf as follows:

Δφrf ¼ 2πh
ωrf

ωrf;d
¼ 2πh

ωrf;d þ Δωrf

ωrf;d
: ð10Þ

In practice, however, depending on the hardware in which
the modulation is applied in, one or the other might be
preferred. In addition to rf phase or frequency modulation,
wheneverωrf ≠ hωrev, a similar phase shift applies w.r.t. the
reference frame chosen:

Δφrf ¼ 2πh
ωrf

hωrev
: ð11Þ

An example of the latter is a magnetic ramp with fixed rf
frequency, as it has been suggested for ion beam operation
in the SPS [15].
Below, we show some examples of rf phase noise and

modulation, as well as slip stacking. However, many other
applications, such as cogging, synchronization, fixed-
frequency acceleration, etc. are possible to simulate, too.

A. Rf phase noise and modulation

For controlled longitudinal emittance blowup [16,17],
both band-limited rf phase noise of the main harmonic
[18,19] and single-frequency modulation of a high har-
monic [20] can be used. In BLonD, a turn-by-turn phase
offset (Δφrf;ðnÞ) can be added to the programmed rf phase
(φrf;ðnÞ) to achieve this. The modulation functions can be
defined by the user directly or calculated with built-in
functions. For instance, the generation method of the phase
noise presently used in the CERN synchrotrons [21] can be
applied.
In the case of time-dependent single-frequency fmodðtÞ

modulation, Δφrf;ðnÞ is computed as

Δφrf;ðnÞ ¼ A sin

�
2π
Xn
k¼0

fmod ;ðkÞTrev;ðkÞ

�
þ φoff;ðnÞ; ð12Þ

where A is the modulation amplitude, fmod ;ðnÞ is the
modulation frequency, and φoff;ðnÞ is an offset about which
the modulation is applied. To correctly simulate the phase
modulation, the rf frequency has to be corrected by the
equivalent frequency change w.r.t. the reference clock:

Δωrf;ðnÞ ¼
dΔφrf;ðnÞ

dt
¼ δΔφrf;ðnÞ

ωrf;d;ðnÞ
2πh

; ð13Þ

where δΔφrf;ðnÞ denotes the change of Δφrf;ðnÞ from one
turn to another.

B. Fixed-field manipulations: Slip stacking

Slip-stacking is an rf manipulation technique initially
proposed at CERN for the PS and SPS accelerators [22,23],
and has since then been studied and applied in various
particle accelerator laboratories, including Fermilab
[24,25]. Momentum slip-stacking (MSS) stands out as
one of the most intricate rf manipulations, currently

FIG. 4. Phase-space plot of an unstable bunch in an accelerating
bucket (h ¼ 1). The time coordinate on the horizontal axis spans
from 0 to Trev. With the periodic condition enabled, particles that
exit the time frame from the right enter back into the frame from
the left.
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undergoing rigorous investigation through simulations for
ion beams in the SPS [8] using the BLonD code.
MSS allows two high-energy particle beams with

slightly different momenta to slip azimuthally, relative to
each other, within the same beam pipe. The two beams are
captured by two rf systems with a small frequency differ-
ence between them. Each beam is synchronized with one rf
system while being perturbed by the other. Upon reaching
the desired azimuthal position, the full beam is recaptured
with significantly higher rf voltage at the design rf
frequency. In particular, for the SPS, two batches of
24 bunches, spaced by 100 ns, are interleaved on an
intermediate momentum plateau to produce a single batch
of 48 bunches with half the bunch distance (50 ns). The
process as simulated in BLonD, is schematically illustrated
in Fig. 5. Further details on howMSS is going to be applied
in the SPS can be found in [26,27].
During MSS the magnetic field Bd will be constant,

which means that, in a first-order approximation, the
following relation holds

Δωrf

ωrf;d
¼ −η0

Δp
pd

; ð14Þ

where Δωrf and Δp are the changes in the rf angular
frequency and beammomentumwith respect to their design
values. In a reference frame that is synchronized with the
design revolution period Trev;d, a variation Δωrf implies a
change in the rf phase according to

Δφrf ¼
2πhΔωrf

ωrf;d
: ð15Þ

Providing as an input to BLonD the aforementioned
programs, as well as the rf voltage amplitude programs
for the two cavity groups, the total rf voltage experienced
by each beam is given by

Vrf ¼ Vrf;1 sinðωrf;1tþ φrf;1Þ þ Vrf;2 sinðωrf;2t − φrf;2Þ;
ð16Þ

where the indices 1,2 indicate the first and second group of
rf cavities accordingly.

C. Frequency modulation

In the LEIR accelerator, ion beams are injected and
cooled on a long flat bottom. The cooled beams are then

FIG. 5. Illustration of the MSS procedure simulated in BLonD. Two batches, starting from Phase I (top left) are separated in energy
and move in the longitudinal phase space relative to each other. The black line marks ΔE ¼ E − Ed ¼ 0. In Phase II (top right),
the energy distance between the batches increases, while the opposite occurs in Phase III (bottom left). Recapture is done in
Phase IV (bottom right).
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adiabatically captured by the rf and accelerated. For high-
intensity beams, frequency modulation is used during
capture to increase the longitudinal emittance and improve
reproducibility [28]. In this instance, the required Δωrf is
computed and provided as input to BLonD, from which Δφrf
is computed via Eq. (15).

V. MODELING IMPEDANCE
AND COLLECTIVE EFFECTS

One of the main focuses of the BLonD code is to simulate
collective effects due to beam-coupling impedance leading
to beam instabilities [29]. The criteria for the development
were to include the possibility of exploring stationary
single bunch effects such as potential-well distortion,
synchronous phase and synchrotron frequency shifts, as
well as bunch lengthening [30]. For instance, a synchrotron
frequency shift may affect the performance of a controlled
longitudinal emittance blow-up [31]. On the other hand,
another prerequisite was to include multibunch effects and
long-range wakefields, to study coupled-bunch instabilities
among other applications. The architecture of the code is
built to account for all single and multibunch effects.
Moreover, the choice of the coordinate system with the
notion of “design” revolution period allows to perform
consistent simulations between collective effects and the
feedback systems described in Sec. VII.
The electromagnetic interaction is described by the wake

functionWðtÞ, which represents the electric field excited by
a point charge as experienced by a test charge.
In BLonD, to reduce the computational complexity of the

particle-particle interactions, a Particle-In-Cell (PIC) type
solver is implemented [13]. A binning is applied to the
particle distribution to compute the wake potential or
induced voltage V indðΔtÞ for each cell. This induced
voltage is defined as the convolution of the line density
λðtÞ of the beam, normalized to

Rþ∞
−∞ λðtÞdt ¼ 1, and the

wake function:

V indðΔtÞ ¼ −qNp

Z þ∞

−∞
λðτÞWðΔt − τÞdτ; ð17Þ

where Np is the number of real particles in the beam.
The energy kick EindðΔtÞ ¼ qV indðΔtÞ due to the

induced voltage entering the term Eother in Eq. (4), where
the minus sign in Eq. (17) ensures an energy loss for a
positive wake potential.
The induced voltage can also be computed in the

frequency domain using the impedance ZðωÞ, defined as
the Fourier transform of the wake function:

ZðωÞ ¼
Z þ∞

−∞
WðtÞe−jωtdt; ð18Þ

V indðΔtÞ ¼ −
qNp

2π

Z þ∞

−∞
ZðωÞΛðωÞejωΔtdΔt; ð19Þ

where ΛðωÞ is the beam spectrum, obtained as the Fourier
transform of the line density.
Although both time- and frequency-domain methods are

equivalent, the discretization required for numerical sim-
ulations makes each method suitable for different situa-
tions, depending on the bandwidth of the impedance
source.
Wakefields corresponding to narrow-band impedance

sources require very high-frequency resolution to be able to
resolve them correctly. However, in the time domain, we
only need to describe the signal for a time window
equivalent to the length of a bunch or a train of bunches.
In that case, computations in the time domain will require
significantly less resources. Alternatively, a broadband
impedance will result in a wakefield that would require
too fine resolution in the time domain.
For these reasons, BLonD implements both time and

frequency-domain calculations, as well as different strat-
egies to deal with the discretization of the line density.

A. Impedance sources

Wake functions and impedances can be calculated
analytically for simple geometries (see, e.g., [32]) or using
numerical codes for more complicated devices.

BLonD includes several analytical impedance models.
One of them is the resonator model, with an impedance
defined as

ZðωÞ ¼ Rs

1þ jQðωωr
− ωr

ω Þ
; ð20Þ

where Rs is the shunt impedance, ωr the angular resonant
frequency, and Q the quality factor. Alternatively, the
resonator wakefield can be used, which is defined as

Wðt > 0Þ ¼ 2αRse−αt
�
cos ω̃t −

α

ω̃
sin ω̃t

�
;

Wð0Þ ¼ αRs; ð21Þ

where α ¼ ωr
2Q and ω̃ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
r − α2

p
. The user can include

one or more resonators to model the impedance of an
element.
Furthermore, BLonD contains a model for the resistive

wall impedance of the beam pipe, for the case of a
cylindrical beam pipe, which in the frequency domain
reads as [29]

ZðfÞ ¼ Z0cL

π½1 − i sgnf�2bc
ffiffiffiffiffiffiffiffiffi
σcZ0c
4πjfj

q
þ i2πb2f

; ð22Þ

where Z0 is the characteristic vacuum impedance, L the
length, b the radius and σc the conductivity of the
beam pipe.
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Traveling wave cavities are implemented with the
impedance of [33]

Z ¼ Zþ þ Z−; with

Z�ðfÞ≡ Rs

" 
sin ω̃�τ

2
ω̃�τ
2

!
2

∓ 2i
ω̃�τ − sin ω̃�τ

ðω̃�τÞ2
#
; ð23Þ

and the wakefield of

Wð0 < t < aÞ ¼ 4Rs

τ

�
1 −

t
τ

�
cosωrt;

Wð0Þ ¼ 2Rs

τ
; ð24Þ

where τ is the cavity filling time and ω̃� ¼ ω� ωr.
Coherent synchrotron radiation can be modeled as an
impedance, too. If the user does not give a value for the
height of the beam pipe, the impedance of the free-space
model is used [34]

ℜZ
Z0

¼
ffiffiffi
3

p
γ

4

f
fcrit

Z
∞

f=fcrit

K5=3ðyÞdy; ð25Þ

ℑZ
Z0

¼ −γf
fcrit

2
64Z 1

0

e−fy=fcrit

0
B@−2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − y2

p
4y

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − y2

p

þ
�
iyþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − y2

p �
5=3 þ

�
iyþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − y2

p �
−5=3

4y
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − y2

p
1
CAdy

−
Z

∞

1

e−fy=fcrit

0
B@ 8

ffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 − 1

p
8y

ffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 − 1

p

−

�
yþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 − 1

p �
5=3

−
�
yþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 − 1

p �
−5=3

8y
ffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 − 1

p
1
CAdy

3
75;
ð26Þ

where the critical frequency is given by

fcrit ¼
3

4π
γ3

c
R
; ð27Þ

and R denotes the bending radius of the dipole magnet. If
the chamber height is given, the parallel-plates impedance
is used [34]. Since BLonD uses the convention that particles
leading the reference particle have Δt < 0, Eq. (26) has an
additional minus sign w.r.t. [34].
For the special case of purely imaginary impedances,

another method is available, in which the magnitude of the
impedance is directly proportional to the frequency. In this

case, the impedance is described by a constant number,
Z=n, where n ¼ ω=ωrev. The induced voltage computation
is much simpler, as the DFTs are replaced by a derivative:

V ind½n� ¼ −
qTrev

2πTs

Z
n
dλ½n�
dn

; ð28Þ

where Ts is the binning size for the discretized line density.
An interesting use of this method is the modeling of space
charge as a reactive impedance (see, e.g., [35]).
Finally, BLonD allows to input also tables that consist of

either time and wakefield values, or frequency and imped-
ance values, which can be used to describe an arbitrary
impedance model. All of the above-mentioned impedance
models can be used in a combined manner as well.

B. Induced voltage calculation

BLonD uses the impedance sources described above to
calculate the induced voltage that is then applied to the
macroparticles in the same way as the voltage kick from the
accelerating cavities. Both operations can be combined for
optimization by summing the rf voltage to the induced
voltage with the same time resolution. The total energy kick
is then linearly interpolated and applied based on the
particle position Δt.

BLonD implements two generic algorithms to compute
the induced voltage that works with all the impedance
sources described above; one is in the time domain and the
other in the frequency domain.
In the frequency domain, the method consists of dis-

cretizing Eq. (19) as

V ind½n� ¼ −qNpIDFTðZ½k�Λ½k�Þ; ð29Þ

where IDFT is the Inverse Discrete Fourier Transform and
Λ½k� is the Discrete Fourier Transform (DFT) of the line
density: Λ½k� ¼ DFTðλ½n�Þ.
In time domain, the induced voltage is calculated as a

discrete convolution. However, it is in general more
efficient to compute the discrete convolution using the
DFT according to the circular convolution theorem,

V ind½n� ¼ −qNpIDFTfDFTðW½n�ÞDFTðλ½n�Þg: ð30Þ

It is important to carefully pad the two signals with zeros
so that the result is the linear convolution. If the length of
W½n� is N and the length of λ½n� is M, both signals need to
be padded so that their length is at least L ¼ N þM − 1; in
practice, the next regular number is used for runtime
efficiency. In this case, the complexity of the algorithm
using Fast Fourier Transform (FFT) is OðL logLÞ, to be
compared to OðNMÞ using the direct convolution algo-
rithm in the time domain.
Given the similarities between Eqs. (29) and (30), BLonD

has a single implementation for both methods, with the
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difference that when doing time-domain calculations, a
pseudo-impedance is defined as Z�½k� ¼ DFTðW�½n�Þ,
where the * indicates that the signal is zero padded. Simi-
larly, the beam spectrum is defined as Λ�½k� ¼ DFTðλ�½n�Þ.

BLonD also implements two special algorithms that are
limited to resonator impedances. The MUSIC algorithm [36]
uses a propagation matrix to compute the induced voltage
without binning. The second algorithm is an adaptation of a
semianalytic method [37] to resonators and does not require
uniform binning.

BLonD can also take into account wakefields lasting more
than one turn, which can be an important contribution of
narrow-band impedance sources in small rings. The code
keeps in memory the induced voltage generated for a user-
defined number of preceding turns, which are shifted in
time after every turn and added to the induced voltage of
the current turn. When the revolution frequency is not
constant, a linear interpolation is done to compute the
induced voltage with the right binning. An example of
multiturn induced voltage at two consecutive turns is given
in Fig. 6, where a fixed Gaussian line density interacting
with a resonator impedance was assumed. In the first turn
(top plot) the induced voltage is computed while the
memory is initialized to zero. Therefore, the current
induced voltage (green) coincides with the sum (blue)
of the memory and current induced voltages, effectively

applied to the particles. After one turn (bottom plot), the
memory array is shifted in time by the revolution period
Trev;ð1Þ ¼ td;ð2Þ − td;ð1Þ. The memory of one of the previous
turn in the interval ½td;ð2Þ; td;ð3Þ� is summed to the induced
voltage from the current turn (green) to form the total
induced voltage (blue). This operation is iterated turn after
turn. By having a memory array sufficiently long to cover
the decay of all impedance sources, multiturn including
transient effects due to the motion of bunches are taken
into account. Note that in this example Trev decreases
significantly from turn to turn to represent acceleration,
which the algorithm takes into account. The memory
induced-voltage is shifted by the current Trev at each turn
before being added to the current induced-voltage.
All these algorithms can be combined to represent a full

machine impedance model, using each of them for different
impedance sources depending on their characteristics.
BLonD finally calculates the induced voltage as the sum
of the induced voltage from each impedance source, which
is then applied to the macroparticles.

VI. SYNCHROTRON RADIATION
AND QUANTUM EXCITATION

BLonD is not only used for studying the beam dynamics
of existing accelerators but also for designing future
machines. The Future Circular Collider (FCC) project
considers two main options that can be installed in a
tunnel of about 100 km: a lepton machine (FCC-ee)
operating with up to 365 GeV collision energy [38], and
a 100 TeV hadron machine (FCC-hh) [39]. For both of
them, synchrotron radiation becomes an essential part of
the beam dynamics and needs to be included in macro-
particle simulations. This is also true for light sources,
which use electron beams to provide x rays to user
experiments.
Synchrotron radiation is implemented by adding three

additional terms to the energy equation Eq. (4) in the term
Eother;ðnÞ, namely,

Eother;ðnÞ ¼ −U0 −
2

τz
ΔEðnÞ þ 2

σΔEffiffiffiffi
τz

p Ed;ðnÞr; ð31Þ

where the first termU0 accounts for the average energy loss
per particle over a turn, the second term describes the
difference in energy loss for each particle, and the last term
models quantum excitation [40]. Here, τz denotes the
damping time (in units of turns), σΔE the equilibrium
energy spread, and r is a number drawn from a normal
distribution of zero mean and unit variance. The energy loss
U0 is proportional to the fourth power of the design energy.
For the FCC-ee tt̄ operation, this corresponds to losing
more than 5% of the beam energy at every turn (for each
beam Ed ¼ 182.5 GeV and U0 ¼ 9.2 GeV). In reality, the
energy loss occurs progressively along the ring. However in

FIG. 6. Example of multiturn induced voltage at turn 1 (top)
and turn 2 (bottom) for a Gaussian line density (red) and a
resonator impedance. The total induced voltage (blue) is the sum
of the induced voltage computed at the current turn (green) and
the memory induced voltage coming from the previous turn (not
shown). The vertical dashed lines mark the design clock times.
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BLonD, when only a single rf station is present, synchrotron
radiation will be applied at a single location, and the
particles are prone to escaping the bucket due to this
substantial energy kick they experience. Empty rf stations
were implemented to remedy this issue. They are stations
that apply all the kicks except for the rf kick (second term in
Eq. (4)), allowing the energy to decrease as continuously as
necessary. Stations are declared to be empty by setting the
voltage to zero. Another use of empty rf stations is for rf
systems that are not distributed symmetrically on the ring.
In the FCC-ee design report [38], the ring is divided into
eight sections, and the 400 and 800 MHz rf stations are
placed on one half of it. The BLonD simulation will have
eight rf stations, six of which will be empty.
The importance of a correct distribution of kicks can be

understood through a simulation example shown in Fig. 7 in
which a single bunch is generated with a normalized relative
rms energy spread of about 2.2 × 10−3, and then tracked for
300 turns (10τz). In similar simulations with only two rf
stations, and without additional empty rf stations, particles
are lost from the bucket due to large discrete kicks given by
synchrotron radiation and quantum excitation.

VII. GLOBAL AND LOCAL FEEDBACK MODELS

In this Section, we will describe global and local feed-
back models. By global feedback models, we mean models
that are acting on the entire rf system, i.e., either the rf
frequency or phase. By local feedback models, we mean
models that act on one single rf system, typically the rf
voltage amplitude and phase of a group of cavities. Often,
the feedback models also involve measuring beam signals
and feeding the signals back or forward to regulate the
desired quantity.

A. Global feedback models

For accurate and realistic modeling of beam motion in a
synchrotron, the presence of beam-based feedback systems
cannot always be neglected. For example, quantitatively
reproducing measured capture losses in the SPS requires
the inclusion of the SPS beam phase loop in the simulation.
Also, rf phase noise or modulation is in practice often
injected through the set point of a beam phase loop, instead
of being injected directly into the cavity set point.
The BLonD equations of motion allow the actual turn-by-

turn rf phase φrf;ðnÞ and frequency ωrf;ðnÞ to deviate from the
originally designed phase φrf;d;ðnÞ and frequency ωrf;d;ðnÞ
programs. This feature enables the user to dynamically
change the rf parameters throughout the simulation, or
simply to program an rf frequency that is not an integer
multiple of the revolution frequency of the clock. The
deviations of the rf frequency from the exact multiple of the
design revolution frequency will result in an accumulated
phase deviation,

Δφrf;ðnÞ ¼
Xn
k¼1

ωrf;ðkÞ
hðkÞωrev;ðkÞ

2πhðkÞ: ð32Þ

In such a case, the user will see the bunch and the rf bucket
drift with respect to the reference frame. Frequency loops
can be applied to minimize this phase drift and to ensure
that in the long run the rf frequency (and with it, the beam
orbit and energy) is maintained at its design value.
The exact implementations of the beam-based feedback

models are machine-specific. For the CERN synchrotrons,
the exact implementations of frequency, synchronization,
radial, and beam phase loop are available for use. They can
be a good starting point also for feedback loops in other
machines, while also custom-made feedback models can be
easily built and used with the BLonD architecture. This is
ensured by the modular and object-oriented architecture of
BLonD, which allows interfacing a user-determined function
with the tracking code that updates particle coordinates and
with the rf object that updates rf parameters. The PYTHON

language used on the top level furthermore ensures fast
prototyping and testing of new code.

B. Cavity feedback models

In the presence of beam and due to beam loading [41],
both the amplitude and phase of the rf voltage deviate from
their design values that are usually constant over a tracking
turn. Given that the rf cavities are often the largest
contributor to the machine impedance, the correction
needed to bring these parameters back to their design
values can be computed as in the real machine, by a cavity-
based feedback system. Depending on the system, the
correction is applied within the same turn for fast feedback
systems or with a one-turn delay.

FIG. 7. Evolution of the normalized rms energy spread in
FCC-ee tt̄ with 365 GeV collision energy. Simulation and
machine parameters: the two rf stations contain a 400 MHz rf
system with 4 GV rf voltage and an 800-MHz rf system with
6.9 GV rf voltage in total; six rf stations are empty.
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The accurate modeling of the feedback system of an
accelerator is crucial for the realistic simulation of beam
evolution, stability, and losses, as well as the assessment
of the rf requirements of the machine. For example, the
reduction of the bucket size resulting from the deviation of
the design rf parameters, together with the modulation of
the bunch-by-bunch positions resulting from the feedback
loops used for beam-loading compensation can yield
larger losses and reduce the machine performance.
Figure 8 illustrates the modulation of the bunch-by-bunch
position from a simulation in BLonD using the SPS one-
turn delay feedback model compared with measurements
done in the real machine [42]. This becomes especially
important for the bunch-to-bucket transfer between con-
secutive stages of an accelerator chain, between the

PS-SPS and SPS-LHC [43–45]. In the case of the
High-Luminosity LHC (HL-LHC), the presence of large
power transients at the head and tail of the high-intensity
beam batches could result in a power demand beyond the
capacity of the rf system; to understand their magnitude
and dynamics, a realistic model of the full LHC rf cavity
controller is needed [46]. The exact implementation of the
cavity controller is again machine dependent, and models
for the SPS (see Fig. 9) and LHC controllers are presently
available in BLonD.
Generally, a one-turn delay feedback system (OTFB)

measures the cavity (antenna) voltage and applies the
necessary correction in the following turn. In the SPS
model, for instance, the antenna voltage V⃗ ind;ðnÞ is the sum of

the beam- and generator-induced contributions (V⃗ ind;b;ðnÞ,
V⃗ ind;g;ðnÞ, respectively) [33]:

V⃗ ind;ðnÞðtÞ ¼ V⃗ ind;b;ðnÞðtÞ þ V⃗ ind;g;ðnÞðtÞ; ð33Þ

where t is resolved typically on a bucket-by-bucket basis.
The additional contribution from the reflected current is
added, if applicable for the system. The vector notation refers
to the use of complex voltage vectors. In its BLonD imple-
mentation, all these signals span two full turns and are
discretized at the rf frequency. As described in Sec. V, the
beam-induced voltage is the result of the cavity response to
the rf beam current I⃗b;ðnÞðtÞwhich is obtained from the beam
profile λðnÞðtÞ at frf . Likewise, the generator component in
Eq. (33) is the result of the cavity response to the generator
current I⃗g;ðnÞðtÞ according to the corresponding generator
model (and its time evolution [47]). To compute the bunch-
by-bunch correction to the rf voltage, the feedback system
first computes the difference between the antenna voltage
and the required design (or set point) voltage V⃗d;ðnÞ,

FIG. 9. Schematic of the SPS one-turn delay feedback implementation in BLonD. The correction to the rf voltage along each turn is
calculated by the cavity control from the difference of the cavity voltage (antenna), i.e., the sum of the beam- and generator-induced
voltages, with the design voltage (set point).

FIG. 8. Comparison between bunch-by-bunch spacing from
measurements done at SPS flattop and a simulation recreating the
measurements with the SPS one-turn delay feedback model
in BLonD.
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ΔV⃗ðnÞðtÞ ¼ V⃗d;ðnÞ − V⃗ ind;ðnÞðtÞ: ð34Þ

This error signal is then processed (comb-filtered) to remove
the beam-loading effect by comparing it with the error in the
previous turn (n − 1). The resulting signal constitutes an
additional input to the generator drive, from which the
corrected I⃗g;ðnÞðtÞ is obtained via the transmitter model.

The corresponding generator-induced voltage V⃗ ind;g;ðnÞ will
keep, in principle, the cavity voltage V⃗ ind;ðnÞ equal to the

design voltage V⃗d;ðnÞ on a bucket-by-bucket basis in the
presence of beam loading. For rf power studies, the generator
power is derived from these quantities.
For several cavities at the same harmonic in a given rf

station, the total corrected voltage V⃗corr;ðnÞðtÞ is the sum of

the cavity voltages V⃗ ind;ðnÞðtÞ regulated by their correspond-
ing feedback loop. The rf voltage seen by the beam in
Eq. (4), which is constant in amplitude and phase over a
turn, is replaced for beam tracking by the following voltage
that is modulated bucket by bucket:

Vrf;ðnÞðtÞ ¼ Vcorr;ðnÞðtÞ sin
h
ωrf;ðnÞtþ φcorr;ðnÞðtÞ

i
: ð35Þ

For multiharmonic rf systems, the contribution from addi-
tional rf harmonics should be added as described
in Eq. (16).
The performance of the correction to the generator can be

further increased by adding a feedforward loop on the beam
branch, for example, as a FIR filter [48]. In the LHC and
SPS models, the feedforward acts on the present-turn
signals of the feedback output voltage and on the beam-
induced voltage, respectively. Moreover, the feedback
(including feedforward) loop can be part of or act together

with other feedback loops such as analog and digital
feedback systems, as in the case of the LHC cavity
controller, to provide additional corrections.

VIII. GENERATION OF PARTICLE
DISTRIBUTIONS

Once all the BLonD objects are initialized to treat the
machine and impedance parameters, an initial particle
distribution is needed to start the simulation. In this section,
we describe several options that were included in the code
to generate an initial particle distribution. The distribution
can be generated either matched to the rf bucket or using
an arbitrary density function. The density function in the
longitudinal phase space is denoted F ðΔt;ΔEÞ. The
number of macroparticles to be generated is determined
by the user, and each macroparticle corresponds to a
fraction of the total beam current.
The criterion for a bunch of particles to be matched is

that the density function F is a function of the Hamiltonian
H (or the action J ). This implies that the particle density is
uniform over an iso-Hamiltonian curve, and therefore the
particle distribution will remain stationary. Two routines
were included to generate bunches matched to the rf
bucket: The first one requires the density function F as
a user input while the second one requires to input the line
density λ.
The routine using the density function F as an input is

described in Fig. 10(a). In this case, the Hamiltonian is
computed numerically on a grid in the ðΔt;ΔEÞ phase
space, using the input machine and rf parameters. The
density function is then computed on the same grid, using
the distribution function F chosen by the user from the
ones given in the left column of Table I. If no impedance
object was defined, a random particle distribution is

FIG. 10. Flowcharts of the routines used to generate a bunch of particles matched to the rf bucket in BLonD. The generation is an
iterative process that minimizes the difference between the target emittance or bunch length asked by the user. The blue boxes represent
the user input, the beige boxes are the parameters computed internally in the function, and the green boxes are the resulting beam objects
used for tracking. The path in dashed arrows corresponds to the iterative loop for matching with collective effects.

H. TIMKO et al. PHYS. REV. ACCEL. BEAMS 26, 114602 (2023)

114602-12



directly sampled from the density function. If impedance
sources are defined, the bunch is iteratively matched to take
into account potential-well distortion. This method is
particularly useful for studies scanning longitudinal emit-
tance with a fixed-density function.
The second routine using the line density λ as input is

described in Fig. 10(b). For this routine, the density in
phase space is obtained using the inverse Abel transform
[49]. The inverse Abel transform was implemented numeri-
cally and is applicable for cases where the potential well
has only one minimum. Only half of the bunch profile is
required to compute the inverse Abel transform, and the
second half of the bunch profile results from the calculated
density F. This implies that in the case of a nonsymmetric
potential well due to acceleration or collective effects, one-
half of the bunch profile is perfectly reproduced, and the
measured and simulated profiles will only agree if the rf
and impedance parameters are well known. In the presence
of impedance sources, the matching consists of iteratively
placing the bunch in the center of the distorted potential
well till convergence, without changing the input line
density. Once the density function F is obtained, the
particle distribution is sampled randomly. This method is
particularly useful for studies starting from bunch profiles
identical to the ones obtained in measurements.
Both matching routines were extended for multibunch

simulations. The methods implemented in BLonD to gen-
erate an initial particle distribution allowed us to perform all
kinds of studies for all synchrotrons at CERN: starting with

a matched distribution at any momentum during the
acceleration ramp, with and without intensity effects, using
the measured line density, etc. In addition, many routines to
generate arbitrary density functions are implemented (e.g.,
bi-Gaussian, coasting beam). Further options are continu-
ously being implemented, to fulfill all needs encountered in
the user’s beam dynamics studies.

IX. PERFORMANCE

The demand for extensive and precise longitudinal beam
dynamics simulations has become increasingly essential
due to ongoing upgrade projects, investigations for future
machines, and the operational demands of existing facilities
at CERN and other similar research institutes. A holistic
case study typically entails thousands of simulations, all
geared toward identifying the parameter set that best aligns
with the desired target characteristics. The duration of a
single simulation can extend up to several weeks, under-
lying the significance of optimizing the BLonD code’s run-
time performance.

BLonD was designed with an emphasis on performance
optimization right from the beginning. The initial focus
centered on enhancing the code’s serial or single-core
efficiency. To achieve this goal, we identified the most
time-consuming code regions, including the longitudinal
tracking kick and drift functions, the hist operation
responsible for generating beam line density, and the FFT
operations required for calculating the beam-induced volt-
age, among others (see Fig. 11). To achieve significant
performance gains, we translated these regions to C++, a
lower-level compiled language known for its capability in
developing performance-critical software, and also lever-
aged certain highly efficient libraries such as the Boost
library [50], the Intel MKL library [51], and the VDT
library [52]. As a result of resolving various performance
limitations within these hotspot regions, BLonD++ was able
to execute simulations that previously took a full day in just
80 minutes [53]. The success of BLonD++ can be attributed
to its effective utilization of the processor’s vectorized
hardware, allowing for the evaluation of mathematical

TABLE I. Density functions and their corresponding line
density [30].

Name F ðHÞ λðΔtÞ
Binomiala F 0ð1 − H

Hl
Þμ λ0½1 − 4ðΔtτl Þ2�μþ1=2

Gaussianb F 0e
−2H

Hl λ0e
−ð 4Δtffiffi

2
p

τl
Þ2

aμ ¼ 0 waterbag, μ ¼ 1=2 parabolic line density, μ ¼ 1
parabolic in amplitude, F ðH ≥ HlÞ ¼ 0 and τl is the full
bunch length

bτl ¼ 4σ.

FIG. 11. BLonD++ speedup against the original PYTHON-only BLonD implementation. All four test cases (FCC, SPS, PSB, LHC) were
run using only one CPU core. The first bar of every group of bars shows the overall test case speedup, while the remaining bars show the
speedup of the most time-consuming code regions, which are “LIkick”: linearly interpolated energy kick, “SR”: synchrotron radiation,
“hist”: line density calculation, “drift”: drift calculation, “stats”: statistics on beam distribution, “fft”: Discrete Fast Fourier Transform.
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operations over multiple input elements in a single CPU
cycle. Additionally, by fusing together certain computing
operations that operate on the same data, the required
memory transactions were halved.
In Fig. 11, we observe the remarkable single-core

speedup achieved by BLonD++ when compared to the
original PYTHON-only BLonD implementation across four
representative test cases. These simulations encompass a
range of typical BLonD workloads. The first bar in each
group illustrates the overall speedup, while the remaining
bars depict the speedup per accelerated code region.
Notably, the per-testcase speedup varies from 13.2× in
the LHC testcase to an impressive 23.2× in the FCC
testcase. Additionally, we addressed the most time-
consuming code regions by parallelizing them using the
OpenMP framework [54], enabling BLonD to scale verti-
cally, i.e., within a computing node.

BLonD workloads comprise a scientifically and computa-
tionally challenging task. These workloads are typically
inherently parallel and fit naturally in a distributed-memory
environment. In anticipation of the ever-growing demand
for simulations requiring finer resolution, more realistic
modeling, and longer intervals, we introduced a distributed
variant of BLonD, known as HBLonD [55], which can
efficiently combine multiple, remote computing nodes
to execute a BLonD simulation. The Message Passing
Interface (MPI) [56] serves as the backbone for commu-
nication between these remote nodes.
While internode communication is necessary for the

coordination of remote nodes, it is the most significant
bottleneck of distributed programs. To minimize it, a set of
high-performance computing techniques, including
dynamic load-balancing, mixed data- and task-parallelism,
and approximate computing, were employed. These state-
of-art computing techniques contributed to the impressive
scalability demonstrated by HBLonD. Being able to effi-
ciently combine over 600 cores across 32 computing nodes,
HBLonD achieves greater than tenfold speedups compared to

BLonD++, thereby reducing the simulation time further by
one order of magnitude.
Graphics processing units (GPUs), originally designed

for rendering images on display devices, have emerged as a
dominant platform for accelerating general-purpose, data-
parallel workloads. The most time-consuming tasks
involved in a typical BLonD simulation, listed in the caption
of Fig. 11, are ideal candidates for GPU acceleration.
Therefore, we developed CuBLonD [57], a GPU-accelerated
version of BLonD implemented using the CUDA program-
ming language [58]. CuBLonD demonstrated an additional
five-fold speedup compared to the CPU-only version. One
of the key challenges in implementing CuBLonD was
optimizing CPU to GPU memory transfers, which tend
to be slower compared to GPU computations. To minimize
this overhead, the data arrays involved in a BLonD simulation
are transferred to GPU memory and remain there through-
out the simulation. Only at the end of the simulation are the
results copied back to CPU memory to facilitate plotting,
data storage, and other analysis operations.
In Fig. 12, we conducted a weak-scaling, multinode

performance evaluation of both HBLonD and CuBLonD

against BLonD++. In the weak-scaling experiments, the
amount of work per computing node is held constant as
the number of nodes increases. The horizontal axis in
Fig. 12 represents the number of computing nodes, ranging
from one to 16, with each node containing either 20 CPU
cores or one GPU platform. The four bars in each group
correspond to the measured speedup against BLonD++ for
(a) HBLonD, (b) HBLonD using reduced (32 bit instead of 64
bit) arithmetic precision, (c) CuBLonD, and (d) CuBLonD using
reduced arithmetic precision. As observed, HBLonD effec-
tively utilizes multiple computing nodes to run a single
BLonD simulation, yielding speedups ranging from 10× up
to 17× compared to the previous single-node implementa-
tion of BLonD. Furthermore, by leveraging GPUs to accel-
erate the most time-consuming regions, CuBLonD achieves
impressive speedups ranging from 46×up to 78×compared
to BLonD++.

FIG. 12. Multinode performance and scalability of HBLonD and CuBLonD. From left to right, the bars in every group of bars correspond
to the speedup compared to BLonD++ of: (a) HBLonD, (b) HBLonD with reduced (32 bit) arithmetic precision, (c) CuBLonD, and (d) CuBLonD
with reduced (32 bit) arithmetic precision.
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Currently, CuBLonD is distributed alongside the
main BLonD code. In conclusion, BLonD stands out as a
well-optimized simulator that embraces state-of-the-art
high-performance computing standards, effectively utiliz-
ing compute resources from multiple processors and
GPU cards.

X. BENCHMARKS

Since its original release, BLonD has been used by a great
number of scientists in a wide range of applications. The
trust in the BLonD suite and its predictions has been
established through in-depth testing and benchmarking.
The conducted benchmarks, including comparisons with
analytical calculations, measurements from experiments
run in synchrotrons, or comparisons against other tracking
codes [7], are all showing sharp agreement.
In addition, every care has been taken throughout the

code development to ensure that BLonD results can be
compared to measurement as accurately as possible. To this
end, the input distributions can be idealized (e.g., Gaussian,
waterbag, etc.) or taken directly from measurements. Also,
the control loop features in the code are designed to
reproduce the measured beam behavior in the presence
of these loops.
Below we show a few examples of code-to-code compar-

isons and benchmarks against theory and measurements.

A. Comparisons with the MUSIC code

Here we give an example of a benchmark [26,59]
between the BLonD and MUSIC [60] codes. As mentioned
in Sec. V, a binning of the bunch profile is needed in BLonD

to compute the induced voltage at each turn, and there are
no restrictions on the types of impedance that can be given
as input. In MUSIC, only resonator impedances can be
provided, whose parameters allow to build a matrix that is
used to propagate the induced voltage from macroparticle
to macroparticle, without the need to bin the bunch profile.
In our benchmark, only one bunch is present in the ring,

and the impedance consists of just one narrow-band
resonator with a quality factor Q ≫ 1 so that the long-
range wakefield couples the same bunch over multiple
turns. The resonator has a low resonant frequency fr
compared to the cutoff frequency of the bunch spectrum.
If fr is close to an integer multiple p of the revolution

frequency, then Robinson instability can be observed [29].
Supposing a Gaussian line density with rms bunch length
σt, the analytical expression for the growth rate of the
instability is [29]

1

τa
¼ ηe2Np

2EdT2
revωs

X
m¼�1

ðmðpωrev þmωsÞ

× ReZðpωrev þmωsÞGmðxÞÞ; ð36Þ

whereGmðxÞ ¼ 2e−x
2

Imðx2Þ=x2 is the form factor with x ¼
ðpfrev þmfsÞσt and Im is the modified Bessel function of
the first kind.
In our example, the integer multiple of the revolution

frequency is p ¼ 2, and the resonator parameters are
fr ¼ 2frev þ fs, Q ¼ 5000 and Rs ¼ 40 kΩ. In addition,
Np ¼ 4 × 1012 ppb, Ed ¼ 13 GeV, η ¼ 0.0217, Trev ¼
2.1 μs, fs ¼ 264.1 Hz. The rf system has h ¼ 7, frf ¼
3.3 MHz and V̂rf ¼ 165 kV, while Rd ¼ 100 m. The
instability growth time computed with Eq. (36) is τa ¼
59.3 ms for σt ≤ 3.3 ns.
Firstly, simulations with the MUSIC code are performed,

by using initial bunch distributions whose line densities are
Gaussian with σt ¼ 3.3 ns. The instability growth time as a
function of NM is evaluated (Fig. 13, blue dots), and
convergence to 63 ms is found for NM > 106. However,
results do not converge to the τa obtained above analyti-
cally, since the bunch is relatively long and Landau
damping increases the analytical growth time. This is
confirmed by performing a new set of simulations with
MUSIC, selecting NM ¼ 106 and varying σt (Fig. 13, green
dots). The plot shows that the growth time converges to τa
for sufficiently low σt, proving the validity of the MUSIC

algorithm.
The second part of our benchmark consists of perform-

ing BLonD simulations, by using initial bunch distributions
with NM ¼ 106 and with Gaussian line densities having
σt ¼ 3.3 ns. The spectrum of a Gaussian line density with
σt ¼ 3.3 ns becomes negligible above 200 MHz, whereas
the considered narrow-band resonant impedance is negli-
gible above 1 MHz. It is then not easy to choose in BLonD

the bin size Δt in the time domain or equivalently the
maximum frequency fmax ¼ 1=ð2ΔtÞ in the frequency
domain.

FIG. 13. Instability growth time τ as a function of NM for
σt ¼ 3.3 ns (blue) and as a function of σt for NM ¼ 106 (green)
from MUSIC simulations. The dashed lines mark τ ¼ τa ¼
59.3 ms and τ ¼ 63 ms.
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In addition, the frequency step Δf ¼ 1=tmax for Fourier
transforms is another parameter to be carefully considered.
To resolve properly the narrow-band resonator impedance,
a frequency step not larger than Δf ¼ 70 Hz is required.
This corresponds to a wakefield extending for at least 7000
revolution periods. To compute the induced voltage in the
BLonD simulations needed for the benchmark, the time-
domain approach is faster than the frequency-domain one,
therefore it is preferred.
Figure 14 (blue dots) shows the dependence of the

instability growth time on Δf, by choosing fmax ¼
200 MHz to fully cover the frequency range where the
initial bunch spectrum is not negligible. The growth time
converges to 63 ms when Δf approaches 70 Hz. This is in
good agreement with the results obtained with MUSIC

(Fig. 13, blue dots), and it confirms that a frequency step
of at least 70 Hz is necessary to obtain correct results.
Additional BLonD simulations (Fig. 14, red dots) show

that the growth time is still 63 ms for fmax > 50 MHz, as
long as Δf ¼ 70 Hz is fixed. This indicates that it is not
necessary to consider the entire frequency range where the
bunch spectrum is not negligible, as long as the resonator
impedance is well resolved. Note that the growth time is not
correct if Δf ¼ 160 Hz, regardless of the value chosen for
fmax (Fig. 14, green dots). This confirms that to obtain
correct results in BLonD, it is essential to properly resolve
the narrow-band resonator impedance.

B. Comparisons with the MELODY code

Loss of Landau damping (LLD) in the longitudinal plane
is an important intensity limitation in particle synchrotrons.

New features were recently discovered in this field and
summarized in Ref. [61]. The MELODY (matrix equations for
longitudinal beam dynamics) code [62] was developed for
numerical studies of LLD. For example, it was shown that
the LLD threshold is inversely proportional to the resonant
frequency of the broadband impedance model with a quality
factor of 1. This is demonstrated in Fig. 15, where we
compare the frequency of the emerged coherent modes that
were obtained using the MELODY code (red dotted line) and
the data of macroparticle simulation obtained by BLonD

(blue-shade regions). For this, a bunch matched to the total
potential including intensity effects was tracked for 106

turns. The center of mass was evaluated at every turn and the
spectrum of this signal was computed. The obtained results
indicate the incoherent frequency bands and coherent modes
once they move above the maximum incoherent frequency
(black line). The detachments of the mode correspond to
LLD thresholds evaluated by MELODY (red dashed lines).

FIG. 14. Instability growth time τ as a function of Δf for
fmax ¼ 200 MHz (blue), and versus fmax for Δf ¼ 160 Hz
(green) and Δf ¼ 70 Hz (red). The dashed lines mark τ ¼
63 ms and τ ¼ 65.3 ms. The simulations are performed with
BLonD, using initial bunch distributions with NM ¼ 106 and
with Gaussian line densities having σt ¼ 3.3 ns. The simulations
are performed in the time domain with tmax ¼ 1=Δf and
Δt ¼ 1=ð2fmaxÞ.

FIG. 15. The real part of the normalized mode frequency found
from macroparticle simulations using BLonD (blue color) and
MELODY (red dotted lines) as a function of bunch intensity for a
broadband resonator impedance with ImZ=n ¼ 0.07 Ω, Q ¼ 1,
fr ¼ 4 GHz (top) and fr ¼ 8 GHz (bottom). The maximum
incoherent frequency obtained from MELODY is shown with a
black solid line. The red dashed lines indicate the LLD intensity
thresholds. Plot from [61].
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The LLD thresholds and the mode frequencies above them
are well reproduced in macroparticle simulations.

C. Benchmarks with measurements

As an application, we consider debunching measure-
ments in the SPS [63], which are used to identify known
and unknown sources of impedance in the machine. Long
bunches are injected into the SPS with the rf system
switched off, and the beam dynamics are entirely dictated
by the machine impedance. Different impedance sources
drive micro-wave instabilities, visible as a spatial modu-
lation in the bunch profile.
The SPS impedance model is shown in Fig. 16(a) and is

dominated by the impedance of the traveling wave cavities
(TWC) at 200 MHz and 800 MHz, their higher-order
modes (HOMs), and vacuum flanges around 1.4 GHz. The
SPS impedance sources range from broadband, such as the
kickers, to narrow-band, such as the 915 MHz HOM.
In BLonD, the SPS impedance is modeled by over 200

resonators, several traveling wave cavities, and impedance
tables.
The sum of the measured beam spectra during the first

500 revolutions is compared with the simulated spectrum in
Fig. 16(b). The initial phase-space distribution used in the
simulation is based on measured profiles and tomographic
reconstruction in the PS. Both spectra in Fig. 16(b) have
large amplitudes at 200 MHz and 1.4 GHz due to the
significant impedances of the 200 MHz TWC and flanges,
respectively.
Another example is the modeling of the rf manipulations

in the PS, which are performed to get the nominal bunch
spacing of 25 ns for LHC beams. These manipulations are
made possible thanks to the large number of rf systems in

FIG. 16. On top, the SPS impedance model as of 2018 [63],
before an extensive impedance reduction campaign. The bottom
plot compares simulated and measured spectra of a debunching
beam at SPS injection.

FIG. 17. Comparison of the measured and simulated evolution
of the bunch profiles during rf manipulations in the PS. The
measured phase displacement of the beam between machine turns
10 000 and 50 000 is due to the signal delay with changing
revolution frequency during acceleration and is not included in
the simulation.
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the PS covering many rf harmonics. For the selected
example shown in Fig. 17, eight bunches are injected from
the PSB (two injections of four bunches) in h ¼ 9 and
accelerated to an intermediate energy. Next, batch com-
pression is done to bring the beam to h ¼ 14 by passing
through all intermediate harmonics. Bunches are then
merged into h ¼ 7 [64], before finally being split in three
to harmonic h ¼ 21. Note that a controlled longitudinal
emittance blow-up is done right after the acceleration step
with phase modulation of a high-frequency rf system tuned
at h ¼ 436. The nine harmonics can be programmed in
BLonD to simulate the whole process. Beam-loading effects
were also included in the simulation as well as feedback
systems. As seen in Fig. 17, the simulation reproduces very
well the measured beam evolution even for complex rf
configurations.

XI. CONCLUSIONS AND OUTLOOK

The Beam Longitudinal Dynamics simulation suite
BLonD offers a versatile and modular framework for custom
simulations, spanning a wide range of physics phenomena.
From fundamental cavity-beam interactions to collective
effects, diverse rf manipulations, synchrotron radiation, and
feedback systems, BLonD provides the tools for various
research needs. The generation of matched particle dis-
tributions finds extensive applications across different
domains. Moreover, the code optimizations implemented
at multiple levels and for various hardware configurations
enable faster and more memory-efficient simulations.
In the future, we plan to optimize the algorithm for the

Hamiltonian distribution functions used in particle distri-
bution generation. Concurrently, we are actively working
on the implementation of algorithms for nonuniform
binning and arbitrary impedance. Additionally, ongoing
efforts focus on incorporating machine-specific global and
local feedback models for different machines, with plans
for coupling them in the pipeline.

BLonD continuously evolves to stay at the forefront of
simulation studies. Regular updates to existing modules
and the addition of new ones allow for a better fit to specific
research questions, as well as the expansion of the code’s
functionality and scope. To ensure robustness and minimize
coding flaws, BLonD is backed by comprehensive support
mechanisms, including automatic unit-testing, integration
testing, and coverage analysis. In conclusion, BLonD stands
as a powerful and adaptable tool, and we remain committed
to refining it to meet the growing demands of longitudinal
beam dynamics research.
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