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ERROR ANALYSIS OF THE LIE SPLITTING FOR
SEMILINEAR WAVE EQUATIONS WITH FINITE-ENERGY
SOLUTIONS

MAXIMILIAN RUFF AND ROLAND SCHNAUBELT

ABSTRACT. We study time integration schemes for H'-solutions to the
energy-(sub)critical semilinear wave equation on R®. We show first-
order convergence in L? for the Lie splitting and convergence order 3/2
for a corrected Lie splitting. To our knowledge this includes the first
error analysis performed for scaling-critical dispersive problems. Our
approach is based on discrete-time Strichartz estimates, including one
(with a logarithmic correction) for the case of the forbidden endpoint.
Our schemes and the Strichartz estimates contain frequency cut-offs.

1. INTRODUCTION

The semilinear wave equation 02u — Au = +|u|* lu is one of the most
important model problems for dispersive behavior. Its analytical properties
are well understood, see [23] for a survey. In view of the energy equality,
H' (or the homogeneous version H') is the most natural regularity level for
solutions u(t) and data.

On 3D-domains, in the case of powers a € (1, 3] one can study wellposed-
ness by means of the standard tools of evolution equations, whereas the
treatment of the case o € (3,5] is based on dispersive properties. To our
knowledge, in numerical analysis the latter situation has not been studied
in this setting so far. (Compare |19] for the case a € (1, 3).) The strategy of
the error analysis for such problems goes back to the seminal paper [14] in
the case of the semilinear Schrodinger equation. In this work we establish
the first error bounds for time integration schemes for the semilinear wave
equation in the case o € [3, 5] with finite-energy data on the full space R3.

In the present paper we investigate the equation

O*u = Au — plul*tu, (t,x) €[0,T] x R3,
u(0) = u?, dyu(0) = oY,
with finite-energy initial data (u°,v°) € H'(R3) x L*(R?), as well as pa-

rameters g € {—1,1} and o € [3,5]. In this setting, a complete local
wellposedness theory in the space H'(R3) x L?(R3) for (u,d;u) has been

(1.1)
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2 MAXIMILIAN RUFF AND ROLAND SCHNAUBELT

established, where global existence is known for the defocusing case u = 1.
If o > 5, the problem is ill-posed at least in the focusing case 4 = —1. The
energy-critical case &« = 5 is much more challenging than the subcritical
range o < 5. The theory is based on Strichartz estimates for the linear
problem, see the monographs [20] and [23].

To establish error bounds for time integration schemes, we show various
discrete-time Strichartz estimates in Section Pl Here one controls discrete-
time points (u(n7))nez of the solutions to the linear problem in spaces like
(P(Z,04(R?)) by L%based norms of the initial data, where 7 € (0, 1] is the
time-step size. It is easy to see that a naive discrete-time version of results
in continuous time fails. Instead, one has to introduce frequency cut-offs
mi at level K > 1. The estimates then depend on K7, but are otherwise
in complete analogy with the estimates in continuous time. Similar results
for the Schrodinger equation have been obtained in [9] and [16], see also [17]
and [15] for the case of periodic boundary conditions. Moreover, Strichartz
estimates for spatially discrete Schrédinger equations were treated in the
seminal works [10] and [11]. In Theorem we also derive local-in-time
estimates at the forbidden endpoint (p,q) = (2, 00) with an additional loga-
rithmic correction depending on K and the end-time 7T'. Such an inequality
was shown in [12] for continuous time.

The frequency cut-off has then to be introduced in the time integration
schemes, too (as in the Schrodinger case, see [9], [5], and [16]). We first ana-
lyze a frequency-filtered Lie splitting scheme, see . We show first-order
convergence in L2(R3) x H~1(R3) for data in H'(R3) x L?(R?). In contrast
to previous works on time discretization of semilinear wave equations in low-
regularity regime, such as [8], [3] or [13], in our setting there is no uniform
spacetime L°°-bound on the solution u available, since in three dimensions
the Sobolev embedding H® < L requires s > 3/2, but we only assume
H' regularity of u. Instead, our error analysis is based on discrete-time
Strichartz estimates. We use ideas from [9], [5], and [16], where a similar
analysis was performed in the case of the subcritical semilinear Schrédinger
equation.

We treat the subcritical and energy-critical cases separately, since the
latter requires a much more delicate analysis. Our convergence result for
the subcritical case a < 5 reads as follows. It is proved at the end of Section

[] see also Remark [3.4]
Theorem 1.1. Let o < 5 and U = (u,dyu) € C([0,T], H (R3) x L?(R?))
solve the semilinear wave equation . Then there are a constant C > 0
and a mazimum step size 19 > 0 such that the iterates Uy, of the filtered Lie
splitting scheme satisfy the error bound

||U(7”L7‘) - UnHL2XH71 <CTt
for all T € (0,79] and n € Ny with nt < T. The numbers C' and 19 only
depend on T, o, and U poo (0,17, 11 x 12 (R3)) -

For the critical case o = 5, the next result is shown at the end of Section
Bl
Theorem 1.2. Let o = 5 and U = (u, dyu) € C([0,T], H'(R?) x L*(R3))
with u € L*([0, T], L*2(R3)) solve the semilinear wave equation . Then
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there are a constant C > 0 and a maximum step size 19 > 0 such that the
iterates Uy, of the filtered Lie splitting scheme satisfy the error bound

IU(7) = Unllp2xgr-1 < CT

for all T € (0,79] and n € Ny with nt < T. The number C only depends on
T, Ul oo o, 110 x 22 (r3y) > 90 [[ul|pago 1y, 12(R3)), whereas 1o only depends

on T, u°, and v°.

The more sophisticated analysis for o = 5 is reflected by the dependence
of the maximum step size 7y on the solution itself, rather than just on its
norm. A similar behavior occurs in the wellposedness theory, see [23]. To
our knowledge, this above theorem provides the first error analysis of a time
discretization for a scaling-critical problem.

As a first step to higher-order schemes, in the case @« = 3 we study a
corrected Lie splitting, given in . A version of the scheme without
frequency filter was recently proposed and analyzed in [13] in higher reg-
ularity H™/4(R3). We can show convergence order 7%/2 for the error in
L%(R3) x H~Y(R3), again using data in H'(R3) x L?(R%). Formally, the
scheme is of second order due to a well-chosen correction term. This term
also leads to an error formula without second-order derivatives. The loss of
71/2 in our result corresponds to the loss in the Strichartz estimates, so that
we believe our result is optimal, compare also [16]. In the proof we need the
endpoint estimates from Theorem [2.10] The convergence result is shown at
the end of Section [6l

Theorem 1.3. Let U = (u,0u) € C([0,T], H'(R3) x L*(R%)) solve the
semilinear wave equation with a = 3. Then there are a constant C > 0
and a mazimum step size 79 > 0 such that the iterates U, of the corrected
Lie splitting scheme with K = 773/2 satisfy the error bound

U (n7) = Ul g2 g1 < C72

for all T € (0,79] and n € Ny with nt < T. The numbers C' and 19 only
depend on T and ||U|| oo 1o 17,11 x £2(R3))

Remark 1.4. In the defocusing case ;1 = 1, energy conservation shows that
the solutions to exist globally in time. Moreover, the numbers C' and
79 from Theorems and as well as the number C' from Theorem
then only depend on 7', a, HVUOHLZ(RB), and ||’UOHL2(R3). See Remarks

and 3.4

We comment on variants of our results. A straightforward extension is
possible to more general nonlinearities with the same growth behavior, and
also to the Klein—Gordon case. Furthermore, exploiting the finite speed of
propagation for the wave equation, our analysis remains valid if one replaces
the spatial domain R? by the torus T? (where the Strichartz estimates only
hold locally in time). In (most of) these cases, one would have to work with
inhomogeneous Sobolev spaces instead of homogeneous (dotted) ones.

We do not analyze the Strang splitting (which is of second order formally)
since a preliminary analysis indicates that one only obtains convergence or-
der one for H'-solutions in the critical case & = 5. For a = 3, an order
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74/3 seems to be feasible using Strichartz estimates. However, this is infe-
rior to the estimate for the corrected Lie splitting in Theorem In [§]
and [3], second-order convergence of the Strang splitting and closely related
trigonometric integrators has been shown in case of one space dimension or
H?2-solutions.

Our analysis does not distinguish between the focusing and defocusing
cases. Better results could be possible in the defocusing case, where the en-
ergy dominates the H'-norm. For example, an error analysis on unbounded
time intervals was done in [4] in case of Schrodinger equations (under the
additional assumption that the initial value lies in the conformal space).

In Section [2| we establish the needed discrete-time Strichartz estimates,
adapting ideas from the continuous time. The local wellposedness theory is
recalled in Section[3] We introduce the Lie splitting with frequency cut-off in
Section 4} and then derive the core error formula . After estimating the
error terms in the subcritical case by means of our Strichartz estimates, we
show Theorem using a double induction, first iterating within a possible
small time interval of size T7, and then performing a recursion over intervals
of length T3. The critical case is studied in Section[5] Here we use in addition
convergence results for H2-solutions in order to make sure that the discrete
approximation stays close to the PDE in H'. Moreover, in the argument
enters how fast the Strichartz norm ¢*L'? of a time-discrete solution gets
small on small time intervals. The last section is devoted to the corrected
Lie splitting which has a more sophisticated error formula and thus
requires additional estimates of error terms.

Notation. We write A < B (or A S, B) if A < ¢B for a generic
constant ¢ > 0 (depending on quantities ). Since we always work on R3,
we abbreviate LP for LP(R3) etc. We write F for the Fourier transform,
where we use the convention with the prefactor (27r)~3/2. We also use the
notation @ := Fu. In the context of Fourier multipliers, we often just write
¢ instead of the map & — £. For s € R, we use the inhomogeneous and
homogeneous Sobolev norms

N A
lwllzzs = (1 + [€7)2@] L2, Nwllge = I1E°D ] 2,

if w € L{ .. The homogeneous Sobolev space H?* is defined as

H* :={weS e L, and ||w]| g, < oo}

This space is a Hilbert space if and only if s < 3/2 due to Proposition 1.34 of
[1]. Moreover, Schwartz functions with compact Fourier support in R3\ {0}
are dense in H* if s < 3/2, cf. Proposition 1.35 of [1].

Let p € [1,00], J be a time interval and X be a Banach space. We use
the Bochner spaces L5 X := LP(J, X) with norms

1Pl = ([ IFOIR)"

and the usual modification for p = co. In the case J = [0, 7] we also write T’
instead of J. If a “free” variable ¢ appears in such a Bochner norm, the time
integration is taken with respect to t. Further we denote by 7 := (P(Z) the
sequence spaces over the integers and abbreviate /X = (P(7Z, X) in case
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of Banach space valued sequences. In order to simplify notation we often
write ||F, || x instead of ||(F),)nez|lewx, where again a “free” variable n is
assumed to be the summation variable. For a stepsize 7 > 0 and a number
N € Ny, we further introduce scaled norms

1
1Flleex = I Fullerx = (7 2 IEll% )"
ne”Z

and the truncated variant
N 1
1Pl x = 1 Faller = (7 2 1Ful) "
n=0

Note that in the case p = oo, the norm ||F||sx = sup,cz ||Fu||x does not
depend on 7. For intervals J C R we also use the notation

1
1PNz = [Ballex) = (7 3 1BI%)"-

ne’l
nreJ

2. STRICHARTZ ESTIMATES

Our analysis is based on time-discrete Strichartz estimates for the wave
equation, which are established in this section. We start with some standard
definitions and results regarding the time-continuous case.

Definition 2.1. Let y € C°(R3) be a radial function with x = 1 on B(0, 1),
supp x € B(0,2) and

$(€) = x(€) — x(2¢), €eR’
For every j € Z we define

P;(€) = w(%) €eR? and Pju:=F t(pa), uweS.
These definitions yield suppv; C {€ € R? : 2971 < |¢] < 2971} and the
identity
Y i(€) =1, £eR’\{0}.
JEZ
We recall that the “Littlewood-Paley projections” P; are bounded in L”
uniformly in j € Z and p € [1, o0].
We define the operator |V| = v/—A via the Fourier multiplier |V|f :=
F~1(¢|f), and analogously for cos(t|V]) etc. To solve the wave equation,
we will use the half wave group

6it|V| — f_leit‘ﬂ]:.
From Proposition III.1.5 of [20], we recall the kernel bound
IF )l S (L4 [E) 7 tER. (2.1)

The proof of the Strichartz estimates is based on the following known
frequency-localized dispersive inequality. For convenience, we show how it

follows from ([2.1).



6 MAXIMILIAN RUFF AND ROLAND SCHNAUBELT
Lemma 2.2. It holds

1Pt S 29070 (14 27ty £l

foralljeZ, teR, ge (2,00, and f € LY.

Proof. Let first f € L'. Young’s convolution inequality yields
1P N fll e S IFH ) e 1 £

where we have
FHE) (@) = (2m) 792 [ ety (27g) ag
— 9% (27) 32 /R3 ei2jm-n612jt\n|¢(n) dn
= 23 1 (21l ) (27 7).
Estimate now gives
1Py £l e S 2% (1 + 27 [t) 7| |1

The assertion follows by interpolation with the L?-bound ||Pje!VIf| > <
Il fll 72, which is a consequence of Plancherel’s theorem. O

We now state some of the Strichartz estimates for the wave equation
to provide a background for our results. The next theorem follows from
Corollary IV.1.2 in [20] combined with formula below. We call a triple
(p,q,7) wave admissible (in dimension three) if p € (2, 0], ¢ € [2,00), and

1 1 3 3
<5 cHo=o-7 (2.2)

_|_
P q 2

Q| =

1
p
One then has v € [0, %), and the equality in 1' is called scaling condition.

Theorem 2.3. Let (p,q,v) be wave admissible for dimension three. Then
we have the estimates

.
1 1 10 S 11

t
H /_ eii(t_s)‘v‘F(s) ds‘

2L Sp,q HF”LD{{HW

forall f € HY and F € LﬂgHV.

Observe that the triple (0o, 2,0) corresponds to the usual energy estimate.
In the above inequalities one increases the space integrability paying a price
in regularity and time integrability. For the last inhomogeneous estimate,
there are also variants involving L L7 -norms instead of the L!LZ-norm.
Moreover, for triples (p,00,v) with p > 2 that satisfy (2.2), the above esti-
mates remain true if one replaces L* by Bgvoo. Since we will not need these
facts, we omit them for simplicity.
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2.1. Time-discrete estimates. Now we turn our attention to the time-
discrete setting. In the following /P L9 estimates, the fP-summation is always
taken over the variable n. We start with frequency-localized inequalities.

Lemma 2.4. Let (p,q,7) be wave admissible. Then the estimates

g 2
| X P VIE 00 2@+ DIFllprg, (23)
k€EZ
| X B ¥R |, Spa 2725 + DIF g 1 (2.4)
kEZ
|2 fllvso Spg 27727 + DIIP; 12 (25)

hold for all F € (P'LY | f € L?, and j € Z.

Proof. We first deduce from Lemma [2.2] the estimate

el Rl iRV
H%Pje‘ n F}, i < Hé”pjel n Fk”Lq 3

< 93i(1-2) ‘ | el o 2
kez (142 — k|)'7a '
< 92 +7)H | el o

2
kez (14 27|n — k|)» "%

where the last inequality follows from the admissibility conditions (2.2]). The
first assertion for p = oo is now clear. For p < oo we compute

23( +'y)H ||Fk||Lq’ ;
kez (1+2|n — k[)» "

< 925+ (1l o . +HZ +||21*;T1!qu -

)

»)

< (27 | Fll g +|| 3 |”Fk””
keZ n

< 9%v(9%
Spa 2 (2 ‘|‘1)||F||gp’Lq’

with the help of the discrete Hardy—Littlewood—Sobolev inequality (see Propo-
sition (a) in [21]). We note that in the case n = k the factor 2%/P does not
cancel. This is the main difference to the continuous case, where such a
term does not appear in the continuous Hardy-Littlewood—Sobolev inequal-
ity. This proves .

The other two claims follow by a standard T7T* argument that we sketch.
Using that Pje*ikm = e*ikaj, from we derive

| > P ViR, ; =3 (Y P INIE, P, )
keZ n€?Z kez

2
Spa 22ﬂ<2 P 1)HFH2PIL(1/’
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implying (2.4)). Here we write (-,-) for the L2-inner product. By duality, it
follows the estimate

1P fller o Spg 27(27 + DIIF | 2 (2.6)
To recover P; on the right-hand side, we use the fattened Littlewood-Paley
projection P; := P;_1+ Pj + Pj41 for j € Z, noting that P;P; = P;. Clearly,

1’ also holds with P; instead of P;. In this inequality, we then replace f
by P;f to obtain the last assertion (2.5)). O

To deal with the additional factor 27 + 1, we include a frequency cut-off
in the discrete Strichartz estimates. For each K > 1 we define the Fourier
multiplier

mr = F g F- (2.7)
By Plancherel’s theorem, the operators wx are clearly uniformly bounded
in K on every L2-based Sobolev space.

We can now show the desired discrete Strichartz estimates. We stress
that these estimates fail without the cut-off if p < co. For instance, take a
function f € HY \ L? in . On the other hand, for f € H” the map nx f
belongs to all L™ with r > ¢o and 3/2 — v = 3/¢p by Sobolev’s embedding
and Bernstein’s inequality.

Theorem 2.5. Let (p,q,7) be wave admissible. Then we have the estimates
. 1
H7TK€mT|v‘fH££Lq S (KT)P [ fll g (2.8)

n—1
i 1
|7 3 Ak PR <, (KR Fll (2.9)
k=—o00

2 La
forallTe€ (0,1, K>7"', fe HY, and F € /" H".

Proof. By approximation, it is enough to take Schwartz functions and finitely
supported sequences. A scaling argument reduces the estimates to the case
7 = 1. Indeed, we can write

mxeVf = D, i, VID, f, (2.10)
where the spatial dilation operator D, is given by (D, f)(z) == f(ax). As-

suming the case 7 = 1 is shown, we get the general case

. 1 . 1 3 .
k€™ N fllpra = 77 | Dy €™V D, flleora = 77 4|7 g €™V ID, fl o 0
1,3 1 143 3., 1
Spa TP C(KT)P||Drfllgs =70 e 2T (KT) P fl g

~.

1
= (K7)7 ([ £l g
by the scaling condition in (2.2)), and similarly for the inhomogeneous esti-
mate.
Solet 7 =1 and K > 1. By means of the Littlewood—Paley square
function estimate, Minkowski’s inequality, and Lemma [2.4] we compute

7™V flleora

1
< , in|V| 2)5 ( _in|V| 2 )
S |[(S1Pmwe™r2)*] < (X 1B i I

JEZ JEZ

(NI
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[N

) 1 )
oo (X N20@7 + DPmicfI3:)" < K7 (X 127 Pif12:)

JEZ JEZ
1
S K# (£l gas

also using that Pjmrg = 0 for K < 2J. Thus, the homogeneous estimate (2.8)
is true. By duality, we infer the dual homogeneous estimate

—ik|V| < 1
|- mce™VIGy| . Spq K7 Gl (2.11)
H—
keZ
that is valid for all G € *' L9

The truncated inhomogeneous estimate (2.9)) is proven by another duality
argument via

n—1
H Z rreRIVIE
k=—o00

pPLa

n—1
= sup ‘ Z < Z e RIVIE Gn>‘
”G”W’Lq’Sl n€Z k=—oco

oo
= sup ‘ Z <Fk, Z wKel(k_")|v‘Gn>‘
1GH 1o <1 kez n=k+1

Z WK@ i(k— n\V|G H

<|Fllpp  sup H
/<1 kGZ —k+1

1G e,

Using ([2.11]), the assertion now follows from

sup H Z rreF—mNVlg, H
1G]t ;g <1 keZ ]
= sup | 22w iy Ga
||G|| ,<1kez

Spg K7 sup sup |]ﬂ{n>k+1}G Hep L = Kp

1G] o <1 E
Alternatively, one could also employ the Christ—Kiselev Lemma below
to deduce the inhomogeneous estimate from the homogeneous one. O

We discuss some variants of the above results and proofs.

Remark 2.6. a) Using the Bernstein inequality ||7x f|| ;4 S K| f|| L2 that
holds for every L?-function f and v > 0, we can convert the derivative loss
from the discrete Strichartz estimates into a multiplicative factor of the form
K7. This gives e.g.

i Fllg 1 Spa (KT)3E ] 224
and similarly for the inhomogeneous estimates.

b) In all the previous estimates we can replace the plus sign in the ex-
ponential by a minus sign (e.g., e~ 7Vl instead of ei”TW') since we can
instead of f resp. F' always use their complex conjugates and 1o x)(§) =
1 p(0,k)(—¢)- This modification is employed below without further notice.



10 MAXIMILIAN RUFF AND ROLAND SCHNAUBELT
¢) In our applications, we will always deal with finite sequences, defined

on some set {0,..., N} for an integer N € Ny. In that case, the second
estimate of Theorem takes the form

n—1
HT Z 7rKei(n—k)rmpk
k=0

1
. Sp,q (KT)pHFHﬂ

T
T,N*lH

0 L

P
N
where on the right-hand side we only need to consider the index range
{0,...,N —1}.

Remark 2.7. There exists an alternative (simpler) approach to time-discrete
Strichartz estimates, which uses the well-known continuous estimates just
as a “black box”. In the context of Schrodinger equations, it was used in
Lemma 2.6 of the recent preprint [25], see also Lemma 2.1 of [22] for a
similar technique. But this approach yields a weaker estimate compared to
Theorem in the case when K > 77!, We give the details. For technical
reasons, here we have to replace the frequency cut-off mx by a version 7x
with a smooth cut-off function (similar as the Littlewood—Paley projections
from Definition . Let first 7 =1 and K > 0 be arbitrary. For a function
fe HY, we get

HeinM%Kf”?qu

n .
=5 [ e R a

nez
n . . n .
S 3 [ e e e+ Y [ e
nez’/ "1 nez’/ "1

Note that the last term is equal to [e®VI7x f||7,,,, therefore it can be
treated directly by the continuous Strichartz estimate from Theorem [2.3]
The first term can be rewritten as

Z/n H(ein|V| —eith)?T’KfHﬁq dt — Z/n H/ni|V‘€ia|Vl%deUHp dat
nez/n=1 mezIn—11Jt Le
<>/

neL n—1

n .
S0 k7Y [ 1€V 1 do

ne”L

n

[ W91 do e

where we used Bernstein’s inequality and the frequency cut-off 7k to get
rid of the differential operator. In this step it would be necessary to use 7x
with a smooth cut-off function. Now we are again in a position to apply
Theorem [2.3] Altogether, this gives the estimate

7wV fllerra Spg (L4 K)o
A scaling argument as in the proof of Theorem [2.5 then yields the estimate
7™ fllpza Spa 1+ KT Fll v

for general 7 > 0. We see that this estimate is inferior to Theorem if
K > 771, but for K = 77! they are the same.
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2.2. Endpoint estimates with logarithmic loss. The Strichartz esti-
mates from Theorem and are in general wrong if (p, ¢,7v) = (2,00, 1),
see [22] or Exercise 2.44 in [23] for a discussion. In this section we show a
local-in-time estimate with logarithmic loss, which will be used to discuss
the corrected Lie splitting in Section [6] We follow the approach from Sec-
tion 8 in [12] and transfer it to the time-discrete setting. First, we need
two lemmas with basic estimates. The first one is contained in the proof of
Lemma 8.1 in [12].

Lemma 2.8. The function

MiRXE 5 C MOz = [ cos(Mee e
B(0,1)

)

satisfies the decay estimate

1
M\ 2)| <
MO S
for all X € R and z € R3.
Lemma 2.9. The function
1 1
A:RxNygxNyg—=R, A(SB,n,j) = — + -
oo (8m.3) (1+6!n—3\ 1+B(n+3))

satisfies the inequality

],]]E}: E 4 6) < ] 9 1 ] ]\79
J N 7 7n .7) log( )
707” allN S NO andﬁ > O

Proof. Let j € {0,...,N}. We have

}N: 1 < EN: ! 1 §Nj LIPS gt o d
N = =1+ <1+p" / t
n:01+6(n+j) =1+ 06n =1+ pn o 14t

=1+ og(l+ NB)
and
N 1 j—1 1 N 1

D T IR PR ¢ R DI )

N—j 1 N 1
14+ <1+2
Zl+ﬁn nz::ll+ﬁn_ nz::llﬂLBn
<1+ 267 log(1+ NB). O

Now we show the announced time-discrete endpoint estimates with loga-
rithmic loss.

Theorem 2.10. The estimates
Imxe™™ ¥ fll o S /KT + log(1+ KNT)|| ]l s, (2.12)

N
| e ™ VA S VET +logl + KNT)|Flle 11 (213)
k=0 ’
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hold for all T € (0,1], K > 7', N e Ny, f € H', and F € (?L".

Proof. By duality, the two estimates are equivalent. Due to a scaling argu-
ment, for (2.12)) it is enough to show

Ime™ ¥ fll g S 1B log(L+ NO)fll e (2.14)
for any # > 0. Indeed, this estimate and (2.10]) imply

Imice™ ™V fllgs g =72 DKmE™ VD fllp e

1 .
=72 ||7T1€mKT|V‘DK71fHe§ I

< 3 \/1 + (K1)~ tlog(1 + NKT)||Dg-1 fl| g
= (Kr)3\/1+ (Kr)-Llog(1 + NEK7)| ] s

= /KT +log(1 + NE7)| £l 1.
We show ([2.14)) via the dual estimate

N
| S me SR <15 s+ NAFlg 1 (215)
n=0

for F € (?L*. Instead of the exponential, we treat sine and cosine. From
the definition of the H'-norm and Fubini’s theorem, we deduce

L2

N 2 N A 2
| o msin@aVDE|, = [l Y 1a. sin(BlE) Ea(©)
n=0 n=0

N

= -2 . g - =
= /B(o,l) [3 Z sin(nB|€]) sin(j8|¢]) Fn (&) F}(€) d€

n,j=0

N

=0 [ I sntmle) sinile)

n,7j=0
-/Rs /]R3 ei(y_w)'an(x)Fj(y) dz dy d&

N
—en? Y [ [ G858y - ) F@)F ) dedy,

n,j=0
where

G_(a,b,z) = /

€72 sin(al€]) sin(bl¢])e' ¢ dé.
B(0,1)

Analogously, we obtain

N 2
H nz:%m cos(nﬁ|V|)FnHH_1

N
—en Y [ ] GinB.is.y - o) Fu@)F ) do dy,

TL,]:O
with

Gi(a,b,z) = /

€177 cos(al€]) cos(bl¢])e™* de.
B(0,1)
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Trigonometric identities yield
1
Gi(a,b,z) = §(M(a —b,2) :i:M(a—l—b,z))

with M (), z) from Lemma Combined with this lemma, the above equa-
tions lead to

N 2
| 2 me ],
n= H71

S Z/R/R [M(3(n = ).y = 2)| + [M(5(n + ).y — )

n,j=0
| Fn(z )HF}-(y)!d:cdy

1

,JO

2/\

= Z Ay, D Enll o 1 F5l 1

n,j=0
with A from Lemma We can now apply Cauchy—Schwarz twice and
Lemma Also noting that A(3,n,7) is symmetric in n and j, we estimate

N
> AB ) Fall a1 Fy o

e N N 2.1
<IFlg [ 3 (X ABimIEIL) |
n=0 5=0
N JN N 1
<Flg o[ 2 (30 AG5m) (X AGn)IFIL)]
n=0 j5=0 j=0
S (ng)laXNiV:A(Bﬂlvj));(jZIBlaXNZA(B’n7‘7))§HFH% NL1
=0 T n=0 '

S (1487 og1+ NB))IFIE 1,
which shows (2.15)). O

In Section [6] we also need an inhomogeneous estimate with the forbidden
exponents (p',¢,1) = (2,1,1) on the right-hand side. Estimates with ¢ # 2
can often be deduced by means of the Christ-Kislev Lemma from [7].

Lemma 2.11. Let X and Y be measure spaces, and E and F be Banach
spaces, 1 <p < q<oo, and T: LP(X,E) — LYY, F) be a bounded linear
operator. Furthermore, let (X;);jen be a sequence of measurable subsets of X
such that X; C X411 for all j € N. We define the Christ-Kiselev maximal
operator

[T"h](y) = sup I (h1x,)] ()l

for all h € LP(X, E) and almost every y € Y. Then we have the estimate
« =1 —1y.
IT*hlloqyy < (1 =277~ DT[] Lo x )
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for all h € LP(X, E).

We show the estimate to be used in Section [l There we need uniformity
with respect to shifts s € R in the wave propagator.

Corollary 2.12. Let (p,q,7) be wave admissible. Then the inequality

n—1
HT Z 7_‘_Kei(n—k-&—s)T\V| |V’_1F]€
k=0

2 L

lL1

1
Spa (K7)» K7\KT +10g(KNT) | F 2
holds for all T € (0,1], K > 771, s € R, N€N, and F € (L.

Proof. We define the sets Xo = () and X; = {0,...,min{j — 1, N}} for
jeN,and X :={0,...,N}. By the Christ—Kiselev Lemma it suffices

to prove the estimate for the operator given by

N
(TF)y =1 mre = )7V~ p,
k=0
We compute

N
HT Z ﬂ,Kei(nfk+8)T‘V‘ |V\*1Fk
k=0

o o

1
Spq (KT)P

N
- WK@i(_k+s)T‘v||v,_le .
> |1

< (KT)%K"’HT i\’: ﬂKe_ikTW'FkHH_l
k=0

< (Kr)7 K7\ /Kt +log(1 + ENT)[|[Fll2 .

Here we first use the homogeneous Strichartz estimate . Then we apply
Bernstein’s inequality to get rid of the derivative loss of order v, at the cost
of the factor K7. In the end, we employ the endpoint estimate from
Theorem 2.101 O

Furthermore, we need the following “hybrid” estimates to control time-
continuous solutions in time-discrete norms. Their proof is only sketched
since it does not require new ideas.

Corollary 2.13. Let (p,q,7) be wave admissible. Then the estimates

1

nT X
| [ mcetm =) ds] . Spa D10 .10
" i(nr=s)|V]
1{nrt—s
H/O TKE F(s)ds e < \/KT + log(1 + KNT)”FHLl([O,N—r},HI)
(2.17)

hold for all 7 € (0,1], K > 7', F € LyH", and N € N.

Proof. Two proofs are possible. Since we have an L?-based Sobolev space in
the space variable on the right-hand side of the inequality, we can apply the
same technique as in the proof of (2.9)) in Theorem just replacing one
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of the two sums by an integral. For (2.17) one uses (2.13)) instead of (2.11]).

An alternative way would be to proceed as in the previous proof and use
the Christ-Kiselev Lemma with the sets X; := (—o0,j7] C R for the first,
resp. X; = [0, min{j, N}7] C [0, N7| for the second estimate. So (2.16) is
reduced to , and @ to (2.12)). O

3. NONLINEAR WAVE EQUATION

We introduce some notation and recall some well-known results from the
wellposedness theory of the nonlinear wave equation (1.1)). For the non-

linearity we write g(u) == —plu/* tu. We will often use the elementary
pointwise Lipschitz bound
l9(v) = g(w)| S (I|*™" + |w]*™H)]v — w] (3.1)

for g. It is convenient to reformulate (1.1)) as a system having first order in
time. Therefore we set

= ()2 ) (& 8o (). v (£) o

and obtain the equivalent first-order system
U(t) = AU() + G(U(1)), <[0T,
U(0) =0°.

We are looking for a mild solution of (3.3)), i.e., a function U € C([0,T], H' x
L?) satisfying the Duhamel formula

(3.3)

U(t) = U0 + /0 t =AQ(U(s)) ds (3.4)

for all t € [0, T]. The group e is given by

ta _ [ cos(t|V]) V|~ sin(t|V))
€ _(—\V]sin(t\V]) coselv)) ) PER

Inserting (3.5)), the first line of (3.4)) reads

u(t) = cos(t|V|)u® + |V| L sin(¢t|V])v° + /Dt V| Lsin((t — s)|V|)g(u(s)) ds.
(3.6)

(3.5)

For the linear part of the evolution we abbreviate
S(t)(ul, 00 = cos(t|V|)u’ + |V| L sin(¢|V])2°. (3.7)

In this setting we can apply the Strichartz estimates as formulated in Section
since we can decompose

1, . . 1 . )
sin(t|V|) = E(elt\VI _ e—ut\V\)7 cos(t|V]) = 5(61t|V| + e—lt‘V|)‘

In the case a = 3, Sobolev embedding shows that the nonlinearity G leaves
the space H! x L? invariant. Therefore, local wellposedness can be shown
in a standard way using the Duhamel formula and Banach’s fixed point
theorem. If o > 3, a more sophisticated analysis is needed since in that
case the nonlinearity loses too much integrability. By means of Strichartz
estimates, local wellposedness can be shown up to the critical power oo = 5.
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Let v € [3,5]. We define an exponent p,, € [4, 00| such that (pa, 3(a—1),1)
are wave admissible, i.e., by the relation
1 1 1

Pa a—1_2

see . The local wellposedness theorem for the nonlinear wave equation
reads as follows. A proof for the critical case o = 5 is given in,
e.g., Theorem IV.3.1 of [20], and the subcritical case e < 5 can be proven
similarly. See also Sections 8.3-8.4 of [1] for related results and Chapter 3
in [23] for an overview.

Theorem 3.1. Let U° € H! x L2, Then there exists a time Ty > 0 and
a unique solution U = (u, Owu) of such that U € C([0,Tp), H' x L?)
and u € LP([0, Ty, L>@~V). Moreover, U is bounded in the above function
spaces by a constant depending only on ||U0HHle2, and in the subcritical
case a < 5, the time Ty only depends on ||U°|| g1 ;2

Remark 3.2. a) Since g(u) € C([0,Tp], L5/*) — C([0,Tp], H~ ') and Au €
C([0,Ty], H) — C([0,Ty], H™'), one can deduce from that 0?u be-
longs to C([0,Tp], H~!) and that the differential equation in (1.1)) holds in
this space.

b) See Proposition for a choice of Tp in the critical case a = 5.

¢) In the defocusing case u = 1, one can show global-in-time wellposedness
using energy conservation. In the focusing case p = —1 however, blow-up in
finite time can occur. Moreover, if a > 5, the problem is ill-posed at least if
= —1. See Chapters 3 and 5 in [23].

d) In the subcritical case @ < 5, one has uniqueness of solutions U =
(u, Opu) to in the energy class C([0, Ty], H' x L?) without the require-
ment that u € LP ([0, Tp], L3(@~D), cf. [18].

From now on we assume the following.
Assumption 3.3. There exists a time 7" > 0 and a solution U = (u, dyu)
of (3.3]) such that
UecC([0,T),H x L?) and wu e LP=([0,T], L3*~Y)

with bound

M = masc{| U e s g2y [0l gz o - (3.8)
Remark 3.4. If o < 5, the quantity M only depends on HUHL?(Hleg).
Indeed, the “minimal” existence time Ty and the number M for T = Ty are
controlled by [|U°|| 712 in Theorem Hence, we can divide the interval
[0,T] into a finite number of smaller subintervals such that the Strichartz
norm of u is bounded on each of them. Moreover, in the defocusing case
© = 1, one can use energy conservation to show that the number M only
depends on ||U°|| 71, ;2. The latter even holds in the critical case a = 5, see
[24] and the references therein.

As a preparation for later sections, we now want to convert the continuous-
time Strichartz estimate into a discrete-time space-time bound for u from
Assumption [3:3] To apply the results of Section [2, we need to include the
frequency cut-off mx defined by .
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Proposition 3.5. Let u, T, and M be given by Assumption and (p,q,1)

be wave admissible. Then we have the estimates
1
[ ru(nT + U)Heﬁ ~ L1 Spamr (KT)7,

Imku(nr +0)le e Sur (K7 +log K)2
forallT€ (0,1, K>7"1 0>0, and N € N with Nt +0 <T.

Proof. Owing to (3.6 and (3.7)), the solution is given by
Tru(nT + o)

=g S(nt)(u(o), du(o —I—/HTWK]V\ 1sm((n7—s)|V!) (u(o + s)) ds.

We apply the homogeneous and hybrid Strichartz estimates (2.8]) and -
to obtain

Imrcu(nT + o)l 1o
Spa (K1) (Ju(@)ll g1+ 1180(0) | 2 + 9(ulo + )y, s2)
< (5r)e (M + | [ul*ull 12 )

(M + [l g o llul e o)

S (K7)r (M o+ T a5 sy M) Sarir (K7)7,

hSAC

< (K7)

where we also use Holder’s inequality and the Sobolev embedding H' « LS
to bound the nonlinearity. The estimate in the ¢2L>°-norm follows in the
same way, using the logarithmic endpoint estimates (2.12) and (2.17)). O

Remark 3.6. With a similar calculation we can also show the continuous-
time bound

||7TKU||L1§FLQ SpaM,r 1
Here we use the continuous-time Strichartz estimate from Theorem and
the uniform boundedness of the operator 7 in all L2-based Sobolev spaces.

4. LIE SPLITTING

We consider a semi-discretization in time for , i.e., for a stepsize 7 > 0
and n € N we want to compute approximations Uy, = (un,vn) =~ U(t,) at
discrete time points t,, := n7. One can consider the following Lie Splitting
scheme (sometimes also called Lawson—Euler scheme)

Ups1 = €™A[U, + 7G(U,)]

with A and G from . In order to perform one step of the Lie splitting
scheme, we first apply one step of the exact nonlinear flow, followed by one
step of the exact linear flow. One can also derive the Lie Splitting by setting
s = 0 in the integral of the Duhamel formula

Ulr) = A0 4 / " DAG(U(5)) ds.
0

To compensate the “bad” behavior of the nonlinearity GG in the case a > 3,
we analyze a modified scheme that includes the frequency cut-off 7 defined
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in (2.7), where we choose K = 7~!. (One could also take K = cr~! for
some fixed ¢ > 0.) Thanks to this choice, the factor (K7)Y/? in the discrete
Strichartz estimates vanishes. We introduce the notation

-1 0
moem (5 0)

The modified scheme is given by
Ups1 = (U, = e NU, + 1L G(Uy)),
Uy =11,-.U°.

The filter is applied to the initial data, as well as in the iteration after the
application of the nonlinearity. Inductively, one checks that II.-1U,, = U,
for all n. Let the solution U = (u,0,u) be given by Assumption In
Lemma we control the projection error U(t,) — I, -1U(t,). Hence, to
compare the numerical approximation with U, we define the (main) error

E, =11,-1U(ty) — Uy, (4.2)
for all n € Ny with nT = t,, < T. Note that with this definition we have
FEy = 0, since the numerical scheme filters the initial data. We write w,, for

the first component of U, as well as e, for the first component of F,. We
first establish a recursion formula for the error.

Proposition 4.1. Let E, be given by and for the solution U
from Assumption[3.5 We then have

tn
Enin = AR, + HT_le("T_s)ABm(s) ds
0

(4.1)

n—1
+ > T e A A+ T Q) (4.3)
k=0

for all 7 € (0,1], and n,m € Ny with ty+n < T. The appearing terms are
given by

Bun(s) = G(Ultm + 8)) — GIL1Ultm + ).
A, = /0 T AGUL AU (ty + 8))ds — TG U (L)), (4.4)
Qn = G(IL 1 U(t)) — G(Un).

Proof. We use the Duhamel formula
tn
Ultsn) = "™ AU (t) + / T AG(U (b + 5)) ds
0

for the solution U. For the discrete approximation U, defined by (4.1)) we
have the discrete Duhamel formula
n—1
Unin = " Up + 13 11 H™AG(U,, 1), (4.5)
k=0
which is easily verified via induction. These equalities yields

Em+n = HT—l U(tm—i-n) - Um+n
tn

_ em-A(HTflU(tm) _ Um) + HTfl e(anS)AG(U(tm + S)) ds
0
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- Z H (n k) TAG(Um+k)

tn

=e"E, + ; IL 1™ 94B, . (s)ds

tn

+ | M- eOAGIL U (ty, + 5)) ds
0
n—1 n—1

— 7Y I eITAGUL U (tgn)) + 7 Y o1 e HTAQ
k=0 k=0

Furthermore, we can rewrite the last integral as

tn
L -1 DAGQ(I, -1 U (t,, + ) ds

n—1 4
_ Z / k41 HTfle(nTis)AG(HTil U(tm + 3)) ds
k=0 "tk

n—1
=3 I ie ’f)”‘/ e S AGIL 1 U (tyyr + 5)) ds
k=0 0

to obtain the expression including the local error terms Ay, 1. O

We now quantify convergence g — I as K — oo. In view of later
applications, the following two results are formulated for general K > 1. In
this section, we will only use the case K = 7—!. We give the proof of the
next (known) lemma for convenience.

Lemma 4.2. The estimate
1
I = 7r) fll s < 22 I
is true for all K > 1, v € R, and f € H".

Proof. We simply use the support property of the Fourier multiplier 7,
Plancherel’s theorem and the definition of the Sobolev norm. This gives

I = 720) L = NP0 = W) lze < [ FEEEL e i

1
< =l 0
Using this, we show an estimate for the terms By, (s) in (4.4).

Lemma 4.3. Let u, T, and M be given by Assumption[3.5 We then have

the inequality
1
lg(w) = glmacu)lly s Sar

for all K > 1.

Proof. We use estimate ([3.1)), the Sobolev embedding L6/5 < H~1 Holder’s
inequality, the definition (3.8]) of M, Remark and Lemma to obtain

lotu) — glmscu)] s -

S ul®™ + |l u — mxculll o
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< (lllg s sy + Il §5 sl = Tl e
1

1
SM,T ||u”LP(1L3(a 1)||u||L%°H1 SM ? U

We next bound the local error terms A, from (4.4). To differentiate g,
we identify C with R? using the real scalar product z - w = Re(zw), where
we omit the dot below.

Lemma 4.4. Let U = (u,0pu), T, and M be given by Assumption . We
then have the representation

8= ) st F ol +) 9705 (49
Moreover, the inequality
[AWS ||el (L2xH- )S;M,T 2
holds for all T € (0,1] and N € Ny with (N +1)7 <T.
Proof. Starting from , we write

A, = /O e MG AUt + ) — GL AU (1)) ds

= /oT /OS % {e*"AG(HTq Ul(tn + O'))} dods

- e [ (& 0) Cotr, salt <o)
+ i (gtr -lu?twa)))] dods

_ / / oA ( _1;(5;( +_;;L)(7fj_fajt)t)(tn n 0)) do ds.

Thanks to the regularization 7 -1 there are no problems taking the deriva-
tive. We can now estimate

HAHHQ’N(L%H*U

( . g(m-—1u(ty + ) )

< 2
~ T Sub r—1u(ty + 0))m—10wu(t, + o)

c€l0,7]

N (L2XLS/5)

ST 81[10p [l —1u(tn +0)[* 1Hel L3(H7fr 1UHL<>°L6 + [l 18tu”L°°L2)
S

Srr? sap. [ +0)Hzpa o (Il oo o + 1Orull e r2)
S

< 2

~SMT T,
using Sobolev’s embedding, the estimate |¢/(w)z| < |w|®~!|z|, Holder’s in-
equality, and Proposition [3.5] O

Now we turn our attention to the terms @, defined in (4.4). To estimate
these terms, we will need an a priori bound on the numerical solution u,, in
the discrete Strichartz norm || - ||, L3a—1- Since such a bound is at first

unclear, we use the relation u,, = 7r;_1 u(ty) — e, combined with the discrete
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Strichartz estimate for u from Proposition [3.5] Hence, for proving the global
error bound in Theorem [I.I} we must in addition show the convergence
Heanz; Ly = 0as 7 — 0, see Proposition This idea goes back to

[14] (1n a setting with maximum norms in tlme)

Lemma 4.5. Let u, T, and M be given by Assumption [3.3. Then the
inequality

lg(mr—1u(tmin)) — 9(Umin) Hzl ijl

,SMT t]+1 = (1 + ”em—i—anzL _1L3(a—1)) ||em+n||ﬂf_0j[,2
T5J ’
holds for all 7 € (0,1] and m,j € Ny with (m+ j)7 < T.
Proof. Similar as in Lemma [£.3] we estimate

lg(mr1u(tinrn)) = 9(um+n)lla -1

S (I ultmn) I ooy + B35 o)
77

N rru(tmn) — um+n||£3f’,L2
—1
< t (Hﬂ-T 1U(tm+n)|| L3(a yt ”um‘FTLH%’_jILS(afl)) |’€m+n”£$f>jL2
.
Sttt QWMwmmmﬁmw+wmmﬁprwmm%p

Sur it (14 lemsnll staen ) llemnlles 2

Here we keep the power of ¢;;1 gained by Holder from the change from the
Ef’;-l— to the fﬁ7j-norm and we further insert w;,1n = Tr—1U(tmin) — €min-
The estimate in the last line follows from Proposition O

Due to scaling considerations, the convergence order of ||ey,|| 4 yL3@=D) will
T,

be ——5 —% since we only assume H'! regularity of the solution u. Thus, in the
cr1t1cal case o = 5 we cannot prove any convergence rate in this Strichartz
norm, which is one reason that makes this case considerably more difficult.
Another one is that it is no longer possible to gain a power of ¢;41 in the
previous lemma. We therefore first focus on the easier case a < 5.

To measure the error simultaneously in two different norms, we define

HETLHT,] = max {7—_1‘|En||£;'_oj(L2><H*1)7T’ya_l“en”fij[ﬁ(a_l) }, (47)

where j € Ny is a number with j7 <T and the parameter v, is given by
5 1 3

= = -, 1].

Te = T a1 € 1

Hence, (4,3(a—1),7,) is wave admissible and 7, < 1 if @ < 5. We are now

ready to perform the main step of the convergence proof in the subcritical
case. We proceed by a “double induction”, similar as in Section 9 of [16].

Proposition 4.6. Let « < 5 and U = (u, ), T, and M be given by As-
sumption . Define E, by . Then there is a number 79 > 0 depending
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only on M and T such that we have the estimate
1Bl 2, Sarra 1
for all T € (0, 70].

Proof. Step 1. Let C7 > 1 be the constant from the discrete Strichartz
estimates from Section [2| with respect to the parameters (4,3(a — 1),74)
and Cy > 0 be the maximum of the constants from Lemma [4.3] [£.4] and [£.5]
Since a < 5, we can choose a time 77 € (0,7 such that

_a—1 1
20,CoT; * <3 (4.8)

Next, we define L = [%1 € N and the maximum step size 79 > 0 by the
relations

1
< T 1=7a <
=S T = 0,20,

where we again exploit that o < 5. For 7 € (0,79] we set N := |T/7] € N,
Ny = |T/7] €{1,...,N}, and N, := mNj for all m € Ny. Note that these
definitions yield N < Np. Moreover, we define the number ¢ := | N/Np| €
{1,...,L}. We thus have the decomposition
/-1
[OvtN] = U [tNm7tNm+1] U [thtN]?

m=0

(4.9)

where each subinterval is of length less or equal T7. To measure the error in
each of them, we define the error terms Err,, by Err_; := 0,

Erry, .= |En, 4nllrn, me{0,...,0—1}, Err, = [|[ENy4nllrN-N,-

Step 2. Our next goal is to show the recursion formula
Err,, < 2C1Erry,—1 +4C1Cy, m € {0,...,0}. (4.10)

Note that as soon as (4.10) is established for all indices in {0, ..., m}, one
can deduce the absolute bound

= 2C)™ T —1
EI'I'm S 40]_02 Z(2C1)k = 40102(216)'1—1

k=0
a) Fix an index m € {0,...,j}. If m > 0 we assume that (4.10]) holds for
all indices in {0,...,m — 1}. We derive (4.10) by proving
7.7 < 2C1Err,,_1 +4C1 05, j € {O, .. ,min{Nl, N — Nm}},
(4.12)

< 4Cy (20 (4.11)

via induction on j.
b) First let j = 0. If m = 0, there is nothing to prove since Fy = 0. If
m > 0, we directly obtain

[EN,+nllro < |EN, s inllz g = Errg,
which in particular shows (4.12)) for j = 0. Next, let (4.12)) be true for some
j€A0,...,min{N;, N — N,,,} —1}. As in (4.11) the induction assumption

(4.10) then yields
IEN,4nllrj < 4C2(2C1) 5T (4.13)
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We apply the discrete Strichartz estimates from Theorem [2.5] and Corollary
to the error formula . Observe that implies E,, = [I,-1E,
inductively. We also use Bernstein’s inequality to convert the derivative loss
|V|7 into a loss of 777 in this Strichartz estimate, as explained in Remark
a). Combined with the definition of the | - [|;,;-norm (£.7)), it follows

o
BN tnllms1 < M1 AN, [lr 1 + H/O 114 By, (s) ds .
T?

+ H ni:l I, 1P (ANm+k + TQNm+k> H

s T,j+1

< O (1BN Nl it + 1Bl ey
J+1
+ 7 AN tnlln i)+ 1QNtnlle (p2r))
T,J T5J
< (Errm_1 + 17 g(u) = g(m—1u) 1 7
-2
+ 2Bl rexion)

+ 77 gty ) = 9(unsn)ll 1)
< Ch1Err,,—1 +2C1Cy
T+t T (14 lemnlles e ) leminlle, 22
1©2 j+1 Nm+n f;l_ijS(a—l) Nm+n ET,]-L
< C1Err,,—1 +2C1Cy

i _ _ _
+CiGn T (1O By 135 ) B

T,J

where we applied Lemma [£.3] [4.4] and [4.5 to bound the error terms. We
insert (4.13]), the step size restriction 7 < 7y from (4.9)) and the definition of
T, from (4.8]) to obtain

1—a=1
rj+1 < CiErry, 1 +2C1Co +2C1CT, * ||Enyytnllrj

1
< CiErrp,—1 +2C1Ch + §||ENm+n’

T7j ‘

In particular, ||EN,,+nl|rj+1 is finite. Since ||EnN,,tnllrj < |ENp4nllrjt1, it

follows that
HENm—‘rnHT,j—i-l < 2C1Err;,—1 + 40102,

which closes the induction on j. Hence, the recursion (4.10)) is true. The
assertion now follows from (4.11)). O

Proof of Theorem [1.1, We take 79 > 0 from Proposition and infer

1U(tn) = Unll g2y g1
<NUEn) = WeaU ()l o g1 + M1 U () = Unll 2, -1

STNUED g1z + 1 Enll 2w -1 SMTa T

using the estimates from Lemma [4.2] and Proposition [4.6] O
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5. THE CRITICAL CASE

We now consider the case o = 5. As a first auxiliary result we estab-
lish convergence of the time-discrete Strichartz norm towards the time-
continuous Strichartz norm. This will be done for the homogeneous part
of the evolution, i.e.,

St)(f,v) = cos(t|V]) f + V| sin(t|V])o,
on a bounded interval J. We recall the notation

1
I Ealler ey = (7 D2 I1Fall%)"

ne”
nreJ

Lemma 5.1. Let (p,q,7) be wave admissible, f € HY, v € H!, and
J C R be a bounded interval. Then we have the convergence
”eimw‘ﬂr—lfueZ(J,Lq) — HeithfHLf’,qu
1S ()T (s )l g2 g,Lay = [IS@E (S 0)l 27 L4
as T — 0.

Proof. Let € > 0. We choose a Schwartz function ¢ € S such that supp ¢ is
compact and ||f — |7, < . The function ¢ + ®Vlp is then continuous
with values in L9, since Hausdorff—Young and dominated convergence yield

eVl — & Vlg) o = | F (€1 = @) [0 < [|(€¥1 = D)) 1 — 0

as s — t. We also have m_-1¢p = ¢ for 7 small enough, because supp ¢ is
compact. It follows

le™ Va1l (g pay = ||€it‘v‘§0||Lf’,Lq

as 7 — 0, as there are essentially Riemann sums on the left-hand side.
Putting things together, we conclude

‘||einT‘v‘7rT71f||€£(J,Lq) - HeiﬂvlfHL{’,Lq

it|V|

< ||€im|v|7Trl(f - <P)H121;(J,Lq) + ’H@im'wﬂrlsﬁ’Hﬁ(J,Lq) — e

11 = £l o 1o
Sp,q 2|l f - SOHHw +e <3¢

<P”L§Lq

for 7 small enough, using the reverse triangle inequality and Strichartz es-
timates from Theorem and Thus, the first assertion is shown. The
proof of the second one follows the same lines. O

To show the error bound in the critical case, we use a regularization
argument. For H? x H' initial data, it requires first-order convergence of
the scheme in the H! x L2-norm. To use this fact, we also need the
continuous dependence on the initial data, both for the equation (3.3)) and
the scheme . We show these results under a smallness condition on
a Strichartz norm of the orbit, which can always be fulfilled by choosing
a small end time b, see Theorem [2.3] We note that b in Proposition [5.2]
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corresponds to a possible choice of Tp in Theorem cf. [20, 23]. In the
following we frequently use the discrete Duhamel formula

n—1
Up = " LU + 73 IR AG () (5.1)
k=0
for the scheme (4.1)), see (4.5). The first component of (5.1)) reads as
n—1
Un = S(tn)HT*1U0 +7 Z ’v|_1 Sin(tn—k|v‘)7r7*19(uk)a (5.2)
k=0

similar as in the continuous case (3.6]).

Proposition 5.2. Let R > 0. Then there is a radius 6y = 50(R) > 0 such
that for any & € (0,d0] the following is true. For all W° € H' x L? with
WO 12 < R and every b > 0 with ||S(-)W0||L§L1z < 4, there is a time
step T = 7(6, W, b) > 0 such that the next assertions hold.

a) For every Y, Z% € By, 12(W°,6), the solutions Y and Z of
with o = 5 and initial values YO resp. Z9 exist on [0,b]. Moreover, we then
have the estimates

[ r=1y(En)llea (0,0, 112) < K, (5.3)
Y lles o8], 012) < KO, (5.4)

1Y = Z| oo (0,0, 111 x £2) < 210 — Z%| g1y 2 (5.5)
1¥n = Znllgoo o4, 111 x 22) < 210 — Z%| g1y g2 (5.6)

for all 7 € (0,7], where Y, (resp. Z,) are the iterates of for initial
values TL. 1YY (resp. TL.-1Z°), y, (resp. y) is the first component of Yy,
(resp. Y), and k > 0 is a constant.

b) If YO € H? x H' satisfies ||[YY — WO g1, ;2 < 6/2, then there is a
constant C = C(||Y°|| g2 g1 ) > 0 such that the error bound

Hy(tn) - Yn||[gc([07b]’g1 x L2) <Crt (5.7)
holds for all T € (0, 7].

Proof. Step 1. Let Cs, > 1 be the constant from the Sobolev embedding
H' < L5 and C; > 1 be the constant from the Strichartz estimates in
Section [2| where we choose the exponents (p,q,1) = (4,12,1). We define

80 = min { R, (3Cs,C1(3+ C1)'R) ™5, (10Cs,Cr(3+ C)!) 73 . (5.8)

Let § € (0,dp]. Since by assumption ||S(-)W0||L§L12 < §, Lemma yields
a stepsize T > 0 such that

ISt T 002 < 26 (59)
for all 7 € (0,7]. We first show
||Yn||zgfj(H1xL2) < 3R, ||yn||eﬁ,jL12 <@B+C1)d (5.10)

for all 7 € (0,7] and j € Ny with j7 < b. This in particular shows the
inequality (5.4) with k := 3 + C}.
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We proceed by induction on j. For j = 0, we clearly have
Yol grsre < IV = WOllgype + IWollgagpe <O+ R<2R - (5.11)
since § < R. Theorem and further imply
lynlles iz = 73 SO YO 1o
< 71 SO -1 (Y0 = WO)| gz + 71| S(O)TL s WO 12
<Y = WO 1y g2 +20 < C16+ 25 = (2 + C4)0.

For the induction step j ~ j + 1, we assume that (5.10]) holds for some
j € No with (j + 1)7 < b. We compute

HYanngI(Hlxm)
n—1
< nTAH B YO N ' I (n—k)TAG Y,
< ||e -1 ”éﬂ—,jJrl(HleQ)—i—THkX:%] —1€ ( k)Heif)j+1(H1XL2)
<Yl + Moml*vnller 12 < 2R+ llynllfs paollynlles, o
< 2R + 3Cso(3 + C1)*6*R < 3R,

by means of the discrete Duhamel formula (5.1)), (5.11]), Holder’s inequality,
the induction assumption (5.10]), and the definition of § from ([5.8]). Similarly,

using (5.2)) and Theorem we estimate
ol iz < IS Y e pro

4 12
br il

n—1
+ TH Z ]V|71 sin(t,—k|V])m—19(yx)
k=0
< 1S ()T (Y — WO)HZinle + (15 ()L WOH@JHL12
+ Cl”’ynﬁynH@JL?

< 016 + 20 + 3Cs,C1(3 + C1)6* R < (34 C1)0.

Hence, the claim (5.10) is true for all j7 <b.

Step 2. Estimate (5.6)) is shown by an analogous argument starting from
(5.1). Using also (5.4) for z,, we deduce the inequality

1¥n = Znllgze (o, 11 < 22)

<Y = Z°0 gz + gl g = Lzal 20ller o.9,22)

< Y° -2 + ynl*yn — 1znl*2nl]
)

<Y = 2% grspe + 5”(’1/11\4 + |20l yn — 2nlller (o,),22)

<NY° = 2% g2

5)
5 (1alfs o.1.212) + NzallEs oy 02) ) 190 = Znlle o2

<NY? = Z% 12+ 5Cs0(3 + C1)* 6% Ye = Znll oo (0,077 ¢ 12)
1

< ||Y0 - ZO||H1><L2 + §||Yn - Zn”ego([o,b},Hlxm)v

which in turn implies

1Y — Zn”ego([o,b},Hlxm) = 2”Y0 - ZO”Hle?v
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as desired.

Step 3. The existence of the continuous solutions Y and Z until time b as
well as the estimate are part of the known local wellposedness theory of
(3-3), cf. Theorem [3.1]and Chapter 5.1 of [23]. We therefore omit the proof.
To carry it out, one can proceed analogously to Step 1 and 2, replacing the
discrete norms by the continuous ones and the induction by a fixed point
argument. The estimate in discrete Strichartz norm can be shown in
a similar way as .

Step 4. Now we want to show the error bound for better data
Y% € H? x H' with ||[Y? — WO 71, ;2 < /2. Since the nonlinearity G
leaves the space H? x H'! invariant and is Lipschitz continuous on balls,
there is a unique solution Y € C([0, Thax), H> x H') of with initial
data Y on a maximal existence interval [0, Tihax ). By Sobolev’s embedding,
the integrability condition § € L} ([0, Tiax), L'?) is satisfied. Hence, Y
coincides with the H' x L?-solution Y on [0,b] by uniqueness, as long as
they are both defined.

In the following, we show that Ti,.x > b. By a standard blow-up criterion,
it suffices to show that [|Y||pec(jop), 25 g1y is finite. First, note that (y, d;y)

belongs to C([0,b], H' x L?) and that the L?-norm of y stays bounded since

t
ly(@)r2 < [ly(0)]| 12 +/0 10y ()|l 2 ds < YOl gz i =+ Bl10eyl| Lo ((0,6],22)
< 00

for all ¢ € [0, b].

For the boundedness in the H? x H'-norm, we use that the Sobolev
norm of a function can be expressed by bounds on the norms of difference
quotients. For any h € R3, we introduce the spatial translation operator 7y,
by (Th(f,9))(x) :== (f(x +h),g(z + h)), where f and g are functions on R3.
By Proposition 9.3 of [2],

ITRY° = YOl iz SIRIIY O g -

~

Therefore, there is a number ho > 0 with [|[7,Y° — Y| 1, ;2 < §/2 for all
|h| < hg. From now on we assume that |h| < hg. The triangle inequality
yields [|7,Y°? — WO g1 2 < 6. Since T,Y solves (1.1) with initial value
T,Y?, from (5.5) we can deduce that
1T0Y = Y ll oo o, irrrzy < 20T0Y° = YOllgisze S IAIY g2y

Proposition 9.3 of [2] now yields Y (t) € H? x H! for t € [0,b] and

Y W oo o2y S WYl (5.12)
Thus, Thax > b.

Step 5. We can now estimate the error [|Y (tn) — Ynllpoo (o 47,711 x 12)- L€t

7 € (0,7]. For the rest of this proof, we allow our implicit constants to
depend on || Y| g2y 1. First, Lemma [4.2 and (5.12) imply

1Y (tn) = Yol goo ((0,6], £ x £2)
< ”(I - Hr—l)y(tn)"ego([o,b},l-'ll x L?) + ||H—r—1Y(tn) - Yn”egc([o,b],}'[l x L?)
< THY(tn)||£gO([0,b],H2><H1) + [T Y () — Yn”e;o([o,b],ﬂl x L2)
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ST MY ((n) = Yallgoo (0,0, 61 ¢ 22)- (5.13)

To estimate I1.-1Y (¢,) — Y},, we use the expressions from Proposition to
write
IL 1Y (tn) — Yy

tn n—1

= [T 9By (s) ds + 30 T (A 4 7Q1 ).
0 k=0

where the terms By, A, and @, now include Y instead of U. A direct
estimate gives
ML 1Y (tn) = Yallgoo (jo,01, 51 x 22)
< liyly = Imeyl syl
+ H% /0 e AG(IL 1Y (t, + 5)) ds — G(IL,-1Y (t,))
+ H’erly(tn)rl”r*ly(tn) - |yn‘4yn‘|€;([0,b],L2)- (5.14)

Here we interpret [0,b — 7] = 0 if 7 > b. The three summands in (5.14))
can be bounded similarly as in the Lemmas [£.3] [£.4] and [£.5] For the first
summand, using Lemma [£.2] we infer

L1([0,b—7],H xL2)

4 4 4 4
Nyl y = lme—ayl*me—ayll e S Ny + me-ayl Oy — mrrylll o2
< (Iyllga oz + lrpaglfapoe )N = e}yl oo
SIA =)yl e STyl e S 7

Here, the bounds for the L%Lu—norm follow from Theorem and Remark
since our b corresponds to a possible choice of Ty in Theorem By
(4.6) and Proposition the second summand is bounded by

L L (it ol ot +.0))

ST s fmaytn + s 0,022y (11719l oo + 1771 0uyll oo o)
oec|0,7

e}'([o»bfT]le XL2)

<7
Finally, we estimate the last part of (5.14}) by
71y (t) -1y (tn) = |Ynl *Ynlle (0,5,22)
5 4 4
< & (Imeay @)l osg. 2y + 1alltsog o2y ) e (tn) = vnllez o co)
< 5C50(3 + C1) 6T Y (t0) = Yaullpoo (0., £ x 22)

1
< §HHT*1Y(tn) - Ynneg_oqo,b],l'{le?)a

using (5.3)), (5.4) and the definition of d¢ in (5.8)). This term can be absorbed
by the left-hand side of (5.14). Putting things together, (5.13) and (5.14)

imply (5.7). O

Proposition [5.2] only gives a local statement on a possibly small time
interval [0, b]. Since we want to show a global error bound on the potentially
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much larger interval [0, 7], we need to apply Proposition recursively. To
this aim, we first have to iterate the smallness condition in LngQ.

Lemma 5.3. Let U = (u,0u), T, and M be given by Assumption
with o« = 5 and let § > 0. Then there are a number L € N and times
0=Ty<Ty <---<Tp =T, such that the inequality

HS(‘)U(Tm)”LZllez <4

holds for all m € {0,...,L — 1}, where we set by, = Typi1 — Tpy, > 0. The
number L € N only depends on 6, M, and T.

Proof. Let C be the constant of the Strichartz estimates from Theorem [2.3]
with respect to the exponents (4,12,1). We define

(0 0 Ni
Since ||u||L%L12 < M is finite, we can find times 0 =Ty < Th < --- < T =T,
such that the inequality
wll La (T, Tpya],212) ST
holds for all m € {0,...,L — 1}. Here we can choose L = [|jul|74 1,/
T
Let now m € {0,...,L — 1} and by, :== Tp41 — Tr, > 0. Starting from ([3.6))
and (3.7)), Theorem [2.3|and (5.15) imply
ISOU@a) gy e

QW%+N%yHWEWWwMF@WWW%+w®‘

Li L
<+ Clllul*ull prry 702y <7+ CMH”H%‘*([T,me_,_lLLl?)
<r+CMrt <. O

We now show the global error bound for the critical case. We use ideas
from the proof of Theorem 1.6 in [5], where similar arguments were used
in the context of nonlinear Schrodinger equations, but only in the energy-
subcritical case. The proof will be divided in three steps. In the first step, we
define the needed variables and divide the interval [0, 7] into a finite number
of subintervals, which are so small that we can apply Proposition[5.2]on each
of them. In the second step, we first prove the convergence of the scheme
in the H' x L2-norm without any convergence rate. This fact ensures that
the discrete approximation stays close to the solution in the H' x L?-norm
if 7 is small enough. We can then apply Proposition [5.2] iteratively. Finally,
in the last step, we estimate the error in the L2 x Hl-norm to obtain the
convergence of order one. In contrast to Theorem [I.1] the maximum step
size 19 will now not only depend on the size M of the solution u and on the
end time T, but also on further properties of the solution u to (1.1)).

Proof of Theorem[1.3. Step 1. Let R := |U|| poo(jo 19, i1 xr2) < M < 00. We
take 09 = do(R) given by Proposition We define

1
§ ==min {6y, —— 1}, 5.16
“mmam} (210
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where k> 0 is the constant from Proposition[p.2/and Cs, > 0 is the norm of
the Sobolev embedding L5 < H~1. Lemma provides a number L € N
and times 0 =Ty < Ty < --- < T, =T such that

ISOU @)l iz <6 (5.17)

holds for all m € {0,...,L — 1}, where b, := Ty,4+1 — T;, > 0. Here, the
number L € N only depends on M and 7. We now define

1
€= 9oL (5.18)
By continuity of U, there is a number p > 0 such that
NU(Ton) — U(t)HH1><L2 <e (5.19)

forall m € {1,...,L} and t € [0,T] with |T},, — t| < p. We pick functions
YO ..., Yl e H? x H' with

NGRS

[Y™ — U@l jgrepe < € < (5.20)

for all m € {0, ..., L}. Due to Theorem 2.3 we find a time bz, > 0 such that
ISOUM) g 112 < 0. (5.21)

We define the maximal step size 79 > 0 by

P br, . £ . —
Z7 f? mg(l]}n,L C(Ym) ’ mg(l]}n,[, 7_<57 U(T’m)a bm)}7
where the numbers C(Y™) = C(||[Y™| g2xg1) and 7(0, U(T,), by, ) are taken
from Proposition [5.2]

Let 7 € (0,70]. To decompose the interval, for any m € {0, ..., L} we set

TO = min{ (5.22)

m—1

b.
Ny, = e .
m Z \~7'J € I\IO
Jj=0
The intervals J,,, are defined as J,,, :== [tn,,,tN ifme{0,...,L—1} and

m+l]
Jr, = [tn,,T]. Hence, we have

L
0, 7= |J Jm.
m=0

By construction, each subinterval J, is of length less or equal b,,. This also
holds for the last interval .Jy,, because of

L-1 bm L-1 b

T—tn, =Y (b= [2|7) < X (bw— (=~ 1)7) = L7 < by, (5.23)

where we use (5.22)).

Step 2. We prove the convergence in the H' x L%-norm, namely
|U(tn) — U"H@O([O,T],Hlxm) —0 (5.24)

as 7 — 0 (without any rate). To measure the error in each subinterval J,,,
we define the error norms Err,, by Err_; := 0 and

EITm = HU(tn) — Uanf(meH1><L2), m € {O, . ,L}
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Next, we show the recursion formula
Erry, < 2Erry,—14+9, me{0,...,L} (5.25)

via induction on m. First, let m = 0. We introduce the notation U (t, W) :=
W (t), where W is the solution of (3.3) with initial value W°. Recall the
definition of @, in (4.1]). We get

Errg = [|U(tn) = Unllgso (s, 111 x 12)
< ”U(thO) - U(tnaY0)||ego(J0,H1xL2)
F U (tn, YO) = @71 YO) | oo gy 71 22)
[T (1Y) = DT 1 U) | oo (g 1 x 12)
< U0 YO 1,10 + CYO) + 2T = VO g < 5,

using the estimates from Proposition |5.2/and the relations (5.17)), (5.20)) and
(5.22).
For the induction step m — 1 ~ m, we first deduce from the induction

assumption ([5.25)) the inequality

m—1
1U(tn,.) = Unyllgriscre < Brrpoy <92 ) 28 =9¢(2™ — 1) < 9e(2" — 1),
k=0
As in (5.23]), we obtain
m—1 b
_ - .| 2
| T — tN,, | = Z (b] L_JT) <mr < Lt <p, (5.26)

j=
using also (5.22). Hence, (5.19) and ([5.18) imply
HU(Tm) - UNm ||H1><L2
<NU(Tm) = Una ) 1wz + 1UEN) = Ung g1 2
<e+9:(2l —1) <92l <. (5.27)

So we can apply Proposition (with W° = U(T},)). Furthermore, we
write

Errm = HU(tTL) - Un’|€$°(Jm,H1XL2)
= U0, U(tn,)) = QFUN) g0 ((0,6], 11 x 12)-

In the case m = L, we would have to replace the interval [0, b,,] with the

interval [0,T — ty, | (which is smaller by (5.23)), but for simplicity we keep
this abuse of notation. As noted after (4.1]), we have U, = II.-1U,. Using

also and , we can now estimate similar as for m = 0 and conclude
Erry = [|U(tn, U(tN,,.) = P2UN ) gos (10,5, 171 x22)
< |NU(tn, Ultn,,)) — Ultn, Ym)”zr([o,bm],f{lxﬂ)
U (tn, Y™) = ®Z(AL =2 Y™) | poo (0,6, 171 x £2)
+ ([ @7 AL~ Y™) = QXL -1 UN,,, )l poo 0,,0], 211 x £2)
<2UAN,) = Y™ [[grype + CY™)T +2(Y™ = Un, 1o
<2UAN,) = Y™ [grype + e+ 20V = Ultn) g1
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+2(|U(tN,,) = Ul g2
< A|U(tn,,) — UTw)ll g1 2 + AU (Tm) — Y™l g1, g2 + € + 2Ertn_y
< 9¢ + 2Err),_1.

Therefore, (5.25)) is true. It follows that

m
Errp, <92 ) 28 =9¢(2"%! — 1) < 9¢(2"+! — 1)
k=0

for all m € {0,...,L}. This also shows the convergence in the H' x L2-
norm as stated in , since L is independent of ¢, which we could have
replaced by any & € (0,e]. To complete the proof of Theorem we will
actually not need the full statement of . It is enough to know that
NU(Tm) = Un, |l g1 g2 < 0 for all m € {0,..., L}, as noted in .

Step 3. We show the convergence of the scheme in the L? x H~!-norm.
Recall the notation E, = I1.-1U(t,) — Uy. Let m € {0,...,L}. We use the
recursion formula and estimate similar as in the proof of Proposition
to obtain

1Enllgso (1,12 F-1)
= HENerTL||£g°([0,bm],L2><H*1)

A
< 1" BN llese (0.6m), 2% 1-1)

. H /Otn HT,1€(nT_S)ABNm(S) dSH£$<>([0,bm},L2xH—l)

+ H Zz;é I, 1eln=k74 (ANerk + TQNm*’“) H

222 ([0,br], L2 x H—1)

S BN llpexi-1 + 1BNwlley (roxi-1) + T AN nll 2 (0,5 225 F-1)
F1QNm+nller (0,6,],22x f1-1)

<NEN 2w + llg(u) = g(mew)ll s v + 77 Anll gy 0,77, 22 77-1)
+ Csol|g(mr-1U( Ny 4n)) = 9(UN+2) 02 ([0,0,0],£6/%)

< 1B g + 2007 + 3 Cso (It o)l .00

[t [ (0,5202) ) 11 8N ) = Ut (0.0

< HENm HLZXH_l +2CFT + 50805464HETZ”égO(J,mL?XH—l)
1
< ||EN,, ||L2><H*1 +2CpT + Q”Eango(melﬂfol)'

Here we used Lemma and (with constant Cp), the bounds from
Proposition and the definition of ¢ in ([5.16[). We could apply Proposition
[5.2] thanks to the estimates on U(T},) in (5.17) and (5.21)), on Uy,, — U(T})
in , and on 7 in . The above inequality in display leads to

||En||g$o(Jm’L2xH71) < 2HENm||L2><H*1 +4CFpT

< 2 Enllg s,y 12x-1) +ACFT



LIE SPLITTING FOR SEMILINEAR WAVE EQUATIONS 33

if m > 0. Since Eg = 0, this recursion formula yields the global bound

L
k=0
This shows the assertion since we can again use Lemma [£.2] as in the proof
of Theorem [L.1] O

6. CORRECTED LIE SPLITTING

In this section we only consider the cubic wave equation, i.e., the case
a = 3. For simplicity, we set g(u) == —puu?, one could similarly deal with
g(u) = —p|ul?u in case of complex-valued functions. We prove an error
estimate with order 3/2 for a frequency-filtered variant of the corrected Lie
splitting recently proposed in |13]. The original form of the method reads

Uns1 = €Uy, + 7G(U,) + 202 (—27 A)H(U,,)],

where the operator A and the nonlinearity G are defined in (3.2]). We thus
have added a correction term to the Lie splitting. Here we set

. —g(u) . ! o eat wdo
H(u,v) = (g,(u)v> and i (tA)w = /O (1- o) wdo  (6.1)

for t € R. Since v corresponds to dyu, the nonlinear term H now contains
a derivative. The operator ¢2(tA) can also be understood by the functional
calculus for A and the function ¢2(2) = (e — z — 1)/2%, which is bounded
on iR. The expression for the wave group e** leads to the formula

1 —cos(t|V|)  t|V|—sin(t|V])

_ t2|V|? V|3
P2 = Gn V) — V] 1 — cos(t|V])
V| 2|V

This implies a smoothing property for the operator @s(tA). Using the func-
tional calculus for ¢|V|, we deduce the smoothing property

s ()]

of py(tA) that is valid for all z € H~! and t # 0.

As explained in [13], the corrected Lie splitting is formally of second
order, but, in contrast to classical second-order integrators for the wave
equation, only first-order spatial derivatives appear in the local error. In
[13], a second-order error estimate in H' x L? was shown for solutions u
with Ht4/4 regularity, where d denotes the spatial dimension. Since here,
we only assume H' regularity of the solution, we have to use the discrete
Strichartz estimates from Section [2] to deal with the error terms. Therefore,
as in Section 4| we include the frequency filter 75 from in the scheme,
which gives

Uns1 = e Mk U + 7G(Un) + T2p2(—27A)H(U,)),
Uy = iU,

Szl g (6.2)

L2xH-1

(6.3)
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_(mx O
me= (7% )

We write w, (resp. v,) for the first (resp. second) component of U,. In
contrast to the previous sections, we do not set X = 7!, since such a
choice could only lead to an estimate of order one in L? x H~!, because the
error coming from frequency truncation would dominate (of order 1/K, see
Lemma [4.2). To get an improved convergence, we therefore have to choose
some K > 771 As seen in Section [2 this leads to a multiplicative loss of
the form (K7)'/P in the discrete Strichartz estimates. Therefore, we cannot
reach the optimal order two for the scheme . It turns out that with the
choice

Here, we again set

3
2

K~T1"
we can optimize the global error and get an error bound of order 3/2. See
[16] for a similar discussion in the context of Schrédinger equations.

For the rest of this section, we fix K = 773/2. As in case of the Lie
splitting, we define the error terms
E, =1gU(t,) — Uy, (6.4)
for all n € Ny with ¢,, < T. For the first component of E,, we write e,,. We
first show an error recursion for (6.4]) which is similar to (4.3)).

Proposition 6.1. Let U and T be given by Assumption with a = 3 and
let K =713/2. The error defined in and then satisfies

tn
Ein = "B, + /0 Mge™™ 4B, (s) ds

n—1 _ _
+ 3 kel (B + TQr) (6.5)
k=0

for all 7 € (0,1], and n,m € Ny with ty+n < T. The appearing terms are
given by

A, =A, — 7'2@2(—2TA)H(HKU(tn)),

- (6.6)
Qn = Qn + Tp2(—27A)[H(IIgU(tn)) — H(Uy)],
where Bp,(s), Ay and Qy, are defined as in with TI.—1 replaced by Tk,
and H and @3(tA) are introduced in (6.1]).

Proof. For the discrete approximation U, defined by (6.3]), we have the dis-

crete Duhamel formula

n—1
Unin = € Up + 73 e h74 (G(Um+k) + 7@2(—2TA)H(Um+k)).
k=0

Proceeding as in Proposition we derive
Em+n = HKU(tm—i—n) - Um+n
tn

_ enTA(HKU(tm) — Um) + HKe(nT_S)AG(U(tm + 3)) ds
0

n—1
=7 Y e A (G Up) + 702 (~27 AV H (U1
k=0
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tn
=e"AE,, + / HKe(”T_S)ABm(s) ds
0

n—1
+ Z HKe(n_k)TA (Am—I—k + TQm-‘rk)
k=0

n—1
— 72 Z HKG(n_k)TAQOQ(727’A)H(Um+k)
k=0

123
="AR, + /0 HKe("T_S)ABm(s) ds

n—1
+> gen=HmA (Am—i-k + T©m+k)- U
k=0

As we see in the next lemma, in the error formula all second deriva-
tives of u cancel, only first-order derivatives remain. This is the advantage
of the corrected Lie splitting in comparison with classical second-order in-
tegrators, such as the Strang splitting. We first deal with the local error
Ay,

Lemma 6.2. Let U = (u,0pu), T, and M be given by Assumption with
o =3 and let K = 773/2. We then have the representation

A, = /0 (r— 0)6_20’4/0 e (dl(T, 5,1) 3_ dQ(T,S,TL)) dsdo, (6.7)
where we abbreviate

di(1,8,n) = ¢" (nrcu(ty + 8)) [(TrOu(ty, + 8))? — (Vrru(ty, + s))?],

do(1,8,n) = ¢ (mru(ty + 3))Trg(u(ty, + s)).

Here we use the notation (Vf)? == ?:1(8jf)2. Moreover, the inequalities

N-1
— N 3
H > Mg k)TAAmHv’ . SMTTE,
L2xH-1 ™7
k=0
n—1 .
A 2(1-y)-5
HZWKS((n_k)T)Am+k SMquTQ 2p
Zp Lq K bl ol
k=0 TN

hold for all T € (0,1], N € N, m € Ny with t,,yn < T, and wave admissible
parameters (p,q, 7).

Proof. The error representation of the Lie splitting (4.6) and Fubini’s theo-
rem yield

A, = /OT /0 e TAH (KU (ty + o)) do ds
_ /0 (7 — o) TAH (Ut + o)) do.
Moreover, the definition of @9 in and a substitution lead to
T200(—271 A)H( kU (t,)) = 7° /01(1 —0)e T AH([KU(t,)) do

. /OT(T — 0)e XA H(KU (t,)) do.
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From it thus follows
Ap = Ay, — 7200 (=27 A)H(I U (ty))

_ / (1 = 0)e 27 [P H(IKU (tn + 0)) — H(IKU(ty))| do
0
= / (- 0)6’_20’4/ 4 [GSAH(HKU(tn + s))} dsdo.
0 o ds
We compute the derivative by

% [esAH(HKU(tn + s))]

_4d leSA ( —g(mru(tn + 5)) >
ds 9 (mgu(tn + ))TrOiu(ty + 5)

s 0 I —g(mru(ty, + s))
= e l <A 0) (g’(m(u(tn —|—Ks))7rK(9tu(tn + s)>
. ( —¢' (rru(t, + s))TrOu(ty, + ) )
g" (mru(ty + 8)) (K Oulty + 5))? + ¢ (Tru(ty + 8))TrOpu(ty + 5)

__ _SA 0
- ¢ <d1 (1,8,n) + ¢ (mru(ty + ) Tr[Onu(t, + ) — Au(t, + s)]>

e )
dy(7,8,n) + da(T,8,mn))’
where we used the formula A[g(w)] = ¢"(w)(Vw)? + ¢'(w)Aw and the fact
that the differential equation holds in C([0,T], H~1). Because of 7
there is no problem in justifying the above differentiations. Thus, the error
representation formula is true.
For the error estimates, we first prove the inequalities

1
sup ||di(7,s,n)|lp2 = 12 S T4, (6.8)
s€[0,7] mN-1
sup ||do(7,8,n)|[pn -1 Smr 1 (6.9)
s€[0,7] n»N-1
Note that we have set g(u) = —pu3, hence ¢’(u) = —3pu? and g¢"(u) =

—6pu. We derive

”dl (7—7 S, n)”E—,NflLl

< Ng" (rrcultn + )l | poll(Tacdrultn + 9)) = (Trrcultn +5))les, 11
Slmxultn + )l oo (1m0l 2 + VARl 30,2
Sur (Kr+logK)2 < 7i,

uniformly in s € [0,7], where we used Proposition and the relation
K = 773/2_ The second term is easier to estimate, we can directly infer

lda(r, sl jgr < g Grcultn + ))mcg(ultn + )l o
<r 9/ (i)l e sl escg () e 2

S (mrcw)? |l pge ol || e 12
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2 3 5
= ||7TKUHL%°L6HUHL%°L6 S HU||L%oH1 Swm 1

This shows and .

Now we turn to the error estimates, starting with the L2 x H~-norm.
Formulas (6.7) and (3.5)), the endpoint estimate (2.13) and the inequalities
and (6.9) imply

N-1 B
H Z HKe(N—k)TAAm+k’
k=0

L2xH-1

N—1
3 —kTA 0
<77 sup Z e (dl(T,s,m+k)—i—dg(r,s,m—i—k)) ’

s€0,7] " p—p L2xH-1

N-1
< 72 sup HT Z wKeilkTN'dl(T,s,m + k)HHi1
s€[0,7] k=0
+da(r,sm+ )l )

Sur r sup (K7 +1og K)E|di (7, 5,m+n)| g2 +1)

s€[0,7]
11 3
SM,T7'2 171 =72,

For the estimate in the /2 L9-norm we can proceed similarly, where we now
employ Theorem for the do-term. Moreover, for the inequality involving
d; we have to use Corollary since we have non-L?-based spaces in
the spatial variable on both sides of the inhomogeneous Strichartz estimate.

This gives

|5 mies((n = 97) B
k=0

o o

n—1
<7* sup |7 7S((n—k)T+s—20)
$,0€[0,7] k=0

0
' (dl(Tv S, M + k) + d2(7-7 S, M + k))

1
Sp.a.T 7'2(K7')5K7 sup ((KT+logK)%||d1(7',8,m—I—n)HezN N
s€[0,7] AT

@ Lo

+ lldz(rs,m +n)ll )

SmT 727 (Tﬁ% + 1) S T%(liv)”p,

as desired. (]
We further need a product estimate in H 1.

Lemma 6.3. The inequality

lowl[ g S ol g llwl] -3

holds for allv € H' and w € o:n Llloc.
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Proof. We use the duality between H® and H~* for |s| < 3/2. We estimate

VWl o1 = su ’/ vwzdx’g su vzl af|lwl] . 1.
fowllgr = sup | [ sup ozl -y
2l g1 <q ll2ll g1 <y

Next, we use the fractional product rule
IVI“@2)llzr S NIVI*0llLer (2]l Le + ([0l 2o [[V]*2] L2

1 11
ps T g T 7o S€@

for a € (0,1) and pj, gj, r € (1,00) with 1%1 + qil =
Proposition 3.3 in [6]. It follows

1 1
ozl 3 S II91Bellgsllzlos + ol oo 1V12 2] o
1 1
SNVl gzl + Holl g IVIE2]

S ol ll=l g

using also the Sobolev embeddings H! < L% and H 3 e I35, U
To treat the error term @n, we use to decompose
~ 0 —qu(7,n) )
= + —27A ( ’ 6.10
= (g ) + 7220 () Y ) (6.10)

with the definitions

qi(7,n) = g(rru(tn)) — g(un),

q2(7,n) = g (mreu(ty))[Trdiu(ts) — val,

qs(7,n) = vnlg (Tru(tn)) — g'(un)],
where U,, = (up,v,). This time we need to measure the error simultaneously
in three different norms, namely

_3 _1 1
1Bl = max {72 Bull g -1y 7 llenlles g0, ¥ lenlles 12}
(6.11)

where j € Ny is a number with j7 < T'. The rates are consistent with those

obtained in Lemma since the parameters (4,6,2) and (4,12, 1) are wave
admissible.

Lemma 6.4. Let u, T, and M be given by Assumption[3.3 with o = 3, and
let K = 773/2. Define the error E, by with K = 773/% and .
Then the estimates

1 s 1 2
lar(rom+n)llo gros S 2072 (14 721 Bl ) 1 Bl
1 1
laz(rm+ )l g1 S 072 | Bl

1
1 3
las(rom+ e i3 Sanr o (1Bl + B2,
hold for all 7 € (0,1] and m,j € Ng with (m+ j)7 <T.

Proof. For simplicity, we set m = 0 in the proof of these three estimates,
since the shift by m > 0 does not affect the argument. The first estimate is
the same as in Lemma [L.5] now with o = 3, implying

lar(r )l g = lo(macu(tn)) = glw)ll s
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1
Sarr i (14 leal go ) llenlles 22
103 1 2
< G072 (L+ 72 IBll ) Bl

For the second inequality, we use the product estimate from Lemma [6.3] and
note that ¢/(u) = —3uu?. We compute

laz(m )l g1
S N maculta)) s g lmcdrattn) = onl,. o
) 7—7j
_3.1
Slmruta)le v llmrulta)lle 722 mxdutn) = vallge 71
T R E
~M,T t]’+17— 4 4||7TKU(tn)||egfjH1|” nH|T,j

i1
M tf+172H’Enmr,jv

employing also Proposition for the estimate in /21> and Bernstein’s
inequality to change from H~1/2 to H~'. Recall that E, = IxE, and
K = 773/2_ The third inequality is shown similarly by

||QS(T»7"L)||£3J.L1
S loalless z21l9' (micutn)) = 9/ (un)lz g2
Su (14 Irdeuttn) = vallie 12) (Ircutta)lle pie + llunlle o)
Neal, 2
7]
_3 i
S (L4772 mwdhultn) = vall e g1 )t (Imxalt)lle pe + lunlles 1)
Nealle 4
7]
<4 -4 §0-D
S G (L Bl )75 (L4 Bl ) 72PNl Eall
1
1 3
St (I, + IEIE,),

where also the Sobolev embedding HY/* < L12/5 was used. U

We can now estimate the remaining part of the error formula (6.5]).

Lemma 6.5. Let U = (u,0wu), T, and M be given by Assumption with
o =3, and let K = 773/2. Define the error by with K = 773/2
. Then the inequality

n—1
—k)TA N
I 3=t Quu |
k=0 nitl

and

1 1 1 3
S max{tl 20 (Bl + 731 Bl

holds for all 7 € (0,1] and m,j € Ng with (m+j+ 1)1 <T.
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Proof. We first estimate in the £2°(L? x H~1)-norm by means of the decom-

position (6.10f), obtaining

H Z HKe n—k) TAQm+k”

L(L2xH-L)

7m—|—n
< llan(7,m + ”)nggﬂ + HTQ,OQ(—QTA) (ql(T ))

0

f_}_yj(L2><H71)
trllas(rm )l o

i H7_2nz_1HKe—kTA ( 0 ) H
k=0 as(m,m+k)) llee  (L2xi-1)

Srllac(rm+ )l goo +rllaz(rm+n)lg g

3
+riflas(r,m+n)|e g
SMmT t]-|-17'2 (1 + 72 [ Emtall 7]> [ Emtnlll i T 75]4-17_2 |||Em+n|||7-7j

55 (1Bl + 1Bl

3

3 = 3
ST aX{t]—H? t;+1}(|||Em+n|”T,j + 71 |||Em+n|||—r,j>' (6.12)

Here we use inequality for the second term involving q; and the end-
point estimate for the term involving qs. In the end, the bounds from
Lemma [6.4] were applied.

Let now (p,q,7y) be wave admissible. The definition of ¢9 in and
Corollary lead to

L4

H7'2:Z:7TKS((n — k)T)pa(—27A) (qg(T 21+ k:))

,j+1

0 n—1
= H/() (1—o0)r? Z mgS((n—k—20)T) ((13(7',70TL+ k:)> daHé’T”jHLq

: azl[lol,)l] H k=0 WKS (= k=207 (Q3(Ta 21 + k)> Hff]

1 1

Spar T K (KT 4+ 1og K) las(r.m + n)l e g
313

ST 27| as(7, m+n)||£2 L

The other terms can be estimated in (2L? as in (6.12]), now using Theorem
Altogether, we obtain

7'217

‘ Zﬂ-KS n—k )Qerk

D
& ld

T,m+n
Spa lan(rm -+ )l s+ [roa(-2r) (W)

(L2 H-Y)

3
trlae(r,m+n)la g +rtlas(rm+nle o
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3
g qu(Tv m+ n)Hﬁin—l + THQQ(T, m+ n)”ﬁijl-.[—l +71 Hq3(7-7 m+ n)HZEle

< (e o} Bl
< rhma{t] 2} (1Bl + 741 B2,
The claim now follows from the definition (6.11)) of the ||| ;-norm. O

The next core a priori estimate can be shown following the proof of Propo-
sition One only has to replace Lemmas [£.4] and [£.5] by Lemmas [6.2] and
We thus omit the proof.

Proposition 6.6. Let U = (u,du), T', and M be given by Assumption 3.5
with & = 3 and let K = 773/2. Define the error E, by with K = 773/2
and . Then there is a number 1o > 0 depending only on M and T', such
that we have the estimate

IBall, 2, Sorr 1
for all T € (0, 70].
Proof of Theorem[1.3. We take 19 > 0 from Proposition [6.6] and infer
[U(tn) = Unll 25—
<NU(tn) = MU )l 25 -1 + MK U (n) = Unll g2 g

3 3
< T2 UE) sz + 1 Bnllpo g Saar 72

for 7 < 719, using Lemma and Proposition with K = 773/2, U
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