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ERROR ANALYSIS OF THE LIE SPLITTING FOR
SEMILINEAR WAVE EQUATIONS WITH FINITE-ENERGY

SOLUTIONS

MAXIMILIAN RUFF AND ROLAND SCHNAUBELT

Abstract. We study time integration schemes for Ḣ1-solutions to the
energy-(sub)critical semilinear wave equation on R3. We show first-
order convergence in L2 for the Lie splitting and convergence order 3/2
for a corrected Lie splitting. To our knowledge this includes the first
error analysis performed for scaling-critical dispersive problems. Our
approach is based on discrete-time Strichartz estimates, including one
(with a logarithmic correction) for the case of the forbidden endpoint.
Our schemes and the Strichartz estimates contain frequency cut-offs.

1. Introduction

The semilinear wave equation ∂2
t u − ∆u = ±|u|α−1u is one of the most

important model problems for dispersive behavior. Its analytical properties
are well understood, see [23] for a survey. In view of the energy equality,
H1 (or the homogeneous version Ḣ1) is the most natural regularity level for
solutions u(t) and data.

On 3D-domains, in the case of powers α ∈ (1, 3] one can study wellposed-
ness by means of the standard tools of evolution equations, whereas the
treatment of the case α ∈ (3, 5] is based on dispersive properties. To our
knowledge, in numerical analysis the latter situation has not been studied
in this setting so far. (Compare [19] for the case α ∈ (1, 3).) The strategy of
the error analysis for such problems goes back to the seminal paper [14] in
the case of the semilinear Schrödinger equation. In this work we establish
the first error bounds for time integration schemes for the semilinear wave
equation in the case α ∈ [3, 5] with finite-energy data on the full space R3.

In the present paper we investigate the equation
∂2

t u = ∆u− µ|u|α−1u, (t, x) ∈ [0, T ] × R3,

u(0) = u0, ∂tu(0) = v0,
(1.1)

with finite-energy initial data (u0, v0) ∈ Ḣ1(R3) × L2(R3), as well as pa-
rameters µ ∈ {−1, 1} and α ∈ [3, 5]. In this setting, a complete local
wellposedness theory in the space Ḣ1(R3) × L2(R3) for (u, ∂tu) has been
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established, where global existence is known for the defocusing case µ = 1.
If α > 5, the problem is ill-posed at least in the focusing case µ = −1. The
energy-critical case α = 5 is much more challenging than the subcritical
range α < 5. The theory is based on Strichartz estimates for the linear
problem, see the monographs [20] and [23].

To establish error bounds for time integration schemes, we show various
discrete-time Strichartz estimates in Section 2. Here one controls discrete-
time points (u(nτ))n∈Z of the solutions to the linear problem in spaces like
ℓp(Z, ℓq(R3)) by L2-based norms of the initial data, where τ ∈ (0, 1] is the
time-step size. It is easy to see that a naive discrete-time version of results
in continuous time fails. Instead, one has to introduce frequency cut-offs
πK at level K ≥ 1. The estimates then depend on Kτ , but are otherwise
in complete analogy with the estimates in continuous time. Similar results
for the Schrödinger equation have been obtained in [9] and [16], see also [17]
and [15] for the case of periodic boundary conditions. Moreover, Strichartz
estimates for spatially discrete Schrödinger equations were treated in the
seminal works [10] and [11]. In Theorem 2.10 we also derive local-in-time
estimates at the forbidden endpoint (p, q) = (2,∞) with an additional loga-
rithmic correction depending on K and the end-time T . Such an inequality
was shown in [12] for continuous time.

The frequency cut-off has then to be introduced in the time integration
schemes, too (as in the Schrödinger case, see [9], [5], and [16]). We first ana-
lyze a frequency-filtered Lie splitting scheme, see (4.1). We show first-order
convergence in L2(R3) × Ḣ−1(R3) for data in Ḣ1(R3) ×L2(R3). In contrast
to previous works on time discretization of semilinear wave equations in low-
regularity regime, such as [8], [3] or [13], in our setting there is no uniform
spacetime L∞-bound on the solution u available, since in three dimensions
the Sobolev embedding Hs ↪→ L∞ requires s > 3/2, but we only assume
Ḣ1 regularity of u. Instead, our error analysis is based on discrete-time
Strichartz estimates. We use ideas from [9], [5], and [16], where a similar
analysis was performed in the case of the subcritical semilinear Schrödinger
equation.

We treat the subcritical and energy-critical cases separately, since the
latter requires a much more delicate analysis. Our convergence result for
the subcritical case α < 5 reads as follows. It is proved at the end of Section
4, see also Remark 3.4.
Theorem 1.1. Let α < 5 and U = (u, ∂tu) ∈ C([0, T ], Ḣ1(R3) × L2(R3))
solve the semilinear wave equation (1.1). Then there are a constant C > 0
and a maximum step size τ0 > 0 such that the iterates Un of the filtered Lie
splitting scheme (4.1) satisfy the error bound

∥U(nτ) − Un∥L2×Ḣ−1 ≤ Cτ

for all τ ∈ (0, τ0] and n ∈ N0 with nτ ≤ T . The numbers C and τ0 only
depend on T , α, and ∥U∥L∞([0,T ],Ḣ1×L2(R3)).

For the critical case α = 5, the next result is shown at the end of Section
5.
Theorem 1.2. Let α = 5 and U = (u, ∂tu) ∈ C([0, T ], Ḣ1(R3) × L2(R3))
with u ∈ L4([0, T ], L12(R3)) solve the semilinear wave equation (1.1). Then
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there are a constant C > 0 and a maximum step size τ0 > 0 such that the
iterates Un of the filtered Lie splitting scheme (4.1) satisfy the error bound

∥U(nτ) − Un∥L2×Ḣ−1 ≤ Cτ

for all τ ∈ (0, τ0] and n ∈ N0 with nτ ≤ T . The number C only depends on
T , ∥U∥L∞([0,T ],Ḣ1×L2(R3)), and ∥u∥L4([0,T ],L12(R3)), whereas τ0 only depends
on T , u0, and v0.

The more sophisticated analysis for α = 5 is reflected by the dependence
of the maximum step size τ0 on the solution itself, rather than just on its
norm. A similar behavior occurs in the wellposedness theory, see [23]. To
our knowledge, this above theorem provides the first error analysis of a time
discretization for a scaling-critical problem.

As a first step to higher-order schemes, in the case α = 3 we study a
corrected Lie splitting, given in (6.3). A version of the scheme without
frequency filter was recently proposed and analyzed in [13] in higher reg-
ularity H7/4(R3). We can show convergence order τ3/2 for the error in
L2(R3) × Ḣ−1(R3), again using data in Ḣ1(R3) × L2(R3). Formally, the
scheme is of second order due to a well-chosen correction term. This term
also leads to an error formula without second-order derivatives. The loss of
τ1/2 in our result corresponds to the loss in the Strichartz estimates, so that
we believe our result is optimal, compare also [16]. In the proof we need the
endpoint estimates from Theorem 2.10. The convergence result is shown at
the end of Section 6.

Theorem 1.3. Let U = (u, ∂tu) ∈ C([0, T ], Ḣ1(R3) × L2(R3)) solve the
semilinear wave equation (1.1) with α = 3. Then there are a constant C > 0
and a maximum step size τ0 > 0 such that the iterates Un of the corrected
Lie splitting scheme (6.3) with K = τ−3/2 satisfy the error bound

∥U(nτ) − Un∥L2×Ḣ−1 ≤ Cτ
3
2

for all τ ∈ (0, τ0] and n ∈ N0 with nτ ≤ T . The numbers C and τ0 only
depend on T and ∥U∥L∞([0,T ],Ḣ1×L2(R3)).

Remark 1.4. In the defocusing case µ = 1, energy conservation shows that
the solutions to (1.1) exist globally in time. Moreover, the numbers C and
τ0 from Theorems 1.1 and 1.3, as well as the number C from Theorem 1.2,
then only depend on T , α, ∥∇u0∥L2(R3), and ∥v0∥L2(R3). See Remarks 3.2
and 3.4.

We comment on variants of our results. A straightforward extension is
possible to more general nonlinearities with the same growth behavior, and
also to the Klein–Gordon case. Furthermore, exploiting the finite speed of
propagation for the wave equation, our analysis remains valid if one replaces
the spatial domain R3 by the torus T3 (where the Strichartz estimates only
hold locally in time). In (most of) these cases, one would have to work with
inhomogeneous Sobolev spaces instead of homogeneous (dotted) ones.

We do not analyze the Strang splitting (which is of second order formally)
since a preliminary analysis indicates that one only obtains convergence or-
der one for Ḣ1-solutions in the critical case α = 5. For α = 3, an order
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τ4/3 seems to be feasible using Strichartz estimates. However, this is infe-
rior to the estimate for the corrected Lie splitting in Theorem 1.3. In [8]
and [3], second-order convergence of the Strang splitting and closely related
trigonometric integrators has been shown in case of one space dimension or
H2-solutions.

Our analysis does not distinguish between the focusing and defocusing
cases. Better results could be possible in the defocusing case, where the en-
ergy dominates the Ḣ1-norm. For example, an error analysis on unbounded
time intervals was done in [4] in case of Schrödinger equations (under the
additional assumption that the initial value lies in the conformal space).

In Section 2 we establish the needed discrete-time Strichartz estimates,
adapting ideas from the continuous time. The local wellposedness theory is
recalled in Section 3. We introduce the Lie splitting with frequency cut-off in
Section 4, and then derive the core error formula (4.3). After estimating the
error terms in the subcritical case by means of our Strichartz estimates, we
show Theorem 1.1 using a double induction, first iterating within a possible
small time interval of size T1, and then performing a recursion over intervals
of length T1. The critical case is studied in Section 5. Here we use in addition
convergence results for H2-solutions in order to make sure that the discrete
approximation stays close to the PDE in Ḣ1. Moreover, in the argument
enters how fast the Strichartz norm ℓ4L12 of a time-discrete solution gets
small on small time intervals. The last section is devoted to the corrected
Lie splitting which has a more sophisticated error formula (6.5) and thus
requires additional estimates of error terms.

Notation. We write A ≲ B (or A ≲α B) if A ≤ cB for a generic
constant c ≥ 0 (depending on quantities α). Since we always work on R3,
we abbreviate Lp for Lp(R3) etc. We write F for the Fourier transform,
where we use the convention with the prefactor (2π)−3/2. We also use the
notation û := Fu. In the context of Fourier multipliers, we often just write
ξ instead of the map ξ 7→ ξ. For s ∈ R, we use the inhomogeneous and
homogeneous Sobolev norms

∥w∥Hs = ∥(1 + |ξ|2)
s
2 ŵ∥L2 , ∥w∥Ḣs = ∥|ξ|sŵ∥L2 ,

if ŵ ∈ L1
loc. The homogeneous Sobolev space Ḣs is defined as

Ḣs := {w ∈ S ′ : ŵ ∈ L1
loc and ∥w∥Ḣs < ∞}.

This space is a Hilbert space if and only if s < 3/2 due to Proposition 1.34 of
[1]. Moreover, Schwartz functions with compact Fourier support in R3 \ {0}
are dense in Ḣs if s < 3/2, cf. Proposition 1.35 of [1].

Let p ∈ [1,∞], J be a time interval and X be a Banach space. We use
the Bochner spaces Lp

JX := Lp(J,X) with norms

∥F∥Lp
J X =

( ∫
J

∥F (t)∥p
X

) 1
p
,

and the usual modification for p = ∞. In the case J = [0, T ] we also write T
instead of J . If a “free” variable t appears in such a Bochner norm, the time
integration is taken with respect to t. Further we denote by ℓp := ℓp(Z) the
sequence spaces over the integers and abbreviate ℓpX := ℓp(Z, X) in case
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of Banach space valued sequences. In order to simplify notation we often
write ∥Fn∥ℓpX instead of ∥(Fn)n∈Z∥ℓpX , where again a “free” variable n is
assumed to be the summation variable. For a stepsize τ > 0 and a number
N ∈ N0, we further introduce scaled norms

∥F∥ℓp
τ X = ∥Fn∥ℓp

τ X :=
(
τ

∑
n∈Z

∥Fn∥p
X

) 1
p

and the truncated variant

∥F∥ℓp
τ,N X = ∥Fn∥ℓp

τ,N X :=
(
τ

N∑
n=0

∥Fn∥p
X

) 1
p
.

Note that in the case p = ∞, the norm ∥F∥ℓ∞
τ X = supn∈Z ∥Fn∥X does not

depend on τ . For intervals J ⊆ R we also use the notation

∥F∥ℓp
τ (J,X) = ∥Fn∥ℓp

τ (J,X) :=
(
τ

∑
n∈Z

nτ∈J

∥Fn∥p
X

) 1
p
.

2. Strichartz estimates

Our analysis is based on time-discrete Strichartz estimates for the wave
equation, which are established in this section. We start with some standard
definitions and results regarding the time-continuous case.

Definition 2.1. Let χ ∈ C∞
c (R3) be a radial function with χ = 1 on B(0, 1),

suppχ ⊆ B(0, 2) and

ψ(ξ) := χ(ξ) − χ(2ξ), ξ ∈ R3.

For every j ∈ Z we define

ψj(ξ) := ψ
( ξ

2j

)
, ξ ∈ R3, and Pju := F−1(ψj û), u ∈ S ′.

These definitions yield suppψj ⊆ {ξ ∈ R3 : 2j−1 ≤ |ξ| ≤ 2j+1} and the
identity ∑

j∈Z
ψj(ξ) = 1, ξ ∈ R3 \ {0}.

We recall that the “Littlewood–Paley projections” Pj are bounded in Lp

uniformly in j ∈ Z and p ∈ [1,∞].
We define the operator |∇| =

√
−∆ via the Fourier multiplier |∇|f :=

F−1(|ξ|f̂), and analogously for cos(t|∇|) etc. To solve the wave equation,
we will use the half wave group

eit|∇| = F−1eit|ξ|F .

From Proposition III.1.5 of [20], we recall the kernel bound

∥F−1(eit|ξ|ψ)∥L∞ ≲ (1 + |t|)−1, t ∈ R. (2.1)

The proof of the Strichartz estimates is based on the following known
frequency-localized dispersive inequality. For convenience, we show how it
follows from (2.1).
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Lemma 2.2. It holds

∥Pje
it|∇|f∥Lq ≲ 23j(1− 2

q
)(1 + 2j |t|)−(1− 2

q
)∥f∥Lq′

for all j ∈ Z, t ∈ R, q ∈ [2,∞], and f ∈ Lq′.

Proof. Let first f ∈ L1. Young’s convolution inequality yields

∥Pje
it|∇|f∥L∞ ≲ ∥F−1(eit|ξ|ψj)∥L∞∥f∥L1 ,

where we have

F−1(eit|ξ|ψj)(x) = (2π)−3/2
∫
R3
eix·ξeit|ξ|ψ(2−jξ) dξ

= 23j(2π)−3/2
∫
R3
ei2jx·ηei2jt|η|ψ(η) dη

= 23jF−1(ei2jt|ξ|ψ)(2jx).

Estimate (2.1) now gives

∥Pje
it|∇|f∥L∞ ≲ 23j(1 + 2j |t|)−1∥f∥L1 .

The assertion follows by interpolation with the L2-bound ∥Pje
it|∇|f∥L2 ≤

∥f∥L2 , which is a consequence of Plancherel’s theorem. □

We now state some of the Strichartz estimates for the wave equation
to provide a background for our results. The next theorem follows from
Corollary IV.1.2 in [20] combined with formula (3.5) below. We call a triple
(p, q, γ) wave admissible (in dimension three) if p ∈ (2,∞], q ∈ [2,∞), and

1
p

+ 1
q

≤ 1
2 ,

1
p

+ 3
q

= 3
2 − γ. (2.2)

One then has γ ∈ [0, 3
2), and the equality in (2.2) is called scaling condition.

Theorem 2.3. Let (p, q, γ) be wave admissible for dimension three. Then
we have the estimates

∥e±it|∇|f∥Lp
RLq ≲p,q ∥f∥Ḣγ ,∥∥∥ ∫ t

−∞
e±i(t−s)|∇|F (s) ds

∥∥∥
Lp
RLq

≲p,q ∥F∥L1
RḢγ

for all f ∈ Ḣγ and F ∈ L1
RḢ

γ.

Observe that the triple (∞, 2, 0) corresponds to the usual energy estimate.
In the above inequalities one increases the space integrability paying a price
in regularity and time integrability. For the last inhomogeneous estimate,
there are also variants involving Lp̃′

Lq̃′-norms instead of the L1L2-norm.
Moreover, for triples (p,∞, γ) with p > 2 that satisfy (2.2), the above esti-
mates remain true if one replaces L∞ by Ḃ0

2,∞. Since we will not need these
facts, we omit them for simplicity.
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2.1. Time-discrete estimates. Now we turn our attention to the time-
discrete setting. In the following ℓpLq estimates, the ℓp-summation is always
taken over the variable n. We start with frequency-localized inequalities.

Lemma 2.4. Let (p, q, γ) be wave admissible. Then the estimates∥∥∥ ∑
k∈Z

Pje
i(n−k)|∇|Fk

∥∥∥
ℓpLq

≲p,q 22jγ(2
2j
p + 1)∥F∥ℓp′ Lq′ , (2.3)

∥∥∥ ∑
k∈Z

Pje
−ik|∇|Fk

∥∥∥
L2

≲p,q 2jγ(2
j
p + 1)∥F∥ℓp′ Lq′ , (2.4)

∥Pje
in|∇|f∥ℓpLq ≲p,q 2jγ(2

j
p + 1)∥Pjf∥L2 (2.5)

hold for all F ∈ ℓp
′
Lq′, f ∈ L2, and j ∈ Z.

Proof. We first deduce from Lemma 2.2 the estimate∥∥∥ ∑
k∈Z

Pje
i(n−k)|∇|Fk

∥∥∥
ℓpLq

≤
∥∥∥ ∑

k∈Z
∥Pje

i(n−k)|∇|Fk∥Lq

∥∥∥
ℓp

≲ 23j(1− 2
q

)
∥∥∥ ∑

k∈Z

∥Fk∥Lq′

(1 + 2j |n− k|)1− 2
q

∥∥∥
ℓp

≤ 22j( 1
p

+γ)
∥∥∥ ∑

k∈Z

∥Fk∥Lq′

(1 + 2j |n− k|)
2
p

∥∥∥
ℓp
,

where the last inequality follows from the admissibility conditions (2.2). The
first assertion for p = ∞ is now clear. For p < ∞ we compute

22j( 1
p

+γ)
∥∥∥ ∑

k∈Z

∥Fk∥Lq′

(1 + 2j |n− k|)
2
p

∥∥∥
ℓp

≤ 22j( 1
p

+γ)
(∥∥∥∥Fn∥Lq′

∥∥∥
ℓp

+
∥∥∥ ∑

k∈Z
k ̸=n

∥Fk∥Lq′

(1 + 2j |n− k|)
2
p

∥∥∥
ℓp

)

≤ 22jγ
(
2

2j
p ∥F∥ℓp′ Lq′ +

∥∥∥ ∑
k∈Z
k ̸=n

∥Fk∥Lq′

|n− k|
2
p

∥∥∥
ℓp

)

≲p,q 22jγ(2
2j
p + 1)∥F∥ℓp′ Lq′

with the help of the discrete Hardy–Littlewood–Sobolev inequality (see Propo-
sition (a) in [21]). We note that in the case n = k the factor 22j/p does not
cancel. This is the main difference to the continuous case, where such a
term does not appear in the continuous Hardy–Littlewood–Sobolev inequal-
ity. This proves (2.3).

The other two claims follow by a standard TT ∗ argument that we sketch.
Using that Pje

−ik|∇| = e−ik|∇|Pj , from (2.3) we derive∥∥∥ ∑
k∈Z

Pje
−ik|∇|Fk

∥∥∥2

L2
=

∑
n∈Z

〈 ∑
k∈Z

Pje
i(n−k)|∇|Fk, PjFn

〉
≲p,q 22jγ(2

2j
p + 1)∥F∥2

ℓp′ Lq′ ,
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implying (2.4). Here we write ⟨·, ·⟩ for the L2-inner product. By duality, it
follows the estimate

∥Pje
in|∇|f∥ℓpLq ≲p,q 2jγ(2

j
p + 1)∥f∥L2 . (2.6)

To recover Pj on the right-hand side, we use the fattened Littlewood–Paley
projection P̃j := Pj−1 +Pj +Pj+1 for j ∈ Z, noting that P̃jPj = Pj . Clearly,
(2.6) also holds with P̃j instead of Pj . In this inequality, we then replace f
by Pjf to obtain the last assertion (2.5). □

To deal with the additional factor 2
j
p + 1, we include a frequency cut-off

in the discrete Strichartz estimates. For each K ≥ 1 we define the Fourier
multiplier

πK := F−1
1B(0,K)F . (2.7)

By Plancherel’s theorem, the operators πK are clearly uniformly bounded
in K on every L2-based Sobolev space.

We can now show the desired discrete Strichartz estimates. We stress
that these estimates fail without the cut-off if p < ∞. For instance, take a
function f ∈ Ḣγ \Lq in (2.8). On the other hand, for f ∈ Ḣγ the map πKf
belongs to all Lr with r ≥ q0 and 3/2 − γ = 3/q0 by Sobolev’s embedding
and Bernstein’s inequality.

Theorem 2.5. Let (p, q, γ) be wave admissible. Then we have the estimates

∥πKe
inτ |∇|f∥ℓp

τ Lq ≲p,q (Kτ)
1
p ∥f∥Ḣγ , (2.8)∥∥∥τ n−1∑

k=−∞
πKe

i(n−k)τ |∇|Fk

∥∥∥
ℓp

τ Lq
≲p,q (Kτ)

1
p ∥F∥ℓ1

τ Ḣγ (2.9)

for all τ ∈ (0, 1], K ≥ τ−1, f ∈ Ḣγ, and F ∈ ℓ1Ḣγ.

Proof. By approximation, it is enough to take Schwartz functions and finitely
supported sequences. A scaling argument reduces the estimates to the case
τ = 1. Indeed, we can write

πKe
it|∇|f = Dτ−1πKτe

i t
τ

|∇|Dτf, (2.10)
where the spatial dilation operator Da is given by (Daf)(x) := f(ax). As-
suming the case τ = 1 is shown, we get the general case

∥πKe
inτ |∇|f∥ℓp

τ Lq = τ
1
p ∥Dτ−1πKτe

in|∇|Dτf∥ℓpLq = τ
1
p

+ 3
q ∥πKτe

in|∇|Dτf∥ℓpLq

≲p,q τ
1
p

+ 3
q (Kτ)

1
p ∥Dτf∥Ḣγ = τ

1
p

+ 3
q

− 3
2 +γ(Kτ)

1
p ∥f∥Ḣγ

= (Kτ)
1
p ∥f∥Ḣγ

by the scaling condition in (2.2), and similarly for the inhomogeneous esti-
mate.

So let τ = 1 and K ≥ 1. By means of the Littlewood–Paley square
function estimate, Minkowski’s inequality, and Lemma 2.4, we compute

∥πKe
in|∇|f∥ℓpLq

≲q

∥∥∥( ∑
j∈Z

|PjπKe
in|∇|f |2

) 1
2
∥∥∥

ℓpLq
≤

( ∑
j∈Z

∥Pje
in|∇|πKf∥2

ℓpLq

) 1
2
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≲p,q

( ∑
j∈Z

∥2jγ(2
j
p + 1)PjπKf∥2

L2

) 1
2
≲ K

1
p

( ∑
j∈Z

∥2jγPjf∥2
L2

) 1
2

≲ K
1
p ∥f∥Ḣγ ,

also using that PjπK = 0 for K ≲ 2j . Thus, the homogeneous estimate (2.8)
is true. By duality, we infer the dual homogeneous estimate∥∥∥ ∑

k∈Z
πKe

−ik|∇|Gk

∥∥∥
Ḣ−γ

≲p,q K
1
p ∥G∥ℓp′ Lq′ (2.11)

that is valid for all G ∈ ℓp
′
Lq′ .

The truncated inhomogeneous estimate (2.9) is proven by another duality
argument via∥∥∥ n−1∑

k=−∞
πKe

i(n−k)|∇|Fk

∥∥∥
ℓpLq

= sup
∥G∥

ℓp′
Lq′ ≤1

∣∣∣ ∑
n∈Z

〈 n−1∑
k=−∞

πKe
i(n−k)|∇|Fk, Gn

〉∣∣∣
= sup

∥G∥
ℓp′

Lq′ ≤1

∣∣∣ ∑
k∈Z

〈
Fk,

∞∑
n=k+1

πKe
i(k−n)|∇|Gn

〉∣∣∣
≤ ∥F∥ℓ1Ḣγ sup

∥G∥
ℓp′

Lq′ ≤1
sup
k∈Z

∥∥∥ ∞∑
n=k+1

πKe
i(k−n)|∇|Gn

∥∥∥
Ḣ−γ

.

Using (2.11), the assertion now follows from

sup
∥G∥

ℓp′
Lq′ ≤1

sup
k∈Z

∥∥∥ ∞∑
n=k+1

πKe
i(k−n)|∇|Gn

∥∥∥
Ḣ−γ

= sup
∥G∥

ℓp′
Lq′ ≤1

sup
k∈Z

∥∥∥ ∑
n∈Z

πKe
−in|∇|

1{n≥k+1}Gn

∥∥∥
Ḣ−γ

≲p,q K
1
p sup

∥G∥
ℓp′

Lq′ ≤1
sup
k∈Z

∥1{n≥k+1}Gn∥ℓp′
Lq′ = K

1
p .

Alternatively, one could also employ the Christ–Kiselev Lemma 2.11 below
to deduce the inhomogeneous estimate from the homogeneous one. □

We discuss some variants of the above results and proofs.

Remark 2.6. a) Using the Bernstein inequality ∥πKf∥Ḣγ ≲ Kγ∥f∥L2 that
holds for every L2-function f and γ ≥ 0, we can convert the derivative loss
from the discrete Strichartz estimates into a multiplicative factor of the form
Kγ . This gives e.g.

∥πKe
inτ |∇|f∥ℓp

τ Lq ≲p,q (Kτ)
1
pKγ∥f∥L2 ,

and similarly for the inhomogeneous estimates.
b) In all the previous estimates we can replace the plus sign in the ex-

ponential by a minus sign (e.g., e−inτ |∇| instead of einτ |∇|) since we can
instead of f resp. F always use their complex conjugates and 1B(0,K)(ξ) =
1B(0,K)(−ξ). This modification is employed below without further notice.
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c) In our applications, we will always deal with finite sequences, defined
on some set {0, . . . , N} for an integer N ∈ N0. In that case, the second
estimate of Theorem 2.5 takes the form∥∥∥τ n−1∑

k=0
πKe

i(n−k)τ |∇|Fk

∥∥∥
ℓp

τ,N Lq
≲p,q (Kτ)

1
p ∥F∥ℓ1

τ,N−1Ḣγ ,

where on the right-hand side we only need to consider the index range
{0, . . . , N − 1}.

Remark 2.7. There exists an alternative (simpler) approach to time-discrete
Strichartz estimates, which uses the well-known continuous estimates just
as a “black box”. In the context of Schrödinger equations, it was used in
Lemma 2.6 of the recent preprint [25], see also Lemma 2.1 of [22] for a
similar technique. But this approach yields a weaker estimate compared to
Theorem 2.5 in the case when K > τ−1. We give the details. For technical
reasons, here we have to replace the frequency cut-off πK by a version π̃K

with a smooth cut-off function (similar as the Littlewood–Paley projections
from Definition 2.1). Let first τ = 1 and K > 0 be arbitrary. For a function
f ∈ Ḣγ , we get

∥ein|∇|π̃Kf∥p
ℓpLq

=
∑
n∈Z

∫ n

n−1
∥ein|∇|π̃Kf∥p

Lq dt

≲p

∑
n∈Z

∫ n

n−1
∥(ein|∇| − eit|∇|)π̃Kf∥p

Lq dt+
∑
n∈Z

∫ n

n−1
∥eit|∇|π̃Kf∥p

Lq dt.

Note that the last term is equal to ∥eit|∇|π̃Kf∥p
LpLq , therefore it can be

treated directly by the continuous Strichartz estimate from Theorem 2.3.
The first term can be rewritten as∑
n∈Z

∫ n

n−1
∥(ein|∇| − eit|∇|)π̃Kf∥p

Lq dt =
∑
n∈Z

∫ n

n−1

∥∥∥ ∫ n

t
i|∇|eiσ|∇|π̃Kf dσ

∥∥∥p

Lq
dt

≤
∑
n∈Z

∫ n

n−1

∫ n

n−1
∥|∇|eiσ|∇|π̃Kf∥p

Lq dσ dt

≲p,q K
p

∑
n∈Z

∫ n

n−1
∥eiσ|∇|f∥p

Lq dσ,

where we used Bernstein’s inequality and the frequency cut-off π̃K to get
rid of the differential operator. In this step it would be necessary to use π̃K

with a smooth cut-off function. Now we are again in a position to apply
Theorem 2.3. Altogether, this gives the estimate

∥π̃Ke
in|∇|f∥ℓpLq ≲p,q (1 +K)∥f∥Ḣγ .

A scaling argument as in the proof of Theorem 2.5 then yields the estimate

∥π̃Ke
inτ |∇|f∥ℓp

τ Lq ≲p,q (1 +Kτ)∥f∥Ḣγ ,

for general τ > 0. We see that this estimate is inferior to Theorem 2.5 if
K > τ−1, but for K = τ−1 they are the same.
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2.2. Endpoint estimates with logarithmic loss. The Strichartz esti-
mates from Theorem 2.3 and 2.5 are in general wrong if (p, q, γ) = (2,∞, 1),
see [22] or Exercise 2.44 in [23] for a discussion. In this section we show a
local-in-time estimate with logarithmic loss, which will be used to discuss
the corrected Lie splitting in Section 6. We follow the approach from Sec-
tion 8 in [12] and transfer it to the time-discrete setting. First, we need
two lemmas with basic estimates. The first one is contained in the proof of
Lemma 8.1 in [12].

Lemma 2.8. The function

M : R × R3 → C, M(λ, z) :=
∫

B(0,1)
|ξ|−2 cos(λ|ξ|)eiz·ξ dξ

satisfies the decay estimate

|M(λ, z)| ≲ 1
1 + |λ|

for all λ ∈ R and z ∈ R3.

Lemma 2.9. The function

A : R × N0 × N0 → R, A(β, n, j) :=
( 1

1 + β|n− j|
+ 1

1 + β(n+ j)
)

satisfies the inequality

max
j=0,...,N

N∑
n=0

A(β, n, j) ≲ 1 + β−1 log(1 +Nβ)

for all N ∈ N0 and β > 0.

Proof. Let j ∈ {0, . . . , N}. We have
N∑

n=0

1
1 + β(n+ j) ≤

N∑
n=0

1
1 + βn

= 1 +
N∑

n=1

1
1 + βn

≤ 1 + β−1
∫ Nβ

0

1
1 + t

dt

= 1 + β−1 log(1 +Nβ)
and

N∑
n=0

1
1 + β|n− j|

= 1 +
j−1∑
n=0

1
1 + β(j − n) +

N∑
n=j+1

1
1 + β(n− j)

= 1 +
j∑

n=1

1
1 + βn

+
N−j∑
n=1

1
1 + βn

≤ 1 + 2
N∑

n=1

1
1 + βn

≤ 1 + 2β−1 log(1 +Nβ). □

Now we show the announced time-discrete endpoint estimates with loga-
rithmic loss.

Theorem 2.10. The estimates

∥πKe
inτ |∇|f∥ℓ2

τ,N L∞ ≲
√
Kτ + log(1 +KNτ)∥f∥Ḣ1 , (2.12)

∥∥∥τ N∑
k=0

πKe
−ikτ |∇|Fk

∥∥∥
Ḣ−1

≲
√
Kτ + log(1 +KNτ)∥F∥ℓ2

τ,N L1 (2.13)
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hold for all τ ∈ (0, 1], K ≥ τ−1, N ∈ N0, f ∈ Ḣ1, and F ∈ ℓ2L1.

Proof. By duality, the two estimates are equivalent. Due to a scaling argu-
ment, for (2.12) it is enough to show

∥π1e
inβ|∇|f∥ℓ2

1,N L∞ ≲
√

1 + β−1 log(1 +Nβ)∥f∥Ḣ1 (2.14)

for any β > 0. Indeed, this estimate and (2.10) imply

∥πKe
inτ |∇|f∥ℓ2

τ,N L∞ = τ
1
2 ∥DKπ1e

inKτ |∇|DK−1f∥ℓ2
1,N L∞

= τ
1
2 ∥π1e

inKτ |∇|DK−1f∥ℓ2
1,N L∞

≲ τ
1
2

√
1 + (Kτ)−1 log(1 +NKτ)∥DK−1f∥Ḣ1

= (Kτ)
1
2

√
1 + (Kτ)−1 log(1 +NKτ)∥f∥Ḣ1

=
√
Kτ + log(1 +NKτ)∥f∥Ḣ1 .

We show (2.14) via the dual estimate∥∥∥ N∑
n=0

π1e
−inβ|∇|Fn

∥∥∥
Ḣ−1

≲
√

1 + β−1 log(1 +Nβ)∥F∥ℓ2
1,N L1 (2.15)

for F ∈ ℓ2L1. Instead of the exponential, we treat sine and cosine. From
the definition of the Ḣ1-norm and Fubini’s theorem, we deduce∥∥∥ N∑

n=0
π1 sin(nβ|∇|)Fn

∥∥∥2

Ḣ−1
=

∥∥∥|ξ|−1
N∑

n=0
1B(0,1) sin(nβ|ξ|)F̂n(ξ)

∥∥∥2

L2

=
∫

B(0,1)
|ξ|−2

N∑
n,j=0

sin(nβ|ξ|) sin(jβ|ξ|)F̂n(ξ)F̂j(ξ) dξ

= (2π)−3
∫

B(0,1)
|ξ|−2

N∑
n,j=0

sin(nβ|ξ|) sin(jβ|ξ|)

·
∫
R3

∫
R3
ei(y−x)·ξFn(x)Fj(y) dx dy dξ

= (2π)−3
N∑

n,j=0

∫
R3

∫
R3
G−(nβ, jβ, y − x)Fn(x)Fj(y) dx dy,

where
G−(a, b, z) :=

∫
B(0,1)

|ξ|−2 sin(a|ξ|) sin(b|ξ|)eiz·ξ dξ.

Analogously, we obtain∥∥∥ N∑
n=0

π1 cos(nβ|∇|)Fn

∥∥∥2

Ḣ−1

= (2π)−3
N∑

n,j=0

∫
R3

∫
R3
G+(nβ, jβ, y − x)Fn(x)Fj(y) dx dy,

with
G+(a, b, z) :=

∫
B(0,1)

|ξ|−2 cos(a|ξ|) cos(b|ξ|)eiz·ξ dξ.
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Trigonometric identities yield

G±(a, b, z) = 1
2

(
M(a− b, z) ±M(a+ b, z)

)
with M(λ, z) from Lemma 2.8. Combined with this lemma, the above equa-
tions lead to∥∥∥ N∑

n=0
π1e

−inβ|∇|Fn

∥∥∥2

Ḣ−1

≲
N∑

n,j=0

∫
R3

∫
R3

(
|M(β(n− j), y − x)| + |M(β(n+ j), y − x)|

)
· |Fn(x)||Fj(y)| dx dy

≲
N∑

n,j=0

∫
R3

∫
R3

( 1
1 + β|n− j|

+ 1
1 + β|n+ j|

)
|Fn(x)||Fj(y)| dx dy

=
N∑

n,j=0
A(β, n, j)∥Fn∥L1∥Fj∥L1 ,

with A from Lemma 2.9. We can now apply Cauchy–Schwarz twice and
Lemma 2.9. Also noting that A(β, n, j) is symmetric in n and j, we estimate

N∑
n,j=0

A(β, n, j)∥Fn∥L1∥Fj∥L1

≤ ∥F∥ℓ2
1,N L1

[ N∑
n=0

( N∑
j=0

A(β, j, n)∥Fj∥L1

)2] 1
2

≤ ∥F∥ℓ2
1,N L1

[ N∑
n=0

( N∑
j=0

A(β, j, n)
)( N∑

j=0
A(β, n, j)∥Fj∥2

L1

)] 1
2

≤
(

max
n=0,...,N

N∑
j=0

A(β, n, j)
) 1

2
(

max
j=0,...,N

N∑
n=0

A(β, n, j)
) 1

2 ∥F∥2
ℓ2

1,N L1

≲
(
1 + β−1 log(1 +Nβ)

)
∥F∥2

ℓ2
1,N L1 ,

which shows (2.15). □

In Section 6 we also need an inhomogeneous estimate with the forbidden
exponents (p̃′, q̃′, 1) = (2, 1, 1) on the right-hand side. Estimates with q̃ ̸= 2
can often be deduced by means of the Christ–Kislev Lemma from [7].

Lemma 2.11. Let X and Y be measure spaces, and E and F be Banach
spaces, 1 ≤ p < q ≤ ∞, and T : Lp(X,E) → Lq(Y, F ) be a bounded linear
operator. Furthermore, let (Xj)j∈N be a sequence of measurable subsets of X
such that Xj ⊆ Xj+1 for all j ∈ N. We define the Christ–Kiselev maximal
operator

[T ∗h](y) := sup
j∈N

∥[T (h1Xj )](y)∥F

for all h ∈ Lp(X,E) and almost every y ∈ Y . Then we have the estimate

∥T ∗h∥Lq(Y ) ≤ (1 − 2−(p−1−q−1))−1∥T∥∥h∥Lp(X,E)
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for all h ∈ Lp(X,E).

We show the estimate to be used in Section 6. There we need uniformity
with respect to shifts s ∈ R in the wave propagator.

Corollary 2.12. Let (p, q, γ) be wave admissible. Then the inequality∥∥∥τ n−1∑
k=0

πKe
i(n−k+s)τ |∇||∇|−1Fk

∥∥∥
ℓp

τ,N Lq

≲p,q (Kτ)
1
pKγ

√
Kτ + log(KNτ)∥F∥ℓ2

τ,N−1L1

holds for all τ ∈ (0, 1], K ≥ τ−1, s ∈ R, N ∈ N, and F ∈ ℓ2L1.

Proof. We define the sets X0 := ∅ and Xj := {0, . . . ,min{j − 1, N}} for
j ∈ N, and X := {0, . . . , N}. By the Christ–Kiselev Lemma 2.11, it suffices
to prove the estimate for the operator given by

(TF )n := τ
N∑

k=0
πKe

i(n−k+s)τ |∇||∇|−1Fk.

We compute ∥∥∥τ N∑
k=0

πKe
i(n−k+s)τ |∇||∇|−1Fk

∥∥∥
ℓp

τ,N Lq

≲p,q (Kτ)
1
p

∥∥∥τ N∑
k=0

πKe
i(−k+s)τ |∇||∇|−1Fk

∥∥∥
Ḣγ

≤ (Kτ)
1
pKγ

∥∥∥τ N∑
k=0

πKe
−ikτ |∇|Fk

∥∥∥
Ḣ−1

≲ (Kτ)
1
pKγ

√
Kτ + log(1 +KNτ)∥F∥ℓ2

τ,N L1 .

Here we first use the homogeneous Strichartz estimate (2.8). Then we apply
Bernstein’s inequality to get rid of the derivative loss of order γ, at the cost
of the factor Kγ . In the end, we employ the endpoint estimate (2.13) from
Theorem 2.10. □

Furthermore, we need the following “hybrid” estimates to control time-
continuous solutions in time-discrete norms. Their proof is only sketched
since it does not require new ideas.

Corollary 2.13. Let (p, q, γ) be wave admissible. Then the estimates∥∥∥ ∫ nτ

−∞
πKe

i(nτ−s)|∇|F (s) ds
∥∥∥

ℓp
τ Lq

≲p,q (Kτ)
1
p ∥F∥L1

RḢγ , (2.16)∥∥∥ ∫ nτ

0
πKe

i(nτ−s)|∇|F (s) ds
∥∥∥

ℓ2
τ,N L∞

≲
√
Kτ + log(1 +KNτ)∥F∥L1([0,Nτ ],Ḣ1)

(2.17)

hold for all τ ∈ (0, 1], K ≥ τ−1, F ∈ L1
RḢ

γ, and N ∈ N0.

Proof. Two proofs are possible. Since we have an L2-based Sobolev space in
the space variable on the right-hand side of the inequality, we can apply the
same technique as in the proof of (2.9) in Theorem 2.5, just replacing one
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of the two sums by an integral. For (2.17) one uses (2.13) instead of (2.11).
An alternative way would be to proceed as in the previous proof and use
the Christ–Kiselev Lemma with the sets Xj := (−∞, jτ ] ⊆ R for the first,
resp. Xj := [0,min{j,N}τ ] ⊆ [0, Nτ ] for the second estimate. So (2.16) is
reduced to (2.8), and (2.17) to (2.12). □

3. Nonlinear Wave equation

We introduce some notation and recall some well-known results from the
wellposedness theory of the nonlinear wave equation (1.1). For the non-
linearity we write g(u) := −µ|u|α−1u. We will often use the elementary
pointwise Lipschitz bound

|g(v) − g(w)| ≲ (|v|α−1 + |w|α−1)|v − w| (3.1)
for g. It is convenient to reformulate (1.1) as a system having first order in
time. Therefore we set

U :=
(
u
v

)
=̂

(
u
∂tu

)
, A :=

(
0 I
∆ 0

)
, G(U) :=

(
0

g(u)

)
, U0 :=

(
u0

v0

)
, (3.2)

and obtain the equivalent first-order system
∂tU(t) = AU(t) +G(U(t)), t ∈ [0, T ],
U(0) = U0.

(3.3)

We are looking for a mild solution of (3.3), i.e., a function U ∈ C([0, T ], Ḣ1×
L2) satisfying the Duhamel formula

U(t) = etAU0 +
∫ t

0
e(t−s)AG(U(s)) ds (3.4)

for all t ∈ [0, T ]. The group etA is given by

etA =
(

cos(t|∇|) |∇|−1 sin(t|∇|)
−|∇| sin(t|∇|) cos(t|∇|)

)
, t ∈ R. (3.5)

Inserting (3.5), the first line of (3.4) reads

u(t) = cos(t|∇|)u0 + |∇|−1 sin(t|∇|)v0 +
∫ t

0
|∇|−1 sin((t− s)|∇|)g(u(s)) ds.

(3.6)
For the linear part of the evolution we abbreviate

S(t)(u0, v0) := cos(t|∇|)u0 + |∇|−1 sin(t|∇|)v0. (3.7)
In this setting we can apply the Strichartz estimates as formulated in Section
2, since we can decompose

sin(t|∇|) = 1
2i(e

it|∇| − e−it|∇|), cos(t|∇|) = 1
2(eit|∇| + e−it|∇|).

In the case α = 3, Sobolev embedding shows that the nonlinearity G leaves
the space Ḣ1 × L2 invariant. Therefore, local wellposedness can be shown
in a standard way using the Duhamel formula and Banach’s fixed point
theorem. If α > 3, a more sophisticated analysis is needed since in that
case the nonlinearity loses too much integrability. By means of Strichartz
estimates, local wellposedness can be shown up to the critical power α = 5.
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Let α ∈ [3, 5]. We define an exponent pα ∈ [4,∞] such that (pα, 3(α−1), 1)
are wave admissible, i.e., by the relation

1
pα

+ 1
α− 1 = 1

2 ,

see (2.2). The local wellposedness theorem for the nonlinear wave equation
(1.1) reads as follows. A proof for the critical case α = 5 is given in,
e.g., Theorem IV.3.1 of [20], and the subcritical case α < 5 can be proven
similarly. See also Sections 8.3–8.4 of [1] for related results and Chapter 3
in [23] for an overview.
Theorem 3.1. Let U0 ∈ Ḣ1 × L2. Then there exists a time T0 > 0 and
a unique solution U = (u, ∂tu) of (1.1) such that U ∈ C([0, T0], Ḣ1 × L2)
and u ∈ Lpα([0, T0], L3(α−1)). Moreover, U is bounded in the above function
spaces by a constant depending only on ∥U0∥Ḣ1×L2, and in the subcritical
case α < 5, the time T0 only depends on ∥U0∥Ḣ1×L2.

Remark 3.2. a) Since g(u) ∈ C([0, T0], L6/α) ↪→ C([0, T0], H−1) and ∆u ∈
C([0, T0], Ḣ−1) ↪→ C([0, T0], H−1), one can deduce from (3.6) that ∂2

t u be-
longs to C([0, T0], H−1) and that the differential equation in (1.1) holds in
this space.

b) See Proposition 5.2 for a choice of T0 in the critical case α = 5.
c) In the defocusing case µ = 1, one can show global-in-time wellposedness

using energy conservation. In the focusing case µ = −1 however, blow-up in
finite time can occur. Moreover, if α > 5, the problem is ill-posed at least if
µ = −1. See Chapters 3 and 5 in [23].

d) In the subcritical case α < 5, one has uniqueness of solutions U =
(u, ∂tu) to (1.1) in the energy class C([0, T0], Ḣ1 × L2) without the require-
ment that u ∈ Lpα([0, T0], L3(α−1)), cf. [18].

From now on we assume the following.
Assumption 3.3. There exists a time T > 0 and a solution U = (u, ∂tu)
of (3.3) such that

U ∈ C([0, T ], Ḣ1 × L2) and u ∈ Lpα([0, T ], L3(α−1))
with bound

M := max{∥U∥L∞
T (Ḣ1×L2), ∥u∥Lpα

T L3(α−1)}. (3.8)

Remark 3.4. If α < 5, the quantity M only depends on ∥U∥L∞
T (Ḣ1×L2).

Indeed, the “minimal” existence time T0 and the number M for T = T0 are
controlled by ∥U0∥Ḣ1×L2 in Theorem 3.1. Hence, we can divide the interval
[0, T ] into a finite number of smaller subintervals such that the Strichartz
norm of u is bounded on each of them. Moreover, in the defocusing case
µ = 1, one can use energy conservation to show that the number M only
depends on ∥U0∥Ḣ1×L2 . The latter even holds in the critical case α = 5, see
[24] and the references therein.

As a preparation for later sections, we now want to convert the continuous-
time Strichartz estimate into a discrete-time space-time bound for u from
Assumption 3.3. To apply the results of Section 2, we need to include the
frequency cut-off πK defined by (2.7).
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Proposition 3.5. Let u, T , and M be given by Assumption 3.3 and (p, q, 1)
be wave admissible. Then we have the estimates

∥πKu(nτ + σ)∥ℓp
τ,N Lq ≲p,q,M,T (Kτ)

1
p ,

∥πKu(nτ + σ)∥ℓ2
τ,N L∞ ≲M,T (Kτ + logK)

1
2

for all τ ∈ (0, 1], K ≥ τ−1, σ ≥ 0, and N ∈ N with Nτ + σ ≤ T .

Proof. Owing to (3.6) and (3.7), the solution is given by
πKu(nτ + σ)

= πKS(nτ)(u(σ), ∂tu(σ)) +
∫ nτ

0
πK |∇|−1 sin((nτ − s)|∇|)g(u(σ + s)) ds.

We apply the homogeneous and hybrid Strichartz estimates (2.8) and (2.16)
to obtain

∥πKu(nτ + σ)∥ℓp
τ,N Lq

≲p,q (Kτ)
1
p

(
∥u(σ)∥Ḣ1 + ∥∂tu(σ)∥L2 + ∥g(u(σ + ·))∥L1

T −σL2

)
≲ (Kτ)

1
p

(
M + ∥|u|α−1u∥L1

T L2

)
≤ (Kτ)

1
p

(
M + ∥|u|α−1∥L1

T L3∥u∥L∞
T L6

)
≲ (Kτ)

1
p

(
M + T 2− α−1

2 ∥u∥α−1
Lpα

T L3(α−1)M
)
≲M,T (Kτ)

1
p ,

where we also use Hölder’s inequality and the Sobolev embedding Ḣ1 ↪→ L6

to bound the nonlinearity. The estimate in the ℓ2L∞-norm follows in the
same way, using the logarithmic endpoint estimates (2.12) and (2.17). □

Remark 3.6. With a similar calculation we can also show the continuous-
time bound

∥πKu∥Lp
T Lq ≲p,q,M,T 1.

Here we use the continuous-time Strichartz estimate from Theorem 2.3 and
the uniform boundedness of the operator πK in all L2-based Sobolev spaces.

4. Lie splitting

We consider a semi-discretization in time for (3.3), i.e., for a stepsize τ > 0
and n ∈ N we want to compute approximations Un = (un, vn) ≈ U(tn) at
discrete time points tn := nτ . One can consider the following Lie Splitting
scheme (sometimes also called Lawson–Euler scheme)

Un+1 = eτA[Un + τG(Un)]
with A and G from (3.2). In order to perform one step of the Lie splitting
scheme, we first apply one step of the exact nonlinear flow, followed by one
step of the exact linear flow. One can also derive the Lie Splitting by setting
s = 0 in the integral of the Duhamel formula

U(τ) = eτAU0 +
∫ τ

0
e(τ−s)AG(U(s)) ds.

To compensate the “bad” behavior of the nonlinearity G in the case α > 3,
we analyze a modified scheme that includes the frequency cut-off πK defined
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in (2.7), where we choose K = τ−1. (One could also take K = cτ−1 for
some fixed c > 0.) Thanks to this choice, the factor (Kτ)1/p in the discrete
Strichartz estimates vanishes. We introduce the notation

Πτ−1 :=
(
πτ−1 0

0 πτ−1

)
.

The modified scheme is given by
Un+1 = Φτ (Un) := eτA[Un + τΠτ−1G(Un)],
U0 = Πτ−1U0.

(4.1)

The filter is applied to the initial data, as well as in the iteration after the
application of the nonlinearity. Inductively, one checks that Πτ−1Un = Un

for all n. Let the solution U = (u, ∂tu) be given by Assumption 3.3. In
Lemma 4.2 we control the projection error U(tn) − Πτ−1U(tn). Hence, to
compare the numerical approximation with U , we define the (main) error

En := Πτ−1U(tn) − Un (4.2)
for all n ∈ N0 with nτ = tn ≤ T . Note that with this definition we have
E0 = 0, since the numerical scheme filters the initial data. We write un for
the first component of Un, as well as en for the first component of En. We
first establish a recursion formula for the error.

Proposition 4.1. Let En be given by (4.2) and (4.1) for the solution U
from Assumption 3.3. We then have

Em+n = enτAEm +
∫ tn

0
Πτ−1e(nτ−s)ABm(s) ds

+
n−1∑
k=0

Πτ−1e(n−k)τA
(
∆m+k + τQm+k

)
(4.3)

for all τ ∈ (0, 1], and n,m ∈ N0 with tm+n ≤ T . The appearing terms are
given by

Bm(s) := G(U(tm + s)) −G(Πτ−1U(tm + s)),

∆n :=
∫ τ

0
e−sAG(Πτ−1U(tn + s)) ds− τG(Πτ−1U(tn)), (4.4)

Qn := G(Πτ−1U(tn)) −G(Un).

Proof. We use the Duhamel formula

U(tm+n) = enτAU(tm) +
∫ tn

0
e(nτ−s)AG(U(tm + s)) ds

for the solution U . For the discrete approximation Un defined by (4.1) we
have the discrete Duhamel formula

Um+n = enτAUm + τ
n−1∑
k=0

Πτ−1e(n−k)τAG(Um+k), (4.5)

which is easily verified via induction. These equalities yields
Em+n = Πτ−1U(tm+n) − Um+n

= enτA(Πτ−1U(tm) − Um) +
∫ tn

0
Πτ−1e(nτ−s)AG(U(tm + s)) ds
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− τ
n−1∑
k=0

Πτ−1e(n−k)τAG(Um+k)

= enτAEm +
∫ tn

0
Πτ−1e(nτ−s)ABm(s) ds

+
∫ tn

0
Πτ−1e(nτ−s)AG(Πτ−1U(tm + s)) ds

− τ
n−1∑
k=0

Πτ−1e(n−k)τAG(Πτ−1U(tm+k)) + τ
n−1∑
k=0

Πτ−1e(n−k)τAQm+k.

Furthermore, we can rewrite the last integral as∫ tn

0
Πτ−1e(nτ−s)AG(Πτ−1U(tm + s)) ds

=
n−1∑
k=0

∫ tk+1

tk

Πτ−1e(nτ−s)AG(Πτ−1U(tm + s)) ds

=
n−1∑
k=0

Πτ−1e(n−k)τA
∫ τ

0
e−sAG(Πτ−1U(tm+k + s)) ds

to obtain the expression including the local error terms ∆m+k. □

We now quantify convergence πK → I as K → ∞. In view of later
applications, the following two results are formulated for general K ≥ 1. In
this section, we will only use the case K = τ−1. We give the proof of the
next (known) lemma for convenience.

Lemma 4.2. The estimate

∥(I − πK)f∥Ḣγ−1 ≤ 1
K

∥f∥Ḣγ

is true for all K ≥ 1, γ ∈ R, and f ∈ Ḣγ.

Proof. We simply use the support property of the Fourier multiplier πK ,
Plancherel’s theorem and the definition of the Sobolev norm. This gives

∥(I − πK)f∥Ḣγ−1 = ∥|ξ|γ−1(1 − 1B(0,K))f̂∥L2 ≤
∥∥∥1{|ξ|≥K}

|ξ|

∥∥∥
L∞

∥|ξ|γ f̂∥L2

≤ 1
K

∥f∥Ḣγ . □

Using this, we show an estimate for the terms Bn(s) in (4.4).

Lemma 4.3. Let u, T , and M be given by Assumption 3.3. We then have
the inequality

∥g(u) − g(πKu)∥L1
T Ḣ−1 ≲M,T

1
K

for all K ≥ 1.

Proof. We use estimate (3.1), the Sobolev embedding L6/5 ↪→ Ḣ−1, Hölder’s
inequality, the definition (3.8) of M , Remark 3.6, and Lemma 4.2 to obtain

∥g(u) − g(πKu)∥L1
T Ḣ−1

≲ ∥(|u|α−1 + |πKu|α−1)|u− πKu|∥L1
T L6/5
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≤ (∥u∥α−1
Lα−1

T L3(α−1) + ∥πKu∥α−1
Lα−1

T L3(α−1))∥u− πKu∥L∞
T L2

≲M,T
1
K

∥u∥α−1
Lpα

T L3(α−1)∥u∥L∞
T Ḣ1 ≲M

1
K
. □

We next bound the local error terms ∆n from (4.4). To differentiate g,
we identify C with R2 using the real scalar product z · w = Re(zw̄), where
we omit the dot below.

Lemma 4.4. Let U = (u, ∂tu), T , and M be given by Assumption 3.3. We
then have the representation

∆n =
∫ τ

0

∫ s

0
e−σA

(
−g(πτ−1u(tn + σ))

g′(πτ−1u(tn + σ))πτ−1∂tu(tn + σ)

)
dσ ds. (4.6)

Moreover, the inequality
∥∆n∥ℓ1

τ,N (L2×Ḣ−1) ≲M,T τ2

holds for all τ ∈ (0, 1] and N ∈ N0 with (N + 1)τ ≤ T .

Proof. Starting from (4.4), we write

∆n =
∫ τ

0

[
e−sAG(Πτ−1U(tn + s)) −G(Πτ−1U(tn))

]
ds

=
∫ τ

0

∫ s

0

d
dσ

[
e−σAG(Πτ−1U(tn + σ))

]
dσ ds

=
∫ τ

0

∫ s

0
e−σA

[
−

(
0 I
∆ 0

) (
0

g(πτ−1u(tn + σ))

)

+ d
dσ

(
0

g(πτ−1u(tn + σ))

) ]
dσ ds

=
∫ τ

0

∫ s

0
e−σA

(
−g(πτ−1u(tn + σ))

g′(πτ−1u(tn + σ))πτ−1∂tu(tn + σ)

)
dσ ds.

Thanks to the regularization πτ−1 there are no problems taking the deriva-
tive. We can now estimate

∥∆n∥ℓ1
τ,N (L2×Ḣ−1)

≲ τ2 sup
σ∈[0,τ ]

∥∥∥ (
g(πτ−1u(tn + σ))

g′(πτ−1u(tn + σ))πτ−1∂tu(tn + σ)

) ∥∥∥
ℓ1

τ,N (L2×L6/5)

≲ τ2 sup
σ∈[0,τ ]

∥|πτ−1u(tn + σ)|α−1∥ℓ1
τ,N L3

(
∥πτ−1u∥L∞

T L6 + ∥πτ−1∂tu∥L∞
T L2

)
≲T τ2 sup

σ∈[0,τ ]
∥πτ−1u(tn + σ)∥α−1

ℓpα
τ,N L3(α−1)

(
∥u∥L∞

T Ḣ1 + ∥∂tu∥L∞
T L2

)
≲M,T τ2,

using Sobolev’s embedding, the estimate |g′(w)z| ≲ |w|α−1|z|, Hölder’s in-
equality, and Proposition 3.5. □

Now we turn our attention to the terms Qn defined in (4.4). To estimate
these terms, we will need an a priori bound on the numerical solution un in
the discrete Strichartz norm ∥ · ∥ℓ4

τ,N L3(α−1) . Since such a bound is at first
unclear, we use the relation un = πτ−1u(tn) − en combined with the discrete
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Strichartz estimate for u from Proposition 3.5. Hence, for proving the global
error bound in Theorem 1.1, we must in addition show the convergence
∥en∥ℓ4

τ,N L3(α−1) → 0 as τ → 0, see Proposition 4.6. This idea goes back to
[14] (in a setting with maximum norms in time).

Lemma 4.5. Let u, T , and M be given by Assumption 3.3. Then the
inequality

∥g(πτ−1u(tm+n)) − g(um+n)∥ℓ1
τ,jḢ−1

≲M,T t
1− α−1

4
j+1

(
1 + ∥em+n∥α−1

ℓ4
τ,jL3(α−1)

)
∥em+n∥ℓ∞

τ,jL2

holds for all τ ∈ (0, 1] and m, j ∈ N0 with (m+ j)τ ≤ T .

Proof. Similar as in Lemma 4.3 we estimate

∥g(πτ−1u(tm+n)) − g(um+n)∥ℓ1
τ,jḢ−1

≲
(
∥πτ−1u(tm+n)∥α−1

ℓα−1
τ,j L3(α−1) + ∥um+n∥α−1

ℓα−1
τ,j L3(α−1)

)
· ∥πτ−1u(tm+n) − um+n∥ℓ∞

τ,jL2

≤ t
1− α−1

4
j+1

(
∥πτ−1u(tm+n)∥α−1

ℓ4
τ,jL3(α−1) + ∥um+n∥α−1

ℓ4
τ,jL3(α−1)

)
∥em+n∥ℓ∞

τ,jL2

≲T t
1− α−1

4
j+1

(
∥πτ−1u(tm+n)∥α−1

ℓpα
τ,jL3(α−1) + ∥em+n∥α−1

ℓ4
τ,jL3(α−1)

)
∥em+n∥ℓ∞

τ,jL2

≲M,T t
1− α−1

4
j+1

(
1 + ∥em+n∥α−1

ℓ4
τ,jL3(α−1)

)
∥em+n∥ℓ∞

τ,jL2 .

Here we keep the power of tj+1 gained by Hölder from the change from the
ℓα−1

τ,j - to the ℓ4τ,j-norm and we further insert um+n = πτ−1u(tm+n) − em+n.
The estimate in the last line follows from Proposition 3.5. □

Due to scaling considerations, the convergence order of ∥en∥ℓ4
τ,N L3(α−1) will

be 1
α−1 − 1

4 since we only assume Ḣ1 regularity of the solution u. Thus, in the
critical case α = 5 we cannot prove any convergence rate in this Strichartz
norm, which is one reason that makes this case considerably more difficult.
Another one is that it is no longer possible to gain a power of tj+1 in the
previous lemma. We therefore first focus on the easier case α < 5.

To measure the error simultaneously in two different norms, we define

∥En∥τ,j := max
{
τ−1∥En∥ℓ∞

τ,j(L2×Ḣ−1), τ
γα−1∥en∥ℓ4

τ,jL3(α−1)

}
, (4.7)

where j ∈ N0 is a number with jτ ≤ T and the parameter γα is given by

γα := 5
4 − 1

α− 1 ∈
[3
4 , 1

]
.

Hence, (4, 3(α− 1), γα) is wave admissible and γα < 1 if α < 5. We are now
ready to perform the main step of the convergence proof in the subcritical
case. We proceed by a “double induction”, similar as in Section 9 of [16].

Proposition 4.6. Let α < 5 and U = (u, ∂tu), T , and M be given by As-
sumption 3.3. Define En by (4.2). Then there is a number τ0 > 0 depending
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only on M and T such that we have the estimate
∥En∥τ,⌊ T

τ
⌋ ≲M,T,α 1

for all τ ∈ (0, τ0].

Proof. Step 1. Let C1 ≥ 1 be the constant from the discrete Strichartz
estimates from Section 2 with respect to the parameters (4, 3(α − 1), γα)
and C2 > 0 be the maximum of the constants from Lemma 4.3, 4.4, and 4.5.
Since α < 5, we can choose a time T1 ∈ (0, T ] such that

2C1C2T
1− α−1

4
1 ≤ 1

2 . (4.8)

Next, we define L := ⌈2T
T1

⌉ ∈ N and the maximum step size τ0 > 0 by the
relations

τ0 ≤ T1, τ1−γα
0 ≤ 1

4C2(2C1)L+1 , (4.9)

where we again exploit that α < 5. For τ ∈ (0, τ0] we set N := ⌊T/τ⌋ ∈ N,
N1 := ⌊T1/τ⌋ ∈ {1, . . . , N}, and Nm := mN1 for all m ∈ N0. Note that these
definitions yield N ≤ NL. Moreover, we define the number ℓ := ⌊N/N1⌋ ∈
{1, . . . , L}. We thus have the decomposition

[0, tN ] =
ℓ−1⋃
m=0

[tNm , tNm+1 ] ∪ [tNℓ
, tN ],

where each subinterval is of length less or equal T1. To measure the error in
each of them, we define the error terms Errm by Err−1 := 0,

Errm := ∥ENm+n∥τ,N1 , m ∈ {0, . . . , ℓ− 1}, Errℓ := ∥ENℓ+n∥τ,N−Nℓ
.

Step 2. Our next goal is to show the recursion formula
Errm ≤ 2C1Errm−1 + 4C1C2, m ∈ {0, . . . , ℓ}. (4.10)

Note that as soon as (4.10) is established for all indices in {0, . . . ,m}, one
can deduce the absolute bound

Errm ≤ 4C1C2

m∑
k=0

(2C1)k = 4C1C2
(2C1)m+1 − 1

2C1 − 1 ≤ 4C2(2C1)L+1. (4.11)

a) Fix an index m ∈ {0, . . . , j}. If m > 0 we assume that (4.10) holds for
all indices in {0, . . . ,m− 1}. We derive (4.10) by proving

∥ENm+n∥τ,j ≤ 2C1Errm−1 + 4C1C2, j ∈ {0, . . . ,min{N1, N −Nm}},
(4.12)

via induction on j.
b) First let j = 0. If m = 0, there is nothing to prove since E0 = 0. If

m > 0, we directly obtain
∥ENm+n∥τ,0 ≤ ∥ENm−1+n∥τ,N1 = Errm−1,

which in particular shows (4.12) for j = 0. Next, let (4.12) be true for some
j ∈ {0, . . . ,min{N1, N − Nm} − 1}. As in (4.11) the induction assumption
(4.10) then yields

∥ENm+n∥τ,j ≤ 4C2(2C1)L+1. (4.13)
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We apply the discrete Strichartz estimates from Theorem 2.5 and Corollary
2.13 to the error formula (4.3). Observe that (4.3) implies En = Πτ−1En

inductively. We also use Bernstein’s inequality to convert the derivative loss
|∇|γα into a loss of τ−γα in this Strichartz estimate, as explained in Remark
2.6 a). Combined with the definition of the ∥ · ∥τ,j-norm (4.7), it follows

∥ENm+n∥τ,j+1 ≤ ∥Πτ−1enτAENm∥τ,j+1 +
∥∥∥ ∫ tn

0
Πτ−1e(nτ−s)ABNm(s) ds

∥∥∥
τ,j+1

+
∥∥∥ n−1∑

k=0
Πτ−1e(n−k)τA

(
∆Nm+k + τQNm+k

)∥∥∥
τ,j+1

≤ C1τ
−1

(
∥ENm∥L2×Ḣ−1 + ∥BNm∥L1

tj+1
(L2×Ḣ−1)

+ τ−1∥∆Nm+n∥ℓ1
τ,j(L2×Ḣ−1) + ∥QNm+n∥ℓ1

τ,j(L2×Ḣ−1)

)
≤ C1

(
Errm−1 + τ−1∥g(u) − g(πτ−1u)∥L1

T Ḣ−1

+ τ−2∥∆n∥ℓ1
τ,N (L2×Ḣ−1)

+ τ−1∥g(πτ−1u(tNm+n)) − g(uNm+n)∥ℓ1
τ,jḢ−1

)
≤ C1Errm−1 + 2C1C2

+ τ−1C1C2t
1− α−1

4
j+1

(
1 + ∥eNm+n∥α−1

ℓ4
τ,jL3(α−1)

)
∥eNm+n∥ℓ∞

τ,jL2

≤ C1Errm−1 + 2C1C2

+ C1C2T
1− α−1

4
1

(
1 + τ (1−γα)(α−1)∥ENm+n∥α−1

τ,j

)
∥ENm+n∥τ,j ,

where we applied Lemma 4.3, 4.4, and 4.5 to bound the error terms. We
insert (4.13), the step size restriction τ ≤ τ0 from (4.9) and the definition of
T1 from (4.8) to obtain

∥ENm+n∥τ,j+1 ≤ C1Errm−1 + 2C1C2 + 2C1C2T
1− α−1

4
1 ∥ENm+n∥τ,j

≤ C1Errm−1 + 2C1C2 + 1
2∥ENm+n∥τ,j .

In particular, ∥ENm+n∥τ,j+1 is finite. Since ∥ENm+n∥τ,j ≤ ∥ENm+n∥τ,j+1, it
follows that

∥ENm+n∥τ,j+1 ≤ 2C1Errm−1 + 4C1C2,

which closes the induction on j. Hence, the recursion (4.10) is true. The
assertion now follows from (4.11). □

Proof of Theorem 1.1. We take τ0 > 0 from Proposition 4.6 and infer

∥U(tn) − Un∥L2×Ḣ−1

≤ ∥U(tn) − Πτ−1U(tn)∥L2×Ḣ−1 + ∥Πτ−1U(tn) − Un∥L2×Ḣ−1

≤ τ∥U(tn)∥Ḣ1×L2 + ∥En∥L2×Ḣ−1 ≲M,T,α τ,

using the estimates from Lemma 4.2 and Proposition 4.6. □
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5. The critical case

We now consider the case α = 5. As a first auxiliary result we estab-
lish convergence of the time-discrete Strichartz norm towards the time-
continuous Strichartz norm. This will be done for the homogeneous part
of the evolution, i.e.,

S(t)(f, v) = cos(t|∇|)f + |∇|−1 sin(t|∇|)v,

on a bounded interval J . We recall the notation

∥Fn∥ℓp
τ (J,X) =

(
τ

∑
n∈Z

nτ∈J

∥Fn∥p
X

) 1
p
.

Lemma 5.1. Let (p, q, γ) be wave admissible, f ∈ Ḣγ, v ∈ Ḣγ−1, and
J ⊆ R be a bounded interval. Then we have the convergence

∥einτ |∇|πτ−1f∥ℓp
τ (J,Lq) → ∥eit|∇|f∥Lp

J Lq ,

∥S(nτ)Πτ−1(f, v)∥ℓp
τ (J,Lq) → ∥S(t)(f, v)∥Lp

J Lq ,

as τ → 0.

Proof. Let ε > 0. We choose a Schwartz function φ ∈ S such that supp φ̂ is
compact and ∥f − φ∥Ḣγ ≤ ε. The function t 7→ eit|∇|φ is then continuous
with values in Lq, since Hausdorff–Young and dominated convergence yield

∥eis|∇|φ− eit|∇|φ∥Lq = ∥F−1((eis|ξ| − eit|ξ|)φ̂)∥Lq ≤ ∥(eis|ξ| − eit|ξ|)φ̂∥Lq′ → 0

as s → t. We also have πτ−1φ = φ for τ small enough, because supp φ̂ is
compact. It follows

∥einτ |∇|πτ−1φ∥ℓp
τ (J,Lq) → ∥eit|∇|φ∥Lp

J Lq

as τ → 0, as there are essentially Riemann sums on the left-hand side.
Putting things together, we conclude∣∣∣∥einτ |∇|πτ−1f∥ℓp

τ (J,Lq) − ∥eit|∇|f∥Lp
J Lq

∣∣∣
≤ ∥einτ |∇|πτ−1(f − φ)∥ℓp

τ (J,Lq) +
∣∣∣∥einτ |∇|πτ−1φ∥ℓp

τ (J,Lq) − ∥eit|∇|φ∥Lp
J Lq

∣∣∣
+ ∥eit|∇|(φ− f)∥Lp

J Lq

≲p,q 2∥f − φ∥Ḣγ + ε ≤ 3ε

for τ small enough, using the reverse triangle inequality and Strichartz es-
timates from Theorem 2.3 and 2.5. Thus, the first assertion is shown. The
proof of the second one follows the same lines. □

To show the error bound in the critical case, we use a regularization
argument. For H2 × H1 initial data, it requires first-order convergence of
the scheme (4.1) in the Ḣ1 × L2-norm. To use this fact, we also need the
continuous dependence on the initial data, both for the equation (3.3) and
the scheme (4.1). We show these results under a smallness condition on
a Strichartz norm of the orbit, which can always be fulfilled by choosing
a small end time b, see Theorem 2.3. We note that b in Proposition 5.2
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corresponds to a possible choice of T0 in Theorem 3.1, cf. [20, 23]. In the
following we frequently use the discrete Duhamel formula

Un = enτAΠτ−1U0 + τ
n−1∑
k=0

Πτ−1e(n−k)τAG(Uk) (5.1)

for the scheme (4.1), see (4.5). The first component of (5.1) reads as

un = S(tn)Πτ−1U0 + τ
n−1∑
k=0

|∇|−1 sin(tn−k|∇|)πτ−1g(uk), (5.2)

similar as in the continuous case (3.6).

Proposition 5.2. Let R > 0. Then there is a radius δ0 = δ0(R) > 0 such
that for any δ ∈ (0, δ0] the following is true. For all W 0 ∈ Ḣ1 × L2 with
∥W 0∥Ḣ1×L2 ≤ R and every b > 0 with ∥S(·)W 0∥L4

b
L12 ≤ δ, there is a time

step τ̄ = τ̄(δ,W 0, b) > 0 such that the next assertions hold.
a) For every Y 0, Z0 ∈ BḢ1×L2(W 0, δ), the solutions Y and Z of (3.3)

with α = 5 and initial values Y 0 resp. Z0 exist on [0, b]. Moreover, we then
have the estimates

∥πτ−1y(tn)∥ℓ4
τ ([0,b],L12) ≤ κδ, (5.3)

∥yn∥ℓ4
τ ([0,b],L12) ≤ κδ, (5.4)

∥Y − Z∥L∞([0,b],Ḣ1×L2) ≤ 2∥Y 0 − Z0∥Ḣ1×L2 , (5.5)

∥Yn − Zn∥ℓ∞
τ ([0,b],Ḣ1×L2) ≤ 2∥Y 0 − Z0∥Ḣ1×L2 , (5.6)

for all τ ∈ (0, τ̄ ], where Yn (resp. Zn) are the iterates of (4.1) for initial
values Πτ−1Y 0 (resp. Πτ−1Z0), yn (resp. y) is the first component of Yn

(resp. Y ), and κ > 0 is a constant.
b) If Y 0 ∈ H2 × H1 satisfies ∥Y 0 − W 0∥Ḣ1×L2 ≤ δ/2, then there is a

constant C = C(∥Y 0∥H2×H1) > 0 such that the error bound

∥Y (tn) − Yn∥ℓ∞
τ ([0,b],Ḣ1×L2) ≤ Cτ (5.7)

holds for all τ ∈ (0, τ̄ ].

Proof. Step 1. Let CSo ≥ 1 be the constant from the Sobolev embedding
Ḣ1 ↪→ L6 and C1 ≥ 1 be the constant from the Strichartz estimates in
Section 2, where we choose the exponents (p, q, 1) = (4, 12, 1). We define

δ0 := min
{
R, (3CSoC1(3 + C1)4R)− 1

3 , (10CSoC1(3 + C1)4)− 1
4
}
. (5.8)

Let δ ∈ (0, δ0]. Since by assumption ∥S(·)W 0∥L4
b
L12 ≤ δ, Lemma 5.1 yields

a stepsize τ̄ > 0 such that

∥S(tn)Πτ−1W 0∥ℓ4
τ ([0,b],L12) ≤ 2δ (5.9)

for all τ ∈ (0, τ̄ ]. We first show

∥Yn∥ℓ∞
τ,j(Ḣ1×L2) ≤ 3R, ∥yn∥ℓ4

τ,jL12 ≤ (3 + C1)δ (5.10)

for all τ ∈ (0, τ̄ ] and j ∈ N0 with jτ ≤ b. This in particular shows the
inequality (5.4) with κ := 3 + C1.
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We proceed by induction on j. For j = 0, we clearly have
∥Y0∥Ḣ1×L2 ≤ ∥Y 0 −W 0∥Ḣ1×L2 + ∥W 0∥Ḣ1×L2 ≤ δ +R ≤ 2R (5.11)

since δ ≤ R. Theorem 2.5 and (5.9) further imply

∥yn∥ℓ4
τ,0L12 = τ

1
4 ∥S(0)Πτ−1Y 0∥L12

≤ τ
1
4 ∥S(0)Πτ−1(Y 0 −W 0)∥L12 + τ

1
4 ∥S(0)Πτ−1W 0∥L12

≤ C1∥Y 0 −W 0∥Ḣ1×L2 + 2δ ≤ C1δ + 2δ = (2 + C1)δ.
For the induction step j ; j + 1, we assume that (5.10) holds for some

j ∈ N0 with (j + 1)τ ≤ b. We compute
∥Yn∥ℓ∞

τ,j+1(Ḣ1×L2)

≤ ∥enτAΠτ−1Y 0∥ℓ∞
τ,j+1(Ḣ1×L2) + τ

∥∥∥ n−1∑
k=0

Πτ−1e(n−k)τAG(Yk)
∥∥∥

ℓ∞
τ,j+1(Ḣ1×L2)

≤ ∥Y 0∥Ḣ1×L2 + ∥|yn|4yn∥ℓ1
τ,jL2 ≤ 2R+ ∥yn∥4

ℓ4
τ,jL12∥yn∥ℓ∞

τ,jL6

≤ 2R+ 3CSo(3 + C1)4δ4R ≤ 3R,
by means of the discrete Duhamel formula (5.1), (5.11), Hölder’s inequality,
the induction assumption (5.10), and the definition of δ from (5.8). Similarly,
using (5.2) and Theorem 2.5, we estimate
∥yn∥ℓ4

τ,j+1L12 ≤ ∥S(tn)Πτ−1Y 0∥ℓ4
τ,j+1L12

+ τ
∥∥∥ n−1∑

k=0
|∇|−1 sin(tn−k|∇|)πτ−1g(yk)

∥∥∥
ℓ4

τ,j+1L12

≤ ∥S(tn)Πτ−1(Y 0 −W 0)∥ℓ4
τ,j+1L12 + ∥S(tn)Πτ−1W 0∥ℓ4

τ,j+1L12

+ C1∥|yn|4yn∥ℓ1
τ,jL2

≤ C1δ + 2δ + 3CSoC1(3 + C1)4δ4R ≤ (3 + C1)δ.
Hence, the claim (5.10) is true for all jτ ≤ b.

Step 2. Estimate (5.6) is shown by an analogous argument starting from
(5.1). Using also (5.4) for zn, we deduce the inequality

∥Yn − Zn∥ℓ∞
τ ([0,b],Ḣ1×L2)

≤ ∥Y 0 − Z0∥Ḣ1×L2 + ∥|yn|4yn − |zn|4zn∥ℓ1
τ ([0,b],L2)

≤ ∥Y 0 − Z0∥Ḣ1×L2 + 5
2∥(|yn|4 + |zn|4)|yn − zn|∥ℓ1

τ ([0,b],L2)

≤ ∥Y 0 − Z0∥Ḣ1×L2

+ 5
2

(
∥yn∥4

ℓ4
τ ([0,b],L12) + ∥zn∥4

ℓ4
τ ([0,b],L12)

)
∥yn − zn∥ℓ∞

τ ([0,b],L6)

≤ ∥Y 0 − Z0∥Ḣ1×L2 + 5CSo(3 + C1)4δ4∥Yn − Zn∥ℓ∞
τ ([0,b],Ḣ1×L2)

≤ ∥Y 0 − Z0∥Ḣ1×L2 + 1
2∥Yn − Zn∥ℓ∞

τ ([0,b],Ḣ1×L2),

which in turn implies
∥Yn − Zn∥ℓ∞

τ ([0,b],Ḣ1×L2) ≤ 2∥Y 0 − Z0∥Ḣ1×L2 ,
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as desired.
Step 3. The existence of the continuous solutions Y and Z until time b as

well as the estimate (5.5) are part of the known local wellposedness theory of
(3.3), cf. Theorem 3.1 and Chapter 5.1 of [23]. We therefore omit the proof.
To carry it out, one can proceed analogously to Step 1 and 2, replacing the
discrete norms by the continuous ones and the induction by a fixed point
argument. The estimate (5.3) in discrete Strichartz norm can be shown in
a similar way as (5.4).

Step 4. Now we want to show the error bound (5.7) for better data
Y 0 ∈ H2 × H1 with ∥Y 0 − W 0∥Ḣ1×L2 ≤ δ/2. Since the nonlinearity G

leaves the space H2 × H1 invariant and is Lipschitz continuous on balls,
there is a unique solution Ỹ ∈ C([0, Tmax), H2 × H1) of (3.3) with initial
data Y 0 on a maximal existence interval [0, Tmax). By Sobolev’s embedding,
the integrability condition ỹ ∈ L4

loc([0, Tmax), L12) is satisfied. Hence, Ỹ
coincides with the Ḣ1 × L2-solution Y on [0, b] by uniqueness, as long as
they are both defined.

In the following, we show that Tmax > b. By a standard blow-up criterion,
it suffices to show that ∥Y ∥L∞([0,b],H2×H1) is finite. First, note that (y, ∂ty)
belongs to C([0, b], Ḣ1 ×L2) and that the L2-norm of y stays bounded since

∥y(t)∥L2 ≤ ∥y(0)∥L2 +
∫ t

0
∥∂ty(s)∥L2 ds ≤ ∥Y 0∥H2×H1 + b∥∂ty∥L∞([0,b],L2)

< ∞
for all t ∈ [0, b].

For the boundedness in the Ḣ2 × Ḣ1-norm, we use that the Sobolev
norm of a function can be expressed by bounds on the norms of difference
quotients. For any h ∈ R3, we introduce the spatial translation operator Th

by (Th(f, g))(x) := (f(x+ h), g(x+ h)), where f and g are functions on R3.
By Proposition 9.3 of [2],

∥ThY
0 − Y 0∥Ḣ1×L2 ≲ |h|∥Y 0∥Ḣ2×Ḣ1 .

Therefore, there is a number h0 > 0 with ∥ThY
0 − Y 0∥Ḣ1×L2 ≤ δ/2 for all

|h| ≤ h0. From now on we assume that |h| ≤ h0. The triangle inequality
yields ∥ThY

0 − W 0∥Ḣ1×L2 ≤ δ. Since ThY solves (1.1) with initial value
ThY

0, from (5.5) we can deduce that
∥ThY − Y ∥L∞([0,b],Ḣ1×L2) ≤ 2∥ThY

0 − Y 0∥Ḣ1×L2 ≲ |h|∥Y 0∥Ḣ2×Ḣ1 .

Proposition 9.3 of [2] now yields Y (t) ∈ H2 ×H1 for t ∈ [0, b] and
∥Y ∥L∞([0,b],Ḣ2×Ḣ1) ≲ ∥Y 0∥Ḣ2×Ḣ1 . (5.12)

Thus, Tmax > b.
Step 5. We can now estimate the error ∥Y (tn) − Yn∥ℓ∞

τ ([0,b],Ḣ1×L2). Let
τ ∈ (0, τ̄ ]. For the rest of this proof, we allow our implicit constants to
depend on ∥Y 0∥H2×H1 . First, Lemma 4.2 and (5.12) imply

∥Y (tn) − Yn∥ℓ∞
τ ([0,b],Ḣ1×L2)

≤ ∥(I − Πτ−1)Y (tn)∥ℓ∞
τ ([0,b],Ḣ1×L2) + ∥Πτ−1Y (tn) − Yn∥ℓ∞

τ ([0,b],Ḣ1×L2)

≤ τ∥Y (tn)∥ℓ∞
τ ([0,b],Ḣ2×Ḣ1) + ∥Πτ−1Y (tn) − Yn∥ℓ∞

τ ([0,b],Ḣ1×L2)



28 MAXIMILIAN RUFF AND ROLAND SCHNAUBELT

≲ τ + ∥Πτ−1Y (tn) − Yn∥ℓ∞
τ ([0,b],Ḣ1×L2). (5.13)

To estimate Πτ−1Y (tn) −Yn, we use the expressions from Proposition 4.1 to
write

Πτ−1Y (tn) − Yn

=
∫ tn

0
Πτ−1e(nτ−s)AB0(s) ds+

n−1∑
k=0

Πτ−1e(n−k)τA
(
∆k + τQk

)
,

where the terms B0, ∆n and Qn now include Y instead of U . A direct
estimate gives

∥Πτ−1Y (tn) − Yn∥ℓ∞
τ ([0,b],Ḣ1×L2)

≤ ∥|y|4y − |πτ−1y|4πτ−1y∥L1
b
L2

+
∥∥∥ 1
τ

∫ τ

0
e−sAG(Πτ−1Y (tn + s)) ds−G(Πτ−1Y (tn))

∥∥∥
ℓ1

τ ([0,b−τ ],Ḣ1×L2)

+ ∥|πτ−1y(tn)|4πτ−1y(tn) − |yn|4yn∥ℓ1
τ ([0,b],L2). (5.14)

Here we interpret [0, b − τ ] = ∅ if τ > b. The three summands in (5.14)
can be bounded similarly as in the Lemmas 4.3, 4.4, and 4.5. For the first
summand, using Lemma 4.2 we infer
∥|y|4y − |πτ−1y|4πτ−1y∥L1

b
L2 ≲ ∥(|y|4 + |πτ−1y|4)|y − πτ−1y|∥L1

b
L2

≤
(
∥y∥4

L4
b
L12 + ∥πτ−1y∥4

L4
b
L12

)
∥(I − πτ−1)y∥L∞

b
L6

≲ ∥(I − πτ−1)y∥L∞
b

Ḣ1 ≲ τ∥y∥L∞
b

Ḣ2 ≲ τ.

Here, the bounds for the L4
bL

12-norm follow from Theorem 3.1 and Remark
3.6, since our b corresponds to a possible choice of T0 in Theorem 3.1. By
(4.6) and Proposition 3.5, the second summand is bounded by
1
τ

∥∥∥ ∫ τ

0

∫ s

0
e−σA

(
−g(πτ−1y(tn + σ))

g′(πτ−1y(tn + σ))πτ−1∂ty(tn + σ)

)
dσ ds

∥∥∥
ℓ1

τ ([0,b−τ ],Ḣ1×L2)

≲ τ sup
σ∈[0,τ ]

∥πτ−1y(tn + σ)∥4
ℓ4

τ ([0,b−τ ],L12)

(
∥|∇πτ−1y|∥L∞

b
L6 + ∥πτ−1∂ty∥L∞

b
L6

)
≲ τ.

Finally, we estimate the last part of (5.14) by
∥|πτ−1y(tn)|4πτ−1y(tn) − |yn|4yn∥ℓ1

τ ([0,b],L2)

≤ 5
2

(
∥πτ−1y(tn)∥4

ℓ4
τ ([0,b],L12) + ∥yn∥4

ℓ4
τ ([0,b],L12)

)
∥πτ−1y(tn) − yn∥ℓ∞

τ ([0,b],L6)

≤ 5CSo(3 + C1)4δ4∥Πτ−1Y (tn) − Yn∥ℓ∞
τ ([0,b],Ḣ1×L2)

≤ 1
2∥Πτ−1Y (tn) − Yn∥ℓ∞

τ ([0,b],Ḣ1×L2),

using (5.3), (5.4) and the definition of δ0 in (5.8). This term can be absorbed
by the left-hand side of (5.14). Putting things together, (5.13) and (5.14)
imply (5.7). □

Proposition 5.2 only gives a local statement on a possibly small time
interval [0, b]. Since we want to show a global error bound on the potentially
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much larger interval [0, T ], we need to apply Proposition 5.2 recursively. To
this aim, we first have to iterate the smallness condition in L4

bL
12.

Lemma 5.3. Let U = (u, ∂tu), T , and M be given by Assumption 3.3
with α = 5 and let δ > 0. Then there are a number L ∈ N and times
0 = T0 < T1 < · · · < TL = T , such that the inequality

∥S(·)U(Tm)∥L4
bm

L12 ≤ δ

holds for all m ∈ {0, . . . , L − 1}, where we set bm := Tm+1 − Tm > 0. The
number L ∈ N only depends on δ, M , and T .

Proof. Let C be the constant of the Strichartz estimates from Theorem 2.3
with respect to the exponents (4, 12, 1). We define

r := min
{δ

2 ,
( δ

2CM
) 1

4
}
. (5.15)

Since ∥u∥L4
T L12 ≤ M is finite, we can find times 0 = T0 < T1 < · · · < TL = T ,

such that the inequality
∥u∥L4([Tm,Tm+1],L12) ≤ r

holds for all m ∈ {0, . . . , L − 1}. Here we can choose L = ⌈∥u∥4
L4

T L12/r
4⌉.

Let now m ∈ {0, . . . , L− 1} and bm := Tm+1 − Tm > 0. Starting from (3.6)
and (3.7), Theorem 2.3 and (5.15) imply

∥S(·)U(Tm)∥L4
bm

L12

≤ ∥u(Tm + ·)∥L4
bm

L12 +
∥∥∥ ∫ t

0
|∇|−1 sin((t− s)|∇|)g(u(Tm + s)) ds

∥∥∥
L4

bm
L12

≤ r + C∥|u|4u∥L1([Tm,Tm+1],L2) ≤ r + CM∥u∥4
L4([Tm,Tm+1],L12)

≤ r + CMr4 ≤ δ. □

We now show the global error bound for the critical case. We use ideas
from the proof of Theorem 1.6 in [5], where similar arguments were used
in the context of nonlinear Schrödinger equations, but only in the energy-
subcritical case. The proof will be divided in three steps. In the first step, we
define the needed variables and divide the interval [0, T ] into a finite number
of subintervals, which are so small that we can apply Proposition 5.2 on each
of them. In the second step, we first prove the convergence of the scheme
in the Ḣ1 × L2-norm without any convergence rate. This fact ensures that
the discrete approximation stays close to the solution in the Ḣ1 × L2-norm
if τ is small enough. We can then apply Proposition 5.2 iteratively. Finally,
in the last step, we estimate the error in the L2 × Ḣ−1-norm to obtain the
convergence of order one. In contrast to Theorem 1.1, the maximum step
size τ0 will now not only depend on the size M of the solution u and on the
end time T , but also on further properties of the solution u to (1.1).

Proof of Theorem 1.2. Step 1. Let R := ∥U∥L∞([0,T ],Ḣ1×L2) ≤ M < ∞. We
take δ0 = δ0(R) given by Proposition 5.2. We define

δ := min
{
δ0,

1
κ(10CSo)

1
4

}
, (5.16)
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where κ > 0 is the constant from Proposition 5.2 and CSo > 0 is the norm of
the Sobolev embedding L6/5 ↪→ Ḣ−1. Lemma 5.3 provides a number L ∈ N
and times 0 = T0 < T1 < · · · < TL = T such that

∥S(·)U(Tm)∥L4
bm

L12 ≤ δ (5.17)

holds for all m ∈ {0, . . . , L − 1}, where bm := Tm+1 − Tm > 0. Here, the
number L ∈ N only depends on M and T . We now define

ε := δ

9 · 2L
. (5.18)

By continuity of U , there is a number ρ > 0 such that
∥U(Tm) − U(t)∥Ḣ1×L2 ≤ ε (5.19)

for all m ∈ {1, . . . , L} and t ∈ [0, T ] with |Tm − t| ≤ ρ. We pick functions
Y 0, . . . , Y L ∈ H2 ×H1 with

∥Y m − U(Tm)∥Ḣ1×L2 ≤ ε ≤ δ

2 (5.20)

for all m ∈ {0, . . . , L}. Due to Theorem 2.3, we find a time bL > 0 such that
∥S(·)U(T )∥L4

bL
L12 ≤ δ. (5.21)

We define the maximal step size τ0 > 0 by

τ0 := min
{ ρ
L
,
bL

L
, min

m=0,...,L

ε

C(Y m) , min
m=0,...,L

τ̄(δ, U(Tm), bm)
}
, (5.22)

where the numbers C(Y m) = C(∥Y m∥H2×H1) and τ̄(δ, U(Tm), bm) are taken
from Proposition 5.2.

Let τ ∈ (0, τ0]. To decompose the interval, for any m ∈ {0, . . . , L} we set

Nm :=
m−1∑
j=0

⌊bj

τ

⌋
∈ N0.

The intervals Jm are defined as Jm := [tNm , tNm+1 ] if m ∈ {0, . . . , L−1} and
JL := [tNL

, T ]. Hence, we have

[0, T ] =
L⋃

m=0
Jm.

By construction, each subinterval Jm is of length less or equal bm. This also
holds for the last interval JL, because of

T − tNL
=

L−1∑
m=0

(
bm −

⌊bm

τ

⌋
τ

)
≤

L−1∑
m=0

(
bm −

(bm

τ
− 1

)
τ

)
= Lτ ≤ bL, (5.23)

where we use (5.22).
Step 2. We prove the convergence in the Ḣ1 × L2-norm, namely

∥U(tn) − Un∥ℓ∞
τ ([0,T ],Ḣ1×L2) → 0 (5.24)

as τ → 0 (without any rate). To measure the error in each subinterval Jm,
we define the error norms Errm by Err−1 := 0 and

Errm := ∥U(tn) − Un∥ℓ∞
τ (Jm,Ḣ1×L2), m ∈ {0, . . . , L}.
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Next, we show the recursion formula
Errm ≤ 2Errm−1 + 9ε, m ∈ {0, . . . , L} (5.25)

via induction on m. First, let m = 0. We introduce the notation U(t,W 0) :=
W (t), where W is the solution of (3.3) with initial value W 0. Recall the
definition of Φτ in (4.1). We get

Err0 = ∥U(tn) − Un∥ℓ∞
τ (J0,Ḣ1×L2)

≤ ∥U(tn, U0) − U(tn, Y 0)∥ℓ∞
τ (J0,Ḣ1×L2)

+ ∥U(tn, Y 0) − Φn
τ (Πτ−1Y 0)∥ℓ∞

τ (J0,Ḣ1×L2)

+ ∥Φn
τ (Πτ−1Y 0) − Φn

τ (Πτ−1U0)∥ℓ∞
τ (J0,Ḣ1×L2)

≤ 2∥U0 − Y 0∥Ḣ1×L2 + C(Y 0)τ + 2∥U0 − Y 0∥Ḣ1×L2 ≤ 5ε,

using the estimates from Proposition 5.2 and the relations (5.17), (5.20) and
(5.22).

For the induction step m − 1 ; m, we first deduce from the induction
assumption (5.25) the inequality

∥U(tNm) − UNm∥Ḣ1×L2 ≤ Errm−1 ≤ 9ε
m−1∑
k=0

2k = 9ε(2m − 1) ≤ 9ε(2L − 1).

As in (5.23), we obtain

|Tm − tNm | =
m−1∑
j=0

(
bj −

⌊bj

τ

⌋
τ

)
≤ mτ ≤ Lτ ≤ ρ, (5.26)

using also (5.22). Hence, (5.19) and (5.18) imply
∥U(Tm) − UNm∥Ḣ1×L2

≤ ∥U(Tm) − U(tNm)∥Ḣ1×L2 + ∥U(tNm) − UNm∥Ḣ1×L2

≤ ε+ 9ε(2L − 1) ≤ 9ε2L ≤ δ. (5.27)

So we can apply Proposition 5.2 (with W 0 = U(Tm)). Furthermore, we
write

Errm = ∥U(tn) − Un∥ℓ∞
τ (Jm,Ḣ1×L2)

= ∥U(tn, U(tNm)) − Φn
τ (UNm)∥ℓ∞

τ ([0,bm],Ḣ1×L2).

In the case m = L, we would have to replace the interval [0, bm] with the
interval [0, T − tNL

] (which is smaller by (5.23)), but for simplicity we keep
this abuse of notation. As noted after (4.1), we have Un = Πτ−1Un. Using
also (5.19) and (5.26), we can now estimate similar as form = 0 and conclude
Errm = ∥U(tn, U(tNm)) − Φn

τ (UNm)∥ℓ∞
τ ([0,bm],Ḣ1×L2)

≤ ∥U(tn, U(tNm)) − U(tn, Y m)∥ℓ∞
τ ([0,bm],Ḣ1×L2)

+ ∥U(tn, Y m) − Φn
τ (Πτ−1Y m)∥ℓ∞

τ ([0,bm],Ḣ1×L2)

+ ∥Φn
τ (Πτ−1Y m) − Φn

τ (Πτ−1UNm)∥ℓ∞
τ ([0,bm],Ḣ1×L2)

≤ 2∥U(tNm) − Y m∥Ḣ1×L2 + C(Y m)τ + 2∥Y m − UNm∥Ḣ1×L2

≤ 2∥U(tNm) − Y m∥Ḣ1×L2 + ε+ 2∥Y m − U(tNm)∥Ḣ1×L2
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+ 2∥U(tNm) − UNm∥Ḣ1×L2

≤ 4∥U(tNm) − U(Tm)∥Ḣ1×L2 + 4∥U(Tm) − Y m∥Ḣ1×L2 + ε+ 2Errm−1

≤ 9ε+ 2Errm−1.

Therefore, (5.25) is true. It follows that

Errm ≤ 9ε
m∑

k=0
2k = 9ε(2m+1 − 1) ≤ 9ε(2L+1 − 1)

for all m ∈ {0, . . . , L}. This also shows the convergence in the Ḣ1 × L2-
norm as stated in (5.24), since L is independent of ε, which we could have
replaced by any ε̃ ∈ (0, ε]. To complete the proof of Theorem 1.2, we will
actually not need the full statement of (5.24). It is enough to know that
∥U(Tm) − UNm∥Ḣ1×L2 ≤ δ for all m ∈ {0, . . . , L}, as noted in (5.27).

Step 3. We show the convergence of the scheme in the L2 × Ḣ−1-norm.
Recall the notation En = Πτ−1U(tn) − Un. Let m ∈ {0, . . . , L}. We use the
recursion formula (4.3) and estimate similar as in the proof of Proposition
4.6 to obtain

∥En∥ℓ∞
τ (Jm,L2×Ḣ−1)

= ∥ENm+n∥ℓ∞
τ ([0,bm],L2×Ḣ−1)

≤ ∥enτAENm∥ℓ∞
τ ([0,bm],L2×Ḣ−1)

+
∥∥∥ ∫ tn

0
Πτ−1e(nτ−s)ABNm(s) ds

∥∥∥
ℓ∞

τ ([0,bm],L2×Ḣ−1)

+
∥∥∥ n−1∑

k=0
Πτ−1e(n−k)τA

(
∆Nm+k + τQNm+k

)∥∥∥
ℓ∞

τ ([0,bm],L2×Ḣ−1)

≤ ∥ENm∥L2×Ḣ−1 + ∥BNm∥L1
bm

(L2×Ḣ−1) + τ−1∥∆Nm+n∥ℓ1
τ ([0,bm],L2×Ḣ−1)

+ ∥QNm+n∥ℓ1
τ ([0,bm],L2×Ḣ−1)

≤ ∥ENm∥L2×Ḣ−1 + ∥g(u) − g(πτ−1u)∥L1
T Ḣ−1 + τ−1∥∆n∥ℓ1

τ ([0,T ],L2×Ḣ−1)

+ CSo∥g(πτ−1u(tNm+n)) − g(uNm+n)∥ℓ1
τ ([0,bm],L6/5)

≤ ∥ENm∥L2×Ḣ−1 + 2CF τ + 5
2CSo

(
∥πτ−1u(tNm+n)∥4

ℓ4
τ ([0,bm],L12)

+ ∥uNm+n∥4
ℓ4

τ ([0,bm],L12)

)
∥πτ−1u(tNm+n) − uNm+n∥ℓ∞

τ ([0,bm],L2)

≤ ∥ENm∥L2×Ḣ−1 + 2CF τ + 5CSoκ
4δ4∥En∥ℓ∞

τ (Jm,L2×Ḣ−1)

≤ ∥ENm∥L2×Ḣ−1 + 2CF τ + 1
2∥En∥ℓ∞

τ (Jm,L2×Ḣ−1).

Here we used Lemma 4.3 and 4.4 (with constant CF ), the bounds from
Proposition 5.2 and the definition of δ in (5.16). We could apply Proposition
5.2 thanks to the estimates on U(Tm) in (5.17) and (5.21), on UNm −U(Tm)
in (5.27), and on τ in (5.22). The above inequality in display leads to

∥En∥ℓ∞
τ (Jm,L2×Ḣ−1) ≤ 2∥ENm∥L2×Ḣ−1 + 4CF τ

≤ 2∥En∥ℓ∞
τ (Jm−1,L2×Ḣ−1) + 4CF τ



LIE SPLITTING FOR SEMILINEAR WAVE EQUATIONS 33

if m > 0. Since E0 = 0, this recursion formula yields the global bound

∥En∥ℓ∞
τ ([0,T ],L2×Ḣ−1) ≤ 4CF τ

L∑
k=0

2k = 4CF (2L+1 − 1)τ.

This shows the assertion since we can again use Lemma 4.2 as in the proof
of Theorem 1.1. □

6. Corrected Lie Splitting

In this section we only consider the cubic wave equation, i.e., the case
α = 3. For simplicity, we set g(u) := −µu3, one could similarly deal with
g(u) = −µ|u|2u in case of complex-valued functions. We prove an error
estimate with order 3/2 for a frequency-filtered variant of the corrected Lie
splitting recently proposed in [13]. The original form of the method reads

Un+1 = eτA[Un + τG(Un) + τ2φ2(−2τA)H(Un)],

where the operator A and the nonlinearity G are defined in (3.2). We thus
have added a correction term to the Lie splitting. Here we set

H(u, v) :=
(

−g(u)
g′(u)v

)
and φ2(tA)w :=

∫ 1

0
(1 − σ)eσtAw dσ (6.1)

for t ∈ R. Since v corresponds to ∂tu, the nonlinear term H now contains
a derivative. The operator φ2(tA) can also be understood by the functional
calculus for A and the function φ2(z) = (ez − z − 1)/z2, which is bounded
on iR. The expression (3.5) for the wave group etA leads to the formula

φ2(tA) =


1 − cos(t|∇|)

t2|∇|2
t|∇| − sin(t|∇|)

t2|∇|3
sin(t|∇|) − t|∇|

t2|∇|
1 − cos(t|∇|)

t2|∇|2

 .

This implies a smoothing property for the operator φ2(tA). Using the func-
tional calculus for t|∇|, we deduce the smoothing property∥∥∥φ2(tA)

(
z
0

) ∥∥∥
L2×Ḣ−1

≲ |t|−1∥z∥Ḣ−1 (6.2)

of φ2(tA) that is valid for all z ∈ Ḣ−1 and t ̸= 0.
As explained in [13], the corrected Lie splitting is formally of second

order, but, in contrast to classical second-order integrators for the wave
equation, only first-order spatial derivatives appear in the local error. In
[13], a second-order error estimate in H1 × L2 was shown for solutions u
with H1+d/4 regularity, where d denotes the spatial dimension. Since here,
we only assume Ḣ1 regularity of the solution, we have to use the discrete
Strichartz estimates from Section 2 to deal with the error terms. Therefore,
as in Section 4, we include the frequency filter πK from (2.7) in the scheme,
which gives

Un+1 = eτAΠK [Un + τG(Un) + τ2φ2(−2τA)H(Un)],
U0 = ΠKU

0.
(6.3)
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Here, we again set

ΠK :=
(
πK 0
0 πK

)
.

We write un (resp. vn) for the first (resp. second) component of Un. In
contrast to the previous sections, we do not set K = τ−1, since such a
choice could only lead to an estimate of order one in L2 ×H−1, because the
error coming from frequency truncation would dominate (of order 1/K, see
Lemma 4.2). To get an improved convergence, we therefore have to choose
some K > τ−1. As seen in Section 2, this leads to a multiplicative loss of
the form (Kτ)1/p in the discrete Strichartz estimates. Therefore, we cannot
reach the optimal order two for the scheme (6.3). It turns out that with the
choice

K ∼ τ− 3
2

we can optimize the global error and get an error bound of order 3/2. See
[16] for a similar discussion in the context of Schrödinger equations.

For the rest of this section, we fix K = τ−3/2. As in case of the Lie
splitting, we define the error terms

En := ΠKU(tn) − Un (6.4)
for all n ∈ N0 with tn ≤ T . For the first component of En we write en. We
first show an error recursion for (6.4) which is similar to (4.3).

Proposition 6.1. Let U and T be given by Assumption 3.3 with α = 3 and
let K = τ−3/2. The error defined in (6.3) and (6.4) then satisfies

Em+n = enτAEm +
∫ tn

0
ΠKe

(nτ−s)ABm(s) ds

+
n−1∑
k=0

ΠKe
(n−k)τA

(
∆̃m+k + τQ̃m+k

)
(6.5)

for all τ ∈ (0, 1], and n,m ∈ N0 with tm+n ≤ T . The appearing terms are
given by

∆̃n := ∆n − τ2φ2(−2τA)H(ΠKU(tn)),

Q̃n := Qn + τφ2(−2τA)
[
H(ΠKU(tn)) −H(Un)

]
,

(6.6)

where Bm(s), ∆n and Qn are defined as in (4.4) with Πτ−1 replaced by ΠK ,
and H and φ2(tA) are introduced in (6.1).

Proof. For the discrete approximation Un defined by (6.3), we have the dis-
crete Duhamel formula

Um+n = enτAUm + τ
n−1∑
k=0

ΠKe
(n−k)τA

(
G(Um+k) + τφ2(−2τA)H(Um+k)

)
.

Proceeding as in Proposition 4.1, we derive
Em+n = ΠKU(tm+n) − Um+n

= enτA(ΠKU(tm) − Um) +
∫ tn

0
ΠKe

(nτ−s)AG(U(tm + s)) ds

− τ
n−1∑
k=0

ΠKe
(n−k)τA

(
G(Um+k) + τφ2(−2τA)H(Um+k)

)
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= enτAEm +
∫ tn

0
ΠKe

(nτ−s)ABm(s) ds

+
n−1∑
k=0

ΠKe
(n−k)τA

(
∆m+k + τQm+k

)

− τ2
n−1∑
k=0

ΠKe
(n−k)τAφ2(−2τA)H(Um+k)

= enτAEm +
∫ tn

0
ΠKe

(nτ−s)ABm(s) ds

+
n−1∑
k=0

ΠKe
(n−k)τA

(
∆̃m+k + τQ̃m+k

)
. □

As we see in the next lemma, in the error formula (6.5) all second deriva-
tives of u cancel, only first-order derivatives remain. This is the advantage
of the corrected Lie splitting in comparison with classical second-order in-
tegrators, such as the Strang splitting. We first deal with the local error
∆̃n.

Lemma 6.2. Let U = (u, ∂tu), T , and M be given by Assumption 3.3 with
α = 3 and let K = τ−3/2. We then have the representation

∆̃n =
∫ τ

0
(τ − σ)e−2σA

∫ σ

0
esA

(
0

d1(τ, s, n) + d2(τ, s, n)

)
ds dσ, (6.7)

where we abbreviate
d1(τ, s, n) := g′′(πKu(tn + s))

[
(πK∂tu(tn + s))2 − (∇πKu(tn + s))2]

,

d2(τ, s, n) := g′(πKu(tn + s))πKg(u(tn + s)).

Here we use the notation (∇f)2 :=
∑3

j=1(∂jf)2. Moreover, the inequalities∥∥∥ N−1∑
k=0

ΠKe
(N−k)τA∆̃m+k

∥∥∥
L2×Ḣ−1

≲M,T τ
3
2 ,

∥∥∥ n−1∑
k=0

πKS((n− k)τ)∆̃m+k

∥∥∥
ℓp

τ,N Lq
≲M,T,p,q τ

3
2 (1−γ)− 1

2p

hold for all τ ∈ (0, 1], N ∈ N, m ∈ N0 with tm+N ≤ T , and wave admissible
parameters (p, q, γ).

Proof. The error representation of the Lie splitting (4.6) and Fubini’s theo-
rem yield

∆n =
∫ τ

0

∫ s

0
e−σAH(ΠKU(tn + σ)) dσ ds

=
∫ τ

0
(τ − σ)e−σAH(ΠKU(tn + σ)) dσ.

Moreover, the definition of φ2 in (6.1) and a substitution lead to

τ2φ2(−2τA)H(ΠKU(tn)) = τ2
∫ 1

0
(1 − σ)e−2τσAH(ΠKU(tn)) dσ

=
∫ τ

0
(τ − σ)e−2σAH(ΠKU(tn)) dσ.
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From (6.6) it thus follows

∆̃n = ∆n − τ2φ2(−2τA)H(ΠKU(tn))

=
∫ τ

0
(τ − σ)e−2σA

[
eσAH(ΠKU(tn + σ)) −H(ΠKU(tn))

]
dσ

=
∫ τ

0
(τ − σ)e−2σA

∫ σ

0

d
ds

[
esAH(ΠKU(tn + s))

]
ds dσ.

We compute the derivative by
d
ds

[
esAH(ΠKU(tn + s))

]
= d

ds

[
esA

(
−g(πKu(tn + s))

g′(πKu(tn + s))πK∂tu(tn + s)

) ]

= esA

[ (
0 I
∆ 0

) (
−g(πKu(tn + s))

g′(πKu(tn + s))πK∂tu(tn + s)

)

+
(

−g′(πKu(tn + s))πK∂tu(tn + s)
g′′(πKu(tn + s))(πK∂tu(tn + s))2 + g′(πKu(tn + s))πK∂ttu(tn + s)

) ]

= esA
(

0
d1(τ, s, n) + g′(πKu(tn + s))πK [∂ttu(tn + s) − ∆u(tn + s)]

)
= esA

(
0

d1(τ, s, n) + d2(τ, s, n)

)
,

where we used the formula ∆[g(w)] = g′′(w)(∇w)2 + g′(w)∆w and the fact
that the differential equation (1.1) holds in C([0, T ], H−1). Because of πK

there is no problem in justifying the above differentiations. Thus, the error
representation formula (6.5) is true.

For the error estimates, we first prove the inequalities

sup
s∈[0,τ ]

∥d1(τ, s, n)∥ℓ2
τ,N−1L1 ≲M,T τ− 1

4 , (6.8)

sup
s∈[0,τ ]

∥d2(τ, s, n)∥ℓ1
τ,N−1Ḣ−1 ≲M,T 1. (6.9)

Note that we have set g(u) = −µu3, hence g′(u) = −3µu2 and g′′(u) =
−6µu. We derive
∥d1(τ, s, n)∥ℓ2

τ,N−1L1

≤ ∥g′′(πKu(tn + s))∥ℓ2
τ,N−1L∞∥(πK∂tu(tn + s))2 − (∇πKu(tn + s))2∥ℓ∞

τ,N−1L1

≲ ∥πKu(tn + s)∥ℓ2
τ,N−1L∞

(
∥πK∂tu∥2

L∞
T L2 + ∥|∇πKu|∥2

L∞
T L2

)
≲M,T (Kτ + logK)

1
2 ≲ τ− 1

4 ,

uniformly in s ∈ [0, τ ], where we used Proposition 3.5 and the relation
K = τ−3/2. The second term is easier to estimate, we can directly infer

∥d2(τ, s, n)∥ℓ1
τ,N−1Ḣ−1 ≲ ∥g′(πKu(tn + s))πKg(u(tn + s))∥ℓ1

τ,N−1L6/5

≲T ∥g′(πKu)∥L∞
T L3∥πKg(u)∥L∞

T L2

≲ ∥(πKu)2∥L∞
T L3∥u3∥L∞

T L2
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= ∥πKu∥2
L∞

T L6∥u∥3
L∞

T L6 ≲ ∥u∥5
L∞

T Ḣ1 ≲M 1.

This shows (6.8) and (6.9).
Now we turn to the error estimates, starting with the L2 × Ḣ−1-norm.

Formulas (6.7) and (3.5), the endpoint estimate (2.13) and the inequalities
(6.8) and (6.9) imply

∥∥∥ N−1∑
k=0

ΠKe
(N−k)τA∆̃m+k

∥∥∥
L2×Ḣ−1

≤ τ3 sup
s∈[0,τ ]

∥∥∥ N−1∑
k=0

ΠKe
−kτA

(
0

d1(τ, s,m+ k) + d2(τ, s,m+ k)

) ∥∥∥
L2×Ḣ−1

≲ τ2 sup
s∈[0,τ ]

(∥∥∥τ N−1∑
k=0

πKe
±ikτ |∇|d1(τ, s,m+ k)

∥∥∥
Ḣ−1

+ ∥d2(τ, s,m+ n)∥ℓ1
τ,N−1Ḣ−1

)
≲M,T τ2 sup

s∈[0,τ ]

(
(Kτ + logK)

1
2 ∥d1(τ, s,m+ n)∥ℓ2

τ,N−1L1 + 1
)

≲M,T τ2− 1
4 − 1

4 = τ
3
2 .

For the estimate in the ℓpτLq-norm we can proceed similarly, where we now
employ Theorem 2.5 for the d2-term. Moreover, for the inequality involving
d1 we have to use Corollary 2.12, since we have non-L2-based spaces in
the spatial variable on both sides of the inhomogeneous Strichartz estimate.
This gives∥∥∥ n−1∑

k=0
πKS((n− k)τ)∆̃m+k

∥∥∥
ℓp

τ,N Lq

≤ τ2 sup
s,σ∈[0,τ ]

∥∥∥τ n−1∑
k=0

πKS((n− k)τ + s− 2σ)

·
(

0
d1(τ, s,m+ k) + d2(τ, s,m+ k)

) ∥∥∥
ℓp

τ,N Lq

≲p,q,T τ2(Kτ)
1
pKγ sup

s∈[0,τ ]

(
(Kτ + logK)

1
2 ∥d1(τ, s,m+ n)∥ℓ2

τ,N−1L1

+ ∥d2(τ, s,m+ n)∥ℓ1
τ,N−1Ḣ−1

)
≲M,T τ

2− 1
2p

− 3
2 γ

(
τ− 1

2 + 1
)
≲ τ

3
2 (1−γ)− 1

2p ,

as desired. □

We further need a product estimate in Ḣ−1.

Lemma 6.3. The inequality

∥vw∥Ḣ−1 ≲ ∥v∥Ḣ1∥w∥
Ḣ− 1

2

holds for all v ∈ Ḣ1 and w ∈ Ḣ− 1
2 ∩ L1

loc.



38 MAXIMILIAN RUFF AND ROLAND SCHNAUBELT

Proof. We use the duality between Ḣs and Ḣ−s for |s| < 3/2. We estimate

∥vw∥Ḣ−1 = sup
z∈Ḣ1

∥z∥Ḣ1≤1

∣∣∣ ∫
R3
vwz dx

∣∣∣ ≤ sup
z∈Ḣ1

∥z∥Ḣ1≤1

∥vz∥
Ḣ

1
2
∥w∥

Ḣ− 1
2
.

Next, we use the fractional product rule
∥|∇|a(vz)∥Lr ≲ ∥|∇|av∥Lp1 ∥z∥Lq2 + ∥v∥Lp1 ∥|∇|az∥Lq2

for a ∈ (0, 1) and pj , qj , r ∈ (1,∞) with 1
p1

+ 1
q1

= 1
p2

+ 1
q2

= 1
r , see

Proposition 3.3 in [6]. It follows

∥vz∥
Ḣ

1
2
≲ ∥|∇|

1
2 v∥L3∥z∥L6 + ∥v∥L6∥|∇|

1
2 z∥L3

≲ ∥|∇|
1
2 v∥

Ḣ
1
2
∥z∥Ḣ1 + ∥v∥Ḣ1∥|∇|

1
2 z∥

Ḣ
1
2

≲ ∥v∥Ḣ1∥z∥Ḣ1 ,

using also the Sobolev embeddings Ḣ1 ↪→ L6 and Ḣ
1
2 ↪→ L3. □

To treat the error term Q̃n, we use (6.6) to decompose

Q̃n =
(

0
q1(τ, n)

)
+ τφ2(−2τA)

(
−q1(τ, n)

q2(τ, n) + q3(τ, n)

)
(6.10)

with the definitions
q1(τ, n) := g(πKu(tn)) − g(un),
q2(τ, n) := g′(πKu(tn))[πK∂tu(tn) − vn],
q3(τ, n) := vn[g′(πKu(tn)) − g′(un)],

where Un = (un, vn). This time we need to measure the error simultaneously
in three different norms, namely

|||En|||τ,j := max
{
τ− 3

2 ∥En∥ℓ∞
τ,j(L2×Ḣ−1), τ

− 1
4 ∥en∥ℓ4

τ,jL6 , τ
1
8 ∥en∥ℓ4

τ,jL12

}
,

(6.11)
where j ∈ N0 is a number with jτ ≤ T . The rates are consistent with those
obtained in Lemma 6.2, since the parameters (4, 6, 3

4) and (4, 12, 1) are wave
admissible.

Lemma 6.4. Let u, T , and M be given by Assumption 3.3 with α = 3, and
let K = τ−3/2. Define the error En by (6.3) with K = τ−3/2 and (6.4).
Then the estimates

∥q1(τ,m+ n)∥ℓ1
τ,jḢ−1 ≲M,T t

1
2
j+1τ

3
2
(
1 + τ

1
2 |||Em+n|||2τ,j

)
|||Em+n|||τ,j

∥q2(τ,m+ n)∥ℓ1
τ,jḢ−1 ≲M,T t

1
2
j+1τ

1
2 |||Em+n|||τ,j

∥q3(τ,m+ n)∥ℓ2
τ,jL1 ≲M,T t

1
4
j+1τ

(
|||Em+n|||τ,j + |||Em+n|||3τ,j

)
hold for all τ ∈ (0, 1] and m, j ∈ N0 with (m+ j)τ ≤ T .

Proof. For simplicity, we set m = 0 in the proof of these three estimates,
since the shift by m > 0 does not affect the argument. The first estimate is
the same as in Lemma 4.5, now with α = 3, implying

∥q1(τ, n)∥ℓ1
τ,jḢ−1 = ∥g(πKu(tn)) − g(un)∥ℓ1

τ,jḢ−1
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≲M,T t
1
2
j+1

(
1 + ∥en∥2

ℓ4
τ,jL6

)
∥en∥ℓ∞

τ,jL2

≤ t
1
2
j+1τ

3
2
(
1 + τ

1
2 |||En|||2τ,j

)
|||En|||τ,j .

For the second inequality, we use the product estimate from Lemma 6.3 and
note that g′(u) = −3µu2. We compute

∥q2(τ, n)∥ℓ1
τ,jḢ−1

≲ ∥g′(πKu(tn))∥ℓ1
τ,jḢ1∥πK∂tu(tn) − vn∥

ℓ∞
τ,jḢ− 1

2

≲ ∥πKu(tn)∥ℓ2
τ,jL∞∥πKu(tn)∥ℓ2

τ,jḢ1τ
− 3

2 · 1
2 ∥πK∂tu(tn) − vn∥ℓ∞

τ,jḢ−1

≲M,T t
1
2
j+1τ

− 1
4 + 3

4 ∥πKu(tn)∥ℓ∞
τ,jḢ1 |||En|||τ,j

≲M t
1
2
j+1τ

1
2 |||En|||τ,j ,

employing also Proposition 3.5 for the estimate in ℓ2τL
∞ and Bernstein’s

inequality to change from Ḣ−1/2 to Ḣ−1. Recall that En = ΠKEn and
K = τ−3/2. The third inequality is shown similarly by

∥q3(τ, n)∥ℓ2
τ,jL1

≲ ∥vn∥ℓ∞
τ,jL2∥g′(πKu(tn)) − g′(un)∥ℓ2

τ,jL2

≲M

(
1 + ∥πK∂tu(tn) − vn∥ℓ∞

τ,jL2

)(
∥πKu(tn)∥ℓ2

τ,jL12 + ∥un∥ℓ2
τ,jL12

)
· ∥en∥

ℓ∞
τ,jL

12
5

≲
(
1 + τ− 3

2 ∥πK∂tu(tn) − vn∥ℓ∞
τ,jḢ−1

)
t

1
4
j+1

(
∥πKu(tn)∥ℓ4

τ,jL12 + ∥un∥ℓ4
τ,jL12

)
· ∥en∥

ℓ∞
τ,jḢ

1
4

≲M,T t
1
4
j+1

(
1 + |||En|||τ,j)τ− 1

8
(
1 + |||En|||τ,j

)
τ

3
2 (1− 1

4 )|||En|||τ,j

≲ t
1
4
j+1τ

(
|||En|||τ,j + |||En|||3τ,j

)
,

where also the Sobolev embedding Ḣ1/4 ↪→ L12/5 was used. □

We can now estimate the remaining part of the error formula (6.5).

Lemma 6.5. Let U = (u, ∂tu), T , and M be given by Assumption 3.3 with
α = 3, and let K = τ−3/2. Define the error by (6.3) with K = τ−3/2 and
(6.4). Then the inequality

∣∣∣∣∣∣∣∣∣τ n−1∑
k=0

ΠKe
(n−k)τAQ̃m+k

∣∣∣∣∣∣∣∣∣
τ,j+1

≲M,T max{t
1
4
j+1, t

1
2
j+1}

(
|||Em+n|||τ,j + τ

1
4 |||Em+n|||3τ,j

)
holds for all τ ∈ (0, 1] and m, j ∈ N0 with (m+ j + 1)τ ≤ T .
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Proof. We first estimate in the ℓ∞τ (L2 × Ḣ−1)-norm by means of the decom-
position (6.10), obtaining

∥∥∥τ n−1∑
k=0

ΠKe
(n−k)τAQ̃m+k

∥∥∥
ℓ∞

τ,j+1(L2×Ḣ−1)

≤ ∥q1(τ,m+ n)∥ℓ1
τ,jḢ−1 +

∥∥∥τφ2(−2τA)
(

q1(τ,m+ n)
0

) ∥∥∥
ℓ1

τ,j(L2×Ḣ−1)

+ τ∥q2(τ,m+ n)∥ℓ1
τ,jḢ−1

+
∥∥∥τ2

n−1∑
k=0

ΠKe
−kτA

(
0

q3(τ,m+ k)

) ∥∥∥
ℓ∞

τ,j+1(L2×Ḣ−1)

≲T ∥q1(τ,m+ n)∥ℓ1
τ,jḢ−1 + τ∥q2(τ,m+ n)∥ℓ1

τ,jḢ−1

+ τ
3
4 ∥q3(τ,m+ n)∥ℓ2

τ,jL1

≲M,T t
1
2
j+1τ

3
2
(
1 + τ

1
2 |||Em+n|||2τ,j

)
|||Em+n|||τ,j + t

1
2
j+1τ

3
2 |||Em+n|||τ,j

+ t
1
4
j+1τ

7
4
(
|||Em+n|||τ,j + |||Em+n|||3τ,j

)
≲ τ

3
2 max{t

1
4
j+1, t

1
2
j+1}

(
|||Em+n|||τ,j + τ

1
4 |||Em+n|||3τ,j

)
. (6.12)

Here we use inequality (6.2) for the second term involving q1 and the end-
point estimate (2.13) for the term involving q3. In the end, the bounds from
Lemma 6.4 were applied.

Let now (p, q, γ) be wave admissible. The definition of φ2 in (6.1) and
Corollary 2.12 lead to∥∥∥τ2

n−1∑
k=0

πKS((n− k)τ)φ2(−2τA)
(

0
q3(τ,m+ k)

) ∥∥∥
ℓp

τ,j+1Lq

=
∥∥∥ ∫ 1

0
(1 − σ)τ2

n−1∑
k=0

πKS((n− k − 2σ)τ)
(

0
q3(τ,m+ k)

)
dσ

∥∥∥
ℓp

τ,j+1Lq

≤ sup
σ∈[0,1]

∥∥∥τ2
n−1∑
k=0

πKS((n− k − 2σ)τ)
(

0
q3(τ,m+ k)

) ∥∥∥
ℓp

τ,j+1Lq

≲p,q,T τ(Kτ)
1
pKγ(Kτ + logK)

1
2 ∥q3(τ,m+ n)∥ℓ2

τ,jL1

≲ τ
3
4 − 1

2p
− 3

2 γ∥q3(τ,m+ n)∥ℓ2
τ,jL1 .

The other terms can be estimated in ℓpτL
q as in (6.12), now using Theorem

2.5. Altogether, we obtain

τ
1

2p
+ 3

2 γ
∥∥∥τ n−1∑

k=0
πKS((n− k)τ)Q̃m+k

∥∥∥
ℓp

τ,j+1Lq

≲p,q,T ∥q1(τ,m+ n)∥ℓ1
τ,jḢ−1 +

∥∥∥τφ2(−2τA)
(

q1(τ,m+ n)
0

) ∥∥∥
ℓ1

τ,j(L2×Ḣ−1)

+ τ∥q2(τ,m+ n)∥ℓ1
τ,jḢ−1 + τ

3
4 ∥q3(τ,m+ n)∥ℓ2

τ,jL1
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≲ ∥q1(τ,m+ n)∥ℓ1
τ,jḢ−1 + τ∥q2(τ,m+ n)∥ℓ1

τ,jḢ−1 + τ
3
4 ∥q3(τ,m+ n)∥ℓ2

τ,jL1

≲ τ
3
2 max{t

1
4
j+1, t

1
2
j+1}

(
|||Em+n|||τ,j + τ

1
4 |||Em+n|||3τ,j

)
.

The claim now follows from the definition (6.11) of the |||·|||τ,j-norm. □

The next core a priori estimate can be shown following the proof of Propo-
sition 4.6. One only has to replace Lemmas 4.4 and 4.5 by Lemmas 6.2 and
6.5. We thus omit the proof.

Proposition 6.6. Let U = (u, ∂tu), T , and M be given by Assumption 3.3
with α = 3 and let K = τ−3/2. Define the error En by (6.3) with K = τ−3/2

and (6.4). Then there is a number τ0 > 0 depending only on M and T , such
that we have the estimate

|||En|||τ,⌊ T
τ

⌋ ≲M,T 1

for all τ ∈ (0, τ0].

Proof of Theorem 1.3. We take τ0 > 0 from Proposition 6.6 and infer
∥U(tn) − Un∥L2×Ḣ−1

≤ ∥U(tn) − ΠKU(tn)∥L2×Ḣ−1 + ∥ΠKU(tn) − Un∥L2×Ḣ−1

≤ τ
3
2 ∥U(tn)∥Ḣ1×L2 + ∥En∥L2×Ḣ−1 ≲M,T τ

3
2

for τ ≤ τ0, using Lemma 4.2 and Proposition 6.6 with K = τ−3/2. □
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