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Kurzfassung

Die Eigenschaften eines Materials setzen sich zusammen aus seinem thermodynamis-
chen Zustand (Temperatur, Druck, chemische Zusammensetzung, . . . ) sowie seiner
Mikrostruktur. Die Mikrostruktur wiederum hängt stark von der Prozessgeschichte eines
Materials ab, wodurch die Optimierung des Herstellungsprozesses eine wichtige Rolle
einnimmt. Experimente stellen den klassischen Weg dar, den Prozess zu untersuchen,
sind aber sowohl zeit- wie auch kostenaufwendig. Eine andere Möglichkeit den Prozess
zu optimieren, ist es diesen per Simulation nachzubilden, um damit mit simplen Pa-
rametervariationen die Einflüsse der Variationen zu ermitteln. Weiterhin lassen sich, je
nach Simulationsmethode, damit auch wesentlich detaillierte Informationen über die spa-
tiotemporale Entwicklung der Mikrostruktur erlangen als in Experimenten. In dieser Ar-
beit wird die Phasenfeldmethode benutzt, die ebendiese sogenannten 4D-Informationen
(3 Raumachsen + 1 Zeitachse) direkt bereitstellt. Ziel der Arbeit ist es, verschiedene
Prozesse unter neuen Aspektpunkten zu betrachten und damit weitere Möglichkeiten zur
Prozessoptimierung aufzuzeigen.
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Abstract

The properties of a material depend both on its thermodynamic state (temperature, pres-
sure, chemical composition, . . . ) as well as its microstructure. In turn, the microstructure
is heavily dependent on the processing history of the material in question and thus the
optimization of the processing route is important. The classical way of investigate the
process is to conduct experiments, but these tend to be expensive in terms of both time
and cost. Another way of optimization is to reproduce the process with simulations,
which allows the variation of individual parameters and thus the determination of their
influence. Furthermore, depending on the simulation method, one can gain even more
detailed information about the spatiotemporal evolution of the microstructure. Within
this work the phase-field method is used, which directly allows the observation of this
so-called 4D information (3 spatial + 1 time axis). The goal of this work is to investi-
gate different process under new conditions in order to develop new avenues for process
optimization.
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1 Introduction

Materials processing has long been at the forefront of human culture. From early ex-
amples of pottery allowing for durable storage vessels, over the eponymous copper and
iron ages and straight into the industrial revolution, for which the large scale production
of steel was essential, major steps in cultural evolution were always accompanied by ad-
vances in materials. The present “silicon age” would not even have been possibly without
a deep understanding of the underlying materials. However, for the vast majority of
human cultural evolution the reasons behind the properties of materials were shrouded
in mystery. While various manuals in the tradition of alchemy gave recipes for how to
produce “good” materials [1], they never delved into why these recipes would improve a
material. For example, a steel can be hardened by rapidly reducing its temperature from
a sufficiently high starting temperature — what is nowadays called quenching. While
this principle was already known to Homer (taken from [2])

As when a man who works as a blacksmith plunges a
screaming great axe blade or adze into cold water, treating
it for temper, since this is the way steel is made strong, even
so Cyclops’ eye sizzled about the beam of the olive....
Odyssey 9389–9394, translation by R. Lattimore

and other authors[1, 3], the reason for the hardening — martensitic transformation —
was not identified until much later. Without knowing the reason for how and why the
steel hardens, variations in how rapidly to cool the steel, or whether to cool by plunging
it into water or oil or even sand, could only be done blindly and hoping for the best. Or
to put it more succinctly in the words of Kurt Lewin:

There is nothing more practical than a good theory.

This theoretical gap was plugged to a large extent during the 19th and 20th century
and continues to be filled to this very day. In essence, the materials properties depend
on two main factors: First, its chemical composition and other state variables such as
temperature and pressure. This being quite obvious, since water freezes below 0 ◦C which
radically changes its properties via phase transition. But even before a phase transition,
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1 Introduction

Figure 1.1: Various microstructures observed in steels. Pearlite forms during “slow” cooling, whereas
with sufficiently high cooling rate and starting temperature, bainite and martensite can
form. Reprinted from [4] with permission from Elsevier.

the everyday property of density already depends on these state variables. Second, if
one is concerned about a material with some kind of spatial ordering (generally solids),
then the microstructure plays a significant role. The microstructure can be roughly
defined as the spatial arrangement and distribution of a material and its defects. Going
back to the steel example, a steel cooled down “normally” would exhibit a so-called
eutectoid structure formed of ferrite (Fe) and cementite (Fe3C), plus some excess ferrite or
cementite depending on the actual composition. Depending on the processing conditions
and the chemical composition, the eutectoid structure can form in either an array of
lamellas or in a matrix-fiber geometry, but it usually forms in a lamellar manner called
pearlite. If the same steel is cooled down rapidly, instead of the lamellar pearlite, one
will find so-called bainite or martensite, depending on how rapidly it was cooled.. These
microstructures are depicted in fig. 1.1 and already show quite different geometries. But
what is even more relevant than the geometry are the properties of these individual
regions, with martensite being far harder than pearlite. The reason for this being that
during the transformation to martensite an extremely high number of lattice defects
called dislocations are produced. These defects are the origin of plastic deformation, but
inhibit each other’s motion as well — hence martensite is hard and brittle.

The observant reader will already be tired of the constant mention of “depending on”, but
understanding how processing conditions influence the microstructure is of great interest

2



1 Introduction

as should be clear from the above. Due to the interdependence of the materials prop-
erties and the microstructure, microstructural prediction has garnered much attention
over the past century. Early examples of such predictions are the works on dendritic
solidification[5–9] and sintering [10–14]. In the case of dendritic solidification, state of
the art analytical theories allow the accurate prediction of dendritic operating state [15–
17], but are often limited to the prediction of isolate dendrites. For densification during
sintering, the earliest models are based on a geometric description of two particles, de-
scribing the early stage of sintering. These basically link the diffusive flux of vacancies
into the grain boundary to an approach-of-centers of the two particles. Assuming that
this describes a unit cell of sintering and extending it to green bodies however was quite
unsuccessful, which is why different models of sintering for the so-called intermediate and
final stages were developed. While these did qualitatively match experimental observa-
tions, their quantitative predictions based on first principles are often wrong, see e.g.
[18]. This can be circumvented by employing experiments to determine “true” factors
within the theory and allow accurate prediction[19]. However, this approach is limited
in that it usually is specific to one combination of material and process, with small
changes in e.g. powders characteristics possibly causing large changes in the resulting
microstructure[20]. Hence the experimental determination of these factors can become
quite expensive in both time and money.

Thus while analytical theory gives valuable clues and serves as an excellent starting point
for any investigation, more detailed models are necessary to fully account for nature it-
self. Simulations bridge the gap between analytical theory and experiments, allowing for
the digital re-construction of experiments or even the design of virtual experiments not
feasible or possible in nature. One of the most prominent simulation methods for mi-
crostructural evolution is the phase-field method, which is employed in this work. It has
been shown to be able to model dendritic growth[21–24], eutectic growth [25–28], grain
growth[29–32] and sintering [33–36]. Furthermore, dendritic growth via electrodeposi-
tion in batteries[37], magnetism’s influence on the microstructure formation of magnetic
materials[38] as well as the influence of stresses and strains including dislocations[39] can
be modelled as well. The citations in previous sentences are by no means exhaustive and
just show a small sample of the large amount of literature concerning the application of
the phase-field method to microstructure evolution and materials processing.

The goal of the present work is to further the phase-field modelling of solidification and
sintering. For solidification, two problems will be considered: First, the coupled growth
of dendrites and eutectics, which requires nucleation in some form as well as appropriate
processing parameters. Second, the process of freeze-casting, in which discrete, small
particles arrange into much larger structures during solidification and thus presents a

3



1 Introduction

challenge in bridging length scales. For sintering, a critical review of the literature
models for solid-state sintering is undertaken. This led to novel model developments
which eliminate several problems preventing quantitative sintering simulations.

This work is structured as follows: First, the analytical theories of microstructure de-
velopment pertinent to the processes will be described. These form the basis of further
investigation and validation. Next, the necessary phase-field models will be described
fully. Some of these models are established literature models, with others having been
developed by the author. Based on this groundwork, first the classical problem of al-
loy solidification will be investigated with the goal of elucidating the coupled growth of
dendrites and eutectics. Next, the freeze-casting process will be modelled by employing
techniques based on classical solidification, allowing for predictions of microstructural
properties. Finally, the sintering process will be investigated by 4D simulations yielding
predictions for densification and grain growth in representative volume elements as well
as freeze-cast structures based on prior freeze-casting simulations.

4



2 Theoretical description of
microstructural evolution

In this chapter, the processes which determine the microstructural evolution will be de-
scibed for solidification and sintering. First, the fundamental thermodynamic basis will
be described. Following this, analytical theories for predicting the microstructural evolu-
tion of solidification and sintering in geometrically simple systems will also be described,
as these form the basis for numerical validation. The presentation is mostly based on
[40] and [41] for thermodynamics, [42–44] for solidification, [45] for freeze-casting and
[20, 46] for sintering. Where appropriate, references to prior experimental, theoretical
and simulative work are added.

2.1 Thermodynamics and phase diagrams

Thermodynamics concerns itself with heat and work and how these interact with state
functions such as energy. A state function is a function describing the state of a system
in equilibrium and is independent of how the state was achieved. In contrast, the pro-
cess quantities of e.g. heat and work depend on the path taken. The system described
by these quantities is a mathematical abstraction of a subset of the physical world and
is equipped with boundary conditions which define its interaction with the rest of the
physical world.
The state functions describing the system are divided into intensive quantities (e.g. tem-
perature), which do not change if a system is duplicated and brought into contact with
itself, and extensive quantities which are affected by the previous test (e.g. volume).
Extensive quantities have conjugate intensive quantities, which can be interpreted as the
potential for change of that extensive property. A specific property akin to a density
can be obtained from an extensive property by the division with another appropriate
extensive property. This is usually done for materials properties, as e.g. the absolute
heat capacity of a block of solid obviously scales with its size. However, the specific

5



2 Theoretical description of microstructural evolution

heat capacity is independent of the size of the material in the thermodynamic limit and
classifies a physical body of a certain material regardless of its size.

The equilibrium of a system can be calculated by employing equilibrium thermodynamics
and hence demanding that the net driving force vanishes. The driving forces for change
are differences in the intensive state variables called potentials, e.g. temperature or pres-
sure. Multiplying such a driving force with its conjugate extensive variable yields the
energy exchange between the system and its surroundings. Once this exchange is zero,
thermodynamic equilibrium is reached. The sum of all such exchanges also represents
the change in a thermodynamic potential such as the Gibbs free energy. Which ther-
modynamic potential to use depends on which quantities are being held constant at the
boundary of the system. For constant pressure and temperature, the Gibbs free energy
is the potential of choice, since at these conditions the Gibbs free energy is minimized
for a single phase single component system.

As a concrete example of equilibrium thermodynamics, the conditions for equilibrium in
unary and multicomponent systems of two phases will be derived in the following. This
also lays the foundation for calculating phase diagrams which will be repeatedly used in
this work.
Consider first the total Gibbs free energy of a single component (unary) system:

G = U + V p− ST (2.1)

= H − ST (2.2)

with the internal energy U , pressure p, volume V , temperature T , entropy S and enthalpy
H. The Gibbs free energy’s variation reads

dG = V dp− SdT (2.3)

and in equilibrium this variation must vanish. From this, pressure p and temperature
T are identified as driving forces, with the extensive state functions of volume V and
entropy S serving as conjugate extensive functions for these driving forces. Hence in
equilibrium, all pressure differences dp and temperature differences dT must vanish;
these differences would be associated with corresponding extensive changes of volume and
entropy. Furthermore, since an exchange of atoms can happen between the two phases,
this net flux must also vanish, as otherwise phase transformation would be ongoing. In

6



2.1 Thermodynamics and phase diagrams

order for this flux to vanish, the chemical potential µ in both phases must also be equal.
It is defined by

µ =
∂G

∂N
(2.4)

with the number of moles N . Note that all variables except the one being differentiated
by are held constant during partial differentiation, with this being omitted for conciseness
in this work. In the case of an unary system µ is equal to the Gibbs free energy per mole
g = G

N , also called molar Gibbs free energy. Hence the condition for the cessation of
phase transformation can be written as

gα(p, T ) = gβ(p, T ) (2.5)

for the two phases α and β.

In general, as long as a phase transformation is occurring, it will also induce changes
in other state variables. Hence the phase transformation equilibrium must be achieved
at the same time as pressure and temperature equilibrium, as otherwise another driving
force would shift the equilibrium.

A similar train of thought can be used for K-component systems. The variation of Gibbs
free energy then reads

dG = V dp− SdT +

K∑
i

µidNi (2.6)

i.e. besides the pressure and temperature variations, the system also has energy changes
associated with variations in mole content between the phases. Note that in this case
one of the conjugate pairs is reversed: A change of the extensive variable of the number
of moles is multiplied with the intensive chemical potential. The usual relationship can
be recovered with a Legendre transform to the grand chemical potential:

Ψ = G−
K∑
i

µiNi (2.7)

→ dΨ = V dp− SdT −
K∑
i

Nidµi (2.8)

7



2 Theoretical description of microstructural evolution

or equivalently for a density by dividing with the total number of moles Ntot within the
system

dψ = dg −
K∑
i

Ni
Ntot

dµi (2.9)

dψ = Vmdp− SmdT −
K∑
i

xidµi (2.10)

with the molar volume Vm, the specific entropy Sm and the mole fraction xi.

Since µ = g only holds for K = 1, the equilibrium of chemical potential between phases
takes a different form: As every component i needs to be in equilibrium across the
interface, there are K conditions

µi,α = µi,β (2.11)

which need to be fulfilled simultaneously. Suppose for a moment that this holds for a
component j: This implies that in a diagram of plotting the molar Gibbs free energy g
over component j, that a tangent with slope µj can be drawn between the two curves
representing the Gibbs energy of phases α and β. This is graphically shown in fig. 2.1,
together with the equivalent plot in the grand potential space. This tangent can be
extended to both axes, at which xj ∈ {0, 1} and hence a system of either K − 1 or 1

components is obtained. The intercept for xj = 0 is given by

gα = gα(xα,j,eq)− µjxα,j,eq (2.12)

which the observant reader will identify with the definition of the grand chemical poten-
tial eq. (2.7) for a single component. Since this intercept is the same for both phases,
the equilibrium condition for a component j inducing phase transformation can also be
written as

ψα(p, T, µj) = ψβ(p, T, µj) (2.13)

as in the unary case, except ψ takes the role of g. This can be repeated for each component
j, with the end result being that

ψα(p, T, µ) = ψβ(p, T, µ) (2.14)
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2.1 Thermodynamics and phase diagrams
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Figure 2.1: The molar Gibbs free energy and grand potential are plotted over their respective natural
variables for component j. In the Gibbs energy space, the equilibrium is determined via
the double tangent, whereas in the grand potential space an intersection determines the
equilibrium.

must hold for a state described by homogeneous (p, T ) as well as the chemical potential of
each component being equal across both phases. In the binary two-phase case, this is the
commonly cited double tangent rule: In the Gibbs energy space, it is tangent, since the
chemical potential is equal, and double by virtue of the shared intercept, representing zero
driving force for phase transformation. For any choice of (p, T ), one can now evaluate
eq. (2.14) to arrive at a point (p, T, µ) which describes equilibrium between the two
phases, if it exists. However, commonly phase diagrams are not plotted over µ, but rather
over the mole fraction x, atomic fraction or weight fraction, since these are independent
of temperature whereas µ depends on temperature.

For simplicity, consider only two phases in a binary system at constant temperature T
and neglect pressure for conciseness, then the equilibrium conditions can also be written
as:

gα(xα, T ) = gβ(xβ , T ) + µβ(xβ , T )(xα − xβ) (2.15)

µα(xα, T ) = µβ(xβ , T ). (2.16)

Solving eqs. (2.15) and (2.16) yields the equilibrium phase mole fractions xα, xβ . Based
on these and the total composition x, the lever rule for the phase fractions is defined as

Vα =
x− xβ
xα − xβ

(2.17)

Vβ =
xα − x

xα − xβ
. (2.18)
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2 Theoretical description of microstructural evolution
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Figure 2.2: Phase diagram of the Al-rich region of the Al-Cu system, assuming that only the α-Al, the
liquid L melt and the intermetallic θ − Al2Cu phases exist. This primarily changes the
phase diagram to the right of θ−Al2Cu, i.e. ignores the L+ η

′ → θ peritectic found in the
real system. If the alloy concentration is kept below ≈ 0.33 the peritectic does not occur
in the first place and can be safely ignored.

The construction so far only accounted for up to two phases. If the system only has
two stable phases, then eqs. (3.127) and (3.128) are sufficient to delineate single phase
from two-phase regions for all (T, x) states. However, once more phases are added to the
system, the global minimum across all these phases and phase mixtures must be found.
This is commonly done in so-called CALculation of PHAse Diagrams (CALPHAD)
[47, 48] programs. A result of such a calculation for the Al-Cu system is shown in
fig. 2.2: The labels within each region identify the phases which are present, with the
boundary curves representing the equilibrium concentration of these phases for each
considered temperature. The transition between these regions identify reactions of phases
transforming into each other. Furthermore, an invariant eutectic reaction identified by a
horizontal line can be observed as well.
The slopes of these boundary curves are often employed in theoretical considerations,
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2.2 Solidification

especially the liquidus slope mLβ =
∂TLβ(c)
∂c describing the change of concentration within

the liquid phase L in contact with a solid phase β. Furthermore, the partition coefficient
kLβ =

xβ

xL
is also useful for describing whether a phase β tends to reject the species x

represents or not. Assuming that x is the minority species, then k < 1 implies rejection
of that species by the phase β. For dilute alloys in general, mLβ < 0 and kLβ < 1. The
former is due to to an increase of entropy (lowering of Gibbs free energy) of the liquid
phase due to the solute and the latter due to the solubility in a liquid phase generally
being higher than in a solid.

2.2 Solidification

Solidification is one of the most important processing routes, as most metals being used
today went through this process. A microstructure which can be obtained by solidifica-
tion is shown in fig. 2.3 for an Al-Cu alloy, courtesy of Professor Amber Genau of the
University of Alabama at Birmingham (UAB). Within the figure a coarse, grey struc-
ture is visible, which is an α-Al dendrite growing upwards. A finer, grey-white structure
surrounds this dendrite which is a eutectic formed by the α-Al and θ − Al2Cu phases.
Both microstructures are the result of instabilities which transform a planar front into
these complicated structures. In this chapter, classical theories for the prediction of these
structures in isolation, as well as a new theory for their combined growth are described.

2.2.1 Dendritic growth

Dendritic growth is very common during solidification and thus its prediction has a long
history, stretching from 1700s to the present day, which is summarized well in [43]. In
the following, the focus will be on models developed over the past century, which can
be used to predict the so-called operating state of the dendrite. The parameters of the
operating state are the tip radius R, the tip velocity v and a measure of driving force
F , which can be e.g. the undercooling ∆T or the supersaturation Ω1. A sketch of an
α dendrite growing into a melt L, along with the operating state parameters, is shown
in fig. 2.4 to clarify the meanings. The steady-state operating state is achieved after a
temporary transient period and thus describes the steady-state growth which is assumed
to characterize the majority of solidification time. For simplicity of presentation, only

1 The actual driving force is scaled by either ∆T or Ω, e.g. F ∼ ∆G = ∆H ∆T
Tm

for the driving force
of a pure substance solidifying.
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2 Theoretical description of microstructural evolution

Figure 2.3: A micrograph of a directionally solidified Al-Cu alloy, showing both a coarse dendrite (grey)
and a fine eutectic (white and grey) is depicted. The micrograph is provided courtesy of
Professor Amber Genau at UAB.

the thermal case, i.e. solidification of an undercooled, unary melt, will be considered in
the following.

Only two of the state variables are independent, i.e. ∆T (R, v) is a uniquely defined
function for a single material. The determination of this function is based on two key
ingredients: A specification of the diffusion field which results from a shape-preserving
solution of the diffusion equation and a selection criterion. The shape-preserving diffusion
field solutions were determined by Papapetrou [5] and Ivantsov [6], with these being
generally characterized by an equation linking the undercooling ∆T to the Péclet number
Pe:

Pe =
Rv

2D
(2.19)

∆T = Pe exp(Pe)E1(Pe) (2.20)
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2.2 Solidification

v

R

T = Tm T

L

Figure 2.4: A sketch of a thermal α dendrite growing into an infinite, undercooled melt L. The shape
approximates a parabola close to the tip, with perturbations occurring further down from
the tip. The dendrite is characterized by the tip radius R, its velocity v as well as a driving
force, here taken to be an undercooling ∆T specified at infinity.

for a three-dimensional paraboloid, with a diffusivity D and the exponential integral
E1. The right hand-side of eq. (2.20) is nowadays called the Ivantsov function, which
is dependent on the shape which is being preserved. Note that this solution does not
depend on any interfacial energy considerations, but only what kind of solution grows
while being shape-preserving for a diffusion equation. As is obvious from the above, this
does not uniquely define ∆T , but rather an infinite spectrum of solutions is defined, as
only Rv = const. for a single undercooling.
Zener [49] was the first to propose a maximal velocity criterion, though in the context
of solid-state transformations. While this closed the problem, and much development on
improving this model was conducted, an experimental test of this took until Glicksman
[50] employed a transparently solidifying system to observe dendrite growth directly.
None of the models matched these observations and thus new selection criteria were
sought. The most prominent criterion is the marginal stability criterion (MSC) of Langer
and Müller-Krumbhaar [8]. It states that the tip radius is determined by the wavelength
which is marginally stable against perturbations:

R ≈ λs = 2π
√
ldd0 (2.21)

σ∗ =
ldd0
R2

=
1

4π2
≈ 0.025 (2.22)
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2 Theoretical description of microstructural evolution

with the diffusion length ld = 2D
v and the capillary length d0 = Tmγ

∆TL with the melting
temperature Tm, the unit undercooling ∆T = L/cp, the latent heat L and the specific
heat capacity cp. Note that the stability criterion contains the influence of capillarity,
which is one of the ingredients which was missing in the purely shape-preserving solution
picture. The selection criterion is characterized by the stability constant σ∗ and effec-
tively suggests that R2v = const. for a single undercooling. This theory was found to be
close to experimental values [50] and thus again sparked a host of improvements. One
such improved theory is that of Kurz and Fisher [9] which will be used in this work. By
a thorough derivation, they arrive at a cubic equation which is analyzed in a low and
high velocity regime, yielding for the tip undercooling

∆Td = mc0(1−Av) (2.23)

Av =


DG

v∆T0k
v < DG

∆T0k[
1− (1− k)π

√
vΓ

D∆T0k

]−1
v > DG

∆T0k

(2.24)

for the two regimes, with the temperature gradient G, the solidification range ∆T0 =

mc0
1−k
k and the Gibbs-Thomson coefficient Γ. The low velocity regime describes cells,

a related microstructure not further investigated in the present work, whereas the high
velocity regime describes dendrites. Based on this relation and geometrical assumptions,
the primary spacing can also be estimated, leading to the later power law relationships.
For now, note that the undercooling is scaled by the composition c0, the temperature
gradient G and the velocity v.

However, earlier boundary integral results by Nash and Glicksman [7] showed that for
an isotropic problem, as had been assumed so far, actually no steady-state solutions
exist. This led to the development of microsolvability theory [51–53] (MST), which
solved the isolated dendrite problem without the need for any assumptions: In essence,
the continuum of solutions suggested by eq. (2.20) are broken into a discrete set by the
singular perturbation induced by an anisotropy e.g. in the surface energy. This also
explains the symmetry dendrites exhibit, as the anisotropy of the growing crystal is the
determining factor. In the small Péclet number limit and for a four-fold anisotropy, MSC
and MST are related with

σ∗ ∝ δ1.75 (2.25)

with the anisotropy strength δ. It should be noted that MST also predicts R2v =

const. for small Péclet numbers and thus in this limit the only difference between MSC
and MST is the exact value of σ∗. Furthermore, Karma and Rappel [22] could show
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2.2 Solidification

that phase-field simulations match MST quite closely once the appropriate thin-interface
limit is constructed. The complex shapes resulting from solidification, which can be
captured with relative ease by employing phase-field methods, together with this ability
of matching analytical theories made the phase-field approach the method of choice for
solidification simulations. Hence a host of publications, a small selection being given
via [22, 23, 37, 54, 55], exist concerning the simulation of dendritic growth with the
phase-field method.

While the theory so far describes the growth of an isolated dendrite into an infinite
melt, in real system multiple dendrites or even other morphologies grow competitively.
Furthermore, in a completely solidified microstructure of an alloy, there is hardly any
trace of the tip radius as could be determined with the previously described theories.
Rather, what one can observe are inhomogeneities in the composition caused by dendrites
impinging on each other or by secondary arms. This is commonly called microsegregation
and is undesired. Finally, the dendrites do not have a uniform orientation and thus form
grain boundaries when contacting each other, also affecting the materials properties [56].

The grain size is linked with the primary dendrite arm spacing (PDAS) λd and the
microsegregation to the secondary dendrite arm spacing (SDAS). Based on previous
theory and some geometrical assumptions of how a dendritic array is ordered, it is possible
to build a theory for estimating the PDAS. In general, the PDAS can be approximated
by a power law relationship [9, 57]:

λd = A∆Tn0 v
mGo (2.26)

with a lumped material parameters constant A and previously defined parameters. The
solidification range ∆T0 can be directly replaced with the alloy composition c0. Typically,
m and o are negative, i.e. higher gradients and velocities refine the structure. In contrast,
n is positive and hence more highly concentrated alloys (with larger solidification range)
produce coarser structures. For the high-velocity regime of [9], n = 1

4 , m = − 1
4 , o = − 1

2 .
The experimentally observed ranges for m are about −0.19 to −0.75 and for o from −0.3

to −0.55 [58]. If convection is mostly avoided, n ≈ 0.25 can be observed [58].

2.2.2 Eutectic growth

The history of eutectic growth theory is shorter than for dendrites, as these often form
finer structures than dendrites and thus were observable only with higher resolution
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2 Theoretical description of microstructural evolution

c = ce

v
L

Figure 2.5: A sketch of the unit cell of lamellar eutectic growth is depicted. The eutectic consists of
two solid phases α and β, growing into an undercooled melt L whose composition at infinity
is assumed to be the eutectic concentration ce. A steady lamellar spacing λ develops, with
the eutectic front at T = Te −∆Te advancing at a velocity v.

microscopes. The term eutectic refers to a type of reaction present in multicomponent
systems of the form

L → α+ β (2.27)

i.e. a liquid melt decomposing into two2 solid phases. The eutectic point is the
composition-temperature point at which all three phases are in equilibrium and is also
the lowest melting temperature of alloys with compositions between the two solid phases.
A sketch of the resulting morphology is depicted in fig. 2.5 with the relevant parameters.
As with dendrites, the spacing λ between the resultant phases influences the materials
properties.

The history of eutectic growth theory is similar to that of dendritic growth theory, though
a quantitative theory was arrived at earlier due to anisotropy playing somewhat of a lesser
role. The key ingredients are, again, a specification of the diffusion field ahead of the
front and a selection criterion. Based on the earlier works of Scheil [59], Brandt [60],

2 For more than two components, these binary as well as higher order eutectic reactions exist.
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2.2 Solidification

Zener [49] and Hillert [61], Jackson and Hunt [62] could formulate a quantitative theory
of eutectic growth:

∆Te = K1vλ+
K2

λ
(2.28)

λ2v =
K2

K1
(2.29)

with materials and composition dependent parameters K1 and K2. The latter equation
also defines the eutectic scaling law

λ2v = const. (2.30)

which characterizes a materials system. The specifics of the constants change with the
morphology, which for a binary eutectic can either be a lamellar arrangement of both
phases or a matrix-rod composite. Which of these morphologies forms depends on which
grows at the higher velocity, with this being strongly influenced by the mass fractions of
the phases. However, anisotropy enters the problem here: A lamellar structure can form
in such a way that the plane separating the phases is a low energy plane, whereas a matrix-
rod composite necessarily contains boundary planes of variable orientation, including high
energy planes [62]. Hence even though the mass fraction, assuming isotropic energies,
would predict a matrix-rod composite, anisotropy can shift the morphology to a lamellar
one.

In contrast to the quite wide spread of processing condition exponents for the resulting
spacing of dendrites, the wavelength of eutectics generally follows the scaling given by
eq. (2.30) as long as growth is diffusion-limited as shown in e.g [62–64]. As with dendritic
growth, the phase-field method is quite attractive [65–68] for the simulation of eutectic
growth, with this being another small selection of the literature.

2.2.3 Coupled dendritic-eutectic growth

The previously described theories analyze the microstructure in isolation. In a real
casting, and as visible in fig. 2.3, dendrites and eutectics can form and grow alongside each
other. Since these can influence each other and thus invalidate the previous predictions,
a qualitative theory of coupled growth is developed in this section, based on the author’s
work [69]. It is based on the common assumption [70, 71] that coupled growth of dendrites
and eutectics is delineated by their growth temperatures being equal. It will later be
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2 Theoretical description of microstructural evolution

employed to test how coupled growth influences the operating state of both dendrites
and eutectics.

In order to build a qualitative model, the possible influence of one type of microstructure
on the other is ignored for now. If this model gives an accurate estimate for the transition
between the observed morphologies, then the dependence can indeed be assumed to be
negligible. The basis of the model is the assumption that the microstructure growing
at the higher temperature is the dominant one, which implies that the transition from
one dominant microstructure to the other occurs when both microstructures grow at the
same temperature. Thus accurate estimates for the temperature of either microstructure
are necessary. These will not be based on a model involving material parameters, but
rather with parameters obtained by data fitting, which allows a higher accuracy w.r.t.
the simulation results. Based on [9, 70], the dendrite temperature model reads

Tdf = Tl(c0)−∆Td (2.31)

∆Td = A
G

v
+B(c0v)

0.5 + Cc0 (2.32)

i.e. the dendrite front temperature is the liquidus temperature Tl(c0) at the composition
c0, minus an undercooling. The parameters A,B,C will be fitted based on simulation
data, with the dependence on the processing parameters G, v and c0 being inspired by
the earlier model eq. (2.23). A simplification of this model is to remove the composition
dependence of the undercooling, with the corresponding equation being

∆T sd = A
G

v
+Bv0.5 (2.33)

which will be compared with the composition-dependent model later. For eutetics the
expression due to Jackson and Hunt [62]

Tef = Te −∆Te (2.34)

∆Te = E(c0)v
0.5 (2.35)

E(c0) = 2
√
K1(c0)K2(c0) (2.36)

is employed, with concentration-dependent K1 and K2 of eqs. (2.28) and (2.29) also being
fitted to data.
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2.2 Solidification

Equating both front undercoolings results in an equation for a boundary curve separating
the microstructures, given by

Tl(c0)−A
G

v
−B(c0v)

0.5 − Cc0 = Te − E(c0)v
0.5 (2.37)

which will be solved numerically in a later section after the constants have been deter-
mined.

Simulative works concerning coupled dendritic-growth are much more rare [72–74] com-
pared to the pure forms of the solidification morphologies. In [72] an Al-Si alloy with
trace contents of P and Sr was investigated with the phase-field method. The strong
anisotropy of the Si phase is considered in detail and also includes the effect of Sr on its
anisotropy. Nucleation was achieved by designating random sites for potential nucleation
and evaluating a barrier condition on these sites as the simulation proceeded. After a
primary Al dendrite grew into a finite domain, Si nucleates and first grows in a blocky
manner before coarse eutectic growth between Si and Al starts. It could be shown that
once enough Sr is added, the eutectic grows in a finer fibrous morphology, due to the
modification of the anisotropy of Si. The eutectic nucleated after large portions of the
finite domain had been encompassed by the dendrite. In [73] the complete solidification
process of a hypereutectic Al-Si alloy was simulated. The strong anisotropy of Si is also
considered in detail. No detailed description of the nucleation was given, but since the
same software as in [72] was used, it is likely that fixed nuclei were also placed. The
authors could observe that after an initial transient growth of blocky Si, the Si blocks
were completely encased in nucleated Al after which eutectic growth was partially ob-
served. In [74] the cellular automaton approach was employed to calculate the complete
solidification of an Al-Si alloy. Again, special attention is paid to the strong anisotropy
of Si. Nucleation was achieved by a continuous nucleation distribution, which basically
specifies the density of nuclei as a function of undercooling. This effectively represents
a probability for a cell containing liquid to transform into solid. The authors conducted
a series of large-scale 3D simulations for different processing conditions: The initial Al
grains grow in a dendritic manner, but also interact with each other which reduces their
growth speed. Once sufficiently below the eutectic temperature, Al and Si nucleate into
the interdendritic liquid. The morphology within the eutectic was compared against
experiments and agreed well with these.
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2 Theoretical description of microstructural evolution

2.3 Freeze-casting

Freeze-casting [45] is a novel manufacturing method employing the way a liquid solidifies
to generate solid patterns. It typically employs colloidal suspensions with a liquid, which
is later frozen, and a particulate, insoluble solid. As the liquid freezes, the insoluble
particles are pushed into the regions between the solidification pattern. The freezing
liquid can be roughly treated with the dendritic solidification theory described earlier.
For simplicity in the following, water will be assumed to be the liquid and hence the
solidified structure is ice. After the freezing step, the ice is sublimated and the remaining
solid structure is effectively the negative of the complex solidification pattern: This
results in a large range obtainable porous microstructures if the liquid is changed, since
the anisotropy of the liquid determines the solidification pattern.
The final step in the freeze-casting process is sintering, since the particle packing itself
is not particularly durable. Two important characteristics of the final microstructure are
the pore widths, where once the ice was, as well as the wall thickness, where particles
are concentrated — for the usual reasons of these affecting the materials properties. The
materials produced in this way can be used for example as bone replacements, membranes
or as a thermal insulation material [45].

The solidification of colloidal suspensions was investigated theoretically and experimen-
tally by Peppin et al. [75–78] in a series of papers. The basic idea for the theoretical
thermodynamic investigation is to treat the suspension as a homogeneous mixture, with
the solids loading ϕ taking the role of concentration c. The advancing ice front is as-
sumed to perfectly reject particles, i.e. its partition coefficient k vanishes. Since the ice
is effectively a unary system, its chemical potential is given by a function of (T, p) only.
The suspension contains particles, which cause an osmotic pressure Π in the suspension,
which in turn changes the chemical potential with solids loading. Hence the condition
for chemical equilibrium may be written as

µpice(T, p) = µpwater(T, p)−
Π(T, ϕ)

ρ
(2.38)

with the superscript p indicating the value for a pure phase and ρ being the density
of water in this case. Assuming that the osmotic pressure is equivalent to that of a
suspension of hard-spheres, one can write

Π(ϕ) =
ϕ

vp
kbTz(ϕ) (2.39)
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2.3 Freeze-casting

with the volume of a hard sphere vp, Boltzmann’s constant kb and the compressibility
factor z accounting for the details of the hard-sphere interaction. These relations can
then be solved to yield a liquidus curve of the form

Tl =
Tm

1 +mϕz
(2.40)

with an accumulation of constants m describing the suspension. This curve achieves
the melting temperature Tm of the pure fluid at ϕ = 0. Due to the compressibility
expression for a hard sphere suspension, the curve diverges for the random close packing
(RCP) fraction ϕRCP = 0.64.

The relationship between processing conditions and the resulting microstructural lengths
is similar, but not identical to that of dendrites. Experimentally observed exponents for
the dependence of the wavelength (≈ PDAS) are in the interval [−0.33,−1.3] [45], i.e.
higher velocities always refine the structure, but the degree of refinement differs signifi-
cantly. Classical dendrite theory would predict an exponent of n = −0.25.
There are many reasons for freeze-casting deviating from the dendrite theory: Suspen-
sions are often stabilized with additives, but these can potentially segregate to interfaces
and control the local evolution. The resulting phase diagram is also highly nonlinear, i.e.
contains strongly variable liquidus slopes and partition coefficients. In contrast, classical
dendrite theory works with linear phase diagrams only. Furthermore, the diffusivity of
the particles depends on their size as well as concentration, neither of which enters the
theory either. Finally, often the experimental determination of actual freezing velocity
is quite difficult and hence only the velocity of the applied temperature field or only the
cooling rate are given, with estimates for the gradient to arrive at a freezing velocity.
Many experiments also do not control for the temperature gradient, although it has a
significant influence on the wavelength. Hence some experimental deviation might also
be simply attributable to changes in the temperature gradient, which is not measured,
being accounted for by an exponent change in the velocity.

The freeze-casting process has only been rarely investigated with the phase-field method
with [79–81] being more or less the complete literature3. In all these cases, the parti-
cles/solute are homogenized over resulting a continuous concentration field. In [79] the
authors employed a standard free energy previously described by [83] and thus disre-
garded the thermodynamic effects of particle size. They also employed a simple four-fold
anisotropy function, which does not describe the anisotropy of ice. While they reported

3 If one considers particles interacting with a front, without forming dendrites, freeze-casting, then
there are studies such as [82] as well.
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2 Theoretical description of microstructural evolution

good matching with experiments, they did not provide scaling laws for variable process-
ing parameters. The present author included the thermodynamic effect of particle size,
i.e. an osmotic pressure induced by the particles which varies with their total volume
fraction and individual volume, following Peppin [76] in [80] and also approximated the
complex anisotropy of ice by using spherical harmonics. More specifically, the osmotic
pressure leads to a change in chemical potential within the suspension, which then al-
lows the calculation of a liquidus line separating the pure suspension from a two-phase
region of suspension and ice. Scaling laws were provided, detailed in-depth in chapter 5,
showing that the wavelength was roughly independent of solids loading, with deviations
in both the velocity and temperature gradient dependence from classical growth theory.
The authors of [81] employ a classical solidification model as well and specialize it to
approximate the phase transitions in a chitosan-acetic-acid-water solution, which again
discards the suspension character of freeze-casting. A constant partition coefficient and
a constant liquidus slope were assumed in a dilute alloy approximation. The anisotropy
was modelled by combining a sixfold spherical harmonic in the basal plane and a regular-
ized version of a sharply cusping, twofold function normal to it. This basically predicts
sixfold symmetry in the basal plane and plate-like growth normal to it, similar to the de-
scription employed in chapter 5. Special attention was paid to the correct thin-interface
asymptotics, in contrast to previous works: The kinetic coefficient, modifying steady-
state temperature of the moving interface, was made to vanish in the basal plane and
achieve a finite value normal to it. This accounts for the fast kinetics within the basal
plane, whereas normal to it growth can become limited by attachment kinetics. Scaling
laws consistent with classical growth theory were observed. The combination of these
results, as well as the experimentally observed large scatter, might suggest that the ther-
modynamic pecularities of the suspension-based freeze-casting are inconsistent with the
simplifying assumptions employed for classical dendrite growth models, i.e. constant
partition coefficient k and liquidus slope m.

2.4 Solid-state sintering

The solid-state sintering process is applied in the manufacturing of many products, from
the humble coffee cup straight to complex products such as solar cells [84–86], in which
the sintering process is usually used to form the front electrode. Thus it is of great impor-
tance to understand the process, predict the properties of sintered materials and thereby
improve the products themselves. In the simplest case, the process is conducted by heat-
ing a so-called green body sufficiently, which then begins to change its microstructure via
transport processes. These processes lead to both densification, reducing the porosity of
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2.4 Solid-state sintering

the body and the size of the body, as well as coarsening, which causes the grains which
compose the body to grow. Both processes are driven by energy minimization, with den-
sification reducing surface area and coarsening reducing grain boundary area via grain
growth. Densification increases the relative density ρ with grain growth increasing the
grain size G. The relative density ρ is relative to the density of the material in question
entirely free of pores. Since this work only concerns itself with relative densities, the
qualifier of “relative” will be dropped henceforth. The grain size G measures the dimen-
sion of a grain in a single dimension. Occasionally it is also useful to consider the grain
area or grain volume, as these might not require geometrical assumptions to convert a
corresponding measurement to the grain size.

These variables are interesting as they are the main factors determining the effect of the
microstructure on the materials properties. A denser material will generally be stiffer
and tougher, but also heavier. Fine-grained structures are harder, but are also more
susceptible to creep. Hence in the following an overview of modelling and characterization
approaches is given for densification as well as grain growth.

Early theoretical developments focused on simple geometrical models from which the
densification of complete green bodies was predicted, but observed to be quite wrong.
Thus more complex models focusing on specific parts of the process — initial, intermedi-
ate and final — were developed. These typically predict the qualitative response of the
process to a change of processing parameter correctly, but their quantitative predictions,
without being fitted to experiments, are often not accurate [18].

While the early geometric models fail at scale, their predictions for the initial stage can be
reasonably compared with experiments. Thus these can also be used to test if a simulation
follows their prediction and by transitivity approximates the experiments. These models
are generally based on analyzing the geometric evolution of two particles of equal radius
R, sketched in fig. 2.6 for an initial and equilibrium state. The two key ingredients are a
specification of an atomic flux into the sintering neck — where particles meet — and a
geometric assumption which changes the neck radius X and distance between the center
of masses (COM) of the particles in reaction to the flux. The motion of the COM can be
both by simple diffusion as well as vacancy absorption at the grain boundary acting as a
vacancy sink. The geometric assumptions also define whether the COM can move in the
first place, with non-densifying geometries keeping the COM fixed whereas densifying
geometries allow its movement. Different diffusion paths are available to the system,
with them being depicted in fig. 2.6c. The paths 1, 3 and 4 represent different volume
diffusion paths, 2 represents diffusion along the grain boundary, 5 represents diffusion
along the surface and 6 the evaporation-condensation path. The flux along these paths
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2 Theoretical description of microstructural evolution

2R
R

(a) initial state of a two particle model

H = 2X

(b) equilibrium state of a two particle model

2
1

3

5

4

6

grain α grain β

∆µ ≈ γ
R

∆µ ≈ γ( 1
X − 1

r )

(c) diffusion paths during the kinetic evolution

Figure 2.6: The two particle model employed for the development of initial stage sintering models is
depicted. The geometrical models usually assume infinite neck growth, but actual neck
growth is limited by the dihedral angle ψ as shown on the right. The volume contained in
both states is the same. The evolution from the initial to equilibrium state is facilitated
by various diffusion paths (red) shown in fig. 2.6c, based on [35]. The chemical potential
gradient induced by different curvatures drives these diffusive fluxes. The neck surface
curvature has contributions from both radial 1

X
and axial −1

r
curvature components.
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2.4 Solid-state sintering

is driven by chemical potential differences between the points considered, originating
from the Gibbs-Thomson effect. In the figure, chemical potential differences w.r.t. a flat
surface, due to this effect, are given. Within the geometric model, the neck is of circular
cross-section, but also has an axial, concave curvature of r ∝ X2

R . This relationship
allows the elimination of r as an independent geometric parameter, but also limits the
applicable range of neck radii. If only a single path is considered, then it is possible to
determine the time evolution of the neck region by approximating the flux into the neck
region.

More specifically, based on the previously mentioned flux and geometric assumptions,
power laws for the relative neck radius X

R and the strain ϵ = ∆L
L0

X

R
= At1/n (2.41)

∆L

L0
= Bt1/m (2.42)

can be derived, with m = n/2, but B = 0 if a non-densifying geometry is assumed.
The values of the constants A and B depend on the material and geometry, with the
exponents n and m depending on the dominant transport mechanism, listed in table 2.1.
By virtue of the geometric assumption only a limited region of the evolution — usually
taken to be up to 0.3 of the relative neck size X/R [20] — can be approximated.

Furthermore, these models generally assume a vanishing grain boundary energy, which
implies infinite neck growth. Neck growth is actually limited by the dihedral angle

ψ = 2arccos(
γgb
2γs

) (2.43)

with the grain boundary energy γgb and the surface energy γs. Based on the thermo-
dynamic treatment of [87], the grain boundary length H = 2X in equilibrium is given
by

H =
π
r′

+ r
′
(ψ − π + sin(ψ))

(2 cos(ψ/2))
(2.44)

rd = (
π

π − ψ + sin(ψ)
)1/2 (2.45)

rnd =
1

cos(ψ/2)
(2.46)

for the case of an infinite, linear chain of cylinders. The value reached within a two-
particle geometry will differ from this, since the particles’ resulting equilibrium shape
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2 Theoretical description of microstructural evolution

Table 2.1: Plausible values for the exponent n in eq. (2.41) based on [20].

dominant mechanism exponent n

surface diffusion 7
grain boundary diffusion 6

lattice diffusion 4-5
vapor transport 3

viscous flow 2

will be different. Depending on whether densification or no densification is assumed, a
different non-dimensional equilibrium radius r

′
= rd,nd/R is obtained. This also implies

a limit on the strain for the densifying case

ϵ = 1− r
′
cos(ψ/2) (2.47)

for this geometry.

Another approach for characterizing sintering, not necessarily limited to the initial stage,
are Herring’s scaling laws [11]. These are based on assuming a constant grain size and
that the microstructure evolves self-similarly. Based on these assumptions one can derive
a relation [11, 20]

∆t2
∆t1

= (
R2

R1
)Z (2.48)

which relates the time span ∆t for an equivalent microstructural change, e.g. reaching
a certain density or strain, to the particle size R. The constant Z is again specific to
the process being considered, with the possible values being listed in table 2.2. This
relation can be used whenever the dominant transport mechanism does not change.
Furthermore, the relation can be used to identify whether the effect of scale has been
completely included in a model by measuring the model’s prediction and comparing it to
the analytical prediction. The eqs. (2.41), (2.42) and (2.48) will be used in later chapters
for simple validation of sintering models.

As the necks grow and contacts form, the geometry deviates significantly from the two-
sphere contact model and hence requires a change in geometric description. This de-
scription originates mostly with Coble [88] who approached it for both intermediate and
final stage sintering. It requires the specification of a space-filling geometry of grains and
pores as well as the vacancy fluxes. The vacancy flux originates from the pores situated
between grains and it is assumed that this flux is efficiently absorbed by GBs. Since
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2.4 Solid-state sintering

Table 2.2: Plausible values for the exponent Z in eq. (2.48) based on [20].

dominant mechanism exponent Z

surface diffusion 4
grain boundary diffusion 4

lattice diffusion 3
vapor transport 2

viscous flow 1

the pores can be thought to consist of vacancies, vacancy absorption implies a reduction
of pore volume and thus shrinkage. This generally yields a specification of the porosity
P = 1− ρ of the form

P =
A

GZ
(tf − t)k (2.49)

in which A lumps material parameters (diffusivity, surface energy, . . . ), G is the grain
size, tf is the time of pore disappearance, and Z and k are exponents depending on the
geometry and flux specifications. The exponent Z is generally the same as for Herring’s
scaling laws and thus suggests a dominant transport mechanism. In contrast to the earlier
direct power laws, the inclusion of a time to pore disappearance specifies a natural end
state of zero porosity.

Note that the geometry changes significantly once open porosity is eliminated, since
there is no longer a continuous network of pores, but rather only isolated pores attached
to grain boundaries or within bulk grains. This transition is also generally used to
differentiate intermediate stage sintering from the final stage, with the latter having
little to no open porosity left. The transition from open to closed porosity is usually
assumed to be due to a Plateau-Rayleigh type of instability. Nichols and Mullins [89]
analyzed the morphological instability due to infinitesimal perturbations of an infinite
cylindrical pore and could show that there exists both a stability limit and a fastest
growing instability. Both are characterized by being a wavelength of instability relative
to the cylinder radius, i.e. larger pores are more stable. When grain boundaries connect
to the cylinder, the instability is often initiated by the GBs instead of perturbations
since their rate of growth is faster [90]. Hence the geometrical configuration of the grain
boundary network relative to the pore network plays a key role in determining when pore
closure occurs. Typically, pore closure should be delayed as long as possible, since the
amount of gas enclosed in a pore determines its pressure which affects its resistance to
further densification.
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2 Theoretical description of microstructural evolution

If an isolated pore is attached to a grain boundary, then the gases it contains can typically
dissolve [91] and diffuse [92, 93] much more readily along GB paths than in the bulk
material4. Thus if a pore stays attached, it is possible to transport its gases outside
of the green body proper and hence eventually eliminate the pore. However, if grain
growth occurs pores can become detached and trapped within grains. Once this occurs,
these pores cannot be eliminated on processing timescales without applying pressure to
forcefully dissolve the gases into the grain. If this is done, then at a sufficiently high
temperature the dissolved gases will nucleate as porosity again. Hence grain growth will
be considered next.

During the intermediate and especially the final sintering stage grain growth occurs. It
can be described with a power law of the form [20]

G(t)n −G(0)n = kt (2.50)

with the time-dependent grain size G, an exponent n and a constant related to geometry
and GB properties k. For ideal grain growth, if it is limited by interface reactions, n = 2

[20], though depending on various factors (porosity [95], solute drag [96], . . . ) exponents
deviating from this can be observed. In the ideal case, a difference in curvature is the
only driving force which applies homogeneously to the entire GB. This driving force is
due to curvature κ affecting the chemical potential via

∆µ = γ∆κ (2.51)

with the interface energy γ and the difference in curvature κ between two points, and as
described in section 2.1, differences in chemical potential imply the existence of driving
forces F . Furthermore, it is assumed that there is a linear relationship between driving
force and boundary velocity, with the GB mobility M being the proportionality constant.
From these, the relations

F = γ∆κ (2.52)

v =MF (2.53)

→ dr

dt
=Mγ

1

r
(2.54)

4 The specifics, as always, depend on the material and diffusing species in question. For example,
while hydrogen generally dissolves more easily in grain boundaries than in the bulk, its diffusivity
in the bulk is often faster than through grain boundaries, see e.g. [91, 94].

28



2.4 Solid-state sintering

are derived, with the last expression assuming a circular grain embedded within a larger
grain, such that the curvature of the larger grain is effectively zero which sets ∆κ ≈ 1

r .
Integration yields the ideal growth law with G(t) ∝ r(t) ∝

√
t, i.e. parabolic growth. An

alternative approach is to consider that the volume change of a grain is proportional to
the net flux across its boundaries, i.e.

dV

dt
= jAΩ (2.55)

with an averaged net flux density j, the boundary area A and the atomic volume Ω. The
volume and area can be related with a shape assumption, e.g. for a sphere

4π

3

dr3

dt
= 4πr2jΩ (2.56)

and assuming j = M
r for the flux, integration yields a parabolic law as well5. Equa-

tion (2.55) reveals a missing part in the simpler description of a small grain embedded in
a large grain: Even if there is a large flux density due to large differences in curvature, if
the flux is restricted to only a small area, grain growth will be slow. This is the case in
the initial stage of sintering, where the sintering neck and hence the area across which
this flux flows is only beginning to form. This is one of the reasons why grain growth is
generally not observed in the initial stage of sintering.

Both approaches only describe the growth of a single grain embedded in another, larger
grain. A real microstructure however has many grains sharing faces and higher order
junctions and so topological effects should be included as well. Furthermore, the grains
will obviously no longer have a uniform size distribution after some grains have grown
at the expense of others. This is taken into account by so-called mean field theories [20]
pioneered by Hillert [97]. These generally contain a growth law, which has a critical
grain size G∗ above which grains grow and below which grains shrink. Furthermore, it
is possible to derive steady-state grain size distributions for these.

Grain size and porosity are often found to be correlated in experiments [46, 98, 99],
specifically the expression

G = k
G0√
P

(2.57)

5 The specific shape assumption does not change the scaling as can be shown with dimensional analysis;
only the prefactors will be changed.
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2 Theoretical description of microstructural evolution

is often found to fit experimental data well, with materials and green body parameters
absorbed in k and the initial grain size G0. This effectively captures the phenomenon
of concurrent grain growth and reduction of porosity across a wide range of materials
and processes. An affine variant of this relation can be analytically derived based on the
earlier models for densification and grain growth [98] while assuming that grain growth
and densification are controlled by processes occurring on grain boundaries.

During the entire process, the grain structure does not only change in size but also in
shape. The grain shape moves from the initial one, usually assumed to be a sphere,
to a polyhedron6 due to impingement by other grains, resulting in e.g. the truncated
octahedron for the model of Coble [88], which is characterized by its 14 faces and hence is
also called tetrakaidecahedron. As the density increases, previously unconnected grains
impinge on each other and their coordination number Nc also changes accordingly. It is
linked to the density with

Nc = 2 + 11ρ (2.58)

following a fit of literature data by German [100]. Note that even at 100% density, this
does not yield Nc = 14 as would be expected from the truncated octahedron.

Another way of describing the sintering process is by focusing on the evolution of the
surface [46, 101]: Since the driving force for densification is the minimization of surface
energy, the free surface area must be reduced as density increases. Hence a relationship
between density ρ and surface area S exists of the form

S

S0
= a− bρ (2.59)

with the initial surface area S0. If S measures only the internal surfaces, then S = 0

describes the fully dense state and implies elimination of open and closed porosity7 If
the method for determining S measures the outer surface as well, then some non-zero S
dependent on the sintered body size and shape will characterize the fully dense state.

6 If a grain boundary is moving the faces will not necessarily be planar.
7 As a practical note, if surface area is measured with methods only characterizing open porosity, e.g.

gas absorption, then S = 0 also doesn’t necessarily imply full density.
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2.4 Solid-state sintering

A closely related measure is the Euler characteristic χ

χ =
1

2π
(

∫
S

KdS +

∫
∂S

kgds) (2.60)

= V − E + F (2.61)

with the Gaussian curvature K of a surface S, the geodesic curvature kg of the boundary
∂S of S, as well as the number of vertices, edges and faces which make up a polygonal
mesh of S. The characteristic is related to the genus g

χ = 2− 2g (2.62)

which describes the number of holes in S. Since sintering starts from a continuous
network of pores, then proceeds to isolate and close them, both g and χ should be able
to describe how far the sintering has proceeded. More specifically [101, 102], the initial
stage is characterized by a negative and decreasing value of χ. Once the characteristic
increases, the intermediate stage is entered until a positive, maximum value is attained,
which describes pore closure. In the final stage, these pores vanish with time and χ = 0

is achieved for a pore-free body.

This wide range of available descriptions for the sintering process should make it clear
that sintering is typically more complex than solidification. In solidification, closed,
analytical theories exist for isolated solidification geometries and match quite closely with
experiments for the entire solidification process. In sintering, the entire process has to be
divided into stages, in which separate theories typically only yield qualitative guidance
for process optimization. This is both due the complex, variable geometry resulting from
many particles interacting as well as multiple, overlapping processes competing against
each other.

The phase-field method has been employed for the simulation of solid-state sintering
in a multitude of papers, with two different approaches being practised: One approach
simply adds additional diffusion pathways [35, 103, 104], whereas the other also adds
advective terms to the field equations being solved [33, 36, 105–112]. The first practical
comparisons of these approaches were conducted by [36, 107], with both showing that
densification progresses more slowly if no advective terms are included. However, this
alone does not imply the necessity of advective terms for the simulation, since densifica-
tion speed can just as well be adjusted by changing a diffusion coefficient. The present
author could show in [113] that if no advective terms are included, there is a severe de-
pendence of densification speed on the system size. This is obvious nonsense and hence
advection should always be included. However, the manner in which the velocities which
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2 Theoretical description of microstructural evolution

are calculated in order to advect the fields also plays a large role, as again shown by the
present author [114, 115]: If a grain’s velocity only depends on its interaction with its
nearest neighbours, as previously practised, then there still is a significant dependence
of densification speed on system size. This was be remedied by linking the velocity (or
equivalently displacement) of all grains in a system of equations, effectively allowing dis-
placement generated in one part of the green body to propagate through the system
without resistance.
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3 Phase-field modelling

In this chapter the employed phase-field models will be described. The models described
in section 3.1 are based on literature, whereas the extensions and developments in sec-
tion 3.2 consist of original work[69, 80, 114–116]. In section 3.3 an overview of how to
approach parametrization of real systems as well as the nondimensionalization is given.

The principal idea behind phase-field models is to approximate a free boundary, whose
interface is sharply defined, with a smooth field variable which describes the position
of the interface. This allows the solution of a class of mathematical problems called
free boundary problems which are highly relevant for materials processing, as e.g. the
boundary separating solid and liquid during casting is constantly moving and changing
shape. If the solution were sought with a sharp interface, that interface needs to be
tracked and the computational mesh adjusted to its local evolution, with topological
changes requiring careful handling. The phase-field approach avoids the explicit tracking
and accounting for topological changes at the cost of solving another partial differential
equation (PDE) for the interface position. This PDE is usually based on a variational
derivative of a free energy functional, as this should represent the minimization of free
energy w.r.t. the so-called phase-field variable. The variation is then assumed to be
linearly related to the change of the phase-field in the spirit of small deviations from
equilibrium allowing for a linear expansion around the equilibrium.

3.1 State of the art of phase-field models of
materials processing

In this section the state of the art for phase-field models of materials processing, pertain-
ing to solidification and sintering, is recapped. The focus will be on the models employed
within the later work.
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3 Phase-field modelling

3.1.1 Phase-field model of alloy solidification

The phase-field model of alloy solidification employed herein is based on the works [25,
117]. The approach starts with a free energy functional

F =

∫
V

ϵa(ϕ,∇ϕ) + 1

ϵ
w(ϕ) + ψ(ϕ, µ, T )dV (3.1)

which describes the total energy contained in the volume V . The phase-field vec-
tor ϕ = (ϕ0, ϕ1, . . . , ϕN−1) describes the local volume fractions of the N phases ϕα.
These phase-fields represent the local microstructure and thus their spatial distribu-
tion can be compared to experimental microstructures. The chemical potential vector
µ = (µ0, µ1, . . . , µK−1) similarly describes the local chemical potential of the K compo-
nents and is related to the concentration vector c = (c0, c1, . . . cK−1). The local tempera-
ture is given by T . Note that within the present work, c will be used in the sense of both
molar concentration and mole fractions. This is permissible because in binary systems
they are linearly related with the molar volume which is always assumed to be constant
for a single material system. Furthermore, if molar concentration is nondimensionalized
employing the constant molar volume, then the resulting non-dimensional equations are
the same as if mole fraction had been used from the start. Finally, the summands within
the integral should be in units of energy per volume. Hence if the energy is specified in
energy per mole, it will be divided by the molar volume to arrive at the correct unit.
Though as with the concentration, if a constant molar volume is assumed, volumetric and
molar energy density are equivalent after nondimensionalization. This is shown explicitly
in appendix A.1.

The variables (ϕ, µ, T ) appearing in the functional are space-time dependent, but this
dependency is dropped for conciseness. For the same reason, the vectorial nature of these
variables is dropped, with indices indicating single components of these. Vectorial nota-
tion will only be used for vectors if the vectorial nature does not follow from surrounding
operators. Hence a gradient of a scalar obviously implies a vector in space in higher
dimensions, but the symbol v for velocity is ambiguous and thus will be marked as v⃗ to
emphasize the vectorial nature. Another notational simplification is to not always specify
the limits of sums: If the sum is over the phase-field vector ϕ, then the implicit lower
limit is 0 and the implicit upper limit is N −1. Similarly for sums over the concentration
vector c, in which the limits are 0 and K − 1.
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3.1 State of the art of phase-field models of materials processing

The gradient energy density a and the bulk energy density w are defined as

a(ϕ,∇ϕ) =
∑
α

∑
α<β

γαβA
γ(qαβ)

2|qαβ |2 (3.2)

w(ϕ) =

{
16
π2

∑
α

∑
α<β γαβϕαϕβ +

∑
α

∑
α<β

∑
α<β<δ ϕαϕβϕδγαβδ, ϕ ∈ GSN

∞, else

(3.3)

and include contributions due to surface energy. Furthermore, these describe the equi-
librium properties in lieu of any driving force. As will be shown later, the term γαβ
directly represents the interface energy of an αβ interface, with the function Aγ(qαβ)

2

representing the anisotropy of this interface w.r.t. orientation of the interface1. In turn,
the orientation is described with the generalized gradient vector qαβ = ϕα∇ϕβ−ϕβ∇ϕα.
The following anisotropy functions for a single αβ interface will be considered:

Aiso = 1 (3.4)

A4 = 1 + δαβ(3− 4
|qαβ |44
|qαβ |4

) (3.5)

Asph = 1 +
∑
l

∑
m

δαβ,lmYlm(qαβ) (3.6)

which describe respectively an isotropic interface eq. (3.4), a fourfold symmetrically
anisotropic interface approximating a weakly anisotropic cubic crystal eq. (3.5), and
a sum of spherical harmonics Ylm used to approximate the anisotropy of ice eq. (3.6).
The δαβ terms describe how strong the anisotropy is, with the terms dependent on qαβ
describing the dependence on the interface orientation. The shorthand expressions of
eq. (3.5) read as |v|44 =

∑
i v

4
i and |v|4 = (

∑
i v

2
i )

2 [25] with the index i running over the
spatial dimensions. The specifics of the anisotropy of ice will be given in chapter 5.

The chosen bulk energy density w is an obstacle type of potential. It consists of dual
interactions terms, accounting for the two-phase interfacial profile, and a triple interaction
term which reduces the appearance of so-called ghost phases along interfaces[119, 120].
The obstacle potential can reduce the computational effort when solving the phase-field
equations by constricting the nontrivial phase-field values to only a narrow range called
the interface. Thus computations in which the volume and its neighbours all contain

1 By multiplying only the gradient energy with the anisotropy function the actual effect is to change
the interface width with orientation and not the interface energy [118]. In terms of how anisotropy
affects e.g. dendritic growth this approach suffices and is quite standard.

35



3 Phase-field modelling

the same phase-field values (called bulk) of either 0 or 1 can be skipped altogether, as
no change is possible for these. This is allowed by forcing the phase-field vector ϕ to lie
within the N -dimensional Gibbs simplex

GSN = {ϕ ∈ RN :
∑
α

ϕα = 1, ϕα ≥ 0} (3.7)

via declaring the energy outside of this simplex to be infinite. This requires a projection
step in the numerical solution, as the evolution equation derived later does not guarantee
that ϕ stays in GSN .

The driving force is described by

ψ(ϕ, µ, T ) =
∑
α

hα(ϕ)ψα(µ, T ) (3.8)

with the grand potential densities of the individual phases ψα and a weighting function
hα(ϕ) with the properties hα(0) = 0, hα(1) = 1, dhα

dϕ (ϕ ∈ {0, 1}) = 0,
∑
α hα = 1. These

properties ensure that the driving force for other phases β vanish within the bulk of an
α phase. The function

hα(ϕ) =
ϕ2α∑
β ϕ

2
β

(3.9)

will be employed in this dissertation, based on [121].

The temporal evolution of the phase-field is assumed to be represented by the variational
derivative

τ(ϕ,∇ϕ)ϵ∂ϕ
∂t

=− δF
δϕ

− Λ (3.10)

τ(ϕ,∇ϕ)ϵ∂ϕ
∂t

=− ϵ

(
∂a(ϕ,∇ϕ)

∂ϕ
−∇ · ∂a(ϕ,∇ϕ)

∂∇ϕ

)
− 1

ϵ

∂w(ϕ)

∂ϕ
(3.11)

− ∂ψ

∂ϕ
− Λ

which evolves the state of ϕ to a minimum of the free energy F , subject to the constraint∑
α ϕα = 1 which is accounted for by the Lagrange multiplier Λ. This evolution is non-

conservative and thus suited to model phase transformations and originates from Allen
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3.1 State of the art of phase-field models of materials processing

and Cahn [122]. The timescale on which the evolution happens is determined by the
relaxation coefficient

τ(ϕ,∇ϕ) = Iτ (A
τ
αβ(qαβ)ταβ) (3.12)

whose anisotropy function Aταβ need not be the same as that of the gradient energy. Iτ is
an interpolation function, which is either the arithmetic mean or the harmonic mean of
all individual αβ terms: For values of ταβ within a few factors of each other, as commonly
found in solidification, the arithmetic mean will be employed. For larger factors, as can
be found in sintering, the harmonic mean will be employed as this reduces the artificial
effect of triple point pinning observed for the arithmetic mean formulation[123].

For a one-dimensional system of two phases, with one phase-field defined in terms of the
other ϕβ = 1− ϕα, the evolution equation can be concisely written as

∂ϕα
∂t

=
2γ

τ

∂2ϕα
∂x2

− 1

τϵ2
∂w

∂ϕα
− 1

τϵ

∂ψ

∂ϕα
. (3.13)

From this expression it is quite clear that the phase-field equation describes a reaction-
diffusion system with a diffusivity Dϕ = 2γ

τ and two reaction terms. The first reaction
term is derived from w, with zero change if ϕα ∈ ϕb = {0, 1}, with the second term
describing the driving force, which is not expanded for clarity. The Lagrange multiplier
vanishes because the assumption ϕβ = 1−ϕα already fulfills the constraint. The equilib-
rium profile can be calculated by assuming a steady state and setting the driving force
to zero:

0 =
2γ

τ

∂2ϕα
∂x2

− 1

τϵ2
∂w

∂ϕα
(3.14)

which is in fact an ordinary differential equation (ODE) and can be solved analytically.
For the solution boundary conditions need to be specified, which are taken to be zero
gradient conditions at infinity for simplicity.
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3 Phase-field modelling

From this equation, one can already give a relation between the phase-field derivative
and the bulk potential by a series of transformations (dropping the multiplicative factor
τ):

2γ
∂2ϕα
∂x2

=
1

ϵ2
∂w

∂ϕα
| · ∂ϕα

∂x
dx (3.15)

2γ
∂

∂x
(
∂ϕα
∂x

)2 =
1

ϵ2
∂w

∂x
|
∫
dx (3.16)

2γ(
∂ϕα
∂x

)2 =
1

ϵ2
w(ϕα(x)) + C (3.17)

∂ϕα
∂x

=

√
1

2γϵ2
w(ϕα(x)) + C (3.18)

in which the integration constants on both sides are melded to C. In order to determine C
we appeal to energy minimization by inserting the relation into the simplified functional:

F =

∫
V

ϵγ((ϕα − 1)
∂ϕα
∂x

− ϕα
∂ϕα
∂x

)2 +
16γ

π2ϵ
(1− ϕα)(ϕα)dV (3.19)

=

∫
V

Cϵγ +R(ϕα)dV (3.20)

in which the remaining terms only depending on ϕα are collected in R(ϕα) for conciseness.
Based on this form an energy contribution due to C is evident. Given that ϵ, γ are
positive, the contribution of C is minimized for C ≤ 0. In order to exclude C < 0,
consider its impact on the root expression in eq. (3.18). The gradient of ϕα should be
real since ϕα is real as well and thus

C ≤ w(ϕα)

2γϵ2
(3.21)

must hold for all values of ϕα. Since this includes w(ϕα) = 0, which is achieved for the
bulk values ϕb, the only admissible value is C = 0. Thus a profile which minimizes the
free energy is characterized by

∂ϕα
∂x

=

√
1

2γϵ2
w(ϕα(x)). (3.22)

This generally describes the one-dimensional equilibrium in phase-field models, up to the
term multiplying w, as long as the gradient energy density reduces to a Laplacian after
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3.1 State of the art of phase-field models of materials processing

evaluating the variational derivative2. A useful corollary of this relation is that if the
phase-field gradient is zero, the bulk energy density also needs to be zero and vice versa.
For the employed obstacle potential this is only true for the bulk values ϕb = {0, 1}, thus
the gradient needs to vanish on the transition to the bulk regions.

Proceeding with the determination of the actual ϕα profile, the derivative of w reads

∂w

∂ϕα
=

{
16γ
π2 (1− 2ϕα) ϕα ∈ [0, 1]

∞, else
(3.23)

thus the equation only within the interfacial region follows as

2γ

τ

∂2ϕα
∂x2

=
16γ

π2τϵ2
(1− 2ϕα) (3.24)

which is a inhomogeneous linear ODE, whose solution is the sum of the general homoge-
neous solution and a particular solution accounting for the inhomogeneity. Note that the
factor γ

τ is common and thus the solution is independent of it, hence it will be dropped
in the following. The two trivial solutions of constant ϕα ∈ ϕb are achieved within the
bulk and contribute no energy, which is simple to verify by insertion into the functional.

The homogeneous ODE reads

2
∂2ϕα
∂x2

+
16

π2ϵ2
(2ϕα) = 0 (3.25)

which by quick consultation of integration tables or by inspection of the characteristic
polynomial has the general real-valued solution

ϕHα = A sin(kx) +B cos(kx) (3.26)

k =
4

πϵ
(3.27)

with the constants A and B depending on boundary conditions. A particular solution is
obtainable by variation of parameters, which yields

ϕPα =
1

2
(3.28)

2 Well types of potentials avoid the ambiguity with the integration constant as they can use a definite
integral to infinity due to the lack of a bulk region.
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and thus the general solution to the inhomogeneous ODE describing the interface is

ϕα(x) = A sin(kx) +B cos(kx) +
1

2
. (3.29)

Obviously, if there are multiple interfaces, each interface would contribute energy. Thus
for the present goal of minimizing the energy, only solutions with one interface are sought.
For the above this implies a restriction on the domain of ϕα(x) as well as strict mono-
tonicity. Suppose that the domain is [−xt, xt] with xt being the transition coordinate
to the bulk. Demanding that the transition coordinate is symmetric is possible without
loss of generality, as a translation of the coordinates does not change the energy of the
solution. Given the restriction to the Gibbs simplex eq. (3.7), the range of ϕα(x) is [0,1].
Assume for now that that ϕα(x) is strictly monotonic increasing3, then the start and end
values of the domain and range are connected with the system4

ϕα(−xt) = 0 (3.30)

ϕα(xt) = 1 (3.31)

which has the solution {A = 1
2 sin(kxt)

, B = 0}. Thus only xt remains to be determined.
For this the earlier assumption of the existence of a single interface is employed. The
solution is periodic so far, with its period given by

P =
2π

k
=
π2ϵ

2
. (3.32)

However, the sine becomes non-monotonic after a quarter period, thus the transition
coordinate must be equal to a quarter period since at this point its derivative is also
zero:

xt =
π2ϵ

8
(3.33)

which fully specifies the inner problem. Combining everything we have

ϕα(x) =
1

2
(1 + sin(

4x

πϵ
)) (3.34)

3 Demanding a decrease only swaps the roles of A and B, yielding a cosine profile, which is simply a
shifted sine profile and thus contains the same energy.

4 These can also be seen as the continuity conditions connecting the interface region to the bulk
regions.
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which describes the interfacial region. By the earlier domain and range arguments,
ϕα(±xt) ∈ ϕb and thus the solution is continuous to the bulk region. Without any bulk
free energy densities, the bulk regions themselves need to contribute zero energy, which
by the earlier functional is only so if they have zero gradients and attain the bulk values.
Thus the profile for the entirety of the real line is given by

ϕα(x) =


0, x < −π2ϵ

8

1
2 (1 + sin( 4xπϵ )), |x| ≤ π2ϵ

8

1 x > π2ϵ
8

(3.35)

and hence the interface width W is sharply defined as π2ϵ
4 ≈ 2.5ϵ. Note that the x

coordinate can be shifted arbitrarily without a change in energy.

A shorter, though somewhat less rigorous, derivation can be done by simply assuming a
certain shape function and then determining its parameters based on the minimization of
free energy and the boundary conditions. However, this requires sharp intuition or prior
knowledge as to what kind of shape function is suitable. Alternatively, and in the spirit
of the phase-field simply being a handy variable for solving the free boundary problem,
the shape function can be assumed a priori and keeping the bulk potential indeterminate.
By employing the method of manufactured solutions a bulk potential wm can be found
such that the shape function minimizes the free energy functional with that specific wm.

Given the profile, the energy contained within the profile can be determined by inserting
it into the simplified two-phase functional:

F =

∫
V

ϵγ((ϕα − 1)
∂ϕα
∂x

− ϕα
∂ϕα
∂x

)2 +
16γ

π2ϵ
(1− ϕα)(ϕα)dV (3.36)

=

∫ +xt

−xt

4γ

π2ϵ

[
1 + cos2(

4x

πϵ
)− sin2(

4x

πϵ
)

]
dx (3.37)

= γ. (3.38)

in which the zero energy density of the bulk regions was exploited. This describes the
energy contained in a single equilibrium interface between two phases, which is equal to
the physical interface energy σ. Thus, the phase-field model parameter γ is equal to the
physical surface energy σ. This convenient relation follows from the choice of prefactors
for the functions a and w; different prefactors will yield a different expression, but it
should never depend on the interface width parameter ϵ.
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Any model with a driving force due to arbitrary couplings to other fields should also
recover these equilibrium solutions. For this reason the present dissertation employs the
so-called grand chemical potential formulation[117, 124], which decouples the chemical
driving force from the interfacial properties and thus can be used generically. This
primarily changes the way in which the concentration evolution equation is derived.
First, species conservation is assumed to hold with

∂c

∂t
= −∇ · (jd + jat) (3.39)

which contains the contributions of the diffusive flux jd and the antitrapping current jat.
The diffusive flux is defined as

jd = −M∇µ (3.40)

in which the mobility M is defined as

M(ϕ, µ) =
∑
α

∂c(ϕ, µ, T )

∂µ
D(ϕ) (3.41)

=
∑
α

∂cα(µ, T )

∂µ
hα(ϕ)D(ϕ) (3.42)

which will reduce the later evolution equation to Fick’s laws in the bulk regions. The dif-
fusivity D(ϕ) depends on the phases and species diffusing, with the simplest formulation
being

D(ϕ) =
∑
α

DαgD(ϕ) (3.43)

gD(ϕ) = ϕ, (3.44)

i.e. a linear interpolation of the bulk diffusivity Dα. Note that Dα can be taken to
be a matrix describing the interdiffusion of a K component system within a phase α.
For notational simplicity the diffusivity is assumed to be independent of temperature T .
The term ∂c

∂µ (µ, T ) is called the generalized susceptibility[124] and can be interpreted
to convert a change in chemical potential to a change in concentration. The so-called
antitrapping current jat[117] is a phenomenological tool to reduce effects of artificially
large interface widths for solidification problems. Its general formulation, assuming zero
diffusivity in the solid α, reads

jat = Q(gα(ϕ))
∂ϕα
∂t

(nα · nl)(cα − cl) (3.45)
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in which the change of a phase α is scaled by the dot product of the interface normals
nα = ∇ϕα

|∇ϕα| , realizing transport from the solid α to the liquid l proportional to how
quickly ϕα changed (∂ϕα

∂t ) and thus the interface moved in its normal direction. The
details of the individual terms within the expressions are given in [117].

In order to decouple the interfacial properties from the driving forces, the chemical po-
tential µ is taken to be the independent variable, from which the species concentration
c is derived. With this choice, the equilibrium concentration profile, defined by constant
chemical potential, simply follows from the phase-field profile and hence decoupling is
achieved. The concentration is now linked to the functional by another variation[124]

c = −δF
δµ

(3.46)

c = −∂ψ(ϕ, µ, T )
∂µ

(3.47)

c = −
∑
α

∂ψα(µ, T )

∂µ
hα(ϕ) (3.48)

c =
∑
α

cα(µ, T )hα(ϕ) (3.49)

in which the thermodynamic relation cα = −∂ψα

∂µ is exploited to arrive at the phase-
specific concentration cα(µ, T ). Note that eq. (3.49) precisely shows that the concentra-
tion profile follows from a phase-dependent, but constant function in equilibrium and the
phase-field variable. Taking the time derivative of eq. (3.49) yields

∂c

∂t
=
∑
α

∂hα(ϕ)

∂t
cα(µ, T ) +

∑
α

hα(ϕ)
∂cα(µ, T )

∂t
(3.50)

=
∑
α

∂hα(ϕ)

∂t
cα(µ, T ) +

∑
α

hα(ϕ)

[
∂cα(µ, T )

∂µ

∂µ

∂t
+
∂cα(µ, T )

∂T

∂T

∂t

]
. (3.51)

Now equate eq. (3.39) to eq. (3.51) and solve for the time evolution of the chemical
potential:

∂µ

∂t
=

[∑
α

hα(ϕ)

(
∂cα(µ, T )

∂µ

)]−1

(3.52)(
−∇ ·

(
jd + jat

)
−
∑
α

cα(µ, T )
∂hα(ϕ)

∂t
−
∑
α

hα(ϕ)
∂cα(µ, T )

∂T

∂T

∂t

)
.
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The divergence represents the transport by diffusion and the antitrapping current, with
the reaction terms accounting for a change in chemical potential due to phase changes
and temperature changes. In the present work, only the case of K = 2 is considered and
thus there is only one independent component c.

Within this work, the temperature will not be solved for explicitly. Rather, only analytic
expressions for the temperature will be used:

T (x, t) = Tiso (3.53)

T (x, t) = Tiso(t) (3.54)

T (x, t) = Tstart −G(x− vt) (3.55)

with the first two expression describing a purely isothermal condition with and without a
time dependence. The last expression is the so-called frozen temperature approximation
(FTA), due to Warren and Langer[125], often employed in solidification due to the large
difference in transport coefficients between thermal and mass transport. It assumes that
a linear temperature profile exists, characterized by its temperature gradient G, which is
pulled across the sample with a velocity v, which is also commonly called pulling velocity.

3.1.2 Phase-field model of sintering — diffusion only

The model presented in this section is that of [35]. It is similar to the model in sec-
tion 3.1.1 as it also employs the grand potential ansatz in order to decouple the driving
forces from the interface energy. However, it removes some specifics of the alloy solidi-
fication problem and adds some due to the sintering problem. The key changes are as
follows

• introduction of interfacial diffusivities

• removing the antitrapping current

with the reasons given in the following. In contrast to solidification in which the melt
diffusivity typically controls the speed of the process, sintering is primarily controlled by
processes occurring on grain boundaries and surfaces. Thus it is natural to extend the
diffusivity to account for these regions specifically. The antitrapping current is necessary
in alloy solidification for diffusional contrasts between phases in order to avoid excessive
solute trapping. While physical in nature, the magnitude is scaled with the interface
width within the phase-field method and hence computationally efficient interface widths
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would yield excessive solute trapping. However, if the phase-field interface width is close
to the physical width, only small errors will be incurred.

The evolution equations thus read as

τ(ϕ,∇ϕ)ϵ∂ϕα
∂t

= − δF
δϕα

− Λ (3.56)

∂µ

∂t
=

[∑
α

hα(ϕ)

(
∂cα(µ, T )

∂µ

)]−1

(3.57)(
∇ · jd −

∑
α

cα(µ, T )
∂hα(ϕ)

∂t
−
∑
α

hα(ϕ)
∂cα(µ, T )

∂T

∂T )

∂t

)

with mostly the same meaning as in section 3.1.1. A general simplification employed for
sintering is that only two kinds of phases will be considered, viz. the surrounding vapor
ϕV, V = 0 and solid grains of distinct, arbitrary orientation ϕα, α > 0. The diffusive
flux jd is still calculated as previously, but with a new definition of the mobility

jd =M∇µ (3.58)

M =Mα +Mgb
αβ +Ms

αV (3.59)

Mα =
∑
α

∂cα(µ, T )

∂µ
hα(ϕ)Dαϕα (3.60)

Ms
αV =

∑
α>V

Ds
α(
∂cα
∂µ

ϕα +
∂cV
∂µ

ϕV)I(ϕα, ϕV) (3.61)

Mgb
αβ =

∑
α>V

∑
β>α

Dgb
αβ(

∂cα
∂µ

ϕα +
∂cβ
∂µ

ϕβ)I(ϕα, ϕβ) (3.62)

in which the symmetry of the αβ phase description is exploited. Thus the mobility
includes the effect of interfaces enhancing diffusion in a scalar manner as found across
grain boundaries (gb) and surfaces (s). The function I(ϕα, ϕβ) = 4ϕαϕβ interpolates the
interfacial diffusion across the variable phase-field.

The interfacial diffusivities take into account the physical δi and phase-field W interface
widths by scaling these values as to match the diffusivity in the physical case:∫ δi/2

−δi/2
Dreal
i dx =

∫ W/2

−W/2
I(ϕα, ϕβ)D

sim
i dx (3.63)

→ Dsim
i = Dreal

i

8δi
ϵπ2

(3.64)
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which is equivalent to [126] except for the parametrization of the interface width. The
subscript i stands for both the surface diffusion and the grain boundary diffusion and
its accompanying interface width. The input values as listed in the later tables always
describe Dreal

i and are transformed to Dsim
i on simulation start.

This model effectively assumes that diffusive fluxes alone can fully describe the sintering
process. As shown by the author in chapter 6 however, models without advection have a
shrinkage which is strongly dependent on the system size. Thus the next section describes
a literature model including advective terms.

3.1.3 Phase-field model of sintering — advective

The model presented in this section is that of [33]. Since it differs substantially from the
previous model in its energetic description, different variables will be used, consistent
with the publication.

Within this model, the free energy functional is written as

F =

∫
f(ρ, η) + 0.5

∑
α

βη|∇ηα|2 + 0.5βρ|∇ρ|2dV (3.65)

f(ρ, η) = Aρ2(1− ρ)2

+B
[
ρ2 + 6(1− ρ)

∑
α

(η2α)− 4(2− ρ)
∑
α

(η3α) + 3(
∑
α

η2α)
2
]

(3.66)

with ρ representing the local density of material and η representing a vector of phase-
fields for the α grains. The surrounding vapor as identified in the previous section is only
implicitly defined as 1−∑α ηα. The bulk energy f in this case is a mix of the terms w,ψ
of eq. (3.1) and thus accounts for both the driving force as well as parts of the equilibrium
profile. A similar analysis as previously shown can be conducted[30] to relate the free
energy parameters to the physical parameters of interest. The evolution equations are
derived by combining a non-conservative Allen-Cahn equation and a conservative Cahn-
Hilliard equation and adding advective terms:

∂ηα
∂t

= −L δF
δηα

−∇ · (ηαv⃗α(x⃗)) (3.67)

∂ρ

∂t
= ∇ · (D(η, ρ)∇δF

δρ
− ρv⃗(x⃗)) (3.68)
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with L being the grain mobility, v⃗α(x⃗) the local velocity of an α grain, D representing the
local diffusivity and v⃗(x⃗) the local velocity of the density. The diffusivity is formulated
as

D(η, ρ) = Dvolϕ(ρ) +Dvap(1− ϕ(ρ)) (3.69)

+Dsurfρ(1− ρ) +Dgb

∑
α

∑
β ̸=α

ηαηβ

ϕ(ρ) = ρ3(10− 15ρ+ 6ρ2) (3.70)

in order to include bulk, surface and grain boundary diffusion.

The velocities are calculated by postulating a force density on the grain boundaries

d⃗Fα = κ
∑
β ̸=α

(ρ− ρgb)g(α, β)(∇ηα −∇ηβ) (3.71)

with the density difference (ρ − ρgb) acting as a kind of spring term, which allows κ to
be interpreted as a stiffness. The gradient difference ensures conservation of momentum
and the function g(α, β) is used to identify grain boundaries via

g(α, β) =

{
1, ηαηβ ≥ ηthαβ

0, else.
(3.72)

The force density is integrated to determine a resultant force which is assumed to act on
the center of mass of the particles

F⃗α =

∫
V

d⃗FαdV (3.73)

which would induce a torque if the force density is distributed asymmetrically w.r.t. the
line connecting the center of the GB and the center of mass. This effect is dropped here
for conciseness as it has no influence on densification[36]. This force is now assumed to
cause an instantaneous velocity via

v⃗ηα =
mt

Vα
F⃗α (3.74)

Vα =

∫
V

ηαdV (3.75)
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i.e. a mobility mt is introduced and the particle force is scaled with the particle volume
Vα. Finally, the velocities obtained thus are interpolated as

v⃗α(x⃗) = v⃗ηαηα(x⃗) (3.76)

v⃗(x⃗) =
∑
α

v⃗α(x⃗) (3.77)

which ensures a smooth transition across interfaces.

48



3.2 New model developments

3.2 New model developments

In this section the new developments produced during the dissertation are detailed. It
collects the developments of the author’s papers [69, 80, 114–116].

3.2.1 Nucleation

The phase-field model of alloy solidification described in section 3.1.1 does not naturally
incorporate the spontaneous formation of new phases. Thus a nucleation mechanism
needs to be modelled and implemented. For this it is assumed that nucleation of new
phases happens primarily at existing solid-liquid sl interfaces. At any such point, if
the driving force ψlP (µ, T ) of a trial phase P w.r.t the liquid phase exceeds a critical
value ψB(µ, T ), then the liquid phase is recolored to the trial phase P . The critical
value ψB plays the role of a nucleation barrier. Since the scale of the simulation is far
above that of classical nucleation theory and heterogeneous nucleation is considered, the
classical expression for the nucleation barrier cannot be employed. Instead, the barrier
is assumed to be given by the state in which the present interface would begin to melt.
This is defined by the equilibrium chemical potential µeq,sl(T ) of a plane sl interface
with the associated barrier being ψB = ψlP (µeq,sl(T ), T ), which is compared against
ψlP (µ, T ), i.e. the actual field value. Furthermore, ψlP (µ, T ) is enforced to be positive
such that there is a driving force for growth of the trial phase P . Mathematically this
can be written as

ψlP (µ, T ) = ψl(µ, T )− ψP (µ, T ) (3.78)

ψlP (µ, T ) > 0 (3.79)

ψlP (µ, T ) > ψlP (µeq,sl(T ), T ) (3.80)

with the currently present interface being an sl interface.

A graphical representation of this is given in fig. 3.1 for a eutectic system below its
eutectic temperature: The equilibrium points with their associated µeq,sl are depicted
with the black circles, with their bounding polygon describing the region where eutectic
growth is possible. Outside of this region one of the solid phases will start to melt. Since
this state is below the eutectic temperature, the other solid phase will still be stable and
thus suitable for nucleation.

This tacitly excludes the effect of surface energy and thus nuclei can be eliminated af-
terwards due to its effects. The effect of surface energy could be included in the spirit of
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Figure 3.1: The grand potentials of the phases over the chemical potential for a constant temperature
are depicted. The shaded grey region in the center describes the space in which eutectic
growth is possible, with the colored shaded regions indicating where nucleation of the
respectively colored phase is possible. The driving force for nucleation of either phase is
depicted by arrows for two chosen chemical potentials.

classical nucleation theory by adding a surface energy and curvature dependent barrier
term. Furthermore, the fluctuation distribution of a real system could be accounted for
by including the appropriate random distribution in the driving force.
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3.2.2 Improving sintering models

As will become clear upon reading chapter 6, the currently most popular5 phase-field
model for solid-state sintering [33] has several defects which need to be addressed. These
defects are

1. non-monotonic reduction of free energy

2. change of dihedral angle

3. unshrinkage

4. implicit compression and rarefaction

5. non-convergence of densification with system size

and will be addressed in order in the following subsections. The first three defects stem
from the fact that the force terms in eq. (3.71), rewritten here for further use with the
concentration c instead of the density ρ

⃗dFα = κ
∑
β ̸=α

(c− cgb)g(α, β)(∇ηα −∇ηβ) (3.81)

have no connection to the energy functional from which the rest of the evolution equations
are derived from. More specifically, these force terms lead to a non-vanishing advection
velocity in states which are supposedly equilibria according to the energy functional. The
term cgb is identified as the main factor for this. It is classically interpreted as the “grain
boundary equilibrium concentration” ceqgb, but cannot be taken to have this sense with the
energy functional assigning no different concentration to grain boundary regions. This
directly leads to a non-monotonic reduction of free energy and its accompanying change
of the equilibrium dihedral angle. The effect of unshrinkage, i.e. the lengthening of a
sample over time even though it is not favourable to do so, is linked to this: If the fluxes
due to the energy functional increase the concentration c on the grain boundary above
cgb, then ⃗dFα will be oriented away from the grain boundary and hence the advection
fluxes will stretch the sample. These points are also discussed in-depth in chapter 6. The
implicit compression/rarefaction behaviour is due to the interpolation of the velocities.
Finally, densification does not converge because the displacement originating somewhere
in a body is not propagated correctly through the system.

5 Based on the number of citations determined by a search for “phase-field sintering” on Web of Science,
which yielded 190 citations for [33] at the time of writing, with the next phase-field model being
[127] with 68 citations.
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3.2.2.1 Fixing the equilibrium

A quite generic method of choosing cgb such that these problems are resolved is by
approximating it with the present simulation state S in a suitable sense such that a
value close to the true ceqgb is obtained. Two methods for this will be investigated, both
based on the approximation

ceqgb ∼ cα(µeq +∆µ, T ) (3.82)

i.e. the grain boundary equilibrium concentration is equivalent to the equilibrium con-
centration of a bulk α grain, plus a deviation from e.g. curvature effects. In the first
method, the deviation is approximated by

∆µ = γsκ, (3.83)

i.e. the Gibbs-Thomson equation is employed. The curvature κ is approximated based
on the particle volume and the assumption of a circle (two dimensions) or sphere (three
dimensions).

For the second method it is assumed that the chemical potential on a particle’s surface
is an approximation of ∆µ, with its average

µ̂α =

∫
µϕαϕVdV∫
ϕαϕVdV

(3.84)

taking into account local variations. Note that if the equilibrium chemical potential µeq
of a plane α surface is not zero, this chemical potential needs to be subtracted from µ̂α.

Both methods obtain an approximation ∆µα per grain, but the value of cgb(S) should be
symmetric w.r.t. the grains since it describes a pairwise interaction. A simple averaging
of both values per grain boundary guarantees this symmetry. The effects of these methods
will be shown in chapter 7.

An alternative method, not considered within the present work, is to use a related dy-
namic variable, e.g. mass flux into the GB, for specifying the deviation from equilibrium.
This variable should of course vanish in equilibrium and should be well-defined across
the bulk, interface and triple point regions consisting of a GB and the vapor phase. The
last condition is important, as any initial contact between grains in a phase-field model
will be described by regions more akin to triple points than GBs.
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3.2.2.2 Compression and rarefaction

Consider the formulation due to Wang [33], reproduced in section 3.1.3, for adding rigid-
body motion to a phase-field model of sintering of eqs. (3.67) and (3.76), in one dimension:

∂ηα
∂t

= −L δF
δηα

−∇ · (ηαvα(x)) (3.85)

vα(x) = vηαηα(x) (3.86)

and let us drop the variational derivative, so we can focus on the effect of advection:

∂ηα
∂t

= −∇ · (ηαvα(x)) (3.87)

= −∇ · (η2αvα) (3.88)

which is in fact the inviscid Burgers equation up to a multiplicative factor vα. Thus
it naturally allows for regions to be compressed or rarefied, possibly leading to shock
formation or smearing the interface more than would be expected. To show this effect
in a simple example, the hyperbolic PDE solver ClawPack[128–130] was employed to

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x coordinate / -

0.0

0.2

0.4

0.6

0.8

1.0

 / 
-

initial profile
70 steps, interpolated
70 steps, advected

Figure 3.2: Comparison of employing eq. (3.88) (velocity interpolated) and eq. (3.89) (constant velocity
advection). The initial profile is severely distorted by eq. (3.88) due to rarefaction, whereas
advection leaves the profile undistorted.
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calculate the profile evolution across a particle-vapor interface with eq. (3.88) as well as
with simple advection

∂ηα
∂t

= −∇ · (ηαvα) (3.89)

and employing non-reflecting outflow boundary conditions, up to some arbitrary time.
The results are shown in fig. 3.2 and it is quite evident that the initial profile is severely
altered (rarefied) by eq. (3.88) but not by eq. (3.89). A compression effect would be
observed if the velocity profile across a grain boundary would be employed. Given that
solids are often assumed to be incompressible6, these effects should not be present.

A direct way to exclude these effects when advecting grains is not to interpolate in the
first place, but to directly use the rigid-body velocity vα for advection. This reduces the
grain advection to eq. (3.89) and thus does not contain any compression or rarefaction
effects. However, the concentration equation still contains the same problem. Here a
bit more care is required, as the kind of phase-field profile employed plays a role. For a
hyperbolic tangent as occurs in the model described in section 3.1.3, the suggestion of
[109]

vα(x) =

{
vα, ηα(x) > ηth

0, else
(3.90)

v(x) =
∑
α

vα(x) (3.91)

can be employed, which basically decomposes the domain into regions of constant velocity
with jumps in between, according to the threshold value of ηth. For the obstacle potential
as employed in the majority of the dissertation a simple interpolation scheme which
reduces this effect is

vc(x) =

∑
α!=V vαϕα(x)∑
α!=V ϕα(x)

(3.92)

which exploits the fact that the vapor phase V is explicitly tracked and that bulk regions
are defined by constant values. This also results in jump functions for the velocity across
particle-vapor interfaces, but allows for some compression within the grain boundary
since vacancy annihilation there should lead to a temporary density increase.

6 A case can be made for the presence of compression on the grain boundary as long as vacancies are
being absorbed, since this implies a density change.
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The model modifications presented so far will be employed in chapter 7.

3.2.2.3 Convergence of shrinkage

The problem of non-convergence of shrinkage with system size stems from the inhomo-
geneous shrinkage implied by the model for calculating velocities, as shown in chapter 7.
More specifically, if the model of section 3.1.3 is employed, only particles on the edge of
a body can densify w.r.t. any particles on the inside of a body, as these have missing
neighbours. In order to develop a model which avoids this problem, molecular dynamics
(MD) simulations are conducted to determine rules of motion for grains during the sin-
tering process. The simulations leading to the model are detailed in chapter 8, with the
observed rules being recounted here, followed by the model development. Key to these
studies was the capability of explicitly identifying a link between the displacement of
individual grains and the number of vacancies which are absorbed at grain boundaries.
By considering several geometric variations, the following qualitative rules are obtained:

1. the displacement of individual atoms is largely homogeneous within each grain
(rigid-body assumption)

2. the grain displacement due to vacancy absorption scales linearly the grain boundary
area

3. the grain displacement due to vacancy absorption does not scale with the grain
length

4. the grain displacement due to vacancy absorption scales linearly with the number
of absorbed vacancies

5. the displacement due to vacancy absorption at individual GBs can be overlaid via
superposition

The first rule is already present in the model for velocity calculation. The second and
third rule are violated, as the grain volume is assumed to be the determining factor and
not the grain boundary area. However, this violation only scales the absolute magnitude
of velocities, which does not have any effect on the non-convergence with system size.
While the number of vacancies absorbed is not identified explicitly by the model, the
construction of the force terms c − cgb effectively imply a kind of relaxation towards
an equilibrium concentration of vacancies, thus can be roughly interpreted as a scaled
number of vacancies absorbed given the linear relation between number density and
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concentration. The superposition rule is not present in the model and will be shown to
be the factor which allows convergence.

It is useful to split the application of these rules into two parts: First, a model relating the
displacement jump ∆uαβ across a grain boundary to its properties will be determined.
Second, the displacement jumps are correlated to each other in a system of equations
whose solution gives individual grain displacements uα.

Consider an αβ bicrystal, whose grain boundary absorbed ∆N vacancies. Assume that
each vacancy contributes a volume change equivalent to the atomic volume Ω. Now split
this volume change into an area — identified to be the grain boundary area Agb — and
a length change ∆L. Thus we have

∆V = Ω∆N = Agb∆L (3.93)

∆L =
Ω∆N

Agb
(3.94)

with ∆L representing the length change of the entire bicrystal, with ∆L > 0 implying
vacancy absorption and thus shrinkage. This relation accounts for rules 1–4. Since we
are dealing with a bicrystal whose grains move rigidly, the length change ∆L is related
to the individual displacements:

uα − uβ = ∆L (3.95)

= ∆u (3.96)

which is also simply the displacement jump ∆u across the grain boundary. By employ-
ing the superposition property this should hold for all grain boundaries simultaneously,
yielding a matrix equation

Cu = ∆u. (3.97)

The contact matrix C consists of rows with zeros except for two entries of +1 and −1,
representing the sign of the displacement jump and the orientation of the grain boundary
plane within the laboratory frame. The grain boundary plane enters the problem, as the
grains should move towards the grain boundary for vacancy absorption and v.v. for
generation.
Equation (3.97) is, in general, overdetermined as the number of grain boundaries B will
tend to be larger than the number of grains N . For the special case of a linear chain
of grains, we have B = N − 1. Accounting for conservation of momentum adds another
equation, which makes the matrix C square. Since the equations in this special case
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are linearly independent, the matrix C is also of full rank and thus the system is also
uniquely solvable. The structure of the matrix, excepting conservation of momentum,
can also be thought of as a finite difference matrix between grains. Hence the action of
matrix can be thought to be differentiation, with its inverse being the integration of ∆u
across space.

For the more general case of arbitrary systems of grains, eq. (3.97) can be solved, in
principle, with a least-squares approach. As will become clear from the following ad-
justment of the model for the phase-field model, a direct least-squares approach will be
computationally inefficient. Before proceeding to this however, the present model will be
investigated as to whether its shrinkage is independent of system size.

Consider a chain of N equally-sized cuboid grains of individual length l and constant
grain boundary area A. Assume that each of the B = N − 1 GBs has just absorbed ∆N

vacancies, which induces a displacement jump ∆u across each GB. By the superposition
property, the solution is the sum of all solutions only dealing with a single GB. Thus
without loss of generality, assume that only the first GB absorbed vacancies. This results
in the system

u1 − u2 = ∆u (3.98)∑
i

ui = 0 (3.99)

with conservation of momentum employing the equal grain size assumption. The first
equation directly resolves to u2 = u1−∆u. Since there is no displacement jump between
grains 2 and 3, 3 and 4 and so on, we must necessarily have

u2 = u3 = u4 = . . . = u1 −∆u (3.100)

and inserting this into conservation of momentum yields

u1 + (N − 1)(u1 −∆u) = 0 (3.101)

Nu1 = (N − 1)∆u (3.102)

u1 =
N − 1

N
∆u (3.103)

u2 = (
N − 1

N
− 1)∆u (3.104)

This procedure can easily be repeated for every grain boundary yielding a similar ex-
pression for the grain displacement. The displacements will always be weighted by how
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many grains are to the left and to the right of the grain boundary7 absorbing vacancies,
i.e.

ui =
N − i

N
∆u (3.105)

ui+1 = (
N − i

N
− 1)∆u (3.106)

with all grains left of grain i exhibiting the same displacement as grain i and v.v. for
grains right of grain i + 1. The superposition property now lets us sum over all these
problems to arrive at the solution to our original problem. For simplicity, we only consider
the leftmost grain

uSP1 =

N−1∑
i=1

N − i

N
∆u (3.107)

=
∆u

N

N−1∑
i=1

N − i (3.108)

=
∆u

N

[
N(N − 1)− (N − 1)N

2

]
(3.109)

=
∆u(N − 1)

2
(3.110)

and note that there are only N − 1 GBs and thus limit the sum to N − 1. As a sanity
check, consider N = 2 in which the above formula yields uSP1 = ∆u

2 which is also the
result of solving eqs. (3.98) and (3.99) by hand. It is entirely sufficient to only consider
the leftmost grain since the displacement field should be point symmetric w.r.t. the total
center of mass (conservation of momentum) and thus uSPN = −uSP1 . Furthermore, the
total length change of the chain is simply uSP1 − uSPN = ∆u(N − 1). Hence we have with
the definition of strain

e =
∆L

L
(3.111)

=
∆u

l

N − 1

N
(3.112)

which converges to a constant (∆ul ) as N goes to infinity.

7 In effect the grains with non-absorbing boundaries can be lumped together with their adjacent,
absorbing grain.

58



3.2 New model developments

This would imply some finite dependence of the strain on the system size (here number
of grains N) as a whole. However, each contact experiences the same strain ∆u

l . The
apparent non-convergence at low N results from the choice of end-to-end distance as
the reference length. If the reference length is taken to be measured between center of
masses, then N cancels out and constant strain independent of system size is achieved.

3.2.2.4 Translation into the phase-field model

Now that the shrinkage or equivalently strain has been shown to be convergent we can
translate the earlier model, specified in terms of what is available on the MD scale, to a
phase-field model. The matrix equation of eq. (3.97) linking the grain displacements to
the displacement jumps can be directly translated as-is, with the grain boundary plane
being identified with the one-sided grain boundary unit normal n⃗αβ defined below.

The remaining problem is the specification of the displacement jump ∆u in terms of
variables accessible within the phase-field. For this the relations

Vαβ =

∫
GB

4ϕαϕβdV (3.113)

Aαβ =
Vαβ
l0

(3.114)

∆⃗uαβ =
1

Vαβ

∫
GB

4ϕαϕβ
Ω

Aαβ
∆nαβn⃗αβdV (3.115)

are employed. First, the grain boundary volume Vαβ is determined and divided by the
unit grain boundary width l0 =

∫ 1

0
4ϕαϕβdx = π2ϵ

8 to obtain the grain boundary area
Aαβ . Next, the grain boundary “phase” weighted number density of absorbed vacancies
∆nαβ is integrated over each αβ grain boundary separately, which with the atomic
volume Ω yields the volume generated/destroyed via vacancy generation/absorption. The
orientation of the grain boundary is taken into account by employing the grain boundary
unit normal n⃗αβ =

∇(ϕα−ϕβ)
|∇(ϕα−ϕβ)| in the spirit of [33]. The number density n can be expressed

with the concentration c via

n =
Na
Vm

c (3.116)

with Avogadro’s constant Na and the molar volume Vm.

Note that this description requires tracking the pairwise interactions Vαβ , ∆nαβ and
n⃗αβ . In a naive implementation these would be N2 matrices, which would need to be
held for each parallel process. Hence excessive memory and communication requirements
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would follow from this naive approach. Instead, these matrices are distributed across the
processes and only a fixed number of neighbours is assumed to exist for each phase α:
This effectively results in a constant memory usage per parallel process. However, due
to the distributed nature of these matrices, the solution speed of eq. (3.97) is limited
by communication. Since the matrix C effectively represents differentiation, the spatial
distribution of ∆u determines the shape of u. Assuming that all grain boundaries have
similar vacancy absorption behaviour, then the spatial dependence of ∆u can be taken to
be a constant function, plus some local variations which do not affect the overall solution
shape. Hence a linear ansatz u(x) = m(x − xm) can be employed for u, with a slope
m, each particle’s position x and the total center of mass xm. This massively reduces
the calculation and communication requirements and is described in greater detail in
chapter 8.

The final piece is the calculation of ∆nαβ . For this a relaxation ansatz with a relaxation
time tr is employed

∂n

∂t
= −n− ngbeq

tr
(3.117)

with the “equilibrium grain boundary number density” ngbeq defined via eqs. (3.82) and (3.84)
in terms of the mole fraction c.

3.2.3 Influence of stress on densification

Stress is often applied in sintering in order to speed up densification. The present model
allows a quite simple way of including part of this mechanism: Within the model, the
speed of densification is controlled by the vacancy absorption rate of eq. (3.117). It is
dependent on the equilibrium GB vacancy concentration cgbeq which is calculated based
on an estimated capillary pressure eqs. (3.82) and (3.84). Hence one can simply shift
this pressure by an externally applied stress. An uniaxial stress state on the GBs can be
achieved by projecting the applied stress direction onto the grain boundary normal, i.e.

cgbeq(S) = cα(µs + σ(n⃗αβ)) (3.118)

σ(n⃗αβ) = σ(v⃗σ · n⃗αβ) (3.119)

with the direction of uniaxial applied stress v⃗σ. In the case of an isotropic pressure
the projection step can be skipped. This approach is in the spirit of Coble[131] in that
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the driving force for sintering, capillary pressure, is summed together with the external
pressure.

As creep and sintering are deeply related phenomena, a sintering model should also be
naturally be able to approximate the creep process. This will be tested in chapter 9 by
applying uniaxial tensile stress to almost dense bodies.

3.3 Parametrizing real systems

The parameters given in the previous sections can be related to real systems, allowing
for the generation of a digital twin. The easiest parameter given the current model is
the surface energy σ, which is exactly the model parameter γ as previously shown. The
interface width parameter ϵ can be related to the physical interface width, but fixing it to
the physical width is not necessary. This is because the phase-field is an approximation
to a free boundary problem and as long as this approximation holds, the actual width is
only a numerical parameter.

The situation is more complex for the relaxation coefficient τ . If a pure phase-field prob-
lem is considered, it can be easily related to the interfacial mobility[132] as measurable
e.g. for grain growth. For phase-field problems involving other fields, the appropriate
kinetic boundary conditions need to be retrieved if τ is to be related to a measurable pa-
rameter. If it is simply taken to be a numerical parameter, then it should be chosen such
that the controlling field is not altered. For example, in a diffusion-controlled process
such as sintering, it should be chosen such that the phase-field relaxes much faster than
the diffusion field, effectively hiding the kinetic influence of the phase-field at a smaller
time scale. While practical, this sets a limit on the ratio between diffusive and kinetic
speeds which can be employed. It can also lead to restrictive time step sizes if an explicit
scheme is employed.

A more quantitative treatment is possible with an asymptotic analysis[117]: This method
can be used to show that the phase-field model derived in section 3.1.1 recovers the kinetic
Gibbs-Thomson condition for near-equilibrium one-sided solidification as

∆T = β̄v (3.120)

=
T

L

[
τ − ϵA

(cβ(µeq, T )− cα(µeq, T ))
2

Dβ
∂cβ(µ0,T )

∂µ

]
v (3.121)
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with the effective undercooling ∆T , the sharp interface kinetic coefficient β̄, the tempera-
ture T , the latent heat L and a constant dependent on the chosen interpolation functions
A. This predicts that the apparent kinetic coefficient depends on both the interface width
ϵ and other parameters of the energetic and kinetic description of the system. In order to
approximate a situation with zero kinetic undercooling, representing slow solidification,
the bracketed term can be set to zero, yielding

τ = ϵA
(cβ(µeq, T )− cα(µeq, T ))

2

Dβ
∂cβ(µ0,T )

∂µ

(3.122)

for the phase-field relaxation coefficient τ . If the kinetic coefficient is known, the full
expression can be used to calculate a τ such that the kinetic coefficient is recovered.

The specification of the driving forces is simpler and more complex at the same time.
They enter the problem simply as-is given appropriate interpolation functions but their
actual values depend on the local state. While they can be computed by coupling di-
rectly to so-called CALculation of PHAse Diagrams (CALPHAD) [47, 48] programs,
this coupling is computationally expensive. Instead, in the present work the programs
are employed to tabulate the free energies and other thermodynamic variables of inter-
est, based on which an approximate function is determined. Especially for the grand
potential model, the general parabolic approach[133] for the Gibbs energy

Gα(c, T ) = A(T )c2 +B(T )c+ C(T ) (3.123)

is employed, with A(T ), B(T ), C(T ) being temperature-dependent coefficients which pro-
duce a “good” approximation of the data generated by CALPHAD programs.

The straightforward approach of simply minimizing the residuals

Gα(c, T )−GCALPHAD
α (c, T ) (3.124)

e.g. via a least-squares procedure generally does not necessarily yield good results. While
the error in terms of the Gibbs energies will look good by virtue of the fitting procedure,
the resulting phase diagram need not be close to the actual phase diagram. This is
due to derived properties of the Gibbs energy, e.g. partition coefficients, latent heats or
heat capacities, not being close to their actual values. Obviously, the target function Gα
places no constraints on these, but is simply the result of the least-squares procedure.
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The procedure can easily be enhanced by taking these properties into account however,
extending the space over which to minimize:

Gα(c, T )−GCALPHAD
α (c, T ) (3.125)

µα(c, T )− µCALPHAD
α (c, T ) (3.126)

Gα(c
CALPHAD
α , T ) + µα(c

CALPHAD
α , T )(cCALPHAD

β − cCALPHAD
α )−Gβ(c

CALPHAD
β , T )

(3.127)

µα(c
CALPHAD
α , T )− µβ(c

CALPHAD
β , T ) (3.128)

with values derived from CALPHAD marked as such. The first two parts simply try to
match the Gibbs free energy and the chemical potential of each phase α which is under
consideration. The next two parts include the equilibrium states cCALPHAD

α , cCALPHAD
β

derived from CALPHAD. This ensures that the phase diagram derived from a set of
fitted Gibbs energies stays close to the one produced by CALPHAD. Since these are
directly related to further derivatives of the Gibbs energy, latent heat and heat capacity
will naturally also be approximated reasonably, given that the their dependence can in
principle be represented by the chosen basis functions in (c, T ).

A somewhat more convoluted approach is necessary if no CALPHAD data is available,
as in the case of freeze-casting. For this, the theoretical model of Peppin[76, 78] is
employed to generate data of phase equilibria between the suspension and ice. Within
the model, the suspension is assumed to be a single phase, not a phase mixture of liquid
and insoluble particles. Its state is thus characterized by the volume fraction of particles,
which changes its thermodynamic potentials and hence the equilibrium w.r.t. the ice
phase. Simply matching these equilibria is possible, but this does not fix the energy scale
in terms of latent heat and thus easily results in arbitrarily large free energies. In order to
avoid this, the concentration independent term C(T ) in eq. (3.123) is fitted to known data
of pure water and ice, based on the International Association for the Properties of Water
and Steam (IAPWS) formulations[134]. This fixes the energy scale and reproduces the
latent heat to a precision of 1.3%. While keeping this C(T ) fixed, the terms A(T ), B(T )

are fitted to reproduce the phase equilibria of [76, 78]. This procedure will be described
in greater detail in chapter 5.

Finally, some considerations on nondimensionalization are in order. The term “nondi-
mensionalization” is used in two senses within the literature: First, the identification of
the controlling parameters of a (differential) equation. Second, the scaling of physical
parameters such that errors for finite precision calculation are reduced. This is com-
monly assumed to be in the interval [0, 1] and thus the goal of second sense is to map
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the nondimensionalized values into this interval. These two senses can coincide, but need
not.

In order to identify the controlling parameters, consider for example a simple one-
dimensional steady diffusion equation for a temperature T

0 =
∂2T

∂x2
(3.129)

and inhomogeneous Dirichlet boundary conditions, leading to a solution of the form

T (0) = 0 (3.130)

T (l) = T1 (3.131)

T (x) = T1
x

l
(3.132)

In terms of the original equation eq. (3.129) there are the variables and their dimensions

[T ] = K

[x] = m

Simply based on these units, there is in fact no dimensionless number which can charac-
terize the system, as no combination of T, x can become dimensionless. Equipping the
system with boundary conditions, the additional variables

[T1] = K

[l] = m

enter the problem. Dimensionless numbers are trivially achieved by choosing x̄ = x
l and

T̄ = T
T1

. Based on this one would say that the natural scales of space and temperature
for the problem would be l and T1. The spatial scale on which temperature changes is
indeed x

l and thus pure dimensional analysis captured this aspect of the problem. For
the present problem, these choices of scales would scale both variables into the interval
[0, 1], which is also the goal of the nondimensionalization in the second sense. Do note
that the natural scales will change with the boundary conditions and the specifics of
the equations being employed. But once nondimensionalization is achieved, all solutions
have the same form.
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Consider now what happens if the equation is in fact time-dependent and has a source
term

∂T

∂t
= α

∂2T

∂x2
+ kT (1− T/Tm) (3.133)

which introduces new variables t, α, k, Tm with their dimensions

[t] = s

[α] = m2s−1

[k] = s−1

[Tm] = K.

Suppose we have some general scales such that

T̄ =
T

Tc

x̄ =
x

xc

t̄ =
t

tc

ᾱ =
α

αc

k̄ =
k

kc

are all dimensionless. This transforms the original equation to

Tc
tc

∂T̄

∂t̄
=
αcTc
x2c

ᾱc
∂2T̄

∂x̄2
+ kcTck̄T̄ (1− T̄ /T̄m) (3.134)

∂T̄

∂t̄
=
αctc
x2c

∂2T̄

∂x̄2
+ tckck̄T̄ (1− T̄ /T̄m) (3.135)

in which one can cancel the temperature scale, since without boundary conditions the
temperature scale is unfixed8. The diffusion term is scaled by the dimensionless number
αctc
x2
c

, whereas the source term by tckc. Thus the characteristic time scale of diffusion

8 By construction of the reaction term a natural choice would be Tm however.
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follows as tc =
x2
c

α and for reaction as tc = 1
kc

. Suppose that these time scales are similar,
then

x2c
α

=
1

kc
(3.136)

→ xc =

√
αc
kc

(3.137)

which fixes a characteristic length scale xc9. This length scale is independent of the
chosen boundary conditions and thus the position scale need not lie in [0, 1]. Now, what
about the scale for the thermal diffusivity α? Given that there are already scales for
length and time, the scale cannot be chosen independently but follows as

x2c
tc

= αc
1

kctc
(3.138)

= αc (3.139)

with the earlier reaction timescale suggesting that kctc = 1. However, the equation is in
fact characterized by more dimensionless numbers as can be shown with Buckingham’s π
theorem: The number p of independent dimensionless variables in a problem described by
n physical variables in k independent physical dimensions is p = n−k. In the considered
equation, the variables are T , t, α, x, k and Tm (n = 6) in the dimensions of length, time
and temperature (k = 3). Thus there are p = 3 independent scales, with the missing
scale being temperature. Now, consider adding more terms to the equation

τ2
∂2T

∂t2
+ τ1

∂T

∂t
= α

∂2T

∂x2
+ kT (1− T/Tm) (3.140)

which introduces two new physical variables τ2 and τ1 but adds no physical dimensions,
suggesting p = 5 independent scales. However, in terms of basic physical dimensions
there are still only length, time and temperature. While the natural choice of these
scales will depend on the specifics of the equations, there are still only three values to
be chosen, whereas 5 scales characterize the equations. These scales also need no longer
map the nondimensional values into the interval [0, 1], which is preferable for a numeric
implementation. Thus the worth of identifying the natural scale becomes smaller as the
equation(s) to describe contain more and more physical variables. Limiting behaviour,

9 If instead of temperature one would solve the phase-field equation eq. (3.13) without driving forces,
the characteristic length scale would end up being ϵ.
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in which some variables are assumed to be more dominant, can be used to still gleam
physical behaviour in the appropriate limits, but does not help with the numerical side.

Due to the above considerations, nondimensionalization will be done in a pragmatic way
likely to yield nondimensional values on the order of unity. Specifically, the scales will be
chosen according to the physical problem to be considered. For example, if a particle of
radius r ought to be resolved, then choosing a length scale l0 on a slightly smaller scale
is appropriate. The time scale is chosen relative to the diffusion process (with associated
diffusivity D) which controls the process

t0 =
l20
D0

(3.141)

D0 = D, (3.142)

which also maps the diffusivity to 1. The energy scale is chosen depending on whether
the process is driven by a phase transformation or by capillary forces. If driven by a
phase transformation (e.g. solidification), the volumetric latent heat L is chosen as the
energy density scale

Er,0 = L (3.143)

→ E0 = Ll30 (3.144)

whereas when capillary forces dominate (e.g. sintering) the surface energy σ is chosen as
the surface energy scale

Es,0 = σ (3.145)

→ E0 = σl20. (3.146)

In both cases, an energy scale E0 is derived based on the energy density scales. This
also implies a mass scale if the length and time scales have already been defined. If the
temperature is constant, the choice of scale is arbitrary. If the temperature is variable,
it is chosen to be a temperature for an invariant reaction Ti related to the process being
studied, e.g. melting of a pure phase or a eutectic reaction under constant pressure
conditions. Finally, the molar volume scale is chosen to be the molar volume of a solid
phase. These choices will be reported on in each subsequent chapter which conducts
simulations related to a physical system.
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This chapters focuses on the solidification of Al-rich Al-Cu alloys, investigating the
growth of dendrites, eutectics, as well as their interaction. It is based on the author’s
publication[69] (© Elsevier. Reproduced with permission. All rights reserved), with the
additional content of the preprint [135] (temperature gradient influence on the eutectic
spacing, complete directional solidification) which were cut from the paper due to length
restrictions. The following sections are taken verbatim from the preprint, with only mi-
nor linguistic and stylistic changes to account for the move from a paper to a chapter
in the present dissertation, as well as some clarifications due to the referees. Numerical
details and relevant literature are also given in the paper.
The parametrization of the Al-Cu system was previously tested in [136]. It was suc-
cessfully compared to both the Lipton-Glicksman-Kurz theory [137] for the dendrite
operating state as well as the scaling of the selection parameter σ∗ with anisotropy
strength following MST in the small Péclet number limit. Hence in the following no
further match with dendritic theory is sought. Within [136] first forays into coupled
dendritic-eutectic growth were done, with the principal results being that a temperature
gradient and nucleation are necessary for its occurrence in phase-field simulations. The
present investigation expands this significantly by extending the nucleation mechanism
to account for variable temperature (section 3.2.1), formulating a theory delineating eu-
tectic from dendritic-eutectic growth (section 2.2.3), investigating the effect of coupled
growth on the individual microstructure as well as taking a more detailed view of the
eutectic morphology in three dimensions.

First, the parametrization will be explained. Next, a simple implementation test is
done to verify that the correct equilibrium properties are achieved even with nucleation.
Based on this, the data necessary for solving the model developed in section 2.2.3 is
gathered while also validating the kinetic influence of nucleation with the Jackson-Hunt
theory for eutectics. With this data in hand, the boundary curve separating eutectic
from dendritic-eutectic morphologies is calculated. This curve is then tested for several
states with phase-field simulations, with the resulting microstructures investigated as to
whether they are significantly different from the pure morphologies.
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4 Solidification of Al-Cu alloys

The short messages of this chapter are:

• the operating states of dendrites and eutectics are largely unchanged when growing
together

• close to the dendrite-eutectic interface, the eutectic has variable phase widths

• secondary dendrite arms can be suppressed by coupled growth

• the three-dimensional morphology of the eutectic is sensitive to solid-liquid anisotropy

4.1 Parametrization of the Al-Cu system

In order to approximate the material system Al-Cu in the phase-field simulations, the
energies describing the material system are approximated based on the thermodynamic
CALPHAD database from Witusiewicz et al. [138] and by using the parabolic approach
described in eq. (3.123). A linear temperature dependence of each coefficient is assumed.
The input data includes both Gibbs free energy and chemical potential values as well
as phase equilibrium points, both determined via CALPHAD, resulting in a procedure
similar to [80]. All concentrations employed are in atomic fraction or equivalently mole
fraction of copper, with the assumption of equal molar volumes. The following equations
give the resulting functions with 8 significant digits in dimensionless units:

gα(c, T ) = (147.73532T − 128.37484) c2

+ (3.5000629T − 53.205937) c

− 57.867925T + 27.198937 (4.1)

gθ(c, T ) = (294.11794T − 254.29651) c2

+ (170.96673T − 96.996795) c

− 28.930239T + 2.260627 (4.2)

gl(c, T ) = (21.442726T − 17.807343) c2

+ (5.587987T − 55.592733) c

− 58.655641T + 28.085635 (4.3)

Table 4.1 shows the temperatures and equilibrium concentrations of the eutectic reaction
for the system from [138] and from the approximated system, respectively.
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4.1 Parametrization of the Al-Cu system

Table 4.1: Temperatures and equilibrium concentrations of the eutectic reaction L → α + θ for the
binary Al-Cu system from [138] and from the approximated system

Te ceq. of α ceq. of Al2Cu ceq. of L
in K in at.% Cu in at.% Cu in at.% Cu

CALPHAD PD [138] 820 2.54 31.8 17.5
reconstructed PD 816 2.59 31.8 18.1

Figure 4.1 shows the Al-rich side of the Al-Cu phase-diagram calculated from [138] (or-
ange) compared with the reconstructed phase-diagram derived from the approximated
Gibbs energies of eqs. (4.1) to (4.3) (blue). Excepting conditions close to the melting
point of α-Al, good accordance of the phase-transition lines as well as of the position of
the eutectic reaction can be found.

The employed nondimensionalization parameters are listed in table 4.2 and the remaining
physical parameters in table 4.3. These are generally based on literature values for Al-
Cu, except the surface energy, which was chosen much larger in order to allow for high
driving forces without suffering from a mushy interface[139].

Table 4.2: nondimensionalization parameters

scale value
length 1× 10−7 m

time 5× 10−6 s

diffusivity 2× 10−9 m2/s

velocity 0.02m/s

temperature 820K

energy density 1× 108 J/m3

surface energy 1× 101 J/m2

molar volume 1× 10−5 m3/mol
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Figure 4.1: Al-rich side of the Al-Cu phase diagram, calculated via CALPHAD based on [138] as well
as by the fitted free energies. For the CALPHAD calculation, only the α-Al, θ-Al2Cu and
liquid phases are considered. The fitted free energies show good accordance given the large
temperature range. The states which will be investigated as part of the validation are
marked by the black triangles (a-f).
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4.1 Parametrization of the Al-Cu system

Table 4.3: Employed physical and numerical parameters for the simulations.

parameter simulation value physical value
Numerical parameters

grid spacing ∆x 1 1× 10−7 m

time step ∆t 0.125 0.625× 10−6 s

interface parameter ϵ 3∆x 3× 10−7 m

interface width W 7.5∆x 7.5× 10−7 m

Physical parameters
surface energy γαβ 0.08 0.8 J/m2

diffusivity in the melt 1 2× 10−9 m2/s

diffusivity in the solids 1× 10−3 2× 10−12 m2/s

kinetic coefficient ταl 0.138 6.92× 108 Js/m4

kinetic coefficient τθl 0.0968 4.84× 108 Js/m4

kinetic coefficient ταθ 0.417 2.08× 109 Js/m4

anisotropy strength ζ 0.04 0.04
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4 Solidification of Al-Cu alloys

4.2 Validation and preliminary studies

Before simulating the combined growth of eutectic and dendritic structures within a
single phase-field simulation, the implementation is tested, followed by the individual
simulation of the processes in order to validate their separate growth. These also deliver
the data required for determining the boundary curve.

4.2.1 Implementation test

The implementation of the phase-field model is qualitatively validated by sampling the
test states from fig. 4.1 and observing the resulting microstructure. The phase frac-
tions given by the phase diagram should be approximated, given that the phases are
present in the domain. In order to ensure the latter, nucleation is allowed. Further-
more, the morphology of the microstructure should depend on the (an)isotropy of the
phases: States within a solid-liquid region of the phase diagram should yield dendrites
with anisotropy, but seaweed without. Below the eutectic temperature, both solid phases
should be present, with a well-developed eutectic at the eutectic composition, but only
second-phase linings in the channels between the primary phases for larger deviations
from the eutectic composition.

The simulation starts with a circular seed of either anisotropic α or isotropic θ, depending
on which side of the eutectic composition the point lies. For the eutectic composition a
circular seed of the anisotropic α phase is set. The initial seed concentration is set to
the respective phases’ eutectic equilibrium concentration, with the melt being set with
c0 ∈ {0.08, ce, 0.28} respectively and ce = 0.181 being the eutectic composition. The tem-
perature is set to Te ± 5K, with Te = 816K being the eutectic temperature. All bound-
aries in the simulation domain are assumed to be no-flux boundaries. The simulation
domain is resolved with 1000 cells in each direction, corresponding to a 100 µm× 100 µm
physical domain.

The simulations are run until the volume fractions of all present solid phases change
by less than 1% when calculated over a 100ms period. A comparison of theoretical and
observed mass fraction is given in table 4.4, showing a good agreement for all investigated
states. The composition field for intermediate states of the simulations are shown in
fig. 4.2. Black corresponds to pure α, whitish-grey to θ whereas the remaining shades
of grey correspond to the melt. This color scheme will also be used in the remaining
simulation images. The morphology of the phases fits with theoretical expectations, i.e.
the anisotropic α grows as a four-sided dendrite (a,d), whereas the isotropic Al2Cu phase
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4.2 Validation and preliminary studies

molar fraction Cu

(a) c0 = 0.08, T = Te + 5K (b) c0 = ce, T = Te + 5K (c) c0 = 0.28, T = Te + 5K

(d) c0 = 0.08, T = Te − 5K (e) c0 = ce, T = Te − 5K (f) c0 = 0.28, T = Te − 5K

Figure 4.2: Various intermediate morphologies observed in the simulations. The color bar indicates
the local molar fraction of copper, based on which the phases are identifiable: Black cor-
responds to pure α, whitish-grey to θ whereas the remaining shades of grey correspond to
the melt. Dendritic, seaweed and eutectic growth is observed as well as second-phase lin-
ing of interdendritic/cellular spaces if below the eutectic temperature (d)-(f). All depicted
states except for (b,e) were observed at t = 37.5ms. In (b) the initial seed vanished around
t = 843ms, and in (e) the eutectic only started nucleating at around t = 37.5ms, hence a
later time (t = 938ms) was used to show the eutectic pattern.
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4 Solidification of Al-Cu alloys

Table 4.4: Comparison of mass fractions Xi between the phase diagram (PD) and the simulation results
(Sim) in the converged state.

Xα Xθ Xl

Sim PD Sim PD Sim PD
(a) 0.631 0.633 0.000 0.000 0.369 0.367
(b) 0.000 0.000 0.000 0.000 1.000 1.000
(c) 0.000 0.000 0.702 0.701 0.298 0.299
(d) 0.817 0.814 0.183 0.186 0.000 0.000
(e) 0.473 0.473 0.527 0.527 0.000 0.000
(f) 0.127 0.130 0.873 0.870 0.000 0.000

grows in a seaweed-like pattern (c,f). In both cases a lower temperature also increases
the growth rate. As expected, the solid phase completely vanishes in (b) since it is in
the monophasic liquid region of the phase diagram. For state (e) a radially patterned
eutectic is observed since the eutectic nucleates along the circumference of the seed.

4.2.2 Validation of model for eutectic growth simulations

Satisfactorily matching simulation studies of the eutectic growth have been shown pre-
viously by several authors for this kind of phase-field model without using a nucleation
mechanism [27, 140, 141]. Thus the focus in this section is on validating the proposed
nucleation mechanism similar to Kellner et al. [142]. In their work it is shown that sim-
ulations at arbitrary domain lengths including nucleation can be mapped back onto a
normalized Jackson-Hunt curve for the lamellar spacing. In effect this probes whether the
steady-state growth point is recovered even in a nucleating system. This computational
experiment is reproduced for the investigated Al-Cu system.

The principal setup of the simulation study is shown in fig. 4.3, along with typical evolu-
tionary states: An initial pair of isotropic α-Al and θ phases is set at the bottom of the
domain with the fractions determined by the lever rule (a). The top part of the domain is
filled with melt at the eutectic composition ce, with this composition also being imposed
as a Dirichlet condition at the top. At the bottom no-flux conditions are employed,
whereas on the sides periodic boundary conditions are applied. The temperature is as-
sumed to be homogeneous. If the spacing λ is sufficiently above the dominant lamellar
spacing λJH , oscillations can be observed (b). Without nucleation, these persist and may
lead to one phase overgrowing the other, in which case the simulation is aborted and the
data is not taken into account. Nucleation will occur in the concave parts of the front
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4.2 Validation and preliminary studies

(a) initial (b) oscillating (c) shortly after
nucleation

(d) long past nucle-
ation

Figure 4.3: Initial setup as well as exemplary evolutionary states during eutectic growth. The domain
is cut off slightly above the moving window cutoff in order to emphasize the solid phases.

with the present mechanism, leading to a refinement of the spacing and less oscillatory
growth (c,d).

First, several undercoolings ∆T ∈ {3, 4, 6, 8}K will be investigated without nucleation
activated. For each considered undercooling, a range of domain lengths is employed to
allow different lamellar spacings λ and thus front velocities v. The values for the domain
lengths are determined iteratively starting from an estimated dominant lamellar spacing.
Following the theory of Jackson and Hunt[62], the curve v(λ) should contain a global
maximum which represents the dominant lamellar spacing λJH . Thus if no maximum is
observed, additional domain lengths are added in the direction of the slope of the curve.
Once a maximum is observed, the set of domain lengths is frozen. Based on these simula-
tions the concentration-independent model of eq. (2.28) is fitted, yielding K1 = 0.02696,
K2 = 0.05197 in nondimensional units. Next, simulations with nucleation activated are
conducted for each undercooling and its corresponding set of domain lengths, with ad-
ditional simulations at significantly larger domain sizes than the observed λJH in order
to allow multiple pairs of lamellas to nucleate from a single pair. In total this yields
fig. 4.4, showing the solid front velocity over domain width and the final lamellar spacing
for all conducted eutectic simulations. The transparent circles denote the nucleation-
less simulations, whereas the squares represent the simulations with nucleation active.
The solid line is the analytical Jackson-Hunt result, based on the previously calculated
K1,K2. First, the circles match the theory without a selection criterion well, suggesting
that the main features of Jackson-Hunt theory are captured with the simulations. Sec-
ond, the squares map back closely to the curve, suggesting that steady-state growth is
not significantly affected by the nucleation mechanism. It should be noted that herein
simulations growing at ≥ 2λJH did not necessarily exhibit strong oscillations in their
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Figure 4.4: Comparison of eutectic theory (lines) and simulations with (squares) and without (circles)
nucleation for various undercoolings. The left plot shows the same data as the right plot,
but plotted over the domain width instead of the lamellar spacing. The initial configuration
always consists of a single pair of α and θ, representing two lamellas. The number besides
the squares indicates how many lamellas are observed in steady-state, with no number
indicating two lamellas. Matching behavior between theory and simulation is observed
over the entire undercooling range. Furthermore, the simulations with nucleation fall onto
the curve described by JH theory and achieve similar steady-state velocities to simulations
without nucleation.

growth. This leads to only minor solute excess in front of the solid phases which inhibits
nucleation. Hence the squares will tend to cluster not around λJH but rather around a
spacing somewhat larger, similar to [142] in which simple concentrations differences were
assumed to give the nucleation potentials.

In order to determine the influence of off-eutectic compositions on the undercooling,
further simulations are conducted. For these, the frozen temperature approximation
eq. (3.55) is employed. The velocities and domain lengths are based on the maxima from
the previous study and the melt concentrations {0.12, 0.13, 0.15, ce} are employed, i.e.
three hypoeutectic concentrations and the eutectic concentration. The gradient is chosen
to be 99K/mm in order to speed up convergence of the temperature field. The simulations
are run until the velocity differs by less than 2% from the imposed velocity. Plotting the
difference of the off-eutectic front temperature to the eutectic front temperature for these
simulations yields fig. 4.5a. It is easy to see that the front temperature is decreasing with
increasing distance from the eutectic composition. The eutectic constant E is calculated
for each composition and then a parabola is fit to this data, with fig. 4.5b showing
that the fit matches the data well. Thus the eutectic undercooling model reads ∆Te =

(0.376c20 − 0.142c0 +0.08714)v0.5. The effective value of E at the eutectic composition is
428Ks0.5/m0.5 which compares well with the investigations at the eutectic composition,
which yields a value of 434Ks0.5/m0.5.
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Figure 4.5: Results of the off-eutectic simulations.

4.2.3 Determination of dendrite model parameters

The simulations for the determination of the constants within the dendrite tip under-
cooling model eq. (2.32) will now be described. An initial periodic, anisotropic α-seed
is placed at the bottom of the domain inside of a homogeneous melt of concentration
c0. The frozen temperature approximation eq. (3.55) is employed again. A quasi-infinite
domain is simulated by employing the moving-window technique. Various temperature
gradients G ∈ {24.7, 99.0}K/mm, velocities v ∈ {80, 160, 320, 640}µm/s as well as melt
concentrations c0 ∈ {0.06, 0.08, 0.1} are employed. Nucleation was allowed for all sim-
ulations, but no nucleation was observed since it is energetically unfavorable for the
investigated parameters. The simulations are run until the front velocity differed by less
than 2% from the imposed velocity. This yields tuples of (Ti, v,G, c0) values which are
used to fit the undercooling formulation of eq. (2.32), with the interfacial undercooling
Tl(c0) − Ti as the dependent variable. The nondimensionalized coefficients are given
by A = 0.957, B = 0.788, C = 0.288 for the melt concentration dependent model and
A = 6.58, B = 0.370 for the model without an explicit melt concentration dependence.
A scatter plot of the measured undercoolings over the velocity is shown in fig. 4.6, with
the two models indicated as lines. The non-monotonic behavior of the concentration
independent model at lower velocities is expected[70]. The concentration dependent
model shows this as well for even lower velocities. The mean unsigned error defined by∑ |∆Tobserved−∆Testimated|

N is 5.81K for the concentration-independent model and 1.05K
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for the concentration-dependent model. In total one can observe that the explicit inclu-
sion of melt concentration increases the model accuracy significantly.
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Figure 4.6: A scatter plot of the interfacial undercooling over the imposed velocity is depicted. The ob-
served undercooling (markers) rises with velocity, composition (color) and gradient (marker
type). The same data is shown in both plots, with the lines indicating the predictions of the
different models for the dendrite tip undercooling, varying similarly for velocity, composi-
tion (color) and gradient (line style). The composition dependent model generally matches
the data better than the composition independent model. Note that the concentration
independent model only produces two lines, as any choice of c0 will lead to the same line
for the same G.

4.2.4 Boundary curve of the coupled zones

Now that the undercooling models for dendrites and eutectics are fully specified, the
boundary curve between the two morphologies can be calculated. For each (G, v) point,
the resulting nonlinear equation in c0 is solved numerically. Three gradients ( G ∈
{6.18, 24.7, 99.0}K/mm ) are chosen, for which the range of cooling rates Gv from 3 ×
10−2 K/s to 40K/s is sampled. The resulting set of points is plotted as a c0−G/v diagram
in fig. 4.7 as suggested by [70]. The curves separate the eutectic range to the right from
the coupled dendritic-eutectic range to the left. The eutectic range is always increased by
increasing the gradient. If G/v is sufficiently high, i.e. at low velocities, the influence of
gradient diminishes and the extent of the eutectic range is only weakly dependent on the
gradient. In the high velocity regime there is a significant effect of the gradient on the
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Figure 4.7: Numerically calculated boundary curves between pure eutectics and a mixed dendritic-
eutectic microstructure.

eutectic range. Further to the left one would expect a purely dendritic microstructure
once the melt composition is around the solubility limit. This microstructure will not
be separately considered in the present work, but can also be easily simulated with the
present model. The majority of the simulations will be conducted around the “knee” of
these curves in order to probe the minimal extent of the eutectic range.

4.3 Results for coupled dendritic-eutectic growth

In this section novel results investigating the conditions for dendritic-eutectic growth
and its influence on the microstructure are presented and discussed. Additional videos
of some of the simulations are deposited with [143].
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4.3.1 Boundary curve validation & microstructural influences

Given that the boundary curve is now known, processing conditions which are likely to
yield dendritic-eutectic growth can be set. Specifically, simulations with gradients G ∈
{6.18, 24.7, 99.0}K/mm, pulling velocities v ∈ {80, 160, 320}µm/s and melt compositions
c0 ∈ {0.1, 0.11, 0.12, 0.13} are conducted. The initial and boundary conditions are similar
to the setup of pure dendritic growth in the previous section. The starting temperature
T0 = Te − 2K is now below the eutectic temperature. The domain height of 5000 cells
corresponds to 500 µm and the width of 2500 cells corresponds to 250 µm. The moving
window cutoff is set at 250 µm, i.e. there are at least 250 µm between the front and
the boundary at all times. The diffusion length for the smallest velocity corresponds to
25 µm and thus there are at least 10 diffusion lengths between the front and the boundary,
mimicking an infinite melt. Unless mentioned otherwise, the simulation images always
depict a region of size 280 µm× 250 µm, i.e. the whole width of the domain and slightly
above the solidification front in terms of height. This is done to emphasize the solid
structure. The simulations are continued until either the eutectic is shifted outside of the
domain, a eutectic front stabilizes or the height difference between the dendrite tip and
the eutectic becomes constant. The former two conditions are based on the observation
that once one of the morphologies becomes dominant, the other morphology will not
appear without external influence again. The latter condition is employed instead of
a velocity convergence criterion as multiple fronts are advancing at different velocities.
Usually, the primary dendrite will reach a converged velocity first, with the eutectic still
adjusting its position w.r.t the dendrite tip.

Figure 4.8 shows exemplary simulation results. Purely dendritic (D, fig. 4.8a), dendritic-
eutectic (D+E, fig. 4.8b) and purely eutectic (E, fig. 4.8c) structures are observed, de-
pending on the melt composition c0. Note that in the case of dendritic-eutectic structures,
the θ lamellas close to the dendrite are thicker than in the middle. This is due to the melt
composition close to the dendrite being enriched in Cu which is rejected by the dendrite,
which is also easily observed with the composition field being slightly brighter (more Cu)
closer to the dendrite. Simulations in which only dendrites remain will be counted as
dendritic-eutectic in the following. This is due to the fact that if a sufficiently higher
moving cutoff were to be used, the eutectic would not be shifted out of the domain and
hence both morphologies would be observed, as long as the melt composition is larger
than the corresponding solidus composition. Generally, if dendritic-eutectic growth is
the goal of the simulation, then the simulation needs to be able to span the temperature
difference between the dendrite front temperature Tdf and the eutectic front tempera-
ture Tef . With the frozen temperature approximation (eq. (3.55)) this suggests that the
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4.3 Results for coupled dendritic-eutectic growth

(a) c0 = 0.11 (b) c0 = 0.12 (c) c0 = 0.13

Figure 4.8: Observed microstructures for v = 160 µm/s, G = 24.7K/mm and various melt composi-
tions. Both purely dendritic as well as eutectic structures are found as well as simulations
in which both morphologies grow within the moving window concurrently.

physical domain up to the moving window cutoff should be at least L =
Tdf−Tef

G . If this
length is negative, it also implies that the eutectic should be the dominant morphology.
Note that this is a necessary but not sufficient condition, as the initial conditions have
an effect on the resulting morphology as will be shown later.

The results can be displayed succinctly in a {c0−G/v} plot as suggested by [70]. This is
done in fig. 4.9, displaying the results for all simulations at once along with the boundary
curves calculated based on the theory described in 2.2.3. All eutectics, represented by cir-
cles, lie to the right of their respective boundary curves. Similarly, the dendritic-eutectic
structures are observed to the left of the curves, suggesting that the maximum temper-
ature condition for the transition between eutectic and dendritic-eutectic morphologies
describes the boundary curve well. This also implies that the front undercooling of the
individual morphologies is either not significantly changed compared to their isolated
growth or changed by the same value. Due to the choice of G−v pairs, several points re-
sult in the same G/v value but with different gradients and different morphologies. Thus
the full specification of solidification conditions ({v,G, c0}) is necessary to determine the
morphology.

The observed growth conditions (∆T − v) can be compared to the models which were
determined earlier. This is shown in fig. 4.10. While there is a systematic underprediction
of the undercooling by the model, it is of similar magnitude as to the isolated growth
conditions which were used to determined the model parameters. Thus there is no
significant effect of coupled growth on the underlying undercooling-velocity relationship.
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Figure 4.9: The microstructure map differentiating the eutectic range from the dendritic-eutectic range.
The theoretical boundary curve clearly separates the two observed morphology regimes.
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Figure 4.10: Comparison of observed front temperatures during dendritic-eutectic growth and the pre-
diction of the respective isolated growth models. There is a systematic underprediction
of front temperature, but of similar magnitude as the earlier deviations (figs. 4.4 and 4.6)
between data and the model. Thus the coupled growth does not seem to affect the
undercooling-velocity relationship significantly.
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Next, the influence of dendritic-eutectic growth on the microstructural lengths is investi-
gated. The relevant microstructural lengths of the dendrite are the primary dendrite arm
spacing (PDAS) and secondary dendrite arm spacing (SDAS). In the present setup one
cannot make statements about the PDAS as usually only a single dendrite is contained
within the simulation domain. However, a qualitative statement regarding the SDAS
is possible: If the eutectic grows sufficiently close to the dendrite tip, secondary arms
cannot develop fully before being enveloped by the eutectic. Thus the SDAS will tend
to be smaller than for purely dendritic growth.

The eutectic spacing however can be easily investigated for the present simulations,
as large numbers of lamellas are contained within the eutectic and dendritic-eutectic
simulations. A bit of preprocessing is necessary for dendritic-eutectic simulations in
order to exclude the dendrite and its closest neighboring θ lamellas from the analysis:
Specifically, the α and θ phases are separated and segmented[144] on their own. For the
α phase, the isotropic and anisotropic variants are added together. It is assumed that any
segments larger than four times the median are dendrites, which are henceforth excluded
from the analysis. Furthermore, small segments of e.g. failed nucleation are excluded as
well by using a minimum segment size of 100 cells. For the θ phase the lamellas close
to the dendrite need to be excluded as these are severely thicker. Since a simple size
threshold is hard to define for these, only the θ segments past the second and before
the second to last α lamella are analyzed, with the same small segment filter applied
as for the α phase. The remaining segments are put together to form an image of a
“well-formed” eutectic, which is analyzed with the same procedure as for purely eutectic
simulations. In the present case, the individual phase widths wα, wθ perpendicular to
the growth direction are analyzed, with their sum being the spacing λ.

The results of analyzing the simulations containing a eutectic are shown in fig. 4.11
with a scatter plot of the theoretically calculated and measured spacings. If there is
no influence of the dendrite on the growing eutectic, then the results should cluster
around the line y = x. This is generally observed, with a slight scatter upwards. The
eutectic simulations tend to be above the line, due to a combination of factors: First,
many of the α lamellas are represented by the dendritic phase, as these lamellas originally
branched off from the dendrite. Thus these have a different surface energy and also triple
point angles. Second, as explained in the validation, the nucleation mechanism tends to
generate slightly larger spacings than predicted by the minimum undercooling criterion in
the JH theory. When comparing the dendritic-eutectic to the purely eutectic simulations,
the presence of a dendrite tends to slightly decrease the spacing. One possible explanation
for this is that the dendrite itself tends to increase the Cu content in the melt ahead of
the eutectic, altering the far-field the eutectic is growing against. In order to estimate
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Figure 4.11: A comparison between the theoretically expected spacings λJH and the measured spacings
λmeas. The black line serves as a guide for the eye. The dendritic-eutectic simulations
tend to be above this line but roughly parallel to it. The eutectic simulations tend to
deviate more.

the effective far-field concentration, the fraction of θ within the eutectic is evaluated.
The total composition leading to this fraction is then iteratively determined and thus
an estimate for the effective far-field concentration obtained. This would theoretically
lead to refinements on the order of 0.01 µm to 0.1µm for the present simulations, with
the actual refinement ranging from 0.1µm to 0.5 µm. Thus only a part of the observed
deviations can be explained with far-field effects. The remaining effect might be due to
structural effects of the dendrite on the eutectic, which will be the subject of further
research.

Furthermore, the present data can also be analyzed as to whether the temperature gra-
dient has any influence on the eutectic spacing relationship, since this is excluded in
the theoretical considerations. Plotting the spacings for the eutectic simulations over
the gradient yields fig. 4.12, which shows individual bands of spacings for each velocity.
Excepting the slowest velocity, there is little difference between spacings obtained at the
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Figure 4.12: The measured lamellar spacing for all simulations containing eutectic is plotted over
the employed temperature gradients. For each employed velocity, a band of spacings is
spanned by the system, indicated by the shaded regions. Excepting the smallest velocity,
there is little difference between spacings at the lowest and highest gradients.

highest and lowest gradients. The smaller velocities and temperature gradients tend to
show larger oscillations in the lamellar structure, making the measurement less reliable
for these. In total however there seems to be no significant influence of the temperature
gradient on the spacing within the simulations.

4.3.2 Influence of velocity variation

Next, simulations will be conducted in order to investigate transitions between the mor-
phologies by abruptly changing the velocity of the temperature field.
The first transition is for a gradient of 24.7K/mm and a melt concentration of 0.12,
with the velocity jump being from 160 µm/s to 320 µm/s. This should move the sim-
ulation from a dendritic-eutectic growth regime into a purely eutectic growth regime.
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Figures 4.13a to 4.13c show the results for speeding up a dendritic-eutectic front. The
eutectic slowly grows upwards until it overtakes the dendrite, resulting in a flat eutectic
front. During this process the eutectic becomes finer, as would be expected from theory.
After a flat eutectic front is obtained, the jump is done in the other direction as to test
for hysteresis effects on the morphology. While the eutectic coarsened after the second
jump, the eutectic front stayed stable with no dendrites forming. Thus there is a certain
dependence of prior microstructural history on which morphology is observed. Since the
prior simulations always started from a dendrite, the “easy” direction of morphological
change was available and thus the boundary curves could be confirmed. However, if the
simulations were started from a eutectic front, it is likely that the eutectic range would
be extended beyond the theoretical boundary curve. Usually, primary solidification takes
place before the eutectic grows and thus the morphological hysteresis should not play a
role for experiments.

The spacing and velocity of the eutectic are analyzed during the whole process and are
shown in fig. 4.13d, with the black vertical line separating the two different imposed
velocities. It is observed that while the velocity begins adjusting almost immediately,
the eutectic spacing lags behind. After the original velocity is reached again, a similar
spacing is observed again, confirming that the eutectic spacing is not subject to hysteresis
effects[63].

The second transition is for a gradient of 99K/mm and the same melt concentration
of 0.12, with the velocity jump being from 320 µm/s to 20 µm/s, moving a eutectic into
the dendritic-eutectic regime. Due to the priorly observed hysteresis, a much larger
velocity jump is employed in this case. Sufficient space between the solidification front
and the boundary is kept by extending the domain height to 1000µm, yielding about 7.5
diffusion lengths. Figure 4.14 shows the results for the second case of slowing down a
eutectic front. After a short initial period, α overgrows the eutectic front and forms a
band. This band then undergoes a Mullins-Sekerka type of instability, with θ nucleating
in concave regions. The convex regions can grow into dendrites. In the present case only
a single dendrite grows, with a coarse eutectic growing around it. The simulation is not
run to convergence as the small velocity would necessitate excessively long simulations.
For this reason and because the eutectic nucleates anew above the destabilized band, the
eutectic spacing is not analyzed in this case.
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(d) Lamella spacing and velocity over time.

Figure 4.13: The top row shows simulation states for a jump from 160µm/s to 320µm/s, up to the
point where the jump is reverted. The eutectic grew at a constant distance from the
dendrite tip prior to the jump. After the jump, it slowly creeps upwards towards the
dendrite tip before enveloping it and establishing a flat eutectic front. At the bottom, the
lamellar spacing and eutectic velocity during the entire process is shown, with the black
vertical line separating the two velocity regimes. The velocity begins adjusting almost
immediately, with the lamellar spacing lagging behind in its adjustment. There tends to
be an over/undershoot in the spacing before a stable spacing is reached.
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(a) t = 0 s (b) t = 0.313 s (c) t = 16.5 s

Figure 4.14: Intermediate simulation states for a velocity jump from 320µm/s to 20µm/s. Shortly
after the velocity jump a band of α forms above the eutectic front. This band undergoes
a Mullins-Sekerka instability allowing for a single dendrite to emerge surrounded by coarse
eutectic.

4.3.3 Complete directional solidification

Three simulations approximating complete directional solidification, from below the liq-
uidus down into the eutectic region, are performed. The previous simulations start out
with the front temperature below the eutectic temperature, in which case there should
already have been a dendritic structure for the eutectic to grow into. For these simu-
lations the moving window technique is deactivated and the domain height is extended
to 1500 µm and the width to 500 µm. The first two simulations should contain mostly
one morphology, with the parameters v = 320µm/s, G = 24.7K/mm being employed for
both simulations, but two different melt compositions c0 ∈ {0.08, 0.12} being used. The
former should yield a primarily dendritic structure, with the latter exhibiting a primarily
eutectic structure based on the calculated boundary curve. As an example of a primarily
dendritic-eutectic structure, a third simulation with v = 160µm/s, G = 24.7K/mm and
c0 = 0.12 is conducted. The starting temperature T0 = 836K for these simulations is
chosen well below the respective liquidus temperatures but above the eutectic temper-
ature. On one hand this allows a substantial amount of primary solidification while on
the other hand cooling below the eutectic temperature is achievable with a reasonable
amount of computational effort.

In fig. 4.15 the time-resolved microstructure for c0 = 0.08 is shown. It can easily be
observed in (a) that primary solidification occurs via dendrites which grow until they
reach the top of the domain (b, c). Secondary arms are clearly visible (a), but as
solidification progresses a significant number of secondary arms retracts towards the
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(a) t = 1.81 s, Tb = 821K (b) t = 4.31 s, Tb = 802K (c) t = 7.38 s, Tb = 778K

Figure 4.15: Intermediate simulation states for a complete solidification of a Al-8at%Cu alloy from
below the liquidus line across the eutectic line with v = 320 µm/s. The gradient in color
from between the dendrites (black) to the top liquid is due to the interdendritic melt being
enriched in copper, as copper is mostly rejected by the α phase. First, primary dendrites
grow in the direction of the temperature gradient until the top of the domain is reached.
Afterwards, the dendritic branch structure coarsens and at about 4K below the eutectic
temperature the eutectic nucleates near the bottom of the domain. This eutectic grows
upwards, but new eutectic tends to nucleate faster in the side branch structure than the
front can grow. Hence different orientations of somewhat lamellar structures are observed.
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primary dendrites (b). The eutectic starts off nucleating near the bottom of the domain
and then grows upwards in the side channels of the dendrites, but this is not the only
mode of growth (b,c). Rather, the eutectic front tends to be nucleated anew in the
Cu-rich pockets formed by dendritic sidearms and then grows towards the main channel,
partially closing it off to the eutectic growing up from the bottom of the channel. Thus
if an alloy crosses both the primary crystallization regime and the eutectic line during
solidification, then eutectics of different dominant orientation should be found around
dendritic structures. One should be mostly aligned with the dendritic growth direction,
whereas the other with the growth direction of the side arms.

In fig. 4.16 the completely eutectic structure is shown. While a dendrite does grow
initially, major parts of it are soon overtaken by the eutectic (a). The dendrite itself gets
progressively thinner as the eutectic grows upwards until it is engulfed by the eutectic.
The eutectic front is observed to be strongly curved during this overgrowth process
(a,b), with some curvature still remaining after the overgrowth process (c). Beyond the
initial primary arms, no secondary arms can be observed. The eutectic structure itself
tends to contain oscillating waves (d) which travel across the structure at a roughly
30◦ offset from the growth direction. This kind of travelling oscillatory wave was also
found experimentally in [145] with a 35◦ offset from the growth direction. These are also
sometimes observed in the simulations with the moving window technique. It should be
noted that regions with oscillating lamellas tend to grow at a slightly lower temperature
compared to those with straight lamellas. Hence there is likely a correlation between the
front curvature and the oscillating lamellas, though the determination of cause and effect
of this correlation will be the topic of further research.

The last complete directional solidification simulation is shown in fig. 4.17. Similarly to
the dominantly eutectic one, the dendrite grows first followed by eutectic. However, a
constant distance between the dendrite tip and the eutectic front is established and the
two morphologies continue to grow in parallel. The primary dendrite does not develop
significant side arms, with the bumps quickly being covered by the eutectic. While there
are again oscillations in the eutectic structure, these do not travel across the structure
and are rather localized. In the closeup (d), the eutectic front can now also be observed
to be curved close to the dendrite. In the previous simulations with the moving window
technique, only the lamellas directly adjacent to the dendrites were observed to grow at
a different temperature. This was assumed to have negligible effect on the structure as
a whole but might be part of the structural influence leading to the observed refinement
between eutectic and dendritic-eutectic structures.
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(a) t = 4.31 s, Tb = 802K (b) t = 4.94 s, Tb = 797K (c) t = 6.5 s, Tb = 785K

(d) t = 6.5 s, Tb = 785K, closeup of the eutectic front

Figure 4.16: Intermediate simulation states for a complete solidification of a Al-12at%Cu alloy from
below the liquidus line across the eutectic line with v = 320µm/s. The images are cropped
to slightly above the final position of the eutectic front, with the remaining size being
970µm × 500µm. First, a primary dendrite grows slowly until eutectic starts forming.
The eutectic creeps up the dendrite, forcing the dendrite to taper off until overgrown.
Oscillations which travel across the eutectic structure are clearly visible in the closeup.
Even after the dendrite is eliminated, the eutectic front is still observed to be slightly
curved.
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(a) t = 7.44 s, Tb = 806K (b) t = 9.31 s, Tb = 799K (c) t = 11.25 s, Tb = 792K

(d) t = 11.25 s, Tb = 792K, closeup of the eutectic front

Figure 4.17: Intermediate simulation states for a complete solidification of a Al-12at%Cu alloy from
below the liquidus line across the eutectic line v = 160µm/s. The images are cropped to
slightly above the final position of the dendrite, with the remaining size being 970µm ×
500µm. First, a primary dendrite grows slowly until eutectic starts forming. The eutectic
creeps up the dendrite, overgrowing secondary arms but is unable to reach the dendrite
tip. A constant distance between the eutectic front and the dendrite tip is observed in
the later stages. The eutectic front is observed to be curved when close to the dendrite.

94



4.3 Results for coupled dendritic-eutectic growth

4.3.4 Eutectic morphology in 3D dendritic-eutectic growth

Finally, the influence of the dendritic-eutectic growth on the eutectic morphology is
investigated. Since the two-dimensional simulations can only show lamellar eutectics, a
set of three qualitative three-dimensional simulations is conducted. The three simulations
differ only in their initial conditions: One starts with a Voronoi tesselation of the isotropic
α-Al and θ phases, the second with a Voronoi tesselation of the anisotropic α-Al and the
isotropic θ phases. The last one starts with a periodic anisotropic α-Al sphere as a
dendrite seed together with a Voronoi tesselation of the isotropic α-Al and θ phases as
a eutectic seed. With this, the effect of the anisotropy on the eutectic can be separated
from that of the dendrite, as the morphological hysteresis will force the simulations
without an initial dendrite seed into a purely eutectic structure. The previous two-
dimensional simulations were ran at a grid spacing ∆x of 1, which would lead to excessive
computational effort in three dimensions. Thus a grid spacing of 2 is employed and
the interfacial width is increased to 6 to keep a diffuse profile. These steps are taken
to reduce the computational effort which will lead to mainly qualitative simulations.
The simulation box size is 700 × 500 × 500 cells, corresponding to real dimensions of
140 µm × 100 µm × 100 µm, with periodic boundary conditions on the basal plane, a
no-flux condition on the bottom and a Dirichlet condition at the top. The processing
parameters are v = 160µm/s, G = 99K/mm and c0 = 0.14. The composition is taken
to be higher than would be expected to form a dendritic-eutectic structure, as three-
dimensional dendrites grow more quickly at the same undercooling compared to their 2D
counterparts, whereas a dimensional change has little effect on the eutectic.

The mass fractions at the composition c0 are 60.9% α and 39.1% θ, which suggests
that both lamellar and α-matrix-θ-fiber structures should be found[146]. The results
for the two eutectic simulations are shown in figs. 4.18a and 4.18b. The α phase is
represented as metallic silver, with the θ phase as metallic orange. The isotropic eutectic
shows a mostly matrix-fiber structure with a few small lamellas remaining. However, the
anisotropic variant shows only lamellas, as also observed by [28, 147], although in the
present case only one of the solid-liquid interfaces is anisotropic. The mass fraction of
α-Al in the isotropic variant is 59.2% and 60.0% for the anisotropic variant. While close
to the lever rule, the remaining difference is likely due to capillary and far-field effects as
there is a significant composition gradient left in the system. In fig. 4.18c the final state of
the 3D simulation starting with a dendritic seed is shown. During growth, θ is primarily
nucleated in the concave parts of the dendrite. As growth proceeds, these θ patches
meet the main eutectic, forming new pairs of anisotropic α-Al and isotropic θ lamellas.
These eventually overtake the isotropic eutectic seed, resulting in the observed lamellar
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(a) Starting from an eutectic seed with
isotropic α-Al and isotropic θ results in
a matrix-fiber structure.

(b) Starting from an eutectic seed with
anisotropic α-Al and isotropic θ results
in a lamellar structure.

(c) Starting from a dendritic seed and an eutectic seed with isotropic α-Al and
isotropic θ results in a lamellar eutectic being observed between the dendrite.

Figure 4.18: Final states of 3D simulations, showing the distribution of the solid phases in the entire
domain. The camera is oriented antiparallel to the solidification direction to emphasize
the eutectic pattern. This makes it seem as if fig. 4.18c does not have the same size as
the other simulations, since the height difference between the dendrite and the eutectic
includes a perspective effect.96
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structure. The α-Al mass fraction within the eutectic only is 53.0% and thus significantly
lower than for the eutectic morphologies. It is likely that if an isotropic or a much more
weakly anisotropic interface were present, this would cause a shift to a more lamellar
morphology, instead of it being due to the anisotropic interface. Furthermore, the mass
fraction of θ is also enriched around the dendrite compared to the middle of the domain.
The average lamellar spacing can be roughly estimated by dividing the volume of the
region of interest by the surface area of the lamellas. The former is directly obtained by
geometry, with the latter being related to the integral of the solid interphase boundary∫
V
ϕαϕθdV . This yields a spacing of 3.49 µm for the dendritic-eutectic structure and

a spacing of 3.56 µm for the purely eutectic structure, which compares well with the
two-dimensional eutectic spacing results at the same velocity (λ2D ∼ 3.5 µm). The
difference is even smaller than for the two-dimensional simulations and thus deemed to
be insignificant.

4.4 Conclusion for coupled dendritic-eutectic
growth

In this work dendritic, eutectic as well as dendritic-eutectic growth are simulated. This
is achieved by combining a grand potential type of phase-field model with an empirical
nucleation mechanism based on the local grand potential difference. It is validated by
showing that a eutectic system with nucleation yields a Jackson-Hunt curve close to that
of a system without nucleation. The dendritic growth is shown to qualitatively match an
approximate undercooling model. Based on both of these validations, an approximate
boundary curve between dendritic-eutectic growth and eutectic growth is determined.
This curve is used to determine the processing conditions for simulations to show either
dendritic-eutectic growth or pure eutectic growth. In each case, the observed simulated
microstructure is found to agree with the prediction of the boundary curve, with the
undercooling-velocity relationship not being appreciably changed by dendritic-eutectic
growth.

By analyzing the spacing of the eutectic in the dendritic-eutectic simulations, a slightly
refined spacing relative to pure eutectic structure at the same speed is found. Close
to the α dendrite, the θ eutectic lamellas are found to be significantly thicker. Going
further, the stability of the dendritic-eutectic regime is investigated by employing velocity
jumps. When increasing the solidification speed of a dendritic-eutectic simulation, the
eutectic regime is easily entered. During this increase, the eutectic continuously refines
its spacing. Decreasing the speed back to the original value however does not yield a
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dendritic-eutectic structure, but rather only a coarsened eutectic with a spacing similar
to that of the original dendritic-eutectic simulation. Thus the spacing is not significantly
affected by processing history, but the morphology is observed to depend on the prior
processing history.

Finally, qualitative 3D simulations showed that the eutectic morphology is strongly in-
fluenced by the presence of interfacial anisotropy. For the same solidification conditions,
isotropic interfaces yielded a fiber-matrix morphology, whereas if even one phase has a
four-fold interfacial anisotropy, a lamellar structure is observed. This extends to the
dendritic-eutectic case, in which a lamellar structure between primary dendrites is ob-
served. While the lamellar spacing did not differ significantly between a 3D lamellar
eutectic and the 3D dendritic-eutectic, the mass fractions of α-Al and θ within the eutec-
tic are observed to differ significantly. Furthermore, the presence of the dendrite changes
the spatial distribution of phase widths, with these differing significantly close to the
dendrite compared to the bulk of the eutectic, suggesting significant spatial heterogene-
ity of properties if coupled dendritic-eutectic growth occurs. In total this work lays
the groundwork for further investigations into solidification microstructures containing
different kinds of morphologies evolving at different length scales.
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5 Freeze-casting with the phase-field
method

This chapter is based on the author’s paper [80] (© Elsevier. Reproduced with permis-
sion. All rights reserved). The following sections are taken verbatim from the paper,
with only minor linguistic and stylistic changes to account for the move from a paper to
a chapter in the present dissertation, as well as some clarifications due to the referees.
Numerical details and relevant literature are also given in the paper.

This chapter uses the model described in section 3.1.1, with specially crafted Gibbs free
energy terms which approximate the freeze-casting process including the effect of particle
size. First, the parametrization of the system with special focus on the construction of
these Gibbs free energies is given. Based on the Gibbs energies, directional solidification
simulations are conducted and the microstructural lengths L of interest — tip distance
λ, ice trunk diameter dice and suspension channel diameter dsus — measured. Power
laws relating these individually to the process parameters are established and analyzed.

The short messages of this chapter are:

• homogenizing over the particles is a viable approach for simulating freeze-casting

• the microstructure during freeze-casting is significantly influenced by velocity v,
temperature gradient G and solids loading c0

• the temperature gradient’s influence on the suspension channel’s diameter lessens
with increasing particle size

5.1 Parametrization of the freeze-casting system

The key in linking the phase-field evolution to a specific material lies in its parametriza-
tion in terms of energies and kinetics. In this section, the focus will be on the energetic
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part, specifically the complex anisotropy of the ice-water interface and the grand poten-
tial density of colloidal suspensions. The energetic contribution consists of the interfacial
and the bulk energies. Many experimental studies ([148–150] and references in [151])
exist for the determination of the interfacial energy between ice and water, with values
ranging from 25mJ/m2 to 45mJ/m2 — for the purpose of simplicity a value of 30mJ/m2

is assumed, which is close to the data of Hardy [150]. This value describes the isotropic
behavior, but ice is an anisotropic material. For its capillary anisotropy the function acap
is expanded into a sum of spherical harmonics Ylm:

acap(q⃗αβ) =
∑
l,m

ϵlmYlm(q⃗αβ)

= 1 + ϵcap4,0 Y4,0(q⃗αβ) + ϵcap6,6 Y6,6(q⃗αβ), (5.1)

which yields a smooth, weak hexagonal capillary anisotropy with the coefficients ϵcap4,0 =

−0.045, ϵcap6,6 = 0.0015. This choice is due to relatively small difference in interfacial
energies according to [152–154][155, p. 440]. Furthermore, [156] showed that below a
critical undercooling the interface is smooth, implying that the typical hexagonal shape
is due to kinetic effects rather than capillary ones, hence the weak capillary anisotropy.
This, together with the different kinetics along the basal and prismal planes [157], is
reproduced via the kinetic anisotropy function akin:

akin(q⃗αβ) = 1 + ϵkin2,0 Y2,0(q⃗αβ) + ϵkin4,0 Y4,0(q⃗αβ) + ϵkin6,6 Y6,6(q⃗αβ) (5.2)

with coefficients ϵkin2,0 = −0.66, ϵkin4,0 = −0.34, ϵkin6,6 = 0.15 yielding a strong hexagonal
anisotropy in the basal plane with a marked reduction in growth kinetics normal to the
basal plane. The isotropic value ταβ is chosen such that diffusion-controlled growth is
ensured.

The bulk energetic contribution enters the phase-field model from the previous section by
the grand potential differences, which are related to differences in Gibbs free energy. For
pure ice and water, the International Association for the Properties of Water and Steam
(IAPWS) formulations [134] provide extensive thermodynamic information, including the
enthalpy and Gibbs energy as a function of temperature. These allow the fitting of the
concentration-independent term Cα(T ) in eq. (3.123) for ice and water. The volumetric
enthalpy of each phase α can be derived from the Gibbs energy by

hα = gα − ∂gα
∂T

. (5.3)
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Both the enthalpy and Gibbs free energy are fitted against data provided by the IAPWS
formulations with the LSSolve function of Maple. Back-calculating from the fitted en-
thalpy for the latent heat showed excellent agreement with a relative error of 1.3%.

However, to the author’s knowledge there is no experimental data for the enthalpy or
Gibbs free energy in aqueous colloidal suspensions. Hence the model of Peppin et al. [76,
78] is utilized in order to extend the description from pure water and ice to aqueous
suspensions, specifically aqueous suspensions of bentonite. The liquidus curve

Tl(c) = Tm(1 +mc
1 + a1c+ a2c

2 + a3c
3 + a4c

4

1− c/cp
)−1, (5.4)

with the coefficients of [78] and cp = 0.64 being the random dense-packing density (RDP),
describes the temperature below which a coarse-grained suspension begins to separate
into a solid ice phase and the remaining suspension enriched in colloids. The factor
m = kbTm

VpρfLf
with the Boltzmann constant kb, the melting temperature of the pure

substance Tm, the volume of an individual particle Vp, the fluid density ρf and its
melting enthalpy Lf incorporates the effect of differently sized particles. The origin
of the dependence on the particle volume is its inclusion in the osmotic pressure of a
suspension of hard spheres, which is employed by Peppin et al. [76] to derive eq. (5.4).
The particles are assumed to be spherical and thus Vp = 4

3πr
3 with r being the radius of

an individual particle. From this it can be seen that the liquidus curve in the model of
Peppin et al. depends significantly on the radius of the suspended particles, with smaller
particles resulting in steeper liquidus curves.

The connection between the liquidus curve and the chemical equilibrium conditions is
exploited in order to establish a least-squares problem for the functions Aα(T ), Bα(T )
in eq. (3.123) for both phases. For the temperature range of interest, the equilibrium
conditions

gs(cs, T ) + µs(cs, T )(ci − cs)− gi(ci, T ) = 0 (5.5)

µs(cs, T )− µi(ci, T ) = 0 (5.6)

are evaluated on the liquidus curve points (cs, T ) and the solidus curve points (ci, T )

for the suspension phase’s Gibbs energy gs and the ice phase’s Gibbs energy gi respec-
tively. This yields a matrix of squared residuals whose minimization gives the functions
gs(c, T ), gi(c, T ) which generate a phase diagram with the minimal distance from the
given phase boundaries. Again, the LSSolve function of Maple is employed, this time
with an additional constraint that the curvatures of the Gibbs energy curves are to be pos-
itive for the employed temperature ranges. The solid ice phase is assumed to be largely
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5 Freeze-casting with the phase-field method

Table 5.1: Employed physical and numerical parameters for the simulations.

parameter simulation value physical value

Numerical parameters
grid spacing ∆x 1 1× 10−6 m

time step ∆t 0.025 2.5× 10−4 s

interface width W 2.5 · 5 ·∆x 12.5× 10−6 m

Physical parameters
surface energy γαβ 0.097879 0.03 J/m2

diffusivity in suspension 1 1× 10−10 m2/s

diffusivity in ice 1× 10−3 1× 10−13 m2/s

kinetic coefficient ταβ 33 1.01 Js/m4

melting temperature Tm 1 273.15K

stoichiometric, with its solidus curve given by ci = (Tm − T
5 )/100 in non-dimensional

temperature T and non-dimensional melting temperature Tm. This slight dependence of
the ice composition on the temperature is included for numerical stability.

This procedure can be executed for any desired particle radius, yielding Gibbs energy
curves approximating a binary phase diagram according to the theory of Peppin et al.
In contrast, the prior work of Huang [79] does not consider the particle size at any time
during model formulation or parametrization. Three particle radii r (250 nm, 375 nm

and 500 nm) are studied in this paper, with the free energy parameters of each tabulated
in the employed precision in appendix A.2. The resulting phase diagrams for all particle
sizes are shown in one plot in fig. 5.1. As the solidus curve does not differ much between
the particle sizes, only a single one was drawn. Generally the liquidus curve becomes
flatter and moves towards the RDP with increasing particle size.

Furthermore, table 5.1 shows the remaining numerical and physical parameters necessary
to conduct the simulation. The parameters were nondimensionalized by choosing the
length scale l0 = 1µm, the diffusion scale D0 = 1 × 10−10 m2/s, the temperature scale
T0 = 273.15K, the energy density scale E0 = 3.065×105 J/m3 and the molar volume scale
Vm,0 = 2 × 10−5 m3/mol. Based on these the remaining scales of time, surface energy
and kinetic coefficient can be derived. For each physical parameter, its dimensionless
value is determined by dividing it by its corresponding scaling parameter.
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Figure 5.1: Back-calculated phase diagrams of freeze casting for three different particle sizes with the
parameters from appendix A.2. Since the solidus curves are very close together only a
single line is drawn. However, the liquidus curves differ significantly for each particle size.
The larger the particle radius, the flatter the liquidus curve becomes.

5.2 Simulation setup

The simulations are conducted as follows: A planar ice front is put in the left part of
the domain and the rest of the domain is filled with the suspension at the investigated
solids loading c0. Periodic boundary conditions are applied on the top and bottom sides,
whereas zero flux conditions are applied on the left (solid) side. On the right (liquid)
side of the domain the phase-field has zero flux conditions and the solids loading is
fixed to c0 with a Dirichlet boundary condition. A moving window technique is applied
in order to simulate a quasi-infinite domain in the growth direction. The planar ice
front is set such that this moving window starts immediately. A graphical overview of
the simulation setup can be seen in fig. 5.2a. Within this and following figures, yellow
indicates the ice crystal and blue the suspension with the red-orange part indicating
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Figure 5.2: Initial and boundary conditions of the simulation as well a subregion of an exemplary
steady-state simulation. Yellow indicates the ice crystal and blue the suspension, with the
red-orange part being the diffuse interface.

the diffuse interface. Additionally in fig. 5.2b the considered microstructural lengths are
shown: The tip distance, or wavelength, λ, the ice trunk diameter dice and the suspension
channel diameter dsus. For the trunk and channel diameters the straight regions of pure
ice and pure suspension are determined. Hence the region of side branches is excluded
from the measurement which leads to λ > dice + dsus.

5.3 Overview of results

Simulations are conducted with the following solidification conditions: Solids loading
c0 ∈ {0.075, 0.1, 0.15}, pulling velocity v ∈ {3.2, 6.4, 12.8}µm/s and temperature gradient
G ∈ {1.5, 24}K/mm for the parameter sets for 250 nm, 375 nm as well as 500 nm par-
ticle suspensions, resulting in 54 simulations. The first temperature gradient is similar
to the one found in experiments [158] with the second one chosen for quicker conver-
gence of the microstructure. The simulations are continued until no dendrite is moving
significantly out of the moving window. Figure 5.3 gives an overview of the final sim-
ulated microstructure for various parameters. Several observations are evident: The
microstructure is refined by higher pulling velocities v and dendritic side branches are
less developed. The latter effect is likely caused by the distance between dendritic trunks
decreasing which causes diffusion-mediated suppression of the side branches. In contrast
the solids loading directly changes the mass fraction of ice to suspension, with an increase
of the solids loading causing a widening of the suspension channels and a narrowing of
the ice trunks. Furthermore, dendritic side branches become more prominent for higher
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solids loading as the trunk distance grows. Finally, increasing the particle size gener-
ally lessens side branching by decreasing the trunk distance. Simulation snapshots of all
conducted simulations in their final state are available in appendix A.2.

5.4 Influences on the microstructural lengths

The tip distance λ, the ice trunk diameter dice and the suspension channel diameter
dsus are measured as the microstructural length parameters in each simulation. In order
to build a relationship between the processing parameter set {c0, v,G} and the output
microstructural length, it is assumed that a power law relationship holds for each pa-
rameter and that the parameters’ effect can be separated, i.e. their product yields the
microstructural length up to a constant multiplier. Hence the results will be fitted to the
model

L = Acn0 v
mGo (5.7)

with L being any of the microstructural lengths. This model is similar to analytical
models for dendritic growth in alloy solidification [9], except that the solids loading c0
takes the place of the solidification range ∆T0. In the following, the model is fitted
to the different simulated microstructural lengths and the results discussed. The main
thrust of this discussion will be on the scaling laws and hence the prefactor A will not
be discussed, but reported for completeness’ sake. Table 5.2 provides an overview of the
predicted, observed and fitted results for scaling laws from literature as well as this work.
In the following, the fitting results will be discussed and compared to theoretical and
experimental results.

First, the results for particles of 250 nm radius are used for parametrizing this model.
Fitting the simulation data for the wavelength λ against this model yields the parameters
plus-minus the standard deviation A = 4729µm±956.0µm, n = −0.07088±0.06306, m =

−0.6058± 0.03714, o = −0.2675± 0.01658, with v in µm/s and G in K/m. The velocity
exponentm is close to the range of experimentally reported values [−0.67,−1.3][158–160].
Note that as [159] mentions the velocity exponent depends on the particle size, the effect
of which will be shown shortly. However, none of the experimental studies systematically
studied the influence of the temperature gradient on the structural wavelength. The
aforementioned model by Kurz et al. [9] predicts an exponent of −0.5, whereas here
a temperature gradient exponent o of roughly half this value is observed. While this
difference remains to be investigated, it does imply that care should be taken to control
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Figure 5.3: Overview of simulation results for suspensions of 250 nm and 500 nm particles being di-
rectionally solidified in a 1.5K/mm temperature gradient. Increasing the pulling velocity
refines the structure in general. Increasing the solids loading roughens the side structure
of the ice dendrite and decreases the fraction of ice trunk diameter to suspension channel
diameter. Freeze-cast suspensions with larger particles tend to show less dendritic features.
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Figure 5.4: Scatter plot of the solids loading and observed wavelength with 250 nm particles. The
triangular symbols indicate the observations for G = 1.5K/mm and the rest for G =
24K/mm. The solids loading only has a minor effect on the observed wavelength compared
to the pulling velocity and temperature gradient. Furthermore, its effect apparently reverses
direction for the higher gradient.

the temperature gradient during freeze casting, as it has a significant influence on the
wavelength of the microstructure. The exponent n for the solids loading c0 is harder
to compare with existing models as these typically employ the solidification range ∆T0.
However, drawing a scatter plot of the solids loading and the observed wavelength for
several velocities, as shown in fig. 5.4, helps to interpret the result: The wavelength is
mainly determined by the pulling velocity v and the temperature gradient G, with the
solids loading showing only a minor effect. The direction of this effect even changes
for the higher gradient, hence the small value for n and its comparably large standard
deviation can be interpreted as the solids loading having close to no correlation to the
structural wavelength for this particle size.

Fitting the model with measured suspension channel diameter dsus yields the parameters
A = 10.48mm±3.953mm, n = 0.3733±0.10364, m = −0.6995±0.06473, o = −0.4193±
0.03747. The velocity exponent now crosses into the range of experimentally observed
exponents and the temperature gradient exponent is closer to the model by Kurz et al.
[9]. However, the exponent for the solids loading has changed appreciably. In order to
interpret this, consider that the suspension channels are closely related to the dense part
of the structure after the freeze-casting process is finished. The density, or equivalently
porosity, has been experimentally shown [160] to depend linearly on the solids loading
of the suspension, which would correspond to a solids loading exponent of n = 1 for the
dense part of the structure. However, the suspension channels in the simulation do not
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Figure 5.5: The mass fraction of the suspension below the dendrite tips vs solids loading for {G =
1.5K/mm, v = 12.8µm/s} with 250 nm particles.

correspond exactly to the solid walls within the freeze-cast structure, as the solidification
is not finished and the channel diameter disregards the ambiguous region of side branches.
Furthermore, the suspension channel diameter itself is modulated by the wavelength λ.
In order to show the linear relationship between density and solids loading, the observed
mass fraction of the suspension below the dendrite tips is plotted over the solids loading
in fig. 5.5 along with a linear fit to the data for a velocity of 12.8µm/s. The fit is also
calculated for the remaining velocites and gradients, all of which show good correlation
(R2 ≥ 0.995), suggesting that the model reproduces the linear relationship between solids
loading and density as found in experiments.

Finally, applying the model to the ice dendrite trunk diameter dice yields the parameters
A = 148.5µm±41.61 µm, n = −0.7147±0.09337, m = −0.3119±0.04442, o = −0.1488±
0.01881. These are very different from the previous results and indicate that the ice
trunk diameter is less sensitive to changes in the gradient and the solidification velocity
but more sensitive to changes in the solids loading compared to the suspension channel
diameter. The sign change of the solids loading exponent directly follows from the ice
phase rejecting particles and hence when more particles are present, less space is available
for the ice to solidify. Calculating the mass fraction of ice as above also indicates that
a linear relationship, now with negative slope, exists between the ice mass fraction and
the solids loading of the suspension.

Next, the simulation results for particles of 375 nm radius are used for parametrizing
eq. (5.7). The fitting parameters A = 4471 µm ± 555.0 µm, n = 0.04561 ± 0.03953,
m = −0.5699 ± 0.02304, o = −0.2317 ± 0.009862 are obtained for the wavelength λ. In
contrast to the 250 nm particle results, the concentration exponent n is now positive.
Furthermore its standard deviation relative to the exponent is smaller, which suggests
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Figure 5.6: Scatter plot of the solids loading and observed wavelength with 375 nm particles. The
triangular symbols indicate the observations for G = 1.5K/mm and the rest for G =
24K/mm. The effect of the solids loading on the wavelength is still minor compared to the
pulling velocity and temperature gradient. However more points tend to trend upwards
with a higher solids loading.

that there is a small coarsening effect on the wavelength when increasing the solids
loading. The corresponding scatter plot in fig. 5.6 shows mostly irregular behavior again
but with more points trending upwards for higher solids loading. Both the velocity
exponent m and the temperature gradient exponents o have decreased slightly from the
previous case.

Fitting the data for the suspension channel diameter dsus yields A = 2387µm±381.6µm,
n = 0.5611±0.05328, m = −0.7520±0.03389, o = −0.1699±0.01207. The solids loading
exponent is now closer to the expected value of 1. As can be seen in fig. 5.1, for a
given undercooling below the liquidus, the suspensions with larger particles will have
an equilibrium solids loading closer to the random dense-packing density of 0.64. The
liquidus becomes very steep close to this RDP, similar to the stoichiometric solidus line.
Hence a suspension region which achieves this concentration range will stay close to
it, even if it is cooled down further. In combination with the stoichiometric solidus
line this implies that a constant partition coefficient k = xi/xs with the equilibrium
solids loading in the ice xi and the suspension xs is achieved. Away from this region
the partition coefficient is a function of temperature. Thus it is likely that more cells
in the growth direction below the moving window point would further move the solids
loading exponent to a value of 1, as a bigger part of the simulation domain would have
an almost constant partition coefficient. The velocity exponent m increased from the
250 nm particle results whereas the temperature gradient exponent o decreased.
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Employing the data for the ice trunk diameter dice yields A = 1167µm ± 281.9 µm,
n = −0.4091 ± 0.07633, m = −0.4488 ± 0.04028, o = −0.2590 ± 0.01902. As with the
suspension channel results, the velocity exponent shows a slight increase. Contrary to
those results, the temperature gradient exponent o increased. The solids loading exponent
is still negative but has decreased substantially.

Finally, the simulations results for particles of 500 nm radius are used for parametrizing
eq. (5.7). For the structural wavelength λ, the parameters A = 3791 µm ± 504.5 µm,
n = 0.08709± 0.04294, m = −0.5847± 0.02525, o = −0.2037± 0.01029 are obtained. As
with the 375 nm results, a slight coarsening effect of increased solids loading is present,
with even more points trending upwards in a scatter plot. The effect of the temperature
gradient on the wavelength seems to decrease slightly with increasing particle size. The
velocity exponent is close to that of 375 nm particle suspensions, though slightly larger
now. In [159] the authors observed a velocity exponent of 1 for 400 nm particles and
one of 2

3 for 100 nm particles, both suspended in water. The present study shows a minor
effect in the other direction, that is the velocity exponent increases as the particle size
is reduced. However, the magnitude of this effect relative to the error in the exponent
does not suggest that the effect is significant. An explanation for the dependence of
the velocity exponent is the concentration and particle size dependent diffusivity [161].
However, the present study assumes a constant diffusivity of particles in the suspension.
Hence the variation of the velocity exponent is likely to be largely a function of the
kinetics represented by diffusivity, with only minor energetic influences.

For the suspension channel diameter dsus the parameters A = 965.7µm ± 272.5 µm,
n = 0.6485±0.09631, m = −0.7754±0.06159, o = −0.05052±0.01963 are obtained. The
velocity exponent is now higher than for the suspension with smaller particles, but the
ranges including the error overlap again. The trend of increasing solids loading exponent
with increasing particle size continues, although in a less significant way as the ranges
including the error overlap now. Furthermore, the dependence of the suspension channel
diameter on the temperature gradient is significantly smaller than for the suspensions
with smaller particles. Scatter plots of the suspension channel diameter against the
temperature gradient generally show a refinement effect, with two outliers. One shows
almost no refinement and the other a coarsening effect on the suspension channel, whereas
both the wavelength and ice trunk exhibit refinement. Excluding those two outliers
roughly doubles the exponent, but even at −0.1 there is still a significant difference to
the results for suspension with smaller particle sizes which remains to be investigated
further.
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Lastly, fitting against the results for the ice trunk diameter dice yields the parameters
A = 1122µm±207.6 µm, n = −0.1987±0.05944, m = −0.3878±0.03151, o = −0.2134±
0.01415. The solids loading exponent has become even smaller at this particle size,
continuing the trend of previous particle size variations. In contrast, both the velocity
and temperature gradient do not follow the previous trends.

5.5 Conclusion and outlook

A new parametrization of the freeze-casting process with the phase-field grand potential
approach was presented. Within this, the complex capillary and kinetic anisotropy of
the ice-water interface was qualitatively approximated with sums of spherical harmon-
ics. The as-of-yet experimentally undetermined thermodynamics of an aqueous colloidal
suspension were approximated by relying on a previously calculated phase boundary by
Peppin et al. [76, 78]. Based on these approximations, simulations in the dendritic mor-
phology regime were conducted for suspensions with particles of radius 250 nm, 375 nm
and 500 nm. The wavelength, the suspension channel diameter and the ice trunk diam-
eter were measured in the steady-state regime and connected to the input processing
parameters of velocity, temperature gradient and solids loading of the suspension. Qual-
itatively, observations showed that higher velocities and temperature gradients refined
the microstructure for all three considered microstructural lengths. Increasing the solids
loading yielded larger suspension channels and narrower ice trunks with the dendritic
features becoming less prominent.

A simple power law model was fitted to the simulated data in order to determine scaling
relationships between the processing parameters and the microstructural lengths.

The wavelength was shown to depend mostly on the pulling velocity and the temperature
gradient, with an increase of either leading to a smaller wavelength. This suggests that
temperature gradients should be controlled in experiments in order to make them more
comparable. In contrast to e.g. [159], an increase in particle size in the results shows
a small reduction of the velocity exponent. Since in this study only the energetic and
not the kinetic effects of changing the particle size was considered, the experimental
behavior is likely to be largely attributable to kinetic effects such as the concentration
and particle size dependent diffusivity. There was little influence of the solids loading on
the wavelength for the smallest particle size. For the two bigger particle sizes, increasing
the solids loading slightly increased the wavelength.
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The suspension channel diameter, which roughly corresponds to the width of the solid
walls within the final freeze-cast structure, showed a bigger dependence on the employed
pulling velocity with the exponent also being closer to the experimentally observed range.
This dependence slightly grew with increasing particle size similar to [159]. While an
increase of the temperature gradient also led to smaller suspension channel diameters, the
magnitude of the influence seems to strongly depend on the particle size. At the largest
investigated particle size, the influence of the temperature gradient was minor compared
to both the pulling velocity and solids loading. An increase in the solids loading showed
larger suspension channel diameters with its exponent getting larger and closer to 1 with
increasing particle size. It was shown that the mass fraction of the suspension phase
below the dendrite tips is a linear function of the solids loading with positive slope, as is
commonly found in experiments.

Finally, the ice trunk diameter, which roughly corresponds to the pore width within
the final freeze-cast structure, showed a smaller dependence on the employed pulling
velocity. The magnitude of the pulling velocity dependence changed with the particle size
but without an obvious trend. Similar results are found for the temperature gradient.
An increase in solids loading showed smaller ice trunk diameters with its dependence
becoming smaller for larger particles.

In total the results suggest that coarse-graining the individual particles into a concentra-
tion field is a viable approach for simulating freeze-casting. A future study investigating
the effect of the particles on the kinetic variables such as diffusivity should be conducted
in order to test whether this would reproduce the experimentally observed dependence
of the velocity scaling law on the particle size.
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6 Effect of advection within
phase-field models of sintering

This chapter is based on the author’s paper [113] (© Elsevier. Reproduced with permis-
sion. All rights reserved). The following sections are taken verbatim from the paper, with
minor linguistic and stylistic changes to account for the move from a paper to a chapter
in the present dissertation as well as some clarifications due to the referees. Numerical
details and relevant literature are also given in the paper. The conclusion was slightly
rewritten to account for the already presented information and removing the outlook, as
the following chapters will consider aspects of the outlook.

This chapter uses the model described in section 3.1.3, with and without advective terms,
in order to determine the influence of advection within phase-field models of sintering.
The model with advection will also be referred to as the RBM model, as it includes
rigid-body motion.

First, the parameters as employed by [33] will be introduced. Next, the geometry em-
ployed for this work will be described alongside some pertinent prior theoretical work.
Following this, the simulations are described, their results reported upon and discussed.
The short messages of this chapter are:

• adding advection significantly helps with the convergence of shrinkage

• a relaxation ansatz towards a time-independent constant for the calculation of
advection velocities is inconsistent with free energy minimization

6.1 General parametrization

The model parameters are the same as in [33], with {A = 16, B = 1, βη = 1, βρ =

10} corresponds to values of the surface energy γs = 23
√
3

18 , the grain boundary energy
γgb =

2
√
3

3 and the interface width W = 2
√
3

3 . The equilibrium dihedral angle given by
ψ = 2arccos(

γgb
2γs

) is about 150◦. The diffusion coefficients are assumed to be Dsurf =
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6 Effect of advection within phase-field models of sintering

4, Dgb = 0.4, Dvol = 0.01 and Dvap = 0.001 and the mobility L = 10. The parameters
influencing the rigid-body motion which will not be varied are mt = 500 and κ = 100.
A spatial discretization of ∆x = 0.33 is chosen, with a stable time step of size ∆t =

2.9648025 · 10−5. As in [33] the parameters do not correspond to a specific material
system or thermodynamic conditions. The results are thus generic for material systems
exhibiting similar surface energy and diffusion ratios as the ones employed here.

6.2 Benchmark geometry and analysis methods

A finite, linear chain of equally-sized grains is generally considered in this section. For
circular grains fig. 6.1 shows a geometric sketch along with the relevant parameters of the
number of grains n and the radius r. During sintering vacancies are annihilated at the
grain boundary, which yields both neck growth and densification. Assuming that each
grain boundary acts independently and absorbs the same amount of vacancies, one would
expect that the densification rate at a certain time is independent of the number of grain
boundaries in the chain. Based on this reasoning, the densification is taken to be the
main parameter of interest in this study, as it should stay invariant with the number of
particles n, i.e. the densification-time curves should form a single master curve regardless
of n. As a measure of densification the strain ϵ(t) is used, computed by comparing the
distance of barycenters of the leftmost (x1) and rightmost (xn) particle (cf. fig. 6.1)

L(t) = xn(t)− x1(t) (6.1)

ϵ(t) =
L(t)− L(0)

L(0)
(6.2)

=
∆L

L(0)
(6.3)

with the x-coordinate being the linear direction of the particle chain. The strain is
positive if the chain lengthens and negative if the chain shrinks. For the simulations with
RBM, the individual displacements ui = vi∆t only due to RBM were also tracked and
integrated over time. The length change calculated purely by these advection steps did
not differ much from the length change calculated based on the barycenter movement.
Their time evolution was highly similar, with the barycenter distance method showing a
slightly larger length change due to including the effects of diffusive transport.

The case of an infinite linear chain has previously been investigated via geometric models
by several authors [87, 162, 163]. If one simply applies periodic boundary conditions
to a two-particle geometry with the grains being cut by the periodic boundary, then
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. . .

r

L(0) = 2(n− 1)r
y

x

x1(t)

xn(t)

L(t)

Figure 6.1: Finite, linear chain of n particles of radius r. The coordinate xi describes the barycenter
of the ith particle along the chain axis. The length of the chain is represented by the
center-to-center distance of the first and last particle.

the net velocity as calculated by the model of section 3.1.3 will always vanish. Thus
a direct comparison with these is not possible. However, a common point in these
analyses is whether the geometry can be considered densifying or not, which leads to
different equilibrium shapes. Specifically, Kellet and Lange[87] showed for an infinite
chain of cylinders that their equilibrium shape could be described with three variables,
viz. the equilibrium dihedral angle ψ, the grain boundary length h and the radius r of the
truncated sphere connecting two grain boundaries. They distinguished two cases, one in
which the particle centers are fixed (non-densifying) and one in which they are allowed
to move (densifying). In the densifying case, the non-dimensional equilibrium radius
R = r/ri is given by Rdeq = ( π

π−ψ+sin(ψ) )
1/2 whereas in the non-densifying case it is given

by Rndeq = 1
cos(ψ/2) , with the initial radius ri. In both cases, the non-dimensional grain

boundary lengthH = h/ri, or twice the neck radiusX, is given byH =
π
R+R(ψ−π+sin(ψ))

(2 cos(ψ/2)) .
Based on the resulting geometry, the shrinkage strain in equilibrium can be computed
via ϵ = 1−R cos(ψ/2), which yields 0.5466 for ψ = 150◦.

Plotting the grain boundary length over the dihedral angle yields fig. 6.2, in which it
is easy to see that densifying geometries generally yield longer grain boundaries than
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0 20 40 60 80 100 120 140 160
dihedral angle / °

0

1

2

3

4

 h
/r i

 / 
-

densifying
non-densifying

Figure 6.2: Equilibrium grain boundary length h normalized by the initial grain radius ri over the
equilibrium dihedral angle ψ. For increasing dihedral angle the grain boundary gets longer,
with the densifying geometry generally exhibiting longer grain boundaries than the non-
densifying geometry.

non-densifying ones. Specifically for a dihedral angle of 150◦ the non-densifying grain
boundary length should be about 1.39ri and the densifying one 3.38ri. It seems rea-
sonable that this result transfers to finite chains, with some error induced by the end
particles taking on a different shape. Thus if a system is densifying, one would expect
much longer grain boundaries than in a non-densifying system, which allows the classi-
fication of phase-field models according to whether they describe a densifying geometry
or not. In order to calculate the grain boundary length h the grain boundary area A

is divided by the interface width W . The neck length then follows as X = h/2. The
grain boundary area between the grains described by order parameters ηα and ηβ can be
computed based on the phase field by A =

∫
4ηαηβdV .

6.3 Chain length and densification

The initial radius for the circular particles is chosen to be r = 40 cells, with at least
20 cells left empty between the particles and the grain boundary. Chain lengths of 2,
4, 6 and 8 particles are considered, with and without RBM. For this study, the RBM
parameter set {ρgb, κ} is kept fixed at {ρgb = 0.9816, κ = 100} as in the original paper by
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6.3 Chain length and densification

Wang. On the boundary gradient-zero conditions for all phase-fields ηα and the density
ρ are employed.

In order to avoid pairing of particles due to the natural boundary effect of the first and
last particle, the first 104 time steps of 4 · 105 are calculated without RBM. After the
first 4 · 105 steps, corresponding to a simulation time of 11.8592, the simulations were
analyzed and continued for another 32 · 105 steps in order to start investigating the
long-time behavior.

The time evolution of a 4 particle chain which is continued with RBM is shown in
fig. 6.3. Both neck growth and shrinkage are observed, with an apparent unshrinkage
being observed from (c) to (d) in the long-term simulation.

(a) initial sharp interface configuration (b) shortly before RBM activation

(c) state at normal end of simulation,
t = 4 · 105∆t

(d) state at long end of simulation,
t = 3.6 · 106∆t

Figure 6.3: Time evolution of the sum of grain phases
∑
ηα in a 4 particle chain with rigid body motion

activated after t = 104∆t. The ηα = 0.5 contour lines of individual grains are drawn as
red lines. From the start (a) to the activation of RBM (b) no significant densification is
observed, but a neck is formed. At the regular end of the simulation (c), a significant den-
sification is observed relative to the initial configuration (a). If this simulation is continued
then material apparently flows towards the boundary (d) instead of the center of the chain.

The length change ∆L of the sample and the absolute value of the strain |ϵ(t)| are plotted
in fig. 6.4. For the purely diffusive simulations the length change ∆L at any particular
time is almost independent of chain length and thus a variable strain is observed. In-
corporating RBM yields increased length changes with increasing chain size, leading to
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6 Effect of advection within phase-field models of sintering

almost the same strain being observed at any particular time for more than two parti-
cles. This suggests that the strain rate, or equivalently densification rate, does almost
not depend on system size if RBM is included. Note that even with the inclusion of RBM
there is a slight decrease of strain with chain length.

0 2 4 6 8 10 12
simulation time / -

20

15

10

5

0

le
ng

th
 c

ha
ng

e 
/ c

el
ls

2p w/o RBM
4p w/o RBM
6p w/o RBM
8p w/o RBM

2p w/ RBM
4p w/ RBM
6p w/ RBM
8p w/ RBM

(a) length change

0 2 4 6 8 10 12
simulation time / -

10 3

10 2

|s
tra

in
| /

 -

2p w/o RBM
4p w/o RBM
6p w/o RBM
8p w/o RBM

2p w/ RBM
4p w/ RBM
6p w/ RBM
8p w/ RBM

(b) strain

Figure 6.4: Length change and absolute value of the strain for particles chains of various lengths with
and without RBM. Lines with markers indicate simulations with RBM, whereas only mark-
ers indicate simulations without RBM. The label describes how many particles were in the
chain as well as whether RBM was active. The black vertical line indicates the time at
which RBM was activated. The strain is plotted on a semilogarithmic scale for better
visibility of the differences without RBM. Simulations without RBM show a length change
independent of chain length, whereas simulations with RBM have an almost linear increase
in length change with increasing chain length. Thus the strain is variable for simulations
without RBM and almost constant for those with RBM.

These results suggest that RBM is indeed a necessary ingredient for a physically sensible
phase-field model of sintering, as the kinetic pathway taken should obviously not depend
on the system size. However, the manner in which the rigid body velocity of each
particle is calculated is also of great import. This is revealed by looking at the long-
term simulations, in which eventually a kind of unshrinkage occurs, shown in fig. 6.5,
which is accompanied by an increase in free energy. This is due to the phase-specific

120



6.3 Chain length and densification

velocities vηα no longer being oriented towards the total center of mass, but rather away
from it. Once the velocity points outwards it will transport mass towards the boundary
and unshrinkage can occur. The instantaneous velocity of the leftmost particle for the
4 simulations with RBM is shown in fig. 6.6, with a positive velocity pointing towards
the total center of mass and a negative one away from it. The view is restricted to the
dimensionless velocity range of [−0.1, 0.1] in order to emphasize the occurrence of long
periods with negative velocities; these are the cause behind the observed unshrinkage.
The jumps of the instantaneous velocity are caused by the filtering function g, since new
cells with large force densities are added to the resultant force in an abrupt manner.
Note that this particle velocity is used for the spatial interpolation (eq. (3.76)) and hence
does not need to be continuous.
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(b) change of free energy after t = 2000∆t

Figure 6.5: Long time behavior of simulations with and without RBM. Simulations with RBM even-
tually show unphysical unshrinkage. This also causes the free energy to increase which is
inconsistent with the minimization of free energy.

Before proceeding to investigate the reason for the sign change in the velocity, the influ-
ence of particle size is considered shortly. Two additional particle sizes, 50 and 60 cells,
were simulated for chains of length 2, 4, 6 and 8 thus yielding another 8 simulations.
Their length changes and strains are depicted in fig. 6.7. The length change is barely
affected by the change in particle size, which in turn causes the densification to decrease
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Figure 6.6: The rigid-body velocity of the leftmost particle over time. A positive velocity point towards
the total center of mass and thus causes densification. While it is initially positive and thus
densifying, the velocity becomes negative for extended periods of time during later stages,
thus causing the observed unshrinkage. Since the velocity is calculated instantaneously
based on the resulting force it has discontinuous jumps due to the filtering function g.

as the particle size is increased. The larger particles tend to experience less unshrinkage
in total.

In order to determine whether particle size influences when unshrinkage starts, the rel-
ative neck radius X/ri, i.e. the neck radius divided by the initial particle radius, is
evaluated at the onset of unshrinkage. The onset of unshrinkage is assumed to be the
global minimum of the length change curve. Figure 6.8 shows the dependence on the
particle size as well as the number of particles in the chain. The relative neck radius at
the start of unshrinkage tends to decrease as the particle size is increased. Furthermore,
more particles in the chain seem to also incentivize unshrinkage, but not in a strictly
monotonic way as the particle size.

In the following section the reason for the sign change in the velocity will be determined
with theoretical considerations as well as sensitivity studies on the RBM parameters.
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Figure 6.7: Length change and absolute value of the strain for particles chains of various lengths and
particle sizes with RBM. The length change is barely affected by the particle size, but this
induces a large variation in observed strain.
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Figure 6.8: The geometrical state, described by the relative neck radius X/ri, at the onset of unshrink-
age for the conducted simulations. Unshrinkage is observed at relatively smaller necks as
particle size is increased, or when the number of particles in the chain is increased. How-
ever, the latter influence is not observed to be monotonic.
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6 Effect of advection within phase-field models of sintering

6.4 Shrinkage in equilibrium

The analysis is started by considering the simplest possible case, i.e. a one-dimensional
system with two grains occupying the intervals (−∞, 0] and [0,∞). The equilibrium
phase-fields (vanishing δF

δηα
) are given by

η1(x) = 0.5(1 + tanh(
x

W
)) (6.4)

η2(x) = 1− η1(x) (6.5)

with a uniquely determined interface width W and the grain boundary at position x =

0. The grains are characterized by a constant density of ρ = 1 and evaluating the
chemical potential µ = δF

δρ yields zero everywhere. These results only consider the energy
functional itself, without any influence from RBM. If RBM is now introduced, there will
be a net force and hence net velocity acting on the grains. This is due to ρ = 1 being
found on the grain boundary, whereas the net force would only vanish for ρ = ρgb. For the
left grain η2, the force density is described by dF2 = κ(ρ−ρgb)g(η2, η1)(∇η2−∇η1). Since
ρ is 1 everywhere in equilibrium the density difference ρ − ρgb is of positive sign. Thus
the direction of the force is initially given by (∇η2−∇η1) which points towards the bulk
of η2, i.e. in the negative x direction and away from the grain boundary. By Newton’s
third law, the same but opposite force acts on the grain η1 and hence both grains repel
each other. This leads to the negative velocities observed in fig. 6.6 which finally lead
to the observed unshrinkage. This conclusion can also be reached by considering that
the force density will only vanish once ρ = ρgb is achieved within the grain boundary,
which necessitates transporting mass away from the grain boundary. The implication
of both arguments is also that generally the thermodynamic equilibrium state based on
the functional is not the same as the equilibrium state in which the RBM term vanishes.
Hence nontrivial equilibrium states of this kind of model are generally dynamic with a
spatially variable density and chemical potential field. Only for the case ρgb = 1 the
equilibrium state in 1D for both models overlap and hence a static equilibrium can be
reached.

This obviously raises the question of why there is enhanced densification with RBM in
the simulations above, when the simplest case already shows unshrinkage. The values of
the density ρ on the grain boundary are of key importance and hence the value range is
explored in the following: The two driving forces for a change in ρ are the RBM flux, in
equilibrium for a density of ρgb, as well as the diffusion flux, equilibriated at ρeq = 1+f(κ)

due to the Gibbs-Thomson effect slightly changing the equilibrium density. Hence the
density should lie within the interval [ρgb, ρeq] as long as the considered point is within
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6.4 Shrinkage in equilibrium

the grain boundary. The grain boundary itself is attached to two triple points in the
benchmark geometry and the density has to drop to 0 once the triple point is left behind
and the pure vacuum is entered. Thus regions within the triple point can have density
values of ρ < ρgb. The triple point regions need to be considered since the filtering
function

g(α, β) =

{
1, ηαηβ ≥ c

0, else
(6.6)

can include them, and in fact does for the literature value of c = 0.14. Hence the
interval is expanded to [ρc, ρeq], with ρc being the density at which ηαηβ = c holds. An
example of such a profile is plotted in fig. 6.9 for the two-particle simulation with RBM at
t = 11.562, which still showed shrinkage. Only the region between the intersection of the
orange curve and the solid black line contributes to the total force, since values outside
of it are filtered away by g(α, β). This is visualized with the green line which corresponds
to the local force density dF except for the phase-field gradient. The dashed black line
indicates ρgb = 0.9816 and thus we can see that ρc < ρgb; this will generally hold unless
one chooses c very close to 0.25 which is the maximum of ηαηβ . The parts of the profile
above the dashed black line will cause repulsion of the particles, whereas those below it
will cause attraction. Thus if the middle region, the grain boundary, grows long enough
the simulation will have net forces acting in a repelling manner. This causes unshrinkage
if the absolute value of the advection flux induced by these is larger than the diffusive
flux, since the latter always acts in a densifying manner. The volume of the particles
enters the problem here, as the force is translated into a velocity with v⃗ηα = mt

Vα
F⃗α

and thus larger particles are less likely to show unshrinkage. In total determining the
state when unshrinkage starts is not analytically tractable, as it depends on both time-
and-space-dependent density and phase-field profiles as well as the global state via the
particle volume. If one only considers the velocity magnitude to be the determining
factor for the influence of unshrinkage, one would conclude that larger particles would
enter unshrinkage at later simulations stages. This is due to the velocity magnitude
being directly antiproportional to the particle size. However, a larger particle size also
implies reduced diffusional fluxes which always act densifying and hence would counteract
unshrinkage. As shown in the earlier study on particle size, the relative neck radius at
the onset of unshrinkage in fact decreases as particle size increases. This is likely due to
the diffusional fluxes decreasing more than the advective fluxes when the particle size is
increased.

In order to exclude the possibility of unshrinkage, the force and thus velocity need to be
kept attractive. The direction of the force is affected by the choice of gradient vectors, the
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Figure 6.9: Density and grain boundary profile along the grain boundary for a two-particle simulation
at t = 11.562. The grain boundary ηgb is defined as 4ηαηβ in order to scale it in the
range of [0, 1]. The horizontal dashed black line indicates the chosen ρgb = 0.9816 and
the horizontal solid black line the threshold value c = 0.14 multiplied by 4, accounting for
the scaling. The force density dF is non-zero only between the intersections of the solid
black line and ηgb, as indicated by the dot-dashed line. Note that the region where ηgb ∼ 1
exhibits only negative force densities.

regions considered to be a grain boundary via g(α, β) and the difference ρ−ρgb. Inverting
the direction of the gradient vectors fails directly, as any initial contact between particles
will force them apart and no shrinkage at all is possible. Augmenting this by choosing
the grain boundary region such that ρ > ρgb is guaranteed might fix this approach, but
it requires a precise calibration of the filtering parameter c in eq. (6.6) such that ρc ≥ ρgb
is true. A much easier calibration is available for the difference ρ− ρgb: Since the upper
limit of ρ within the grain boundary is known to large precision via ρeq = 1 + f(κ),
the difference can be forced to be largely of negative sign which will lead to attractive
forces. This reduces the problem to finding the average curvature during the simulation
or estimating it prior to the simulation if it is expected not to change appreciably. More
generally, as long as ρgb ≥ ρeq holds the grain boundary will tend to attract the adjacent
grains. Note that ρgb is thus unrelated to the physical density of the grain boundary, but
rather simply a parameter for ensuring attractive grain boundaries.

In order to verify this procedure without needing to find f(κ) for the given energy func-
tional, several two particle-simulations with different values of ρgb are carried out for
up to 300 million time steps, corresponding to a simulation time of roughly 9000. This
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Figure 6.10: Strain of a two-particle system without RBM and with RBM for various grain boundary
densities ρgb. A positive strain corresponds to a lengthening (unshrinkage) and a negative
strain to a shortening (shrinkage). For ρgb ≥ 0.99 a monotonic behavior is observed as
would be expected, but for values below 0.99 unshrinkage is observed. The equilibrium
strain is observed to depend on ρgb.

Table 6.1: Measured and theoretical equilibrium values for densifying simulations.

property no RBM ρgb = 0.99 ρgb = 1.00 ρgb = 1.01 theoretical

shrinkage |ϵ| / - 0.377 0.267 0.368 0.411 0.546
GB length h / ri 2.38 1.92 2.33 2.55 3.38

estimated h′ / ri (ψ = 150◦) 3.00 3.42 3.01 2.95 3.38
dihedral angle ψ / ◦ 159 145 157 160 150

estimated h′ / ri (ψ measured) 3.42 3.23 3.38 3.44 3.38

value was sufficient to reach equilibrium for the simulations showing monotonic densifi-
cation behavior. In general, the effect of the Gibbs-Thomson effect on the bulk density
is small. Hence grain boundary density values ρgb ∈ {0.96, 0.97, 0.9816, 0.99, 1.00, 1.01}
were chosen for this test. Furthermore, one simulation without RBM was carried out to
long times as well in order to compare the equilibrium grain boundary lengths and hence
determine which model more closely approximates the densifying geometry from Kellet
and Lange[87]. The results of this simulation study are shown in fig. 6.10. For values of
ρgb ≥ 0.99 monotonic behavior in the strain is observed, suggesting that for ρgb ≥ 0.99

shrinkage is ensured.
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In the following, the influence of ρgb on the shrinkage as well as its relation to the
theoretical equilibrium shrinkage is discussed, with the results being collected in table 6.1
to give a concise overview. As can be seen in fig. 6.10 different values of ρgb lead to
different equilibrium shrinkages, when it should be a universal value. This difference
is due to the proportionality of the force density to ρ − ρgb and hence different values
of ρgb will directly change the equilibrium state. Shrinkage values, corresponding to
−ϵ, of 0.267, 0.368, 0.411 are observed for RBM simulations with ρgb = 0.99, 1.00, 1.01

respectively, i.e. a higher ρgb leads to larger shrinkage in equilibrium. The simulation
without RBM achieved a shrinkage value of 0.377, comparable to that of ρgb = 1.00.
However, none of these values come close to expected infinite chain shrinkage at 0.546,
very likely due to the finite length of the chain. The same behavior and discrepancy is
observed for the grain boundary length, which is plotted in fig. 6.11. Since shrinkage and
grain boundary length are coupled via mass conservation, one may assume that these
differences are correlated. Hence an equivalent equilibrium grain boundary length h′,
if the infinite chain could be simulated, can be estimated via h′ = h

ϵinfinite

ϵfinite
. For the

simulations with ρgb = {0.99, 1.00, 1.01} the grain boundary lengths {3.42, 3.01, 2.95}ri
are calculated and for the simulation without RBM a length of 3.00ri is calculated.
Thus the simulation which comes closest to the theoretical value of 3.38ri is that for
ρgb = 0.99. While it would be an interesting validation to derive an expression for the
equilibrium grain boundary length and shrinkage for finite chains and compare them
with the present results, it is out of the scope of the present work. However, additional
information can be gained from evaluating the dihedral angle in the simulations, as
it enters the theoretical problem as a key value. The results over time are shown in
fig. 6.12. There is a deviation from the theoretical value even in equilibrium, but of
similar magnitude as others’ results[104] for a dihedral angle of 150◦. It can be observed
that as ρgb is decreased, the dihedral angle is reduced. Employing the earlier estimation
of h′ with the observed dihedral angle yields the values h′ = {3.23, 3.38, 3.44}ri for RBM
simulations with ρgb = {0.99, 1.00, 1.01} respectively and h′ = 3.42ri for no RBM. In
this case the simulation with ρgb = 1 matches the infinite chain result rather well. Hence
some of the earlier discrepancy is likely due to a different dihedral angle obtained in the
simulation compared to theory. The remaining difference in the shrinkage should thus
mainly be due to the finite chain length.

In any case, all of the simulations with monotonic shrinkage behavior, including the one
without RBM, show grain boundary lengths somewhat comparable to the theoretical re-
sult for the densifying geometry. Thus both models approximate the densifying geometry,
with the RBM model only doing so if ρgb ≥ 0.99 holds for the present setup.
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Figure 6.11: Grain boundary length h normalized by the initial grain radius ri over time for various
simulations. Like with the length change, increasing values of ρgb exhibit longer grain
boundaries, as both are correlated via mass conservation. Note that the simulation with-
out RBM reaches an equilibrium length comparable to that of ρgb = 1 and thus is still
densifying.
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Figure 6.12: Dihedral angle of all densifying simulations as well as the theoretical value. There is a
discrepancy for all simulations, with the grain boundary density influencing the dihedral
angle. Note that this measurement is done on the field-resolved data and hence has less
points than the previous plots which were calculated during the simulations.
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6 Effect of advection within phase-field models of sintering

6.5 Discussion

The previously shown simulation results and analytical considerations clearly show that
some kind of advection term is necessary in order for phase-field models to exhibit sen-
sible shrinkage behavior with more than two particles. The physical background of this
necessity is explored in the following: Consider an atom or a vacancy located within an
inner particle of the chain and its driving forces for migration. The closer the atom is
to a particular neck, the more likely it is to migrate towards it, with an atom perfectly
between two necks not having any preferential direction. This implies a symmetry of the
mass flux towards both grain boundaries of an inner particle and thus no net movement
of the particle center. For the outer particles of the chain there is no such symmetry and
thus they account for most of the motion observed in diffusion-only models. In practice
the motion of the outer particles causes a slight asymmetry for the inner particles, but
as the simulation results have shown, this is negligible on diffusive timescales. Adding an
advection term whose velocity points on average to the total center of mass will induce a
preferential direction for the mass flux towards the total center of mass of the system. If
the magnitude of this mass flux now depends on how many grain boundaries are crossed,
then a velocity profile leading to a constant shrinkage independent of chain length can
be established. Due to the density field being a conserved field, the effect of the velocity
field can be seen as removing vacancies from GBs (increasing density) and generating
them on the surface (decreasing density) as the particles are moving. While this effect
might be mimicked by a local source term, this would not lead to a preferential direction
for the mass flux and thus is unlikely to show shrinkage independent of chain length.
Note that the advection term does not have to be based on a rigid-body motion model,
it could also originate from solving a momentum transport equation. Hence it would
be interesting to verify whether phase-field models for liquid-phase and viscous sintering
[164, 165] naturally include the proper scaling with chain length. These models do not
introduce additional parameters such as ρgb or include external forces, but rather can
be derived thermodynamically consistently as done by [165] which ensures that the free
energy is indeed minimized.

The second part of this work elucidated the reasons behind the observed unshrinkage
in simulations if they are continued long enough. It was found that ρgb is a parameter
of key importance, as it controls whether grain boundaries act to repulse or attract
the grains they are attached to. Specifically, any value below ρeq will force the grain
boundaries to repulse the grains, but this may be balanced by the attractive force of the
triple points. This balancing is very likely the reason why the unshrinkage phenomenon
has not been observed previously in phase-field simulations, as the state at which the
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6.6 Conclusion

balance tips towards repulsion occurs only late into the sintering process. Based on the
study on variation of ρgb, choosing ρgb = ρeq is likely to yield the results closest to
analytical theories of shrinkage. In general ρeq is a function of simulation state via the
Gibbs-Thomson effect and hence should be estimated during the simulation run if the
curvature is expected to change appreciably.

Finally, do all phase-field simulations of sintering, regardless of stage, require the inclusion
of an advection term? Certainly those that start from green bodies do, as the majority
of densification still needs to occur without any kind of size dependence. However, in
the final stage only isolated pores remain and often these include gases which exert a
pressure on the surrounding grain structure. Assuming that these pores have reached an
equilibrium pressure-size state, then the generation of vacancies on their surface would
disturb the equilibrium and hence be energetically unfavorable. Hence if the simulation
is only concerned with pressurized, isolated pores, such as in [166, 167], then including
an advection term is unnecessary.

6.6 Conclusion

In this work the necessity of including an advection term in phase-field models of sintering
was shown by simulation. Specifically a shrinkage rate almost independent of system size
was only observed for models with an advection term. Hence, in order to reproduce the
correct kinetic scaling of sintering an advection term needs to be included. Furthermore,
a sensitivity study on the grain boundary density ρgb showed that its choice is critical:
If ρgb is chosen below the equilibrium grain density ρeq, then unshrinkage can occur.
The most practical choice of ρgb is ρeq, as then the equilibrium states of the energy
functional and the RBM model are very close and ρeq can be calculated based on the
energy functional. In the study it could also be shown that regardless of whether RBM is
included, simulations will approximate the equilibrium densifying geometries of analytical
models[87].
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7 Thermodynamically consistent
phase-field simulations of sintering

This chapter is based on the author’s paper [69] (CC-BY [168] IOP Publishing). The
following sections are taken verbatim from the paper, with only minor linguistic and
stylistic changes to account for the move from a paper to a chapter in the present disser-
tation, as well as some clarifications due to the referees. Numerical details and relevant
literature are also given in the paper. The conclusion is slightly rewritten to account for
the already presented information in section 3.2.2, but is also mostly taken verbatim.

The goal of this chapter is to present simulations of a grand potential phase-field model
of sintering, cf. section 3.1.2, including advective terms, which monotonically decreases
the free energy with time. The latter condition is, under suitable boundary conditions,
equivalent to monotonic increase of entropy which is commonly called thermodynamic
consistency via the second law of thermodynamics. In chapter 6 it was already shown
that this condition is violated if a constant equilibrium grain boundary concentration c0
is chosen. This chapter verifies that this holds for a grand potential model as well and
then goes on to eliminate this problem as well as the shock problem, with the model
details described in section 3.2.2.1 and section 3.2.2.2. Finally, it is observed that the
small variation in shrinkage with system size observed in chapter 6 has severe effects on
the densification of large three-dimensional green bodies.

The short messages of this chapter are:

• estimating c0 via the current simulation state can result in a thermodynamically
consistent evolution

• nearest-neighbour-only calculation for advection velocities are insufficient for sys-
tem size independent shrinkage.
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7 Thermodynamically consistent phase-field simulations of sintering

7.1 Parametrization for copper

The employed nondimensionalization scales are listed in table 7.1 and the material param-
eters in table 7.2. The Gibbs free energies are assumed to be given by simple parabolas

gV(c, T ) = AV(T )(c− cV(T ))
2 (7.1)

gs(c, T ) = As(T )(c− cs(T ))
2 (7.2)

respectively for the vapour phase V and solid grains s. The exact choice of energies is not
particularly relevant if the initial conditions are chosen such that driving forces for phase
transformation are small relative to capillary forces. This is generally achieved by setting
the initial concentrations to the equilibrium concentration cV = 0.02 and cs = 0.98. The
prefactor AV = As = 50 is chosen such that the Gibbs-Thomson effect of changing
the bulk concentration due to curvature is comparatively small. This also reduces the
spontaneous shrinkage of grains within the phase-field context as found by[169]. Strictly
speaking, A should be determined based on the observed concentration shift of a particle
embedded in a matrix of material. However, this value tends to be quite high, i.e. the
shift of concentration due to the Gibbs-Thomson effect via capillary forces is small. In
turn, this would severely increase the numerical stiffness of the solution, which is why a
pragmatic approach is taken here.

The grid spacing ∆x will be repeatedly varied and thus will be mentioned for each set of
simulations. The time step is calculated by estimating the stable time step in the explicit
time integration scheme as well as the Courant-Friedrichs-Lewy (CFL) condition, with a
safety factor of 0.3:

∆t = 0.3min(∆tϕ,c,∆tCFL)

∆tϕ,c =
∆x2

2max(Dϕ, Dc)

∆tCFL =
[∑
i

max(|vi|)
∆xi

]−1

with the effective phase-field diffusivity Dϕ = 2max(γ)
min(τ) with the respective maximum

and minimum values of γ and τ , the highest diffusivity employed for the concentration
equation Dc, i going over the spatial dimensions and max(|vi|) being the largest velocity
per dimension. Typically though the phase-field step is the limiting factor for stable time
integration.
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7.1 Parametrization for copper

The values of the interfacial energies are based on estimates for pure copper at 700K,
resulting in a dihedral angle of 151◦. The grain boundary diffusion value is based on
[170], with the surface diffusion value being based on [171]. The bulk diffusion within
the grains and vapor will be varied, and thus be mentioned for each simulation set.
When employing [171], bulk Cu diffusion would be on the order of 1 × 10−20 m2/s for
700K, effectively freezing the diffusion field within the bulk relative to the interfacial
diffusivities. Instead of using this tiny value, larger values will be used in order for
allow a reasonable amount of relaxation within the grains; this should not significantly
influence the qualitative results if faster diffusion mechanisms (grain boundary, surface)
are active at the same time. The kinetic coefficient of the surfaces τvα is chosen such that
the phase-field always relaxes more quickly than the chemical potential, which ensures
that the process is controlled by diffusion. Grain growth, if thermodynamically possible,
is largely suppressed by taking the kinetic coefficient between grains to be 100τvα. The
effective stiffness κ is chosen based on the observations in [36], such that the simulation
results become independent of its choice: The advective velocity tends to increase as κ is
increased until a plateau is reached. This plateau is determined in a pre-study and found
to start at 800, with κ = 3200 employed in the simulations to ensure that the results are
independent of κ. The resulting data and evaluation of this pre-study is available within
[172].

This pre-study as well as the small scale validation in section 7.2.1 are calculated on
a local machine using GNU parallel[173] for effective job management. The later large
scale simulations are calculated on the Hawk supercomputer at the HLRS.

Table 7.1: nondimensionalization parameters

scale value
length l0 1× 10−8 m

diffusivity D0 1× 10−12 m2/s

time t0 1× 10−4 s

velocity v0 1× 10−4 m/s

temperature T0 700K

surface energy Es,0 1 J/m2

energy density Er,0 1× 108 J/m3

molar volume Vm,0 7.1× 10−6 m3/mol
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7 Thermodynamically consistent phase-field simulations of sintering

Table 7.2: Employed physical and numerical parameters for the simulations.

parameter nondim. value physical value
Numerical parameters

interface parameter ϵ 4∆x variable
interface width W 10∆x variable
grain boundary cutoff ϕminαβ 0.14 -

Physical parameters
surface energy γVα 2 2 J/m2

grain boundary energy γαβ 1 1 J/m2

grain boundary diffusion Dgb 55 5.5× 10−11 m2/s

surface diffusion Ds 169 1.69× 10−10 m2/s

physical interface width δi 0.02 2× 10−10 m

surface kinetic coefficient τvα 0.08 8× 1010 Js/m4

grain boundary kinetic coefficient ταβ 100 τvα 8× 1012 Js/m4

stiffness κ 3200 -

7.2 Simulation results

In this section the model without the improvements as well as the models with improve-
ments will be compared. The first simulation setup for this purpose is the venerable
two-particle model, as it suffices to clarify whether the problems observed in [113] are
fixed by the improvements or not. The second setup concerns the scaling of the advective
velocity with the green body size. In [113] a small but persistent slowing of the densifi-
cation speed with the green body size was observed, even with advective terms included.
This is explored by employing the most promising model from the two-particle setup in
a three-dimensional packing and comparing it to a purely diffusive model.

7.2.1 Equilibria and dynamics for two particles

Two particles of equal radius R are set symmetrically in a simulation box with no-flux
conditions on all boundaries. The box size is taken to be 4R+ 9ϵ in the direction where
the particles touch, ensuring that the phase-field does not initially touch the boundary.
Directions perpendicular to this direction are of size 4R, which is sufficient to ensure that
the equilibrium states’ phase-fields will not touch the boundary. All phases are set to
their equilibrium concentrations initially.
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7.2 Simulation results

The following models will be considered for the present investigation: A diffusion-only
(DO) model, whose advective velocity is always zero. Three models including advective
terms (ADV), with the following variations:

• a constant ceqgb = 0.99 slightly above the equilibrium bulk concentration (C)

• estimating ceqgb with the particle size (V) eq. (3.83)

• estimating ceqgb with the average chemical potential on the surface (µ) eq. (3.84)

The DO model serves as a reliable baseline for the equilibrium shape, which the ADV
models should match if they are consistent with the energy functional. The ADV (ADV-
C, ADV-V, ADV-µ) models are expected to have faster neck growth and densification,
with differences in their individual dynamics and possibly equilibrium states. For simplic-
ity of presentation, only the case of bulk diffusion will be considered, i.e. the coefficients
for grain boundary and surface diffusion are set to zero. The Cu diffusion in the grain
is arbitrarily set to Db = 1 × 10−12 m2/s, with a value of Dv = Db/1000 being used
for the diffusion in the vapor. The equilibrium properties will be independent of these
choices for the DO model, while for the ADV models it will depend on whether they
are consistent with the energy functional. If these are not, then the choice of diffusion
constants will influence the equilibrium. The dynamic evolution will of course differ if
the diffusion coefficient is changed, but the scaling with time will be the same. Thus
the qualitative aspects should readily transfer to cases with grain boundary or surface
diffusion active as well as arbitrary non-zero choices of diffusion constants.

The first investigation is conducted at a constant particle size of R = 25nm, resolved with
r = 25 cells at ∆x = 0.1. An approximation for the chemical potential in equilibrium
is given by µeq = ∆µ = γsκ and assuming κ = 1/R0 with the initial radius R0 =

25∆x = 2.5, which yields ∆µ = 0.8. This can be translated into a bulk concentration by
cα(µ) = cs +

∂cα
∂µ ∆µ = 0.98 + 0.8

100 = 0.988.

The simulations are continued until a state close to equilibrium is reached, with the
obtained equilibrium shapes shown in fig. 7.1. While models except for ADV-C show
more or less similar equilibrium shapes, the shape of ADV-C is much more oblong due
to its severe violation of minimization of free energy. The free energy as well as dihedral
angle will thus serve as tests on the consistency with the free energy functional. The
change in free energy is shown in fig. 7.2a, relative to t = 0.0075 in order to exclude the
initial large jump from a sharp to a diffuse interface. It is observed that the models except
for ADV-C and ADV-V show a monotonic reduction in free energy. For model ADV-V
the non-monotonicity is short-lived and handily overshadowed by the other symbols, but
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7 Thermodynamically consistent phase-field simulations of sintering

DO ADV-C

ADV-µ ADV-V

Figure 7.1: Obtained equilibrium shapes represented by the Cu concentration field, with yellow indicat-
ing the solid grains, dark indigo the surrounding vapor and reddish-orange their interface.
Note that model ADV-C results in a much more oblong shape, with remaining models
showing similar shapes. This oblong shape results from the lack of free energy minimiza-
tion.

simple forward differences showed that it also contains a non-monotonic reduction in free
energy. The observed equilibrium concentration (model DO) within the particles is about
0.9868, which compares reasonably with the above simple approximation. The remaining
difference is easily explained, as multiple interfaces with different interface energies exist,
which the estimate for ∆µ doesn’t take into account.

Although ceqgb = 0.99 lies above this equilibrium concentration as suggested by [113], an
increase in free energy is observed. As shown in [113], the force density within the grain
boundary region defined by ϕαϕβ > 0.14 has repulsive (grain boundary) and attractive
(triple point) regions. During transient growth of the neck, the advective flux tends to
decrease itself by lengthening the repelling grain boundary until it matches the diffusive
flux. Given that the diffusive flux acts densifying for dihedral angles below the equilibrium
value, this implies that the advective flux has to increase the grain boundary length
and thus dihedral angle beyond their equilibrium values in order to match the diffusive
flux. Models ADV-µ and ADV-V can potentially avoid this problem by decreasing the
advective flux not by a grain boundary lengthening, but by decreasing the force density
within the grain boundary. The difference in free energies in equilibrium between models
DO and ADV-µ are due to the spatially variable chemical potential field for ADV-µ.
There is a finite, but small velocity remaining even for ADV-µ which balances out the
diffusive flux within the grain boundary.

The dihedral angle θ is shown in fig. 7.2b. The DO and ADV-µ models achieve the same
equilibrium dihedral angle θ = 150.4◦, missing the theoretical value by 0.6◦. However,
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Figure 7.2: The models ADV-C and ADV-V show a non-monotonic evolution of the free energy, whereas
models ADV-µ and DO show a monotonic drop in free energy. The theoretical dihedral
angle is closely approximated by ADV-µ and DO as well, while models ADV-V and ADV-C
significantly increase the angle.

both ADV-V and ADV-C increase the dihedral angle to about 166◦. As previously ob-
served in [113], the equilibrium dihedral angle is modified by a constant ceqgb and thus this
was to be expected. At first glance, model ADV-V increasing the dihedral angle would
seem odd, given that the simulation state is employed for estimating ceqgb. However, the
model for predicting ∆µ assumed constant γ for the interfaces, whereas in the simulation
the surface and grain boundary energy are different. This leads to a different equilibrium,
which in the present case by happenstance is close to the ADV-C equilibrium. It is likely
that model ADV-V would perform much better for equal surface and grain boundary
energy, but it seldom happens that these are equal. In total, the only advective model
that is observed to be consistent with the free energy functional is ADV-µ.

All models will also be tested for adherence to Herring’s scaling law. For this, the radius
R will be varied by increasing the number of cells employed to resolve the particle r
as well as by changing the grid spacing ∆x. This is done as to verify that size effects
have been fully included. If the physical size R = r∆xl0, with the nondimensionalization
length l0, is the same between two simulations with differing ∆x, then similar curves
should be obtained, with the difference entirely attributable to the discretization error.
The number of cells employed to resolve the particle r is in the set {25, 50, 100}, with two
grid spacings ∆x ∈ {0.1, 0.2} being used. Thus a range of physical particle radii R from
25 nm to 200 nm are resolved, with 50 nm and 100 nm being represented by two different
combinations of cells and ∆x.

The time evolution of the relative neck radius X/R, scaled according to Herring’s scaling
law, is shown in fig. 7.3. The data is filtered such that a parabolic profile in the chemical
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7 Thermodynamically consistent phase-field simulations of sintering
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Figure 7.3: Neck size evolution up to X/R = 0.5, with the time scaled following Herring’s scaling law.
The ADV models’ exponent 1/n clusters in the expected range of 4-5, but the DO model
shows an unexpected value of 6. All models except for ADV-C scatter closely and randomly
around their master curve and thus follow Herring’s scaling law. Model ADV-C tends to
scatter upwards as particle size is increased.

potential is present within the grain boundary and for X/R < 0.5. The former ensures
that the simulation matches the theoretical expectation and that the interface is well-
developed. The latter excludes the approach to equilibrium, which the scaling laws do not
represent and thus there is no sense in including that regime. The regime is taken to be
larger than the usual X/R < 0.3, as [162] still observed quite close matching up to X/R =

0.5 for a similar dihedral angle. As expected, the DO model shows the slowest evolution,
whereas ADV-C shows the quickest evolution. There is little difference in the evolution
between the ADV-V and ADV-µ models, though as seen earlier, different equilibria will
be obtained. Models excluding ADV-C show mostly random scattering around their
respective master curve, regardless of the chosen particle radius R. For model ADV-C,
the line tends to move upwards as the particle size is increased. Thus a fixed choice of ceqgb
might not follow Herring’s scaling law, though the present set of simulations allows no
conclusive decision. Furthermore, the slopes of curves differ from the classical two-particle
model expectation of 1/5[20]. The deviation is of similar magnitude as observed by
other phase-field models of sintering[33, 34]. Interestingly, the present DO model seems
to replicate the observed n ∼ 1/6 of [33] rather closely, whereas the models including
advection hit much closer to the expected n = 1/5. It might be that the factors employed
by [33] led to an evolution which was more dominated by diffusion rather than advection.
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Figure 7.4: Absolute strain |e| up to X/R = 0.5. The expectation that 1/m = 2/n for the strain is
roughly observed, with the strain values for the DO model probably being too small to
allow for a trustworthy evaluation. The upwards drift of model ADV-C with increasing
particle size is observed again.

The effect of a change of ∆x while keeping the physical radius R constant is that the
curve is moved upwards, especially for shorter simulation times. Excepting model ADV-
C, these simulations approach each other for larger times and thus the size dependence
should be completely included.

The absolute strain |e| is shown in fig. 7.4. The expectation that the observed exponent
is half that of the neck growth law is roughly confirmed for the models with advection.
A similar deviation from Herring’s scaling law is observed for model ADV-C. Model DO
tends to scatter strongly, likely due to its small amount of strain in the first place, so the
value of the fitted exponent is likely wrong. The equilibrium strain ( 0.333 for models
DO and ADV-µ, 0.366 for ADV-V and 0.429 for ADV-C) could be observed for the
simulations from the first study. This is below the strain predicted by Kellett[87] for an
infinite chain of cylinders, as also observed in [113], and is likely explainable by finite size
effects.

In total, the model ADV-µ seems to produce the most sensible results and thus will be
employed in the next study.
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7 Thermodynamically consistent phase-field simulations of sintering

7.2.2 Large-scale three-dimensional simulations

In chapter 6 a small but persistent decrease in densification rate is observed as the
number of particles in a chain is increased. Since the chain geometry is quite restricted
in its movement and does not contain porosity to fill, a small number of large-scale
3D simulations will be conducted to probe this effect further. The initial conditions
are generated by employing [174] as a discrete element simulation tool. A periodic box
of fixed size is filled with spheres of uniform size with a random velocity distribution,
followed by letting the system evolve in an NVE ensemble while accounting for the
translational and rotational degrees of freedom of the three-dimensional particles. The
particle interaction is described with a Hertzian contact law. The resulting packing is
then sliced to various extents, with larger slices always containing the smaller slices as
subdomains. The cuboid slices will be of size c3 with c ∈ {200, 400, 800}nm, which
with ∆x = 0.1 corresponds to domain sizes of 2003, 4003 and 8003 cells respectively.
The simulation volume c3 will henceforth be used directly as a simulation label. The
individual particles are resolved with a radius of 12 cells (R = 12nm), ensuring that
there are bulk cells for each particle while allowing a large number of particles to be
contained within the simulation domain. A particle is only voxelized into the domain if
its outer edge is at least 15 cells from the global boundary in order to exclude boundary
effects from the phase-field. This results in 262, 3445, and 34459 particles for the 2003,
4003, and 8003 domains respectively. No-flux conditions are applied on all boundaries for
all fields. Each simulation is preprocessed by running the DO model for 5000 steps with
equal bulk and vapor diffusivities of D = 1 × 10−12 m2/s. This is done to ensure that
interfaces have already been established, as to reduce the influence of the grain boundary
filtering function g on the initial evolution. After this step, all simulations are run with
the parameters listed in table 7.2 for at least an initial run of 300 000 time steps, with
more depending on the observed evolution. Grain growth is mostly suppressed by the
choice of a small grain boundary mobility. For the longest-running simulation, the mean
grain size changed from 11.84 nm to 13.95 nm, with less change for simulations running
for a shorter time. Given the small change in grain size, its effect on the density evolution
should be negligible compared to other effects present.

Exemplarily, the surface of the structure at simulation start and simulation end for the
4003 domain is shown in fig. 7.5 along with 2D slices through the domain showing the
grain structure. While there is significant neck growth, barely any movement inwards
is observed. Furthermore, the 2D slices reveal that the inner part of the green body
densifies much less quickly than the outer parts. It should be noted that the entire green
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Figure 7.5: The 3D green body as well as 2D slices of the 4003 domain calculated with model ADV-µ
close to simulation start and at simulation end are shown. The slice positions are indicated
with the transparent planes. Within the 2D slices, the surrounding vapor is depicted as
white, any interfaces as black and the grain number with a colormap without physical
meaning. While initially the structure is homogeneous, as time progresses the outer edges
become denser than the inner part of the green body.

body stays connected during the process; videos of complete scans through the green
body are deposited with [172].

The density evolution observed for this study is shown in fig. 7.6. It can easily be seen
that the DO model has a strong dependence of its densification on the green body size.
Furthermore, while the ADV-µ model does densify more quickly, it also has a strong
dependence on the green body size.

Thus the hypothesis stated in chapter 6 is confirmed, in that the model for calculating
advection velocities is lacking a part which eliminates this dependence. The most relevant
quantity to observe here is the spatial distribution of velocities. Densification in principle
means the reduction of occupied volume. In the language of continuum mechanics, this
is nothing more than demanding that the dilatation δ = ∆V

V0
= tr(e) is negative, with the

trace of the strain tensor e. Differentiating this by time yields the same property for the
strain rate tensor and its trace tr(ė) = ∇ · v which ought to be negative for densification
to take place. Thus for any control volume to densify, its ∇·v needs to be negative. Note
that this should hold for macroscopic control volumes containing multiple particles. It
does not need to hold on a local basis, as e.g. ∇ · v is zero everywhere within the bulk of
the particles due to the rigid body assumption.

Thus in order for a body to densify uniformly, its strain rate needs to be homogeneous,
suggesting that its velocity is a linear function of position. Of course, if a green body
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Figure 7.6: Density of the green bodies over time, for models DO and ADV-µ and various packing
sizes. While model ADV-µ does densify more quickly than model DO, its densification rate
is also strongly dependent on the system size.

were nonhomogeneous in its vacancy absorption rate, this need no longer hold. In the
present case however all properties are isotropic and homogeneous to the extent that the
structure is homogeneous; thus there is little reason for a deviation from linearity. The
velocity components are depicted over their particle’s spatial coordinates in fig. 7.7 within
the 8003 domain, for every 10th particle. Given the above discussion of the relationship
between densification and velocity distribution, it is obvious that the present model will
preferentially densify the outer edges, with the inner part showing almost no densification.
This is indeed observed as shown in fig. 7.5. Due to this non-uniform densification, no
RVE can be found for this model, as the controlling parameter for the density evolution
is now the ratio of inner particles to outer particles, which will not converge for finite
domain sizes.

It should be noted that this conclusion is independent of how ceqgb is determined, as the
particle velocity will still only depend on local interactions. A similar thought experiment
as was conducted in chapter 6, for why a diffusion-only model fails to scale correctly
with the number of particles in a chain, shows this easily: Consider a control volume of
sufficient size to be considered homogeneous on the inside of the packing: Since only local
interactions are taken into account and it is homogeneous, neighboring control volumes
will have a similar magnitude and sign of the velocity. Thus for neighboring control
volumes there is little to no velocity gradient, which implies little to no densification as
per the above discussion. Now consider a control volume on the edge of a packing: Since

144



7.3 Conclusions

0 200 400 600 800
particle position / nm

150

100

50

0

50

100

150
pa

rti
cle

 v
el

oc
ity

 / 
µm

/s

x
y
z

(a) t = 0.045ms

0 200 400 600 800
particle position / nm

100

50

0

50

100

pa
rti

cle
 v

el
oc

ity
 / 

µm
/s

x
y
z

(b) t = 1.4ms

Figure 7.7: Particle velocities over their respective barycenters for the 8003 domain and model ADV-µ
for two times. The outer particles have significantly larger velocities, whereas any correla-
tion between position and velocity is lost within the green body proper. This decorrelation
becomes more pronounced as the simulation progresses, with local interactions causing high
individual particle velocities.

the particles there have missing neighbours, they will have a significant nonzero velocity
gradient to any control volume only containing inner particles and thus can densify w.r.t
the inner control volumes. What this implies is that the outer particles are implicitly
treated differently from the inner particles, which is the origin of the nonhomogeneous
densification. The only feature of the model necessary to arrive at this conclusion is that
only local interactions enter the velocity calculation for a fixed time, and thus the precise
value of ceqgb is irrelevant.

7.3 Conclusions

Based on the model extensions described in section 3.2.2, except for the convergence of
shrinkage, phase-field simulations of sintering with multiple new models were conducted.
The new models are compared by testing the free energy evolution, the equilibrium state,
as well as their dynamic evolution. It is observed that among the advective models,
only ADV-µ, which estimates the grain boundary equilibrium density by averaging the
surface chemical potential, is consistent with the free energy functional. All advective
models roughly reproduce the expected scaling laws of the neck size with time, both in
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7 Thermodynamically consistent phase-field simulations of sintering

terms of the time and particle size dependence. Furthermore, the approach of centers
as quantified by the strain is observed to also reproduce the expected scalings. Based
on these results, the most promising model ADV-µ is employed in order to simulate
large scale 3D structures in order to seek representative volume elements. However, it
is observed that even this model shows a strong dependence of the densification on the
green body size and thus no RVEs could be identified. The spatial distribution of the
velocity is identified as the likely origin of this dependence, as densification would imply a
negative dilatation rate (∇·v), but the model exhibits a dilatation rate of approximately
zero in the green body proper.
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8 Unravelling densification during
sintering by multiscale modelling of
grain motion

This chapter is based on the author’s paper [115] (CC-BY [168] Springer). The following
sections are taken verbatim from the paper, with only minor linguistic and stylistic
changes to account for the move from a paper to a chapter in the present dissertation, as
well as some clarifications due to the referees. Numerical details and relevant literature
are also given in the paper. The outlook part of the conclusion has been removed, as it
is addressed in the next chapter.

The goal of this chapter is to establish a model for the calculation of advection velocities
for mesoscopic models of sintering with the help of molecular dynamics (MD). Hence the
first part will employ MD in a specially crafted geometry which allows the isolation of
absorption processes on GBs and how these affect the motion of the grains. The data
is then analyzed to build a model describing the grain motion in reaction to vacancy
absorption. The model is then translated into a phase-field context and embedded into
the previously described model of chapter 7. Following a short validation that the appro-
priate model properties are still present, three-dimensional green bodies of increasing size
are computationally sintered to determine representative volume elements (RVEs). Fur-
thermore, the resulting data is compared against eq. (2.58) to establish a first qualitative
link to experiments. The short messages of this chapter are:

• motion due to vacancy absorption on grain boundaries is superimposable

• due to the above, sintering models with RBM but without global coupling of motion
do not have RVEs

• once global coupling is established, a few hundred particles are sufficient to reach
RVEs for densification in homogeneous packings
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8 Unravelling densification during sintering by multiscale modelling of grain motion

8.1 Molecular dynamics

Molecular dynamics (MD) is a method in which the dynamics of individual atoms under
the influence of an interaction potential can be simulated. The individual atoms are
assumed to follow Newton’s laws of motion, with the interaction potential determining
what kind of material is being simulated. Sintering has previously been investigated with
MD by various authors[175–178], but with a general focus on identifying the sintering
mechanisms at the nano-scale rather than determining rules of motion for coarser spatial
methods. The present study is somewhat similar to Hawa and Zachariah’s work [175,
176], in which they investigated how a chain of amorphous Si sintered and considered the
influence of chain length and particle size and how these affect the velocity distribution
and sintering time.

For the present investigation LAMMPS[179] is used to conduct MD simulations. As a
model material copper is employed by using EAM potential developed by Foiles et al.
[180]. A comparison with more recent copper EAM potentials was conducted. While the
quantitative results did change, the qualitative trends did not and the employed potential
was much faster to calculate. The timestep employed within the MD simulations is
generally 0.004 ps.

The primary goal of the following simulations is to predict the sample length change
∆L during sintering, parametrized by variables accessible on the mesoscopic phase-field
scale. For this purpose the geometry depicted in fig. 8.1 is developed. It contains a chain
of rectangular cuboid grains of alternating, different orientations, with both ends of the
chain being free as to allow movement. On each of the grain boundaries a pore may be
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Figure 8.1: Two-dimensional sketch of the considered geometry in the MD simulations. Grains of
different orientation O1, O2 are placed in a row, with pores on grain boundaries. The ends
of the chain are free surfaces, with directions perpendicular to these being periodic.
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8.1 Molecular dynamics

placed, which then vanishes during the sintering process, which in turn induces movement
of the grains. By employing cuboid grains extending to the periodic boundary, the grain
rotation as commonly found in MD simulations of sintering[178] is largely suppressed.
This makes the tracking of the pore region much simpler. It also makes the calculation
of rigid displacements simpler because no rotational displacement needs to be removed.

The following results will be mainly based on placing spherical pores of radius ≈ 1.2 nm,
but the qualitative trends of the results do not change when the size is varied or when
a cylindrical pore is placed. The visualization of the results is done with OVITO[181]
and matplotlib[182]. The view of the simulations will be from the positive z direction as
indicated in fig. 8.1, unless mentioned otherwise.

The system is prepared as follows: First, a bicrystal of size (nL0, mA0) is prepared with
a base length L0 = 141Å and base area A0 = 1306Å2 with free surfaces along the [100]
axis (x-axis) of the simulation cell. n, m are positive integers, which will be varied. The
main grain boundary orientation relationship which will be investigated in the present
study is the (210)/[001] STGB. It is a symmetrical tilt grain boundary (STGB) with a
misorientation angle of θ = 53.1◦ about the [001] tilt axis, with the grain boundary plane
being (210). Additional GBs for which the simulations were conducted are the (310)/[001]
STGB and an asymmetrical tilt grain boundary with the left/right grain boundary planes
being the (100) and (21̄0) planes, with a 26.56◦ rotation around the [001] axis. These
GBs are chosen because they were easy to directly construct within LAMMPS. After the
atoms are set, a conjugated gradient minimization at 0K is conducted, followed by an
constant number of atoms N , pressure p = 0 and temperature T (NPT) ensemble heating
run from 1K to the target temperature T = 700K over 200 ps, followed by another 320 ps
of equilibration at constant target temperature T = 700K. This condition of p = 0 and
T = 700K will also be held for the rest of the chapter. The system is then copied and
shifted until the desired chain length is reached and equilibrated for a period of 400 ps
to allow the system to relax the newly constructed grain boundaries. Once the system
is ready, regions on the grain boundaries are defined and the atoms removed in order to
place pores. By counting the number of atoms within these regions during the simulation,
it is possible to obtain an estimate of the number of absorbed vacancies. Furthermore,
the center of mass (COM) of the individual grains is tracked as to allow calculation of
grain displacements and the total length change. The grain displacements are calculated
directly by subtracting the center of mass xi(t) of grain i at time t from that at time
t = 0. The total length change in a direction is assumed to be the length change of the
vector connecting the center of mass of the first and last grain in the chain. It is taken to
be positive for a shortening of the vector. The sintering simulations on structures with
pores are generally run in increments of 8 ns. If a pore is observed to have vanished, the
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8 Unravelling densification during sintering by multiscale modelling of grain motion

(a) initial state showing all
atoms

(b) intermediate state showing
HE atoms

(c) final state showing HE
atoms

(d) displacement in x (e) displacement in y (f) displacement in z

Figure 8.2: Simulation results exemplarily depicted for L = 2L0, A = 2A0 and a cylindrical pore. The
color in the top row indicates the local orientation in the viewing direction (Z), calculated
via polyhedral template matching[183], allowing to distinguish the grains. In the last two
two images, only high energy (HE) atoms (potential energy of > −3.2 eV) are shown,
revealing the interfaces. The displacement of the atoms in the x (d), y (e) and z (f)
directions after the pore has vanished are plotted over the original atomic position on the
bottom. The displacement range is fixed to [-3, 3]Å since the large displacements on the
surfaces would obscure the behaviour within the grain. The inner parts of the grains are
generally homogeneously displaced, with the interfaces showing large deviations. Similar
plots are obtained for all other simulations.

simulation run may be terminated early. Not all simulations are run to complete pore
elimination as the goal of the study is to find rules which are also applicable during the
process and not only after it.

A typical simulation result, starting with a cylindrical pore, is shown in fig. 8.2 with the
displacement per atom on the bottom. As expected, the pore vanishes over time and its
vanishing is correlated to an inwards movement of the free surfaces. The displacement
per atom is observed to be largely homogeneous within the grains, with large deviations
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Figure 8.3: Length change ∆L of a bicrystal containing a (210)[001] STGB for various geometries, over
time and over the number of absorbed vacancies. The length change is observed to be
strongly dependent on the area, with only a weak dependence on the total length. The
pore elimination time, roughly given by when ∆L becomes constant, is slightly dependent
on total length. A linear dependence of ∆L on the number of absorbed vacancies is also
observed.
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8 Unravelling densification during sintering by multiscale modelling of grain motion

only found close to interfaces, lending credence to the common assumption of rigid-
body motion during sintering. The displacement in x, the shrinkage direction, generally
directly scales with the pore size and is influenced by the area of the grains. While there
were differences for the displacement in y, they generally did not show any monotonic
relationship to pore size or grain geometry. In the shown simulation a gradient for the y
displacement seems to exist, though this did not always manifest in the other simulations.
Interestingly, the displacement in z did not show a sign difference between the grains.
This might be due to the tilt axis being the z axis, though further research in this direction
should be conducted. For the present chapter we shall focus on the displacement in the
shrinkage direction and assume that it is described by a rigid-body motion.

Next, the influence of grain geometry on the length change is investigated in a bicrystal.
In fig. 8.3 the results are shown for various grain lengths and areas. In this and the
following plots, only every 25th point is marked unless mentioned otherwise; the line
always indicates all data points. It is easily observed that the results are clustered by the
grain area, whereas the grain length has no consistent influence on the results. The small
influence of the grain length is likely due to excess stress caused by finite size effects. This
also causes the pore to vanish at different times. Note that there is a linear relationship
between vacancy absorption and displacement. By only plotting the system response
over the number of absorbed vacancies, differences in kinetics can be removed from the
problem.

As the present setup does not allow the differentiation of the GB area (GBA) from the
grain cross section (GCS), a second series of simulations is performed. In these the area
around the grain boundary is largely removed, effectively decoupling the GB area from
the grain cross section. This is achieved by leaving only a rectangular area of size GBA in
a region of length 50.61Å around the grain boundary. Thus new surfaces are introduced
to a thin region between the grains, which need to be relaxed. This relaxation is done for
16 ns before a spherical pore is placed on the GB, followed by another run for up to 16 ns.
It should be noted that the newly generated surfaces can also act as vacancy sink/source,
whose contribution to the supposed absorbed vacancy count is not easily accounted for.
Thus the relationship between displacement and vacancies shown in fig. 8.4 will differ
from that of the previous results. More specifically, more vacancies are being absorbed
than plotted which also causes a larger displacement1. The squares and triangles show
results for which GCS = GBA, whereas those in which GCS ̸= GBA are marked with

1 Using the later model eq. (8.3) and presuming that the volume change is caused by both area and
length changes ∆V = A∆L+L∆A yields a bit more than twice as many vacancies being absorbed,
which fits quite well with these results.
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Figure 8.4: The length change ∆L of a bicrystal containing a (210)[001] STGB for two grain cross
sections (GCS) and four grain boundary areas (GBA). Once GBA is independent of GCS,
it is the determining factor of ∆L. Due to the quick pore removal for GBA = 0.5A0 every
point is marked in this plot.

crosses and dots. The length change seems to be mainly influenced by GBA instead of
GCS.

Hence we may formulate the first two rules of motion: The length change of a bicrystal
sample due to vacancy absorption is antiproportional to the grain boundary area of the
sample. The length change of a sample due to vacancy absorption is proportional to the
number of absorbed vacancies.

Next we shall consider the influence of adding more grains, and hence grain boundaries
and pores, to the system. The results of investigating chains with up to 8 grains are
depicted in fig. 8.5. For consistency, two grain boundary areas were considered and the
first rule of motion is confirmed again. If one follows the line described by a smaller
simulation, one can then reasonably predict the length change observed in the larger
chain. Hence the displacement induced by the vacancy absorption on each grain boundary
tends to be transported along the whole chain without any resistance. This can be
interpreted as a kind of superposition property inherent in the solution, i.e. for a system
containing multiple vacancy absorption sites, the total solution is the sum of all single
vacancy absorption site problems. This is verified by running seven simulations for a chain
with 8 grains, but with only a single pore being placed on a different grain boundary
each time. The seven individual solutions are then added together and compared against
the full solution, shown in fig. 8.6. The calculated solution and measured solution match
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Figure 8.5: Total length change for two areas and up to 8 grains / 7 pores in the chain, with L = 2L0.
A linear relationship between vacancies absorbed and the length change is observed. The
results for longer chains roughly behave as if lying on the same line as for the smaller chains.

well, hence we may define the third rule of motion: The total length change of a system
is determined by the superposition of all length changes due to vacancy absorption sites.

Recapping these rules we have the following properties:

1. the length change is antiproportional to the grain boundary area and independent
of the grain length

2. the length change is proportional to the number of absorbed vacancies within the
system

3. the length change of a system with multiple vacancy absorption sites is the super-
position of the individual length changes

In the following we shall shortly derive a model which contains all these properties. In
spirit it is rather similar to DeHoff’s theoretical developments in the 1980s[184, 185], but
without requiring the grain structure to be decomposed into a space-filling cell structure.
First, based on item 2 we assume that each vacancy contributes a certain volume change
dV proportional to the atomic volume Ω, with dN being the number of vacancies which
have just been absorbed. Second, we assume that this volume change is due to a rigid
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Figure 8.6: Comparison of a 8 grain chain with 7 pores and the solution via superposition. A good
match for the total length change as well as the grain-specific displacements is observed.

movement of the entire crystal lattice of magnitude dL, i.e. dV = AdL with the grain
boundary area A, motivated by item 1 Thus one may write

ΩdN = AdL (8.1)

↔ dL =
Ω

A
dN (8.2)∫

↔ ∆L =
Ω

A
∆N (8.3)

with the length change ∆L taken to be positive for a shortening of the sample. This
model is verified by testing it not only against the already presented data, but also several
grain boundary types, grain lengths, grain boundary areas, pore shapes, pore sizes, and
numbers of pores. The grain boundary area A of each simulation is estimated based on
the equilibrated area before the pore is placed. The atomic volume Ω is determined by
observing the volume of an fcc lattice of copper atoms in a periodic box at T = 700K

employing an NPT ensemble with p = 0, resulting in Ω = 1.22× 10−29 m3 which is close
to the value given by [186]. The number of absorbed vacancies is known via measurement
and thus the length change can be determined. The result of the comparison is shown
in fig. 8.7 which shows a good match for all data, though with a slight underprediction
in the length change.

The presented model so far seems to only describe the total length change ∆L and
not the motion of individual grains described by their displacements uα, or equivalently
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Figure 8.7: The measured length change is plotted against the calculated length change based on
eq. (8.3). A general match is observed, with the fitted line’s slope (m) indicating a slight
underprediction (5%) of the model.

velocities, as required in a field-resolved method as the phase-field method. In order
to resolve this, consider the implication of a length change ∆L in an effectively one-
dimensional bicrystal αβ: Since both grains move as rigid-bodies, the length change is
the sum of the individual displacements and thus is given by

uα − uβ = ∆L (8.4)

= ∆uαβ (8.5)

which is also the displacement jump ∆uαβ across the grain boundary. The superposition
property item 3 is now exploited to enforce this simultaneously for all grain boundaries,
leading to

C︸︷︷︸
B×N

u︸︷︷︸
N

= ∆u︸︷︷︸
B

(8.6)

which is a usually overdetermined linear system of equations. The matrix C consists
of rows with zeros and only one +1 and −1 each and acts on the unknown N grain
displacements u = (u1, . . . , uN )T . The sign of the entries is determined by the one-sided
grain boundary plane vector nα = −nβ in the laboratory frame, with nα being normal
to the αβ grain boundary and pointing out of the α grain. The right-hand side vector
is determined by eq. (8.3) for each of the B grain boundaries. This system may be
solved e.g. in a least-squares sense, with the conservation of momentum accounted for
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Figure 8.8: Comparison of solving eq. (8.6) and the observed data for two simulation states. A good
match is observed for both.

afterwards by subtracting the mass-weighted average displacement from the solution u.
For the special case of a linear chain of grains, there are B = N − 1 grain boundaries.
Adding conservation of momentum to the system of equations makes the matrix C square
and since the individual rows are linearly independent2, it also is of full rank and thus
uniquely solvable. Furthermore, this formulation only accounts for motion due to vacancy
absorption. If other processes inducing displacement occur, e.g. grain boundary sliding,
then these will require a separate treatment.

As a first test of this, we use the time-dependent data of one MD simulation and input
these as the right-hand sides of the system of equations. The contacts between grains
which fill the matrix C are also determined from these. Since the chain is linear, in-
cluding conservation of momentum makes it uniquely solvable. The system is solved by
direct matrix inversion since it is rather small, with a comparison of the calculated grain
movement and the observed grain movement shown in fig. 8.8 for two simulation states.
As the figure shows, there is a close match between the calculation and measurement,
giving a measure of confidence in this approach.

2 A new unknown is introduced by each row and thus cannot be represented as a linear combination of
previous rows. Conservation of momentum doesn’t add a new unknown, but cannot be constructed
from prior rows.
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8 Unravelling densification during sintering by multiscale modelling of grain motion

8.2 Phase-field model and simulations

In this section a new phase-field model will be described, following by a small-scale
validation to ensure that the green body size effect is no longer present before large
green bodies are calculated.

8.2.1 Phase-field model with advection

The model in the following is based on [114, 187], with the advection velocity being
calculated with a model based on the MD results. This new model in its entirety is
dubbed MDi, as it is inspired by MD. The evolution equations for the fields are the same
as in [114]:

∂ϕα
∂t

+∇ · (v⃗αϕα) =
1

τ(ϕ)ϵ

[
− ϵ

(
∂a(ϕ,∇ϕ)

∂ϕα
−∇ · ∂a(ϕ,∇ϕ)

∂∇ϕα

)
(8.7)

− 1

ϵ

∂w(ϕ)

∂ϕα
−
N−1∑
β=0

ψβ(µ, T )
∂hβ(ϕ)

∂ϕα

]
− λ,

∂µ

∂t
=

[
N−1∑
α=0

hα(ϕ)

(
∂cα(µ, T )

∂µ

)]−1

(
∇ ·
(
M(ϕ, µ, T )∇µ− v⃗(x)c

)
−
N−1∑
α=0

cα(µ, T )
∂hα(ϕ)

∂t

)
. (8.8)

This represents the evolution of the N phase-fields ϕα and the chemical potential µ for
one independent component, taken to be copper in the present chapter. The phase-field
tuple ϕ distinguishes the surrounding vapour (ϕV,V = 0) from copper grains of arbitrary
orientation (ϕa, a > 0). The evolution of the chemical potential µ accounts for the species
conservation via the concentration c and takes into account the effect of phase changes
due to changes in ϕ. For further particulars of the terms the interested reader is referred
to [114, 187].

The calculation of the grain velocities follows the ideas outlined in the previous section.
This will be formulated in terms of instantaneous displacement u and number density
of absorbed vacancies ∆n to be consistent with the MD section. The instantaneous
velocity v is linearly related to u as v = u

∆t with the time interval ∆t. The concentration
c is related to the number density n as n = Na

Vm
c with Avogadro’s constant Na and the

molar volume Vm. Each grain boundary αβ absorbs an amount ∆Nαβ =
∫
GB

∆nαβdV
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of vacancies in a time interval ∆t, with the density of absorbed vacancies ∆nαβ . This is
related to the vectorial displacement jump

Vαβ =

∫
GB

4ϕαϕβdV (8.9)

Aαβ =
Vαβ
l0

(8.10)

∆⃗uαβ =
1

Vαβ

∫
GB

4ϕαϕβ
Ω

Aαβ
∆nαβn⃗αβdV (8.11)

in which the orientation of the grain boundary plane was taken into account by a similar
approach as Wang[33], but employing normalized phase-field gradients representing the
normal vector, i.e. n⃗αβ =

∇(ϕα−ϕβ)
|∇(ϕα−ϕβ)| instead of just the phase-field gradients. Note

that n⃗αβ needs to be chosen consistently with the later input to the matrix equation. It
is always taken to be from the lower α index to the larger β index, defining a unique
orientation for each αβ pair. The grain boundary region GB is defined to be the region in
which g = ϕαϕβ ≥ gT holds, i.e. only the region where both grain phases have significant
volume fractions. In the following the value gT = 0.14 is chosen. The grain boundary
area Aαβ is resolved by dividing the grain boundary volume Vαβ by the equilibrium grain
boundary width l0 =

∫ 1

0
4ϕα(x)(1− ϕα(x))dϕ = π2ϵ

8 for the employed obstacle potential.
The remaining 4ϕαϕβ and Vαβ terms act as a weighted average to assign higher weight
to regions which contain more grain boundary phase 4ϕαϕβ .

Equation (8.11) still contains an unknown, namely the number of absorbed vacancies.
For this we assume that a grain boundary has a certain equilibrium number density of
atoms ngbeq and that it relaxes towards this number density:

∂n

∂t
= −n− ngbeq

tr
(8.12)

which allows the calculation of the number density of absorbed vacancies ∆n = −∂n
∂t∆t.

Since this describes a relaxation process, one can consider the term n−ngbeq as the driving
force for this process — once it vanishes, densification via advection stops. Note that this
assumes atoms and vacancies are both conserved quantities. Only the number of atoms
is actually conserved, with vacancies and lattice sites being destroyed and generated
during absorption to accommodate the volume change. However, this rough treatment
suffices to show the capabilities of the model and is in fact quite standard in phase-field
modelling of sintering[33–35, 104, 114]. In spirit this is similar to Wang’s model[33] but
the relaxation time tr is identified explicitly here, which can in turn be determined via
molecular dynamics. In the MD simulations tr was observed to depend strongly on the
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8 Unravelling densification during sintering by multiscale modelling of grain motion

grain boundary orientation relationship; it is strongly related to the efficiency of a grain
boundary at absorbing vacancies such as described in [188]. In the following simulations,
all grain boundaries are assumed to be of a (210)/[001] STGB (53.1◦) type. Furthermore,
ngbeq does not have the meaning of a “grain boundary equilibrium density” in this context.
Specifically, if it is below the bulk density as one would expect based on physics, it will
push apart grains instead of attracting them. This phenomenon has been investigated
in-depth in [113, 114]. Based on the suggestions therein, ngbeq is calculated based on the
observed average chemical potential on the particle surface µ̂, which should approximate
the capillary pressure. This ensures that the resulting velocities are consistent with the
free energy functional and the theoretical dihedral angle is recovered[114]. Note that this
allows a rather trivial addition of an external isotropic pressure to the system, as the
capillary pressure can simply be shifted by the external pressure.

It should also be noted that properties such as ∆⃗uαβ and Vαβ need to be tracked for each
grain boundary individually and thus their memory and communication requirements
scale as O(nN2) if implemented naïvely, with the number of parallel processes n and
number of phase-fields N . While this is not a problem for a few hundreds of grains, once
thousands or tens of thousands grains are resolved this will dominate the memory and
communication costs. This is resolved by only storing the actual contacts (thus being
a sparse representation) and distributing it across all parallel processes. The message
passing interface (MPI) is employed for the parallelization and updates to this distributed
matrix are realized via one-sided communication. The details of this scheme will be
published in a separate paper.

The displacement jumps are used to solve for the particle displacements u, for each
direction separately, by building a system of equations

Cu = ∆u (8.13)

in which the matrix C is filled according to the connectivity determined during the
simulation. The structure of the matrix is clarified by the following example: Consider
a 2x2 grid of grains, depicted in fig. 8.9. Each particle has two contacts, one along each
dimension. These are always taken to be from the lower grain index a of ϕa to the higher
one, i.e. we have the contacts described by the ordered set {C1,2, C1,3, C2,4, C3,4}. The
size of this set is equal to the number of grain boundaries B in the system. A matrix
Cd of dimension B ×N is constructed per dimenions d, with a corresponding RHS ∆ud
of size B. For each contact a row is added to the matrix, with only non-zero entries for
those grains which are connected by this contact. The magnitude of the entries is always
1, but the sign is determined consistently with n⃗αβ in this direction, going consistently
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1 2

3 4

Figure 8.9: Example 2x2 setup of grains for clarifying the matrix structure. The number within the
circles indicates the grain index.

from the lower to the higher index. The right-hand side displacement jump is already in
a vector form and therefore can be easily split into its components ∆ud. Thus eq. (8.13)
can be written, for the x dimension, as

1 −1 0 0

−1 0 1 0

0 −1 0 1

0 0 1 −1




ux,1

ux,2

ux,3

ux,4

 =


∆ux,1,2

∆ux,1,3

∆ux,2,4

∆ux,3,4


with the sign on the left-hand side determined based on the grain boundary normal.
If the grain boundary normal has no component in a dimension, the sign within the
matrix plays no role as the right-hand side will be zero. This effectively says that no
relative motion occurs. Note that this matrix, although square, is singular, since e.g. the
fourth row can be constructed by adding the first and second row and subtracting the
result from the third row. Conservation of momentum is accounted for afterwards by
subtracting the mass-weighted average displacement from each grain displacement.

The resulting system of equations is usually overdetermined and only in the special
case of a linear chain of particles can be solved exactly if conservation of momentum is
included in the system. However, the system can be solved in a least-square sense. This
could be done with e.g. an Alternating Direction Method of Multipliers approach[189],
which requires a collective reduction of N scalars per iteration. Alternatively, the matrix
C and its transpose could be partially distributed and then be solved by using some
Krylov subspace method (e.g. a block Conjugated Gradient Least Squares method[190])
which would need a collective reduction of a single scalar per iteration. However, both
approaches lead to excessive communication time (on the order of entire field sweeps)
and thus an approach suited to the present problem is developed.
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Typical solutions of the system were sought by generating packings, from which eq. (8.13)
was determined while assuming the right-hand side is given by a normal distribution

p(ξ) =
1√
2πσ2

exp(− (ξ − µ)2

2σ2
) (8.14)

with its mean and standard deviation σ. A mean of µ = 1 is generally employed with
variable standard deviation σ. A spatial dependence can be included by simply adding a
function of particle position to the random sample generated by eq. (8.14). The system
is solved employing the Least Squares via QR factorization (LSQR)[191] algorithm.

It was observed that the spatial distribution of the right-hand side tends to determine
the shape of the solution. If it is assigned randomly without any spatial dependence,
a mostly linear function of position is observed, with local inhomogeneities. If a linear
dependence on the position is added, the displacement field becomes a quadratic function
of position. This implies that the solution of the system basically integrates the spatial
distribution of right-hand sides. This can also be seen from the structure of the matrix
C: Each row effectively represents a finite difference formula, with the right-hand side
giving the slope, i.e. C is a differentiation operator. Thus its generalized inverse is an
integration operator.

Given that the same grain boundary type is assumed for all contacts, with similar ini-
tial neighbourhoods, it seems reasonable to assume the displacement field is given by a
linear function. Hence one may approximate the full problem by replacing the particle
displacements u by the relation

u = m(x− xm) (8.15)

with the known center of mass of each grain x, the known total center of mass xm and an
unknown slope m. Hence only m remains to be determined, which can be done exactly
in a least-square sense by employing the normal equations:

C︸︷︷︸
C∈RBxN

u = C(x− xm)︸ ︷︷ ︸
D∈RB

m = ∆u (8.16)

Dm = ∆u (8.17)

DTD︸ ︷︷ ︸
q∈R

m = DT∆u︸ ︷︷ ︸
p∈R

(8.18)

m =
p

q
(8.19)
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which only requires a parallel reduction operation for p and q.

This approach is compared against the full solution via LSQR. The error is evaluated
with the root-mean-square error (RMSE) and relative RMSE (RRMSE) defined as

RMSE =

√
1

N

∑
i

(xi,LSQR − xi,lin)2 (8.20)

RRMSE =
RMSE

max(xLSQR)−min(xLSQR)
(8.21)

for the solution vectors of the LSQR method and the linear fit ansatz. It is generally
observed that the RRMSE is unaffected by the choice of mean µ, while the RMSE changes
due to the scale in displacement. For regular packings the (R)RMSE is observed to scale
mostly linearly in the standard deviation σ of the random distribution, with errors on
the order of machine precision for σ = 0. The irregular packings employed later for the
PF simulations generally show some non-zero error even for σ = 0, though starting from
about RRMSE ≈ 0.16%. Even if σ is comparable to the mean of the normal distribution,
RRMSE ≈ 1.6% and thus still quite acceptable. A visual comparison for the effect of σ
on the displacements in a 3D packing containing 3445 particles is shown in fig. 8.10. As
can be seen, the solution shape and scale are always well-preserved. What the fit ansatz
obviously cannnot match however is the local variation of absorption activity, modelled
by the random distribution of displacement jumps. The interested reader is referred to
the Supplementary Material wherein the code employed for this test is published in full,
along with the irregular packings employed later for the large-scale sintering simulations.

As a final note, the specification of the vacancy absorption rate is the main weakness
of the presented model, since it cannot be completely linked to quantities obtainable
via MD. Hence a direct comparison to MD simulations would likely yield a significant
mismatch in the temporal evolution. However, if an improved model for the vacancy
absorption rate is developed, it can be included easily into the current approach. This is
due to the model effectively being split into a kinematic part eq. (8.13) and a dynamic
part eq. (8.12) which can be changed independently.

8.2.2 Parameters and data evaluation

The scales employed are listed in table 8.1 and the materials parameters in table 8.2.
These are the same as in [114] except for the newly introduced atomic volume Ω and
the relaxation time tr. The relaxation time is determined by running MD simulations
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Figure 8.10: Comparison of the full displacement solution calculated via LSQR and fit ansatz for two
values of the standard deviation. Each marker indicates a particle’s position and its
resulting displacement in one dimension of the 3D packing. The shape and scale of the
solution are always well-preserved by the fit ansatz.
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for a (210)/[001] STGB (53.1◦) in which atoms are randomly removed from the grain
boundary and observing the time it takes until the atom count within the grain boundary
has stabilized. Several such simulations were run and the order of magnitude for the
relaxation time then used for the value of tr. This is more of qualitative approach, but
tr behaves similarly to the stiffness κ in the classical rigid-body motion (RBM) model of
Wang[33]: In the classical model, the RBM velocity scales as

v ∝ κ(n− neqgb) (8.22)

whereas in the present model it is rather

v ∝
n− neqgb
tr

(8.23)

i.e. the velocity is proportional to κ, but inversely proportional to tr. Shi et al.[36] could
show that once κ is sufficiently large, the resulting advection velocity does not change
upon a further increase in κ. Hence the proportionality is only applicable to a certain
limit, after which other processes control the velocity. Since tr divides the driving force
n − neqgb whereas κ multiplies it, the same behaviour applies, but reversed: Once tr is
small enough, making it smaller will not change the velocity. One can think of this as
saying that the problem ought not to be controlled by the absorption rate and hence the
absorption rate should be appreciably faster than the slowest other process. The time
step is determined by calculating stable time step widths within the explicit scheme and
employing the minimum to ensure stable time integration as described in [114], with the
table only listing the largest stable timestep with zero advection velocity.

The evaluation of the data is the same as in [114] in terms of strain and density. The
contact number later employed in the three-dimensional simulations is calculated with
the package cc3d’s[144] function contacts on the phase-field label field and the simply
counting the pairwise occurrences of labels. The surrounding vapour phase is treated as
background, with the phase-field label field being defined pointwise as the label which
has the highest phase-field value. Since surface particles always have some missing neigh-
bours, including these would induce a particle size and simulation size bias in the coordi-
nation number. These are excluded by determining the bounding box of the green body,
then shrinking it by 32 nm in each direction and only averaging over particles contained
in this shrunken box. In the 3D simulation this excludes at least two particle layers,
removing the surface effect.

The simulations in section 8.2.3 are conducted locally while employing GNU Parallel[173]
for efficient job management. The three-dimensional simulations in section 8.2.4 are

165



8 Unravelling densification during sintering by multiscale modelling of grain motion

calculated on the Hawk supercomputer at the High Performance Computing Center in
Stuttgart. Hence the processor employed for the three-dimensional simulations is the
AMD EPYC 7742, with 64 cores running at 2.25GHz. A single core performance of
9.4GFLOP/s, i.e. 26.1% of the theoretical peak, is achieved.

Table 8.1: nondimensionalization parameters

scale value
length l0 1× 10−8 m

diffusivity D0 1× 10−12 m2 s−1

time t0 1× 10−4 s

velocity v0 1× 10−4 ms−1

temperature T0 700K

surface energy Es,0 1 Jm−2

energy density Er,0 1× 108 Jm−3

molar volume Vm,0 7.1× 10−6 m3 mol−1

8.2.3 Validation

In this section the system size convergence of the present model will be investigated.
In effect, this tests whether the superposition rule of motion from the MD simulations
has been transferred successfully. As will be shown below, the results for a two-particle
model are virtually identical between the present model MDi and a grand potential model
including advection, i.e. the model (ADV-µ) of [114]. Hence the accordance with classical
theory in terms of neck growth and approach of centers, as well as Herring’s scaling laws
for a two-particle model as shown in[114], are transferable to the present model. Thus
the strain in a system of increasing size will be investigated, first in a particle chain as
suggested by [113], then in a rectangular grain geometry. Simulations are run for both
models, with the number of particles in the chain given by n ∈ {2, 4, 8, 16, 32}. The
simulations for the same geometry are all run to the same simulation time te. The strain
is evaluated based on the movement of the barycenters of the first and last particle,
i.e. e = L(t)−L(0)

L(0) with L(t) = xm,last − xm,first and xm,∗ being the the barycenter of
the first/last particle. The geometries considered in this section can also in general be
used as a relatively cheap benchmark geometry for determining whether size-independent
densification is captured by the model.
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8.2 Phase-field model and simulations

Table 8.2: Employed physical and numerical parameters for the simulations.

parameter nondim. value physical value
numerical parameters

grid spacing ∆x 0.1 1× 10−9 m

max. time step ∆tmax 1.5× 10−5 1.5× 10−9 s

interface parameter ϵ 4∆x 4× 10−9 m

interface width W ≈ 2.5ϵ 10∆x 10× 10−9 m

grain boundary cutoff ϕminαβ 0.14 -
physical parameters

surface energy γvα 2 2 Jm−2

grain boundary energy γαβ 1 1 Jm−2

volume diffusion D 1× 10−3 1× 10−15 m2 s−1

grain boundary diffusion Dgb 55 5.5× 10−11 m2 s−1

surface diffusion Ds 169 1.69× 10−10 m2 s−1

physical interface width δi 0.02 2× 10−10 m

surface kinetic coefficient τVα 0.08 8× 1010 J sm−4

grain boundary kinetic coefficient ταβ 100 τVα 8× 1012 J sm−4

effective stiffness κ 3200 -
atomic volume Ω 1.22× 10−5 1.22× 10−29 m3

GB relaxation time tr 1× 10−8 1× 10−12 s

The strain over time for a chain of circular particles is shown in fig. 8.11a. While model
MDi seems to converge at around 16 particles in a chain, model ADV-µ still shows a
large change at this particle count. Let us first consider how model ADV-µ fails to
converge by looking at the velocity distribution in fig. 8.11b. The velocity is plotted
over the relative barycenter Xi,r =

xm,i−xm,first

xm,last−xm,first
which allows the compact viewing

of chains of arbitrary physical length. The absolute scale of velocity reached is similar
for both models, but while model MDi always yields a linear function by design, model
ADV-µ tends to produce curved velocity profiles which directly imply inhomogeneous
densification. While a small amount of inhomogeneity is to be expected due to the
discussion below, this should drop off rapidly from the outermost particle.

One might ask why model MDi does not instantly converge in this case, given that
the model without the phase-field information did so? This is due to the chain not
actually being homogeneous and only becoming so at a sufficient number of particles.
The simulation geometry at the end of the simulation is depicted in fig. 8.12, showing that
the chain ends take up a different shape than inner chain particles. This shape difference
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Figure 8.11: Comparison of the MDi model (crosses) and the model of [114] (circles). The dependence
on the strain becomes negligible at around 16 particles for the MDi model but is substantial
across all investigated particle counts for model ADV-µ. The velocity distribution shows
the inhomogeneous densification (non-constant velocity gradient between the particles)
from which this lack of convergence originates.
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8.2 Phase-field model and simulations

Figure 8.12: The grain field, defined by 1 − ϕV, at simulation end for 8 particles and model MDi.
Yellow indicates the copper grains, dark indigo the surrounding vapour and green the
interface between them. The phase transitions defined by the 0.5-isoline of the phases are
represented with red lines.

is simply due to the inner particles being restricted from free movement, whereas the outer
particles can easily adjust. This difference will also eventually lead to grain growth.

The chain ends being different can be somewhat mitigated by employing the rectangular
grain geometry from the MD simulations and placing pores on the grain boundaries. It
will not be fully mitigated, as the absorption rate still depends on the average surface
chemical potential, which is different for end grains and for inner grains. However, as
fig. 8.13 shows the convergence is sped up with this geometry for the MDi model, but
the lack of convergence for ADV-µ becomes even more obvious. It should be noted that
the MDi model eliminates the pores on the GBs at similar times, whereas model ADV-µ
eliminates them step by step from the outer parts of the chain, with videos showing this
being deposited with the Supplementary Material. This is also the reason for the different
velocity magnitudes between the two models: Up to the point of pore elimination, the
size of the pores in the simulations with model MDi is roughly comparable to that of the
outermost pore of ADV-µ at the same time. Thus the pores for simulations with model
MDi are on average smaller than for model ADV-µ which implies a larger driving force
for vacancy absorption.

Based on these results, one can conclude that at about 16 particles in a one-dimensional
chain the model MDi becomes representative. Presuming that this result extends to
three-dimensions, one would expect representative simulations to start from about 163 =

4096 particles. However, it is likely that the end geometry problem makes this a sig-
nificant overestimation, and thus we proceed to three-dimensional simulations to test
this.
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Figure 8.13: Comparison of the MDi model (crosses) and the model of [114] (circles) when employing
the rectangular grain geometry. While the MDi model converges at around 8 particles in
the chain, model ADV-µ does not converge at all. The velocity distribution shows that
model ADV-µ tends to produce nonlinear velocity profiles.
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8.2.4 Large scale three-dimensional simulations

The model will now be employed to simulate three-dimensional green bodies in order
to determine representative volume elements (RVEs) by verifying that the densification
is independent of the green body size. For this, the packings as described in [114] are
employed: A voxel domain of size N3

v , Nv ∈ {200, 400, 800} is filled based on a packing
generated with the discrete element method. In order to minimize boundary effects, it
is ensured that there are at least 15 voxels between the outermost edge of a particle and
the global boundary. All fields employ zero-flux conditions on the global boundary. The
voxelization happens with a fixed number of voxels R ∈ {8, 12, 16} used to resolve the
particle radius, allowing the investigation of particle size effects with different simulations.
Given the employed non-dimensionalization scales and discretization, these correspond
to particles of size R ∈ {8, 12, 16}nm. Table 8.3 lists the number of grains Ng within
each combination of (N3

v , R), as well as on how many cores the simulations were run
and for how long. Figure 8.14 shows one of the structures at different simulation times;
videos of the entire process are deposited with the Supplementary Material. The left
side shows a simple visualization of the entire green body, with the right side showing a
fracture surface generated with a (011) plane and removing any grains beyond this plane.
The mesh visualized here is based on a cellwise maximal value of the phase-field vector
excepting ϕV. Contour levels l > 0.5 of this field cause an etching-like effect to appear
starting from the highest order junctions3. A contour level of l = 0.6 is employed which
entirely reveals the triple lines in the three-dimensional structure. In any case, both
visualizations show the macroscopic densification of the body, with the fracture surface
view also showing that the grains transform from spheres to polyhedra.

The evolution of the density is shown in fig. 8.15, with the present model as well as the
results of [114] for a particle size of 12 nm. It can easily be seen that the present model
shows highly similar density evolution over all the considered green body sizes. Only for
R = 16 there is a slight effect of green body size from 2003 to 4003, with the following
simulations being quite similar again. It is likely that rather than the green body size,
a certain minimum number of particles should be contained within a three-dimensional
packing, with that threshold lying between 97 particles (2003, R = 16nm) and 262
particles (2003, R = 12nm). The particle count likely acts as a proxy variable for whether
the geometry is sufficiently homogeneous. Thus green bodies with a polydispserse grain
size distribution will likely need a larger number of particles to be representative, but

3 This can also cause grains on the edge of the packing to look only tenously or not connected at all.
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t=0ms

t=0.03ms

t=0.6ms

Figure 8.14: Three-dimensional view of the 4003, R = 12nm simulation for various times using
Paraview[192]. The left side shows the entire green body, with the right side showing
a (011) fracture surface from the same angle. The dark lines delineating regions can be
interpreted as grain boundaries and higher order junctions. The dark smudges on some
grains are due to the dark areas being reflected via ray tracing and thus not actually part
of the simulation data. Both macroscopic densification and the polyhedralization of the
grains are evident.
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Table 8.3: Initial grain counts Ng for the employed packings as well as the number of cores C employed
and the total runtime T . The longer runtime of larger particles is due to these being run for
longer to achieve comparable densities.

N3
v R Ng C T

2003 16 nm 97 128 10.5 h

2003 12 nm 262 128 8.00 h

2003 8 nm 1033 128 4.70 h

4003 16 nm 1361 512 21.7 h

4003 12 nm 3445 512 16.0 h

4003 8 nm 12418 512 15.6 h

8003 16 nm 14113 8192 15.0 h

8003 12 nm 34459 8192 9.20 h

8003 8 nm 120132 8192 10.5 h

this will be left to future work. Furthermore, it is easily seen that densification progresses
more slowly with larger grains.

Let us shortly revisit why the present model does not fail to reach a RVE: The necessary
requirement for densification is for the divergence of velocity ∇·v to be negative between
volume elements. In advection models only employing nearest-neighbour interactions
such as [33] and models based on it, the velocity of particles only depends on their imme-
diate neighbours. Since within the green body proper, a grain’s immediate neighbours
will be similar, the neighbouring volume elements will be similar, with the exception of
those volume elements containing the green body boundary. In contrast, in the MDi
model the velocity of a single particle depends on all particles via solving eq. (8.13).
Thus there is nothing forcing neighbouring volume elements to be similar. The simplifi-
cation of using a linear ansatz for the particle displacement of course forces a constant
∇·v between neighbouring volume elements. Given that solving the complete system for
spatially uncorrelated absorption does result in the particle displacement being a linear
function of position, this is quite justified.

The present results also allow to qualitatively test whether the geometries assumed in
intermediate stage sintering are found. Coble’s classical model [88] assumes a tetrakaidec-
ahedron, i.e. a solid with 14 faces, for the grain shape. Thus the number of neighboring
grains, also called the coordination number Nc, should tend towards 14. A more quan-
titative relation is given by German [100], based on a fit of literature data:

Nc = 2 + 11f2 (8.24)
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Figure 8.15: Comparison of densification for the present MDi model and the results of [114] for a
diffusion-only (DO) model and a model including advection (ADV-µ) based only on
nearest-neighbour interactions. The results of [114] clearly have a strong dependence
on domain size, which the MDi model eliminates once a RVE is reached.

with the fractional density f which is equivalent to the present usage of density. The
average coordination number of all grains is plotted over density in fig. 8.16, showing
a monotonic increase of coordination number with density. After correcting for surface
effects, a coordination number of 14 is reached at around 99% density. This includes the
effect of many small contacts, which might not be detected easily in experiments. Hence
there is a systematic deviation from German’s fit, but the slope is quite comparable. If
the fit is shifted vertically by a value of 1.1, which is roughly the difference in starting
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Figure 8.16: The Coordination number over density for all simulations as well as the relation of German
eq. (8.24) are depicted. The coordination number rises monotonically with density, but
shows a systematic deviation from German’s relation. However, the slope of the curve
is highly similar, as is shown by also plotting a vertically shifted version of German’s
relation.

coordination number at 60% density, then a quite close match is observed. Conversely,
the simulation data could also be filtered to exclude contacts with small surface area,
also resulting in a reasonable match for higher densities. This is explored in [193] as
choosing any one minimum surface area is quite arbitrary. In any case, based on both
the experimental fit due to German and the present results, the tetrakaidecahedron shape
assumption does not hold in intermediate stage sintering. It can however hold in the final
stage.

8.3 Conclusion

In the present chapter molecular dynamics (MD) is employed to investigate the den-
sification behaviour of a chain of grains. The grains are observed to move largely as
rigid bodies, i.e. the atomic displacement within a single grain is largely uncorrelated
to atomic position. Three rules of motion for this displacement are found: The dis-
placement is proportional to the number of absorbed vacancies, antiproportional to the
grain boundary area and superimposable if multiple vacancy absorption sites are present.
These rules were used to construct an analytical model which agreed well with the MD
results. Following this, a previously published phase-field model (ADV-µ) was extended
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8 Unravelling densification during sintering by multiscale modelling of grain motion

with this new model for calculating velocities (MDi). The previously published phase-
field model and the new model are then compared in terms of their strain evolution
within a linear chain geometry. For the MDi model, the strain as a function of time is
observed to become independent of the number of grains between 8 and 16 grains in the
chain, depending on the particulars of the geometry. Model ADV-µ did not converge,
as previously shown by [114]. Finally, the model MDi is employed to sinter large-scale
three-dimensional structures to determine representative volume elements. It is found
that between 97 and 262 particles are necessary for densification to become independent
of the green body size. Furthermore, the qualitative correct influence of particle size
is included in the model, with green bodies consisting of larger particles sintering more
slowly. Finally, reasonable agreement with a model linking the coordination number of
grains to the density could be shown.
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9 Revealing process and material
parameter effects on densification
via phase-field studies

This chapter is based on the author’s preprint [116]. The following sections are taken
verbatim from the preprint, with only minor linguistic and stylistic changes to account
for the move from a preprint to a chapter in the present dissertation, as well as some
clarifications due to the referees. Numerical details and relevant literature are also given
in the preprint.

The goal of this chapter is to use the phase-field model which has been developed over
the past chapters to sinter large-scale three-dimensional green bodies as to show the wide
applicability of the method. First, the effects pressure and stress on grain boundaries’
contribution to densification is shown following the model presentation in section 3.2.3.
Next, the effects of mobility variations (diffusivity as well as interfacial mobilities) is
investigated by a parametric study and using various quantifiers to put the results into
the theoretical and experimental context. Finally, the phase-field model of freeze-casting
presented earlier was used to calculate a three-dimensional freeze-cast structure, which is
then computationally sintered. The parameters for all of these simulations, unless noted
otherwise, are shown in table 9.1. The initial conditions for the simulations, unless noted
otherwise, are the same as for the 4003, R = 12nm simulation described in the previous
section.

The short messages of the chapter are:

• theoretical prediction and experimental observations are matched by the presented
addition of stress

• agreement with trends based on theory and experiment over a large range of quan-
tifiers (density, surface area, grain size, Euler characteristic) is shown

• for reaching full density, surface diffusion is always detrimental and grain boundary
diffusion is always beneficial
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9 Revealing process and material parameter effects on densification via phase-field studies

• grain shapes during intermediate stage sintering generally do not approximate the
truncated octahedron suggested by Coble

Table 9.1: Employed physical and numerical parameters for the simulations.

parameter nondim. value physical value
numerical parameters

grid spacing ∆x 0.1 1× 10−9 m

max. time step ∆tmax 1.5× 10−5 1.5× 10−9 s

interface parameter ϵ 4∆x 4× 10−9 m

interface width W ≈ 2.5ϵ 10∆x 10× 10−9 m

grain boundary cutoff ϕminαβ 0.14 -
physical parameters

surface energy γvα 2 2 Jm−2

grain boundary energy γαβ 1 1 Jm−2

volume diffusion D 1× 10−3 1× 10−15 m2 s−1

grain boundary diffusion Dgb,0 55 5.5× 10−11 m2 s−1

surface diffusion Ds,0 169 1.69× 10−10 m2 s−1

physical interface width δi 0.02 2× 10−10 m

surface inverse mobility τgv 0.08 8× 1010 J sm−4

grain boundary inverse mobility τgb variable variable
atomic volume Ω 1.22× 10−5 1.22× 10−29 m3

GB relaxation time tr 1× 10−8 1× 10−12 s

9.1 Sintering under stress

The first foray will consider the influence of stress on sintering, as it is quite simple
but also important for densification. Pressure is often applied during sintering in order
to either speed up densification or to remove isolated/detached porosity by forcefully
dissolving the contained gas into the material. In this section the former effect is investi-
gated by considering the effect of the applied stress on the equilibrium concentration of
vacancies on grain boundaries. This effect can be easily included in the model of [115]
as shown in section 3.2.3.

The pressures p ∈ {0, 50, 100, 200}MPa will be considered. The scale of the pressure is
based on the magnitude of the capillary pressure O(pc) ∼ O(γsr ) ≈ 100MPa with the
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Figure 9.1: The influence of pressure on the density evolution is depicted in (a), with its influence on
densification rate depicted in (b). With rising pressure, quicker densification is achieved.
The dashed lines in (b) indicate linear fits with coefficient of determination R2 given in the
legend. There is a roughly linear relationship between pressure and densification rate as
also experimentally observed by [194].
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Figure 9.2: Strain and porosity evolution for several creep simulations, with tensile stress being ap-
plied in the X direction. After an initial transient, a constant strain rate is observed,
characteristic of secondary creep.

surface energy γs and the particle radius r. The resulting density over time is shown in
fig. 9.1a, with increasing densification rate with higher pressures. In order to determine
the qualitative relationship between pressure and densification, the densification rate of
the individual simulations is calculated at test densities of ρ ∈ {0.8, 0.85, 0.9}. For this,
the numerical densification rate, i.e. the slope in fig. 9.1a is calculated, followed by an
interpolation across its density space, which then allows the calculation of densification
rates at any density within the valid density range. This yields fig. 9.1b which shows
a roughly linear relationship between densification rate and pressure, as also observed
by experiments [194]. Classical theory e.g. due to Coble [131] also predicts a linear
relationship between external pressure and densification rate. Hence this simple addition
of pressure compares well against both experiment and theory.

As sintering and creep are intimately related processes, any model of solid-state sinter-
ing should also be able to approximate creep. The present model can achieve this
by setting the stress to be uniaxial, which will cause vacancy generation on grain
boundaries aligned with the tensile stress direction. Four tensile tensile stresses σ ∈
{−100,−150,−200,−300}MPa in the X direction are considered, with σ = −200MPa

being run longer than the others to show porosity increase. The simulations are conducted
by starting from an almost dense (97%) sintered body produced by prior simulations.
The evolution of normal strain in the coordinate directions as well as porosity are shown
in fig. 9.2: The samples lengthen (negative strain) in the X direction and shrink in the
Y and Z directions, with the Y and Z strains effectively overlapping. After an initial
transient, the strain is observed to be a linear function of time as expected of secondary
creep. The steady strain rate is observed to be linearly dependent on the applied stress,
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9.2 Coupling grain growth and densification

as is expected of Coble creep [195]. Porosity is reduced at first, but with sufficient time,
the porosity rises and would eventually lead to failure. This suggests that the model
extension successfully models the stress dependence of Coble creep.

9.2 Coupling grain growth and densification

Densification and grain growth are intimately related and thus the concurrent simulation
of both is of paramount importance for quantitative simulation of sintering. In this
section, these coupled processes are investigated by parameter variations of the relevant
mobilities. The mobility of an interface is controlled with the inverse mobility τ , for
which high values imply low mobility. For the grain-vapor interface a small value of τgv is
chosen such that the evolution is diffusion-controlled. For the grain-grain interfaces, two
different values of the inverse grain mobility τgb are chosen, with their values also serving
as simulation labels: Kinetically suppressed grain growth is achieved with τgb = 100τgv
and unsuppressed grain growth with τgb = τgv.

For each of these mobility variations, different diffusion coefficients will be tested. The
base case is that of table 8.2, with variations on the surface diffusivity Ds and the GB
diffusivity Dgb by simple factors, with the factors being chosen arbitrarily. The full set
of investigated diffusivity combinations is

{(Dgb,0, Ds,0), (Dgb,0, 0.1Ds,0), (Dgb,0, 0.01Ds,0),

(0.1Dgb,0, Ds,0), (0.1Dgb,0, 0.01Ds,0)}

with the color scheme being used consistently to identify the simulations. The base case
(Dgb,0, Ds,0) is identified explicitly, with departures from it being used as labels with the
appropriate color. The surface to GB diffusion ratio in the base case of Ds,0

Dgb,0
is about 3,

with this being varied from about 1/30 to 30 with the employed factors.

A qualitative, visual comparison of some of these results is given in fig. 9.3 showing the
GB network (blue) as well as isolated (grey) and detached porosity (red) for selected
densities. It can easily be seen that in the base case without grain growth (left), no
pores are detached. For otherwise the same parameters (middle), allowing grain growth
leads to a significant fraction (≈ 80%) of detached porosity. Finally, if the GB diffusivity
is reduced (right), then densification slows down significantly and within the allotted
simulation time the maximum reached density is about 82%, whereas both simulations
with quick GB diffusion achieved at least 99% density. As an exemplary quantification,
the time to reach 80% density is increased by a factor of 33 even though the GB diffusion

181



9 Revealing process and material parameter effects on densification via phase-field studies

base, τgb = 100τgv base, τgb = τgv Dgb = 0.1Dgb,0, τgb = τgv

ρ = 77% ρ = 77% ρ = 77%

ρ = 95% ρ = 95% ρ = 80%

ρ = 99.9% ρ = 99% ρ = 82%

Figure 9.3: Comparison of simulations with suppressed grain growth (left), with grain growth (middle)
and a simulation with grain growth and reduced GB diffusivity (right). The GB network
is shown in transparent blue, isolated porosity in grey and detached porosity in red. The
depicted states were chosen based on their density and can represent different times.
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Figure 9.4: The relationship between surface area and density is observed to be roughly linear, with
the dashed lines indicating best fit linear functions.

was only reduced by a factor of 10. From these images it should also be clear that
even at the same density, microstructures need not be comparable. Rather, these are
the complex product of the temporal interplay of densification, pore destabilization and
grain growth, with a single variable being unable to capture the full picture. Videos of
the time evolution, also showing a kind of Plateau-Rayleigh instability of isolated pore
channels, are deposited with the supplementary material at [196].

Let us start the quantitative investigation by considering the evolution of surface area
with density, as the reduction of surface area is the driving force for densification. It
is often observed [46, 101, 197] that surface area and density are linearly related during
sintering. This relationship is demonstrated in fig. 9.4 for simulations with and with-
out suppressed grain growth separately. The legend employed will be the same for all
following plots, with colors indicating variations in diffusivity and symbols indicating sup-
pressed grain growth (diamond) or unsuppressed grain growth (circle). The main point
however is that regardless of the employed parameters, a linear relationship is observed.
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9 Revealing process and material parameter effects on densification via phase-field studies

The linear fits’ (dashed lines) coefficient of determination R2 > 0.98 also shows this in
a quantitative manner. Therefore, the model’s densification behaviour is in qualitative
accordance with experiments. Local deviations, such as for the blue circles, are mostly
due to either a change of sintering stage or the onset of grain growth. Hence next the
density and grain size evolution will be considered.

The simulation measurements in terms of density ρ, grain size G and GB area Agb are
collected in fig. 9.5. Focus first on the diamonds in fig. 9.5a: These represent the density
of simulations with suppressed grain growth. The base case (teal), as well as the simula-
tions in which only surface diffusion Ds is reduced (purple, orange), have essentially the
same densification behaviour. This is due to vacancy absorption happening fast enough
that surface diffusion contributes relatively little to neck growth compared to vacancy
absorption. There is a small effect of reduced densification rate with reduced surface
diffusion up to ≈ 90% density, after which the densification rate with reduced surface
diffusion is larger. This density-dependent influence of the surface diffusion is likely due
to the inversion of the surface mass flux observed by Luo et al. [198]. In contrast, decreas-
ing the GB diffusion Dgb (green) significantly reduces the densification rate throughout
the process. In this case a significant amount of neck growth is due to surface diffusion
filling the neck without concomitant vacancy absorption. Hence decreasing the surface
diffusion (blue) for this case does significantly speed up densification (≈ factor 3 less time
to 80% density), though not to the original levels. The two simulations with reduced
grain boundary diffusion (green, blue) will also henceforth be called slowly densifying, in
contrast to the quick densification exhibited by the remaining simulations.

Focus now on the effect of grain growth on densification by comparing the circular sym-
bols (unsuppressed grain growth) and the diamonds (suppressed grain growth) in fig. 9.5a:
For the quickly densifying simulations there is hardly any influence on the density evo-
lution. This is due to densification happening so quickly that grain growth only really
starts past about 90% relative density. Grain growth however does lead to pores de-
taching from the GBs, which at the end of the simulations causes about 1% porosity to
remain in a detached state. As before, decreasing the GB diffusion causes a significant
slowdown of densification, with grain growth further limiting the achievable density for a
fixed time. Since grain growth has a significant effect on these, it will be discussed next.

The grain size evolution is depicted in fig. 9.5b. Comparing the base case (teal) with only
reduced surface diffusion (purple, orange) shows a slight reduction of grain growth via
pore drag, since pore motion is limited by surface diffusion. The effect is not particularly
pronounced due to the quick densification removing pores quickly as well. Pore drag
becomes much more evident when comparing the quickly densifying simulations to the
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Figure 9.5: The influence of grain growth and variable interfacial diffusivity on densification (a), grain
size (b) and total GB area Agb (c). The GB networks (blue) for three simulations are
shown as insets in (b) for similar grain sizes, with white space within the image indicating
porosity. 185



9 Revealing process and material parameter effects on densification via phase-field studies

slowly densifying ones: As densification proceeds more slowly, more pores will be present
at the same time and hence grain growth is slowed down. Unexpectedly, when in addi-
tion to reducing the GB diffusion the surface diffusion is reduced as well, grain growth
starts much later in term of time and density. This is likely due to the sintering neck
being formed only slowly in this case (Dgb = 0.1Dgb,0 Ds = 0.01Ds,0, blue), which also
suppresses grain growth: The flux of atoms leading to grain growth is the contact area
times the flux density. The flux density is due to curvature differences between grains
and will be roughly comparable between simulations prior to the start of grain growth,
as the initial conditions are the same. The contact area evolution differs significantly
however, as is shown in fig. 9.5c by identifying it with the GB area Agb. The simulation
Dgb = 0.1Dgb,0 Ds = 0.01Ds,0 (blue) indeed shows much slower GB area growth. For
this particular simulation, once a few grains have achieved a sufficient neck size, these
grow rapidly (up to 6 times the mean grain size) until they are slowed down by porosity
again, leading to stagnant grain growth for a short interval. This heavier porosity loading
on grain boundaries is shown via the insets in fig. 9.5b, which show the GB network for
similar grain sizes: Both simulations with reduced GB diffusivity show increased porosity
on grain boundaries, with their grain growth hence being more significantly affected by
pore drag.

In order to quantify grain growth with respect to experiments, the grain growth law
is evaluated by fitting the grain size G data for G > 13 nm to power laws of the form
G = Atn, with the plots showing the results being deposited with the supplementary
material [196]. The grain size filter is employed to fit only the regime where grain growth
is taking place. Exponents ranging from about 1

3 to 4
5 are observed; the experimentally

observed range is 1
4 to 1

2 [20]. The simulations with Dgb = 0.1Dgb,0 show values close to
1
3 which is often experimentally observed and can be due to pore drag. The simulations
showing n > 1

2 are likely due to the start of grain growth significantly deviating from the
rest of the curve. For example, if the data is filtered to G > 20 nm, then these exponents
move appreciably closer to 1

2 , whereas Dgb = 0.1Dgb,0 achieves n = 1
3 . Hence filters for

larger grain sizes will cut off more of the initial regime, but also include more data in the
regime of low grain numbers. Ideally a larger system containing more grains and hence
capable of reaching steady state would have been simulated. But since the primary goal
was investigating densification, a too small number of grains was chosen for the initial
conditions.

Based on these observations, one may conclude that below a certain ratio of Ds

Dgb
, densi-

fication will proceed unhampered by surface diffusion. The coarse spacing of the ratios
of the present investigation does not allow a particularly accurate estimate of the critical
ratio, but it should be in the interval [1, 10], i.e. GB diffusion should at worst be only
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Figure 9.6: The inverse square root of porosity P is plotted against the grain size G. Once grain growth
starts, a rather linear relationship is observed; the dashed lines indicate fits to data with
G > 13 nm to account for this.

a magnitude slower than surface diffusion. Otherwise surface diffusion will inevitably
account for major parts of neck growth and hence reduce the achievable density. Given
that surface diffusion and GB diffusion are similar in their grain size dependence follow-
ing Herring’s scaling law, this should also extend to larger particle sizes and when grain
growth occurs. At some point, however, volume diffusion becomes, in terms of total mass
transported, relevant w.r.t. the interfacial fluxes as it is less affected by grain size.

Let us close the classical consideration by verifying the experimentally observed linear
relationship between grain size and the inverse square root of porosity G ∝ 1√

P
[46]

with P = 1 − ρ. This relationship is plotted for the simulations which exhibited grain
growth (G > 13 nm at any point) in fig. 9.6 and shows a quite linear character once grain
growth has started. This is quantified with linear fits, whose coefficient of determination
is generally R2 > 0.97, except for Dgb = 0.1Dgb,0 Ds = 0.01Ds,0 (R2 ≈ 0.75) with its
stagnating grain growth. The scatter at high densities ρ = 98% ∼ 1√

P
≈ 7 is due to

the density measurement being affected by surface roughness of the green body, which is
effectively counted as open porosity. However, at this stage there are no pore channels
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Figure 9.7: The Euler characteristic χ shows qualitatively similar behaviour compared to experimental
data [101, 102]. Its evolution is influenced by both GB and surface diffusion, with little
effect from grain growth.

left on the green body’s surface, hence any “porosity” counted near the surface is a
measurement error.

Besides the classical quantities of density and grain size, the microstructure can also be
characterized via its shape. An integral approach to this characterization is the Euler
characteristic χ of the pore space, which can be used to distinguish stages of sintering
[101, 102]: The initial stage is characterized by a negative and decreasing value, with the
intermediate stage continuously increasing the value up to a positive maximum value. In
the final stage, the characteristic decreases towards zero for infinite time, representing a
fully dense structure. The Euler characteristic is plotted over density in fig. 9.7 for the
present simulation set and good accordance to the expectations is observed. Note that
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9.2 Coupling grain growth and densification

grain growth has little effect on the evolution of the characteristic, since the symbols
generally overlap. It is however influenced by GB diffusion via densification speed and
by surface diffusion because it determines the time scale of pore evolution. In order to
verify the suggestion of [102] that the maximum of χ indicates the final sintering stage,
the bottom part also shows open and closed porosity separately over density. Assuming
that the start of the final stage is given by the equality of isolated and open porosity,
the suggestion is confirmed for the present simulations. Furthermore, it can be observed
that isolated porosity is formed more slowly with lower surface diffusion. This is simply
due to the pore instability being mostly limited by surface transport. Fast densification
also has an apparent pore instability suppressing effect, since Ds = 0.01Ds,0 (orange)
has generally less isolated porosity than Dgb = 0.1Dgb,0Ds = 0.01Ds,0 (blue) at the same
density. The likely origin of this is that densification progresses rapidly enough that the
time to destabilization isn’t reached before the pores are eliminated.

An approach which allows a more granular shape description is the calculation of shape
factors characterizing individual objects. The factors employed are those of MacSleyne et
al. [199] employing second moments of the mass distribution of the object to characterize
its shape. These have three invariants Ω̃i, i ∈ {1, 2, 3} , which are characteristic for a
fixed shape e.g. a sphere, a tetrahedron or the truncated octahedron (tetrakaidecahedron)
suggested by Coble [88] for modelling the intermediate and final stage grain shape. The
invariants can be normalized to a specific shape s, Ωi = Ω̃i

Ω̃i,s
, and thus the distance

from this shape is related to how far from the value of 1 the normalized invariant Ωi
is. The sphere is chosen as a reference shape and the normalized variants are collected
in a vector Ω. In order to summarize the invariants, we introduce the lumped invariant
employing the Euclidean norm ΩE = ||Ω||√

3
of the vector Ω. The factor of

√
3 stems

from the use of the Euclidean norm, such that ΩE = 1 still represents a sphere; the
value itself can be interpreted in the same way as the components Ωi. The invariants are
separately calculated for the grains, isolated pores and detached pores, with the detached
pores forming a subset of the isolated pores. Hence if only detached pores remain, their
invariants will be the same as for the isolated pores.

The mean of ΩE is plotted over density in fig. 9.8 for the separate structures. The
standard deviation was also calculated, but in general it is quite large and hence would
obscure the evolution. It was ensured that there are at least 5 objects of which the mean
is calculated, as otherwise the initial trajectory is dominated by small, short-lived pores
for the pores.

Focus first on the evolution of the isolated and detached pores: At high densities, reached
by simulations with high GB diffusivity, both tend to ΩE = 1, which is consistent with
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Figure 9.8: The lumped invariant ΩE =
||Ω||√

3
of the normalized invariant vector Ω is plotted over

density for all simulations, with the structures of isolated and detached porosity as well
as the grains being shown separately. Given sufficient densification, the porosity tends
to approximate spheres, i.e. ΩE = 1. The steady invariants for the grains depend on
densification rate and grain mobility, with the latter influence likely due to finite size
effects.
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curvature minimization. The transitory period shows a non-monotonic behaviour, likely
attributable to isolated networks of pores first forming, then splitting into single pores via
Plateau-Rayleigh-like instabilities. These instabilities are likely induced via grain bound-
aries since this is typically faster than instability growth from perturbations. [90]. Since
the timescale for this instability is dependent on the surface diffusion, the convergence
to a spherical shape is also slower for reduced surface diffusion. High grain mobility
allows pores to detach and afterwards spheroidize within the grains. This causes the
invariant for the simulations with high grain mobility (circles) to generally be closer to
that of the sphere than for those without, since pores on grain boundaries deform to
reach the proper dihedral angle. In the slowly densifying cases (low GB diffusivity), the
isolated pore networks still remain and tend to dominate the shape factor. Note that
an entire pore network can become detached from the GB network, which significantly
slows down its destabilization to isolated spheres. Hence apparently isolated porosity in
2D micrographs might very well be the same pore.

Focus next on the evolution of the grain structures: From the initial somewhat spherical
shape, a mostly monotonic decrease is observed, with the speed being related to both
interfacial diffusivities and the grain mobility. The dashed black line indicates the cube’s
invariant, with the solid black line indicating the truncated octahedron’s invariant. All
simulations pass the truncated octahedron’s invariant, but do not converge towards it.
One might argue that pore-laden structures have a different invariant compared to the
pore-free structure. But even for the base case without grain growth, in which only few
pores remain at the end, a value significantly different, i.e. ≈ 1

3 of the distance between
a sphere and a cube, from that of the truncated octahedron is observed. Experimen-
tal observation of the annealing of dense (≈ 99%) strontium titanate [200] also indicate
that real grains do not show the invariants of the truncated octahedron, though these of
course also have effects from crystalline anisotropy. Together with the evolution of grain
coordination number before the final sintering stage [100, 115], this suggests that the
assumption of truncated octahedra being representative of the grain structure during in-
termediate stage sintering should be dropped. However, the present results do not allow
a constructive suggestion for a replacement shape. The generation of shapes from in-
variants, while possible, usually requires invariants of higher order moments as shown in
[201]; furthermore, these shapes are likely not as analytically tractable as the truncated
octahedron. Hence while the truncated octahedron is not a satisfactory approximation
for the grain shape during intermediate stage sintering, it can still be used in geometric
modelling while being aware that prefactors derived from it will likely be wrong.
As a final note, the invariants for simulations with unsuppressed grain growth will be
affected by the initial green body shape in their later stages. This is due to the few
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leftover grains approximating the original green body shape. Therefore, the grain invari-
ants’ values in the later stages with unsuppressed grain growth should not be taken at
face value. The plots of the unlumped invariants, generally showing similar trends, are
deposited with the supplementary material [196].

9.3 Sintering of structures produced by
freeze-casting

Freeze-casting [45] is a novel process for the production of porous materials as well as near
net shape casting. A suspension of a liquid, usually water and hence assumed thus, and
a target material is mixed and frozen, resulting in a microstructure of the target material
and ice. The ice is sublimated next, leaving a porous structure which is then usually
sintered, completing the freeze-casting process chain. A previously developed model
for the phase-field simulation of the freezing part of freeze-casting [202] is employed to
generate a three-dimensional freeze-cast structure. The volume fraction of target material
is known for each cell of the domain and is employed to generate a sphere packing
approximate the freeze-cast body. Where a sufficient volume fraction is reached, spheres
of r = 8nm are placed into a domain, approximating the continuous volume fraction
field with a discrete packing of spheres. The freeze-casting simulation itself employed
particles of radius 250 nm, with the change in sphere radius being for computational
efficiency, as smaller particles will sinter faster; this does mean however that a smaller
version of the actual structure is sintered next. The space of low volume fraction is
left empty, producing macropores, and thus a rough approximation of the sublimation
process is achieved. Finally, the resulting sphere packing is computationally sintered
with the present model to completely simulate the process chain of freeze-casting for the
first time ever.

The resulting microstructural evolution over time is shown in fig. 9.9. On the left the
entire structure is shown, with grains being rendered as a copper-like material, since
the materials parameters of table 8.2 approximate copper, and the dark lines within the
structure represent grain boundaries and higher order junctions. As can be seen, even a
complex, inhomogeneous structure can be sintered with the present model. Furthermore,
some grain growth has occurred as would be expected from the low grain size. At the
end of the simulation run, the particulate region is completely dense, with no isolated
porosity remaining and no pore channels penetrating through the structure. On the
right, a fracture surface is shown together with a rough approximation of the porosity,
rendered with a water-like apperance. This porosity is continuously reduced, with many
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t=0ms

t=0.09ms

t=1.2ms

freezing
direction

Figure 9.9: A freeze-cast structure with a macropore undergoing sintering. The structure itself shrinks
while keeping the macropore intact. On the right a close-up for a fracture surface normal
to the Y direction, also indicated by the blue plane at t = 0ms, is shown, including a rough
approximation of the porosity rendered with a water-like appearance. It can easily be seen
that the porosity within the walls changes substantially between t = 0ms and t = 0.09ms,
with many grains already having eliminated their surrounding porosity.
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grains already having eliminated their surrounding porosity at t = 0.09ms, which limits
their further contribution to densification. Note that almost no vertical motion is evident
between t = 0.09ms and t = 1.2ms. Densification in this direction has stopped at about
t = 0.09ms and only the directions normal to it continue to densify. The surface in this
direction also tends to have fewer grains, allowing these to bulge out more and thereby
influence the strain measurement.

The shrinkage is characterized with the strain in each spatial dimension, which is found to
be anisotropic: In the freezing direction, upwards and parallel to the macropore, a shrink-
age of about 10 to 13% is observed, but in the directions normal to it, a shrinkage of 16
to 19% is observed. The strain range is due to inhomogeneous strain measurements. Ex-
perimental evidence of anisotropic shrinkage after freeze-casting exists [203, 204], but the
experiments disagreed on which direction shrinks less. Farhangdoust et al.[203] observed
that the freezing direction shrunk less, comparable to the present results. However, as
Lichtner et al.[204] note, Farhangdoust et al. may not have removed the initial, isotropic
structure generated by freeze-casting and neither the continuous skin formed on the out-
side of a freeze-cast cylinder. Lichtner et al. investigated the anisotropic shrinkage with
experiments and the discrete element method, experimentally and simulatively observing
less shrinkage in the plane normal to the freezing direction. Following Olevsky[205] it
was argued that the anisotropic shape of the pores induces anisotropic shrinkage. The
reason for this is that the sintering potential is proportional to curvature, and if the
curvature is anisotropic, so is the sintering potential. Hence directions which exhibit a
larger curvature will densify faster than others with smaller curvature. It should be said
however that the macropores’ macroscopic curvature is low and it is not clear whether
it can cause the observed magnitude of shrinkage anisotropy. Another reason stated
in the discussion of [204] was that particles within the walls will sinter isotropically, as
their contacts are isotropically distributed. Particles on the walls’ surface have missing
contacts and hence will tend to move anisotropically. This disregards however that the
sintering potential can also be distributed inhomogeneously and anisotropically.

The present results can be explained by analyzing the anisotropy of the sintering poten-
tial, represented by how much GBs deviate from their equilibrium concentration within
the simulation. Define the anisotropy factor of a property Π as f(Π) = ΠY Z

ΠX
, i.e. simply

the ratio of the property in the Y Z (average over both Y and Z directions) plane, normal
to the freezing direction, to the property in the freezing direction X. The anisotropy fac-
tor of both the strain and sintering potential are plotted against each other in fig. 9.10.
Two regimes are evident here: Initially, there is a slight anisotropy in the sintering poten-
tial, which is sufficient to cause the strain to become increasingly anisotropic. Although
the anisotropy is small (≈ 1.05), this small anisotropy causes about half of the observed
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anisotropy in the strain. This is due to the high driving forces for densification at this
early stage. The anisotropy in the sintering potential increases eventually, due to the
sintering potential being connected with the chemical potential (stress) on a particle’s
surface within the phase-field model. As the structure densifies, more and more grains
completely lose their connection to the surface and become embedded in a surrounding
grain matrix; this can easily be seen on the right of fig. 9.9. Once this happens, the model
assumes that there is no additional stress due to curvature and correspondingly reduces
the sintering potential of the associated grain boundaries. While this occurs isotropically,
the average sintering potential in a direction is dependent on both such embedded grains
and surface grains. A simple model of this effect could read as

σd =
Nvσiso +Nd

s σ
d
s

Nv +Nd
s

i.e. the average sintering potential σd in a direction d is the addition of both a volume
contribution Nvσiso, acting isotropically, and a surface contribution Nd

s σ
d
s , potentially

inducing anisotropy. If Nv ≫ Nd
s , isotropic behavior is observed, which was the case in

the previous sections; though if the anisotropic contribution is the same in each direction,
this would also result in net isotropic behavior. In the present geometry however, Nv ≈
2Nd

s in the Y Z plane since the walls are on average about 6 particles thin. In contrast
to this, Nv ≈ 5Nd

s in the X direction (12 particles) and hence this direction will be
affected less by the surface grains, especially compared to the Y and Z directions. Thus,
the observed anisotropy of the sintering potential might be due to the phase-field model
giving an unwarranted extra weight to particles with exposed surfaces by virtue of their
increased sintering potential σds . Finally, the increase in the anisotropy of the sintering
potential at roughly constant strain anisotropy is due to little to no porosity remaining.
This correspondingly magnifies the aforementioned effects, though given that little to no
densification is possible anymore, no further increase in strain anisotropy is observed.
The non-monotonic behaviour in this final region is mostly due to measurement errors
via grain growth, since densification has effectively stopped.

Three other confounding factors exist: First, the present geometry only contains a single
macropore open to the surrounding vacuum, raising questions of representativeness. Sec-
ond, within the present phase-field model it was observed that linear chains of particles
only achieve particle count independent strain evolution starting from about 16 particles
in the chain[115]. Up to that point, increasing the number of particles in the chain de-
creased the strain rate monotonically. The strain rate ratio between a four and sixteen
particle chain, roughly comparable to how thick the freeze-cast structures is in the Y Z
and X directions, is on average about 1.17. This is in rough agreement with the initial
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Figure 9.10: Anisotropy factor f(Π) = ΠY Z
ΠX

for the properties Π of strain and sintering potential.

increase of strain anisotropy up to about a factor of ≈ 1.2, after which the increase in
sintering potential anisotropy becomes the dominant influence on the strain anisotropy.
The change in strain rate between chains of different particle counts was explained via the
differing sintering potentials of the chain’s end particles. Since their shape evolution is
only restricted by one grain boundary, they will generally have an average surface chem-
ical potential which differs from the inner particles. Since there are many thin sections
in the freeze-cast structure, this effect is present in freeze-casting sintering simulation as
well, and is the likely origin of the sintering potential anisotropy. The final confounding
factor is that some grain growth (≈ 10% average grain size increase) occurs. While for
the present results it does not result in desintering [206], the green body resulting from
freeze-casting is generally liable to experience this phenomenon — the bridges spanning
the macropores are similar to the bridges spanning cracks in the classic work of Sudre
and Lange [206]. Since desintering would generally reduce the connectivity normal to the
freezing direction, it would support Lichtner et al’s [204] experimental results. In total,
while the present results are quite encouraging for relatively thick structures, further
research and modelling work should be done on the calculation of the sintering potential
within the model.
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Within the present work the processes of solidification and sintering were investigated
with the help of phase-field simulations.

In chapter 4, it was possible to verify a boundary curve separating eutectic growth from
coupled dendritic-eutectic growth. Based on the assumptions for the boundary curve,
this also suggests that during coupled dendritic-eutectic growth the isolated growth forms
do not significantly influence each other. This conclusion is furthered by comparing the
operating states of both dendrites and eutectics during coupled growth to their isolated
forms at equivalent growth conditions with little difference being observed. Velocity
changes were conducted to test for morphological hystereses and it was found that the
transition from a dendritic-eutectic pattern to a eutectic pattern is easier than the reverse
process. Large-scale two-dimensional simulations allowing for significant time spent in
primary crystallization revealed that the distance between dendrite tips and the eutectic
front plays a major role in the overall pattern formation: If the distance is large, the
eutectic will simply grow along interdendritic liquid channels. During this growth, it is
possible that the eutectic will nucleate anew in liquid pockets formed by secondary arms
and thus eutectics of different dominant orientation should be found around dendrites. If
the distance is small, then the growth of secondary dendrite arms is generally suppressed
by the eutectic. The eutectic front itself exhibits a small-scale variation of phase-widths
close to the dendrite due to solute rejection from the dendrite and is thus curved close
to the dendrite. However, this curvature need not be due to the effects of the dendrite,
as a eutectic after overgrowing a dendrite still showed a curved front.
Finally, three-dimensional simulations were conducted to verify whether the morphology
of the eutectic changes in reaction to the coupled growth. At the same growth conditions,
a eutectic composed of isotropic phases yielded a fiber-matrix arrangements, which was
changed into a lamellar pattern once one of the phases had an anisotropic solid-liquid in-
terface. Exploiting the morphological hystereses allowed the simulation of coupled growth
at the very same growth conditions and the eutectic was observed to eventually form a
lamellar pattern due to inclusion of anisotropic solid-liquid phases. Hence no conclusive
statement can be made whether coupled growth can induce a morphological change in the
eutectic. Future work could probe this in two possible ways: Simulate at concentrations
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with a larger difference in phase fractions which would favour a fiber-matrix arrangement.
If the phase fraction difference is sufficiently large, the isolated eutectic with anisotropic
phases could, depending on the anisotropy strength, eventually keep the the fiber-matrix
arrangement. Similarly, a change in the anisotropic formulation or strength could lead
to the anisotropic dendritic phase not invading the initially isotropic eutectic. If at the
same growth conditions a different morphology is observed for coupled growth, evidence
of coupled growth’s influence on morphology would be obtained.

The process of freeze-casting was modelled in chapter 5 by applying classical solidifica-
tion phase-field methods with Gibbs energies approximating the peculiarities of colloidal
suspensions. This resulted in dendritic structures, whose microstructural lengths were
investigated subsequently. Hence the effects of solidification velocity, temperature gra-
dient, solids loading and particle size on these lengths were revealed. One parameter
which was not part of prior experimental focus, the temperature gradient, was found to
have a significant effect on all three lengths, especially at smaller particle sizes. Hence
by recording the temperature gradient experiments can be made more comparable.
Future work should re-evaluate the energetic description of the system, as right now it is
based on combining data from quite different sources. One way of doing this would be
to evaluate the enthalpy of a suspension as it freezes and use it as input for thermody-
namic modelling; in the same way that the enthalpy is related to the Gibbs free energy,
the reverse is true as well. Given that the suspended particles should not undergo any
phase transformation, their enthalpic contribution should be mainly one of heat capacity
and excluding volume of liquid which does not transform. Furthermore, a thin-interface
analysis including a concentration-dependent diffusivity should be carried out, since the
diffusivity in colloidal suspension is sensitive to both concentration and particle size.

Sintering was extensively studied (chapters 6 to 9 ) starting from a critical investigation
of the most commonly used phase-field model for solid-state sintering. A multitude of
unphysical behaviours were revealed and resolved in subsequent works. This allowed the
matching with many qualitative observations of experiments: First, the newly developed
model has a representative volume element for densification, unlike the literature model
for solid-state sintering. This model also showed the expected behaviour of slower den-
sification with larger grains. Furthermore, the co-evolution of the grain structure during
sintering in terms of the grain coordination number could be shown to be similar to
experiments.
Based on these results, further investigations with various process and geometry changes
were carried out: The effect of pressure was included by modifying the equilibrium va-
cancy concentration at grain boundaries and found to yield the experimentally observed
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and theoretically derivable linear increase of densification rate with pressure. By a pro-
jection method this isotropic pressure could be turned into an uniaxial stress, which is
commonly employed in creep experiments. Simulations with a tensile, uniaxial stress
showed the major qualitative features of creep: Constant strain rate after an initial tran-
sient, increase of porosity, and in the case of Coble creep, a linear dependence of strain
rate on the applied stress. Next, the coupled processes of densification and grain growth
were tackled by varying the interfacial diffusivities and grain mobilities. This effectively
represents sintering at different temperatures or doping levels. With these variations it
could be shown that as long as densification is fast, surface diffusion has little influence on
the densification behaviour. The grain boundary diffusivity should not be much smaller
than an order of magnitude than the surface diffusion in order to ensure this. Lower sur-
face diffusion also increases the time to pore destabilization as well as the effect of pore
drag on grain boundaries. The latter causes slightly less grain growth for otherwise the
same parameters if surface diffusion is reduced. Grain growth itself seems to generally
follow power laws after an initial transient, with the exponent depending on whether fast
or slow densification occurs. This was observed to be due to pore drag, as fast densifi-
cation implied little pore loading on grain boundaries, whereas slow densification led to
severe pore loading on grain boundaries.
Due to the 4D information provided by simulations, it was possible to follow the shape
evolution of each grain and pore during these simulations. Thanks to this, it was pos-
sible to determine that networks of isolated porosity form, which then undergo a grain
boundary mediated form of the Plateau-Rayleigh instability to split into smaller units.
If these units stay attached to grain boundaries, they generally deviate from a spherical
shape, but if they are detached their shape tends towards a sphere. The grain shape was
observed to generally be different from the usual assumption of the truncated octahedron,
as shown by moment invariants. This explains a part of the deviation of classical sin-
tering theory from experiments, as the prefactors are heavily dependent on the assumed
geometry.
Finally, an inhomogeneous density distribution was shown to result in anisotropic shrink-
age. The structure employed for this was a freeze-cast structure generated with the
freeze-casting model presented in this work. While anisotropic shrinkage comparable to
some experiments in literature was observed, some additional model complications were
observed as well which will need to be addressed in future work.

Overall, the present work shows the wide applicability of the phase-field model to ma-
terials processing. This is not only limited to the classical phase-field application of
solidification, but also to the intricate process of sintering. Furthermore, by simulating
each step within a process chain with an appropriate method, a virtual replication of the
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process chain can be established. This was exemplified with the freeze-casting process
chain in the present work, but also applies to e.g. steel processing: The processes of refin-
ing the ore, casting into ingots which are then smithed into shape, potentially quenched
and finally heat-treated to adjust the materials properties, are nowadays mostly ana-
lyzed in isolation. This necessitates assumptions on the state of the material prior to the
investigated processing step, which might severely affect the reaction of the material to
the processing.
By combining these steps into a coherent simulation chain, more quantitative results can
be obtained. A key factor in such a coherent chain is the precise knowledge of input
parameters, since these determine the spatiotemporal evolution of the system. One way
of determining these could be data assimilation methods[207]: Based on experimentally
observed data, the parameters of a computational model are adjusted to fit the experi-
mental observations automatically. However, the computational model employed for this
needs to capture all relevant processes correctly. An easy way to understand this is com-
paring the results of the sintering models developed in this work: The same density-time
curve would result in radically different diffusion coefficients depending on the model, as
one model can achieve a RVE, but the other cannot. Hence while the observation might
be matched by the model without an RVE, the determined parameters will be unusable
outside of the precise conditions the experiment was conducted at. The goal in the end
is to determine the physical value of the parameter, and not one seen under the lens of
an incorrect model. Thus these values need to be entirely transferable between different
computational models handling different parts of a process as long as the material stays
the same.
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A Appendix

A.1 Formal equivalence of units

The specification of units for composition as well as energy density is rather free if the
conversion factor is assumed to be constant. Say for the moment that the “correct” units
to use for composition c would be the molar concentration [c] = molm−3 as well as the
volumetric Gibbs energy density [gv] = Jm−3 for energy density. The conversion to a
specification in terms of molar fraction and molar Gibbs free energy would be x = c

Vm

and gm = gvVm under the assumption of constant molar volume Vm. Assume now that
some nondimensionalization scales exist such that [c̄] = [ cc0 ] = 1 and [ḡv] = [ gvgv,0

] = 1,
with the units of the scales corresponding to the units of the quantities. Given that
constant molar volume is assumed and that [c] = [ 1

Vm
] a natural choice is c0 = 1

Vm
, as is

generally done in this work; this directly implies equivalence of mole fraction and molar
concentration in nondimensional concentration c̄. With this choice of scale, a scale for the
molar Gibbs free energy is given by gm,0 =

gv,0

c0
= gv,0Vm. Using the earlier definitions

we have

gm = gvVm (A.1)

ḡm =
gvVm
gv,0Vm

(A.2)

=
gv
gv,0

(A.3)

i.e. given these choices of scales, the nondimensional molar Gibbs free energy is the same
as the nondimensional volumetric Gibbs free density.

Note that if the molar volume is not constant, this relation would not hold since the choice
of scale is fixed, but the conversion neccesarily happens on a local basis accounting for
local conditions.
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A.2 Further details of freeze-casting

This effectively reproduces the supplementary material of publication [80], showing the
precise numerical values of the Gibbs free energy functions and the obtained steady-state
microstructures.

A.2.1 Gibbs free energy parameters

This section details the numerical values employed to describe the Gibbs free energy of
aqueous bentonite suspensions with particles of size 250 nm, 375 nm and 500 nm. All
values are nondimensionalized based on the scales noted in the main text, with gdim =

G · E0. For each particle size, the Gibbs free energy of both the solid ice phase gi(c, T )
and the liquid suspension phase gs(c, T ) are reported. Both are of the form

gα(c, T ) = Aα(T )c
2 +Bα(T )c+ Cα(T )

with Aα(T ), Bα(T ), Cα(T ) being parabolic functions of temperature T . The functions
Ci(T ), Cs(T ) for the ice and suspension phases are independent of the particle size since
they are based on the pure phase description following IAPWS.

Table A.1: particle size independent functions

Ci(T ) −843.987154950033T 2 + 2668.14452736135T − 1823.8679855496

Cs(T ) −1862.28940047943T 2 + 3718.19539783286T − 1855.56475865368

The functions Aα(T ), Bα(T ) for the ice and suspensions phases are tabulated below for
each particle size:

Table A.2: functions for 250 nm particles

Ai(T ) −363.813052701955T 2 + 1038.42737506969T − 661.07371316661

As(T ) +624.781729505937T 2 − 2001.5373528048T + 1603.02054720731

Bi(T ) −14305.5893356235T 2 + 26721.0370280905T − 12534.9375540961

Bs(T ) −363.813052701955T 2 + 1038.42737506969T − 661.07371316661

Finally, the full Gibbs energy functions for the different particle sizes are also given:
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Table A.3: functions for 375 nm particles

Ai(T ) 8696450.19594392T 2 − 16499259.5809074T + 7827020.0745525

As(T ) +4419.53212429992T 2 − 9890.27278224592T + 5533.24950362982

Bi(T ) −130214.073750852T 2 + 245337.628150446T − 115442.978896433

Bs(T ) 12514.870762504T 2 − 23252.2358392643T + 10773.1205717657

Table A.4: functions for 500 nm particles

Ai(T ) +995906.442526578T 2 − 2106381.19059346T + 1113015.48143482

As(T ) +10047.1312993791T 2 − 21246.3527768701T + 11224.7417646649

Bi(T ) −5645.19688672837T 2 + 11679.3939071022T − 6046.24602532013

Bs(T ) +2941.69029612794T 2 − 5300.34949864201T + 2371.22834220704

gi,250 nm =(750591.374527449T 2 − 1.47463039577804 ∗ 106T + 743122.943915487) ∗ c2

+ (−14305.5893356235T 2 + 26721.0370280905T − 12534.9375540961) ∗ c
− 843.987154950033T 2 + 2668.14452736135T − 1823.8679855496

gs,250 nm =(1603.02054720731− 2001.5373528048T + 624.781729505937T 2) ∗ c2

+ (−363.813052701955T 2 + 1038.42737506969T − 661.07371316661) ∗ c
− 1862.28940047943T 2 + 3718.19539783286T − 1855.56475865368

gi,375 nm =(8.69645019594392 ∗ 106T 2 − 1.64992595809074 ∗ 107T + 7.82702007455250 ∗ 106) ∗ c2

+ (−130214.073750852T 2 + 245337.628150446T − 115442.978896433) ∗ c
− 843.987154950033T 2 + 2668.14452736135T − 1823.86798554960
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gs,375 nm =(5533.24950362982− 9890.27278224592T + 4419.53212429992T 2) ∗ c2

+ (12514.8707625040T 2 − 23252.2358392643T + 10773.1205717657) ∗ c
− 1862.28940047943T 2 + 3718.19539783286T − 1855.56475865368

gi,500 nm =(703345.204001284T 2 − 1.51219218860276 ∗ 106T + 812645.048703083) ∗ c2

+ (−6458.38650416161T 2 + 13153.8099858636T − 6713.44791450838) ∗ c
− 843.987154950033T 2 + 2668.14452736135T − 1823.86798554960

gs,500 nm =(7984.99647865678− 14858.7003887071T + 6911.02343660797T 2) ∗ c2

+ (3754.87978653526T 2 − 6774.76533796470T + 3038.43011872479) ∗ c
− 1862.28940047943T 2 + 3718.19539783286T − 1855.56475865368

A.2.2 Simulation snapshots of freeze-casting

The following images show simulation snapshots of all conducted simulations in their
final state. The field shown is the phase-field of the ice phase, with yellow indicating ice
and blue indicating suspension. The red-orange part in between is the diffuse interface.
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1.1 Various microstructures observed in steels. Pearlite forms
during “slow” cooling, whereas with sufficiently high cooling
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form. Reprinted from [4] with permission from Elsevier. . . . . . . . . . . . . 2

2.1 The molar Gibbs free energy and grand potential are plotted
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assuming that only the α-Al, the liquid L melt and the
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occur in the first place and can be safely ignored. . . . . . . . . . . . . . . . 10
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2.4 A sketch of a thermal α dendrite growing into an infinite,
undercooled melt L. The shape approximates a parabola close
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8.11 Comparison of the MDi model (crosses) and the model of [114]
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9.1 The influence of pressure on the density evolution is depicted
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